
High Performance Computing
Issues in Large-Scale Molecular

Statics Simulations

Gautam Pulla

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Calvin J. Ribbens, Chair
Diana Farkas

Dennis Kafura

May 3, 1999
Blacksburg, Virginia

Keywords: High Performance Computing, Parallel Computing, Distributed
Computing, Computational Environments

Copyright 1999, Gautam Pulla

High Performance Computing Issues in Large-Scale Molecular
Statics Simulations

Gautam Pulla

(ABSTRACT)

Successful application of parallel high performance computing to practi-
cal problems requires overcoming several challenges. These range from the
need to make sequential and parallel improvements in programs to the imple-
mentation of software tools which create an environment that aids sharing of
high performance hardware resources and limits losses caused by hardware
and software failures. In this thesis we describe our approach to meeting
these challenges in the context of a Molecular Statics code. We describe se-
quential and parallel optimizations made to the code and also a suite of tools
constructed to facilitate the execution of the Molecular Statics program on
a network of parallel machines with the aim of increasing resource sharing,
fault tolerance and availability.

Acknowledgement

I would like to offer my thanks to Dr. Calvin Ribbens for his valuable advice
and encouragement throughout the course of this research work. His guidance
was the cornerstone of this thesis. Dr. Diana Farkas played a major role
in the shaping of this thesis, indeed, most of the work grew out of and was
supported by the Materials Science department’s project in molecular statics.
Dr. Yuri Mishin of the Department of Materials Science at Virginia Tech.
was kind enough to answer my questions on the functioning of the molecular
statics code authored by him. I thank him for his cooperation and patience.
I am indebted to Dr. Dennis Kafura for agreeing to serve on my comittee.

None of this would have been possible without the constant support of
my family, them I thank the most of all.

Contents

1 Introduction 1
1.1 Issues in High Performance Computing 1
1.2 The Problems . 2
1.3 Molecular Statics Application 3

1.3.1 Basic Algorithm . 3
1.3.2 Parallelizing the Computation 4
1.3.3 Size Scalability . 4
1.3.4 Message Passing Interface 5

1.4 Computational Environments 5
1.4.1 Checkpointing . 5
1.4.2 Migration of Processes 6
1.4.3 Queueing Environments and Distributed OS’s 6
1.4.4 Computational Steering 7
1.4.5 Metasystems . 7

1.5 Hierarchy of the Systems . 8
1.6 Organization of the Thesis . 9

2 Contemporary Systems 10
2.1 Introduction . 10
2.2 Checkpointing Systems . 10

2.2.1 Binary Checkpointing 10
2.2.2 Paradigm Oriented Checkpointing 11
2.2.3 CUMULVS . 12

2.3 Migration . 12
2.3.1 Overview of Design Issues 12
2.3.2 NQE . 13
2.3.3 Charlotte . 13

2.4 Metasystems . 14

iii

3 Molecular Statics Simulation Code 16
3.1 Introduction . 16
3.2 Sequential Algorithms . 16

3.2.1 The Crystal and its Generation 17
3.2.2 Table of Neighbors . 19
3.2.3 Aberrations . 22
3.2.4 Relaxation . 22
3.2.5 Symmetry . 25

3.3 Parallelizing Computation . 26
3.3.1 Crystal Generation and Dividing Atoms 26
3.3.2 Table of Neighbors and Enforce 27
3.3.3 Communication . 29

4 Optimization of PMOLSTAT 31
4.1 Introduction . 31
4.2 Scalability . 32

4.2.1 Sequential Bottleneck 33
4.3 Data Structures . 34

4.3.1 CBlocks . 35
4.3.2 Send and Receive Tables 36

4.4 Parallel Algorithms . 37
4.4.1 Overview . 37
4.4.2 CBlock Creation . 38
4.4.3 Modifying Crystal Generation 39
4.4.4 Compacting CBlocks 40
4.4.5 Tables of Neighbors . 43
4.4.6 Relaxation . 45
4.4.7 Communication . 48

5 Performance Analysis 49
5.1 Introduction . 49
5.2 Division into CBlocks . 52
5.3 Measuring Performance . 53

5.3.1 Computational Load Balance 53
5.3.2 Scalability . 58
5.3.3 Communication . 59
5.3.4 Overhead . 62

5.4 Conclusion . 62

iv

6 Checkpointing 63
6.1 Motivation . 63
6.2 A Different Model . 64
6.3 A Model of Scientific Computation 65
6.4 Types of Variables . 66

6.4.1 Definitions . 66
6.4.2 Example Scientific Computation 66

6.5 The Checkpointing interface 68
6.6 Checkpointing Example . 70
6.7 Migration . 72
6.8 Disadvantages . 73

7 Parallel Application Control Environment 74
7.1 Introduction . 74
7.2 An Example Machine – The Intel Paragon 75

7.2.1 Partitions and Processor Sharing 75
7.2.2 Shortcomings . 76

7.3 Operation of PACE . 77
7.3.1 Attached and Unattached Users 78
7.3.2 System Administrator Interface 78
7.3.3 The Role of PACE . 79

8 Computational Environment Template 80
8.1 Introduction . 80
8.2 Design Issues . 81

8.2.1 Command Orientation of Checkpointing 81
8.2.2 Command Orientation of Migration 82

8.3 COMET . 82
8.3.1 Basic Concept . 82
8.3.2 Description of Tools 83
8.3.3 Example . 84

8.4 Types of Checkpointing . 86
8.5 Fault Behavior . 86

8.5.1 Some Typical Faults 86
8.5.2 Extensibility of Fault Tolerance 87

8.6 Conclusion . 89

v

9 Systems Internals 91
9.1 Introduction . 91
9.2 Specification of Checkpointing 92

9.2.1 The Checkpointing API 92
9.2.2 Checkpointing Files . 93

9.3 Implementation of the PACE Daemon 94
9.3.1 Operation . 94
9.3.2 Super User Control . 99
9.3.3 Security in the PACE daemon 99

9.4 Implementation of COMET 101
9.4.1 Operation of the Tools 101
9.4.2 Interfaces . 104
9.4.3 Security . 104

10 Conclusions and Future Work 105
10.1 Future Work on Molecular Statics 105
10.2 Future Computational Environment Work 105

10.2.1 SPAM to build Metasystems 105
10.2.2 Controlling Programs 107

10.3 Experience of doing HPC . 108

vi

List of Figures

1.1 Hierarchy . 8

3.1 Two dimensional illustration of crystal structure. 18
3.2 Linking blocks. 20

4.1 CBlocks within the region of influence of a CBlock m. 36
4.2 co[] after compaction. 42
4.3 Arrangement of atoms in R[]. 43

5.1 CBlock slicing strategy. 53

vii

List of Tables

3.1 Typical execution times for MOLSTAT. 23

4.1 Space requirements of PMOLSTAT. 33

5.1 Space requirements of OPMOLSTAT after optimizations. . . . 51
5.2 Time spent in Enforce compared to total time in CONJUG

in OPMOLSTAT. 54
5.3 Time per iteration for a problem with 320,000 atoms on 40

processors. 54
5.4 Effect of load imbalance. 56
5.5 Additional work due to non-utilization of symmetry. 57
5.6 Scalability in size. 60
5.7 Scalability in time. 61
5.8 Communication costs. 61
5.9 Optimization overhead costs. 62

10.1 Space requirements of OPMOLSTAT after optimizations. . . . 106

viii

Chapter 1

Introduction

1.1 Issues in High Performance Computing

High performance scientific computing is a field which draws upon a diverse
number of areas. In recent years it has moved in fascinating new directions.
Of great importance and interest are developments in the field of compu-
tational environments which make it possible to use parallel machines with
greater ease and efficiency [1, 9, 16]. These are systems or tools which pro-
vide a convenient interface for users of parallel machines. The ability to link
several machines together and access them remotely through a network has
made it possible to build such environments so that they span multiple ma-
chines. However, tools for supercomputers are still in a nascent state; there
is still considerable room for improvement in systems that facilitate ease and
efficiency of use of parallel machines.

Looking at another aspect of high performance computing, the problem
of writing programs to run efficiently in time and space occurs here with
increased importance. This is due to the fact that parallel applications are
usually major consumers of computer time and resources, and thus good
algorithms and implementations are vital. Writing good parallel programs
is a task that draws on techniques not usually found in writing sequential
programs, and can be a hard undertaking.

The object of the research described in this thesis is to identify and solve
the most significant computational challenges which must be met in order
to do efficient large scale simulations in a particular scientific application
area, namely molecular statics. Successful high performance computational

1

science requires working within a variety of areas — from building systems
to provide an effective environment for the parallel computation, to parallel
enhancements made on the programs themselves. The underlying motif is
that we need to work in several different directions to solve real problems.

Accordingly this thesis is as much about system building as it is about
program optimization, and as much about distributed computing as it is
about parallel computing.

1.2 The Problems

Scientists trying to solve problems on supercomputers have a universal re-
frain: as soon as a large problem is solved, the scientist almost immediately
wants to solve a problem ten times as large. Consequently it is extremely
important to use algorithms and data structures that scale well in terms of
memory usage and computational needs. In the context of molecular statics,
the main problem parameter which controls problem size is the number of
atoms in the simulation. Informally “scalability” means that the program
which ran a million atoms on a hundred processors yesterday ought to run
with ten million atoms on a thousand processors today, or run with the mil-
lion atoms ten times as fast. This performance scalability, in both space and
time, is the first of the problems that we examine in this thesis.

The second broad problem that we address has to do with the compu-
tational environment. Applications for high end machines are almost by
definition compute intensive, and need to use the machine for prolonged pe-
riods of time. This presents several administrative problems in a multi-user
environment. Some users may have to wait for extended periods of time to
allow others to finish running their programs, before they get a chance to
access the machine. Specifically, a program that takes a very short time to
run, may be held up indefinitely by one that ties up the machine for very
long. Another problem is due to the number of processors needed by an ap-
plication. Imagine an application that is started up on 80 processors on a 100
processor machine. If a second program needs 25 processors, it cannot run
because only 20 are available (Note that we are assuming each application
acquires exclusive control of a set of processors. This is a typical scheduling
policy on massively parallel machines such as the Intel Paragon.) Another
serious problem is that the results of extremely long simulations are lost if the
machine crashes before the simulation finishes. Finally, many computational

2

scientists have access to machines of various sizes (under various workloads).
Hence, there can be the need to move a long running simulation from one
machine to another.

Given the expense of parallel machines, and their usefulness, a system
which solves these problems would be invaluable. We describe the Parallel
Application Control Environment (PACE), developed as part of this research,
which solves the management problems for our particular computational en-
vironment.

The thesis is broadly divided into two logical parts. One part describes
our work in optimizing the molecular statics program for parallel execution on
a distributed memory multiprocessor. The other part of the thesis describes
the design and implementation of the PACE system.

1.3 Molecular Statics Application

1.3.1 Basic Algorithm

The molecular statics program1 used in this research simulates the physics
of a metal crystal under various conditions, computing inter-atomic forces
and finding the position of the atoms by minimizing the total energy using
the conjugate gradient method. The code is written for distributed memory
machines using the Message Passing Interface (MPI) [14, 15] in Fortran.
Problems of interest use O(105) to O(106) atoms.

Briefly speaking, the program proceeds by representing internally various
characteristics of the atoms in a three dimensional crystal, such as position,
electron density, proximity of other atoms in the crystal, and so forth. A
perturbation such as a defect or a crack is then introduced by changing
the positions of some atoms. The forces on each atom, as a function of its
neighbors attributes, are calculated and the position of each of the atoms
is recomputed so as to minimize the total energy. This process is carried
through several iterations of disturbance and relaxation.

1The sequential molecular statics program we describe in this thesis was written by
Yuri Mishin of the Department of Materials Science, Virginia Tech.

3

1.3.2 Parallelizing the Computation

Parallelizing the code proceeds by dividing the atoms into groups and as-
signing the responsibility of computing the relaxation process on each group
of atoms to a different processor. However each processor cannot proceed
independently of the others. Since an atom assigned to one processor may
affect atoms on another processor, any updates in the locations of atoms on
a particular processor may need to be sent to other processors as well.

An existing implementation of statics was used as the source code base [2]
2. However, this code had the shortcoming that though computation was par-
allelized in the manner described above, the space allocation was not. Every
processor allocated storage for all atoms in the crystal. On every iteration, a
processor would compute new coordinates for the atoms assigned to it, then
all processors would communicate the updated locations to processors which
needed them, and go on to the next iteration.

This approach permits a simple communications structure. If the atom
coordinates are stored in an array for instance, a given atom has the same
index on every processor. Using a message passing library, it is fairly easy to
transmit updates to whoever needs them.

1.3.3 Size Scalability

A shortcoming of the above approach is that the problem size is bounded
by the memory available to one processor. If all the atoms do not fit on a
single processor, then no matter how many processors are made available,
the problem cannot be solved. Thus the program does not scale well in terms
of size.

Our aim is to modify the program and improve its size scalability while
maintaining good parallel performance. This necessitates the design of data
structures that are evenly divided amongst the processors. Since the problem
is not “embarrassingly” parallel, we must also keep in mind the efficiency and
simplicity of the communication algorithms.

Lastly, as we shall see, the problem of distributing atoms to processors
is nontrivial. Some thought is needed to avoid gross imbalances in the load
on each processor. Both computational and storage loads are important; we
describe our approach to solving these problems in Chapters 3-5.

2This implementation was due to Brian Blount of the Department of Computer Science,
Virginia Tech.

4

1.3.4 Message Passing Interface

The Message Passing Interface (MPI) is a specification for a message passing
library intended to run on distributed memory multicomputers. The chief
advantages of MPI are its portability and efficiency.

MPI provides a rich variety of functions and subroutines to exchange
information between parallel tasks. The implementations described in this
thesis occasionally use simplified versions of MPI function calls. The reader
is referred to the book “MPI — The Complete Reference” by Dongarra, et
al. [15] for more information on MPI.

1.4 Computational Environments

Computational environments are systems that make it easier to use, con-
trol or analyze the results of programs. In the context of high performance
computing, computational environments can range over a sizeable domain,
from full fledged distributed operating systems, to tools that make it easier
to visualize results, to systems for enhancing fault tolerance. In this section
we will describe some recurring themes in the area of computational environ-
ments for high performance scientific computing. The next chapter explores
some example systems in depth.

1.4.1 Checkpointing

For our purposes, a checkpoint is the complete and relevant state of a com-
putation, saved to non-volatile storage such as a hard disk. The process of
taking a checkpoint is checkpointing. Relevant means that the entire core
image of the executing computation need not be checkpointed. Often it is
sufficient to consider only a subset of the process data.

The primary motivation for checkpointing is to guard against machine
failures. High performance machines often have unstable operating systems
and hardware 3. Given that some computations can take days to run, the cost
of failure is high. A checkpoint which can be used to resume a computation
from a point before the failure, forestalls much of the harm caused by a crash.

3The HPC market for them is so small that there is relatively less work and fewer people
working on making systems more robust. This is in contrast to operating systems used
on personal computers and workstations for instance. Furthermore, massively parallel
machines simply have more components that can fail.

5

Checkpointing has greater subtlety when one considers applying it to par-
allel computations. It is possible to view the state of a parallel computation
as merely the union of the states of each executing parallel task within it.
Or, taking a more sophisticated view, the state may be taken to be the state
of the problem being solved, in a way independent of the number of tasks.
Taking checkpoints in a way that is independent of the number of tasks also
has the advantage that a checkpoint can be used to resume the computation
with a different number of tasks (or processors) than what it was originally
started on. As will be seen later, discovering such a state of the computation
requires some analysis.

1.4.2 Migration of Processes

Process migration follows naturally from the concept of checkpointing. If
we have versions of the same program on different machines, migrating a
process is simply a matter of checkpointing it, transferring the checkpoint to
another machine and loading the program on that machine with the trans-
ferred checkpoint.

An important consideration here is the possibility of differing data formats
on the machines. This needs to be resolved by a translation mechanism from
one format to another.

1.4.3 Queueing Environments and Distributed OS’s

The design of systems that allow users to use migration effectively is a com-
plicated and extensively researched area. In the following paragraphs we
describe some relevant considerations in such systems.

A queuing environment is a system that lets users submit jobs to be
executed at a queue for a network of machines. A queue manager repeatedly
removes the job at the head of the queue, and schedules it for execution on
a free machine selected using some load balancing/mapping algorithm.

Sometimes queueing environments may support task migration as well
to enhance performance, but migration is often expensive, and considerable
thought needs to be put into the question of when its use is appropriate.
Some systems place control over this aspect into the users hands, while oth-
ers employ sophisticated algorithms. All this is further complicated by the
possibilities of machine and network failures. Security too is an issue when
multiple users attempt to access multiple machines.

6

Distributed operating systems typically have many more functions than
queuing systems, and many of those functions are irrelevant to our purpose.
We will only look at those areas in distributed OS’s which have some bearing
on migration.

There are many queuing environments available, and many distributed
operating systems, both as systems in research and commercially. We study
some of these closely in Chapter 2.

1.4.4 Computational Steering

Computational steering has to do with modifying the internal state or vari-
ables of a running computation. This has great value if the computation
takes very long to execute. A typical example involves a large search space
that needs to be explored. If a scientist recognizes that the program is look-
ing at a part of the search space that is uninteresting, he may choose to look
in another direction. This is done by modifying certain parameters in the
running program.

While computational steering is not directly relevant to molecular statics
or to PACE, several steering systems also support checkpointing and migra-
tion. Hence, we briefly describe a well known system in Chapter 2. Also, in
Chapter 10, on future work, we suggest certain enhancements to PACE that
have to do with steering.

1.4.5 Metasystems

A metasystem is defined as a system formed by the composition of sev-
eral systems, written in possibly different programming languages, running
on possibly different architectures. An example we will explore later is the
Earth-Science metasystem [13], which combines a program written for mod-
eling the atmosphere and another for modeling the ocean, to create a more
complete picture of weather in terms of these systems. Often such programs
cannot be simply combined, as they are written and optimized for different
machines. The coupling must therefore be loose and distributed.

Tools for building metasystems draw on the areas of distributed comput-
ing, language design and parallel computing. It is the author’s opinion that
PACE can be extended further and combined with the Unix shell scripting
language, to produce a tool for building some types of metasystems. This
possibility is more completely considered in Chapter 10.

7

1.5 Hierarchy of the Systems

This thesis can be viewed as attacking the molecular statics problem at sev-
eral different levels, building many layers of software, as it were, one on top
of the other. This is depicted in the figure below.

CREATE

Scheduling with the PACE daemon

MIGRATE START CKPNT RSTART (COMET)

SPAM

Optimizations of Molecular Statics

Checkpointing Methodology

Figure 1.1: Hierarchy

At the bottom layer of the diagram are the optimizations on the parallel
program. The checkpointing is a methodology (and also has a mini-API) for
parallel programs generally, and has been tried out on the molecular statics
program. Further above is the PACE scheduling daemon, which runs on a
single machine. The COMET tools give users the abstraction of multiple ma-
chines running PACE, which can migrate programs between them. COMET
thus serves to distribute PACE. The smaller boxes into which the COMET
box is broken up, are the most important of the programs available.

Finally at the highest level is SPAM, the tool to build metasystems. This
is shown in a dotted box as it is yet to be built. It will consist of some extra
tools in addition to those currently in COMET and their combined use with
shell scripts and PACE.

8

1.6 Organization of the Thesis

The thesis consists of two major parts, one describing the optimizations on
the molecular statics program and another the design and implementation
of PACE and COMET.

We discuss several contemporary systems similar to PACE, in part or
whole, in Chapter 2. The idea will be to develop a feel for design choices.

Chapters 3 through 5 are about the optimizations on the statics program.
We discuss in turn, the sequential version, the first parallelized version (due
to Brian Blount, see [2]) and finally our improvements.

Chapters 6 through 9 discuss the various components of PACE, the ra-
tionale behind their design and some implementation details.

Finally Chapter 10 talks about possible further improvements in the stat-
ics code and some extensions to PACE to increase its usefulness.

