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Appendices

A. Sensitivity of the Van Leer Fluxes

The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxes in

Eq.(3.11), can be found in the literature [9,172,173] and are therefore omitted here. The

sensitivity of the Van Leer fluxes, for higher-order spatially accurate discrete sensitivity

analysis on unstructured grids, has been performed and presented for the first time in the

current research. These sensitivities may be derived by noting that for unstructured grids

there are two means by which the mesh dependence on the design variables may influence

the flux vector; the metric terms, N = ηx ηy ηz{ }T
, the cell face area, A f , and the

upwind interpolation scheme, Qf = ρ u v w p{ }T
. These dependencies may be

symbolically written for the residual vector as

∂R

∂X

∂X

∂βk

=
∂Ei,j

+

∂N

∂N

∂βk

+
∂Ei,j

−

∂N

∂N

∂βk

+
∂Ei,j

+

∂Qf
−

∂Q f
−

∂βk

+
∂Ei,j

−

∂Qf
+

∂Qf
+

∂βk

 

 
 

 

 
 Ai,j

 

 
 

j=κ i( )
∑

+ Ei,j
+ + Ei,j

−( ) ∂Ai,j

∂βk

 

  

(A.1)

Recall from section 3.1.2, that the determination of the appropriate fluxes are based upon

the Mach number normal to the cell face. For supersonic flow through the cell face, the flux

vector given by Eq.(3.2) is used with the primitive variables interpolated to the cell

interfaces. The sensitivity of this flux vector with respect to the metric dependence on the

design variables, i.e., 
∂N

∂βk
=

∂ηx

∂βk

∂ηy

∂βk

∂ηz

∂βk

 
 
 

 
 
 

T

, may be expressed as
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∂E

∂N

∂N

∂βk
=

ρ
∂Θ
∂βk Q f

ρu
∂Θ
∂βk Q f
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∂ηx

∂βk
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∂Θ
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(A.2a)

and with respect to the dependence of the upwind interpolation on the design variables

∂Qf

∂βk
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∂ρ
∂βk

∂u
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∂βk
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 
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∂Θ
∂βk N

∂ρ
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∂Θ
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∂βk

vΘ + ρ
∂v

∂βk
Θ + ρv

∂Θ
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∂w

∂βk
Θ + ρw

∂Θ
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(A.2b)

where the sensitivity of the normal velocity is the combination

∂Θ
∂βk

=
∂Θ
∂βk Q f

+
∂Θ
∂βk N

(A.3a)

with
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∂Θ
∂βk Q f

= u
∂ηx

∂βk
+ v

∂ηy

∂βk
+ w

∂ηz

∂βk
 ;   

∂Θ
∂βk N

=
∂u

∂βk
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∂v

∂βk
ηy +

∂w

∂βk
ηz (A.3b)

and the sensitivity of the total enthalpy is given by

∂ ρeo + p( )
∂βk

=
γ

γ −1

∂p

∂βk
+

∂ρ
∂βk

u2 + v2 + w2

2
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 + ρ u
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∂βk
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  
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 (A.4)

For subsonic flow through the cell face, the split Van Leer fluxes in Eq.(3.11) are utilized.

The sensitivity of these fluxes may be expressed as

∂E±

∂N
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∂βk
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∂E±
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∂βk
fmom2

± + fmass
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(A.5)

where the sensitivity of the mass flux contains the contributions

∂fmass
±

∂βk
=

∂fmass
±

∂βk Q f

+
∂fmass

±

∂βk N

(A.6a)

with

∂fmass
±

∂βk Q f

= ±
ρa

2
Mn ±1( )∂Mn

∂βk Q f

(A.6b)
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=±
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∂ρ
∂βk
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∂a

∂βk
Mn ±1( )2 + 2ρa Mn ±1( )∂Mn

∂βk N

 

 
 

 

 
 (A.6c)

The sensitivity of the fmom1
±  term is the combination
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∂fmom1
±

∂βk
=

∂fmom1
±

∂βk Q f

+
∂fmom1

±

∂βk N

(A.7a)

where

∂fmom1
±

∂βk Q f

=
∂ηx

∂βk
−Θ ± 2a( ) γ −

ηx

γ
∂Θ
∂βk Q f

(A.7b)
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∂βk
+

ηx

γ
−

∂Θ
∂βk N
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∂a

∂βk
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 

 

