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ABSTRACT 

Student misconceptions in science are common and may be present even for students who are 
academically successful. Concept inventories, multiple-choice tests in which the distractors map 
onto common, previously identified misconceptions, are commonly used by researchers and 
educators to gauge the prevalence of student misconceptions in science. Distractor analysis of 
concept inventory responses could be used to create profiles of individual student 
misconceptions which could provide deeper insight into the phenomenon and provide useful 
information for instructional planning, but this is rarely done as the inventories are not designed 
to facilitate it. Researchers in educational measurement have suggested that diagnostic cognitive 
models (DCMs) could be used to diagnose misconceptions and to create such misconception 
profiles. DCMs are multidimensional, confirmatory latent class models which are designed to 
measure the mastery/presence of fine-grained skills/attributes. By replacing the skills/attributes 
in the model with common misconceptions, DCMs could be used to filter students into 
misconception profiles based on their responses to concept inventory-like questions. A few 
researchers have developed new DCMs that are specifically designed to do this and have 
retrofitted data from existing concept inventories to them. However, cognitive diagnostic 
assessments, which are likely to display better model fit with DCMs, have not been developed. 
This project developed a cognitive diagnostic assessment to measure knowledge and 
misconceptions about Newton’s laws and fitted it with the deterministic input noisy-and-gate 
(DINA) model. Experienced physics instructors assessed content validity and Q-matrix 
alignment. A pilot test with 100 undergraduates was conducted to assess item quality within a 
classical test theory framework. The final version of the assessment was field tested with 349 
undergraduates. Results showed that response data displayed acceptable fit to the DINA model at 
the item level, but more questionable fit at the overall model level; that responses to selected 
items were similar to those given to two items from the Force Concept Inventory; and that, 
although all students were likely to have misconceptions, those with lower knowledge scores 
were more likely to have misconceptions. 
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GENERAL AUDIENCE ABSTRACT 

Misconceptions about science are common even among well-educated adults. Misconceptions 
range from incorrect facts to personal explanations for natural phenomena that make intuitive 
sense but are incorrect. Frequently, they exist in people’s minds alongside correct science 
knowledge. Because of this, misconceptions are often difficult to identify and to change. 
Students may be academically successful and still retain their misconceptions. Concept 
inventories, multiple-choice tests in which the incorrect answer choices appeal to students with 
common misconceptions, are frequently used by researchers and educators to gauge the 
prevalence of student misconceptions in science. Analysis of incorrect answer choices to concept 
inventory questions can be used to determine individual student’s misconceptions, but it is rarely 
done because the inventories are not known to be valid measures for this purpose. One source of 
validity for tests is the statistical model that is used to calculate test scores. In valid tests, 
student’s answers to the questions should follow similar patterns to those predicted by the model. 
For instance, students are likely to get questions about the same things either all correct or all 
incorrect. Researchers in educational measurement have proposed that certain types of 
innovative statistical models could be used to develop tests that identify student’s 
misconceptions, but no one has done so. This project developed a test to measure knowledge and 
misconceptions about forces and assessed how well it predicted student’s misconceptions 
compared to two statistical models. Results showed that the test predicted student’s knowledge in 
good agreement and misconceptions in moderate agreement with the statistical models; that 
students tended to answer selected questions in the same way that they answered two similar 
questions from an existing test about forces; and that, although students with lower test scores 
were more likely to have misconceptions, students with high test scores also had misconceptions. 
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Chapter 1 

Introduction to the Study 

 In the US there has long been a focus on improving science, technology, engineering, and 

mathematics (STEM) education. Over the past 60 years as the economy has become more global, 

the focus of STEM education in the US has broadened from training more highly skilled STEM 

workers (Government Publishing Office [GPO], 1958; Powell, 2007) to increasing the quality of 

STEM education for all children (National Research Council [NRC], 2012). In 1990, the 

American Association for the Advancement of Science published Science for All Americans. The 

authors emphasized the need for a scientifically literate citizenry: 

What the future holds in store for individual human beings, the nation, and the world 

depends largely on the wisdom with which humans use science and technology. And that, 

in turn, depends on the character, distribution, and effectiveness of the education that 

people receive. (Rutherford & Ahlgren, 1990, p. xiii) 

Yet despite the continued and increasing influence of scientific and technological advances on 

our lives, many American workers—even recent graduates—lack fundamental STEM skills and 

knowledge and the call for more effective STEM education continues (National Science 

Foundation [NSF], 2020).  

Physics describes how matter and energy act. Because matter and energy are the main 

building blocks of the universe, physics is the cornerstone of the other basic sciences and 

understanding physics is of special importance to understanding the reasons behind what is 

learned in other sciences (Feynman et al., 1964). There is growing concern that students who do 
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not understand science, especially physics, may have difficulty understanding the other basic 

sciences and engaging in an increasingly technological world (Bessin, 2007; Feierman et al., 

2006; National Academy of Sciences et al., 2007; National Commission on Excellence in 

Education, 1983; NRC, 2012; NSF, 2020; White, 2008). Citizens who lack an understanding of 

basic sciences may not be able to follow the reasoning of scientific discoveries or make informed 

judgements about current issues such as climate change or nanoscience. The primary concern is 

to create an educated citizenry that is prepared to address important social and scientific issues 

such as climate change (Meltzer et al., 2012; White, 2008). An accurate understanding of basic 

physics is a necessary building block and an important indicator of a person’s scientific literacy.  

Only 39% of US high school students have completed at least one course in physics at 

graduation (Meltzer et al., 2012), and even this minority of students may not be as 

knowledgeable in physics as their international counterparts (Provasnik et al., 2016). Secondary 

physics education in the US is plagued by multiple challenges. Courses tend to be less rigorous 

than in many other countries (Provasnik et al., 2016) and, due to a shortage of physics teachers, 

many courses are taught by teachers who lack an appropriate physics background (Meltzer et al., 

2012). Compounding the problem is the fact that students who complete a traditional physics 

course tend to retain many misconceptions about the physical world (Halloun & Hestenes, 

1985a). The prevalence of misconceptions among science students is well known. While existing 

instruments are useful for measuring the prevalence of misconceptions as a whole, they do not 

provide psychometrically sound profiles of individual student’s misconceptions.  

My research investigated the creation of a tool to identify students’ physics 

misconceptions so that the misconceptions can be addressed through instruction. The purpose of 

this study was to design and validate an instrument that would serve as a diagnostic tool for 
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introductory physics students. The instrument that I developed is the Misconceptions About 

Force Assessment (MAFA). The MAFA measures knowledge of Newton’s first and second laws 

of motion and diagnoses the possession of six common misconceptions about the laws. In 

addition to developing and validating the instrument, I used scores from the instrument to 

investigate the relationship between students’ knowledge of Newton’s first and second laws and 

their possession of the six misconceptions.  

In the following sections, I will provide a brief history of US focus on STEM education, 

an outline of how US students perform compared to students in other nations, a description of the 

current state of K-12 physics education in the US, and an example of how educational 

measurement can be applied to strengthen STEM education. This will be followed by the 

specific aims of this study through its purpose statement and research questions. I also provide 

significance of this study to future research, policy, and practice as well as known delimitations 

to this study. 

STEM Education in the US 

Historical Context 

The origin of the US focus on improvement of K-12 STEM education can be traced to the 

launch of Sputnik in 1957. After the launch, there was a fear that the US was falling behind the 

USSR in terms of technology development. Congress reacted by passing the National Defense 

Education Act (NDEA) one purpose of which was “to encourage and assist in the expansion and 

improvement of educational programs to meet critical national needs” (GPO, 1958, p.1580). The 

Act provided funding for math, science, and foreign language education; for research into how to 

better use technology in education; for vocational training for a stronger workforce; and to 
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implement testing to identify gifted students (GPO, 1958; Powell, 2007). It also doubled the 

funding for the National Science Foundation (NSF), an organization which supports the 

development of science curricula and training of science teachers as well as research (Hechinger 

Report, 2011). The primary focus of the Act was to develop highly skilled STEM workers. 

 Later calls for improving STEM education continued to address the need for highly 

skilled workers, but also emphasized the need for all citizens to possess a solid STEM education. 

In 1983, the National Commission on Excellence in Education (NCEE) issued A Nation at Risk: 

The Imperative for Educational Reform. According to the report, post-Sputnik gains in science 

and engineering had been lost at the same time that globalization had increased the demand for 

more highly skilled STEM workers and a more complex world had increased the need for STEM 

knowledge for all. The position was that citizens who lacked STEM knowledge would be barred 

from full participation in our democratic society, and that, while the average citizen was better 

educated than a generation ago, the average high school or college graduate was not as well 

educated. Among the recommendations of the Commission, were government support for the 

development of more challenging math and science standards and recruiting more highly 

qualified math and science teachers. Just over two decades later, the National Academy of 

Sciences, National Academy of Engineering, and Institute of Medicine released Rising Above the 

Gathering Storm: Energizing and Employing America for a Brighter Economic Future (2007). 

The authors highlight many of the same problems in the education system including a paucity of 

highly qualified math and science teachers and a system that does not adequately prepare 

students with “the interest, motivation, knowledge, and skills they will need to compete and 

prosper in the emerging world” (p. 94). As will be explained in a later section of this chapter, 
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physics education is key to understanding the other sciences and should be a focus in efforts to 

improve STEM education. 

International Comparisons 

 Despite the actions taken to improve K-12 STEM education in the US, international 

comparisons of student achievement show that US secondary school students have average 

performance at best (Organisation for Economic Cooperation and Development [OECD], 2018). 

The US has participated in every administration of the most popular international measure of 

secondary-level math and science achievement, the Programme for International Student 

Assessment (PISA). The Programme assesses knowledge and skills in science, mathematics, and 

reading among students at age 15. Items on the assessment are designed to measure how well 

students can apply knowledge and skills they have learned in school—a design which reflects 

industry needs for an appropriately prepared workforce (OECD, 2018). In 2015, seventy-two 

countries participated in the assessment (OECD, 2018). Results showed the US had below 

average performance in mathematics and average performance in both reading and science—a 

rating that has been relatively stable, but arguably unacceptable, over the course of the 

Programme (OECD, 2016). 

Another measure, the Trends in International Mathematics and Science Study (TIMSS) 

Advanced, is less widely used but provides additional evidence. This assessment measures math 

and physics achievement among students in their final year of secondary school. In 2015, nine 

countries participated in the physics portion and the US scored about average—scoring higher 

than three countries, lower than four, and about equal to one other country (Provasnik et al., 

2016). What is more disturbing than average performance, however, is that US physics courses 

are less demanding than those in the other countries (Provasnik et al., 2016). TIMSS Advanced 
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reports the coverage rate—the percent of 18-year-olds who have either taken or are enrolled in a 

physics course that covers a set list of topics--for each participating education system. In 2015, 

the only types of US courses that adequately covered the topics were AP, IB, or second-year 

physics courses. This put the US coverage rate at 4.8%--second only to Lebanon. In comparison, 

France, Italy, and Slovenia have coverage rates of 21.5%, 18.2%, and 14.3% respectively 

(Provasnik et al., 2016). Even though the number of US high school students taking an AP or 

second course in physics has increased ninefold in the last two decades (Meltzer et al., 2012), it 

is clear that the United States lags behind other developed nations.  

Why Focus on Physics? 

 Physics is often described as the most fundamental science discipline (Feynman et al., 

1964). The laws of physics describe the interactions of matter and energy of which everything in 

the known universe is composed and it is a foundational science that underpins the fundamental 

processes of chemistry, biology, and earth science. Because it is key to understanding other 

sciences, it becomes imperative that all students have the opportunity to complete at least one 

course in physics (Bessin, 2007; Feierman et al., 2006; White, 2008). Historically, US high 

school students have taken physics as a final science course. Given this course sequence, only 

30% of US students complete a physics course in high school (Feierman et al., 2006). The 

Physics First movement works to increase student enrollment in physics by inverting the typical 

sequence of science courses taken in high school (Ewald et al., 2005). Physics First suggests that 

students complete physics before biology or chemistry and that topics covered in Earth Science 

courses be woven into the other three. According to a survey of physics teachers, students in 

schools that follow this model take more science courses (Feierman et al., 2006). Currently, 39% 
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of high school graduates have taken at least one course in physics—a number which has doubled 

in the last two decades (Meltzer et al., 2012).  

 The best predictor of student achievement in STEM courses is having a teacher who is 

certified and has a degree in the field (National Academy of Sciences et al., 2007). Even though 

fewer than half of high school students take physics, the supply of physics teachers with a degree 

in the field has not kept up with physics enrollments. According to a report from the Task Force 

on Teacher Education in Physics (T-TEP), there is a severe, long-term shortage of qualified 

physics teachers in the US (Meltzer et al., 2012). This shortage poses a great challenge to 

offering students who enroll in physics a quality physics education. As increasing numbers of 

students take physics in high school (twice as many complete one course and nine times as many 

take an AP or second course as 20 years ago) the problem has been exacerbated (Meltzer et al., 

2012). The T-TEP report states that 39% of recent high school graduates have taken at least one 

course in physics, but that only 47% of those courses are taught by a teacher with either a 

physics or physics education degree. For comparison, 73% of biology courses and 80% of 

humanities courses are taught by an educator with a degree in the field (Meltzer et al., 2012).  

 Most physics teachers did not receive training in physics pedagogy and many received 

little formal physics education; they consequently “develop their skills through on-the-job 

practice, teaching a subject that they never intended to teach, nor were trained to teach” (Meltzer 

et al., 2012, p.13). The large number of students who complete a physics course and continue to 

have misconceptions about the physical world may be impacted by this lack of preparation in the 

teaching force. Students tend to enter physics with well-established ideas about how the world 

acts, but many of these ideas are incorrect (Halloun & Hestenes, 1985a). These incorrect ideas 

hinder students’ progress in learning physics and are resistant to change (Halloun & Hestenes, 
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1985a). High achievement test scores are not always indicators of conceptual understanding—

they may occur despite incorrect structuring of ideas or ideas themselves (Brown & Hammer, 

2013; Harrison & Treagust, 2001). Even successful physics students may retain misconceptions 

upon completion of a physics course. Identifying student misconceptions in physics can be 

difficult. It is easy to mistake rote learning for deeper understanding. Physics teachers who lack a 

strong physics background may have difficulty recognizing and addressing students’ 

misconceptions. Even experienced teachers (who are more likely to recognize misconceptions) 

may be limited in their ability to diagnose individual students’ misconceptions because of the 

large number of students they teach. Given that one of the most valuable practices for learning is 

to provide feedback to students about their misconceptions along with opportunities to correct 

them (Hattie, 2015), an assessment instrument which provides feedback on student 

misconceptions may provide valuable diagnostic information for all levels of physics teachers 

and physics students. 

 Currently, there are many concept inventories—multiple choice assessments which 

measure a set of core knowledge—in physics. Commonly used inventories such as the Force 

Concept Inventory (FCI) (Hestenes et al., 1992) and the Force and Motion Conceptual 

Evaluation (Thornton & Sokoloff, 1998) use misconceptions as distractors. However, none of 

these inventories are typically scored to provide information about individual students’ specific 

misconceptions. Scores are calculated by summing correct answers to provide a total score and 

incorrect answers—those which might indicate the presence of a misconception—are not scored. 

Students with higher scores are presumed to have fewer misconceptions. Alternate scoring of the 

FCI to diagnose misconceptions at the classroom level has been explored and the possibility that 

the test is multidimensional has been proposed. This research will be summarized in Chapter 2.  
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How Educational Measurement Can Help 

Despite the importance of misconceptions, none of the existing instruments provide a 

reliable and efficient method for diagnosing individual students’ misconceptions. In fact, most 

concept inventories, like most large-scale tests, are based on one of two unidimensional 

psychometric models, classical test theory (CTT) or item response theory (IRT). Both provide 

estimates of a single individual ability, such as physics knowledge, as measured on a continuous 

scale. Identifying multiple misconceptions requires the use of more complex multidimensional 

measurement models such as multidimensional item response theory (MIRT) or a diagnostic 

cognitive model (DCM). Diagnostic cognitive models have been “developed specifically for the 

purpose of identifying the presence or absence of multiple fine-grained skills” (de la Torre, 2009, 

p.163). Instead of locating an individual within a group of respondents as in CTT or along a 

continuous ability scale as in IRT, DCMs produce an individual profile which indicates skills 

that have and have not been mastered.  

Psychometricians have developed numerous DCMs, but few cognitive diagnostic 

assessments (CDAs) based on them. DCMs in which skills are replaced with misconceptions 

provide the potential to measure student misconceptions (Bradshaw & Templin, 2014; de la 

Torre, 2009; DiBello et al., 2015). Recently, researchers have developed a small number of 

DCMs in which skills are replaced with misconceptions, but no CDAs based on them (Bradshaw 

& Templin, 2014; Kuo et al., 2018; Kuo et al., 2016). Because there are no assessments which 

have been designed to fit these models, data from existing assessments including the FCI have 

been retrofitted to them. Although a common practice due to the lack of CDAs, retrofitting data 

that were designed for a unidimensional model has been shown to result in examinee 

misclassification and poor model and item fit (de la Torre & Minchen, 2014; Lee et al., 2012; 
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Rupp & Templin, 2008). This lack of CDAs is likely compounded by the need for expertise in 

both psychometrics and subject-matter knowledge which are required for their development (de 

la Torre, 2009). As a subject for CDA development, Newtonian physics provides a well-

documented set of misconceptions and STEM education provides a need for them to be 

measured. 

About the Study 

Problem Statement 

In educational measurement, the creation of statistical models has greatly outpaced the 

application of models to create model-based assessments. Researchers have demonstrated the 

feasibility of using DCMs to measure misconceptions using simulated or retrofitted data 

(Bradshaw & Templin, 2014; Kuo et al., 2018) but have not developed new assessments based 

on such models. Retrofitted data come from concept inventories in which distractors are 

expressions of common misconceptions.  

An example of this is the Force Concept Inventory (FCI), a conceptual test that is widely 

used in introductory physics courses to gauge student mastery of Newtonian thinking. Each item 

has five options and many of the distractors have been mapped onto common student 

misconceptions in the topics (Hestenes et al., 1992). A few studies have suggested methods to 

use incorrect answers to measure misconceptions (Bao & Reddish, 2001; Fulmer, 2015; Martin-

Blas et al., 2010; Saivinainen & Scott, 2002a, 2002b; Savinainen & Viiri, 2008; Yasuda & 

Taniguchi, 2013), but none of these methods results in a psychometrically sound profile of 

misconceptions for individuals. The FCI is most often used simply to measure student growth in 

understanding by comparing pre- and post-instruction total scores. A more sophisticated measure 
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is needed that specifically addresses misconceptions. One way to accomplish this is through a 

test development process that uses advanced psychometric models such as DCMs particularly in 

educational settings (DiBello et al., 2007). The application of a DCM to create a student-level 

assessment to measure misconceptions addresses this need.  

Research on conceptual change shows that the process of learning physics is messy. 

Students do not simply replace existing misconceptions with correct physics knowledge. New 

information must be incorporated into an existing framework of ideas and beliefs, some of which 

contradict scientific thinking (Posner et al., 1982). Instruction often facilitates the development 

of misconceptions as students distort the scientific information to fit their existing knowledge 

(Vosniadou & Skopeliti, 2014). The result is a mixture of correct and incorrect scientific 

knowledge. In other words, students may solve problems correctly even when they have 

misconceptions (Posner & Gertzog, 1982). Current DCMs may underidentify misconceptions 

because they cannot diagnose specific misconceptions that coexist with correct knowledge 

(Bradshaw & Templin, 2014; Kuo et al., 2018). A CDA based on a DCM that can identify 

coexisting knowledge and specific misconceptions would fill a valuable role in science 

education. 