9

Chapter 2

Contemporary Systems

2.1 Introduction

It is instructive to examine a number of computational environments before
plunging into the design of PACE-COMET. The systems we describe shall
provide a context for the design decisions we make with PACE-COMET.
Some of the computational environments discussed here may appear to differ
substantially from the system we propose. However, all the systems that we
look at share with PACE-COMET the broad goals of improving utilization of
high performance computing resources with an eye on distribution. Our aim
is also to look at several important issues in high performance computing so
that we may develop a feel for the special needs that arise in real applications.
It is useful even to look at systems whose goals vary from PACE-COMET so
we have a better understanding of both the problem and the design choices
available to us; it is as important to pick the right problem to be solved as
to find the right solution to a problem.

2.2 Checkpointing Systems

2.2.1 Binary Checkpointing

Binary checkpointing systems save the entire core image of the program as a
checkpoint. Some systems that use this form of checkpointing are described
in [4, 17].

Taking core images for checkpoints is a simple, un-complicated process

10

and there are no significant differences between the major systems that do
this kind of checkpointing. Some method must exist to re-send messages that
were in transit while the checkpoint was being taken, or a checkpoint must
only be taken while no messages are in transit; this is the only major issue.

Binary checkpointing has the advantage that it is completely transparent
to the user and the programmer and is language neutral. However, compared
to the other possibilities we discuss below, binary checkpoints are unneces-
sarily large, particularly in the case of high performance computational ap-
plications that have large quantities of data. Also unlike the other strategies
below, binary checkpoints restrict the program to use the same number of
processors across checkpoints and preclude the possibility of process migra-
tion between heterogeneous machines.

2.2.2 Paradigm Oriented Checkpointing

Paradigm Oriented Checkpointing [19] is a system of checkpointing that pro-
vides some parallel programs the facility to take a checkpoint which could
be used to restart them on a different number of processors than they were
checkpointed on.

POC is used with MPI programs written using the Parallel Utilities -
Regular Decomposition (PUL-RD) suite by the Edinburgh Parallel Com-
puting Center. Essentially, PUL-RD allows programmers to write parallel
programs by specifying a data decomposition and a skeletal operational in-
terface for a parallel program. POC exploits this decomposition information
to take checkpoints and decompose the data of a checkpoint differently when
starting on a number of processors different from the number on which the
checkpoint was taken.

The model of checkpointing used by POC is user directed. This means
that the programmer has to explicitly write checkpointing code in the pro-
gram by making function calls to a checkpointing API. When the checkpoint
is taken is also controlled by the programmer explicitly. While this is a dis-
advantage so far as transparency goes, this strategy allows us to exploit the
programmer’s semantic knowledge of the program to take checkpoints that
are portable across the number of processors. In addition, the checkpoints
will usually be smaller than binary checkpoints, since only those program
variables are saved which need to be.

Our checkpointing model is similar to the POC model in that we employ a
user commanded approach and in that we take checkpoints that are portable

11

across the number of processors. We build a migration system around a POC
like system, and our core checkpointing process is designed so it can easily
coexist with the migration system. This implies building facilities like remote
checkpoint triggering and restart, designing ways for the migration facility
to communicate and control the checkpointing facility and so on.

2.2.3 CUMULVS

The CUMULVS project [12, 18] is an effort by the Oak Ridge National
Laboratories to implement a distributed and fault-tolerant computational
environment that provides migration, steering and visualization of parallel
applications.

The approach taken by CUMULVS is to provide user directed check-
pointing with a checkpointing API. The programmer must explicitly name
the variables that must be saved as a checkpoint. The CUMULVS system
then decides how to schedule and migrate the program on a network of high
performance machines.

Another thrust area of CUMULVS is computational steering. This in-
volves allowing a scientist to change parameters within the parallel program
while it is running. Using this capability, the scientist can control the pro-
gram’s “direction” or steer the program.

Implementations of CUMULVS exist for programs using PVM and MPI.
In many ways CUMULVS is a superset of the COMET-PACE system. The
chief differences are in the user commanded nature of COMET-PACE and the
ability to use COMET-PACE commands in a shell script. COMET-PACE is
at a lower level than CUMULVS in that it puts a greater burden on the user
than CUMULVS, but it affords a finer degree of control.

2.3 Migration

2.3.1 Overview of Design Issues

Process migration [7, 22] is a widely researched topic, and there is a plethora
of design issues in building a migration system. Migration systems differ
drastically in purpose and design, so we will not try to look at the entire
spectrum of possibilities. Instead we shall concentrate only on those aspects
of migration which seem most relevant to our situation.

12

An important concept while designing migration systems is that of mecha-
nism and policy [10]. The mechanism is the means of moving context between
machines while the policy specifies when the context should be migrated.
One possibility for the policy is to have a load distribution algorithm, which
attempts to use the resources in the “best” way possible. The definition of
“best” can be varied — some typical definitions are maximizing utilization,
maximizing throughput, maximizing availability, and so forth.

2.3.2 NQE

The Network Queueing Environment(NQE) [6] is a product of Silicon Graph-
ics International/Cray Computer Corporation. This is a system designed to
be installed on a network of computers. Users of NQE submit batch requests
to a Network Queueing System (NQS) server, which schedules the requests
on an appropriate machine using data supplied by a Network Load Balancer
(NLB) about the load on the machines. NQE also provide fault tolerant file
transfer through a File Transfer Agent (FTA) which can be instructed to
repeatedly try a transfer till success in case a link fails.

An NQE batch request is a shell script and is submitted to the NQS using
a GUI based submission program. There is also a command line based sub-
mission tool. From the point of submission onwards the request is completely
managed by NQE. NQE also provides programs (GUI as well as command
line) that enable a user to monitor the progress of a request.

NQE takes the route of controlling the lifetime of the program completely,
deciding when to checkpoint, restart, migrate, etc. This is in contrast to our
system which puts this responsibility entirely in the user’s hands. The trade-
off here is whether the load balancing subsystem knows enough to make
sound scheduling decisions. For our application this is not so. Moreover we
also need a way for users to make use of time slots that have been pre-booked
by them on particular machines. Finally the question of heterogeneous mi-
gration needs to be considered. NQE relies on binary checkpointing, which
makes it impossible to migrate between differing machines.

2.3.3 Charlotte

Charlotte is a distributed operating system developed at the University of
Wisconsin for a network of computers on an ethernet. In our discussion we
only look at the process migration subsystem of Charlotte.

13

All computers on a network running Charlotte run an OS kernel that
implements a process migration mechanism. The mechanism involves the
three steps of negotiating the details of a migration between the source and
destination machines, transfer of binary contexts and finally transfer of kernel
data structures. The policy used by Charlotte is automated as opposed to
a manual policy as in Sprite [17]. An automated policy uses an internal
algorithm to decide on candidates for migration, possible destinations and
also when to save the context of a migrating process and to halt it. A manual
policy, on the other hand, relies on the user to supply all this data.

A key feature in Charlotte worth emulating (for some systems) is the
separation of mechanism and policy. Charlotte implements the mechanism
as part of the OS kernel, whereas the policy is a utility. This has the disad-
vantage of slight inefficiency, but it permits a cleaner design and also allows
for changes to be made easily in future versions of policy. This is a principle
followed in COMET-PACE.

2.4 Metasystems

Metasystems [1, 9, 13, 16] are a newly emerging sub-area in high performance
computing. A metasystem attempts to seamlessly combine distributed re-
sources such as programs, databases, machines and people1. The objective
of most metasystems is to make it possible to build wide area applications
by providing middle-ware that fuses distributed resources into one single vir-
tual machine, that provides some or all of the following: scheduling, fault
tolerance and great computational power.

Metacomputing — as computational science using metasystems is called
— draws on many of the techniques outlined previously in this chapter, such
as checkpointing, process migration (possibly heterogeneous), scheduling and
load balancing, queuing systems, etc.

An important area in which metasystems are being developed and used
is that of building component based metasystems. These are metasystems
built by combining several parallel programs running on different machines
connected by a network. Often the source codes of the component programs
in such a metasystem are written in different languages by different research
groups, thus making it a huge effort to combine them into a single program.

1When we speak of combining people, we imply that metasystems make it easier for
people to collaborate.

14

Additionally, these programs may be optimized for execution on the specific
computer for which they were written. It is thus invaluable to have some
middleware that permits these programs to exchange data through a network,
while they continue to run on their home machines. The programs need
be modified very little; they only need to incorporate “entry points” which
receive and send data, from and to the other components of the metasystem.
A related issue in metasystems is that of security. Since the components may
belong to different groups, they often represent intellectual property. Also
since the metasystem is spread over a network, this introduces all kinds of
possibilities for breaches in security that must be resolved by the middleware.

As excellent example of a metasystem is the Earth Science component
metasystem [13]. It attempts to create a unified oceanographic and atmo-
spheric model of the weather by combining the individual simulations for
these models. Both components are written by groups of vastly differing
specialties, making collaboration hard. The programs are also written for
different machines, and run using different resolutions in time and space.
Metacomputing provides the solution.

Metasystems embody many important principles in high performance
computing nowadays: the need to support heterogeneity, exploiting dis-
tributed computer networks for higher performance and greater fault tol-
erance, the interdisciplinary nature of high performance computing and so
on. It is useful to review them for a better understanding of which issues are
of importance.

15

Chapter 3

Molecular Statics Simulation
Code

3.1 Introduction

Before we look at optimizations of the Molecular Statics code, it is impor-
tant to gain an understanding of the algorithms and data structures of the
sequential version of the code. It is not necessary to examine the entire pro-
gram as most of the execution time is spent only in some parts of the code,
making it necessary to modify only those portions to improve performance.
We will therefore identify a kernel — a portion of the code which is critical
to performance — and focus our energies on that.

It is also helpful to look at a parallelization of the basic sequential code due
to Brian Blount [2] which distributes computation among multiple processors.
Our optimizations are based upon this parallel version of the code which we
shall refer to as PMOLSTAT(this code written by Brian Blount is based on
a sequential code written by Yuri Mishin which is referred to as MOLSTAT.)

3.2 Sequential Algorithms

To simplify our description of the algorithms of Molecular Statics, we define
the following terms.

• Position of an Atom. A triple of floating point numbers representing
the x, y and z coordinates of an atom in space. Each atom is associated

16

with a single position. Where the context is clear we shall refer to this
attribute simply as the position.

• Force on an Atom. A triple of floating point numbers representing the
force exerted on an atom as the three components of a vector in space.
Each atom is associated with a single force vector acting on it. We shall
use the term force for short, when we wish to refer to this attribute
and it is clear that we use the term to refer to an attribute of an atom.

• Electron Density on an Atom. A single floating point number associ-
ated with each atom. This shall be referred to as the electron density
for short, when it is clear that we are referring to an attribute of an
atom.

The reader is cautioned not to attach too much physical significance to
these attributes. They are important because they occur as data that the
program manipulates. This definition is only correct and complete as far as
it pertains to the molecular statics algorithms.

3.2.1 The Crystal and its Generation

The first significant step of the statics code is to initialize a two dimensional
array of coordinates sized Number of atoms × 3 , which we shall call co[].
Each triple of elements of the array — (co[i,1],co[i,2],co[i,3]) where
i is some integer — holds the position of an atom of the crystal, and is ini-
tialized to an x, y and z coordinate respectively, by the Crystal subroutine.

In the future, when we talk of “atom i”, we shall take it to mean the atom
whose position is given by the coordinate (co[i,1],co[i,2],co[i,3]), where
i is an integer.

The Crystal subroutine generates three types of atoms — free, buffer
and fixed. An atom falls exclusively into one of these categories depending
on its position. The regions over which these types extend are depicted in
Figure 3.1 in two dimensions. The statics code operates on these atoms and
the end result is the attributes of the free atoms. However we cannot have
only free atoms in the crystal, for the free atoms close to the boundaries of
the crystal would then not have as many atoms near them as atoms close to
the center. This would lead to the simulation behaving incorrectly as far as
the physics goes. The purpose of the fixed and buffer atoms is to provide the
effect of having many atoms near these free and buffer atoms at the boundary.

17

Free

Fixed
Buffer

Figure 3.1: Two dimensional illustration of crystal structure.

The position and electron density of the fixed atoms are not modified, but
fixed atoms contribute to the force exerted on free atoms. The buffer atoms
have a similar purpose. They are interposed as a layer between the free and
the fixed atoms to provide a gradual transition. Only the electron density of
the buffer atoms is modified as the simulation proceeds; their position does
not vary at all. In the case of the free atoms, we modify all three attributes
— position, force and electron density.

The algorithm for the Crystal subroutine proceeds as outlined below. We
use the notation Array[*] to refer to all elements of an array named Array.
Thus co[i,*] refers to the position of atom i — (co[i,1], co[i,2], co[i,3]).

do i = 1, Number of Atoms

Generate an x, y, z coordinate.

Initialize an auxiliary array co1[i,*] to the coordinate.

Sort the atoms into three types so that all the free atoms

occur first, followed by all the buffer atoms and finally the

fixed atoms. The resulting sorted list is in co[].

Generation of the x, y and z coordinates is done by a simple algorithm,
which takes as input — the dimensions of the (rectangular) crystal in terms of
the number of atoms along the x, y and z directions, the number of chemical
species of atoms, the interatomic distances and so forth, The algorithm then
generates coordinates spaced in a regular fashion in space. The details of
coordinate generation are irrelevant to the parallelization effort, and they
only take up a minor portion of the execution time, so we will not discuss this

18

any further. The sort at the end of Crystal employs an algorithm similar
to count sort [5]. The sorting is done so that there is a straightforward
way to determine whether an atom i is free, fixed or buffer without a time
consuming check as to what region it lies in. In a sorted list of atoms, all it
takes to check the atom’s type is an index comparison. For instance if i >
The Number of Free Atoms, then i cannot be free.

3.2.2 Table of Neighbors

The Table subroutine is responsible for the creation of a table of neighbors
for the atoms. This table of neighbors is a two dimensional array, which
for every free and buffer atom in co[], lists all other atoms whose position
is within a search radius R. The neighborhood relation is formally stated in
Definition 3.1.

Definition 3.1 We say that the atom j is a neighbor of i if and only if,√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≤ R

where, x1 = co[i, 1] x2 = co[j, 1]

y1 = co[i, 2] y2 = co[j, 2]

z1 = co[i, 3] z2 = co[j, 3]

and R is the search radius.
This relation is expressed in the statics algorithms as,

neighbors[i, k] = j, for some k ≤ The Number of Neighbors of i

In other words, the neighbors of i are stored as neighbors[i,1], neighbors[i,2],
neighbors[i,3]. . . neighbors[i, n], where n is the number of neighbors.

Note that the relation of neighborhood is symmetric, that is, i is a neigh-
bor of j ⇔ j is a neighbor of i.

The Table subroutine1 proceeds by dividing the entire crystal into cubic
blocks of side R. The blocks are numbered from 1 to the number of blocks.

1The sequential algorithm discussed here is by Yuri Mishin, but with a further space
optimization. The original algorithm proceeded by dividing the crystal into cubical cells
and generating a table of neighbours of these cells. Neighbors of atoms in a cell (of side

19

co()

link()

Figure 3.2: Linking blocks.

Therefore, two atoms can be neighbors only if they are located in the same
block or in physically adjacent blocks. Thus, given an atom, the algorithm
for the Table subroutine proceeds by retrieving its block number, and the
block numbers of the blocks immediately adjacent. Then it needs to examine
only the atoms in the adjacent blocks for the neighborhood condition. The
algorithm for Tables is as follows.

do over all free and buffer atoms i

k = 0

b = block to which i belongs

do over all c = {b and blocks neighboring b}

do over all atoms j in c

if(i and j are close enough)

neighbors[i,k] = j

k = k + 1

For the algorithm to work well, it should be possible to efficiently iterate
through all the atoms of a block when given its block number. This is done by
maintaining a linked list for each block in co[]. This is shown in Figure 3.2.
The Xs mark atoms in the same block. A “block assignment” subroutine
makes a pass through co[] initially (before Tables), building up the linked
lists. Note that the array link[] can be used to hold linked lists for all
blocks simultaneously. The overhead of computing blocks and linked lists of
atoms is well worth it because it improves the table creation algorithm from
O(n2) to O(n) which has a significant impact on its performance in large
cases.

equal to search radius) would thus lie in neighbor cells as given by the table of neighbors of
cells. In the sequential code this table of neighbors of cells is not a big space bottleneck as
compared to the arrays of atom attributes, but in the parallel code, which optimizes away
the space occupied by the atom attributes, this becomes a very big liability. Therefore
this table of neighbors of cells was eliminated by slightly changing the sequential table of
neighbors algorithm. For the purposes of the discussion in this thesis we may safely ignore
the changes after noting that they were made.

20

One thing should be noted — the algorithm presented above is actually
a simplicfication of the algorithm used in MOLSTAT. We do this to simplify
our discussion. In MOLSTAT, there is the notion of “displacements” of
atoms. The position of each atom n1 is diplaced by a multiples of a certain
distance to yield positions p1, p2, p3, . . . Then for each atom n2, we check if
it is a neighbour of n1 where the position of n1 is taken as one of the pi. If
n1 and n2 are indeed neighbours, they are listed as such in neighbors[],
except that they are not neighbours in the sense described earlier, since this
neighbourhood relationship is defined in terms of the displaced position of n1

rather than its real position. This is indicated by setting the corresponding
element of a logical array, realn[n1][n2] to FALSE (otherwise this is TRUE).
The amount of displacement is stored in an integer array in the element
idisp[n1][n2]. Since the displacements in the X, Y and Z directions are
only integral multiples of constant displacements dispx, dispy and dispz

(one for each direction), we only store the integer factor in idisp[][] to
conserve space. The motivation for having displacements is as follows. In a
typical simulation we get best results when we have more atoms. However,
more atoms mean more storage, so there is a limit to how high we can go
in terms of the number of atoms. Instead, we use the atoms we already
have and displace them to get many more imaginary atoms. The results are
closer to the physical reality when we use these imaginary displaced atoms.
The algorithm described above needs to be modified slightly to take the
displacement strategy into account.

do over all free and buffer atoms i

k = 0

do id = -ndispx, ndispx

displace atom i by id*ndispx

b = block to which the displaced i belongs

do over all c = {b and blocks neighboring b}

do over all atoms j in c

if(i and j are close enough)

neighbors[i,k] = j

if(id is not 0)

realn[i,k] = FALSE

idisp[i,k] = id

else

realn[i,k] = TRUE

k = k + 1

21

In the above algorithm ndisp is the “number of displacements” in the X
direction. To keep the algorithm short we only consider displacements in the
X direction. dispx is the unit displacement and all other displacements are
multiples of dispx.

We will not discuss the displacement strategy again even though it affects
almost all the other algorithms. This is due to two things — first, once we
have explained the concept of displacements, and given an example of how
it can be easily incorporated into the statics code, it should be easy for the
reader to see how the rest of the code is similarly modified to deal with
the displacement strategy. Secondly, our improvements to the code are not
greatly affected by the displacement strategy. In other words, the algorithms
as we describe them in this thesis are not significantly different in their
implementation when we incorporate displacements. Given these facts we
choose to ignore the changes introduced by the displacement strategy and
instead opt to present a simplified version of the algorithms.

3.2.3 Aberrations

Once the table of neighbors has been initialized, the next step is to introduce
some kind of aberration in the crystal. This may be a crack, a point defect, a
dislocation or a planar defect. The subroutines to do this are not important
from our point of view. They are neither dominant in terms of execution time,
nor do they require any non-trivial changes during parallelization. In essence
all they do is change the positions of some atoms in co[] by displacing them,
or removing atoms from co[] by marking them as removed in an auxiliary
array.

3.2.4 Relaxation

The relaxation subroutine uses the Conjugate Gradient method to compute
a new set of positions for the free atoms to minimize the total energy of the
crystal. This works in two steps — first, a subroutine Enforce is called which
calculates the force and electron density for the atoms2, and the total energy
of the crystal. Then this atom attribute information is used by the conjugate
gradient subroutine to try different positions for the atoms and attempt to

2Not for every atom. As outlined in 3.2.1 we may be interested in only some attributes
of atoms depending on whether the atoms are free, buffer or fixed.