 
 (A.7c)

Analogous relations may be written for ∂fmom2
± ∂βk  and ∂fmom3

± ∂βk . Similarly the

sensitivity for the energy term is

∂fe
±

∂βk
=

∂fe
±

∂βk Q f

+
∂fe

±

∂βk N

(A.8a)

where

∂fe
±

∂βk Q f
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2

γ 2 −1
1 −γ( )Θ ± γ − 1( )a[ ] ∂Θ

∂βk Q f

(A.8b)
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∂βk

 

 
 

 
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∂u

∂βk
+ v

∂v

∂βk
+ w

∂w

∂βk

(A.8c)

In the above equations the sensitivities of the normal Mach number are given by

∂Mn

∂βk Q f

=
1

a

∂Θ
∂βk Q f

;
∂Mn

∂βk N

=
1

a

∂Θ
∂βk N

−
Θ
a2

∂a

∂βk
(A.9)

where the sensitivity for the speed of sound is

∂a

∂βk
=

γ
2a

1

ρ
∂p

∂βk
−

p

ρ2
∂ρ

∂βk

 
 
  

 
 (A.10)
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As seen, the sensitivity of the inviscid split fluxes requires the determination of the

sensitivity of the metric terms and the sensitivity of the upwind interpolation scheme. The

evaluation of the metric terms on unstructured grids and the corresponding sensitivity of

these terms are presented below in Appendix C. The sensitivity of the upwind interpolation

scheme, using both the inverse-distance and the psuedo-Laplacian weighting methods, are

presented in Appendix D.

B.  Jacobians/Sensitivity of the Boundary Conditions

The boundary-condition types utilized in the current work are inviscid solid boundary

(flow tangency) and characteristic inflow/outflow. These boundary conditions are those

most commonly used in inviscid CFD analysis and may be easily found in the literature; for

example, see reference 128. Furthermore, a first-order implementation of these boundary

conditions is utilized in the current research. This implementation simply uses the cell

center values of the primitive variables adjacent to the boundary faces as opposed to the

interpolation of these variables to the boundary faces. A more detailed description and

comparison of both implementations has been reported Ref. 129 for unstructured grid

schemes. The most common approach, however, is the first-order one.

The boundary values of the primitive variables Qb for flow tangency are specified as

ρb = ρo

ub = uo −Θo ηx ; vb = vo − Θoηy ; wb = wo − Θoηz

pb = po

(B.1)

where the normal velocity at the boundary is computed from the interior velocity

components as

Θo = uo ηx + vo ηy + wo ηz (B.2)

The state equation for the boundary conditions may be express as
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B Qo ,Qb ,X( ) =

ρo − ρb

uo − Θoηx − ub

vo −Θo ηy − vb

wo −Θo ηz − wb

po − pb

 

 

  

 

 
 

 

 

  

 

 
 

= 0 (B.3)

The Jacobian of this state equation, with respect to the interior state variables, is derived as

∂B

∂Qo
=

1 0 0 0 0

0 1 − ηx
2 −ηx ηy −ηx ηz 0

0 −ηx ηy 1− ηy
2 −ηy ηz 0

0 −ηx ηz −ηy ηz 1− ηz
2 0

0 0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

(B.4)

and with respect to the state variables on the boundary

∂B

∂Qb
= − I [ ] =

∂B

∂Qb

 

  
 

  

−1

(B.5)

where I  is the identity matrix. The inverse of this matrix is required in the sensitivity

analysis using either the pre-eliminated form of the sensitivity equation (e.g., Eqs.(3.26a

and b)) or the incremental form (e.g., Eq.(4.12)).