DCMs require the specification of a Q-matrix, a matrix showing what skills and 

knowledge are needed to answer each item correctly. Entries in the matrix are a “1” for each skill 

that is needed to choose a particular answer and a “0” for each that is not required. Teams of 

content experts specify which skills are required to choose each answer. An accurate Q-matrix is 

essential for a well-estimated model (de la Torre, 2008; Liu et al., 2012). As the size and 

complexity of the Q-matrix increase, the potential for misspecification of the matrix also 

increases and the model may be poorly estimated (de la Torre, 2008; Liu et al., 2012). Larger and 
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more complex Q-matrices also require longer assessments, more respondents, and more time to 

estimate well. To keep CDAs at a reasonable length, “it is necessary to keep models as simple as 

possible while satisfying the constraints imposed by the diagnostic purpose” (DiBello et al., 

2007, p.985). In a traditional DCM, only correct answer choices are scored. Therefore, the Q-

matrix contains one row for each item. Two existing DCMs for measuring misconceptions 

specify larger, more complex Q-matrices with multiple rows for each item (Bradshaw & 

Templin, 2014; Kuo et al., 2018). This is likely to make accurate specification of the matrix more 

difficult. Models which allow for a smaller, less complex Q-matrix should also allow for better 

Q-matrix specification and more precise measures of misconceptions while keeping the test at a 

reasonable length for classroom use. This study proposed a test format that used just such a 

model and used it to develop a test. 

Purpose and Research Questions 

The purposes of this study were to demonstrate the construction of a cognitive diagnostic 

assessment to measure knowledge and misconceptions using a newly proposed test format, to 

investigate diagnostic cognitive model fit for responses to the instrument, and to use the 

instrument to investigate the relationship between ability and the presence of specific 

misconceptions. I did this by creating the Misconceptions About Force Assessment, an 

instrument that measures knowledge of and misconceptions about Newton’s first and second 

laws. Knowledge was modeled as a unidimensional construct and estimated with an item 

response theory model and misconceptions were modeled as discrete skills and estimated with a 

diagnostic cognitive model. The structure of the instrument allowed identification of 

misconceptions even in students who answered physics knowledge questions correctly. 

To address the purposes of this study, three research questions were examined:  
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1. How well do the specified psychometric models (item response theory and diagnostic 

cognitive model) fit responses to the instrument?  

2. How do responses on this instrument compare to responses to Force Concept Inventory 

items which measure the same knowledge and misconceptions? 

3. What is the relationship between physics knowledge and the presence of specific 

misconceptions as measured by this instrument? 

 

Conceptual Framework 

 This study combined conceptual frameworks from educational psychology (e.g. 

constructivism), science education (e.g. conceptual change), and psychometrics (e.g. latent 

variable models). First, constructivism provided a way to think about the creation and structures 

of student knowledge. Second, conceptual change provided a framework within which to 

consider how student misconceptions develop and change. Third, the psychometrics field has 

developed multiple latent variable models and theories for measuring individual’s knowledge 

and skills by interpreting their responses to assessments. The MAFA was designed using item 

response theory and a diagnostic cognitive model.  

Constructivism is the prevalent theory of learning in education (Jones & Brader-Araje, 

2002) and is used to refer to not only how students learn but the nature of knowledge itself. 

Constructivists believe that knowledge is constructed by individuals as they make sense of their 

experiences—both alone and through discussion with others (Foote et al., 2001). This has major 

implications for teaching. First, we cannot consider teaching to consist of the delivery of a way 

of thinking or a set of facts. Teaching and learning consist of meaning making. As they make 

meaning, students relate new information to what they already know. Because every student 
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interacts with lessons differently depending on their prior knowledge and experiences, different 

students will make different meaning of the same experiences. They will learn different things. 

Learning is not the simple transfer of a set of knowledge from teacher to learner. In fact, there is 

no set of knowledge independent of the individual. Constructivism helps to explain the 

prevalence of misconceptions in science. Although science teachers may agree on the knowledge 

that they are teaching, they cannot predict how their students will incorporate new ideas into 

their constructions nor what the final conception will be (Harrison & Treagust, 2001). Often, the 

final conception is very different from the expert knowledge that science teachers are trying to 

convey (Harrison & Treagust, 2001; Sadler, 1998; Schneps & Sadler, 1988; Vosniadu & 

Skopileti, 2014). 

It is generally agreed that students enter the science classroom with a set of preexisting 

concepts and beliefs about how the world works (Brown & Hammer, 2013; Duit & Treagust, 

2003; Vosniadou & Skopeliti, 2014). Many of these ideas are incorrect, resistant to change, and 

hinder students’ progress in learning science (Halloun & Hestenes, 1985a; Hewson and Thorley, 

1989). In a constructivist view of education, teachers structure experiences and discussion with 

the purpose of guiding student conceptions toward a closer fit with scientific thinking. 

“Conceptual change” is the process whereby learners restructure their existing concepts and 

beliefs to incorporate new knowledge (diSessa & Sherin, 1998; Duit & Treagust, 2003). 

Learning to think like a scientist involves adopting and understanding new sets of ideas (Posner 

et al., 1982), a process which occurs gradually and along paths that are not always readily 

visible. Rather than simply discarding their old ideas and adopting new ones, learners adapt their 

old ideas to incorporate new ones. The degree to which they are willing to adapt their old ideas is 
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highly variable (Harrison & Treagust, 2001; Vosniadou, 2014) and the intermediate models that 

they form often retain misconceptions stashed among scientific knowledge. 

Finding out what students know about a topic usually requires interpreting their responses 

to assessments. Psychometrics provides theories and methods that are used to guide the process 

of using test responses to determine what students know and can do. A simple definition of 

measurement is the process of assigning “numerals to objects or events according to rules” 

(Stevens, 1951, p. 22), although this definition may be debated in the social sciences. The types 

of quantities that are measured in the physical sciences such as height and weight can be 

measured directly with a level of precision that depends mainly upon the measuring instrument. 

In psychology and education, one is generally interested in describing attributes that cannot be 

measured directly. These are called latent variables or constructs. Examples include math 

ability, Newtonian thinking, emotional stability, and business acumen. Such quantities can also 

be measured to some level of precision that depends upon the measuring instrument. The 

difference is that a case must be made that the instrument measures what it is intended to 

measure. While there is agreement that a person’s height can be measured with a meter stick, 

there may be some disagreement about what a written test such as the SAT measures. This 

research involved designing an assessment which can be used to measure two latent variables—

knowledge of Newtonian physics and the presence of misconceptions about Newtonian 

physics—and to provide feedback that can inform subsequent instructional decisions. Collecting 

evidence to support the use of the instrument for this purpose was an integral part of the test 

development process. 
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Overview of Methodology 

 The focus of this research was on the development of a diagnostic cognitive assessment. 

DiBello et al. (2007) list six components involved in the development of a diagnostic 

assessment: 

1. Determining the purpose of the assessment; 

2. Describing the latent skills that will be assessed; 

3. Developing and analyzing the assessment items; 

4. Specifying the psychometric model that represents the relationship between latent skills 

and item responses; 

5. Estimating and evaluating the model and person parameters; and 

6. Creating a system to report the results of the assessment to stakeholders. 

 

They note that the process of test development is messy and that earlier steps will be revised as 

later steps are completed. In the following paragraphs I outline the actions I took to develop the 

MAFA and to answer the research questions. 

 The main purpose of the MAFA, to diagnose student misconceptions in Newtonian 

physics, was defined (step one) and its importance was supported by the literature described in 

earlier sections of this chapter. Step two, defining the latent skills (misconceptions in this case) 

to be assessed, was accomplished by researching the literature on students’ physics 

misconceptions. According to DiBello et al. (2007), the decision of how to represent skills and 

attributes should be informed by the pertinent literature. Numerous studies have explored and 

described student misconceptions in Newtonian physics (Champagne et al., 1980; Clement, 

1982; Gunstone & White, 1981; Halloun & Hestenes, 1985a, 1985b; McCloskey et al., 1983; 
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McCloskey et al., 1980; Minstrell, 1982; Trowbridge & McDermott, 1980, 1981; Viennot, 

1979). This project used the prior research to define the physical situations and associated 

misconceptions that were included in the test domain. The authors of the FCI also referred to 

many of these earlier studies (Halloun & Hestenes, 1985a, 1985b). The focus of this study was 

not the identification of the universal set of misconceptions about Newtonian physics, but the 

individual diagnosis of a subset of misconceptions from that list. Step three, developing the 

assessment items, involved choosing physical situations to include in the assessment and crafting 

questions about them. Because given physical situations are linked to specific misconceptions, 

these were also primarily defined by previous research. 

 Two types of psychometric models were used (step four)—IRT models (the one-

parameter and two-parameter logistic models) and a diagnostic cognitive model (DCM). The 

IRT model was used to measure students’ mastery of Newtonian physics and the DCM was used 

to measure misconceptions. IRT models estimate individuals’ placement along a continuous 

ability scale for some latent variable. For this assessment, the variable was mastery of Newtonian 

physics. In addition to measuring students’ knowledge, a second purpose of the assessment was 

to classify students into classes based on the misconceptions they had about Newtonian physics. 

Cognitive diagnostic models, which are designed to measure which of a set of latent skills or 

attributes an individual has and has not mastered, are designed for this type of assessment. More 

details on each of these statistical models and the reasons for choosing each are provided in 

Chapter 2. Step five, the estimation of model parameters and fit statistics, is briefly described in 

the next paragraph under research question one. I did not develop a method for reporting test 

results to stakeholders (step 6) as part of this project. Although effective score reporting is a 

necessary part of developing any useful instrument, the focus of this research was on instrument 
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development, not score reporting. Creating such a method is, however, an important topic for 

future research.  

 Research question one involved determining the psychometric properties of the 

instrument. This was done in two phases. First, I conducted a pilot test with 100 university 

students. I analyzed the responses with classical test theory to determine how well the items 

performed and revised the items using the results of the analysis. Second, I conducted a field test 

with 349 respondents. I fit the item response theory and diagnostic cognitive models to the 

resulting data in order to estimate item parameters, person parameters, and overall model fit. 

  Research question two was part of gathering data for instrument validation, a process that 

is always involved in instrument development. One aspect of validity is construct validity, “the 

relationship between the content of a test and the construct it is intended to measure” (American 

Educational Research Association [AERA] et al., 2014, p. 14). I gathered data on construct 

validity by asking respondents to answer selected FCI questions which had distractors aligned to 

the misconceptions included in the MAFA. A comparison of responses to items which mapped 

onto the same misconceptions provided evidence for construct validity and to answer research 

question two. Finally, to answer research question three, I compared the item response theory 

based measure of physics knowledge to the frequency of each misconception.  

Significance of Study 

 The results of this study have implications for educational measurement and for science 

education. In the field of educational measurement, the development of statistical models has 

outpaced their application to assessment development. For instance, psychometricians have 

developed multiple DCMs for measuring student misconceptions and some of these models have 
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been fitted to real data from conventional tests. However, few CDAs have been developed 

specifically for DCMs and there is little information in the literature on methods for doing so. 

This study proposed a test structure and demonstrated a method for developing CDAs to 

simultaneously measure student knowledge and misconceptions. It identified some of the 

difficulties inherent to the development of future CDAs (e.g. developing guidelines for which 

items to eliminate and which to keep) which are important areas for future research. The results 

of the research can inform the construction of future DCM-based concept inventories which are 

psychometrically sound.  

 In the field of science education, concept inventories are widely used to measure student 

knowledge and to judge the effectiveness of teaching. Most concept inventories are based on 

CTT and measure student knowledge as a single score. Concept inventories which provide a 

single score do not provide enough information about student knowledge to instructors. 

Metanalyses show that two of the most influential influences on academic achievement are 

conceptual change programs and the use of formative evaluation (Hattie, 2015). More fine-

grained information about student knowledge, such as whether a student possesses specific 

misconceptions, can be used formatively to directly address misconceptions through instruction. 

This study provided a method of using existing research on student misconceptions and a test 

format that can be used to develop tools that provide more fine-grained information about 

student knowledge and misconceptions. The application of the method to develop new concept 

inventories that follow the new format is an area for future research. 

 Finally, the study has implications for physics education. US physics students 

underperform students from other countries. Multiple factors contribute to this situation. Two 

factors are: 1) the severe, long-term shortage of qualified physics teachers in the US, and 2) the 
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retention of misconceptions by many students even after completing a course in physics. Many 

physics teachers (lesser qualified teachers in particular) may not have the background to 

recognize student misconceptions. Even teachers who have the ability may not have the time to 

identify and address individual misconceptions in the classroom. The MAFA, a psychometrically 

sound tool that can be used by all physics teachers and students to identify misconceptions, was 

developed as part of this project. In addition to classroom use, the MAFA can serve as a tool for 

education researchers to test the effect of interventions on conceptual change.  

Delimitations 

 Chapter 1 has served to place this study in multiple contexts: 1) the current and historical 

contexts of STEM education in the US, 2) the context of current research in educational 

measurement, and 3) the context of conceptual change research. The chapter began with a 

description of the current call to improve the quality of STEM education to prepare all citizens to 

participate in an innovation economy and to ensure that the US remains competitive within the 

global economy. It showed the significance of physics education to meeting this call. Next, the 

chapter described the gap between the development of psychometric models for measuring 

misconceptions and their application to the development of cognitive diagnostic assessments. 

Finally, it provided a brief description of the research that was conducted as well as the 

conceptual frameworks that informed the research. Next, I describe the delimitations of the study 

and why they were chosen. 

 This study was bounded by the decisions that were made in the design phase of the 

project. First, it did not attempt to identify student’s misconceptions about Newton’s laws 

directly. Instead, it used previous research about student misconceptions to develop test items. 

The focus of the study was to develop a cognitive diagnostic assessment and I decided to use the 
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rich collection of existing research about student’s misconceptions to build the diagnostic tool. 

Second, I chose a limited number of common misconceptions to include in the assessment. 

Although there are many additional misconceptions that students might have about Newton’s 

laws, including them in the assessment would have required the development of a longer test 

and/or a larger sample size. A longer test would have been less practical as a tool for formative 

assessment and a larger sample size would have been difficult to accomplish. Third, I chose to 

include only the first two of Newton’s three laws of motion in the test domain. Including the 

third law would have meant replacing some of the misconceptions about the first and second 

laws with misconceptions about the third law. Of the three laws, I found that misconceptions 

about Newton’s third law were the easiest to identify and address as a physics teacher. Therefore, 

I decided to exclude knowledge and misconceptions about the third law from the test domain. 

Fourth, I chose to limit the participant pool to undergraduate students who had completed no 

more than two semesters of college level physics. This choice was made because I hoped to 

investigate the prevalence of misconceptions in students who had varied levels of physics 

knowledge. I chose not to include students who had taken more physics courses because I 

believed that the likelihood of possessing misconceptions would continue to decrease with 

further physics instruction. Fifth, I fit only one DCM to the response data. There may be 

different DCMs that would show better fit, but because this was a proof-of-concept study to 

demonstrate how a DCM could be used, I decided to test only one model. Other methodological 

limitations included the representativeness of the sample (students self-selected to participate), 

the length of the test (just long enough to fit the 2-PL model given the sample size), and the 

software packages that were used to estimate the statistical models—different software packages 

produced different values for the standard error. 
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 The remaining chapters of the paper are as follows. Chapter 2 provides a literature review 

of salient topics including research on student misconceptions in science, conceptual change, 

concept inventories, item response theory, and diagnostic cognitive models. Chapter 3 is the first 

of two manuscripts and addresses the test development process. Chapter 4 consists of the second 

manuscript which uses MAFA response data to investigate the relationship between knowledge 

level, physics education, and the possession of misconceptions about Newton’s laws. Chapter 5, 

the final chapter, summarizes the research findings, places them within the larger context of the 

literature review and describes directions for further research and limitations of the study. 
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Chapter 2 

Literature Review 

In this study I developed an assessment to measure student knowledge and 

misconceptions that is scored using current psychometric models—a cognitive diagnostic 

assessment (CDA). Developing such an assessment requires knowledge of the topic being 

assessed, how the topic can be presented, and how test responses are used to judge student 

knowledge. Therefore, literature from both science education and psychometrics was necessary 

to provide a background. There are many attempts to measure the prevalence of student 

misconceptions in science education, but few tests provide profiles of students’ misconceptions. 

At the same time, psychometricians have developed multiple statistical models which could be 

used to provide these profiles. These models have been tested with simulated data and used to 

model a few existing tests, but new assessments have not been developed to take advantage of 

them. Pertinent research in science education addresses student misconceptions, how these 

develop and change, and how they are measured while pertinent information from psychometrics 

addresses models that can be used to gauge student knowledge and the possession of 

misconceptions. In the first part of this chapter, I present information about misconceptions in 

science, how misconceptions relate to conceptual change and student learning, and how 

knowledge of them might inform instruction. Next, I present information about concept 

inventories with an emphasis on how researchers have analyzed responses from commonly used 

concept inventories in physics. In the final section of this chapter, I present information about the 

two types of measurement models that are used in this study—item response theory (IRT) and 

diagnostic cognitive models (DCMs). The information will help to provide a background in 
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measurement for readers who are experts in science education and a background in science 

education for those who specialize in educational measurement. 

Science Education 

 Students do not always know everything their teachers believe they do. Two poignant 

illustrations of the disconnect that may exist between what teachers think they have taught their 

students and what their students actually know are found in the film “A Private Universe” 

(Schneps & Sadler, 1988). In the first, an interviewer asks MIT engineering students to light a 

small bulb with a battery and one wire. He finds that few students can accomplish this simple 

task—one that most engineering professors would probably assume their students could perform. 

In the second, a ninth-grade Earth Science student—one of the brightest according to her 

teacher--is asked to explain the seasons. At first, her explanation of indirect sunlight appears to 

agree with the scientific explanation that the changing angle of the sun causes temperature 

changes. When asked to draw a picture to show what she means by indirect sunlight, however, it 

becomes clear that the student has an alternate conception. She draws rays of sunlight bouncing 

off an indeterminant point in space to reach Earth. In both of these cases, teachers are surprised 

to find that students who have succeeded and even excelled on class assessments have failed to 

understand what was taught. This disparity has been confirmed by other researchers in science 

education (Diakidoy & Iordanou, 2003; Mazur, 2009) and reading and math education (Eckert et 

al., 2006). 

 Researchers who study students’ ideas about science use many different terms to refer to 

them. Some examples are: phenomenological primitives (p-prims) (diSessa, 1993), 

preconceptions (Clement, 1982; Halloun & Hestenes, 1985b), alternative conceptions (Chi et al., 
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1981; Viennot, 1985), framework theories (Vosniadou, 2014), and misconceptions (Halloun & 

Hestenes, 1985a; McCloskey et al., 1983). Some of these terms are used to differentiate between 

correct and incorrect ideas. For instance, preconceptions, ideas that exist before instruction, may 

be correct or incorrect. Some researchers use the term alternative conception, which may be a 

mix of correct and incorrect scientific ideas, to recognize the usefulness of the conceptions to 

students and the possibility that teachers may leverage alternative conceptions to increase the 

effectiveness of instruction. Other terms are used to express nuanced meanings about the 

organizational complexity of student ideas and how they compare to scientific concepts. For 

instance, Vosniadou and Skopeliti (2014) consider naïve physics to be a “framework theory”—a 

loosely structured set of related concepts that are based on everyday culture and experience and 

are rooted in a set of ontological beliefs. These are usually private and held to a lower standard 

of forecasting power and internal consistency than are scientific theories. In contrast, diSessa’s 

(1993) p-prims are small pieces of knowledge or beliefs that develop from everyday experience 

and are activated in the interpretation of new experiences. These nuanced definitions may be 

useful when explaining the mechanisms whereby conceptual change occurs. For the purpose of 

designing assessments, however, a different classification system may be more useful. 

 In Science Teaching Reconsidered: A Handbook (NRC, 1997), the authors classify 

students’ nonscientific ideas about science into five categories: 

1. Preconceived notions—These are conceptions that have been developed from 

common experience. For instance, students may believe that more massive objects 

exert greater forces than less massive objects. 

2. Nonscientific beliefs—These are ideas, such as belief in a young Earth or intelligent 

design, that have been learned from nonscientific sources. 
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3. Conceptual misunderstandings—These are schemas that students have constructed by 

melding pieces of scientific knowledge into existing beliefs. 

4. Vernacular misconceptions—These are words that have a different meaning when 

used scientifically than in everyday situations. Two examples are the use of “work” in 

physics and the use of “indirect” when referring to the angle of sunlight in earth 

science. 

5. Factual misconceptions—These are falsehoods that were learned (sometimes from a 

poorly informed teacher) and never corrected such as the idea that wave motion 

causes particles to have a net displacement.  

 

Some types of misconceptions may be more easily changed than others—a difference that may 

be important when designing instruction. Misconceptions that are incorporated into students’ 

personal conceptions about the world may be more difficult to dispel than vernacular or factual 

misconceptions. Conceptual change involves changing beliefs and ideas (diSessa & Sherin, 

1998). These involve deep ways of thinking that go far beyond memorization of facts.  