22

Table 3.1: Typical execution times for MOLSTAT.
t10 is the time taken by MOLSTAT for 10 iterations, and tEnforce is the time
spent in Enforce.

Free Atoms tEnforce t10 Percentage Time
450 67.8 68.5 99.0%

1250 164.0 166.0 98.8%
1800 227.7 230.2 98.9%
5000 589.7 596.7 98.8%
9800 2190.9 2217.8 98.8%

find a configuration that minimizes the total energy of the crystal. The
conjugate gradient subroutine makes repeated iterations of calling Enforce

and modifying the atom positions. In effect it traverses a search space to
find a minimum energy set of atom positions, and each step exploring the
search space is guided by the atom attributes in the current iteration.

Enforce is the most time consuming step in the molecular statics code
(This is clearly apparent in Table 3.1). Therefore, it is Enforce which must
be parallelized first and best.

The energy of the crystal is the sum of the energy contributions due to
each free and buffer atom in the crystal. We call this contribution γi where
i is a free or buffer atom. Each such γi is made up of contributions that
we shall call αij, made by an atom j which is a neighbor of i. The αij
contribution depends upon the position of atoms i and j3. The total energy
of the crystal is given by the formula below.

E =
∑
i∈Free

γi (3.1)

=
∑
i∈Free

∑
j∈Nbors(i)

αij (3.2)

Free is the set of free atoms in the crystal and Nbors(i) is the set of atoms
which are neighbors of i according to Definition 3.1.

The force on an atom i is a function of the positions of i and j, where j

is a neighbor of i. The array G[] keeps track of the force on each free atom.

3Specifically, it depends upon the interatomic distance and the species of atoms.

23

G[i] holds the force on atom i. For simplicity only one component of the
triple for the force vector is shown in the algorithms that follow. Calculations
are analogous for the other components.

Electron density is similar to force — given a free or buffer atom i, each
neighbor j which is a free or buffer atom, makes a contribution to the electron
density of i. The array R[] keeps track of the electron density on an atom,
with R[i] holding the electron density of atom i.

The algorithm for Enforce appears below.

1 E = 0

2 do over all free and buffer atoms i

3 G[i] = 0

4 do over all neighbors j of i

5 E = E + e(i,j) * 0.5

6 if(i <= nfree)

7 G[i] = G[i] + g(i,j)

8 if(i <= nfree + nbuffer)

9 R[i] = R[i] + r(i,j)

The function e(i,j) returns the energy due to the interaction of the
atoms i and j and corresponds to the αij of Equation 3.2. The order of the
arguments does not matter. The reason for the 0.5 factor in line 5 is that
each pair of neighbors is listed twice over in neighbors due to symmetry.
However the energy due to the interaction between i and j must be added
only once per pair of neighbors, thus the factor of one half.

The quantities nfree and nbuffer stand for the number of free and buffer
atoms respectively. The test in line 6 checks if an atom is of type free and the
one in line 8 checks to see if it is either free or buffer. This is the reason for
sorting the atoms during crystal generation, so that there is a quick and easy
way to check the type of an atom. The alternative test, using the coordinate
of the atom to find out which region it lies in is too inefficient to be used in
the “inner loop” of Enforce.

The function g(i,j) gives the force exerted by atom j on atom i. When
the order of the arguments is reversed, the sign of g is reversed.

The function r(i,j) is the contribution of atom j to the electron density
on atom i. Like g, the sign of r is reversed when the order of its arguments
is reversed.

24

3.2.5 Symmetry

We have noted the symmetry of the neighborhood relation. This suggests
one space saving optimization — if atoms i and j are neighbors, then by
Definition 3.1, both the atoms will have listed the other as neighbors in
neighbors[]. This approach uses up twice as much space as is necessary to
convey the same information, that i and j are neighbors.

The space used by neighbors[] can be cut by half if we set neighbors[i,k]
= j (for some k) only when i and j are neighbors and i < j. Since the re-
lation “<” is not symmetric, this ensures that i is not listed as j’s neighbor
if j is listed as i’s neighbor. This optimization is shown in the modified
algorithm for Tables shown here.

do over all free and buffer atoms i

k = 0

b = block to which i belongs

do over all blocks c = {b and blocks adjacent to b}

do over all atoms j in c

if(i < j AND i and j are close enough)

neighbors[i,k] = j

k = k + 1

On the other hand, if we only list atom j as atom i’s neighbor, but not i as
j’s neighbor, then the relaxation algorithm from Section 3.2.4 would not work
right. This is because, while computing the force on atom j the algorithm
iterates only through the atoms listed as neighbors of j in neighbors. Since
atom i is not listed as a neighbor, the computation is incorrect. Similarly the
calculation of total energy and electron density produces incorrect results.

A simple modification of Enforce allows symmetry to be exploited here
as well. The contribution of the force exerted by a neighbor j on an atom i

is added in as before, but at the same time, the force exerted by i on j is
computed and added to the force on j. A similar modification is made to the
computation of the electron density. Correct calculation of energy under this
scheme is done by eliminating the 0.5 factor from the sequential algorithm,
for each contribution. This is because each pair of neighbors is only listed
once in our new scheme. The modified algorithm is as follows.

25

E = 0

G[*] = 0

R[*] = 0

do over all free and buffer atoms i

do over all neighbors j of i

E = E + e[i,j]

if(i <= nfree)

G[i] = G[i] + g(i,j)

if(j <= nfree)

G[j] = G[j] + g(j,i) /* g(j,i) = -g(i,j) */

if(i <= nfree + nbuffer)

R[i] = R[i] + r(i,j)

if(j <= nfree + nbuffer)

R[j] = R[j] + r(j,i) /* r(j,i) = -r(i,j) */

3.3 Parallelizing Computation

We now turn to the parallel molecular statics code, PMOLSTAT, developed
by Brian Blount. In PMOLSTAT dividing computation among processors is
done by “assigning” some atoms to each processor. Each processor is then
responsible for applying the same steps outlined in the sequential algorithm
to the atoms assigned to it. Although the atoms are divided among the
processors for the sake of parallelizing computation, each processor holds the
location of every atom. This is because an atom assigned to a processor
may be affected by an atom assigned to another processor. Thus it may be
necessary for a given processor to store the positions of atoms not assigned
to it. PMOLSTAT deals with this situation by storing all atoms on all
processors.

3.3.1 Crystal Generation and Dividing Atoms

The crystal generation is as before, only each processor calls the Crystal

subroutine independently and redundantly. At the end of Crystal, each
processor has a complete copy of the positions of all the atoms in co[].

Now each processor assumes responsibility for some of the free and buffer
atoms in the crystal. This set is determined by two integers — start and
end. A processor owns all atoms i such that start ≤ i ≤ end, where

26

start and end are different on different processors. The exact algorithm
for computing start and end is only of passing interest with respect to our
main purpose. As long as it allocates roughly equal numbers of atoms to
each processor so that the load imbalance is not too great, the exact method
used is not important. Each processor gets a contiguous subset of atoms to
work on.

3.3.2 Table of Neighbors and Enforce

The parallel algorithm used by PMOLSTAT for the Table subroutine is given
below. The table of neighbors is distributed across the processors, with each
processor holding the neighbors for only the atoms assigned to it.

1 do i = start, end

2 k = 0

3 b = block to which i belongs

4 do over all blocks c = {b and blocks adjacent to b}

5 do over all atoms j in b

6 if(i < j OR i and j are on different processors)

7 if(i and j are close enough)

8 neighbors[i,k] = j

9 k = k + 1

Observe how this algorithm compares with the sequential algorithm in
3.2.5. One change is that the loop over all atoms in the sequential algorithm
is replaced by a loop iterating over atoms from start to end. The more
interesting change is the test in the if statement at line 6 checking if i and
j are on different processors. The reason for this is that in the sequential
version of Enforce, the program modifies G[j] at the same time as it modifies
G[i], where j is listed as a neighbor of i. However in the parallel version it
is quite possible that i and j are on different processors. Assuming i > j,
if we used symmetry as in Section 3.2.5, then G[i] would not get updated
by the processor which was assigned atom j even if i and j were neighbors.
We can solve the problem by not taking advantage of symmetry when the
neighboring atoms are on different processors. By setting up the table of
neighbors in this selectively symmetric way, the Enforce subroutine works
correctly. Pseudo code describing how the parallelized version of Enforce

works is shown below. Enforce is executed in parallel on each processor.

27

1 E = 0

2 G[*] = 0

3 R[*] = 0

4 do i = start, end

5 do for all neighbors j of i

6 if (i and j are on the same processor)

7 factor = 1.0

8 else

9 factor = 0.5

10 E = E + e(i,j) * factor

11 if(i <= nfree)

12 G[i - start + 1] = G[i - start + 1] + g(i,j)

13 if(j <= nfree AND j is on this processor)

14 G[j - start + 1] = G[j - start + 1] + g(j,i)

15 if(i <= nfree)

16 R[i - start + 1] = R[i - start + 1] + r(i,j)

17 if(j <= nfree + nbuffer AND j is on this processor)

18 R[j - start + 1] = R[j - start + 1] + r(j,i)

19 call mpi_allreduce(Etot, E)

The final call to mpi allreduce at line 19 is a reduction step. This adds
up the values of all the E’s on the different processors and puts the result
into Etot.

The factor at line 6 and 9 is used to account for our selectively taking
advantage of symmetry. Where we do not use symmetry and the same pair
of neighbors is listed twice over (each time on a different processor), the
value returned by e() must be halved to account for the contribution of the
interaction only once.

Each processor holds only the values of G[] and R[] corresponding to
atoms assigned to it. Therefore, when we use the G attribute and the co

attribute of an atom, we must translate the indices to the atom in co[]

which are “global” indices (from 1 to the number of atoms) to “local” indices
(ranging from 1 to the number of atoms assigned to the processor running
Enforce). This is the reason why we do not use i and j as the indices to
G[] and R[] in the algorithm described above.

28

3.3.3 Communication

The one remaining problem to be solved is that of communication. We have
mentioned earlier that the Conjug subroutine modifies the attributes of the
free and buffer atoms depending on the attributes of the atoms in the crystal.
In PMOLSTAT, this translates to each processor modifying the positions
of the atoms assigned to it. This means that the modifications are not
visible to other processors. After these modifications, the changed positions
of the atoms must be communicated to the other processors before Enforce

is called again in the next iteration. If not, this will lead to incorrect results
if a processor calling Enforce uses the position of any atom not assigned to
it and the position of that atom was modified by another processor in the
previous iteration. This happens if the neighbor of an atom assigned to a
processor p1 lies on another processor p2. Thus if p2 modifies the neighbor’s
position, the calculation of the energy (for instance) due to interaction of the
atoms, is based upon the incorrect position of the neighbor at p1.

In PMOLSTAT communication is achieved by each processor sending the
positions of atoms assigned to it, after Conjug has modified them, to all other
processors whose atoms have neighbors assigned to this processor. Only the
free atoms need be sent, as the positions of the fixed and buffer atoms are
not changed. Keeping track of which processors need which atoms is done in
Tables. The algorithm for tables is modified slightly. When Tables decides
that two atoms n1 and n2 are neighbours, if they are on different proces-
sors, say p1 and p2, then Tables should should register somehow that p1

needs an atom on p2 and vice versa. This is done by means of an array
nprocs to send to[] which keeps a list of all processors which have neigh-
bouring atoms on the processor holding the array. For example, both p1 and
p2 would list each other as an entry in nprocs to send to[]. In the commu-
nication step during PMOLSTAT, each processor scans through its entries
in nprocs to send to[] and posts an asynchronous send for all the atoms
assigned to it (that is, the attributes of the atoms assigned to it) and also a re-
ceive for the atoms assigned to the processor listed in nprocs to send to[].
Thus when communication completes each processor has the correct and up
to date attributes for all the atoms. One more thing to note is that each
processor needs to know the start and end values for any processor it re-
ceives from. This is easy to ensure, since we divide the atoms into equal sized
contiguous chunks and assign a chunk to each processor.

The costs incurred to record the communication information are small,

29

since the table creation routine where this information is collected is not a
significant bottleneck and the collection of information occurs only once.

Other Details

Parallelizing of the rest of the conjugate gradient method in PMOLSTAT
is straightforward. We do not discuss the methods used since simple loop
parallelization suffices to produce a good parallel version of the code. The
cost of these portions of the code is also negligible, so there is not much
point in examining them. For the rest of this thesis the focus will be on the
Enforce subroutine.

30

Chapter 4

Optimization of PMOLSTAT

4.1 Introduction

In this chapter we describe our optimizations to PMOLSTAT. We identify
bottlenecks in PMOLSTAT, why they arise and how to eliminate them. The
main emphasis is on reducing the per-processor memory requirements and
reducing the cost of communication. Our intention is to design a highly
scalable version of this molecular statics simulation code.

The idea of scalability in parallel programs is a very important one. Es-
sentially all parallel algorithms try to solve problems faster than sequential
algorithms by using more processors. This however, introduces the neces-
sity to divide the work among the processors in a “sensible” fashion. If for
instance, one processor is given almost all the work, clearly there will be
little improvement in performance. In addition to computational work it is
also important to divide space requirements evenly (assuming a distributed
memory context). A strategy that divides the work and space of a problem
evenly among processors, irrespective of the number of available processors
and the size of the problem, is a necessary condition for scalability. In real
life many parallelization strategies fail to work equally well for all ranges of
processor numbers and problem sizes. Careful analysis and design may be
needed to discover a good way to parallelize computation and space in a
scalable manner.

31

4.2 Scalability

When considering the implications of memory requirements on scalability, it
is useful to distinguish between two types of large data structures: sequential
and parallel. A sequential data structure grows in size in direct proportion
to the problem size, and is not influenced by the number of processors. It
consumes O(n) memory on each processor, where n is the problem size.
In contrast, a perfectly parallel data structure uses up O(n/p) memory per
processor, where n is as before and p is the number of processors being used.
The per processor memory requirement of a program with only sequential
and parallel data is therefore given by the following Equations.

mparallel = α
m

p
, (4.1)

msequential = (1− α)m, (4.2)

where,

α is the proportion of the data which is perfectly
parallel.
m is the memory requirement of the problem on a single
processor.
p is the number of processors.
mparallel is the memory requirement of the parallel data.
msequential is the memory requirement of the sequential
data.

If a program has a sequential data component, the largest problem size
that can be tackled is limited by the memory requirement of the sequential
portion of the data, even if we can indefinitely increase the number of pro-
cessors available to solve the problem. The program is thus limited in how
well it scales towards larger problem sizes.

The parallel molecular statics code divides computation evenly among
processors, and succeeds in achieving some size scalability by breaking up
the table of neighbors — neighbrs[]. However there is one set of data
structures — the co[] array and a family of arrays which are used in a way
similar to co[] — which are sequential. For convenience we shall refer to
this set of arrays, namely co[], co1[], lco[] and lco1[] as CO collectively.

32

Table 4.1: Space requirements of PMOLSTAT.

Array Size

neighbrs[]
200ni

p

idisp[]
600ni

p

workspace[]
15nf

p

R[]
nf

p

fi[]
3nf

p

G[]
3nf

p

co[] 3nf

co1[] 3nf

lco[] 3ni

lco1[] 3ni

4.2.1 Sequential Bottleneck

Our immediate objective was to run the code well on about a 100 proces-
sors of the Intel Paragon. It is important to know exactly what the memory
bottleneck is for that number of processors before we proceed with any opti-
mization.

Table 4.1 lists the major data structures in the statics code and the
amount of space they occupy. The i represents the space occupied by an
integer and f represents the space occupied by a double precision floating
point number. The symbols n and p, as before, stand for the problem size
(number of atoms) and the number of processors used to solve the problem,
respectively.

It is apparent from Table 4.1 that neighbrs[], idisp[], workspace[],

33

R[], Fi[] and G[] are perfectly parallel, and everything else is purely se-
quential. For a hundred processors, the ratio of space occupied by parallel
data to sequential data is given by

msequential

mparallel
=

3nf + 3nf + 3ni+ 3ni
200ni+600ni+15nf+nf+3nf+3nf

100

(4.3)

= 2.132

assuming that f = 2i.

It is clear that CO is the major consumer of memory when about 100
processors are used. If we were to successfully parallelize these arrays, their
per processor memory requirement would also scale down as the number of
processors increased. A strategy that perfectly parallelized the sequential
arrays would reduce the ratio in Equation 4.3 to the following.

msequential

mparallel
=

3nf+3nf+3ni+3ni
100

200ni+600ni+15nf+nf+3nf+3nf
100

(4.4)

= 0.021

In other words, perfect parallelization would reduce the memory require-
ment of the sequential data component from being the dominant component
to being an insignificant component. It is also clear from these formulae that
CO becomes an increasingly significant bottleneck as the number of proces-
sors is increased. In PMOLSTAT the limit on the number of atoms possible
for a simulation, in real memory (no virtual memory) is about 10,000.

4.3 Data Structures

Our analysis suggests that we must decompose CO evenly among the pro-
cessors. This turns out to be equivalent to the problem of decomposing co[]

evenly among the processors, for the statics code performs very similar oper-
ations on all arrays in CO . Therefore, in the algorithms and data structures
we discuss, we will only speak about co[]1.

1We only discuss algorithms and data structures that are the most representative of
the optimizations made. In fact, the statics code is considerably more complex than what

34

4.3.1 CBlocks

We tackle the problem of decomposing co[] by dividing the entire crystal into
a number of Communication Blocks or CBlocks. These CBlocks are cuboids
(rectangular boxes), and their dimensions are picked to suit the problem2. An
atom is located in a CBlock if its position falls within the CBlock. CBlocks
do not overlap, so each atom can be located in in one and only one CBlock.
We shall refer to an atom as belonging to a CBlock when we wish to indicate
that it is located in the CBlock.

Atoms are affected by other atoms located within a distance δ, the search
radius which defines an atom’s neighborhood. So given a CBlock m, it is
possible to identify a set of CBlocks which have some atoms that influence
atoms in m and in turn are influenced by some atoms in m. This is illustrated
in Figure 4.1 in two dimensions. Essentially, we draw a rectangle centered
around m and extending in each of the three directions by a further distance
δ. Then we find out which CBlocks this rectangle intersects. This set of
CBlocks is the region of influence for m which we denote as Rm. The concept
of identifying the region of influence using CBlocks is similar to the idea of
using blocks in the algorithm for the table of neighbors (Section 3.2.2), but
not exactly the same, because CBlocks can have varying sizes as opposed to
blocks which are always cubes of side δ. At this point of time we make no
assumptions about the relative magnitudes of the CBlock dimensions and δ.

Each processor is assigned a set of CBlocks such that every CBlock is
assigned to some processor, and no two processors are assigned the same
CBlock. These CBlocks are called the owned p set of CBlocks for a processor
p. A processor must apply the conjugate gradient method to the atoms
belonging to CBlocks in owned p. In applying the conjugate gradient method,
some of the atoms in ownedp may be influenced by atoms not in the set.
Therefore each processor must also keep track of the attributes3 of atoms
belonging to CBlocks which are in the region of influence of the CBlocks
in owned p. The set of CBlocks which are assigned to other processors, but
which are in the region of influence of CBlocks assigned to this processor, is

we describe here. For simplicity of discussion we only talk of simplified versions of the
algorithms and data structures which are used to optimize the statics code. Thus the
algorithms and data structures we describe are used in more parts of the code than we
discuss.

2The effect of CBlock dimension on program execution is discussed in Chapter 5.
3Recall that we defined the attributes of an atom as position, electron density and force

in Section 3.2.

35

Search Radius Boundary

m

Rm

Figure 4.1: CBlocks within the region of influence of a CBlock m.

called neededp.
While applying the conjugate gradient method to the atoms in ownedp, a

processor can modify the attributes of those atoms. However the attributes
of atoms in neededp are read-only. The processor which modifies attributes
of atoms in a particular CBlock must send the updated attributes to all
processors which have that CBlock in their neededp sets.