The sensitivity of the boundary state equation with respect to the design variables for the

flow tangency condition may be written as

∂B

∂X

∂X

∂βk
=

0

−
∂Θo

∂βk

ηx + Θo
∂ηx

∂βk

 
 
  

 
 

− ∂Θo

∂βk

ηy + Θo
∂ηy

∂βk

 
 
  

 
 

− ∂Θo

∂βk

ηz + Θo
∂ηz

∂βk

 
 
  

 
 

0

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

(B.6)

where
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∂Θo

∂βk
= uo

∂ηx

∂βk
+ vo

∂ηy

∂βk
+ wo

∂ηz

∂βk
(B.7)

For characteristic inflow/outflow boundary conditions, the Riemann invariants

corresponding to the incoming and outgoing waves traveling in the characteristic directions

defined normal to the boundary are applied at the far-field. The two locally one-dimensional

Riemann invariants are given by

R+ = Θo +
2ao

γ −1
; R− = Θ∞ −

2a∞
γ −1

(B.8)

where Θo  is given above and

ao =
γ po

ρo

 
 
  

 
 

1 2

; a∞ =
γ p∞
ρ∞

 
 
  

 
 

1 2

; Θ∞ = u∞ ηx + v∞ ηy + w∞ ηz (B.9)

The invariants are used to determine the locally normal velocity and speed of sound

Θ =
1

2
R+ + R−( ) ; a =

γ − 1

4
R+ − R−( ) (B.10)

For outflow (Θ > 0) on the boundary, the velocities are defined as

ub = uo + ηx Θ − Θo( ) ; vb = vo +ηy Θ − Θo( ) ; wb = wo +ηz Θ − Θo( ) (B.11)

whereas for inflow (Θ < 0) on the boundary

ub = u∞ + ηx Θ − Θ∞( ) ; vb = v∞ +ηy Θ − Θ∞( ) ; wb = w∞ +ηz Θ − Θ∞( ) (B.12)

The density on the boundary is computed from the entropy relation

ρb =
a 2

γ S

 

 
  

 
 

1

γ −1
(B.13)

with the entropy function S  evaluated as

Θ > 0 S = So =
po

ρo
γ ; Θ < 0 S = S∞ =

p∞

ρ∞
γ (B.14)
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Then the corresponding pressure on the boundary is computed from the equation of state

pb =
ρb a 2

γ
(B.15)

Denoting for outflow ς ≡ o  and for inflow ς ≡ ∞ , these boundary conditions may be

written in state equation form as

B Qo ,Qb ,X( ) =

a 2

γ Sς

 

 
 

 

 
 

1

γ −1
− ρb

uς + ηx Θ − Θς( ) − ub

vς + ηy Θ − Θς( ) − vb

wς + ηz Θ − Θς( ) − wb

ρb a 2

γ
− pb

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

(B.16)

The Jacobians of the state equation with respect to the interior state vector, for characteristic

inflow/outflow boundary conditions may be derived as

∂B

∂Qo
=

ξ1φ1 ξ1
∂a 

∂uo
ξ1

∂a 

∂vo
ξ1

∂a 

∂wo
ξ1φ2

ηx
∂Θ 
∂ρo

1+ ηxφ3 ηxφ4 ηxφ5 ηx
∂Θ 
∂po

ηy
∂Θ 
∂ρo

ηyφ3 1+ ηyφ4 ηyφ5 ηy
∂Θ 
∂po

ηz
∂Θ 
∂ρo

ηzφ3 ηzφ4 1+ ηzφ5 ηz
∂Θ 
∂po

ξ2
∂a 

∂ρo

ξ2
∂a 

∂uo

ξ2
∂a 

∂vo

ξ2
∂a 

∂wo

ξ2
∂a 

∂po

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

(B.17a)

where

ξ1 =
2a 

γ γ − 1( ) Sς

a 2

γ Sς

 

 
 

 

 
 

2−γ
γ −1

(B.17b)
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φ1 =
∂a 

∂ρo
−

a 

2Sς
δς

∂Sς

∂ρo
; φ2 =

∂a 

∂po
−

a 

2Sς
δς

∂Sς

∂po
(B.17c)

and

φ3 =
∂Θ 
∂uo

− δς
∂Θς

∂uo
; φ4 =

∂Θ 
∂vo

− δς
∂Θς

∂vo
; φ5 =

∂Θ 
∂wo

− δς
∂Θς

∂wo
(B.17d)

ξ2 = 2 ρb a γ (B.17e)

where δς = 1 for outflow (ς ≡ o) and δς = 0 for inflow (ς ≡ ∞ ). The derivatives of the

local normal velocity and speed of sound are

∂Θ 
∂Qo

=

∂Θ ∂ρo

∂Θ ∂uo

∂Θ ∂vo

∂Θ ∂wo

∂Θ ∂po

 

 

 
 

 

 
 

 

 

 
 

 

 
 