Many teachers assess what students already know prior to instruction to determine what 

parts of this knowledge are scientifically correct. I will adopt Lucariello and Naff’s (n.d.) 

terminology to refer to this prior knowledge. I will refer to all pre-instructional knowledge as 

preconceptions. I will call preconceptions that agree with scientific theories and facts anchoring 

conceptions and those that do not agree misconceptions. It is important for teachers to understand 

both types of students’ preconceptions because instruction should vary depending on whether 

they contradict or agree with established scientific ideas. The application of theories of 

constructivism to education has resulted in the generally accepted model of learning in which 
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students construct knowledge by connecting new knowledge and experiences to their 

preconceptions (Jones & Brader-Araje, 2002; Lucariello & Naff, n. d.; Matthews, 1998; NRC, 

1997; Phillips, 1995). Because they do not simply replace their existing ideas with new 

knowledge, delivering scientifically correct information will not always result in students 

developing scientifically accurate models of the world. To develop scientific conceptions, 

students must confront their misconceptions and reconstruct their mental models (NRC, 1997). 

When they incorporate new knowledge with misconceptions, students may combine the two for a 

partially correct model or they may distort the scientific information for a completely incorrect 

model. In either case, it may be useful for teachers to gauge student preconceptions as they plan 

instruction.  

Constructivism in Education 

 The wide and significant influence of constructivist theories on education may have been 

a backlash against the earlier, widespread adoption of behaviorist practices by school 

administrators (Jones & Brader-Araje, 2002). In the 1960s, the application of behaviorism to 

teaching resulted in a system in which teachers delivered information to students who then 

learned the information through practice. There was little emphasis on probing how students 

developed new knowledge. It was believed that if teachers provided the correct learning 

activities and then used positive and negative reinforcement effectively, students would learn. 

This practice failed to deliver the desired results and, in the 1970s, constructivism began to 

become more widespread as a theory to explain how students learn (Jones & Brader-Araje, 

2002).  

There are many versions of constructivism. One of the most influential forms in 

education is Vygotsky’s social constructivism (Jones & Brader-Araje, 2002). Social 
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constructivism posits that student discourse is an essential component of knowledge 

construction. Its influence is widespread and seen in teaching strategies that employ carefully 

guided group work, discussion, and debate—practices that encourage students to make meaning 

with each other. Matthews (1998) distinguishes constructivism in education, which focuses on 

how knowledge is formed, from philosophical constructivism in science, which focuses on what 

counts as scientific knowledge. In its most applied form, educational constructivism may concern 

only the nature of pedagogy that promotes the construction of sound scientific knowledge. 

Phillips (1995) provides a simple definition of constructivism when he states:  

Undoubtedly, humans are born with some cognitive or epistemological equipment or 

potentialities…, but by and large, human knowledge, and the criteria we use in our 

inquiries are all constructed (p.5).  

For the purposes of this research, we might consider a definition of constructivism that lies 

somewhere between Phillips and pedagogical constructivism. That is, we may consider that the 

process of student learning is one in which students construct new knowledge by linking and 

adapting what they learn to what they already know and that constructive pedagogy considers 

students’ existing knowledge during instructional decision making. 

 The move toward a constructivist view of learning in education coincided with an 

increased interest in student preconceptions. There was a rapid increase in the number of 

publications concerning students’ pre-instructional perceptions in science from the 1970s to the 

1990s with the heaviest interest on students’ preconceptions about physics topics (Duit, 1993). 

Researchers gathered data using many methods such as informational interviews (Clement, 1982; 

Novick & Nussbaum, 1978), both open-ended and constrained response written assessments 
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(Champagne et al., 1980), and observations of students working with lab equipment to perform 

an assigned task (McDermott, 1984). The classifications of common misconceptions from these 

studies have been used to develop concept inventories. Concept inventories are typically 

multiple-choice assessments for which the distractors correspond to common misconceptions 

about the topic.  

Concept Inventories 

For science topics in which common misconceptions have been identified, concept 

inventories provide a much more efficient way to collect evidence of student preconceptions than 

student interviews or analysis of student work. Many examples of concept inventories exist. 

Some examples are listed in Table 2.1. Almost all of the concept inventories that I found were 

developed using CTT, although a few have been scored retroactively using different methods. 

Although the distractors correspond to common misconceptions, inventories are not typically 

scored to take advantage of this. Concept inventories are often used as pre- and post-tests with 

the change in scores calculated as normalized gain and the mean class values used to compare 

performance under different conditions (Hake, 1998; LoPresto & Murrell, 2011; Thornton et al., 

2009; Williamson et al., 2016; Yeo & Zadnick, 2001). Distractors are written to be appealing to 

students who have misconceptions. When scores increase after instruction, it may be interpreted 

to mean that students have fewer misconceptions. However, this type of scoring does not provide 

information about the frequency of specific misconceptions which makes it difficult to measure 

how they may have changed during instruction.  

Retrofitting Concept Inventories with New Psychometric Models 

Alternate scoring methods have been applied to some of these assessments after they 
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Table 2.1 
  

Examples of Concept Inventories and Scoring Methods by Discipline 

Discipline Name and Reference Scoring 
Physics Force Concept Inventory (Hestenes et al., 1992) CTT 
 Mechanics Baseline Inventory (Hestenes & Wells, 1992) CTT 

 
Force and Motion Conceptual Evaluation (Thornton & Sokoloff, 

1998) CTT 
 Brief Electricity and Magnetism Assessment (Ding et al., 2006) CTT 
 Thermal Concept Evaluation (Yeo & Zadnick, 2001) CTT 
 Newtonian Gravity Concept Inventory (Williamson, 2013) CTT & IRT 
Chemistry Chemistry Concept Inventory (Pavelich, et al., 2004) CTT 

 
Quantum Chemistry Concept Inventory (Dick-Perez et al., 

2016) CTT 
Astronomy Light and Spectroscopy Concept Inventory (Bardar et al., 2006) CTT 

 
Astronomy and Space Science Concept Inventory (Sadler et al., 

2010) CTT 

 
Astronomical Misconceptions Survey (LoPresto & Murrell, 

2011) CTT 

Biology 
Conceptual Inventory of Natural Selection (Anderson et al., 

2002) CTT 
 Biology Concept Inventory (Klymkowsky et al., 2003) CTT 
Geoscience Climate Change Inventory (Jarrett et al., 2012) CTT 
 Geoscience Concept Inventory (Libarkin & Anderson, 2005) IRT 

 

were developed. For instance, IRT models have been fitted to the FCI (Planinic et al., 2010; 

Wang & Bao, 2010) and the FMCE (Talbot, 2013). The use of IRT allows for more readily 

comparable scores between different groups of respondents, but it does not provide direct 

information about student misconceptions. At least two groups of physics education researchers 

have developed methods to analyze incorrect responses for evidence of misconceptions and 

applied these to the FCI and FMCE. Next, I describe two of these efforts for the FCI which is the 

most widely used concept inventory in physics education (Smith & Tanner, 2010).  

In the first example, researchers analyzed incorrect responses on the FCI to compare the 

prevalence of certain misconceptions between groups of first-year engineering students (Martin-
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Blas et al., 2010). First, the researchers determined if there was a dominant incorrect response to 

each question. This was defined as a response that accounted for at least half of the total 

incorrect responses. Second, each dominant incorrect response was aligned with a misconception 

as defined by the FCI authors (Hestenes et al., 1992). Then the frequency of the dominant 

misconceptions was compared between two groups of students. In the second example, Fulmer 

(2015) treated FCI questions as ordered multiple-choice items by mapping incorrect responses to 

positions on two learning progressions of force and motion. Lower levels on the learning 

progressions represented a greater prevalence of misconceptions related to a topic. The 

researcher then modeled the data using a rating scale Rasch model. There was only moderate 

model fit and it was difficult to distinguish between performance levels. Although the researcher 

found high interrater agreement between experts who mapped the items onto the learning 

progressions, it may be that the misconceptions on the FCI do not fit the learning progressions 

well. It should also be noted that some developers of DCMs have used sets of FCI response data 

to test their models (Bradshaw & Templin, 2014; Kuo et al., 2018). I provide more detail about 

these studies in a later section of this chapter. 

Modeling Test Data 

What is Being Measured 

Educational measurement involves using test data to make inferences and decisions about 

individuals or groups by linking test responses to a scale using a statistical model. Test content is 

designed to measure the desired quantity. This varies depending on the inferences or decisions 

that will be made. For instance, tests have long been used to measure content mastery separately 

from cognitive processes (Osterlind, 2010). Today, educators tend to measure quantities such as 
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reading or math ability rather than simple content knowledge. The characteristics of people that 

need to be measured in education are referred to as latent variables because, unlike physical 

quantities such as length and volume, they cannot be measured directly. Learning to read or to do 

math is complex and involves multiple cognitive processes such as interacting with stimuli, 

processing information from the interaction, and making sense of the information by 

constructing a mental model and mapping it onto an existing network of knowledge (Osterlind, 

2010). When we measure knowledge and skills, we theorize that students will call upon these 

same cognitive processes as they respond to test items and that, by interpreting their responses, 

we can quantify the extent to which the student is performing the process. 

 The terms latent variable and construct are often used interchangeably in the literature on 

testing. By definition, a latent variable is unobservable. It is a cognitive state or process which 

exists or occurs within a person’s brain. A construct can be considered a “meaningful description 

of a particular psychological trait or latency” (Osterlind, 2010, p. 4). Hence, a construct is an 

attempt to make that which cannot be observed manifest. In educational measurement, we are 

often concerned with measuring students’ knowledge of a given subject. I will use the term 

ability to refer to this quantity as is a common habit in educational measurement. The term does 

not imply that student knowledge is inherent and unchangeable as it might in common use. In 

fact, ability by this definition is the thing that instruction is designed to change. Usually, ability 

is measured on a continuous scale. Other terms that are seen in the literature are skills and 

attributes. These are often used to refer to student knowledge that is measured on an ordinal 

scale and at a finer grain size than ability. For instance, one’s math ability may depend on 

multiple discrete skills such as adding whole numbers and multiplying decimals. 
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Approaches to Testing 

Three approaches to interpreting test results are classical test theory (CTT), item response 

theory (IRT), and latent class analysis (LCA). Each approach has its own set of assumptions that 

should be met and parameters which can be estimated. One large-scale difference is that CTT 

and IRT model ability as a continuous variable, while latent variable analysis models it as 

categorical variables. A second difference is that in CTT and most uses of IRT it is assumed that 

all test items measure the same latent variable and individuals’ responses are used to estimate 

their ability in that variable along some continuous scale. In contrast, using LCA to analyze test 

responses assumes that the test items measure multiple constructs and individuals’ responses are 

used to place them in a group (a “class”) with individuals who have a similar pattern of 

constructs. A third difference is that CTT uses total test scores to make inferences about a 

construct and IRT and LCA analyze responses at the item level. This research focuses primarily 

on IRT and cognitive diagnostic models (a type of latent class analysis) which will be presented 

in following sections of the paper. CTT, which will be used to test item quality using data from 

the pilot test, will be compared to IRT.  

Item Response Theory 

Background 

Despite its name, item response theory (IRT) is not a theory in the scientific sense. It is a 

group of probabilistic latent variable models—statistical models that relate probabilistic 

measures of latent variables to sets of observations designed to measure them. For our purposes, 

the latent variables will be measures of ability (application of Newton’s laws) and the 

observations will be responses to test items. There are IRT models for polytomous items, but 
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because I used dichotomous items only, I limit this discussion to those for dichotomous items. 

These models can be separated into two categories, the Rasch model and item response curve 

models. Although the Rasch model is theoretically different from the simplest item response 

curve model, they differ mathematically only by a scaling constant. Because this project did 

concern the theoretical differences, this discussion is limited to item response curve models.  

Latent variable models were introduced by Frederic Lord in the early 1950s but were not 

widely used in educational measurement and test development until much later (Hambleton & 

Cook, 1977). Application of the models to test development was slow, but by the late 1970s, test 

developers were beginning to use the models to design tests and to explain student responses 

(Hambleton & Cook, 1977). Reasons that latent variable models were not adapted more quickly 

include their mathematical complexity, lack of convenient estimation software, the difficulty of 

satisfying the model assumptions, and the uncertainty of the robustness of the model estimates to 

violations of assumptions (Hambleton & Cook, 1977; Osterlind, 2010). The popularity of the 

models has grown as software has become more readily available and as IRT-focused literature 

has expanded beyond its initial theoretical focus. Today, there are multiple software packages 

that can be used to estimate various IRT models and books on the subject that are approachable 

by non-psychometricians. Many large-scale tests are scaled using IRT. 

IRT and CTT Compared 

In classical test theory, a person’s observed score on a test is assumed to be the sum of 

their true score and an error term. The observed score is generally the sum of the points for 

correct responses while the true score-- the score that a person would have if they were to answer 

every possible item about the topic an infinite number of times—cannot be measured. Because 

the error term (the difference between the unknown true score and the actual score on the test) is 
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random, it will get closer to zero as the test gets longer. Therefore, longer tests will generally 

produce more accurate scores. In contrast, it is possible for IRT-based tests to provide an 

unbiased estimate of examinee ability with very few items. This is a distinct advantage over 

CTT-based tests for many uses (Hambleton & Cook, 1977). One reason that CTT continues to be 

used is that test statistics can be estimated with much smaller sample sizes (fewer respondents) 

than for IRT. This is the reason that I evaluated the quality of items on the MAFA using CTT 

after the pilot test. I did not have enough responses to use IRT at this point.  

There are a number of issues with using CTT that can be minimized or eliminated by 

using IRT. One of the greatest limitations of CTT is that item difficulty and item discrimination 

depend upon who takes the test. In CTT item difficulty is defined as the percent of respondents 

who answer an item correctly. The same item may have a low difficulty with students of high 

ability and a high difficulty with students of low ability. This is at odds with the idea of latent 

variables which “occupy a latent space that can be quantified along a hypothesized infinity 

continuum from (-∞, ∞)” (Osterlind, 2010, p. 273). Item response models solve this problem by 

measuring item difficulty and person ability on the same scale. In the 1-PL and 2-PL IRT 

models, the difficulty of a dichotomous item is defined as the ability at which an individual has a 

50% chance of answering the item correctly. This is halfway between the probability of a correct 

response for a person with ability of -∞--a probability of 0.0--and for a person with an ability of 

+∞--a probability of 1.0. In the 3-PL IRT model item difficulty and ability are also measured on 

the same scale, but the probability of a person with ability of -∞ having a correct response is 

greater than zero. Therefore, the difficulty for the 3-PL model is defined as the ability for which 

the probability of answering correctly is halfway between the probability of guessing correctly 

and 1.0. A second problem is that CTT models the standard error of measurement (SEM) as 
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constant across all levels of ability. (The standard error of measurement is the standard deviation 

of the measurement error on the test.)  This may not be accurate—especially for very low or very 

high abilities. In contrast, item response theory allows the SEM to vary with ability level. 

Finally, in CTT reliability is described at the test level and the assumptions required to calculate 

a measure of reliability (some version of parallel test forms) may be difficult to meet. Item 

response theory approaches reliability with the test information function—a measure of the 

abilities for which the test gives the most precise estimates. 

The Main IRT Models 

The three most commonly-used IRT models are the one-parameter logistic (1-PL), two-

parameter logistic (2-PL), and three-parameter logistic (3-PL) models (Osterlind, 2010). Each of 

the three main logistic IRT models for dichotomous responses provides an estimate of person 

ability along a random scale that is also used to measure item difficulty. It is assumed that the 

ability being measured is approximately normally distributed within the population and IRT 

software generally scales ability along the standard normal distribution, N(0,1). The names of the 

three models reflect how many item parameters are allowed to vary. In the one-parameter 

logistic (1-PL) model, items are allowed to differ only on the difficulty parameter. In IRT, item 

difficulty is the value at which a person of that ability has a 0.5 probability of answering the item 

correctly when the probability of guessing the correct answer is modeled as zero as it is in the 1- 

and 2-PL models. For instance, if an item has a difficulty of 1.3 according to these models, then 

the probability of a person with ability of 1.3 answering correctly is 0.5. The probability is lower 

for a person with lower abilities and higher for persons with higher abilities. The two-parameter 

logistic (2-PL) model also allows the item discrimination parameter to vary. Item discrimination 

is a measure of how quickly the probability of a correct response changes as ability changes. 
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Higher discriminations correspond to a higher rate of change. The three-parameter logistic (3-

PL) model adds a guessing parameter (the probability of a respondent with ability of - ∞ 

answering correctly) for each item. In the 1-PL and 2-PL models the guessing parameter is taken 

to be 0.  

Assumptions of Item Response Theory 

Because the mathematical development of IRT models is based on assumptions about the 

data, it is important to consider whether the assumptions have been met. Osterlind (2010) lists 

three important assumptions that should be met. First is the assumption of “unidimensionality”. 

In a unidimensional model, all test items measure the same, single latent variable. This can be 

tested using factor analysis. The subject of this research, the Misconceptions About Force 

Assessment (MAFA), measures knowledge of Newton’s first and second laws. A second 

assumption is that items are locally independent. Responses to all items should depend only on 

the latent variable being measured. Unusually high correlations between item responses after 

controlling for person abilities (i.e. correlations between residuals) may indicate that this is not 

the case. Such correlations may occur for items that share information such as a reading passage 

or diagram. A third, important assumption is that the model fits the data. Important factors to 

consider when choosing an appropriate model include test length and sample size. As model 

parameters are added, some combination of a larger sample size and/or a longer test is required 

for estimation. Despite the abundance of research concerning the effects of these factors on 

model fit and parameter estimation, there are no exact guidelines. However, recommendations 

suggest that for the 2-PL model, a 10-item test should have a minimum sample size of 750 (Alpir 

& Duygu, 2017) while a 20-item test should have a sample size of about 500 (Alpir & Duygu, 

2017; de Ayala, 2009). Yen and Fitzpatrick (2006) also note that shorter tests and smaller sample 
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sizes may be used in low stakes applications such as during field testing. Recommendations are 

lower for the 1-PL model and higher for the 3-PL model. Because my sample sizes were 

relatively small for IRT, I tested the 1-PL and the 2-PL models which have fewer parameters 

than the 3-PL model. Osterlind (2010) refers to a fourth assumption, which applies to all types of 

assessment. This is the idea that respondents apply their ability to every item. There is no part of 

the statistical model that accounts for respondents using less than their maximum ability on any 

item and certainly no easy way to test that they have. In the next section, I describe the 1-PL and 

2-PL models.   

The 1-PL and 2-PL Models 

 The 1-PL model relates the probability of a correct response on item j to person ability 

(θ), item difficulty (β), and item discrimination (α) as: 

 
𝑝𝑝�𝑥𝑥𝑗𝑗 = 1�𝜃𝜃,𝛼𝛼,𝛽𝛽𝑗𝑗� =

𝑒𝑒𝛼𝛼(𝜃𝜃−𝛽𝛽𝑗𝑗)

1 + 𝑒𝑒𝛼𝛼(𝜃𝜃−𝛽𝛽𝑗𝑗) (1) 

where 𝑥𝑥𝑗𝑗 = 1 indicates a correct response to item j and 𝑥𝑥𝑗𝑗 = 0 indicates an incorrect response. 

When shown graphically, this function (called the item response function) produces a 

characteristic plot called the item characteristic curve (ICC). It should be noted that the item 

discrimination (α) is constant for all items in this model. Figure 2.1 illustrates the item 

characteristic curves for three items with an item discrimination of 1 (α1 = α2 = α3 = 1) and with 

item difficulties of -1, 0, and 2, respectively (β1 = -1, β2 = 0, and β3 = 2). It can be seen that the 

probability of a correct response is 0.50 when person ability equals item difficulty and that this 

probability decreases for lower abilities and increases for higher abilities. It is a monotonically 
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increasing function. The curve is asymptotic such that the probability approaches zero as person 

ability approaches -∞ and one as person ability approaches +∞. The item discrimination 

parameter is related to the slope of the curve at the inflection point with larger discriminations 

producing steeper slopes. Because the discrimination is the same for all items in this model, the 

ICCs do not intersect. 

Figure 2.1 

ICCs for 1-PL Model 

 

Note. The x-axis measures ability and item difficulty. The y-axis is the probability of a correct 

answer. The probability of a correct response is 0.5 when ability equals item difficulty. IRCs 

do not cross because they have equal discriminations. 