Each CBlock is uniquely identified by a CBlock number which is an en-
coding of the x, y and z coordinate for the system of CBlocks within the
crystal. We perform the following operation x × 1000000 + y × 1000 + z
to encode the coordinate. Thus the CBlock number of a CBlock located at
(20, 10, 3) in the CBlock coordinate system would be 020010003.

4.3.2 Send and Receive Tables

The communication algorithm in a strategy using CBlocks can be compli-
cated since we try to communicate only some of all atoms assigned to a pro-
cessor. This is handled by having each processor initialize a CBlock send[]

table and a CBlock recv[] table. Both of these tables are arrays of integers
such that,

36

CBlock send[p, j] gives the CBlock number of the
jth CBlock to be sent to processor p, where j ranges
from 1 to the number of CBlocks to be sent to p.
CBlock recv[i] gives the CBlock number of the ith
CBlock to be received, where i ranges from 1 to the
number of CBlocks to be received. A separate array is
used to keep track of which processor owns the ith
CBlock in CBlock recv[].

The determination of which CBlocks to send and receive must be done
so that every processor p receives the contents of the CBlocks in neededp.

4.4 Parallel Algorithms

4.4.1 Overview

The main difference from the PMOLSTAT code, introduced by using CBlocks,
is that the atoms are assigned to processors in a different manner. Commu-
nication is built upon the principle that each processor only needs CBlocks
that influence CBlocks assigned to it.

Each processor is assigned a set of CBlocks whose atom attributes it
updates during each iteration of the conjugate gradient method. The atoms
in these CBlocks may be influenced by atoms in CBlocks assigned to other
processors if those atoms are close enough to be neighbors. These extra
atoms (their attributes, that is) are needed by a processor even though it
may not modify their position or any other attribute. After each iteration
of conjugate gradient, processors may modify the locations of atoms that
are in CBlocks assigned to them. These processors must then convey the
new locations to other processors which may need those atoms. Once the
communication step is successfully accomplished, conjugate gradient can go
on to the next iteration.

37

4.4.2 CBlock Creation

Assigning CBlocks

The first step that the statics code must take is to compute ownedp for
each processor. For the moment we ignore the specifics of the algorithm
for computing ownedp; this is explored later (See Chapter 5). For now we
concentrate on making our design as general as possible, i.e., adaptable to
any strategy of computing ownedp. The set of CBlocks neededp is initialized
to empty. Next each processor must calculate the region of influence for each
CBlock in ownedp. Every CBlock in the region of influence is tested to see if
it is already in owned p or neededp. If not, it is added to needed p. At the end
of this step, each processor knows all the CBlocks it needs.

Generating Send and Receive Tables

The algorithm for initializing the send and receive tables is actually embedded
in the CBlock assignment algorithm. Once the CBlocks in owned p have been
assigned to each processor, the following is executed on every processor.

1 do p = 1, Number of processors

2 neededp = ∅
3 do over all mb ∈ owned p
4 Get the region of influence Rmb for mb

5 do over each CBlock mbr ∈ Rmb
6 Get pmbr, the owner of mbr

7 if(mbr 6∈ owned p ∪ neededp)
8 Add mbr to neededp
9 if(p is equal to myrank)

10 Write mbr as

being received from pmbr
11 else

12 if(myrank is equal to pmbr)

13 Write mbr as being sent to p

Each processor executes the algorithm above. Consider an example —
suppose processor 3 has CBlock 10 assigned to it which is close enough to
CBlock 15 assigned to processor 6 to be able to influence atoms in 15. Thus,
processor 3 must note that CBlock 10 needs to be sent to processor 6, and

38

likewise processor 6 must note that CBlock 10 needs to be received from
processor 3. Initially 10 ∈ owned 3. Thus when the do loop in line 1 iterates
with p set to 6, both processor 3 and 6 would enter the do loop in line 3
and iterate over owned 6. Now both processors would calculate Rmb for each
CBlock in mb ∈ owned6. Since CBlock 10 is in the region of influence of
CBlock 15, it follows that for mb = 15, 10 ∈ R15. Thus when R15 is iterated
through, both processor 3 and 6 eventually set the the loop variable of the
do loop in line 4 (that is — mbr), to 10 eventually, at line 5. The p10 at line 6
is of course processor 3, the owner of CBlock 10. Now CBlock 10 is certainly
not in owned 6 as it has been assigned to processor 3, not 6. Thus if it has
not yet been added to needed 6 it will be now, on both processors 3 and 6 at
line 8. At lines 9 and 12, the if tests evaluate differently for processors 3
and 6.

• For processor 3, line 9 evaluates to false (myrank is simply the ID of
the processor executing the program). So it executes line 12 where the
test evaluates to true. Thus processor 3 adds 10 to the list of CBlocks
to be sent to p, that is processor 6, by writing this into the send table.

• For processor 6, line 9 evaluates to true. So CBlock 10 is written to
the receive table as being received from from its owner, that is p10 = 3

It is easy to see that other processors which have nothing to do with
CBlock 10 will fail the tests in both line 9 and line 12 and thus will not
modify their send or receive tables.

4.4.3 Modifying Crystal Generation

The Crystal subroutine must be modified to store only the atoms that are
in ownedp ∪ neededp. The modified algorithm is shown below.

39

j = 1

do i = 1, Number of Atoms

Generate an x, y and z coordinate

Get mb, the CBlock to which (x, y, z) belongs

if(mb ∈ owned p ∪ neededp)
co1[j, *] = (x, y, z)

iactual[j] = i

j = j + 1

Sort the atoms so that free atoms come first,

followed by buffer atoms and finally fixed atoms.

Within these classes of atoms (free, fixed and

buffer) the atoms owned by this processor should

precede all atoms needed by it. This is a stable
sort. Output array is co[].

The stability of the sort method in the final step of the Crystal algorithm
ensures that if any two atoms n1 and n2 occur in a CBlock m, then if m ∈
owned p∪neededp for more than one processor p — on all processors, n1 and n2

will occur in the same order — in fact the order in which Crystal generated
them. This fact is crucial to the design of the communication algorithm and
we formally prove it in Section 4.4.4.

Finally, the array iactual[] stores for each atom, an index number that
is the same on each processor for a given atom. This index is the loop
variable i, which is the iteration in which an atom was generated, and can
be thought of as a global atom number. We use iactual[] during the
symmetry optimization in table creation. The use of iactual[] is discussed
further in Section 4.4.5.

The sorting method used in Crystal is a variation of count sort, which
is O(n). Thus the total complexity of the initialization phase is unaffected
by sorting.

4.4.4 Compacting CBlocks

At the end of the Crystal subroutine the co[] array contains the position
of all atoms in the CBlocks assigned to each processor or needed by each
processor. However, these atoms are not ordered in any straightforward
way. The atoms of a CBlock would typically be scattered all over co[].

40

This complicates matters if we wish to send the contents of a CBlock to
another processor, since message passing favors sending a CBlock as a single,
contiguous chunk of data. Therefore we must rearrange the positions of
atoms in co[] so that all atoms in a CBlock are situated contiguously. This
is done by the Compact subroutine. Compact is a stable sort over co[] using
the CBlock number as the key — with the exception that CBlocks in ownedp
are considered to have keys less than CBlocks in neededp.

Another requirement of communication is that for a given CBlock occur-
ring on multiple processors, the atoms should occur in the exact same order
on all processors. This is so that if a processor sends the positions (for exam-
ple) of those atoms as a single message, and another processor receives those
positions as a single message, the nth atom position within the chunk should
correspond to the same atom on both processors. By using a stable sort,
both when we sort the atoms in Crystal and in Compact we ensure this. To
see that this is true consider atoms n1 and n2 which occur on a CBlock m
that is on processors p1 and p2.

• If n1 and n2 are of differing atom types.

Then since atoms are sorted as free, buffer and fixed, in that order,
within a CBlock, n1 and n2 occur in the same order on p1 and p2.

• If n1 and n2 are of the same atom type.

The first sort through Crystal is a sort by type. As the types are
the same, the sort being stable preserves the order of occurrence of n1

and n2 (and this is the order in which Crystal generates them, which
is identical on both processors). The second sort which occurs during
Compact is a sort by CBlock number. Since both atoms have the same
CBlock number m, the original order is preserved.

Another reason for compaction is that it is important to have an efficient
way to perform two operations. These operations, described below, are used
in a critical part of the statics code. The precise algorithms used to perform
these operations are discussed in Section 4.4.6.

• Is a given atom free, fixed or buffer?

The motivation for this test is that depending on the type of atom, we
may or may not modify a particular attribute. This was discussed in
Section 3.3.2. This can be accomplished by ensuring that atoms in a

41

Fixed Atom

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

co[] array

Offsets

to Cblocks

mylast Free Atom

Buffer Atom

Figure 4.2: co[] after compaction.

CBlock occur in the following order — free first, buffer next and finally
fixed. If this is so, then we can determine the type of an atom by a
simple index comparison.

• Does a given atom belong to a CBlock in the set owned p?

This operation is used during our selective employment of the symmetry
optimization (Section 3.2.5). The ownership test is efficient if all the
(positions of) atoms belonging to CBlocks in owned p occur before all
the atoms belonging to CBlocks in needed p, within the array co[].
Thus there is an index mylast before which all atoms are in a CBlock
from owned p and after which all atoms are in a CBlock from neededp.

The output of Compact is illustrated in Figure 4.2. The numbers in
the boxes represent the CBlock numbers of the atoms. There are three
CBlocks, numbered 1, 2 and 3 on the processor for which co[] is shown.
The atoms are color coded to signify their type as free, buffer or fixed. The
set owned p = {1, 2}, thus mylast = 12. The atoms within any particular
CBlock and within any particular atom type, are in the same order as they
were generated by Crystal.

The diagram also shows an array of offsets. We need to be able to quickly
access the atoms of any given CBlock to iterate through its atoms. This we
do by maintaining a table of offsets into co[] which gives us the index of the
first atom of any CBlock occurring in co[]. This table of offsets is initialized
by Compact. Other data structures initialized by Compact include a table
for the number of atoms per CBlock and tables of the number of free, buffer

42

R[] array

1 1 1 1 2 2 2 2 3 3

Free Atom

Buffer Atom

Offsets to
Cblocks

Figure 4.3: Arrangement of atoms in R[].

and fixed atoms in a CBlock. All of these are used to access the atoms in a
CBlock.

The array G[] which stores the force vector and R[] which stores the
electron density, store those attributes of atoms in the same arrangement as
co[]. G[] is meaningful only for free atoms and R[] is meaningful for just
free and buffer atoms. For example, the equivalent arrangement of the R[]

array should be as depicted in Figure 4.3.

4.4.5 Tables of Neighbors

The table of neighbors algorithm is modified very little from the basic parallel
version of MOLSTAT except that now it must find the neighbors for the
atoms in owned p. The neighbors are looked for among owned p ∪ neededp,
that is, all the atoms on the calling processor. The atoms on each processor
are split up into blocks (not to be confused with CBlocks) as in the previous
parallel version of neighbors. The algorithm is given below, followed by an
explanation of the main operations.

43

1 do over all atoms i = iterfreebuf(ownedp)
2 b = block to which i belongs

3 k = 0

4 do over all c ∈ {b and blocks neighboring b}
5 do over all atoms j in c

6 if(iactual[i] < iactual[j] OR

j > mylast)

7 if(i and j are close enough)

8 neighbrs[i,k] = j

9 k = k + 1

Iteration

The function iterfreebuf at line 1 returns the free and buffer atom indexes
in a serial fashion. Since the arrangement of atoms while using CBlocks is
different from when we don’t, iteration is different too. Most importantly,
the free and buffer atoms owned by a processor do not occur contiguously.
Thus while iterating through them, the offset and count tables described
in Section 4.4.4 must be used. The iterfreebuf function implements the
following algorithm.

’i’ is a static variable initialized to CBlock_offset[1].

’mb’ is a static variable initialized to 1.

if(i <= CBlock_offset[mb] + CBlock_nfree[mb] +

CBlock_nbuffer[mb])

return_value = i

i = i + 1

else

mb = mb + 1

if(mb > Number of owned CBlocks)

return_value = -1 signifying that all free/buffer atoms

have been iterated through.

else

return_value = CBlock_offset[mb]

return return_value

Note that mb is not the CBlock number. Rather it is an index into the

44

tables which hold CBlock information — CBlock offset[] which holds the
offset (within co[]) to the CBlock, CBlock nfree[] which holds the num-
ber of free atoms for each CBlock and CBlock nbuffer[] which stores the
number of buffer atoms for each CBlock. The CBlock numbers are poorly
suited for use as indices into these tables. For instance, consider a crystal
divided into 2×2×2 CBlocks. The CBlock at (1, 1, 1) would have a CBlock
number of 100100100 which is too large an index to be used given that there
are only 4 CBlocks in the crystal.

Same Processor Test

In Figure 4.2 we illustrate how all atoms assigned to a processor have index
less than or equal to mylast due to compaction. Thus the test j > mylast

checks to see if j is on the same processor as i.

Symmetry

Since compaction rearranges co[] we can no longer use the original test for
symmetry described in Section 3.2.5. Instead we must use the iactual[]

array. If any given atom n has index np into co[], on processor p, then
iactual[np1] and iactual[np2] have the same order (with respect to the >
relationship) for any pair of processors p1 and p2 on which n is present.

4.4.6 Relaxation

The relaxation algorithm Enforce is almost the same as given in Section 3.3.2.
The algorithm is given below. An outline of the main differences from the
previous version follows.

45

1 E = 0

2 G[*] = 0

3 R[*] = 0

4 do over all atoms i = iterfreebuf(ownedp)
5 do for all neighbors j of i

6 if(j <= mylast)

7 factor = 1.0

8 else

9 factor = 0.5

10 E = E + e(i, j) * factor

11 if(i is free)

12 ifree = get free index(i)

13 G[ifree] = G[ifree] + g(i, j)

14 if(j is free AND j ∈ ownedp)
15 jfree = get free index(j)

16 G[jfree] = G[jfree] + g(j, i)

17 if(i is free or buffer)

18 ifreebuf = get free buf index(i)

19 R[ifreebuf] = R[ifreebuf] + r(i, j)

20 if(j is free or buffer AND j ∈ ownedp)
21 jfreebuf = get free buf index(j)

22 R[jfreebuf] = R[jfreebuf] + r(j, i)

23 call mpi allreduce(Etot, E)

Type Test

Due to the compaction step, arrays like co[] are no longer organized so
that all the free atoms come first, followed by the buffer atoms and finally
the fixed atoms. Therefore determining whether an atom is of type free or
buffer, such as in lines 11, 14, 17 and 20 is not as simple as the previous
version of Enforce. The following algorithm ascertains whether an atom i

is of type free.

46

’b’ is the CBlock to which atom i belongs

’offset’ is the offset to first atom of b

’nfree’ is the number of free atoms in b

if(i <= offset + nfree)

i is a free atom

else

i is not a free atom

The steps should be self explanatory. The algorithm for determining
whether an atom is free or buffer is very similar.

’b’ is the CBlock to which atom i belongs

’offset’ is the offset to first atom of b

’nfree’ is the number of free atoms in b

’nbuffer’ is the number of buffer atoms in b

if(i <= offset + nfree + nbuffer)

i is a free or buffer atom

else

i is not a free or buffer atom

Index Conversion

Now consider line 12-13. These calculate a new value for G, the force on
an atom, if it is free. The array G[] is arranged in a fashion similar to
co[] after compaction except that it does not have any elements for either
buffer or fixed atoms. Thus it has its own table of offsets, and given some
i, co[i, *] and G[i] do not correspond to the same atom. There must be
a translation of an index into co[] for a free atom, to an index into G[] for
that same atom. The formal expression for this translation is given below.

b = CBlock to which i belongs
Index of b into offset tables = offset index[i]

Index into G[] = i − Offset of b into co[] + Offset of
b into G[]

47

A table, offset index[] (initialized by Compact), stores for each atom,
the index into the offset tables (a given CBlock has the same index for all
offset tables).

The operation for translating an index into co[] to an index into R[] is
similar — only we use the offset tables for R[] rather than G[].

4.4.7 Communication

Each processor uses the send and receive tables described in 4.3.2 to deter-
mine which CBlocks to send to which processor, and also which CBlocks
to receive from which processor. When we talk about sending or receiving
CBlocks, we of course refer to sending updates of the positions of atoms be-
longing to those CBlocks4. The algorithm to do this is expressed as follows.
It should be self explanatory.

do p = 1, Number of processors

n = Number of CBlocks to send to this processor

do i = 1, n

b = CBlock_send[p, i]

off = Offset of b into co[]

num = Number of free atoms in b

Nonblocking send num locations in co[] starting from off,

to p

do i = 1, Number of CBlocks to receive

b = CBlock_recv[i]

p = Owner of CBlock b

off = Offset of b into co[]

num = Number of free atoms in b

Nonblocking receive num locations in co[] starting from off,

from p

Wait for all Nonblocking sends and receives to complete

4In the statics code, actually the attribute electron density, stored in R[], also needs
to be communicated. However the algorithm for communication there is very similar to
the one for communicating co, so we do not describe it here.

48

Chapter 5

Performance Analysis

5.1 Introduction

The optimizations outlined till now have been mainly in the form of basic
changes to the algorithms and data structures from PMOLSTAT. In addition
to this some more fine-tuning may be required to achieve our target, namely,
to fit around 106 atoms on 100 processors (without using virtual memory).
These optimizations are relatively minor, but achieving our goal is impossible
without them.

In addition we also need to analyze the OPMOLSTAT code to verify that
there are no significant performance bottlenecks. This consists of looking at
three aspects of OPMOLSTAT — load balance, communication cost and the
overhead imposed by our new data structures. If we can show that the costs
due to each of these are reasonable, we shall have gone a long way towards
understanding the parallel performance of OPMOLSTAT and its scalability.

Our aim is to compare the performance OPMOLSTAT with a hypotheti-
cal, “best possible” parallelization of MOLSTAT. If MOLSTAT could indeed
be perfectly parallelized, such a parallelization would be characterized by the
following attributes.

• The total work to solve the problem should not have increased. In other
words, any additional data structures or algorithms used should not be
incur too great a cost. Additional work may be added in two ways —
maintenance of parallel data structures and communication costs.

• The work should be divided perfectly among processors. This ensures

49

that we shall get better performance (in time) as we use more proces-
sors, in direct proportion to the number of processors used.

• The total storage requirements should not have increased. This means
that any additional data structures should not take up more than a
minimal amount of space. This criterion also considers data that is
stored redundantly (replicated) on multiple processors as “additional”
data. For example, in our case the neededp set of atom attributes is
redundant.

• The storage requirements should be evenly divided among the proces-
sors. If this is so, we can solve increasingly larger problems by simply
adding more processors.

In this chapter we shall measure the performance of OPMOLSTAT with
respect to all these criteria. Ideally these criteria should be satisfied for
all problem sizes and for all numbers of processors. In practice very few
algorithms approach this ideal. We shall instead concentrate on looking at
the “operating range” of OPMOLSTAT. Our objective is to calibrate the
performance of OPMOLSTAT for O(105)−O(106) atoms on O(10)−O(102)
processors of the Intel Paragon.

Further Memory Bottlenecks

In Table 5.1 we show the sizes of various data structures in OPMOLSTAT.
The parameter δ is due to the distribution of CO being imperfect. In Section
5.3.2 we discuss it further and show that it is relatively small. For now we
will assume that the contribution by δ is minor enough to ignore.

Assuming as usual that f = 2i, it is plain that the dominant cost is the
array idisp[]. This array holds displacements for each neighbor of an atom
such that the jth neighbor of i is displaced by:

idisp[i, j,1]× xdisp in the x-direction,
idisp[i, j,2]× ydisp in the y-direction and
idisp[i, j,3]× zdisp in the z-direction,

where xdisp, ydisp and zdisp are constants. Since the displacements are
three dimensional, there are three elements of idisp[] for each pair of neigh-
boring atoms i and j.

