Appendices

A. Sensitivity of the Van Leer Fluxes
The flux Jacobians of the inviscid flux vector in Eq.(3.2), and the Van Leer fluxesin

Eq.(3.11), can be found in the literature [9,172,173] and are therefore omitted here. The
sensitivity of the Van Leer fluxes, for higher-order spatially accurate discrete sensitivity
analysis on unstructured grids, has been performed and presented for the first timein the
current research. These sensitivities may be derived by noting that for unstructured grids

there are two means by which the mesh dependence on the design variables may influence
T
the flux vector; the metric terms, N = {hx hy hz} , the cell face area, As, and the

upwind interpolation scheme, Qf :{r uv w p}T. These dependencies may be

symbolically written for the residual vector as
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Recall from section 3.1.2, that the determination of the appropriate fluxes are based upon
the Mach number normal to the cell face. For supersonic flow through the cell face, the flux
vector given by EQq.(3.2) is used with the primitive variables interpolated to the cdl

interfaces. The sensitivity of this flux vector with respect to the metric dependence on the

design variables, i.e,,

hy Thy h,i'
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b, To, Toyp

117



—— =V +p—y (A.29)

and with respect to the dependence of the upwind interpolation on the design variables
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where the sengitivity of the normal velocity isthe combination

with
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and the sengitivity of the total enthalpy is given by
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For subsonic flow through the cell face, the split Van Leer fluxesin Eq.(3.11) are utilized.

The sensitivity of these fluxes may be expressed as
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where the sensitivity of the mass flux contains the contributions
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The sengitivity of the f,,,q termisthe combination
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Analogous relations may be written for fif..o/Tb, and Tf.a/T0,. Similarly the

sengitivity for the energy termis
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In the above equations the sengitivities of the normal Mach number are given by
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where the sengitivity for the speed of sound is
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As seen, the sensitivity of the inviscid split fluxes requires the determination of the
sensitivity of the metric terms and the sensitivity of the upwind interpolation scheme. The
evaluation of the metric terms on unstructured grids and the corresponding sensitivity of
these terms are presented below in Appendix C. The sensitivity of the upwind interpolation
scheme, using both the inverse-distance and the psuedo-L aplacian weighting methods, are

presented in Appendix D.

B. Jacobians/Sensitivity of the Boundary Conditions
The boundary-condition types utilized in the current work are inviscid solid boundary

(flow tangency) and characteristic inflow/outflow. These boundary conditions are those
most commonly used in inviscid CFD analysis and may be easily found in the literature; for
example, see reference 128. Furthermore, afirst-order implementation of these boundary
conditionsis utilized in the current research. This implementation simply uses the cell
center values of the primitive variables adjacent to the boundary faces as opposed to the
interpolation of these variables to the boundary faces. A more detailled description and
comparison of both implementations has been reported Ref. 129 for unstructured grid
schemes. The most common approach, however, is the first-order one.

The boundary values of the primitive variables Q, for flow tangency are specified as

', =To
ub:Uo'Qohx; Vb:Vo'Qohy; Wp =Wo - Qohz (B-l)
Po= Po

where the normal velocity at the boundary is computed from the interior velocity

components as
Qo =Y hy + vohy +w,h, (B.2)

The state equation for the boundary conditions may be express as
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The Jacobian of this state equation, with respect to the interior state variables, isderived as
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and with respect to the state variables on the boundary
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where 1 isthe identity matrix. The inverse of this matrix is required in the sensitivity
analysis using either the pre-eliminated form of the sensitivity equation (e.g., Egs.(3.26a
and b)) or the incremental form (e.g., Eq.(4.12)).

The sensitivity of the boundary state equation with respect to the design variables for the

flow tangency condition may be written as
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where
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For characteristic inflow/outflow boundary conditions, the Riemann invariants
corresponding to the incoming and outgoing waves traveling in the characteristic directions
defined normal to the boundary are applied at the far-field. The two locally one-dimensional
Riemann invariants are given by
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where Q,, isgiven above and
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Theinvariants are used to determine the locally normal velocity and speed of sound
— . -1 _
Q =2(R"+R); a:gT(R+-R) (B.10)
For outflow (Q > 0) on the boundary, the velocities are defined as
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whereas for inflow (Q < 0) on the boundary
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The density on the boundary is computed from the entropy relation
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with the entropy function S evaluated as
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Then the corresponding pressure on the boundary is computed from the equation of state

=2
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Denoting for outflow vv o and for inflow vV ¥, these boundary conditions may be
written in state equation form as
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The Jacobians of the state equation with respect to the interior state vector, for characteristic

inflow/outflow boundary conditions may be derived as
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where dy, = 1 for outflow (v o) and dy, = O for inflow (v ¥ ). The derivatives of the

local normal velocity and speed of sound are
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The derivative of the normal velocity for inflow (V° ¥) is zero, and for outflow
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For the state variables on the boundary
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Once again, the inverse of this matrix is needed in the sensitivity analysis, and from the

above form, theinverseis simply

éﬁdl
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That is, only achange in sign of the element in location (5,1) isrequired for the inverse.
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The sensitivity of the boundary state equation with respect to the design variablesis given

by
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with the local speed of sound and normal velocity sensitivity given by
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and where

S
is computed based on either an inflow or outflow condition.