 The Birnbaum 2-PL model (Birnbaum, 1968) differs from the 1-PL model by allowing 

the item discrimination to vary between items so that α becomes 𝛼𝛼𝑗𝑗. This produces the equation 
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𝑝𝑝�𝑥𝑥𝑗𝑗 = 1�𝜃𝜃,𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑗𝑗� =

𝑒𝑒𝛼𝛼𝑗𝑗(𝜃𝜃−𝛽𝛽𝑗𝑗)

1 + 𝑒𝑒𝛼𝛼𝑗𝑗(𝜃𝜃−𝛽𝛽𝑗𝑗) (2) 

where 𝛼𝛼𝑗𝑗 is the discrimination for item j and all other variables are defined as in the 1-PL model. 

The effect of varying item discriminations on ICCs is illustrated in Figure 2.2. Item difficulties 

are equal to 0 for the first two items and 2 for the third item (β1 = β2 = 0 and β3 = 2). As before, 

varying item difficulties shifts the curves to the right or left. The item discriminations are 

allowed to vary in the 2-PL model. For this example, each item has a different discrimination (α1 

= 0.5, α2 = 1.5, and α3 = 2.5). Greater item discriminations cause steeper maximum slopes—a 

greater increase in the probability of a correct response for the same increase in ability.  

 Both the 1-PL and 2-PL models represent person ability as the ability for which there is 

the greatest probability of producing the overall response pattern. Because item responses are 

locally independent, the probability of a set of responses is the product of the probability of the 

response to each individual item. If we write the probability of a correct response to a 

dichotomous item j as 𝑝𝑝𝑗𝑗, then the probability of an incorrect response can be written as (1 −

𝑝𝑝𝑗𝑗). Thus the probability of correct responses to the first three items and an incorrect response to 

the fourth item on a four item test is written 𝑝𝑝(𝑥𝑥1 = 1) ∗ 𝑝𝑝(𝑥𝑥2 = 1) ∗ 𝑝𝑝(𝑥𝑥3 = 1) ∗ 𝑝𝑝(𝑥𝑥4 = 0) =

𝑝𝑝1 ∗ 𝑝𝑝2 ∗ 𝑝𝑝3 ∗ (1 − 𝑝𝑝4). If item difficulties and discriminations are known, then it is a simple 

matter to use Equation 1 or 2 to calculate pj for a given ability. In practice, however, neither 

person ability nor item parameters are known and they must be estimated together in a stepwise 

fashion. The general equation for estimating the ability of person i from a set of J responses is 
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Figure 2.2 

ICCs for 2-PL Model 

 

Note. The x-axis measures ability and item difficulty. The y-axis is the probability of a correct 

answer. The probability of a correct response is 0.5 when ability equals item difficulty. 

Varying item discriminations (α1 = 0.5, α2 = 1.5, α3 = 2.5) correspond to varying slopes. 

written as the likelihood function: 

 
𝐿𝐿(𝒙𝒙𝒊𝒊│𝜃𝜃,𝛼𝛼,𝜷𝜷) = �𝑝𝑝𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖(1 − 𝑝𝑝𝑗𝑗)(1−𝑥𝑥𝑖𝑖𝑖𝑖)

𝐽𝐽

𝑗𝑗=1

 (3) 

where 𝒙𝒙𝒊𝒊 is the vector of person i’s responses, θ is person ability, α  is item discrimination (constant 

for the 1-PL model and a vector of values for the 2-PL model), β is a vector of item difficulties, 𝑝𝑝𝑗𝑗 

is the probability of a correct response to item j for a person of ability θ, and 𝑥𝑥𝑖𝑖𝑖𝑖 is person i’s 
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response to item j. As more items are added, the value of the likelihood function becomes smaller. 

To prevent working with very small numbers, the practice is to take the natural log of the likelihood 

function, called the log likelihood function which is given by 

 
ln (𝐿𝐿(𝒙𝒙𝒊𝒊|𝜃𝜃,𝛼𝛼,𝜷𝜷)) = �(𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

ln�𝑝𝑝𝑗𝑗� + �1 − 𝑥𝑥𝑖𝑖𝑖𝑖�ln (1 − 𝑝𝑝𝑗𝑗) (4) 

where 𝑝𝑝𝑗𝑗 is calculated using either Equation 1 or 2. If item parameters are known, then Equation 

4 can be used to calculate the value of the log likelihood function for each value of θ. The ability 

for which the log likelihood function takes the greatest value is the ability estimate for the 

response pattern 𝒙𝒙𝒊𝒊. As mentioned earlier, neither item parameters nor person ability are 

generally known. They can be estimated together in a stepwise fashion using joint maximum 

likelihood estimation (JMLE). However, JMLE cannot provide ability estimates for either 

perfect or zero scores and JMLE estimates may be biased, especially for shorter tests. A solution 

to these problems is to use marginal maximum likelihood estimation (MMLE) in which item 

parameters are estimated using a theoretical ability distribution. In the next section, I explain the 

methods that were used in this study. 

IRT Parameter Estimation 

 Item parameters and person ability estimates were estimated using two different methods. 

Item parameters were estimated with marginal maximum likelihood estimation (MMLE) using 

the expectation-maximization (EM) algorithm (Dempster et al., 1977) and person abilities were 

estimated using Bayes estimation, also called expected a posteriori (EAP) estimation. As stated 

earlier, estimation of one set of parameters (either item or person) requires knowledge of the 
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other set of parameters. Both methods solve this problem by starting with an estimate of the 

parameters that gets refined through an iterative process. 

 To calculate the unconditional probabilities of particular response patterns from a random 

sample of the population, it is necessary to integrate the probability function. Bock and Aitkin 

(1981) approximate the integral using Gauss-Hermite quadrature. It is assumed that the 

distribution of abilities within the population follows some known distribution (such as the 

standard normal distribution). The sample of person abilities that comprise the test responses are 

not assumed to follow this distribution. They simply form a finite number of points which might 

be found anywhere along the distribution. It is possible that they will all be in the low end or at 

the high end and MMLE estimates are robust to this condition. Instead of using these empirically 

situated points to estimate item parameters along a continuous distribution, a number of points 

(quadrature points) are chosen along the length of the abscissa. In this application, the quadrature 

points are ability values. Each quadrature point has an associated weight and the integral is 

approximated as the sum of the product of ordinate values and their weights. In this way, an 

approximation of the probability of each set of item responses is calculated for each quadrature 

point. This forms the “E” part of the EM algorithm. 

 Next, the ability estimates from the first step are used to estimate item parameters from 

the log-likelihood function. This is the “M” part of the EM algorithm. These item parameters are 

then used to estimate person abilities from the likelihood function. At each iteration, of the “M” 

step, the current item parameter estimates are compared to the prior estimates. The model 

reaches convergence when the difference between estimates becomes smaller than a specified 

threshold value. At this point the process ends with a set of item parameter estimates. 
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 Using the EAP method to estimate person abilities for each response pattern does not 

require iteration but it does begin by establishing a hypothetical distribution (such as the standard 

normal distribution) of ability estimates for the population. If we define the density of the 

distribution curve as 𝐹𝐹(𝜃𝜃), then the weight for a given ability is given by 

 
𝑊𝑊(𝜃𝜃) =

𝐹𝐹(𝜃𝜃)
∑𝐹𝐹(𝜃𝜃)

 (5) 

such that the weights sum to 1. In EAP the ability estimate is defined as the weighted mean of 

the posterior distribution of 𝜃𝜃 given the distribution of response patterns, 𝑥𝑥𝑖𝑖. The posterior 

distribution is given by the likelihood function, 𝐿𝐿(𝜃𝜃). This can be expressed as 

 𝜃𝜃� =
∑𝜃𝜃 ∗ 𝐿𝐿(𝜃𝜃) ∗ 𝑊𝑊(𝜃𝜃)
∑𝐿𝐿(𝜃𝜃) ∗ 𝑊𝑊(𝜃𝜃)

 (6) 

where 𝜃𝜃� is the ability estimate. As in MMLE, a number of quadrature points are chosen along the 

hypothetical distribution of abilities and the summations are performed across these points. The 

EAP estimate exists for all response patterns and has the smallest standard error of any 

estimation method. Although EAP estimates tend to be biased toward the mean of the 

hypothetical distribution, this effect is generally small within ±3𝜎𝜎 of the mean as long as the 

posterior standard deviation is small (Cai et al., 2017).  

IRT Model Fit 

 In IRT, model fit should be considered for both individual items and the overall model. 

For individual items, unusually large standard errors (greater than 1.0) may indicate problems. 

Because the 1-PL and 2-PL models are nested models, their fit can be compared using the log-

likelihood function, L, as well as the Akaike Information Criterion (AIC) (Akaike, 1974) and the 
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Bayesian Information Criterion (BIC) (Schwartz, 1978). The Likelihood ratio test compares the 

value of −2ln (𝐿𝐿) which follows the chi-square distribution with degrees of freedom equal to the 

change in number of parameters between models. However, the chi-square test is sensitive to 

large sample sizes which are needed to estimate IRT models. Another problem is that the value 

of the log-likelihood function generally decreases as more parameters are added to the model and 

this can lead toward overfitting. Both the AIC and BIC account for this by adding a factor for 

number of parameters. The BIC weights the number of parameters by the natural log of the 

sample size. The AIC and BIC are given by 

 𝐴𝐴𝐴𝐴𝐴𝐴 = −2 ln(𝐿𝐿) + 2(𝑘𝑘) (7) 

 𝐵𝐵𝐵𝐵𝐵𝐵 = −2 ln(𝐿𝐿) + ln(𝑛𝑛) ∗ 𝑘𝑘 (8) 

where k is the number of parameters estimated by the model and n is the sample size. A smaller 

value for either criterion indicates better model fit so these measures of model fit effectively 

penalize adding parameters to better fit the data. 

Diagnostic Cognitive Models 

Introduction  

Diagnostic assessments in education may provide information about student’s attributes 

which teachers can use to individualize instruction. Diagnostic cognitive models (DCMs) 

provide one way to interpret responses to diagnostic assessments. DCMs are confirmatory 

multidimensional restricted latent-class models in which each latent class is a profile showing 

whether a person possesses each of a set of attributes. Attributes are latent states that are needed 
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to respond correctly to the items on the assessment. Single items may require one or more 

attributes to answer correctly. The number of latent classes is restricted by the number of 

attributes. These are specified a priori. If the number of attributes specified in the assessment is 

A, then the number of possible latent classes (N) is given by 𝑁𝑁 = 2𝐴𝐴 because each respondent 

will be classified as either a master or a non-master of each attribute. The models are 

confirmatory because the attributes needed to respond to each item correctly are also specified a 

priori.  

DCMs are typically used to measure knowledge at a finer grain size than IRT or CTT. 

For instance, an IRT-based analysis might estimate math ability in the domain of adding 

fractions while a DCM-based analysis could be used to diagnose the distinct skills needed to add 

fractions—e. g. adding whole numbers, finding common denominators, and changing improper 

fractions to mixed numbers. They provide three levels of feedback that can be used to inform 

instructional decisions:  1) the distribution of skill classes within the test population, 2) the 

frequency of mastery for each skill in the test population, and 3) the most probable skill profile 

for each student (George et al., 2016). The finer-grained information that DCMs offer (compared 

to IRT and CTT models) comes with a price. They typically require longer tests and more 

respondents to estimate. As with IRT models, different DCMs have different numbers of 

parameters which depend upon the number of attributes, the number of items, and the 

relationships that are specified between the attributes. More expansive models require greater 

amounts of data for estimation. Because the number of latent classes increases exponentially 

with the number of attributes, most applications of DCMs are limited to a maximum of six 

attributes (Rupp & Templin, 2008). 
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There are many DCMs for both dichotomous and polytomous response data. Rupp et al. 

(2010) provide a “taxonomy of DCMs” (p. 97) based on the types of response and latent 

variables (dichotomous or polytomous) and whether they are compensatory or noncompensatory. 

Compensatory DCMs are those for which the probability of answering an item correctly 

increases only when all attributes the item calls upon have been mastered. In noncompensatory 

DCMs, it is hypothesized that having some, but not all, of the attributes needed to answer an item 

correctly increases the probability of a correct response. Rupp et al.’s (2010) classification 

scheme allows models to appear in a single category or multiple categories. Next, I provide a 

selection of some of the models. The development of new models is a popular research topic. 

The examples that follow are a representation of the many models that are available. 

Noncompensatory models that accommodate dichotomous response and latent variables 

include the deterministic input, noisy-and-gate (DINA) model (Junker & Sijtsma, 2001); the 

higher order DINA (HO-DINA) model (de la Torre & Douglas, 2004); the multiple strategies 

DINA (MS-DINA) model (de la Torre & Douglas, 2008); noisy input deterministic-and-gate 

(NIDA) model (Junker & Sijtsma, 2001); the rule-space method (RSM) (Tatsuoka, 2009); the 

attribute hierarchy method (AHM) (Gierl et al., 2007); three versions of the reparameterized 

unified model (RUM) (DiBello et al., 1995)—the randomized effects RUM (RERUM) and the 

noncompensatory RUM (NC-RUM) model in both a full and reduced version; Bayesian inference 

networks (BINs) (Sinharay & Almond, 2007); and multiple classification latent class models 

(MCLCMs) (Maris, 1999).  Some of these models (DINA and NIDA) are designed specifically 

for dichotomous variables while others are more general. For instance, the RSM and the AHM 

can accommodate polytomous latent variables and the full and reduced NC-RUM models can 

accommodate polytomous response and latent variables. Compensatory models that 



48 
 

accommodate only dichotomous response and latent variables include the deterministic inputs, 

noisy-or-gate (DINO) model (Templin & Henson, 2006) and the noisy inputs, deterministic-or-

gate (NIDO) model. Compensatory models that accommodate both dichotomous and polytomous 

response and predictor variables include the compensatory RUM (C-RUM) model; the general 

diagnostic model (GDM) (von Davier, 2005); the loglinear cognitive diagnosis model (LCDM) 

(Henson et al., 2009); the generalized DINA (G-DINA) model (de la Torre, 2011); and the 

hierarchical GDM (von Davier, 2007). Models differ in both their generality and their 

complexity. The most general models may be the full and reduced NC-RUM which can 

accommodate both dichotomous and polytomous variables for compensatory models, and BINs 

and MCLCMs which can be used to model any combination of dichotomous and polytomous 

variables and to create both compensatory and noncompensatory models. The more general 

models often require the estimation of a larger number of parameters and may require larger 

sample sizes and longer tests. More complex models may fit real data better than less complex 

models, but they are also less likely to converge during estimation and are more prone to 

overfitting (Rupp et al., 2010). The choice of a suitable model should consider these issues. 

For the MAFA, it seems unlikely that possessing only one of multiple misconceptions 

would increase the probability of a “correct” answer. Because misconceptions are measured 

using true/false items, respondents are not forced to accept an answer they believe is partially 

correct (i.e. an item for which the respondent has only one of multiple misconceptions that are 

required) as they might with some multiple-choice items. Instead, they can choose “false”. 

Therefore, this project uses a noncompensatory model for the measurement of misconceptions. 

The three core noncompensatory DCMs according to Rupp at al. (2010) are the DINA model, the 

NIDA model, and the NC-RUM model. These models differ in the ways that they account for 
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slipping—failing to answer an item correctly when one possesses the necessary attributes—and 

guessing—answering an item correctly although one does not possess the necessary attributes. 

The DINA model accounts for slipping and guessing at the item level, the NIDA model does so 

at the attribute level, and the NC-RUM model does so at both the item and attribute levels. These 

differing specifications affect the number of parameters that must be estimated for each model. 

In the DINA model, there is one slipping and one guessing parameter for each item regardless of 

the number of attributes measured. In the NIDA model, there is one slipping and one guessing 

parameter per attribute regardless of the number of items. In the NC-RUM model, there is one 

slipping related parameter for each item and one parameter related to both slipping and guessing 

for each item-required attribute combination. According to Rupp and Templin (2008), both the 

DINA and NIDA models are likely to converge for tests of 20-40 items and 4-6 attributes when 

sample sizes are as low as a few hundred while the NC-RUM model would require a much larger 

sample size.  

Due to its parsimonious nature, the DINA is the most widely used core DCM (George et 

al., 2016). Among the noncompensatory models, the DINA model seemed best suited for the 

purpose of this research—to model student misconceptions with a test that has a small number of 

items and with a reasonable sample size—for two reasons. First, physics misconceptions may be 

context specific and are best modeled at the more context-specific item level as in the DINA 

model. Second, the sample size of 449 respondents was adequate to achieve model convergence. 

In the next section, I briefly describe other DCMs that have been proposed for measuring 

misconceptions and explain why they were unsuitable for this research. 
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Existing DCMs for Measuring Misconceptions 

A search of the literature revealed three recent DCMs that have been proposed to measure 

misconceptions. All three were considered as possible models to use in this research. These 

models are the Bug-DINO (Bug-diagnostic input noisy or gate) model (Kuo et al., 2016), the 

SISM (simultaneously identifying skills and misconceptions) model (Kuo et al., 2018), and the 

SICM (scaling individuals and classifying misconceptions) model (Bradshaw and Templin, 

2014). This section briefly describes each of the three models and outlines the reasons for 

creating a different model for this project.  

The term “bug” in the Bug-DINO model (Kuo et al., 2016) refers to misconceptions. The 

model provides estimates of student misconceptions only. Correct answers are due to the absence 

of misconceptions and make no assumptions about the possession of skills, which are modeled 

separately. It is assumed that the possession of even one misconception related to an item will 

result in an incorrect response. Each item is scored as correct or incorrect, but distractors are not 

scored. Instead, it is assumed that an incorrect answer is caused either by possessing at least one 

of the misconceptions aligned with the item or by a slip. The probability that a student gives a 

correct answer to an item because he possesses none of the misconceptions aligned to the item is 

given by 

 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑖𝑖� = (1 − 𝑠𝑠𝑗𝑗)1−𝜉𝜉𝑖𝑖𝑖𝑖(𝑔𝑔𝑗𝑗)𝜉𝜉𝑖𝑖𝑖𝑖 (9) 

where 𝛼𝛼𝑖𝑖 is a vector of student i’s misconceptions, 𝑠𝑠𝑗𝑗 is the probability of slipping for item j, 𝑔𝑔𝑗𝑗 

is the probability of guessing for item j, and 𝜉𝜉𝑖𝑖𝑖𝑖 equals “1” if a person i possesses at least one of 

the misconceptions aligned to item j and “0” if person i possesses none of the misconceptions 

aligned to item j. The authors of the model apply it to computational multiple-choice items 
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(proportional reasoning in math). In this context, it is reasonable to assume that possessing any 

misconception would cause a student to answer an item incorrectly. For the MAFA, however, 

such an assumption is not reasonable. First, many physics students answer computational 

problems correctly despite possessing misconceptions (Mazur, 2009). Second, when measuring 

misconceptions using conceptual items, particularly true/false items, the possession of fewer than 

all of the required misconceptions is unlikely to cause a student to choose that answer. Endorsing 

a statement that relates to multiple misconceptions is likely to require the possession of all of 

them. For these reasons, the Bug-DINO model did not fit the design of this assessment. 