50

Table 5.1: Space requirements of OPMOLSTAT after optimizations.

Array Size

neighbrs[]
200ni

p

idisp[]
600ni

p

workspace[]
15nf

p

R[]
nf

p

fi[]
3nf

p

G[]
3nf

p

co[]
3nf

p
+ δ

co1[]
3nf

p
+ δ

lco[]
3ni

p
+ δ

lco1[]
3ni

p
+ δ

51

To reduce the cost of storing idisp[] we note that typically the integers
stored in this array are small, ranging from −10 to 10. Thus it is possible
to shrink the idisp[] array by a factor of 3 by packing three displacements
into a single integer as follows.

Packed Displacement =
3∑
k=1

(idisp[i, j, k] + 10) × 102(i−1)

Extraction of the displacements from a packed displacement is a trivial exer-
cise.

5.2 Division into CBlocks

How we cut the crystal into CBlocks can significantly affect the computation.
For example if we choose CBlocks that are too small, then communication
may be slowed down. This happens because, in message passing computers,
each message has an overhead attached to it and each CBlock communicated
from one processor to another has an overhead associated with it. A strategy
using small CBlocks must have more CBlocks, and thus incur greater message
passing overhead. On the other hand, having excessively large CBlocks is not
a very good idea either. If a CBlock is very large, then it may mean that we
are communicating the attributes of more atoms than are needed by other
processors, since large CBlocks have more atoms. Thus we need to have a
balance between either extreme.

We choose a strategy of slicing the crystal into CBlocks perpendicular to
the X-axis. This is shown in Figure 5.1 where a case with 4 CBlocks per
processor is illustrated. The shaded regions are the CBlocks which a partic-
ular processor must send to its neighbors. We expect this strategy to yield
good results since the overhead is at the minimum possible — every proces-
sor sends exactly one CBlock to each neighboring processor — if there are
no displacements in a direction perpendicular to the interprocessor “cuts”.
If there are such displacements, extra communication is unavoidable. Essen-
tially the idea is to cut the crystal into CBlocks in a direction where there
are no displacements. If displacements occur in all three directions we are
forced to communicate more than a case where there are no displacements no
matter what direction we make the cuts in. Note also that usually only two
directions are available for us to make cuts in. This is because the crystal is
usually only a few layers of atoms thick in one direction (the Z axis in the

52

Z

Search Radius

Miniblock Boundary

Processor Boundary

Miniblocks to be Communicated

X

Y

Figure 5.1: CBlock slicing strategy.

illustration) in real experiments. Also, since the CBlocks are of thickness
equal to the search radius along the X axis, we do not incur an excessively
high cost in communication by sending more atom attributes than needed.

5.3 Measuring Performance

5.3.1 Computational Load Balance

By measuring computational load balance we intend to examine the effect of
some processors having more work to do than the rest. When this happens,
these processors take longer to finish than the others, and they become a

53

Table 5.2: Time spent in Enforce compared to total time in CONJUG in
OPMOLSTAT.

Free Atoms Processors tEnforce tConjug Total Time %Time
320,000 40 555 585 95 781

60 333 342 97 495
90 230 248 93 383

500,000 60 567 605 94 821
80 396 426 93 619

Table 5.3: Time per iteration for a problem with 320,000 atoms on 40 pro-
cessors.

Iteration Number Time in seconds
1 135.5
2 85.1
3 83.0
4 83.1
5 83.5
6 83.4

performance bottleneck.
It is important for us to examine first the part of the code where the

maximum time is spent — the computational kernel. This turns out to
be the Enforce subroutine in OPMOLSTAT. The amount of time spent in
Enforce as a percentage of total time in Conjug is given in Table 5.2 for 5
iterations. When compared to the total time spent in the program, tEnforce

may not look as overwhelming, but as the number of iterations increases
(typically, problems run for 100-200 iterations) the time spent in Enforce

and Conjug increases linearly. The time spent outside of Conjug (for table
creation and other initialization) is constant with respect to the number of
iterations.

As can be seen from Table 5.3 the amount of time per iteration is more or
less the same save the first start up iteration which is slower on the Paragon
due to hardware dependent reasons. From the table it is easy to extrapo-

54

late that over the length of a typical 100-iteration problem the time spent in
Enforcewould be about 85×100 = 8500 seconds whereas the time spent out-
side of Conjug remains constant no matter how many iterations the problem
takes to converge to a solution. This time is about 781 − 555 = 231 seconds
according to Table 5.2. So only about 231

8500+231
= 2.65% of the total time is

spent in portions of the code apart from Enforce.
From this it should be apparent that from the point of view of time, it is

sufficient to focus our attention on Enforce.
To measure the degree of load imbalance in OPMOLSTAT, we must first

determine how much time a perfectly load balanced execution of OPMOL-
STAT would take. This time corresponds to the case where the computa-
tional work is evenly divided among the processors. In both the balanced and
unbalanced case, the total work done by all the processors is roughly equal1.
Thus, if we measure the amount of time for one call to Enforce on each
processor individually, neglecting time spent in communication, and add all
these times together, we get a fairly reliable estimate of total work. Dividing
this total time by the number of processors should give us a good estimate of
how long a perfectly load balanced case should take to run. Let us call this
time Tbalanced . The unbalanced case on the other hand, takes up as much time
to run as the processor which finishes last. Let this time be Tunbalanced . The
difference between these two times, Tdelay = Tunbalanced − Tbalanced , gives us a
good estimate of the amount of time lost due to load imbalance. Tdelay as a
percentage of Tbalanced is an indication of the degree of load imbalance. Some
typical measurements for these quantities are tabulated in Table 5.4. All
times are given in seconds. The times are averaged over 5 calls to Enforce.
It is apparent from this table that the load is evenly distributed among pro-
cessors.

Justifying the Total Work Metric

We have used the sum of all the times across all processors, for computation,
as a metric of “total work”. Further, while computing the hypothetical time
taken by a perfectly balanced load, we have assumed that the total work (as
we measure it), can be redistributed straightforwardly. This is not entirely
true as the total work depends upon how the load is distributed among the

1Not exactly equal. Due to selective employment of symmetry as described in Sec-
tion 3.2.5, the total amount of computation is affected by the distribution of atoms, i.e.,
the distribution of work. We examine this situation later in this section.

55

Table 5.4: Effect of load imbalance.

FreeAtoms Processors Tbalanced Delay %
180,000 30 60 0.1

40 48 3.0
50 39 3.3
60 33 4.1

320,000 30 120 1.0
40 93 2.2
50 68 2.6
60 56 1.9

500,000 60 95 0.7
70 74 2.3

720,000 90 97 2.2

processors. Let us look at an illustration to clarify this concept. Suppose a
set of processors {p1, p2, p3, . . . , pn} are assigned workloads {l1, l2, l3, . . . , ln}
respectively. Our assumption is that a hypothetical perfect distribution of
load would assign a load of

∑
i li/n to each processor, so that every processor

has the same load while the total load remains the same. However, in the
case of OPMOLSTAT, distributing loads in a different way to processors also
affects the total load by a small amount lδ.

The change in the workload is because in OPMOLSTAT, symmetry is
not exploited for atoms on different processors. If atom n1 is on processor
p1 and atom n2 is on processor p2, and the atoms are close enough to be
neighbors, then since we do not use the symmetry optimization for pairs of
atoms on different processors,

• p1 computes the force f21 exerted by n2 on n1, and adds f21 into the
net force on n1.

• p2 computes the force f12 exerted by n1 on n2, and adds f12 into the
net force on n2 (note that f12 = −f21).

On the other hand, if n1 and n2 are both on processor p1,

• p1 computes the force f21 exerted by n2 on n1.

56

Table 5.5: Additional work due to non-utilization of symmetry.

Free Atoms Processors Symmetry Nonuse%
180,000 30 4.1

50 7.2
70 10.2

320,000 50 5.3
70 7.2

• f21 is added to the net force on n1.

• −f21 is added to the net force on n2.

Clearly the distribution of atoms influences the total work to some extent.
However the difference in total work lδ, introduced by a different distribution,
is small. To show this we must measure the extra work added by the loss
of symmetry for atoms on different processors. If this is a small fraction
of the total work, we will have shown that our work metric is valid. In
OPMOLSTAT work grows in proportion to the number of pairs of neighbours
in the crystal. Each pair can interact, and requires (with some restrictions
as to free, buffer and fixed) extra computation during relaxation. Thus if
we show that the number of extra pairs of neighbours added due to nonuse
of symmetry is small, then that would be strong evidence that not much
extra work is done by not utilizing symmetry across processor boundaries.
Table 5.5 lists the number of extra pairs of neighbours due to not using
symmetry, as a percentage of total pairs of neighbours. The neighbour pairs
are counted in the inner loop of Enforce where the computations of energy
occur. The results in the table reflect the variable part of the total work, the
part which depends upon the distribution of atoms. We see that the total
increase in work due to extra pairs of neighbours being added is not more
than 10%.

As we would expect, the proportion of extra evaluations grows as the
number of processors is increased.

57

5.3.2 Scalability

In order to measure scalability we look at two things. First we need to
consider memory constraints to see if the program can tackle larger problem
sizes as more processors are made available. This is size scalability. Secondly,
we need to measure how well the computation speeds up as the number of
processors is increased. Ideally, for a given problem, the speedup should
increase linearly with the number of processors. However, classical fixed size
speedup, which is what we mean when we measure speedup in this way, is not
the best measure of scalability. It fails to take into account the behavior of
the program as the problem size grows. Instead we shall attempt to measure
the amount of time taken by OPMOLSTAT when the problem size grows
with the number of processors.

Size Scalability

Recall that OPMOLSTAT assigns two kinds of atoms to each processor —
owned p and neededp . The owned p sets are disjoint, whereas copies of the
neededp atoms may be present on more than one processor. Also, since we
assign the blocks of owned p to each processor equally, and given that each
block has almost the same number of atoms, we can easily see that owned p
scales well in terms of size. In other words, if the total number of atoms grows
proportionally to the number of processors, the sizes of the owned p sets on
each processor should stay roughly constant. From this we conclude that
what we need to examine for size scalability is the neededp set. As we can
see from Figure 5.1, the atoms for neededp on any processor come from the
shaded CBlocks on the neighboring processor. As the problem size increases
the dimensions of the crystal increase in the X and Y direction (typically
the crystal is kept quite thin in the Z direction). But the CBlock dimension
increases only in the Y direction. Thus the set neededp should decrease in
proportion to owned p as the problem size increases. Table 5.6 summarizes
data for neededp compared to owned p for a number of typical cases. Here,
we evaluate over all processors p the maximum value of the ratio

neededp
ownedp

(5.1)

This is an upper bound on the fraction of atoms that are needed by any
processor. Table 5.6 also shows values for the maximum numbers of owned,

58

needed and total (number of atoms stored on a processor) across all proces-
sors for a number of cases.

It is clear from Table 5.6 that for typical problem sizes neededp is smaller
than ownedp and the ratio of Equation 5.1 decreases as the problem size is
increased when the number of processors is constant. The number of atoms
in the set neededp is the parameter δ in Table 5.1; δ is also a measure of com-
munication overhead since it is the neededp CBlocks that are communicated.

Time Scalability

The program can be considered to scale well in time if given the same number
of atoms per processor (across different problem sizes), each iteration takes
more or less the same amount of time. Here we consider the total number of
atoms, including free, buffer and fixed atoms in both ownedp and neededp.
The results are tabulated in Table 5.7.

From this table we see that the average amount of time to relax 10,500-
11,000 atoms per processor is about 112 seconds. We consider the free and
buffer atoms owned by a processor as a measure of the size of the problem.
This is because the work is contributed due to these atoms. The column
headed “D” shows the difference between the time per call to Enforce and
the mean. The final column lists D as a percentage of the time to call
Enforce. The figures indicate good scalability in time.

5.3.3 Communication

In Table 5.8 we compare the time spent exchanging messages with the to-
tal time spent executing Enforce (averaged across times for each individual
processor). Since Enforce is by far the dominant computational kernel, we
need not look anyplace else for communication costs. For instance, even if
communication in Conjug has substantial cost, relatively little time is spent
in the part of Conjug outside Enforce; there is little overall benefit by identi-
fying bottlenecks in Conjug. Timings are in seconds and are averaged across
all processors for 5 iterations.

It is clear by looking at Table 5.8 that communication incurs only minis-
cule costs, i.e. less than1%.

59

Table 5.6: Scalability in size.

p is the number of processors. Note that max(ownedp)+
max(neededp) is not necessarily max(total). Neither is

max (neededp

ownedp
) the same as max(neededp)

max(ownedp)
.

Free
Atoms

p max(neededp
ownedp

) max(owned p) max(neededp) max (total)

320,000 30 0.31 11564 4946 16107
40 0.41 8673 5782 14455
50 0.43 7021 4956 9499
60 0.51 5782 5782 8673
70 0.52 4956 4956 9912
80 0.67 4543 8673 8673
90 0.68 4130 7847 7847

405,000 40 0.34 11112 5556 16205
50 0.42 8797 6019 14353
60 0.51 7408 7408 14353
70 0.52 6482 6482 9260
80 0.52 5556 5556 8334
90 0.68 5093 9723 9723

500,000 50 0.41 10773 7182 17955
60 0.41 9234 6156 14877
70 0.53 7695 8208 15390
80 0.54 6669 7182 9747
90 0.52 6156 6156 9234

720,000 70 0.41 11034 7356 18390
80 0.52 9808 9808 19003
90 0.52 8582 8582 17164

60

Table 5.7: Scalability in time.

Total
Atoms

Processors

Owned
free− buffer
atoms per
Processor

Time per
Enforce

call
D % D

320,000 30 11,100 118 6 5
405,000 40 10,500 98 −14 −14
500,000 50 10,400 124 12 10
720,000 70 10,400 106 −6 −6

Table 5.8: Communication costs.

Free Atoms Processors Communication Time
Total Time
in Enforce

320,000 30 0.04 118
60 0.05 55

500,000 60 0.1 94
70 0.1 73

61

Table 5.9: Optimization overhead costs.

Free Atoms
Time to run

OPMOLSTAT
Time to run
MOLSTAT

% Time Lost

800 103 85 21
5,000 510 430 19

5.3.4 Overhead

Finally, we must consider the cost of the new data structures and algorithms
in OPMOLSTAT. The question to be answered is — how much additional
overhead do they add? One way to determine this is to run OPMOLSTAT
on 1 processor and compare it with MOLSTAT’s performance. The main
additional cost introduced by OPMOLSTAT is that free, buffer and fixed
atoms are not contiguously placed in arrays. For instance MOLSTAT can
iterate through all free atoms by running through a single loop with loop
index taking values 1, 2, 3,...,nfree, where nfree is the total number of free
atoms. However OPMOLSTAT needs to make “jumps” between CBlocks.
After iterating through all the free atoms on the nth CBlock, the loop in-
dex skips over to the first free atom of the n+1 th block on any particular
processor. Secondly, we incur an additional cost due to the packing strategy
used for idisp[] (see Section 5.1) in the inner loop of Enforce. Since these
schemes are the same even with 1 processor, any slowdown in the OPMOL-
STAT running on one processor is due to the cost imposed by the new data
structures.

Table 5.9 summarizes the timings for a few typical cases. The timings
are for a run lasting 5 iterations in either case.

5.4 Conclusion

The data indicate that there is 20% or less slowdown due to the additional
data structures introduced in OPMOLSTAT over MOLSTAT. OPMOLSTAT
also scales well in time and space. Imbalance due to computational load and
space requirements is very low, infact quite near optimal. The cost of com-
munication is negligible. The algorithmic and data structure improvements
introduced score well in all areas that have to do with parallel performance.

62

Chapter 6

Checkpointing

6.1 Motivation

Machine failure is a catastrophic event for long running scientific computa-
tions. The longer the computation runs, the more there is to be lost by a
crash. As an extreme case, if the average time between successive crashes is
much less than the time needed for the computation to complete, then it is
unlikely that the computation ever will finish. Unfortunately for some com-
putations, this is quite true. High performance systems tend to crash quite
frequently, due to the fact that high performance computing hardware and
software is oftimes new and not widely used, and thus not quite as robust as
more commonly used lower end hardware and software. Parallel computa-
tions are often long running as well, since scientists tend to try solving the
largest problems possible.

Another characteristic of supercomputer installations is that they tend to
be shared by large numbers of users. The usual scheduling policy employed
to share the machine is to reserve time in advance. The conventional multi-
user operating system model of running each user process for a small time
slice does not work well here because users may like to have the exclusive
use of many processors for performance reasons. The additional overhead
of process scheduling wastes too much time while running already heavily
compute intensive applications. Additionally, most parallel programs are
written so that they can run on any number of processors, but once they start
execution there is usually no easy way to switch to fewer or more processors.

One disadvantage with the usual method of scheduling is that users need

63

to have a very good idea of how long their computations will take, well in
advance, so as to book a specific time slot on a machine. If they overshoot
their time limit, then they would have to kill their computations, so that
other users can run theirs, and later start again from scratch.

Also, if the duration of the maximum obtainable time slot is less than
the program execution time, the program will never be able to execute to
completion. This is unfortunate considering that it may be quite possible
for the user to obtain a number of discontinuous, smaller time slots, which
would sum up to the total time desired.

Another disadvantage of typical HPC environments is that if more pro-
cessors become available as time goes on, the user cannot use them. He is
stuck with using the same number of processors he started off with.

Finally, if the user has access to multiple machines, he may be able to
book time slots on more than one. The usual one-machine-multi-user model
cannot exploit this extra computer time, available in a distributed way.

6.2 A Different Model

The underlying idea of the system we propose, is that the number of pro-
cessors, and the time available to run on them, are the fundamental re-
sources needed by a parallel program. In the conventional model of sharing
the machine, resources are obtained as a tuple, p processors for t hours on
machine m, or, (m, p, t). However, in a distributed network of parallel ma-
chines, it is possible to obtain computer time as a set of tuples, for example,
{(m, p, t1), (n, q, t2)}. This means that p processors are available on ma-
chine m for time t1 and q processors on machine n for time t2. A model that
assumes that computer resources are structured in this way closely fits the
actual situation in many cases and thus promotes better use of computational
resources and gives users better service.

We propose to resolve these issues by a three layered approach: a sys-
tem of checkpointing, a system for managing scheduling, and a system which
manages distribution. The bottom-most layer (for the layers above this de-
pend on the functionality it provides), checkpointing, is described in this
chapter.

We will describe a method of taking checkpoints portably (Term due to
Joao De Silva, [19]). As described earlier (Chapter 2), a portable checkpoint
is one that is independent of the number of processors or the machine. Our

64

checkpointing method is also user directed [7, 12, 18]. We will also see how
portable, user directed checkpointing supports migration.

The checkpointing strategy outlined here has been successfully incorpo-
rated in the the molecular statics code. However, describing the precise
nature of our implementation is a difficult task, since it requires detailed
knowledge of how the code operates. In an attempt to keep the description
of the principles of checkpointing (and indeed PACE and COMET as well)
clear and simple, we have abstained from including any details of making the
statics code checkpointable, into our present discussion.

6.3 A Model of Scientific Computation

To simplify the design of the checkpointing process, we define a simple model
for how scientific programs execute. This model is by no means complete,
in that it does not describe every scientific program. There are however
enough computations which fall in the purview of such a model to make it
worthwhile. The following fragment of code illustrates the structure of a
common (generic) scientific computation.

Program Scientific

Initialization()

while(not solved)

RefineSolution()

enddo

Termination()

End

The program starts off with an initialization phase, which may be reading
input, distributing data among processors, or computating data that is used
in the later phases. Then there is a phase where the computation iteratively
refines the data, or explores a search space, or some similar operation. For
checkpointing to be effective, this must be the dominant phase, in terms
of time spent. Finally, when a solution has been found, or the computation
abandoned, the termination phase is entered. This may perform actions such
as outputting results.