=

−γ po

2 γ − 1( )aoρo
2

ηx 2

ηy 2

ηz 2
γ

γ − 1( )aoρo

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

;
∂a 

∂Qo
=

γ − 1

2

∂Θ 
∂Qo

(B.17f)

The derivative of the normal velocity for inflow ς ≡ ∞( )  is zero, and for outflow

∂Θς≡o

∂Qo
= 0 ηx ηy ηz 0{ }T

(B.17g)

For the state variables on the boundary

∂B

∂Qb
= − I [ ] + Elem(5,1); Elem(5,1) = a 2 γ (B.18)

Once again, the inverse of this matrix is needed in the sensitivity analysis, and from the

above form, the inverse is simply

∂B

∂Qb

 

  
 

  

−1

= − I [ ]− Elem(5,1) (B.19)

That is, only a change in sign of the element in location (5,1) is required for the inverse.
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The sensitivity of the boundary state equation with respect to the design variables is given

by

∂B

∂X

∂X

∂βk
=

2a 

γ γ − 1( )Sς

a 2

γ Sς

 

 
 

 

 
 

2−γ
γ −1 ∂a 

∂βk

∂ηx

∂βk
Θ − Θς( ) +ηx

∂Θ 
∂βk

−
∂Θς

∂βk

 
 
  

 
 

∂ηy

∂βk
Θ − Θς( ) +ηy

∂Θ 
∂βk

−
∂Θς

∂βk

 
 
  

 
 

∂ηz

∂βk
Θ − Θς( ) +ηz

∂Θ 
∂βk

−
∂Θς

∂βk

 
 
  

 
 

2 ρb a 

γ
∂a 

∂βk

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 
 
 

(B.20)

with the local speed of sound and normal velocity sensitivity given by

∂a 

∂βk
=

γ − 1

4
uo − u∞( )∂ηx

∂βk
+ vo − v∞( ) ∂ηy

∂βk
+ wo − w∞( ) ∂ηz

∂βk

 

  
 

  (B.21)

∂Θ 
∂βk

=
1

2
uo + u∞( ) ∂ηx

∂βk
+ vo + v∞( )∂ηy

∂βk
+ wo + w∞( )∂ηz

∂βk

 

  
 

  (B.22)

and where

∂Θς

∂βk
=

1

2
uς

∂ηx

∂βk
+ vς

∂ηy

∂βk
+ wς

∂ηz

∂βk

 

  
 

  (B.23)

is computed based on either an inflow or outflow condition.

The sensitivity of the boundary state equation, like the sensitivity of the flux vectors for

the interior cell state equation discussed in Appendix A, require the metric sensitivity

derivatives. The evaluation of the metric terms on an unstructured grid, and the

corresponding sensitivity, are discussed in Appendix C.
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C.  Sensitivity of the Metric Terms

Expressions for the metric terms, and the corresponding sensitivity of these expressions,

may be derived for a typical tetrahedral cell (see Fig. C.1) by first defining the edge vectors

L2 = l2
x l2

y l2
z{ }T

= xn2 − xn1( ) yn2 − yn1( ) zn2 − zn1( ){ }T
(C.1a)

L3 = l3
x l3

y l3
z{ }T

= xn3 − xn1( ) yn3 − yn1( ) zn3 − zn1( ){ }T
(C.1b)

L4 = l4
x l4

y l4
z{ }T

= xn4 − xn1( ) yn4 − yn1( ) zn4 − zn1( ){ }T
(C.1c)

where the sensitivities of these vectors with respect to the shape design variables are

∂L2

∂βk
=

∂l2
x

∂βk

∂l2
y

∂βk

∂l2
z

∂βk

 
 
 

 
 
 

T

(C.2a)

∂L3

∂βk
=

∂l3
x

∂βk

∂l3
y

∂βk

∂l3
z

∂βk

 
 
 

 
 
 

T

(C.2b)

∂L4
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∂βk
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∂βk
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∂βk
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where, for example,

∂l2
x

∂βk
=

∂xn2

∂β k
−

∂xn1

∂β k
 ;   

∂l2
y

∂βk
=

∂yn2

∂β k
−

∂yn1

∂β k
 ;   

∂l2
z

∂βk
=

∂z n2

∂βk
−

∂zn1

∂βk
(C.3)