In contrast to the Bug-DINO model, the SISM and SICM models estimate both 

knowledge and misconceptions. The SISM model essentially combines the DINA model for 

measuring knowledge with the Bug-DINO model for measuring misconceptions in a way that 

allows for the coexistence of knowledge and misconceptions (Kuo et al., 2018). Items are scored 

as correct or incorrect and each item is aligned with attributes that may be either knowledge, 

misconceptions, or both. Conceptually, the model assumes that the probability of a correct 

answer depends on how many skills (all or some) and misconceptions (some or none) a student 

has. The model estimates the probability of a correct response as 

 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝜶𝜶𝒊𝒊� = ℎ𝑗𝑗
𝑛𝑛𝑖𝑖𝑖𝑖(1−𝛾𝛾𝑖𝑖𝑖𝑖)𝜔𝜔𝑗𝑗𝜂𝜂𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗(1−𝜂𝜂𝑖𝑖𝑖𝑖)(1−𝛾𝛾𝑖𝑖𝑖𝑖)𝜀𝜀𝑗𝑗(1−𝜂𝜂𝑖𝑖𝑖𝑖)𝛾𝛾𝑖𝑖𝑖𝑖  (10) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 equals person i’s answer to item j, 𝜶𝜶𝒊𝒊 is a vector of person i’s attributes, 𝜂𝜂𝑖𝑖𝑖𝑖 equals “1” 

if person i has all required skills for item j  and “0” if they do not, 𝛾𝛾𝑖𝑖𝑖𝑖 equals 1 if person i has 

some of the misconceptions associated with item j and “0” if they do not, and the remaining 

parameters are the probabilities of a correct answer to item j for a person who has all of the skills 

and none of the misconceptions (ℎ𝑗𝑗), all of the skills and only some of the misconceptions (𝜔𝜔𝑗𝑗), 



52 
 

some of the required skills and none of the misconceptions (𝑔𝑔𝑗𝑗), or some of the skills and at least 

one of the misconceptions (𝜀𝜀𝑗𝑗). When the researchers used the model to estimate knowledge and 

misconceptions from an existing seven-item fractions test, a high rate of agreement was found 

between the results and classifications of human raters on the same data. The model had a higher 

agreement with human raters than the Bug-DINO model. Despite the high performance of the 

model on fractions data, there were two reasons to use a different model for the MAFA. First, it 

is preferable to measure knowledge of Newton’s laws as a unidimensional construct because this 

is what the original FCI does. The practice of using a single score for FCI performance is well 

established in the physics community and has proven useful in many studies. Second, scoring 

only correct answers means that all misconceptions associated with an item will be linked to that 

item in the Q-matrix. For the MAFA this would result in most items aligning to most 

misconceptions. In this case, it is likely that most people would be assigned attribute profiles 

with either all or none of the misconceptions. The opportunity for a finer grained diagnosis of 

misconceptions would be lost. 

 The SICM model (Bradshaw & Templin, 2014) corrects for some of the aforementioned 

issues with the prior two models. It estimates ability as a continuous latent variable using IRT 

and misconceptions as an attribute profile using a DCM. It aligns misconceptions with the 

individual options for each item and requires that each option be scored. The endorsement of the 

correct option contributes to a higher knowledge score and the endorsement of an incorrect 

option increases the probability of having the misconceptions that are aligned with that option. In 

this way, it uses response data to give a more fine-grained view of misconceptions. However, it 

does not allow for the coexistence of knowledge and misconceptions. The complex specification 

of the model is beyond the scope of this paper. The authors tested the model using both 
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simulated data and a data set of 10,039 FCI responses. The simulation study indicated that 

relatively high numbers of items (30 or more) and responses (3000 or more) produced accurate 

classification rates for misconception profiles but did not produce accurate ability estimates. 

Analysis of the FCI data highlighted some of the problems with using the original FCI to 

diagnose misconceptions. First, the authors of the FCI list 31 misconceptions (Hestenes et al., 

1992) which is far too many to model with existing DCMs. For this analysis, the researchers 

randomly chose to diagnose the first three misconceptions in the list. Second, many of the 

response options did not align with any of the measured misconceptions which created responses 

with only entries of “0” in the Q-matrix. This points to one of the differences between existing 

concept inventories and a CDA specifically designed to diagnose misconceptions. A CDA can be 

designed to specifically target a limited number of misconceptions and, thus, be a more efficient 

tool. 

 All three models described above are designed to elicit diagnostic information from 

traditional tests in which there is a correct answer and distractors which align with common 

misconceptions. This research took a different approach by redesigning the format of the 

assessment to one composed of separate sets of questions to measure knowledge and 

misconceptions. Such an assessment can use existing psychometric models to separately estimate 

ability and misconceptions. The psychometric analysis combined variables of the three models 

described above to achieve the desired results. Like the Bug-DINO model, it estimates 

knowledge and misconceptions separately. Like the SISM model it allows for the coexistence of 

knowledge and misconceptions. Like the SICM model, it models knowledge as a continuous 

variable using IRT and misconceptions as latent skills modeled with the noncompensatory DINA 

model. However, it uses separate sets of test items for each psychometric model and estimates 
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each separately. It was hoped that this approach would allow accurate estimation of ability and 

the most probable profile of misconceptions for each respondent using fewer items. In the next 

section, I describe the DINA model and how it was used for this assessment in greater detail. 

The DINA Model  

The DINA model estimates the probability that each respondent is in one of two classes 

for each item: 1) the group that has mastered all attributes which are relevant to the item, or 2) 

the group that has failed to master at least one of the attributes relevant to the item. The 

probability of a correct response is defined at the item level as the combined probability of either 

guessing or not slipping: 

 𝜋𝜋𝑗𝑗𝑗𝑗 = (1 − 𝑠𝑠𝑗𝑗)𝜉𝜉𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗1−𝜉𝜉𝑗𝑗𝑗𝑗 (11) 

 where 𝜋𝜋𝑖𝑖𝑖𝑖 is the probability of a correct response to item j for a respondent in latent class C, 𝑠𝑠𝑗𝑗 is 

the probability of slipping for item j, 𝑔𝑔𝑗𝑗 is the probability of guessing for item j. The guessing 

parameter (g) is the probability of answering correctly even though one does not possess all 

required attributes and the slipping parameter (s) is the probability of failing to answer correctly 

even though one possess all required attributes. The final variable, ξjc, is a latent variable that 

relates the skills needed to correctly answer item j to the skills possessed by respondents in latent 

class c. This is the deterministic-input part of the DINA model and is calculated as follows: 

 𝜉𝜉𝑗𝑗𝑗𝑗 = �𝛼𝛼𝑐𝑐𝑐𝑐
𝑞𝑞𝑗𝑗𝑗𝑗

𝐴𝐴

𝛼𝛼=1

 (12) 

where αca equals 1 if respondents in class c have mastered attribute a and 0 if they have not, and 

qja is the entry in the Q-matrix for item j and attribute a which equals 1 if item j requires the use 
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of attribute a and 0 if it does not. This conjunctive condensation rule results in 𝜉𝜉𝑗𝑗𝑗𝑗 = 1 for items 

and classes that require/indicate mastery of the same attributes and 𝜉𝜉𝑗𝑗𝑗𝑗 = 0 for classes in which 

one or more attributes relevant to item j have not been mastered. Working backwards, it becomes 

evident that the probability of a correct response to item j, πjc, will equal (1 − 𝑠𝑠𝑗𝑗) for respondents 

who have all attributes needed for item j and 𝑔𝑔𝑗𝑗 for respondents who are missing at least one 

attribute needed for item j. Because the Q-matrix and attribute profiles are specified a priori, 

estimating values for this part of the model focuses on the slipping and guessing parameters for 

each item. 

 Not only are the slipping and guessing parameters unknown. The latent class to which 

each respondent belongs is also unknown. The probability that the vector of person i’s responses 

belongs to an individual in latent class c is given by 

 𝑃𝑃(𝑿𝑿𝑖𝑖|𝜶𝜶𝑐𝑐,𝒈𝒈, 𝒔𝒔) = �𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑐𝑐,𝑔𝑔𝑗𝑗, 𝑠𝑠𝑗𝑗�
𝑋𝑋𝑖𝑖𝑖𝑖[1 − 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑐𝑐,𝑔𝑔𝑗𝑗 , 𝑠𝑠𝑗𝑗�]1−𝑋𝑋𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

 (13) 

where 𝑿𝑿𝑖𝑖 is the vector of person i’s responses, 𝜶𝜶𝒄𝒄 is the vector indicating the attribute profile for 

individuals in latent class c, 𝒈𝒈 is the vector of guessing parameters for the items on the test, and 𝒔𝒔 

is the vector of slipping parameters for items on the test. The addition of the j subscript to any 

variable indicates that it is the jth member of the vector—the value for item j. Estimating these 

values is fairly straightforward using estimated item parameters and allows the assignment of the 

most probable attribute profile to each respondent. 

Parameter Estimation for the DINA Model 

 Estimating the item parameters for the DINA model involves calculating two values, s 

and g, for each item. Because the DINA model models slipping and guessing at the item level, 
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the number of parameters that must be estimated is independent of the number of attributes 

which are measured and depends only on the number of items. This contrasts with other non-

compensatory DCMs which model aberrant responses at the attribute level (NIDA) or at both the 

item and attribute level (NC-RUM). A potential problem with the use of this model for true-false 

items is that it requires (1-si) > gi. The probability of guessing at random for true-false items is 

0.5 which could be problematic. However, because the true-false items on this assessment 

address common misconceptions in everyday situations, they are likely to be either firmly held 

or absent. It is assumed less likely that students would guess on these items than on the 

knowledge items. 

 The marginal log-likelihood function which was used to find the most probable ability in 

IRT is used here to find the most probable item parameters. The marginal log-likelihood for the 

DINA model is given by 

 ln 𝐿𝐿(𝒈𝒈, 𝒔𝒔) = � ln(𝑿𝑿𝑖𝑖,
𝐼𝐼

𝑖𝑖=1

𝒈𝒈, 𝒔𝒔) =  � ln[𝑃𝑃(𝑿𝑿𝑖𝑖|𝜶𝜶𝑐𝑐 ,𝒈𝒈, 𝒔𝒔) ∙ 𝑃𝑃(𝜶𝜶𝑐𝑐)]
𝐼𝐼

𝑖𝑖=1

 (14) 

where all variables are defined in the prior section of this chapter. The CDM software package 

implements the MMLE estimation using the EM algorithm. This is an iterative process whereby 

the expected number of students in each attribute profile is estimated, these are used to estimate 

the item parameters which are then used to estimate the distribution of attribute profiles, and so 

on until the model reaches convergence—the point at which the change in estimates between 

iterations reaches some lower threshold. Next, I describe this process in greater detail based on 

George et al.’s article (2016). 
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 The notation in this part of the paper follows that of George et al. (2016) except that I use 

c rather than l to refer to latent classes. The first E-step of the algorithm requires some estimate 

of the slipping and guessing parameters to begin. These estimates are used with Equation 13 and 

Bayes’ theorem to calculate the individual posterior distribution 𝑃𝑃(𝜶𝜶𝑐𝑐|𝑿𝑿𝑖𝑖,𝒈𝒈, 𝒔𝒔). This is used to 

calculate the expected number of students with each attribute profile based on item j and the 

expected number of students with each attribute profile who responded to item j correctly. This 

completes the E-step. In the M-step, these expected values across all attribute profiles and the 

resulting values are used to calculate the following values for each item j: 

𝑇𝑇𝑗𝑗
(0) the expected number of students who lack at least one required attribute for item j 

𝑅𝑅𝑗𝑗
(0) the expected number of students who lack one attribute, but answered the item correctly 

𝑇𝑇𝑗𝑗
(1) the expected number of students who possess all attributes for item j 

𝑅𝑅𝑗𝑗
(1)the expected number of students who possess all attributes and answered the item correctly. 

The item parameters are then estimated again as 

 𝑔𝑔�𝑗𝑗 =
𝑅𝑅𝑗𝑗

(0)

𝑇𝑇𝑗𝑗
(0) (15) 

and 

 𝑠̂𝑠𝑗𝑗 =
𝑅𝑅𝑗𝑗

(1)

𝑇𝑇𝑗𝑗
(1) (16) 
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Next, the expected number of students with each attribute profile is calculated and used to update 

the distribution of skill profiles, 𝑃𝑃(𝜶𝜶𝑐𝑐|𝑿𝑿𝑖𝑖 ,𝒈𝒈, 𝒔𝒔). This concludes the M step. The E- and M-steps 

are repeated until the model reaches convergence or a specified number of iterations has 

completed. At this point we have item parameter estimates which can be used to estimate 

individual attribute profiles. 

 The CDM Package can estimate individual attribute profiles using three different 

methods: maximum a posteriori (MAP) classification, maximum likelihood estimation (MLE), 

and expected a posteriori (EAP) classification. Maximum likelihood estimation does not provide 

attribute profiles for respondents who answer all items correctly or all items incorrectly whereas 

MAP and EAP estimation do. Both MAP and EAP estimation apply a prior distribution for latent 

class membership within the population. Then the probability of each attribute profile/latent class 

(MAP) or probability of individual attribute mastery (EAP) is calculated for each response 

pattern. These are used to place each respondent into the most likely attribute profile. 

Model Fit for the DINA Model 

 In assessing model fit for DCMs, it can be convenient to think of three general areas: 

item parameters, person classification, and overall model fit. Overall model fit of the DINA 

model to the data can be assessed using the AIC and the BIC which were described in an earlier 

section of this chapter. For these fit statistics, a lower value indicates better fit. In addition, the 

CDM package (Robitzsch et al., 2020) provides a chi-square statistic that compares the observed 

response probabilities to the predicted response probabilities. Other fit statistics in the package 

that can be utilized are the root mean-square error of approximation (RMSEA) for assessing item 

fit, an item discrimination index that tests the constraint that 𝑔𝑔𝑗𝑗 < (1 − 𝑠𝑠𝑗𝑗), and a simulation for 

checking the accuracy of attribute profile classification. These will be employed to create an 
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inclusive picture of model fit. Possible sources of misfit include the incorrect choice of model 

type (compensatory or noncompensatory), inaccurate specification of the Q-matrix, a poor 

choice of model restrictions (i.e. restrictions across parameters or prior distributions), and a 

heterogeneous population (Rupp & Templin, 2008). 

Summary 

 This chapter has provided a background on topics within the domains of science 

education and educational measurement that are relevant to the research project. Here I provide a 

brief summary of the major points. Many students enter formal science instruction with 

conceptions about science that are incorrect and may inhibit the development of scientifically 

accurate understanding of phenomena. Often, science instruction fails to correct this problem. 

Concept inventories have been developed as time-efficient tools for measuring the extent to 

which students are able to think scientifically about given topics such as mechanics, climate 

change, and astronomy. These inventories usually take the form of multiple-choice tests in which 

the distractors represent common misconceptions about the subject, but they are not designed to 

diagnose the presence of specific misconceptions.  

Using DCMs to diagnose student misconceptions has been suggested. A few DCMs have 

been developed specifically for this purpose. They have been tested with simulated data and even 

retrofitted with data from an existing concept inventory, the FCI. Retrofitted data is unlikely to 

fit as well or to provide as accurate a classification of respondents as are data from an assessment 

that is designed to be fit with a DCM, a CDA. In addition, two of the existing models do not 

allow for the coexistence of knowledge and misconceptions on an item, and the third model is 

likely to classify most examinees on the MAFA into two classes, those who possess all 
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misconceptions and those who possess no misconceptions. Therefore, this research proposes to 

develop and test a CDA based on the DINA model. In addition to fitting the structure of the 

proposed items, the DINA model has the advantage of being the most parsimonious of the 

DCMs. This means that it can be estimated well with fewer items and respondents. Because this 

assessment is intended to be used formatively, fewer items are appropriate. The final sections of 

the chapter provide an introduction to IRT and DCMs. They explain the statistical models 

involved and the methods of parameter estimation along with measures of model fit. The next 

two chapters consist of two independent manuscripts. The first manuscript (shown in Chapter 3) 

presents a test format for CDAs and describes the test creation process for the MAFA and the 

second manuscript (shown in Chapter 4) presents describes the relationship between knowledge 

and misconceptions about Newton’s first and second laws as measured by the MAFA. 
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Chapter 3 

Development of a Diagnostic Cognitive Assessment for Measuring Misconceptions About 

Force 

Abstract 

A new assessment format for simultaneously measuring knowledge and misconceptions using 

item response theory and diagnostic cognitive modeling was proposed. Application of the 

proposed model was illustrated by the development of an online assessment for measuring 

knowledge and misconceptions about Newton’s first and second laws--the Misconceptions 

About Force Assessment. The assessment was developed in four phases. First, items were 

created by the author based on prior research about student misconceptions of force and motion. 

Experienced high school and university instructors reviewed the items and misconceptions for 

content and alignment. For Phases two through four, all participants were undergraduate 

university students from public four-year institutions who had completed no more than two 

semesters of university level physics courses. In Phase 2, think-alouds were conducted with four 

students. In Phase 3, a pilot test was conducted with 100 students and the results were used to 

assess item quality. In Phase 4, a field test was conducted with 349 students. Data from Phases 3 

and 4 were combined and fit to item response models and a cognitive diagnostic model. Model 

fit was acceptable for both models. Suggestions for further research include testing a shorter 

version of the assessment with a larger and more motivated group of participants, comparing 

model fit for additional combinations of items, and applying the test format to develop other 

concept inventories. The research demonstrates a process for applying diagnostic cognitive 
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models to create concept inventories that can provide simultaneous measures of student 

knowledge and profiles of student misconceptions. 

Introduction 

 Students who perform well on typical classroom assessments do not always understand 

what had been taught. A classic example of this is shown in the film “A Private Universe” in 

which engineers who have just graduated from MIT are unable complete a simple circuit to light 

a small bulb with a battery and a single wire (Schneps & Sadler, 1988). Although the newly 

minted engineers must have successfully completed many difficult assessments to earn their 

degrees, they lack the conceptual understanding of electricity that is needed to solve this simple, 

but novel, problem. Similar disconnects have been confirmed by other researchers in science 

education (Diakidoy & Iordanou, 2003; Mazur, 2009) and reading and math education (Eckert et 

al., 2006).  

 In education, most models of learning are based on the belief that students construct new 

knowledge by connecting new ideas and experiences to their existing conceptions (Jones & 

Bradjer-Araje, 2002; Lucariello & Naff, n.d.; Matthews, 1998; National Research Council 

[NRC], 1997; Phillips, 1995). The process of learning science is complicated by students’ 

preexisting knowledge and beliefs that they use to explain the world around them because much 

of that knowledge is incorrect and resistant to change (Brown & Hammer, 2013; Duit & 

Treagust, 2003; Vosniadou & Skopeliti, 2014). Because student’s existing conceptions about 

science are often incorrect, the new knowledge that they construct is often incorrect as well. 

There are many ways that this can occur. For instance, a student may combine new knowledge 

with incorrect existing conceptions to create a partially correct model or the student may distort 
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the new information to create a completely incorrect model. In comparison to science experts, 

students tend to use large numbers of unrelated, personal theories and beliefs to explain natural 

phenomena. One aim of science education is to help students learn to think more like science 

experts. Progression toward this status requires students to undergo conceptual change in which 

they adapt their existing conceptions and beliefs (diSessa & Sherrin, 1998; Duit & Treagust, 

2003).  

 Learning science is a messy process that occurs over time. Researchers employ different 

terms to describe the extent to which student’s knowledge at a given time is correct. For instance, 

misconceptions, (Halloun & Hestenes, 1985a; McCloskey et al., 1983) refer to student 

knowledge and beliefs that are incorrect whether they are preexisting or have been developed 

though instruction. Other researchers use the term preconceptions (Clement, 1982; Halloun & 

Hestenes, 1985b) or alternative conceptions (Chi et al., 1981; Viennot, 1985) to refer to both 

correct and incorrect preexisting ideas that students bring to instruction. This terminology is used 

to emphasize that student’s existing knowledge—both correct and incorrect--may be used by 

teachers to increase the effectiveness of instruction. Student’s preconceptions can be identified 

through multiple methods such as informational interviews, written assessments, and observing 

students working with equipment to complete tasks. There is a rich body of research on students’ 

misconceptions in science, especially in physics (Duit, 1993).  

Researchers who study conceptual change vary in the extent to which they believe that 

students’ preconceptions are organized and called upon consistently. For instance, Vosniadou 

and Skopeliti (2014) write about framework theories which are loosely structured sets of related 

concepts based on everyday interactions and experiences that reside within ontological beliefs. 

Framework theories are activated fairly consistently to explain new experiences They give the 
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example of “naive physics” as one such framework theory. In contrast, diSessa (1993) writes 

about phenomenological primitives (p prims) which are small pieces of knowledge or beliefs that 

have been developed from everyday experience. A single p prim tends to be limited to explaining 

a small number of phenomena. In this model of novice knowledge, individuals develop and 

activate many p prims to explain their experiences and observations. Smith et al. (1993) use the 

term conceptions to refer to student ideas that differ from those of experts, but that are called 

upon consistently to make sense of natural phenomena and strongly affect how students learn 

science. To develop accurate scientific knowledge, students must confront their existing 

misconceptions and reconstruct their mental models (NRC, 1997). However, the extent to which 

students are open to adapting their preconceptions even when they are incorrect varies (Harrison 

& Treagust, 2001; Vosniadou, 2014). Teachers can help students achieve conceptual change by 

providing feedback about their misconceptions (Hattie, 2015), but first the misconceptions must 

be identified. 