The sensitivity of the boundary state equation, like the sensitivity of the flux vectors for
theinterior cell state equation discussed in Appendix A, require the metric sengtivity
derivatives. The evauation of the metric terms on an unstructured grid, and the

corresponding sensitivity, are discussed in Appendix C.
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C. Sensitivity of the Metric Terms

Expressions for the metric terms, and the corresponding sensitivity of these expressions,

may be derived for atypical tetrahedral cell (see Fig. C.1) by first defining the edge vectors

Lo :{|§( Pt |2Z}T ={(xn2- %a) (2 - V) (22- an)}T (C.1q)
Ls :{|§( 13 |32}T ={(xa- 1) (Ynz-yra) (zn3- an)}T (C.1b)
L, = {'A)f 1/ |§}T = {(Xn4 - an) (Yn4 - ynl) (Zn4' an)}T (C.1o)

where the sengitivities of these vectors with respect to the shape design variables are
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In Eq.(C.3) the quantities 1x,,/Tb\, Ty,/Tby, and 9z,/Tb, arethe grid sensitivity

terms discussed in Chapter 5. Similar expressions may be written for components of

Ly /by and TL,/9b, . The area of face n1-n2-n3 may be computed as
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with the sensitivity of the face area given by
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The norma direction, referred to as the direction cosines, for this face may be evaluated as
Lo Ly _ Ly Lg

T
N=ih, h, hp = = C.7
{ S Z} ILo” Lol 2A (€7
with the corresponding sensitivity
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Once again, similar expressions may be easily written for the other faces of the tetrahedron.

The centroid of the tetrahedral cdll is determined as

1

X = Z(an +Xrp +Xnz + Xna) (C.99)
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where
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are the coordinate sensitivities of the centroid location.

D. Sensitivity of the Spatial Differencing
It was discussed in section 3.1.3, that the development of a higher-order spatialy

accurate scheme requires the interpolation of the state variables to the cell interfaces. For

unstructured grid schemes, this interpolation is mesh dependent. Thus, the sensitivity of

the interpolation given in EQ.(3.15) may be written as

1
o,

Q1
b, b,

introducing the expression for the solution gradient in Eq.(3.16) yields
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where the variables at the nodes are obtained from the multidimensional weighted averaging
givenin equation 3.17. The sensitivity of this averaging with respect to the design variables

isgiven by
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The sengitivity of the weighting factors, fw,; /fb , depends on the algorithm used. In the

current research, an inverse-distance and a psuedo-Laplacian weighting procedure have

been utilized. The sengitivity of each scheme is presented below.

D.1 Inverse Distance Weighting
The weighting factors for the inverse-distance procedure were given in equation 3.18.

The sensitivity of these factors may be written as

SR B () B ()
ﬂWc,i — ﬂbk b K ﬂbk (D 3)
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where the sensitivity of the coordinates of the centroid location are given in equations

C.10athrough C.10c.

D.2 Psuedo-Laplacian Weighting
The weighting factors for this method have been given previously in equations 3.19a and

3.19b. Sensitivity of the weighting factors may be expressed as

ﬂWC’i gﬂ X
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where 1(Dx)/b, T(Dy)/fb, and 1(D2)/ b, have been given above in equation D.4.

The derivatives of the Lagrange multipliers may be expressed as
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On examining the componentsof W, 1%, 1Y, and 17, which are given in Egs.(3.20d-i), it
can be observed that the derivatives of these components only include the derivatives of the
centroid location and nodal coordinates. Once again, the derivatives of the centroid location

are given above in equations C.10ato C.10c.

E. Sensitivity of Common Output Functions
For aerodynamic calculations, typical output functions from which objective functions

and constraints may be defined are the lift coefficient, drag coefficient, and lift-to-drag

ratio. Each will be discussed to follow.

Lift Coefficient
The lift coefficient is computed as

C, = F, cosa - F, sina (E1)

Oy Avef

where a is the free-stream angle of attack, gy is the dynamic pressure, A,y is the

reference area, and the forces in the z- and x-directions are

nbf nbf
I:z:.é thf(pj' p¥); Fy = é-h Af(p p¥) (E2)
=1 j=1

where nbf is the number of boundary faces over which the pressure isintegrated.
To compute the sensitivity derivativesin Egs.(2.6a and b), the derivatives with respect to
the state vector and the design variables are required. The derivatives of the lift coefficient

are
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A similar expression may be written for — +. Note, if the reference areaisfixed
e A o

throughout the design then the sensitivity of the reference areais zero. If the reference area

used isthe actual wetted surface area then the sensitivity of the reference area becomes

ner Wrer _ MIA;
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Pre j=1 o j=1Tby
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where the sensitivity of the face area has been given in Eq.(C.5) and the sensitivity of the

metric terms are given in equation C.8.

Drag Coefficient
The drag coefficient is computed as

_ K cosa +F, sina
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with the derivatives of the drag coefficient given by
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Note that the above assumes that the side dip angleis zero, but may be easily incorporated.

Lift-to-Drag Ratio
The derivatives of the lift-to-drag ratio may be expressed in terms of the derivatives of the

lift coefficient and drag coefficient asfollows

T(CL/Cp) _ qCL &'”C_DQ/CD (E.10)
1Q efQ Cp 1Qg
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where dl the termsin Egs.(E.10 and E.11) have been given above.
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Figure C.1: Typica unstructured grid tetrahedral cell.
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