In Eq.(C.3) the quantities ∂xn ∂β k , ∂yn ∂βk , and ∂zn ∂βk  are the grid sensitivity

terms discussed in Chapter 5. Similar expressions may be written for components of

∂L3 ∂βk  and ∂L4 ∂βk . The area of face n1-n2-n3 may be computed as

A f =
1

2
L2 × L3 =

1

2
ax

2 + ay
2 + az

2[ ]12

=
1

2
l2
y l3

z − l2
z l3

y( )2
+ l3

x l2
z − l2

x l3
z( )2

+ l2
x l3

y − l3
x l2

y( )2 
 

 
 

12
(C.4)

with the sensitivity of the face area given by
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∂A f

∂β k
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∂βk
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4 A f
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∂ax

∂β k
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∂ay

∂βk
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∂az

∂βk

 

  
 

  (C.5)

where
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∂βk
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∂βk
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y ∂l3
z

∂βk
−
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z

∂β k
l3
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z ∂l3

y

∂β k
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 

 
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 (C.6a)
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x ∂l2

y

∂βk

 

 
 

 

 
 (C.6c)

The normal direction, referred to as the direction cosines, for this face may be evaluated as

N = ηx ηy ηz{ }T
=

L2 × L3

L2 × L3
=

L2 × L3

2 A f
(C.7)

with the corresponding sensitivity

∂N

∂βk
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∂N

∂X

∂X

∂βk
=

1

2

∂L2

∂βk
× L3 + L2 ×

∂L3

∂βk

 
 
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 1

A f
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A f( )2

∂A f

∂β k

 

 
 
 

 

 
 
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(C.8)

Once again, similar expressions may be easily written for the other faces of the tetrahedron.

The centroid of the tetrahedral cell is determined as

xc =
1

4
xn1 + xn2 + xn3 + xn4( ) (C.9a)

yc =
1

4
yn1 + yn2 + yn3 + yn4( ) (C.9b)

zc =
1

4
zn1 + zn2 + zn3 + zn4( ) (C.9c)

where
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∂βk
=

1
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 
 (C.10c)

are the coordinate sensitivities of the centroid location.

D.  Sensitivity of the Spatial Differencing

It was discussed in section 3.1.3, that the development of a higher-order spatially

accurate scheme requires the interpolation of the state variables to the cell interfaces. For

unstructured grid schemes, this interpolation is mesh dependent. Thus, the sensitivity of

the interpolation given in Eq.(3.15) may be written as

  

∂Q f
±

∂βk
=

∂
∂β k

Q + ∇Q ⋅ ∆
v 
r ( )±[ ] =

∂
∂β k

∇Q ⋅ ∆
v 
r ( )±[ ] (D.1a)

introducing the expression for the solution gradient in Eq.(3.16) yields

∂Q f
±

∂βk
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1

4

1

3

∂Qn1

∂βk
+

∂Qn2

∂βk
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 
 
  

 
 −

∂Qn4
±

∂β k

 

  
 

  (D.1b)

where the variables at the nodes are obtained from the multidimensional weighted averaging

given in equation 3.17. The sensitivity of this averaging with respect to the design variables

is given by

∂Qn

∂βk
=

∂wc,i

∂βk
Qc,i

i=1

nc

∑
 
 
  

 
 wc,i

i=1

nc

∑
 
 
  

 
 − wc,i

i=1

nc

∑ Qc,i

 
 
  

 
 ∂wc,i

∂βki=1

nc

∑
 
 
  

 
 wc,i

i=1

nc

∑
 
 
  

 
 

2

(D.2)
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The sensitivity of the weighting factors, ∂wc,i ∂β k , depends on the algorithm used. In the

current research, an inverse-distance and a psuedo-Laplacian weighting procedure have

been utilized. The sensitivity of each scheme is presented below.

D.1  Inverse Distance Weighting

The weighting factors for the inverse-distance procedure were given in equation 3.18.

The sensitivity of these factors may be written as

∂wc,i

∂β k
= −

∆x
∂ ∆x( )
∂βk

+ ∆y
∂ ∆y( )
∂β k

+ ∆z
∂ ∆z( )
∂βk

∆x2 + ∆y2 + ∆z2( )32 (D.3)

with

∂ ∆x( )
∂β k

=
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∂βk
−

∂xn

∂βk
 ;  

∂ ∆y( )
∂β k

=
∂yc,i

∂β k
−

∂yn

∂βk
 ;  

∂ ∆z( )
∂βk

=
∂z c,i

∂βk
−

∂zn

∂βk
(D.4)

where the sensitivity of the coordinates of the centroid location are given in equations

C.10a through C.10c.