When common misconceptions in an area have been identified, concept inventories can 

be used to measure the prevalence of the misconceptions. Concept inventories are multiple-

choice tests in which the distractors correspond to common misconceptions. Concept inventories 

are sometimes used to measure the effect of classroom instruction on learning. The test is 

administered before and after instruction and the mean change in class score (calculated as the 

normalized gain) is used to compare student performance under different conditions (Hake, 

1998; LoPresto & Murrell, 2011; Thornton, et al., 2009; Williamson, et al., 2016; Yeo & 

Zadnick, 2001). An example of a test which is often used this way is the Force Concept 

Inventory (FCI) (Hestenes, et al., 1992) which is the most widely used concept inventory in 

physics education (Smith & Tanner, 2010). Some of the many concept inventories that have been 
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developed in various science disciplines are shown in Table 3.1. Although the distractors in 

concept inventories are based on common misconceptions, they are not typically scored to 

measure which misconceptions students have. Instead, an overall score is calculated based on the 

number of correct answers and it is assumed that the higher the total score, the fewer 

misconceptions a student has. 

Table 3.1 

Examples of Concept Inventories and Scoring Methods by Discipline 

Discipline Name and Reference Scoring 
Physics Force Concept Inventory (Hestenes et al., 1992) CTT 
 Mechanics Baseline Inventory (Hestenes & Wells, 1992) CTT 
 Force and Motion Conceptual Evaluation (Thornton & Sokoloff, 

1998) 
CTT 

 Brief Electricity and Magnetism Assessment (Ding et al., 2006) CTT 
 Thermal Concept Evaluation (Yeo & Zadnick, 2001) CTT 
 Newtonian Gravity Concept Inventory (Williamson, 2013) CTT & IRT 
Chemistry Chemistry Concept Inventory (Pavelich et al., 2004) CTT 
 Quantum Chemistry Concept Inventory (Dick-Perez et al., 

2016) 
CTT 

Astronomy Light and Spectroscopy Concept Inventory (Bardar et al., 2006) CTT 
 Astronomy and Space Science Concept Inventory (Sadler et al., 

2010) 
CTT 

 Astronomical Misconceptions Survey (LoPresto & Murrell, 
2011) 

CTT 

Biology Conceptual Inventory of Natural Selection (Anderson et al., 
2002) 

CTT 

 Biology Concept Inventory (Klymkowsky et al., 2003) CTT 
Geoscience Climate Change Inventory (Jarrett et al., 2012) CTT 
 Geoscience Concept Inventory (Libarkin & Anderson, 2005) IRT 

  

As shown in Table 3.1, most concept inventories are scored according to a measurement 

model belonging to Classical Test Theory (CTT), but a few have been scored using Item 

Response Theory (IRT). These are two of three common approaches to scoring large-scale 
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assessments. The third is Latent Class Analysis (LCA). In CTT, assessment scores are based on 

some version of number of items answered correctly. CTT can be used to analyze responses to 

assessments that measure a single latent construct even for a small number of responses. IRT is a 

family of probabilistic latent construct models—some unidimensional and some not-- that relate 

the assessment scores to the probability of answering items of different difficulties correctly. IRT 

offers some advantages over CTT for unidimensional assessments, but larger numbers of 

responses are required to estimate the models. LCA uses probabilistic models that measure the 

presence or absence of multiple latent constructs (sometimes called attributes or skills) based on 

response patterns. One group of relatively recent restricted latent class models are diagnostic 

cognitive models (DCMs). These models estimate the presence of a set of multiple 

attributes/skills (e.g. finding a common denominator for fractions, fear of strangers, etc.) based 

on responses to selected response items. They are useful for modeling responses to assessments 

which measure multiple skills or attributes. The three approaches to analyzing assessment 

responses—CTT, IRT, and DCMs—are built on different sets of assumptions and can be used to 

provide different information about student performance. 

Measurement models based on IRT have some advantages over simpler CTT models. 

First, IRT-based tests can provide unbiased estimates of person abilities with fewer items than 

CTT-based tests. In CTT, a person’s true score--the score they would attain if they were to 

answer every possible item about the tested topic an infinite number of times-- is assumed to be 

the difference between their observed score on a test and an error term. While a person’s true 

score cannot be directly measured, it can be estimated by the observed score. Therefore, the 

smaller the error term, the closer the observed score is to the true score. Because the error term 

for each test item is random, the longer the test, the closer the error term gets to zero and the 
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more accurate the observed score. Second, in IRT item difficulty and item discrimination are 

independent of who takes the test. In CTT item difficulty is defined as the mean score for an 

item. For dichotomous items this is the percent of respondents who answer an item correctly.  

The same item may have a low difficulty with students of high ability and a high difficulty with 

students of low ability.  This is at odds with the idea of latent constructs which “occupy a latent 

space that can be quantified along a hypothesized infinity continuum from (-∞, ∞)” (Osterlind, 

2010, p. 273).  Item response models solve this problem by measuring item difficulty and person 

ability on the same scale.  In the two of the most used IRT models (the 1-PL and 2-PL models), 

the difficulty of a dichotomous item is defined as the ability at which an individual has a 50% 

chance of answering the item correctly.  This is halfway between the probability of a correct 

response for a person with ability of -∞--a probability of 0.0--and for a person with an ability of 

+∞--a probability of 1.0. Third, IRT allows the standard error of measurement (SEM)—the 

standard deviation of the measurement error on a test--to vary across ability levels. In CTT, SEM 

is constant across all levels of ability. This may not be accurate—especially for very low or very 

high abilities. Finally, IRT approaches reliability with the test information function—a measure 

of the abilities for which the test gives the most precise estimates. In CTT reliability is described 

at the test level and the assumptions required to calculate a measure of reliability (some version 

of parallel test forms) may be difficult to meet.   

The three most used IRT models for dichotomous responses are the one-parameter 

logistic (1-PL), two-parameter logistic (2-PL), and three-parameter logistic (3-PL) models 

(Osterlind, 2010).  Each model provides an estimate of person ability along an arbitrary scale 

that is also used to measure item difficulty. It is assumed that the ability being measured is 

approximately normally distributed within the population and IRT software generally scales 
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ability along the standard normal distribution, N(0,1). Osterlind (2010) lists three additional 

important assumptions for the 1-PL and 2-PL models.  First, the test should be “unidimensional” 

meaning that all test items should measure the same, single latent construct. Second, test items 

are locally independent.  This means that responses to all items should depend only on the latent 

construct being measured.  Unusually high correlations between item responses after controlling 

for person abilities (i.e. correlations between residuals) may indicate that this is not the case.  

Such correlations may occur for items that share information such as a reading passage or 

diagram.  A third important assumption is that the model fits the data reasonably well. Osterlind 

refers to a fourth assumption, which applies to assessments that measure academic knowledge.  

This is the idea that respondents apply their ability to every item.  There is no part of the 

statistical model that accounts for respondents using less than their maximum ability on any item 

and certainly no easy way to test that they have. 

Mathematically, the 1- and 2-PL models relate the probability of a correct response on 

item j to person ability (θ), item difficulty (β), and item discrimination (α) as: 

𝑝𝑝�𝑥𝑥𝑗𝑗 = 1�𝜃𝜃,𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑗𝑗� =
𝑒𝑒𝛼𝛼𝑗𝑗(𝜃𝜃−𝛽𝛽𝑗𝑗)

1 + 𝑒𝑒𝛼𝛼𝑗𝑗(𝜃𝜃−𝛽𝛽𝑗𝑗) (4) 

where 𝑥𝑥𝑗𝑗 = 1 indicates a correct response to item j and 𝑥𝑥𝑗𝑗 = 0 indicates an incorrect response. 

For the 1-PL model, item discrimination is held constant across items and in the 2-PL model 

item discrimination is allowed to vary. For both models, when person ability and item difficulty 

are equal, the probability of a correct response is 0.5. Item discrimination measures how quickly 

the probability of a correct answer changes as item difficulty changes. The higher the 
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discrimination, the quicker the change and, therefore, the better the item discriminates between 

persons with different abilities. 

 Important factors to consider when choosing an appropriate model include test length and 

sample size.  As model parameters are added, some combination of a larger sample size and/or a 

longer test is required for estimation.  Despite the abundance of research concerning the effects 

of these factors on model fit and parameter estimation, there are no exact guidelines.  However, 

recommendations suggest that for the 2-PL model, a 10-item test should have a minimum sample 

size of 750 (Alpir & Duygu, 2017) while a 20-item test should have a sample size of about 500 

(Alpir & Duygu, 2017; de Ayala, 2009).  Yen and Fitzpatrick (2006) note that shorter tests and 

smaller sample sizes may be used in low stakes applications such as during field testing. 

Diagnostic Cognitive Models 

Diagnostic assessments in education may provide information about student’s attributes 

which teachers can use to individualize instruction. Diagnostic cognitive models (DCMs) 

provide one way to interpret responses to diagnostic assessments. DCMs are confirmatory 

multidimensional restricted latent-class models in which each latent class is a profile showing 

whether a person possesses each of a set of attributes. Attributes are latent states that are needed 

to respond correctly to the items on the assessment. Single items may require one or more 

attributes to answer correctly. The number of latent classes is restricted by the number of 

attributes. These are specified a priori. If the number of attributes specified in the assessment is 

A, then the number of possible latent classes (N) is given by 𝑁𝑁 = 2𝐴𝐴 because each respondent 

will be classified as either a master or a non-master of each attribute. The models are 

confirmatory because the attributes needed to respond to each item correctly are also specified a 

priori. Attributes are also referred to as skills. 



70 
 

DCMs are typically used to measure knowledge at a finer grain size than IRT or CTT. 

For instance, an IRT-based analysis of test responses might provide an estimate of math ability in 

the domain of adding fractions while a DCM-based analysis could be used to diagnose the 

distinct skills needed to add fractions (e.g. adding whole numbers, finding common 

denominators, and changing improper fractions to mixed numbers). They provide three levels of 

feedback that can be used to inform instructional decisions: 1) the distribution of skill classes 

within the test population, 2) the frequency of mastery for each skill in the test population, and 3) 

the most probable skill profile for each student (George et al., 2016). The finer-grained 

information that DCMs offer (compared to IRT and CTT models) comes with a price. They 

typically require longer tests and more respondents to estimate. As with IRT models, different 

DCMs have different numbers of parameters which depend upon the number of attributes, the 

number of items, and the relationships that are specified between the attributes. More expansive 

models require greater amounts of data for estimation. Because the number of latent classes 

increases exponentially with the number of attributes, most applications of DCMs are limited to 

a maximum of six attributes (Rupp & Templin, 2008). 

 Many different DCMs have been developed and evaluated. Due to its parsimonious 

nature, the deterministic inputs noisy-and-gate (DINA) model (Junker & Sijtsma, 2001) is the 

most widely used core DCM (George et al., 2016). The DINA model accounts for the probability 

of a correct response at the item level. Two parameters are estimated for each item, the 

probability of slipping--answering incorrectly when all needed skills are possessed--and the 

probability of guessing—a correct answer by a person who does not possess the skills needed for 

the item. The DINA model is a noncompensatory DCM-- the probability of a correct response 

depends on possessing all the skills required to answer an item. If a person is missing even one 
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of the skills needed to answer an item correctly, the probability that they will choose the correct 

response is the same as that for a person who possesses none of the needed skills. Possessing 

some of the needed skills does not compensate for missing any of them. In contrast, for 

compensatory DCMs the greater the number of required skills a person possesses, the greater the 

probability of a correct response. A person who possesses some of the skills has a greater 

probability of answering correctly compared to a person who possesses none of the skills and a 

smaller probability than a person who possesses all the required skills. Rupp et al. (2010) list two 

other core noncompensatory DCMs which model slipping and guessing differently. The noisy 

input deterministic-and-gate (NIDA) model (Junker & Sijtsma, 2001) accounts for aberrant 

responses at the attribute level and the noncompensatory reparameterized unified model (NC-

RUM) (DiBello et al., 1995) accounts for them at both the item and attribute level. 

The DINA model estimates the probability that each respondent is in one of two classes 

for each item: 1) the group that has mastered all attributes which are relevant to the item, or 2) 

the group that has failed to master at least one of the attributes relevant to the item. The 

probability of a correct response is defined at the item level as the combined probability of either 

guessing or not slipping: 

 𝑃𝑃(𝑋𝑋𝑗𝑗𝑗𝑗 = 1) = �1 − 𝑠𝑠𝑗𝑗�
𝜉𝜉𝑗𝑗𝑗𝑗𝑔𝑔𝑗𝑗1−𝜉𝜉𝑗𝑗𝑗𝑗  (13) 

 where 𝑃𝑃(𝑋𝑋𝑗𝑗𝑗𝑗 = 1) is the probability of a correct response to item j for a respondent in latent 

class c, 𝑠𝑠𝑗𝑗 is the probability of slipping for item j, 𝑔𝑔𝑗𝑗 is the probability of guessing for item j. The 

guessing parameter (g) is the probability of answering correctly even though one does not 

possess all required attributes and the slipping parameter (s) is the probability of failing to 

answer correctly even though one possess all required attributes. The final variable, ξjc, is a latent 



72 
 

variable that relates the skills needed to correctly answer item j to the skills possessed by 

respondents in latent class c. This is the deterministic-input part of the DINA model and is 

calculated as follows: 

 𝜉𝜉𝑗𝑗𝑗𝑗 = �𝛼𝛼𝑐𝑐𝑐𝑐
𝑞𝑞𝑗𝑗𝑗𝑗

𝐴𝐴

𝛼𝛼=1

 (14) 

where αca equals 1 if respondents in class c have mastered attribute a and 0 if they have not, and 

qja is the entry in the Q-matrix for item j and attribute a which equals 1 if item j requires the use 

of attribute a and 0 if it does not. The Q-matrix indicates which attributes are required to 

correctly respond to each item and is usually specified by content experts. This conjunctive 

condensation rule results in 𝜉𝜉𝑗𝑗𝑗𝑗 = 1 for items and classes that require/indicate mastery of the 

same attributes and 𝜉𝜉𝑗𝑗𝑗𝑗 = 0 for classes in which one or more attributes relevant to item j have not 

been mastered. The probability of a correct response to item j, πjc, will equal (1 − 𝑠𝑠𝑗𝑗) for 

respondents who have all attributes needed for item j and 𝑔𝑔𝑗𝑗 for respondents who are missing at 

least one attribute needed for item j. Because the Q-matrix and attribute profiles are specified a 

priori, estimating values for this part of the model focuses on the slipping and guessing 

parameters for each item. 

 Not only are the slipping and guessing parameters unknown. The latent class to which 

each respondent belongs is also unknown. The probability that the vector of person i’s responses 

belongs to an individual in latent class c is given by 

 𝑃𝑃(𝑿𝑿𝑖𝑖|𝜶𝜶𝑐𝑐,𝒈𝒈, 𝒔𝒔) = �𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑐𝑐,𝑔𝑔𝑗𝑗, 𝑠𝑠𝑗𝑗�
𝑋𝑋𝑖𝑖𝑖𝑖[1 − 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1�𝛼𝛼𝑐𝑐,𝑔𝑔𝑗𝑗 , 𝑠𝑠𝑗𝑗�]1−𝑋𝑋𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

 (15) 
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where 𝑿𝑿𝑖𝑖 is the vector of person i’s responses, 𝜶𝜶𝒄𝒄 is the vector indicating the attribute profile for 

individuals in latent class c, 𝒈𝒈 is the vector of guessing parameters for the items on the test, and 𝒔𝒔 

is the vector of slipping parameters for items on the test. The addition of the j subscript to any 

variable indicates that it is the jth member of the vector—the value for item j. Estimating these 

values is fairly straightforward using estimated item parameters and allows the assignment of the 

most probable attribute profile to each respondent. 

Estimating the item parameters for the DINA model involves calculating two values, s 

and g, for each item. Because the DINA model models slipping and guessing at the item level, 

the number of parameters that must be estimated is independent of the number of attributes 

which are measured and depends only on the number of items. The model requires that the 

probability of a correct response for someone who possesses all necessary skills is greater than 

the probability of guessing-- (1-si) > gi. The slipping and guessing parameters can be estimated 

alongside the person classifications in an iterative manner using marginal maximum likelihood 

estimation (MMLE). First the expected number of people in each attribute class is calculated 

from a theoretical ability distribution. These are used to estimate the item parameters which are 

used to again estimate the number of people in each attribute file and so on. The process stops 

when the model converges. Convergence occurs when the difference between values in 

successive iterations reaches a specified threshold. 

It has been suggested that DCMs could be used to measure students’ misconceptions and 

three models have been developed for this purpose (Bradshaw & Templin, 2014; Kuo et al., 

2016; Kuo et al., 2018). In each of the models, skills are replaced by misconceptions and a 

“correct” answer is the answer that would be chosen by a student who possesses the 

misconception. Instead of placing each respondent in the most likely attribute profile, the models 



74 
 

place each respondent in the most likely profile of misconceptions. Performance of the three 

models has been evaluated through simulation studies and/or by retrofitting data from existing 

assessments to them. The researcher found no CDAs that have been developed specifically for 

the purpose of assessing misconceptions. There are few assessments that have been designed 

using DCMs. Development of such assessments—sometimes called cognitive diagnostic 

assessments (CDAs)--requires expertise in both psychometrics and subject-matter knowledge 

literature (de la Torre, 2009). This is probably one reason for the small number of CDAs based 

on DCMs in the literature. Retrofitting models to existing data may produce questionable model 

and item fit and a high rate of examinee misclassification due to the violation of underlying 

assumptions (de la Torre & Minchen, 2014; Lee et al., 2012; Rupp & Templin, 2008). 

Development of CDAs in general and CDAs to measure misconceptions can contribute to the 

existing body of knowledge about DCMs. 

Research Questions 

 The purpose of this research was to test the efficacy of a proposed test format for 

cognitive diagnostic assessments that measure knowledge and misconceptions. A new 

assessment about Newton’s first and second laws of motion, the MAFA, was developed and 

evaluated using the test format. Hence, this is a proof-of-concept study. This paper addresses two 

specific questions: 

1. How well do the specified measurement models (item response theory and deterministic 

input noisy-and-gate) fit responses to the MAFA? 

2. How do responses on the MAFA compare to responses to Force Concept Inventory items 

which measure the same knowledge and misconceptions? 
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The next section of this paper describes the process of item development and the four phases of 

item analysis. 

Method 

Item Development 

Test Specifications 

 The test specifications for the MAFA were created by the researcher and informed by 

prior research on students’ misconceptions in physics. According to the Standards for 

Educational and Psychological Testing, test specifications include detailed statements “about 

content, format, test length, psychometric characteristics of the items and test, delivery mode, 

administration, scoring, and score reporting” (p.76) as well as the test’s purpose and intended 

uses (American Educational Research Council [AERA] et al., 2014). The purpose of the MAFA 

is to diagnose students’ misconceptions about and measure students’ mastery of Newton’s first 

and second laws of motion. The MAFA is composed of two sets of related items—knowledge 

items and reason items. Knowledge items are multiple-choice questions that ask about the 

numbers and directions of forces acting on objects and the types of motion that result from these 

forces. Responses to knowledge items are used to measure students’ conceptual reasoning about 

force and motion within the context of Newton’s first and second laws. They are scored using 

IRT. There are 18 knowledge items in the final version of the test.  Reason items are true/false 

questions that ask about the reasons for answers to the knowledge items. Responses to the reason 

items are used to predict the probability that students possess any combination of six 

misconceptions about force and motion. Reason items are scored using a DCM which results in a 

profile of misconceptions for each respondent. Each knowledge item has between one and four 
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reason items associated with it. The format of the test is meant to mimic an interview in which 

students are asked to predict what will happen in a physical situation and then to explain the 

reasons for their answer. The test presents a single knowledge item at a time followed by the 

associated reason items. The test is administered online and it contains some item sets that are 

adaptive—either the reason items or answer choices to the knowledge item presented depend on 

the response that was chosen to the prior item. A sample item that is not about Newton’s laws is 

given in Figure 3.1 to illustrate the test format. (This same item was used as a practice item 

during test administration). Results from the MAFA are intended to be used in classroom level  

Figure 3.1 

Sample Test Item 

Knowledge Item Choose the single best answer: 
Item S When a gas-filled balloon is placed in the freezer so that its temperature 

decreases, what happens to the volume of the air inside the balloon? 
--It decreases. 
--It stays the same. 
--It increases. 
 