65

6.4 Types of Variables

6.4.1 Definitions

Portable checkpointing entails the saving of program variables as its state.
However, not all variables need to be saved, and not all should be saved the
same way. Portability also implies that the variables should be amenable
to being redistributed among the processors, so that the checkpoint can be
started on a number of processors that is different from the number on which
it was taken. Thus “portable” here is taken to mean that not only is the
checkpoint portable across different machines, it is also portable across exe-
cutions employing different numbers of processors.

Redistributable variables are defined as arrays that are distributed across
the different processors, but if concatenated, the resulting array is the same
for every execution of the program (irrespective of the number of processors.)
Redistributable variables are saved as a concatenation of all corresponding
variables on the processors, and on restarting on a different number of proces-
sors, these are distributed across the processors differently. Redistributable
variables are present in programs written for distributed memory machines
only. In the case of shared memory machines, they appear as uniform vari-
ables described below.

Uniform variables are those which are the same on every processor, and
in the corresponding steps of different executions (with different numbers of
processors) they are identical.

Meta-data variables are those which represent information about how
program data is distributed among the processors. They do not need to be
saved and are initialized when the data is assigned to different processors.

Non-checkpointable variables are any variables that do not fall into the
above categories. Barring rare circumstances, the presence of these variables
prevents checkpointing.

6.4.2 Example Scientific Computation

Here we take a look at an example fragment of code illustrating the various
types of variables. Consider the program below which increments each ele-
ment of an array of size M by 1, for N iterations (This trivial example is used
only for illustration). The parallel version of this program would divide the
array evenly among the processors available, and each processor would apply

66

the increments to the portion of the array assigned to it.
Program Foo

dimension A(M)

C Initialization

numprocs = GetNumberOfProcessors()

myid = GetRankOfThisProcessor()

ReadInput(A)

mychunksize = M/numprocs

istart = myid * mychunksize

iend = istart + mychunksize

C Iteration

do i = 1, N

do j = istart, iend

A(j) = A(j) + 1

enddo

enddo

C Termination

do j = istart, iend

write(outputfile) A(j)

enddo

End

In the above example, the variables can be categorized as follows.

• Redistributable— The array A. This is broken up between the processors
differently depending on numprocs, but A(i) is always the same at any
given iteration, no matter how many processors the program is run on.

• Uniform— M. The size of the problem remains the same no matter how
many processors are used.

• Meta-data—numprocs, myid, istart, iend and mychunksize. These
are different depending on the number of processors. They represent
information about the distribution of data, and do not convey anything
about the state of the computation.

• Non-Checkpointable— There are no such variables in this example.

67

6.5 The Checkpointing interface

In this section we describe the general structure of a checkpointing program.
If we assume that the program to be made checkpointable follows the model
outlined in Section 6.3, a version of the program that incorporates check-
pointing should look as follows.

Program Checkpoint

Initialization()

if(Restarting())

ReloadCheckpoint(PARAMS)

while(not solved)

RefineSolution()

if(Checkpointing(exit))

SaveCheckpoint(PARAMS, exit)

Termination()

End

Brief definitions of the function calls are given below.

• Restarting()

This function returns a boolean value which is false if the current run
is a start from the beginning, and true if the intent is to load a prior
checkpoint.

• ReloadCheckpoint()

The parameters to this function, PARAMS, are the redistributable vari-
ables. The function reads the variables from the checkpoint files, thus
restoring the state of the computation1 to what it was at the time the
checkpoint was taken.

• Checkpointing()

This function returns a true boolean value if a checkpoint needs to be
taken during the current iteration, and false otherwise. The return
value could be dependent on an interaction with the user, i.e., the

1The use of the term computation as opposed to program is significant here. Whenever
we use this term, we are talking of the state of the problem independent of the number of
processors working on it.

68

program could ask the user what needs to be done, or, there may be
some logic which checks the iteration number and decides whether a
checkpoint must be taken. The boolean parameter exit is output by
this function too, and is true if the program must exit after taking the
checkpoint and false otherwise.

• SaveCheckpoint()

This function writes to disk the portable checkpoint that must be read
by a subsequent invocation of ReloadCheckpoint(). The PARAMS, as
before, are the redistributable variables. The parameter exit is used
by this function to decide whether the program must terminate after
taking this checkpoint.

We will look at the operation of this code when it is about to take a
checkpoint and also when it is about to restart by loading a past checkpoint.

• Taking a Checkpoint

During a normal run of the program, when no checkpoint is being taken,
the function Restarting() and Checkpointing() return false so the
program proceeds correctly. After some iterations, if a checkpoint is to
be taken, the Checkpointing() function returns true. This causes the
checkpoint to be written to the disk.

• Restarting

Now, if we intend to restart the program, on a different number of pro-
cessors, this is done by setting an input parameter2 to the program that
causes Restarting() to return true. The initialization step proceeds
as is usual for this number of processors. Before the iterations start, the
state of the computation is loaded by the ReloadCheckpoint() func-
tion. Thus the computation proceeds as though it had always been
running on the same number of processors as it is now.

It bears repeating that for checkpointing as we define it here to be prac-
tical, most of the program’s time must be spent in the iterative phase. This
is why we place the checkpointing calls in the iterative loop. It is apparent

2In our implementation of checkpointing, the Restarting() function checks for the
presence of a file named restart. The presence or absence of this file conveys the necces-
sary information about whether the program is restarting.

69

that it is much harder to place checkpointing calls in either the initializa-
tion or termination phases. Because there is no iteration in those phases, we
would have to place many checkpointing calls at many different locations in
the program, and it is a harder task to figure out what the contents of the
checkpoints should be.

6.6 Checkpointing Example

To demonstrate exactly how the functions Checkpoint() and ReloadCheck-

point() must be written, we will use the example in (Section number here)
and turn it into a checkpointing program. The two functions are written as
follows for this program.

The Checkpoint() function when called, needs to write the state of the
computation, which is represented by the contents of A across the processors.
A must be written in a redistributable way, that is, it should be possible to
use the data written to reload the state on a different number of processors.
This means that we concatenate the segments of A from each processor to
get the state.

One further observation — since we write the state of the computation
to the checkpoint, the array A must be written as the concatenation of its
distributed segments. Thus the processors must serialize writing to the check-
point file, in the same order in which they have segments of A. In this case
that is ordering by rank; processor 1 writes to the checkpoint file first, fol-
lowed by processor 2 appending, and so on. In our example we have used
messages to coordinate this.

70

Function Checkpoint(exit, myid, istart, iend, A)

if(myid.NE.0)

RecvMessageFrom(myid - 1)

OpenForAppending(checkpointfile)

do i = istart, iend

write(checkpointfile)A(i)

enddo

if(myid.NE.numprocs - 1)

SendMessageTo(myid + 1)

if(exit)

Stop

return success

End

Reloading the checkpoint is the opposite process. The checkpoint data
needs to be read into a different decomposition. In our implementation of
ReloadCheckpoint(), the parameters istart and iend represent informa-
tion about the new decomposition.

Since reading the correct segment of the checkpoint files can be done inde-
pendently of other processors, no synchronization is needed in ReloadCheckpoint().

Function ReloadCheckpoint(istart, iend, A)

Open(checkpointfile)

Seek(checkpointfile, istart)

do i = istart, iend

read(checkpointfile)A(i)

enddo

return success

End

Note that the values of istart and iend in both function calls are dif-
ferent if the program is started on a different number of processors. This
is because the initialization step distributes the array A depending on the
number of processors.

Nested Function Calls

So far we have implicitly assumed that in the program to be checkpointed,
the place to position the calls to the checkpointing functions is the main

71

program function. But this is usually not the case, and checkpoints may be
best positioned in a function that is not at the bottom level of the call stack.
The way to deal with this situation is to save all the redistributable variables
in all the function calls below the one that takes the checkpoint. These
variables must be passed to the top level function that takes the checkpoint,
or made global, so that the checkpointing function can access them.

6.7 Migration

Once we can portably checkpoint a program, migration of context is just a
matter of transferring checkpoint files from one machine to another. There
are several reasons why migration is well supported by user directed, portable
checkpointing.

Since the checkpoints are not just a meaningless byte stream, as the user
actually writes the code to store and reload checkpoints, it is possible to write
checkpoints in a data format independent of machine architecture. In other
words, we can exploit the fact that type information is known about the
checkpoints to introduce a translation mechanism into the migration system.

Portability has another, not so obvious benefit. Parallel machines vary
across a wide range in terms of the number of processors in a machine, and the
computational power of each processor. Suppose for example, that a program
needs to be migrated from a 1000 processor machine to a 10 processor one,
where each processor of the latter is many times as powerful as one of the
former. Consider specifically that each processor on the second machine
has 100 times as much memory available. Clearly, a program that needs
300 processors on the first machine, needs only 3 processors on the second.
Migration between both machines would be severely limited, or tremendously
inefficient, if checkpoints were not portable.

Parallel machines can also vary in another important way — some can
have shared or distributed shared memory (which do not need explicit mes-
sage passing) and others may be message passing, distributed memory. Pro-
grams for both kinds of architectures are written differently. In many cases,
there is a version of the same program for many different kinds of machines.
By separating the checkpointing concept from the program, and defining it as
the state of the computation, we make checkpoints portable between different
kinds of machines and different implementations (programs).

To sum up, portable checkpoints have many characteristics that are of use

72

in the kind of distributed heterogeneous environment that migration systems
are built upon.

6.8 Disadvantages

Admittedly checkpointing as it is outlined above is not free of pitfalls. For
one, it is an intrusive method and requires modifying the source code of the
program to use it. This obviously makes it unavailable for situations where
sources are not available. Fortunately in the case of most scientific codes
this is not so. Secondly, our checkpointing approach demands knowledge of
the inner workings of the program, to discover how to save variables so they
represent a checkpoint that captures the state of the computation, indepen-
dently of the number of processors. Finally checkpointing is not possible
even theoretically for certain computations. Consider the following involving
computing the dot product of two vectors in parallel.

Program DotProduct

myid = GetMyId()

numprocs = GetNumProcs()

step = vectorlength/numprocs

do i = myid * step, (myid + 1)*step - 1

sum = sum + A[i] * B[i]

enddo

ReduceAdd(sum)

write(outputfile)sum

End

Clearly, in the iterative part of the computation, the state of the program
cannot be represented as anything but as a partial sum for each task, which
is dependent on the number of tasks. There is no straightforward way to
checkpoint and redistribute the work on restarting for this program. The
argument we advance is that even if not all computations can be portably
checkpointed, enough of them can be, making this a method of some value.

73

Chapter 7

Parallel Application Control
Environment

7.1 Introduction

Given that we can write portably checkpointing programs, it is useful to have
software which uses this ability to share a parallel machine between users.
Users must be able to request this program for time slots, which it assigns
based on some internal policy, and then enforces those time slots by queuing
programs submitted by the user and killing programs which overshoot their
time limit. A program getting killed is not a disaster in the scenario where
checkpoints can be taken, because the computation can be restarted from the
last saved state. The scheduling software can send a message to a program
about to be killed thus giving it a window of time during which it can write
its state to a checkpoint.

Such a controlling program, which we shall call the Parallel Application
Control Environment Daemon (abbreviated hence as the PACE daemon), is
described in this chapter.

We will not go into the implementation details of the PACE daemon yet;
the current chapter describes the external interface and the functionality of
the daemon, and how that gives us an effective way to harness the power of
checkpointing.

The PACE daemon implements a policy to effectively use the mechanism
of checkpointing. To some extent, this policy is programmable by the system
administrator. These two terms, policy and mechanism, are concepts of

74

considerable importance in designing a system cleanly, and we shall see these
recur throughout this thesis in various contexts.

7.2 An Example Machine – The Intel Paragon

Here we describe the model of processor sharing of a sample parallel machine
operating system — OSF/1 for the Intel Paragon. The Paragon bases appli-
cation management on the concept of partitions of groups of processors, and
the idea of rolling computations in and out of memory.

7.2.1 Partitions and Processor Sharing

A partition is defined as a “named group of nodes” [8]. Users are allowed to
group sets of nodes and designate them as a partition. Applications running
on the nodes in a partition can be scheduled in three ways.

1. Standard Scheduling

In this mechanism the usual OSF/1 scheduling mechanisms are used.
Multiple applications may use a single node, and the operating sys-
tem uses a 100 millisecond scheduling quantum for each. Additionally,
applications may be de-scheduled when they make system calls.

2. Space Sharing

Nodes in this type of partition run only one application at a time. Once
an application has acquired a particular node, it has exclusive use of
the node till it finishes running.

3. Gang Scheduling

In a gang scheduled partition, applications are run for a period of time
called a rollin quantum. The rollin quantum is typically a very long
period of time (may be as long as a day), and is set for the partition
by the system administrator. The purpose of a long rollin quantum is
to minimize the amount of time lost in context switching.

75

7.2.2 Shortcomings

Standard scheduling is rarely used for parallel applications because it causes
poor performance in compute or I/O intensive applications. The frequent
traps to the kernel while scheduling and de-scheduling processes are a signif-
icant drain on the CPU time available to the application. Space sharing is
the most commonly used scheme. It however causes a few problems which
are outlined below.

1. Since a user has exclusive use of a set of nodes, another user who needs
some of those nodes will have to wait for the first user to finish running
his application. If that application takes days to run, then, clearly it is
unfair on the second user if his application takes only minutes to run.

2. The usual solution to the fairness problem — restricting users to run
on large numbers of nodes for only short periods of time — is a poor
one. Following this policy means that long running applications that
use many processors cannot run at all. Many installations require the
users to sign up for computer time in advance if they have applications
like this, but this doesn’t really solve the problem. All it does is to
allow other users to schedule their computations some other time.

3. In addition, there is no way in this system to queue jobs in advance so
that they are run during the signed up time slot. Many installations
do have queuing environments though, and queueing environments that
can be installed on top the the OS exist, so this isn’t a major drawback.
Still, even a queueing environment has some tough restrictions on when
it can run some applications if they are not portable in terms of how
many processors they use.

Gang scheduling partially addresses this problem. It deals successfully
with the fairness problem. The queueing problem is also partially dealt with
– if an application is submitted that needs processors currently in use by a
higher priority application, the low priority application waits. The solution
is partial because it does not admit of the possibility of application priorities
changing dynamically, which is essentially what happens when users sign up
for time slots. When a sign up policy is in operation, a request made by a
user who is signed up for a particular time period has the highest priority
for the duration of that period. When the time period expires, the priority

76

of the request drops off to some lower value. There is no way to have this
kind of behavior in gang scheduled applications. Moreover, gang scheduling
does not exploit the possibility of using the saved contexts for fault tolerance
purposes.

Since the contexts are core images, the programmer doesn’t have to do
any work to make his program ‘gang schedulable’, but there is also less
benefit, as gang scheduling does not allow restarting the program on fewer
or more processors than what it was started on. Also, there is no support for
migration between heterogeneous machines. The contexts are core images,
so it is virtually impossible to translate a context on one machine to an
equivalent context on another.

7.3 Operation of PACE

The basic algorithm for the PACE daemon is quite simple. The daemon
periodically repeats the following actions.

1. Wait for a user request to come in. A user request consists of the path
for a program to be executed and the number of processors on which it
is to be run. Upon getting a request, the daemon puts it in a queue of
requests waiting to be serviced. This is a priority queue and the request
made by the user with the highest request priority is first. Request
priority is a function of a user priority set by the system administrator
and the sign-up schedule. Thus if all users have equal user priority, the
request priority of the user who is signed up for processors at the current
time is highest. From this point on, whenever we use the word priority,
it will be taken to mean request priority. Where we are referring to
user priority, we will explicitly use that term.

2. Check to see if enough processors are available to service the highest
priority request. If not, the daemon must see if it is possible to kill
some running programs of lower priority, to free up enough processors.
In this case the daemon sends a warning message to those processes
before terminating them.

3. Check to see if any of the user priorities or time slots alloted to the
users have changed. Update the priority queue to reflect this. Use
the new priorities to do scheduling. Priorities change because the time

77

slots of users may expire or users may sign up for new time slots. An-
other reason is that the system administrator may update user priority
information while the PACE daemon is running.

7.3.1 Attached and Unattached Users

An important design issue for the PACE daemon is the way it deals with
users who run programs without going through the process of submitting
requests to the daemon. Since the daemon is not a part of the operating
system, but only a service, this is quite a likely scenario; in fact, this is even
a desirable situation at times. To see this, consider the case where a user
has requested a time slot, but due to some reason does not use it (maybe
because he finds bugs in the program). It is a waste of computer time to
restrict other users from not using this time slot.

Also, it is work to sign up for a schedule and submit requests to the
PACE daemon, and all users may not consider the benefit sufficient to be
worth the effort. This is true, for example, when users are using the computer
for debugging as opposed to production runs. Therefore it is essential to let
users use the computer in the normal way.

These users who have no special scheduling needs are called unattached
users, as opposed to attached users who request executions through the PACE
daemon. Unattached users are dealt with by assigning their requests the
lowest request priority of all. In other words, their applications are permitted
to run till such a time as a higher priority request comes in needing those
processors, at which time they are killed.

Most users would not take too kindly to their debugging runs being sud-
denly terminated, so in practice, the PACE daemon must be configured so
that it only has a subset of all processors under control. This way there
are always some processors for unattached users to work on uninterruptibly.
Alternatively, since many institutions have more than one parallel machine,
the most powerful one which is typically used for “production runs” could
be exclusively reserved for PACE like policies.

7.3.2 System Administrator Interface

The PACE daemon must admit of a certain amount of programmability.
The system administrator must be able to configure its operation to control
priority. This is done by having a configuration file, which contains the user

78

priorities of the different users, as assigned by the super user. This file is
read at startup and again periodically, at intervals of time set by the super
user.

Another parameter is the time slots assigned to each user. These are also
kept in a separate scheduling information file, which is periodically read by
the PACE daemon. How this file gets updated is out of the scope of this
thesis, but it may be possible for users to sign up for time slots using a
program which updates the scheduling file.

7.3.3 The Role of PACE

PACE is a minimal system with very few frills. Partly this is because of the
preliminary state of its development. The chief reason is that PACE is mainly
intended to supplement COMET and portable checkpointing. Other queuing
systems may provide greater functionality and a better user interface, but
that very complexity makes them poor candidates to function well in con-
junction with COMET or portable checkpointing. Some of this will become
clear later as we go on to describe these three systems in Chapter 9 on imple-
mentation — but as a simple example, consider how PACE must checkpoint
a program. It must interact with the program through some pre-designed
protocol via the checkpointing API, to inform the program that it needs to
take a checkpoint. This means that PACE must be designed in conjunction
with the checkpointing API. Also most queuing systems schedule jobs “auto-
matically” in that they attempt to schedule jobs as per some load distribution
algorithm. However each parallel program may have unique constraints as to
where it can run. Additionally, many HPC installations schedule user jobs
by allocating specific time slots to users, as already discussed. A queueing
system needs to fit in well with this kind of framework to be truly effective.
This is what PACE attempts to do.

79

Chapter 8

Computational Environment
Template

8.1 Introduction

This chapter describes the set of tools that manipulate a Computational En-
vironment Template, or COMET, so called because it defines an abstract
object consisting of sites which correspond to parallel machines. A COMET
object is defined as a group of sites where a particular program can be exe-
cuted. A site, in turn, is defined as a network connected host computer and
a directory containing files essential to running the program. The COMET
object acts as a pattern or template for the set of networked parallel machines
which are available for running programs.

The tools perform manipulations on the COMET object, of which the
main operations are — starting up programs at sites, checkpointing programs
at sites, restarting or migrating checkpointed programs between sites, and so
on.

The COMET tools are designed to work with the PACE daemon, but
some of them can also be used when no daemon is present. However, to get
the most out of the tools, they must be used in conjunction with PACE and
portable checkpointing. The principle is that the daemon provides control
of resources on a single computer, while the COMET tools permit a user to
initiate the same actions from a remote site, and in addition, provide support
for migration of processes.

Thus, if a user has time slots to run his portably checkpointable program

80

on a number of different machines, as well as checkpoint-compatible versions
of the program on each machine, he can use the COMET tools to run his
program in those time slots.