D.2  Psuedo-Laplacian Weighting

The weighting factors for this method have been given previously in equations 3.19a and

3.19b. Sensitivity of the weighting factors may be expressed as

∂wc,i

∂β k
=

∂λ x

∂βk
∆x + λx

∂ ∆x( )
∂βk

 
 
  

 
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∂λy

∂βk
∆y + λy

∂ ∆y( )
∂βk

 
 
  
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 +

∂λz

∂βk
∆z + λ z

∂ ∆z( )
∂β k

 
 
  

 
 (D.5)

where ∂ ∆x( ) ∂β k , ∂ ∆y( ) ∂β k , and ∂ ∆z( ) ∂βk  have been given above in equation D.4.

The derivatives of the Lagrange multipliers may be expressed as

  

∂λx

∂βk
= −

∂
v 

Ω 
∂β k

⋅
v 
I y ×

v 
I z( ) −

v 
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×

v 
I z +

v 
I y ×

∂
v 
I z

∂βk

 

 
  

 
 (D.6a)
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∂λz

∂βk
= −

∂
v 

Ω 
∂β k

⋅
v 
I x ×

v 
I y( ) −

v 
Ω ⋅

∂
v 
I x

∂β k
×

v 
I y +

v 
I x ×

∂
v 
I y

∂β k

 

 
  

 
 (D.6c)

On examining the components of   
v 

Ω ,   
v 
I x ,   

v 
I y , and   

v 
I z , which are given in Eqs.(3.20d-i), it

can be observed that the derivatives of these components only include the derivatives of the

centroid location and nodal coordinates. Once again, the derivatives of the centroid location

are given above in equations C.10a to C.10c.

E.  Sensitivity of Common Output Functions

For aerodynamic calculations, typical output functions from which objective functions

and constraints may be defined are the lift coefficient, drag coefficient, and lift-to-drag

ratio. Each will be discussed to follow.

Lift Coefficient

The lift coefficient is computed as

CL =
Fz cosα − Fx sinα

q∞ Aref
(E.1)

where α is the free-stream angle of attack, q∞  is the dynamic pressure, Aref  is the

reference area, and the forces in the z- and x-directions are

Fz = ηz A f
j =1

nbf

∑ p j − p∞( ) ; Fx = ηx A f
j=1

nbf

∑ pj − p∞( ) (E.2)

where nbf is the number of boundary faces over which the pressure is integrated.

To compute the sensitivity derivatives in Eqs.(2.6a and b), the derivatives with respect to

the state vector and the design variables are required. The derivatives of the lift coefficient

are
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where δij  is the Kronecker delta, and
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with
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A similar expression may be written for 
∂

∂βk

ηx Af

Aref

 

 
 

 

 
 . Note, if the reference area is fixed

throughout the design then the sensitivity of the reference area is zero. If the reference area

used is the actual wetted surface area then the sensitivity of the reference area becomes

Aref = A f
j=1

nbf

∑ ;
∂Aref

∂βk
=

∂A f

∂βkj=1

nbf

∑ (E.6)

where the sensitivity of the face area has been given in Eq.(C.5) and the sensitivity of the

metric terms are given in equation C.8.

Drag Coefficient

The drag coefficient is computed as

CD =
Fx cosα + Fz sinα

q∞ Aref
(E.7)
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with the derivatives of the drag coefficient given by
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and
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Note that the above assumes that the side slip angle is zero, but may be easily incorporated.

Lift-to-Drag Ratio

The derivatives of the lift-to-drag ratio may be expressed in terms of the derivatives of the

lift coefficient and drag coefficient as follows

∂ CL CD( )
∂Q

=
∂CL

∂Q
−

CL

CD

∂CD

∂Q

 
 
  
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 CD (E.10)

similarly

∂ CL CD( )
∂X
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−
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CD
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 CD (E.11)

where all the terms in Eqs.(E.10 and E.11) have been given above.
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Figure C.1:  Typical unstructured grid tetrahedral cell.