Reason Items Indicate whether each statement about the gas molecules in the balloon 
is true or false: 

Item S.1: The gas molecules in the balloon get smaller when it is in the freezer. 
--True 
--False 

Item S.2: The space between the gas molecules decreases when the balloon is in 
the freezer. 
--True 
--False 

Item S.3: The space between the gas molecules increases when the balloon is in 
the freezer. 
--True 
--False 

Item S.4: The gas molecules stay the same size when the balloon is in the freezer. 
--True 
--False 
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formative assessment for both teachers and students. It is not intended to be used to assign grades 

or to make decisions about teacher performance.  

The Test Domain 

Because the MAFA measures misconceptions in addition to knowledge, the test domain 

needed to define both areas. There is a rich, research-based body of knowledge about student 

misconceptions in physics and the misconceptions included in the test domain were identified by 

reviewing the existing research. Figure 3.2 shows the content domain of the test including the 

parts of Newton’s first and second laws that are assessed by the knowledge items and the final 

list of six misconceptions that are assessed by the reason items. For each misconception, citations 

for the original research in which they were identified are provided.  

Many of the items on the FCI are based on the same research, therefore there are 

similarities between some of the items on this assessment and FCI items. One important 

difference is that the FCI measures conceptual knowledge of kinematics and all three of 

Newton’s laws of motion while the test domain for the MAFA is limited to Newton’s first and 

second laws. This contraction of the test domain is due to a combination of statistical and 

practical limitations. The greater the content domain, the greater the number of possible 

misconceptions there are to be diagnosed. This would require both a longer test and more 

participants to estimate the statistical models. Limiting the assessment to two laws and six 

misconceptions allowed the researcher to describe the misconceptions at a grain size that could 

be useful for instruction, to keep the test short, and to estimate the model with a reasonable 

amount of data while still demonstrating the development of a CDA to measure knowledge and 

misconceptions. 
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Figure 3.2 

Content Domain for MAFA 

Domain for Knowledge Items 
First 
Law 

1.a.  If there are no outside forces acting on an object, it will continue in its state of 
motion—either at rest or in a straight line at a constant speed. 

 1.b. Objects that are either speeding up or slowing down have a non-zero net force 
acting on them. 

 1.c. Objects that are moving along a curved path have a non-zero net force acting 
on them with a component that is perpendicular to the line of motion. 

Second 
Law 

2.a. Objects that are speeding up have a non-zero net force acting on them in the 
same direction they are moving. 

 2.b. Objects that are slowing down have a non-zero net force acting on them 
opposite the direction in which they are moving. 

 2.c. The bigger the net force acting on an object, the greater its acceleration. 
 2.d. Objects that are moving in a circle at a constant speed have a non-zero net 

force acting on them perpendicular to the direction in which they are 
moving/directed toward the center of the circle. 

Domain for Reason Items 
Number Misconception Original Source and Physical 

Situations 
1 When an object is moving in a given 

direction, there must be a force acting in 
that direction. 

Clement, 1982 
Rocket, Coin toss, & pendulum 
McDermott, 1984—hockey puck and 
air blast 

2 An object moving in a curved path has an 
outward force acting on it. 

Halloun & Hestenes, 1985b 
Unlu & Gok, 2007 

3 A constant force causes an object to move 
with a constant velocity/ an object’s 
velocity is proportional to the magnitude of 
applied force/changes in speed are caused 
by changes in the magnitude of applied 
force. 

Wenning, 2008 
Viennot, 1979 (in McDermott, 1984) 
Champagne et al., 1980 (in 
McDermott, 1984) 
Clement, 1982--Rocket, Coin toss, & 
pendulum 

4 The force of gravity pulls on an object only 
when it is falling downward. 

Wenning, 2008 
Clement, 1982—Coin toss 

5 An object that is moving in a curved path 
will continue to move in a curved path 
after the removal of the centripetal force. 

McCloskey et al., 1980—Ball on 
string as seen from above, ball shot 
out of curved tube 

6 An inanimate or passive object cannot 
exert a force on a second object because 
inanimate objects cannot push back. 

Clement, 1998 (as cited in Cummings 
et al., 2004) 
Minstrell, 1982—Book on table, book 
on hand, book hanging from spring 
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In addition to content knowledge and misconceptions, a third aspect of the test domain 

was physical situation (e.g. a coin tossed into the air or a rocket moving through space). While 

physics experts tend to explain diverse physical situations using a small set of rules (e.g. 

Newton’s laws of motion), novices’ conceptions of physical situations may be context dependent 

(Vosniadou, 2014). Therefore, it was important to employ the same or similar physical situations 

in the MAFA as those that were used in prior research on students’ misconceptions. The physical 

situations addressed by the questions were included as a third part of the test domain. The 

complete test domain was defined by the physical situations employed, the parts of Newton’s 

first and second laws that they addressed, and the misconceptions that they identified. The 

physical situations served as the stems for knowledge items and guided the structure of the test. 

Before knowledge items were written, a table was created to show the alignment between each 

physical situation and the other two parts of the test domain—the domain for knowledge items 

and the domain for reason items—that could be assessed by each. This table served as the initial 

draft of the test blueprint. The test blueprint for the MAFA was revised as items were created. 

The version of the test blueprint corresponding to the initial version of the MAFA is given in 

Figure 3.3. Physical situations that also served as the basis for FCI questions are noted in the 

blueprint. The researcher, an experienced physics teacher, created a single knowledge item for 

each physical situation listed in Figure 3.3. True/false items that targeted each misconception in 

the table were composed to follow each knowledge item. Some reason items targeted a single 

misconception and others targeted multiple misconceptions. Between two and four reason items 

were created for each knowledge item to give a total of 19 knowledge items and 55 reason items 

in the item pool.  
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Figure 3.3 

Test Blueprint for MAFA 

Areas of Domain for 
Knowledge Items 

Physical Situation Misconceptions for Reason 
Items 

1a 1b 1c 2a 2b 2c 2d M1 M2 M3 M4 M5 M6 
 X   X   Coin moving upward (FCI 

5) 
X  X X   

X X  X X   Coin toss at top of path X  X X   
  X    X Rocket turn on engines X      

X       Rocket turn off engines X    X  
X X      Book at rest on table (FCI 

12) 
   X  X 

X X      Book hanging from string    X  X 
X X      Book on hand   X X   
 X X  X   Pendulum on upward path X  X X   
 X X  X   Pendulum at bottom of 

swing 
X  X X   

 X X X    Person on rope swing lets 
go at bottom 

X  X    

  X    X Ball being swung in a circle 
on a string as seen from 
above (FCI 4)—before 

string breaks 

X X  X   

X  X    X Ball being swung in a circle 
on a string as seen from 

above (FCI 4)—after string 
breaks 

X X X  X  

X  X     Child on water slide as seen 
from above 

X X X  X  

X  X     Puck through curved tube 
on exit (FCI 10) 

X X X  X  

 X   X   Ball tossed along parabolic 
path--upward 

X  X X   

X       Elevator upward at constant 
speed 

X  X X   

 X   X   Elevator downward and 
speeding up 

X  X    

X       Box being pushed across 
the floor at constant speed 

(FCI 28 & 29) 

X  X X  X 

 X   X   Box sliding across floor X  X X   
       TOTAL 16 4 14 13 4 3 
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Item Evaluation 

 Items in the item pool were evaluated in four phases. For all phases, the MAFA was 

presented to participants using Qualtrics—an online survey platform. At the end of each phase, 

data from the evaluation were used to revise the items before the next phase of research began. In 

the first phase, five experienced physics instructors reviewed the items for clarity and for 

alignment with the misconceptions. The final three phases of the research all involved 

undergraduate students who had completed no more than two semesters of university level 

physics courses. In the second phase, four students reviewed the items for clarity. In Phase 3, the 

pilot test, 100 undergraduate students completed the MAFA. These data were used to choose 

which items to include in the final version of the MAFA. In the fourth phase, 349 additional 

students completed the final version of the MAFA. Data from the Phases 3 and 4 were combined 

for the final analyses. Next, each phase is described in more detail. 

Phase One: Expert Review 

 Participants. In Phase 1, the 19 knowledge items and 55 reason items in the item pool 

were evaluated by experienced physics instructors for item quality. Five local high school and 

university instructors who had been teaching introductory physics for at least five years were 

invited to participate by email. All five physics instructors were acquainted with the researcher 

and all agreed to review the items. Instructors’ teaching experience ranged from 5-15 years with 

a mean value of 10 years. All instructors had taught at least one introductory level physics course 

every year they had taught. Three of the instructors taught at local high schools and two taught at 

Virginia Tech. One of the university instructors was a former high school physics instructor and 

the other had taught exclusively at the university. Courses taught to high school students 

included Conceptual Physics, College Prep Physics, and college-level courses such as IB Physics 
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SL, AP Physics (including levels 1, 2, B, and C), and dual-enrolled algebra-based physics. 

Courses taught to college students were the first and second semesters of calculus-based Physics 

for scientists and engineers. All instructors had either a B.A. or a B.S. in Physics. Four of the 

instructors also had post baccalaureate degrees. Three instructors had a M.Ed. in Curriculum and 

Instruction and one instructor had a second B.S. in Math as well as a Ph.D. in Physics. The 

instructors were not compensated for their time. 

 Data Collection. Phase 1 data were gathered through an online survey platform. 

Instructors were provided a link to a modified version of the MAFA. They were asked to 

consider two things as they completed the assessment: the clarity of the items and whether 

answers to each item might indicate that a student had one of the six misconceptions. For CDAs, 

a table that shows the attributes needed to correctly answer each item is called a Q-matrix. For 

the MAFA, the attributes are the six misconceptions, and the Q-matrix indicates which 

misconceptions are required to answer each reason item in a certain way. The author constructed 

an initial Q-matrix based on existing research and her own experience as a physics instructor. 

Instructors were presented with each knowledge item and its associated reason items in the same 

format as students. However, each set of items was followed by two additional questions—one 

that asked the instructors to provide feedback about item clarity and another in which they were 

asked if they agreed with the suggested alignment between misconceptions and item responses in 

the Q-matrix. If they did not agree with the alignment, the instructors were asked the following 

question: “Please explain why you chose ‘No’ and/or provide suggestions to better align [the 

question] with the misconceptions. This could involve revising the question, choosing different 

misconceptions, or both.” Responses to these questions were used to revise the wording of some 

items for clarity and to revise the alignment of some item responses with misconceptions in the 
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Q-matrix. At the end of the assessment, the instructors were asked to provide any suggestions 

they had for revising the misconceptions. 

Phase Two: Think-Alouds 

 In the second phase of data collection, four undergraduate students who had completed 

no more than two semesters of college level physics courses performed think-alouds in which 

they completed the online assessment in the presence of the researcher while voicing their 

thoughts about each item aloud. Participants were recruited through flyers that were displayed on 

the Virginia Tech campus. The first four qualified students who contacted the researcher about 

participating were chosen. Think-alouds are a specific example of cognitive interviewing—a 

method used to gather validity evidence for assessment items—that has been suggested by 

researchers to gather validity evidence for response processes that respondents are otherwise 

assumed to use in responding to questions (Kane 2006; Messick, 1995). Participants met the 

researcher in a quiet room on campus at a time and location that were convenient to the 

participant. Each think aloud session lasted between 1.5 and 2 hours and participants were 

compensated at the rate of $12 per hour by the researcher.  

The structure of the think-aloud process was based on a sample protocol used to test U.S. 

Census surveys which is described in Chapter 7 of Dillman et al. (2014).  First, the researcher 

explained that the respondent was being asked to go through these questions to make sure that 

people who take the assessment understand the questions. Because of this, they were asked to 

explain their thinking out loud as they take the test. Next, respondents practiced this technique 

using a sample question. In addition to familiarizing respondents with the technique, 

conversation during the practice question was intended to make the respondents more 

comfortable with the think-aloud experience and move the emphasis of the experience from 
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answering items correctly to helping to identify problems with the way that the items were 

written (Dillman et al., 2014). Participants accessed items through a Qualtrics survey on the 

researcher’s computer. The researcher audiotaped and took notes during each session. Data 

gathered during Phase 2 were analyzed and used to revise the items for greater clarity before 

proceeding to Phase 3. 

Phase Three: Pilot Test 

 Participant Recruitment and Data Collection. Phase 3 was the pilot test for the 

assessment. The revised version of the test was piloted with 100 participants. All participants that 

spent at least eight minutes between opening and submitting the assessment (as indicated by the 

time stamp in the survey) were compensated $5 for their time. (The researcher was able to read 

all material and complete the assessment in nine minutes.) Submissions that took less time were 

considered invalid and were not included in the data set. This phase of data collection began near 

the end of the Spring 2019 semester. Participants were recruited using multiple methods. First, 

flyers advertising the study were posted in academic buildings on campus. Second, the 

researcher emailed information about the study to instructors of introductory biology, chemistry, 

and physics courses at Virginia Tech and asked the instructors to share the information with their 

students. Introductory courses were defined as courses in a sequence for which there was not a 

same-subject prerequisite for the first course in the sequence. For instance, Physics 2215 was 

considered introductory because the only prerequisite was a mathematics course and Physics 

2216, the second course in the sequence, was considered introductory as well. Instructors of 

introductory science courses were identified using the course timetable for the semester. 

Interested students emailed the researcher and the researcher replied with an email that described 

the research (including required IRB information such as who to contact with questions) and 
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included a digital link to take the assessment. This process was repeated with the modifications 

described below for courses taught in Summer 2019, Fall 2019, and Spring 2020. 

During data collection, the recruitment protocol was modified multiple times due to a low 

response rate. I received approval for each modification to the research protocol from the 

appropriate Institutional Review Board (IRB) before implementing each change. Next, the 

modifications to the recruiting process that occurred during Phase 3 are listed in chronological 

order along with the date each was implemented. In July 2019, recruitment was expanded by 

posting flyers at off-campus locations such as grocery stores and coffee shops. In August 2019, 

emails announcing the study were sent to the leaders of fraternities, sororities, and the corps of 

cadets at Virginia Tech. In September 2019, I began to conduct in-person recruiting in which I 

stood in front of the campus library and invited students to participate. In October 2019, I also 

added instructors of social science courses to the list of instructors to whom information about 

the study was sent. The required number of 100 participants was reached in January 2020.  

Data Analysis. Responses were analyzed using Classical Test Theory (CTT) to identify 

poorly performing knowledge items and a correlation matrix to measure the extent to which 

answers to reason items consistently identified misconceptions. Poorly performing knowledge 

items were those that had very high or very low item difficulties, low or negative discrimination 

values for the correct answer, and/or distractors with positive discrimination values. Reason 

items were designed to measure the presence of six misconceptions. One indication that they are 

doing this well would be that students would answer items that measure the same misconception 

in similar ways. Correlations between items were calculated to look for high correlations 

between items that measured the same misconceptions and low correlations between items that 

measured different misconceptions. Initially, it was thought that the final version of the MAFA 



86 
 

would have 10 knowledge items and their associated reason items to ensure that the time 

required to take the test was under 30 minutes. However, students completed the test more 

quickly than had been anticipated. Therefore, I decided that there was no need to remove well-

performing items merely to shorten the assessment. Only one knowledge item and five reason 

items were found to perform poorly. These items were removed from the test to create the final 

version of the MAFA which was composed of 18 knowledge items and 46 reason items.  

Phase Four: Field Test 

During Phase 4, the field test, the data needed to model responses to the assessment using 

Item Response Theory (IRT) for the knowledge items and a diagnostic cognitive model (DCM) 

for the reason items were gathered. Two questions from the FCI were added to the end of the 

MAFA to gather validity evidence. These questions were chosen because they used the same 

physical situations as two questions on the MAFA and because answers to the distractors were 

aligned to the same misconceptions that were assessed by the MAFA items. As in Phase 3, 

participants were offered $5 to compensate them for their time. It was projected that a total of 

400 additional responses would be required to estimate the final test parameters. Despite 

extended recruitment efforts, participant response rate remained relatively low. Therefore, in 

Spring 2020 the researcher requested and received permission to recruit participants from six 

additional public universities in Virginia: Christopher Newport University, George Mason 

University, James Madison University, Radford University, University of Virginia, and 

University of Virginia-Wise. Data for Phase 4 were collected during Spring 2020, Summer 2020, 

and Fall 2020. The same recruitment protocols that were used in Phase 3 were used in Phase 4 

with the exception of in-person recruiting due to the COVID-19 pandemic which caused many 

campuses to send students home and made person-to-person contact unwise. In total, 1692 initial 
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emails were sent to contact instructors during these three academic sessions. However, the 

response rate remained low. The possibility of combining data from Phases 3 and 4 for the final 

analysis was explored. Because there were only minor changes between the two versions of the 

test, it seemed unlikely that they would have a significant effect on students’ responses. 

Therefore, it was decided to combine the data from Phases 3 and 4 for the final analysis. Finally, 

these data were used to estimate item and person parameters for each set of items and to compare 

answers to the MAFA and the FCI questions. Because model fit was poor when all items were 

included in each model, items were eliminated from the final IRT model and DCM to improve 

model fit. 

Results 

Phase 1: Expert Review 

 In Phase 1 of the research, five experienced physics instructors provided feedback on the 

content and composition of the items in the item pool and on the extent to which responses to the 

reason items would indicate the presence of one or more of the six misconceptions as shown in 

the Q-matrix. Instructors’ suggestions regarding item clarity were used to revise the items and 

reduce the probability that the questions, answers, and diagrams would be misinterpreted. 

Suggestions about the alignment of misconceptions and item responses revealed possible 

assumptions about some items that I had not considered, but that I agreed with. These were as 

follows: 

1. In the original version of a question about a coin tossed into the air, one of the reason 

items read: “The net force decreases as the coin gets higher” and it was suggested that 

answering this question with “True” aligned with misconceptions M1 and M3. Three 
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instructors pointed out that students who know about the Law of Universal Gravitation 

would know that the gravitational forces do decrease as objects get farther apart and 

might not assume that this change is negligible for the coin. Therefore, the question was 

rewritten to read: “The coin slows down because the net force decreases as the coin 

moves upward” and the alignment was left the same.  

2. In a question that referred to a rocket changing direction because it pushes fuel into 

space, “fuel” was changed to “fuel exhaust”.  

3. Multiple items asked “which force(s)” acted on an object. It was suggested that this 

wording implied that multiple answers could be chosen, so the wording was changed to 

“what forces”. Also, nouns were substituted for pronouns in two items. 

4. In multiple items, a statement was added to assume no air resistance or that it was 

negligible. 

 

Data from Phase 1 were also used to revise the Q-matrix. The entry for one item was changed to 

indicate the presence of an additional misconception that was pointed out by one of the 

instructors. Instructors disagreed with other entries in the Q-matrix, but they made suggestions to 

revise the wording of the items and misconceptions rather than the Q-matrix to bring the items 

and misconceptions into alignment. This resulted in additional revision of the reason items and 

the misconceptions.  

Phase 2: Think-Alouds 

 During Phase 2, four students performed think-alouds while completing the MAFA. The 

researcher audiotaped the sessions and took notes. The think-alouds served two purposes. First, 

students identified wording that they found confusing or thought might be potentially confusing 



89 
 

to others. For instance, two participants pointed out that not all students would understand the 

term “net force” and suggested that it be replaced with “total force”. Second, participants 

explained their reasons for choosing and eliminating answers to each question. The researcher 

found that students were interpreting the questions as predicted. This provided evidence for 

content validity. 

Phase 3: Pilot Test 

Data collected during Phase 3 were analyzed to identify poorly performing items so that 

they could be deleted from the final version of the MAFA. Poor item performance could include 

knowledge items which almost everyone or almost no one answered correctly, distractors which 

were chosen by few respondents, knowledge items that were more likely to be answered 

correctly by respondents with lower overall scores, and reason items associated with the same 

misconceptions that were only weakly correlated. Because the MAFA knowledge items and 

reason items work together, decisions about whether to retain or delete each item were made 

only after considering the performance of all items in the set. Only complete submissions for 

which submissions which were made at least 8 minutes after opening the survey were included in 

the analysis. It was estimated that this was the minimum time required to read and respond to all 

the items. Responses were analyzed using jMetrik software (Meyer, 2018).  

The knowledge items were analyzed using the Classical True Score Model (CTSM).  