In this chapter we will concentrate on the design choices available to us,
and explain the features of the most important of the tools. In Chapter 10
we will look at the implementation of all the tools in detail.

8.2 Design Issues

Each of our three layers — portable checkpointing, PACE and COMET —
are very simple systems, with the bare minimum of functionality. They
depend on being used with each other to deliver the maximum benefit to
the user. Consequently, the design of each is linked with the design of the
others. The idea is to keep these three systems as orthogonal as possible, and
to build them with features that can easily be exploited by the others. With
this in mind, the current section will talk about the design of checkpointing
and PACE even as we deal with issues involved in the design of COMET.

8.2.1 Command Orientation of Checkpointing

One decision that must be made when using checkpointing is whether the
checkpointing mechanism is to be commanded by the user or triggered au-
tomatically. Command orientation means that the user issues a particular
command, or uses a tool to order a program to take a checkpoint (This also
allows the user to write programs that decide when to take checkpoints in-
ternally, without any intervention from any tool. In such a case, the user
would not have any need of the COMET tool to take checkpoints). This is
as opposed to system supplied triggering, where the system automatically
issues a checkpoint command. Our choice was for the former, for a number
of reasons.

To start with, it is simpler to put the responsibility for taking checkpoints
into the hands of the user, as opposed to PACE, since this would clutter up its
implementation. The alternative, of building a separate module that runs as
a checkpointing daemon is without justification, for if checkpoint triggering
was to be supplied as a system facility, the logical place to put it would be
with the scheduling module, which is PACE, as it is PACE which is concerned
with the “lifetime” of a program.

81

Also, there is little uniformity in the checkpointing needs of programs.
Some may checkpoint far more frequently than others, if they have very
small checkpoints for example, whereas such a policy would be disastrous
to programs which wrote large checkpoints. It would be tiresome to have
PACE interpret user commands to control the checkpointing needs of their
programs, when, as we shall see, with the expenditure of minimal effort, the
user can automate command oriented checkpointing.

Thirdly, any automated checkpointing system can be easily implemented
if need be, as an additional layer which sits on top of PACE and COMET.

8.2.2 Command Orientation of Migration

The justifications for keeping migration command directed are similar to
those for checkpointing, with one additional reason. There is no simple way
for any system to keep track of which machines the users may have accounts
on, and whether or not those machines have PACE or COMET installed on
them. The problem essentially is that users may have accounts on distinct
sets of machines, which they may want to use for their applications. An au-
tomated migration system would have to know where the users had accounts,
and coordinate with those sites, or it could restrict the users to utilize only
a particular set of machines. It is simpler and more flexible to have the user
control migration between arbitrary sites, using tools purely at the user level.

8.3 COMET

8.3.1 Basic Concept

The central concept is that a COMET is an object consisting of a collection
of sites with workspaces. A site is a parallel machine which the user plans to
use for computation, and which can be accessed through a network, by the
user, and other sites in the COMET object. A workspace is a directory on
any site, containing all the files needed to run a program, including data files
and executables. The workspace is also where a program writes checkpoint
files, and any output files.

82

8.3.2 Description of Tools

Below is a short description of each of the COMET tools.

• cometcreate

This is called with an input file as parameter, which contains the host-
names of the machines at which a workspace must be created. The
input file must give the path on the remote host, where the program
executables and the data files are located, and the names of the check-
point files that the program outputs.

The command then creates a COMET file, which is used by subsequent
commands to refer to the COMET object.

• activate

Once a COMET object has been created, the next step is to activate
the program at any one site of the COMET; in other words, to run
the program on a certain number of processors, or possibly submit a
request to the PACE daemon if there is one installed on the machine.
At most one site of a COMET may be active at any point of time.

• freeze

This tool portably checkpoints a running program by sending it a no-
tification which is received by the Checkpointing() function of the
checkpointing API. It also has options which specify whether the pro-
gram must exit after taking the checkpoint, or continue to run. freeze
must be compatible with the checkpointing mechanism.

• restart

This is used to reload a prior portable checkpoint and continue the
computation from the state saved in the checkpoint. The checkpoint
may be reloaded on any number of processors.

• transfer

The transfer tool is used to move the context of a checkpointed pro-
gram to another site. It handles complexities such as translating be-
tween differing data formats if needed1. The simplest way to implement

1Our implementation of COMET does not include the translation mechanism as we
judged it to be of peripheral importance. However we mention it here to indicate how such
a tool can be incorporated into the architecture of COMET in a fuller implementation.

83

translation is to have a local translation program at each site which
translates checkpoint data to and from a common global format, and
which is invoked by the transfer tool at source and destination sites.
This could be speeded up if there was a database listing which pairs
of sites needed no translation thus skipping translations at both ends
of the transfer. A more efficient and more complicated tool may have
a translation program for each pair of incompatible machines, and a
database indicating which program is to be used for a given pair of
machines.

• cometls

This tool displays the state of the COMET, which site is active, which
sites have had checkpoints taken and timing information such as how
long the site has been active, or when the checkpoint was taken. Es-
sentially this is a monitoring tool for the state of the COMET.

8.3.3 Example

To illustrate the workings of the system, we look at an example of how
a user may go about using the PACE-COMET setup to simplify running a
large program, of which there are versions on two separate machines. Assume
that this hypothetical user has unrestricted access to one powerful machine,
but the policy of the computing installation limits access to a second, highly
powerful machine for overnight runs only. Naturally, the user would try
to use the powerful machine as much as possible, and in the day, run the
program on the first machine. This user could use the following script to run
the program.

cometcreate inputfile

foreach day in Sunday Monday Tuesday Wednesday

at 10:00am day activate cometobj weakersite

at 8:00pm day

freeze cometobj weakersite

transfer cometobj weakersite strongersite

activate cometobj strongersite

at 8:00am day+1

freeze cometobj strongersite

transfer cometobj strongersite weakersite

84

activate cometobj weakersite

endfor

The script essentially creates a COMET object (which is referred to as a
file of name cometobj) by reading information from the file inputfile. The
contents of an example inputfile are as follows (the numbering of lines is
for purposes of explanation).

1 weakersite.cc.vt.edu

2 /home/pulla/workspace

3 /home/pulla/statics/code/a.out

4 /home/pulla/statics/data/inputfile.dat

5 /home/pulla/statics/data/forces.dat

6 *

7 strongersite.cc.vt.edu

8 /usr/pulla/workspace

9 /usr/pulla/statics/code/a.out

10 /usr/pulla/statics/data/inputfile.dat

11 /usr/pulla/statics/data/forces.dat

12 %

13 checkpointfile1 float

14 checkpointfile2 float

15 checkpointfile3 integer

Lines 1-12

Line 1 tells the cometcreate tool the location of the first of the sites. Lines
2-5 give information on how at the first site (the less powerful of the two
machines) is to be set up. Line 3 tells cometcreate that the workspace is to
be created in a directory called /home/pulla/workspace. Lines 4-5 give the
names of files that must be copied into the workspace directory. Line 6 has a
separator, marking the end of information for the first site. Lines 7-11 repeat
the same pattern as 1-5. Finally line 12 is occupied by a different separator
marking the end of all information about sites.

Lines 13-15

The last three lines give the names of the checkpoint files that are created,
and the type of data that is stored in each of them. The information on data
types is useful in case any translation is needed at any of the sites.

85

Coming back to the script, after creating the COMET, it uses the UNIX
at command to schedule an activation of the program, by means of the
activate command at 10:00 a.m., from Sunday through Wednesday. At
8:00 p.m. the same day, the program will be checkpointed using the freeze

command. The freeze command does not return till the checkpointing
is complete. This is followed by the transfer command which copies the
checkpoint files to strongersite with any translation if suitable.

8.4 Types of Checkpointing

An immediate benefit of making checkpointing command driven, that is,
as part of COMET rather than PACE, is the ability to support users who
do not checkpoint in the way prescribed by COMET. If checkpointing had
been part of PACE, the user would have to either forego using PACE, or be
forced to use the form of portable checkpointing that we have talked about.
Our system allows these different classes of users to use PACE-COMET to
varying degrees. Thus users who, for example, have programs which simply
dump core images, and can reload them later (albeit on the same number
of processors and the same machine) are able to use some features of PACE
and COMET selectively. Such users would use some other (non-COMET)
mechanism to trigger checkpointing, but use the COMET tools for managing
remote sites, and use the PACE daemon to schedule their computations, since
the PACE daemon makes no assumptions about the checkpointing method
of the users (or even the absence of it.)

Hence the PACE-COMET system as it stands can support users who
subscribe to it only partially, as well.

8.5 Fault Behavior

8.5.1 Some Typical Faults

Now that we have looked at checkpointing, PACE and COMET, we are in a
position to examine how these systems can provide better fault tolerance.

We will look at the reaction of the system to network or machine failures
in a variety of situations. In the following, when we refer to failure of a site,
it is taken to mean either that the site has crashed, or that the network has
failed making it impossible to reach the site.

86

1. Failure of Active Site

If the active site fails or becomes unreachable, this will become apparent
to the user when he queries the state of the COMET using cometls.
The user would now have two choices — wait for the site to come up, so
that he could restart from the last checkpoint taken there, or, activate
or restart (if a checkpoint has been taken) the program at some other
functioning site. The user must constantly monitor the active site for
failure if he wishes to take action as soon as failure is detected. In 8.5.2
we look at a shell script that makes it possible to automate this sort of
failure recovery.

2. Failure of Checkpointed Site

The case of a checkpointed site failing is not as complicated as the case
of an active site failure. For one thing, it does not need immediate de-
tection (at least for most imaginable applications). Failure is detected
as soon as one tries to perform any COMET operation involving the
site, and the user can then take any remedial action he chooses.

3. Failure of Site while Checkpointing

The checkpoint operation would be reported as failed if any of the sites
involved or the network crashed during the operation, when the user
queries the state of the COMET object with cometls. The cometls

tool would be unable to connect to the malfunctioning site and would
print an error message indicating the fact.

4. Failure of Site while Transferring

The behavior of this case, and how to handle the fault, is identical to
the previous one.

8.5.2 Extensibility of Fault Tolerance

Neither PACE nor COMET have any automatic recovery capability (beyond
that the checkpoints allow the user to restart from a pre-failure state). How-
ever, it is possible for the user to create applications that work with these
systems, and have the ability to detect and recover from failures. A simple
way to do so is to write a shell script that checks for the different types of
failures and takes appropriate action. COMET provides the tools for re-
covering state, and rescheduling computations. The user could, with some

87

expenditure of effort, write the controlling shell script to account for certain
kinds of failures.

Sample Shell Script

A sample pseudo shell script is given below for purposes of illustration. This
script is written for a situation where the user has access to a number of
parallel machines, and versions of his program on those machines. He wishes
to run the program on any one machine. If that machine crashes, he must
be able to detect the crash and start running the program at a site where
the latest checkpoint has been stored.

1 currentsite = ‘fgrep active status | awk ’{print $1}’‘

2 cometls cometobj > status

3 if(fgrep $currentsite status | fgrep ’failed’)

4 then

5 cometls -t cometobj | fgrep -v ’failed’ > sitelist

6 fgrep ’checkpointed’ sitelist | sort -nk2 > sortedckpnts

7 currentsite = ‘head -1 sortedckpnts‘

8 activate $currentsite

9 fi

10 fi

The shell script above must be periodically invoked, possibly using the
at command of Unix. Now we will examine this script, line by line to see
what it does.

Lines 1-2

The file status represents the current status of the comet, which site is
active, which sites may have failed, which sites have checkpoints on them
and so forth. The contents of the status file are as output by the cometls

function, and a sample is given below.

site1.cc.vt.edu active

site2.cc.vt.edu checkpointed 10:00am January 8

site3.cc.vt.edu checkpointed 2:00pm January 8

site4.cc.vt.edu failed

site5.cc.vt.edu unstarted

88

Line 1 of the shell script looks for the line in status which lists the active
site and initializes the shell variable currentsite to the hostname. Then in
line 2, the latest status of the comet is stored to the file status.

Lines 3-8

In these lines, the script checks to see if the site that was active formerly has
failed. In case this is so, the output of cometls from line 2 would list the site
as failed. If this is indeed so, then a new site must be chosen to execute
the program, and the if conditional is entered.

Lines 5-8 extract the list of checkpointed sites and sort them to see which
one was the most recent. The -t option of cometls displays the checkpoint
time as a single number, such that the numbers displayed for the checkpoints
fall in the same order as the times they were taken at. Finally the most
recently checkpointed site is activated2.

Generic Fault Tolerance

Writing such a script is a complicated business, and needs programming
ability as well as a facility with the Unix shells. However users who need
customizable fault tolerant behaviour may be willing to pay the price of the
increased flexibility of this approach.

For other users, it should be possible to write systems using shell scripts,
similar to the above, only more generic. Such a shell script could take as input
a file similar to the input file to the cometcreate command and essentially
hide the details of schedule and fault management from the user by itself
invoking the COMET tools. We would thus be adding an automated fault
tolerance layer on top of COMET, PACE and checkpointing.

8.6 Conclusion

An important thing to realize is that the entire checkpointing and COMET-
PACE systems are not necessarily an end in themselves, but provide a suit-
able set of building blocks that can be used to build systems that have more

2One case we have neglected for conciseness is where no site has any checkpoint. In
this situation we would have to check if no output was produced in line 6, and if that was
so, choose one of the unactivated sites.

89

features such as automated recovery from faults and automated scheduling
and load balancing. The central theme in building these tools has been that
parallel applications have wide ranging fault tolerance and scheduling re-
quirements, and users have access to widely different types of machines. A
single system that tries to reconcile this heterogenity has a demanding task
in front of it. A cleaner option is to provide basic tools that can be combined
in a way suitable to the needs of the application.

One way to put this is to say that the trio of methods/systems — check-
pointing, PACE and COMET — provide the mechanism for better fault
tolerance but do not dictate any policy on how to go about it. A user can
use them in conjunction with the Unix shell scripting languages to implement
a suitable policy.

90

Chapter 9

Systems Internals

9.1 Introduction

So far we have discussed the design and the features of the trio of systems
— checkpointing, PACE and COMET — in depth, but said little about how
they work internally. In this chapter we will examine the algorithms that
define the operation of these systems, and where appropriate, describe their
implementation in the Unix environment.

These systems need to be built so that they work well with each other, so
an implementation must tackle the issues of interfacing them. The question
of security comes up as well, since we have an environment consisting of
multiple users and multiple machines. Care must be taken to ensure that
the users are restricted to accessing only those resources to which they have
the right of access.

The implementations we describe make considerable use of Unix features
and standard Unix programs. Our philosophy has been to keep implementa-
tion straightforward by reusing existing frameworks as much as possible. For
instance, we use the rhosts framework extensively, to ensure the authentic-
ity of users within the COMET system. This approach has the advantage
of freeing us from the chore of implementing a secure system from scratch.
Moreover, this sort of reuse ensures that the final system is conceptually
better integrated with the rest of the operating system.

The internals we describe are necessarily tied up with Unix concepts, of
which some may be obscure. The reader is referred to W. Richard Stevens’
UNIX Network Programming [20] for a detailed description of these concepts.

91

9.2 Specification of Checkpointing

The checkpointing subsystem is mostly constructed by the user himself, and
is in fact less of a system and more of a specification. As such, there are no
“implementation algorithms”. However checkpointing needs to follow certain
rules in order to work with PACE and COMET. These rules are described
here. It will become clear later, when we examine the implementation of
PACE and COMET, how exactly our specification of checkpointing helps
their implementation.

9.2.1 The Checkpointing API

A checkpointable program must make some subroutine calls during certain
events to be fully usable with PACE and COMET. These subroutine calls
are different from the subroutine calls which write the checkpoint and reload
it. Both of those subroutines are written by the user himself with some
conventions imposed on him as to what names to use for the checkpoint files.
These conventions are explained in Section 9.2.2.

Below we describe the subroutines of the checkpointing API, categorized
by the situations in which they must be invoked. These functions perform
the task of communicating information between the checkpointing subsystem
on one side, and PACE and COMET on the other. Such communication
is needed because checkpointing is controlled by PACE and COMET. An
important entity used by the checkpointing subsystem is the checkpointing
log. This is simply a file, present in the same directory as the checkpointing
files. Many of the functions of the API write to this file, thus logging the
current status of the program, and the COMET tools read from it to monitor
the progress of the checkpointing program.

• Program Startup

During program startup the Log Startup subroutine must be called.
This writes an entry to the checkpointing log that the program has
successfully started up. The function also checks whether the current
run is a normal start or a restart, and makes the entry into the check-
pointing log appropriately.

Internally, the Log Restart function uses the Restarting function (de-
scribed in Chapter 6) and later on in this section) to distinguish be-
tween an ordinary start and a restart.

92

• Checkpointing

The Checkpointing function has been described earlier in Chapter 6.
This function returns information to the program on whether COMET
or PACE has commanded a checkpoint.

In addition, the LogCheckpointStart function must be called just be-
fore a checkpoint is actually taken. This function writes an entry to
the checkpointing log that the checkpointing process has started, and
also at what time it started.

The function LogCheckpointEnd is to be called when the checkpoint
taking is finished. This function writes the entry to the checkpointing
log that the checkpoint was successfully taken, and what time it was
taken.

• Restarting

We have already discussed the Restarting function in Chapter 6. This
function essentially conveys information to the program from COMET,
telling it whether the user requested a normal execution, or a restart.

• Termination

Before the program finishes execution, it needs to call the Log Terminate

routine. The fact of the program’s having finished execution is written
to the checkpointing log by this routine.

9.2.2 Checkpointing Files

Because COMET transfers checkpoint files implicitly, that is, without the
user having to specify how to copy them, it must have certain advance infor-
mation about the files.

Firstly, COMET must have information on how the files are named. File
names are picked by the user when he writes the subroutines to take the
checkpoint, and to reload it. The input file to the cometcreate command
must list these file names. It is important that the names of the checkpoint
files be identical at all sites in a COMET.

COMET also needs type information about the checkpoint files so that
it can translate them across machine architectures if necessary. The type
information is conveyed by the extension to the checkpoint filename. A file
with a real8 extension consists of double precision floating point data, and

93

so on. Thus, the checkpoints are stored in multiple files, each of which may
contain just one data-type, indicated by the file extension.

9.3 Implementation of the PACE Daemon

9.3.1 Operation

The algorithms used in the PACE daemon can be expressed best as a set
of functions which call each other. We describe these in a top-down fashion
below, using C-like pseudo code.

Top Level

At the highest level, the PACE daemon constantly accepts requests from
users and enqueues them in a priority queue, ordered by the priority1 of the
request. It also repeatedly makes calls to the function dsptchrq() whose
task is to try to run pending requests from the priority queue. The PACE
daemon may also kill some processes to free processors. To be able to kill
processes when it needs to, the PACE daemon runs in super user mode.

void main ()

{

while (TRUE)

{

Get the next request, if any, from a user and enqueue it.

dsptchrq ();

}

}

Dispatching Requests

The operation of dsptchrq() is also quite simple. It checks each of the
enqueued requests in priority order, and tries to service them by calling
tryservice(). Note that the request is not removed from the priority queue
by this function.

1The reader is reminded that when we talk of the priority of a request, we refer to
request priority, which is a function of user priority and sign up schedule.

94

void dsptchrq ()

{

for (Scan through queue in priority order)

tryservice (req);

}

Scheduling Requests

The tryservice() function is a slightly more complicated one. It checks to
see if enough processors are available to satisfy the request, and if that is so,
it can execute the request straightaway.

There is a potential problem here though, namely a race condition. Since
another, unattached user may start up a job between the time that tryservice()
checks the number of processors, and the time that it tries to execute the pro-
gram, the execution may fail even if tryservice() finds enough processors
to service the request initially.

Failure to service the request may also occur due to security reasons, if
the user does not have permission to execute the program. This is discussed
in Section 9.3.3. In this situation an error condition must be reported back
to the user.

To avoid the race condition, tryservice() needs to check whether a
request is successfully serviced even if it is able to ascertain beforehand that
enough processors are available. This is accomplished by looking at the
checkpointing log, since the program makes an entry into the log at startup.

If on the other hand, there are not enough processors available, the dae-
mon must try to free some up by killing some lower priority processes. The
priority of a process is the user priority if the process is signed up for the
number of processors it is currently using. Otherwise the priority is set to
the lowest possible value.

The function trykill() checks to see if there are any processes of lower
priority than the request which needs to be serviced, and if so it kills them. If
trykill() fails to find enough processors in use by low priority processes, the
request is put back in the queue and the tryservice() fails. If trykill()
succeeds in freeing up the needed number of processors, the daemon must
once again try to satisfy this request.

95

int tryservice (req)

{

while (TRUE)

{

if (There are enough processors available)

{

Execute the program;

if (Execution failed due to security violation)

{

dequeue (req);

return FAILURE;

}

if (Execution succeeded)

{

dequeue (req);

return SUCCESS;

}

Otherwise, request is tried again.

}

else

{

trykill (pr, n);

if (trykill succeeded)

continue;

enqueue (req);

return FAILURE;

}

}

}

96

Freeing Processors

Before we examine the trykill() algorithm, let us take a look at the fol-
lowing C structure containing information about a running process.

struct process_info

{

int uid;

int pid;

int upriority;

int procs;

int atime;

};

The fields of process info correspond to various attributes of a running
process: uid is the user id of the owner of the process, pid is the process id,
upriority is the priority of the owner as set by the system administrator,
procs is the number of processors being used by the process and finally,
atime is the total time that the process has been actively running so far
(This excludes the time that the process may have been waiting in a queue
to be serviced.)

The algorithm for trykill() checks to see if any processes can be killed
to free up enough processors to service a request. If this is so, then it sends
an message to those processes, notifying them that they will be killed within
a particular time period, during which they must take checkpoints or perform
whatever other actions they may choose to. At the end of the time interval,
the processes are sent a SIGKILL signal.

The function is as follows.

int trykill (pr, n)

{

Get information about all running processes with

priority < pr into the array running[]. Suppose

the size of this array is ’items’.

Sort running[] in the following order,

Ascending by priority of running[i]->uid

Ascending by running[i]->atime

Descending by running[i]->procs

97

for (i = 0; i < items; i++)

{

av_procs = av_procs + running[i]->proc[i];

if (av_procs >= n)

{

for (j = 0; j <= i; j++)

killmessage (running[i]->pid);

return SUCCESS;

}

}

return FAILURE;

}

The arguments to trykill() are pr, the priority of the request which the
daemon is attempting to schedule, and n, the number of processors needed
by the request. trykill() starts off by obtaining information about all
processes that are currently active in the system with lower priority than pr.
Then it sorts these processes first by their priority, then by running time and
last by number of processors available.

The rationale for the sort order is that it is preferable to kill the lowest
priority processes which have been running for the shortest period of time,
to ensure that the owners of those processes lose as little work as possible.
It is also desirable to kill as few processes as possible, to satisfy the needs
of the request, so we sort the “kill list” in descending order by number of
processors used.

Then trykill() checks to see if in fact the request can be satisfied, since
there is no point in killing low priority processes unless we are certain that
this will free up enough processors. If the check succeeds, the processes are
killed.

To allow the processes a chance to save their context, the killmessage()

function actually only sends the process an message of the impending kill.
After a timeout period the process is killed. The daemon writes an entry
logging the kill and the time of the kill to the checkpointing log of the check-
pointing program. This is useful information in case the daemon kills the
checkpointing program before it is able to complete the checkpoint. From
such an entry, the user can know what happened if the checkpoint did not
complete.

98

The trykill() function is not a perfect one, as it is possible for a high
priority user (of priority higher than the current request) to intervene be-
tween a successful check to determine if enough processors are available, and
the actual killing of processes, and start up a large job which uses up enough
processors that it prevents the current job from starting up. This is essen-
tially the same sort of race as was discussed in the tryservice() algorithm,
but occurring here now. The conclusion is that a successful return from
trykill() does not necessarily imply that the request will be satisfied.

9.3.2 Super User Control

The super user must be able to control the scheduling policy of the PACE
daemon to some extent. He must be able to specify at what time slots certain
users are allowed to run jobs. He must be able to update this information,
the sign up schedule, periodically while the daemon is up and running. This
is accomplished by submitting a schedule file to the daemon, which it peri-
odically checks.

The super user may also assign the user priority attribute to each user,
which controls the PACE daemon in the manner already discussed. Like the
sign up schedule, the user priorities are read by the PACE daemon periodi-
cally from a file.

9.3.3 Security in the PACE daemon

An important issue is to ensure that Unix semantics for security be supported
by the PACE implementation. In the PACE daemon, this means that no
user must be able to submit a request on behalf of another user, or affect his
requests in any way (except of course through the scheduling by the daemon).
Only the owner of a program must be allowed to successfully execute it.
The communication channel through which requests are submitted to the
PACE daemon must be secure and allow PACE to verify the identity of the
requester. This is done by making the communication channel a message
queue [20] with only super user read-write access. The channel is accessed,
for submitting requests, by a program installed in super user mode2. The
mechanisms to enforce security are in two parts and are described below.

2Readers familiar with the Unix passwd utility will note the similarity with this scheme.

99

Submitting Requests

The problem here is ensuring that a user cannot masquerade as another
while submitting a request. A request consists of the information to satisfy
it (like the number of processors and executable path), and the identity of
the user. Other attributes of the request, such as priority of the user, must
be initialized by the daemon.

The solution for Unix is as follows. The request submission program
is the only one permitted to access the request channel, a message queue.
The program runs with the effective user id of the super user so that this is
possible. This can be done as it is installed in super user mode. The user
id of the invoker can be obtained with the getuid() system call. Thus the
invoker can in no way fake his identity.

void main ()

{

seteuid (SUPER_USER);

userid = getuid ();

Enter (request_date, userid) into message queue.

}

Executing Requests

Once the system can obtain the correct identity of the requester, it must
use this knowledge to enforce that the program runs with that user id. This
is non-trivial because the daemon runs with user id set to super user, and
so would any processes spawned by it, including of course the one resulting
from the request. This problem is tackled in a straightforward manner using
the setreuid() call below which sets the “real user id”. Note that once the
user id of the program is set to non-super user, the program can no longer
execute any actions permitted to a super user process3.

int acchk_execute (userid, request)

{

exe_owner = getowner (executable);

if (exe_owner != userid)

return ILLEGAL_ACCESS;

3This is identical to what the login process in a typical Unix system does.

100

if (fork () == CHILD)

{

setreuid (userid);

execute (request);

}

}

9.4 Implementation of COMET

In this section we will discuss the implementation of the various COMET
tools. We will also see how the implementation successfully maintains Unix
security semantics in a distributed environment. Security while using COMET
means that a user only be able to access his own accounts on machines. In
addition, COMET must fully comply with the security model of PACE.

9.4.1 Operation of the Tools

Creation

The creation of a COMET object is done by using the cometcreate tool.
This tool takes as an argument the name of a description file, which tells it
the names of the hosts where the sites are to be created, and also what files
are to be copied into the sites.

The operation of the tool is outlined below.

void main ()

{

Read comet description file.

for (iterate through hosts)

{

Use Unix rsh program to create site directories and copy

files into those directories.

}

Create COMET file, write data to it.

}

The COMET file contains information such as the data formats on the
different machines, information which is used by the transfer tool to decide
whether translation is needed.

101

Activation

This tool submits a request for execution at a particular site, to the PACE
daemon present there. Like the cometcreate tool, this tool uses the rsh pro-
gram to accomplish remote startup. The request submission is done through
the submit command, which may submit the request to the PACE daemon.

Checkpointing

Checkpointing is done by the freeze tool by creating a file named res in
the directory of the program to be checkpointed. The checkpointing program
checks periodically for the presence of this file and when it finds it, writes a
checkpoint. Again, the rsh program is used to make it possible to employ
the freeze tool remotely.

The freeze tool must not return until the program is either successfully
checkpointed or until there is an error. It does this by examining the check-
pointing log repeatedly till the checkpointing program has written an entry
to it signifying the success of the checkpoint. Alternatively, the checkpoint-
ing program may be killed by the PACE daemon, in which case the daemon
makes an entry into the log. If this is so, then freeze must return and notify
the user of the situation.

Restarting

Restarting a program has two components. First the program needs to be
activated. Then it needs to be notified that it is being restarted (as opposed
to a regular run). We accomplish this by using the rsh program to create
a file named res at the remote site in the directory of the program to be
restarted. The restart tool is implemented as a shell script, and invokes
the activate tool.

Migration

The transfer tool can copy checkpoint files from one site to another using
the rcp command. If the data formats used by the source and destination
are different, translation of the checkpoint data from one format to another
is needed.

Information about the data formats of the sites is stored in the COMET
file. The transfer tool checks to see if the formats are different, and if so,

102

uses a locally installed translation program to convert the checkpoint files to
a machine independent format before copying it to the remote site. Then the
rsh program is used to invoke the translation program at the remote site, to
convert the checkpoint to the data format there. Different, machine specific
versions of the translation program need to be installed at each site.

This transfer4 tool returns when either all checkpoint files have been
transferred, or if an error occurs. Such behavior is straightforward to imple-
ment as a series of rcp commands.

Querying COMET State

The function of the cometls tool is, as we have seen, to retrieve information
about the status of the various sites in a COMET. The status of any site
is obtained by looking at the last entry in the checkpointing log of the site.
Below is a list of the various possible statuses and a short description of what
they mean.

• Active

A program is running at the site. This is distinct from having a request
merely submitted to PACE for scheduling at an appropriate time.

• Checkpointed

The last action at this site was of taking a checkpoint. cometls reports
the time at which the checkpoint was taken. The site is currently
inactive.

• Computation Terminated

The program has finished executing at this site.

• Killed by Daemon

The program was killed by the PACE daemon before it had a chance
to take a checkpoint.

• No Transaction

This means that nothing has occurred at this site since creation.

4Our implementation does not include the transfer tool. We mention it here for the
sake of completeness and to demonstrate how the problem of differing data formats may
be addressed.

103

• Unreachable

This indicates machine or network failure.

In addition cometls has various switches that allow the user to retrieve
more specific information about the remote sites. cometls acts as a tool to
conveniently examine the checkpointing logs of the various sites.

9.4.2 Interfaces

The COMET tools need to work in conjunction with checkpointing. For
instance, in order to obtain the status of a site, cometls would need to
have some means of knowing what the program was doing. The checkpoint

tool needs to know when the checkpointing program has finished taking a
checkpoint. Therefore,

9.4.3 Security

Security in the case of the COMET tools consists essentially of ensuring
that unauthorized users cannot transfer files to machines or accounts that
they do not have access to. This is guaranteed by implementing the entire
remote command and file transfer mechanism based on the Unix remote hosts
system.

What this means is that each host which the user wishes to use as part
of the PACE-COMET system must have present on it a file named .rhosts

which lists the names of all other hostnames in the group, and the user-id of
the user on those hosts.

The guiding principle here is to use as much of the existing Unix infras-
tructure as possible to create a secure system.

104

Chapter 10

Conclusions and Future Work

10.1 Future Work on Molecular Statics

We have shown that the optimizations described in this thesis have suc-
cessfully eliminated the co[] array and associated arrays as a memory bot-
tleneck. The memory bottleneck now is the neighbrs[] array (and other
related arrays). Table 10.1 lists the memory requirements of the important
data structures after our optimizations (this table is the updated version of
Table 4.1).

The δ term in Table 10.1 is because the parallelization of co[] is not
perfect. However, as we have already seen in Chapter 5, δ is not a dominating
factor. Assuming f = 2i (i is the size of an integer and f the size of a double
precision floating point number), it is clear that neighbrs[] and idisp[]

dominate heavily. Therefore any improvements in the statics code must be
made with a view to reducing the size of these arrays.

10.2 Future Computational Environment Work

10.2.1 SPAM to build Metasystems

A key design goal for PACE-COMET has been to build it as far as possible as
a collection of small simple programs which can be combined to accomplish
various tasks. The glue which holds these programs together is a UNIX shell.
PACE-COMET can also be extended as a set of utilities which accomplish
different functions in a metasystem. These utilities can be used in a coherent

105

Table 10.1: Space requirements of OPMOLSTAT after optimizations.

Array Size

neighbrs[]
200ni

p

idisp[]
200ni

p

workspace[]
15nf

p

R[]
nf

p

fi[]
3nf

p

G[]
3nf

p

co[]
3nf

p
+ δ

co1[]
3nf

p
+ δ

lco[]
3ni

p
+ δ

lco1[]
3ni

p
+ δ

106

manner by invoking them from a shell script. We will call applications built
in this manner as Shell-PACE-COMET Application Metasystems (SPAM).
Seamless integration of the PACE-COMET tools with the UNIX environment
is hence very important.

Implementing tools that permit extraction of some of the data in check-
points so that the user can base further scheduling decisions on that data
would be a valuable addition. For instance, this allows the user to take a
look at a snapshot of a simulation’s state, and decide based on the snap-
shot whether to go on with the simulation or not. Being able to modify
the checkpoint contents is an even more powerful way of affecting the course
of the simulation. The checkpoint data files are also a useful way to ex-
change information between programs. Tools which enabled us to perform
such exchanges would aid greatly in building component based metasystems
(discussed in Section 2.4).

10.2.2 Controlling Programs

A typical materials science example is observing the behavior of a crystal of
a metal alloy under stress, varying its composition. The scientist may wish
to obtain the composition that gives the “best” result under some criterion.
Additionally, several machines may be available, at varying times, and for
varying durations and varying numbers of processors may be available.

Let us suppose for specificity that the scientist needed to find the com-
position that is the best by some metric. Assume also that the scientist
can examine an output parameter strength which gives a measure of that
metric. The scientist could write a script which controlled the computation
using PACE-COMET.

1. Generate multiple cases, αi with different compositions across the entire
possible range. i = 1, 2, 3....

2. Queue αi till completion.

3. Wait till all simulations complete.

4. Transfer all output files to local site.

5. Examine the strength parameter of each result to determine which is
closest to the solution.

107

6. Generate a new set of cases close to the best result and goto 2.

Step 2 is really an invocation of another shell script that manages the
scheduling of the αi in a fault tolerant way and in such a way that the time
slots available to the user are effectively used. The above script illustrates
the fact that writing a few tools which make PACE-COMET more useful
provides much benefit.

10.3 Experience of doing HPC

Our experience of working with high performance computational applica-
tions has been that the problems of using and maintaining them are very
varied in character. Ranging from the design and implementation of parallel
algorithms to the issues of recovery from faults and scheduling on a parallel
computer, the problems we have described are all too real to be ignored.

The importance of thoroughly understanding a parallel program in order
to be able to extend and improve it further cannot be emphasized too much.
Unlike many software programs, parallel programs (atleast the molecular
statics code) are constructed with many interdependencies. To put it in other
words, nearly every part of the program has a bearing on the efficient working
of other parts of the program. For example we have seen, in the statics
code, how crystal generation is connected with miniblock creation, which in
turn is intricately connected with the relaxation process and communication
algorithms. The pattern we observe is that as a parallel program is optimized
more and more, we tend to use increasingly complicated data structures.
Partly this arises because parallel programs have to deal with three aspects
of manipulating data:

1. Communication.

2. Distribution.

3. Computation.

Only the third aspect is relevant in the case of sequential programs. It
would not be far from the truth to say that efficiently using data structures
is thrice as important and thrice as difficult in parallel programs as it is in
sequential programs.

108

We are also convinced of the need to have better tools for running parallel
programs. Checkpointing, PACE and COMET are only a start, to what we
hope are better, more comprehensive systems. In fact this is the reason
why this triad of systems were constructed very simply and without any
frills. The UNIX philosophy — “do one job and do it well” — has been
the guiding principle in designing these tools, making us opt for a number
of small tools rather than combining the functionality of those tools into a
single monolithic system.

A final note: none of the systems by themselves — portable checkpoint-
ing, queueing (PACE) or migration (COMET) — are unique by themselves.
Indeed they are all very simple systems. However, their being used in con-
junction with each other, and the ability to combine them with shell scripts
makes this a powerful system overall.

109

Bibliography

[1] E. Arge, A. Bruaset, H. P. Langtangen, Modern Software Tools for Sci-
entific Computing, Birkhauser, 1997.

[2] Brian Blount, Parallelizing a Molecular Statics Code, B. S. thesis, VPI
& SU, 1997.

[3] J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto, R. M.
Prouty, Jonathan Walpole, MIST: PVM with transparent migration and
checkpointing Presentation at the 3rd annual PVM user’s group meeting,
Pittsburgh, PA, May 7-9, 1995.

[4] Condor Team, Condor System Summary,
http://www.dur.ac.uk/c̃ondor/condor.html#Summary.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduc-
tion to Algorithms, MIT Electrical Engineering and Computer Science
Series, July 1990.

[6] Cray Research Inc., Introducing NQE, Publication IN-2153 2.97, 1993,
1997.

[7] Geert Deconinck, User Triggered Checkpointing and Rollback in Mas-
sively Parallel Systems, Ph.D. dissertation, Catholic University of Bel-
gium, 1996.

[8] Digital Equipment Corporation, User Guide to the Paragon.

[9] J. Dongarra, B. Tourancheau, Proceedings of the Second Workshop on
Environments and Tools for Parallel Scientific Computing, SIAM, 1994.

110

[10] Raphael A. Finkel, Michael L. Scott, Yeshayahu Artsy, Hung-Yang
Chang, Experience with Charlotte: Simplicity versus function in a Dis-
tributed Operating System, IEEE Transactions on Software Engineering,
Vol. 15, No. 6, June 1989.

[11] Ian Foster, Designing and Building Parallel Programs, Addison Wesley,
February 1995.

[12] G.A. Geist, James Arthur Kohl, Philip M. Papadopulous. CUMULVS:
Providing Fault Tolerance, Visualization and Steering of Parallel Ap-
plications, Environments and Tools for Parallel Scientific Computing,
August 21-23, 1996.

[13] Andrew Grimshaw, Adam Ferrari, Greg Lindahl, Katherine Holcomb,
Metasystems, Communications of the ACM, Vol. 41, No. 11, November
1998.

[14] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: Portable
Parallel Programming with the Message Passing Interface, MIT Press,
December 1994.

[15] William Gropp, Marc Snir, Bill Nitzberg, Ewing Lusk, MPI: The Com-
plete Reference, MIT Press, October 1998.

[16] P. Messina, T. Sterling, System Software and Tools for High Perfor-
mance Computing Environments, SIAM 1993.

[17] John K. Ousterhout, Andrew R. Chrenson, Fredrick Douglis, Michael N.
Nelson, Brent B. Welch, The Sprite Network Operating System, IEEE
Computer, February 1998.

[18] P.M. Papadopoulos, J. A. Kohl, B. D. Semeraro, CUMULVS: Extending
a Generic Steering and Visualization Middleware for Application Fault
Tolerance, Proceedings of the 31st International Conference on System
Sciences, Kona, 1998.

[19] Luis M. Silva, Joao G. Silva, Simon Chapple, Lyndon Clarke, Portable
Checkpointing and Recovery, 1995.

[20] Richard W. Stevens, Unix Network Programming, Prentice Hall, April
1990.

111

[21] Alan Sussman, Susan Graham, James Demmel, Scott Baden, Jack Don-
garra, Joel Satz Programming tools and Environments Communications
of the ACM, Vol. 41, No. 11, November 1998.

[22] Andrew S. Tanenbaum, Distributed Operating Systems, Prentice Hall,
January 1995.

112

Gautam Pulla

Gautam Pulla graduated from Osmania University, Hyderabad, in May 1997
with a B.E. degree in Computer Science and Engineering. Subsequently he
pursued an M.S. degree at Virginia Tech., Blacksburg. He is currently work-
ing at Microsoft Corporation, Redmond, as a software development engineer.

113