Although the final analysis of items was not done under the CTSM, it was useful to provide 

simple measures of item difficulty and discrimination using the pilot test data to ensure each item 

included on the test provided useful information. The researcher considered dropping items with 

difficulties near 0.0 or 1.0 as well as those with discriminations less than 0.3.  There were four 

items that had these characteristics. Each item was inspected for unforeseen problems and to see 
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if the reason questions that followed it added valuable information to the misconceptions profile 

to decide whether to drop or retain the item. The statistics and decisions for each item are 

described in Table 3.2. 

The performance of the distractors for each knowledge item was also analyzed.  Two values, the 

proportion of respondents who chose the distractor (p) and a discrimination index (rpbis), were 

calculated for each distractor.  Distractors with very low values for p (chosen by few 

respondents) may provide little information for the total test score and those with very high 

values for p may be a second correct answer.  This process identified five knowledge items for 

which one of the distractors was chosen by no one. Although the answer choices could have been 

dropped without losing information, it was decided to leave them so that all knowledge items 

would have four answer choices. On a traditional test, discrimination values should be negative 

for most distractors as this would indicate that students who have a high test score are less likely 

to choose the distractor on the item.  Distractors with positive discriminations were examined for 

potential problems.  Decisions about whether to drop items were made only after considering the 

performance of both the knowledge item and the reason items associated with it because the 

reason items associated with low discrimination distractors might still provide valuable 

information about misconceptions. Table 3.2 lists the statistics and decisions that were made for 

potentially problematic items. 

The final step in analyzing Phase 3 data was to calculate correlation coefficients for each 

reason item.  It was expected that reason items which measured the same misconception would 

be highly correlated. The possibility that reason items that measured different 
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Table 3.2  

Items Considered for Removal During Phase 3 

Item ID Item Description Problem Decision and Reason 
Knowledge Items 

Knowledge Rocket in space--
engines turn on 

Low discrimination 
(r = -0.0114) 

Left in test—required precursor 
to next item 

Knowledge Ball on string before 
string breaks 

Low discrimination 
(r = 0.2151) 

Left in test—Associated reason 
items are strong. 

Knowledge Spiral water slide Low discrimination 
(r = 0.1068) 

Dropped—Some confusion was 
also noted during Phase 2. 

Associated reason items also 
dropped. 

Knowledge Elevator moving 
upward at constant 

speed 

Low discrimination 
(r = 0.2123) 

Left in test—Associated reason 
items are strong. 

 Reason Items 
Reason Only force on ball after 

string breaks is gravity. 
Low correlation 
with other items 
measuring same 
misconception 

Left in test, but alignment of 
certain responses with Q-matrix 

deleted—Interpretation of 
alignment was only problematic 
for some responses to associated 

knowledge item. 
Reason No gravity acts on book 

at rest on table because 
it is at rest. 

Very low or 
negative 

correlations with 
other items 

measuring same 
misconception 

Dropped—May be that students 
interpreted this situation 

differently because book was 
supported by table rather than 

string or hand. 

Reason No gravity acts on 
pendulum at lowest 

point in swing AND No 
gravity acts on coin as it 

moves upward 

Negative 
correlation 

Left in test—Both items 
correlated well with other items 

that measured the same 
misconceptions. 

Reason Constant upward force 
on elevator moving 
upward at constant 

speed 

Low correlation 
with all other items 

measuring same 
misconception 

Dropped—Item was wordy and 
may have been misinterpreted. 

Reason Floor of elevator exerts 
an upward force on 

person’s feet as elevator 
moves downward. 

Negative 
correlation with 

other items 
measuring same 
misconception. 

Dropped—Item was wordy and 
may have been misinterpreted. 

 



92 
 

misconceptions might also be high correlated because some of the misconceptions were closely 

related was also recognized. Therefore, items that measured the same sets of misconceptions 

were placed into groups and correlation coefficients were calculated between all item pairs in the 

group. For instance, all items that measured only misconception one were placed into a single 

group and all items that measured only misconceptions one and four were placed into a different 

group. For items aligned with more than one misconception, it was thought that both 

misconceptions were required to choose these items. Therefore, items that measured only 

misconception one or misconception four were not placed with items that measured both 

misconceptions. Reason items that had low or negative correlations with other items in their 

group are listed in Table 3.2 along with the decisions that were made about each. 

Phase 4: Field Test 

Participants and Data  

Data from Phase 4 (N = 352) were combined with data from Phase 3 (N = 97) for the 

final analysis and model fitting. The “loss” of three cases from the Phase 3 data was due to the 

researcher’s decision to increase the minimum time for completion from 8 minutes to 9 minutes. 

Nine minutes was the time needed for the researcher to read each question without taking time to 

think about what the correct answer might be. All respondents that had no correct answers to 

knowledge items and most that had only one or two correct answers fell into this group. The 

highest performance that was eliminated had five correct knowledge items. Because the time 

stamp on responses recorded only start and end time and the assessment link allowed 

respondents to leave and return to the assessment over a period of two weeks, comparing mean 

times for completion was not meaningful. There was some concern that these data might differ 

because the Phase 4 data collection had been extended to additional schools. Therefore, the 
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Phase 4 data were compared to the Phase 3 data in terms of participant demographics and 

number of knowledge items answered correctly. The results of this analysis are shown in Table 

3.3.  

Table 3.3 

Comparison of Participants by Phase of Research 

Question Response Phase 3 
Data 

(N = 97) 

Phase 4 Data 
(N = 352) 

All Data 
 

(N = 449) 
Number / 
Percent 

Number / 
Percent 

Number / 
Percent 

School Year Freshman 44 / 45.4% 167 / 47.4% 211 / 47.0% 
Sophomore 21 / 21.6% 102 / 29.0% 123 / 27.4% 

Junior 15 / 15.5% 49 / 13.9% 64 / 14.3% 
Senior 15 / 15.5% 34 / 9.7% 49 / 10.9% 

Prefer not to answer 2 / 2.1% 0 / 0% 2 / 0.4% 
Total 97 / 100.0% 352 / 100.0% 449 / 100.0% 

Sex Female 47 / 48.5% 235 / 66.8% 282 / 62.8% 
Male 49 / 50.5% 117 / 33.2% 166 / 37.0% 

Prefer not to answer 1 / 1.0% 0 / 0.0% 1 / 0.2% 
Total 97 / 100.0% 352 / 100.0% 449 / 100.0% 

Physics courses 
completed in 
high school 

None 22 / 22.7% 108 / 30.7% 130 / 29.0% 
Regular/Honors/Conceptual 

only 
36 / 37.1% 158 / 44.9% 194 / 43.2% 

At least one AP or IB 
course 

39 / 40.2% 86 / 24.4% 125 / 27.8% 

Total 97 / 100.0% 352 / 100.0% 449 / 100.0% 
Number of 
semesters of 
college level 
physics 
completed 

None 79 / 81.4% 304 / 86.4% 383 / 85.3% 
One 9 / 9.3% 27 / 7.7% 36 / 8.0% 
Two 9 / 9.3% 21 / 6.0% 30 / 6.7% 
Total 97 / 100.0% 352 / 100.0% 449 / 100.0% 

Number of 
Knowledge  
Items Correct 

Minimum 4 2 2 
Maximum 18 18 18 
Mean (SD) 12.15 (4.04) 9.46 (3.60) 10.04 (3.85) 
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The participant demographics are similar in terms of school year and number of 

semesters of college physics courses completed. They differ in two things. First, about 67% of 

the Phase 4 participants are female while only 49% of Phase 3 participants are female. The other 

difference is in the physics courses that participants completed in high school. Phase 4 

participants completed fewer high school physics courses-especially AP or IB physics courses. A 

third difference between groups is the mean number of knowledge items answered correctly. 

Participants in the Phase 4 group had a lower mean score (9.46/18.00) than those in the Phase 3 

group (12.15/18.00). Despite these differences, all the students came from the target population 

for the test--undergraduate students who have completed no more than 2 semesters of college 

level physics. The combined sample was more representative of the population for whom the test 

is intended. It was anticipated that the combined data set would result in more precise parameter 

estimates. 

Model Fit for Knowledge Items 

Knowledge items were modeled using item response theory (IRT). The first steps were to 

test the model assumptions of unidimensionality and local item independence which were done 

using IRTPro software (Cai et al., 2017a). The next steps--comparing the fit of a 1-PL model to a 

2-PL model and using the best model to estimate item parameters and person ability estimates--

were done using jMetrik software (Meyer, 2018). This section describes the results of each of 

these processes. 

Testing Model Assumptions. The IRT models used to analyze responses to the MAFA 

knowledge items (1-PL and 2-PL) are built upon the assumption that the test is unidimensional—

that responses to all items are explained by the same latent construct. The MAFA was 

hypothesized to measure a single latent construct: knowledge of Newton’s first and second laws. 
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Exploratory Factor Analysis (EFA) was used to compare model fit for a one-dimensional model 

and a two-dimensional model. This type of factor analysis is used when there is no a priori 

hypothesis about which items may load onto which factors. The EFA process identifies which 

items load onto the same latent construct which allows the researcher to compare the fit of 

models in which different numbers of latent constructs are specified. The models specified 

quartimax rotation which allows multiple factors to be partially correlated while producing a 

small number of factors. 

The model fit for the one- and two-dimensional models were compared using the Akaike 

Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) 

(Schwartz, 1978). The measures for the one-dimensional model (AIC = 9634.29 and BIC = 

9782.15) were higher than for the two-dimensional model (AIC = 9480.69 and BIC = 9698.36). 

Lower values generally indicate a better fit. However, it is important to consider more than fit 

indices when deciding on the dimensionality of a test. For instance, factor loadings should make 

sense in terms of question content rather than shared item stems, similar difficulty levels, or 

other less salient constructs. Next, possible explanations for the fit of the two-factor model were 

considered by looking at factor loadings, local item dependence, and item characteristic curves. 

Chen and Thissen’s (1997) local dependence chi-square statistic was used to assess local item 

dependence with values above 10.0 considered indications of dependence as recommended by 

the authors. Finally, item characteristic curves were inspected to ensure that they were 

monotonically increasing showing that students with higher abilities were more likely to answer 

each item correctly. 
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Table 3.4 shows the factor loadings, proportion correct, and topic for MAFA knowledge 

items in the two-factor model. A factor loading of 0.30 or higher was used to determine if an 

item loaded onto a given factor (Scott & Schumayer, 2012). Six items loaded onto factor 1, 

Table 3.4 

Quartimax Rotated Loadings for Two-Factor EFA 

Item Factor 1 Factor 2 Proportion 
Correct 

Topic 
ʎ1 SE ʎ2 SE 

Q7 .96 .19 -.07 .40 .80 Which forces on a book at rest on hand 
Q18 .91 .18 -.01 .36 .33 Number of forces on box pushed at 

constant speed 
Q5 .88 .20 .10 .35 .62 Which forces on book at rest on table 
Q6 .78 .17 .00 .32 .69 Which forces on book hanging on 

string 
Q12 .45 .19 .34 .29 .43 Path of ball on string swung in circle 

and released 
Q14 .36 .22 .15 .17 .73 Path of puck leaving end of curved tube 
Q1 .03 .25 .81 .03 .40 Which forces on a tossed coin going up 
Q15 -.08 .28 .73 .16 .39 Number of forces on juggled ball going 

up 
Q2 .17 .27 .61 .20 .48 Which forces on tossed coin at top of 

path 
Q8 -.01 .23 .54 .16 .56 Number of forces on pendulum going 

up 
Q11 -.27 .18 .51 .14 .49 Number of forces on ball on string 

swung in circle 
Q9 .25 .24 .43 .23 .58 Number of forces on pendulum at 

bottom of swing 
Q16 .07 .21 .40 .16 .65 Which forces on elevator going up 
Q17 .22 .21 .35 .20 .43 Which forces on person in elevator 
Q19 .19 .18 .29 .18 .47 Number of forces on sliding box 
Q10 .26 .16 .11 .18 .65 Path of person on rope swing 
Q4 .29 .18 .10 .20 .64 Path of rocket in space after engine 

turned off 
Q3 -.13 .15 .11 .16 .69 Path of rocket in space after engine 

turned on 
Note. Items are ordered by strength of loading on each factor. Items in bold were eliminated from 

final scoring. 
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eight items loaded onto factor 2, and four items did not load onto either factor. Three of the items 

that loaded onto factor one—Q5, Q6, and Q7—asked about the forces that act on a book at rest. 

Two of the items, Q5 and Q7, had a local dependence chi-square statistic greater than 10.0. The 

three items all asked about forces supporting a book and this similarity may have accounted for 

the correlation and possible local item dependence between the three items. The three items 

aligned to the same two areas of the test domain for knowledge items, 1a and 1b, but differed in 

difficulty. The two easier items, Q6 and Q7, were eliminated from the IRT models. The 

remaining items in factor one were not logically related to either each other or the book 

questions. Similarly, three questions that loaded onto factor two—Q1, Q2, and Q15—are about 

the forces that act on an object that has been tossed into the air. In this case, all pairs of the three 

items had local dependence chi-square statistics greater than 10.0. The only difference between 

the three questions was the object being tossed, whether the object was tossed straight upward or 

at an angle, and where along the path the object was located. It was decided to eliminate two of 

the questions—Q1 and Q15--from the IRT models. These two questions aligned to only parts 1b 

and 2b of the test domain for knowledge items while Q2 aligned with parts 1a, 1b, 2a, and 2b. 

The other questions that loaded onto factor two were not logically related to the first three 

questions and were left in the IRT models. Two additional items, Q3 and Q11, were removed 

after inspecting the item characteristics curves. The curve for Q3 was monotonically decreasing 

indicating that respondents with overall higher scores were less likely to answer the item 

correctly. This was not surprising as the Q3 (about a rocket in space) had a discrimination near 

zero in the pilot test but was left in the test because it was the precursor to the following 

question. The curve for Q11 had a very low slope which meant that it would do little to 
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differentiate respondent abilities. Based on these results, it was decided to remove these six items 

from the data and estimate the two EFA models again for the remaining twelve items. 

Of course, no test will be perfectly unidimensional, but the factors must make sense.  

According to Kane (2006), “the interpretation depends on a combination of formal mathematical 

modeling and subjective judgements that tie the model to observable phenomena” (p. 41). EFA 

conducted for the remaining 12 items on the MAFA showed mixed results when comparing the 

one- and two-dimensional models. The AIC was slightly lower for the two-dimensional model 

(6607 compared to 6640) while the BIC was slightly lower for the one-dimensional model (6739 

compared to 6751). Factor loadings for the one-dimensional model were greater than 0.30 for all 

twelve items. Factor loadings for the two-dimensional model showed four items with loadings 

greater than 0.30 for factor one, seven items with loading greater than 0.30 for factor two, and 

one item for which the greatest loading was 0.25. However, few of the items that loaded onto 

each factor showed a logical relationship to each other. Therefore, it was decided to continue the 

analysis with 12 items and a unidimensional IRT model. 

Comparing IRT Models. Two IRT models—a 1-PL model and a 2-PL model—were fit 

to the knowledge item responses using the jMetrik software package (Meyer, 2018). A prior 

lognormal distribution with mean of 0 and standard deviation of 0.5 was applied to 

discrimination parameters and a prior beta distribution with mean of 0 and standard deviation of 

1.0—the default for the software—was applied to item difficulty parameters. The two models 

were compared at the item level and for overall model fit using multiple measures. Based on 

both considerations, the 2-PL model was deemed a better fitting model for the MAFA 

knowledge items. Next, I compare the item level fit for the two models. This is followed by a 

comparison of overall model fit for the two models. 
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At the item level, a chi-square statistic is provided that compares the overall distribution 

of responses to an item compared to the expected distribution for each sum score. Chi-square 

item level statistic p-values less than .05 indicate negligible misfit and p-values less than .01 

indicate more serious misfit (Cai et al., 2017b). Comparing the 1-PL and 2-PL models, for the 1-

PL model there were three items with chi-square values less than .05—two of these less than 

.01—and for the 2-PL model there were no items with chi square values less than .05. For overall 

model fit, AIC and BIC were used with smaller values indicating better fit. The AIC was smaller 

for the 2-PL model (3345 for the 2-PL versus 3370 for the 1-PL) and the BIC was smaller for the 

1-PL model (3420 for the 1-PL versus 3444 for the 2-PL). The 2-PL model was deemed a better 

fit overall. Item parameter estimates and chi-square item level statistics for the 2-PL model are 

given in Table 3.5. Estimates for item difficulty range between -1.29 (Q14) and 0.48 (Q18). 

Estimates for item discrimination parameters vary from 0.58 (Q10) to 2.63 (Q5). Standard errors 

for estimates are almost all less than or equal to 0.20 and no chi-square item level fit statistics are 

significant at the p < .05 level.  

Person scores were estimated using the expected a posteriori (EAP) method. In EAP estimation, 

each response pattern is assigned an ability estimate. A twelve-item test such as the MAFA has 

212 = 4096 possible response patterns. However, only 345 different response patterns were seen 

in the sample. Given the sample size of 449, this means that few response patterns occurred more 

than once. The most common response patterns were all items correct (n = 31), all items correct 

except for Q10 (n = 7), and all items correct except for Q17 (n = 7). All other response patterns 

that were present in the data set appeared between one and three times. Figure 3.4 shows the 

distribution of person scores for the 449 respondents. Ability estimates ranged from -1.97 to  
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Table 3.5  

Item Parameters and Fit Statistics for 12-Item 2-PL Model 

Item Item Difficulty Item Discrimination Item level Χ2 
β SE α SE Χ2 df p 

Q2 .05 .09 1.17 .13 7.17 8 .5183 
Q4 -.91 .18 .74 .11 12.38 8 .1351 
Q5 -.40 .05 2.63 .26 3.44 8 .9037 
Q8 -.44 .18 .59 .10 6.03 8 .6438 
Q9 -.42 .11 1.03 .13 5.97 8 .6506 
Q10 -1.17 .25 .58 .10 13.39 8 .0990 
Q12 .26 .08 1.46 .15 8.15 8 .4190 
Q14 -1.29 .19 .88 .13 6.02 8 .6454 
Q16 -1.06 .22 .63 .11 6.98 8 .5384 
Q17 .32 .12 .92 .12 7.05 8 .5316 
Q18 .51 .06 2.31 .22 13.69 8 .0902 
Q19 .16 .14 .72 .10 6.93 8 .5445 

Figure 3.4 

EAP Score Estimates for 12 Knowledge Items 
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+1.70 with a mean value of 0.00. Standard errors ranged between 0.45 and 0.66 with a mean 

value of 0.51. 

For IRT models, a plot of the test information function, the test information curve, shows where 

ability estimates have the greatest and least precision. The test information curve for the twelve 

knowledge items included in the final 2-PL model is given in Figure 3.5. The greatest values for 

information are for ability estimates between approximately -1.0 and 1.0 with maximum 

information given at -.20. Measurements are most precise for average students.  

Model Fit for Reason Items 

 The MAFA consists of sets of related knowledge and reason items. Responses to the 

knowledge items were fit to a 2-PL IRT model which provided a single measure of knowledge 

about forces in relation to Newton’s first and second laws. Reason items were designed to elicit 

information about the presence or absence of six specific misconceptions about Newton’s first 

and second laws. Therefore, they were fit to a diagnostic cognitive model, the DINA model, 

designed to provide a profile of a set of constructs or skills. For the MAFA, the constructs or 

skills that were measured were the six misconceptions. Each reason item was aligned with 

between zero and two misconceptions. The MAFA is shown in Appendix A and the alignments 

are shown in the Q-matrix which is given in Appendix B. 

 The scoring of reason items is inherently backwards. Because the items were designed to 

identify students who possessed misconceptions, “correct” answers did not indicate correct 

knowledge. They indicated the presence of misconceptions. The scoring for reason items (see 

Table 3.6) was based on the q matrix that was specified in Phase 1. For all items, a score of “1” 

indicates the presence of all misconceptions associated with the item and a score of “2” indicates 
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the absence of at least one of the misconceptions associated with the item. For most reason items, 

a response of “True” indicates the presence of misconceptions. For some items, however, a 

response of “False” indicates the presence of misconceptions. Finally, there were some items for 

Figure 3.5 

Test Information Curve for 12 Knowledge Items 
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Table 3.6 

Scoring Instructions for Reason Items 

Knowledge Item Reason Item Knowledge Item 
Response 

Scorea for 
“True” 

Scorea for 
“False” 

Q1 Q1.3 A 2 2 
  B, C, or D 1 2 
 Q1.4 A or C 2 2 
  B or D 1 1 
Q3 Q3.1 A, B, C, or D 2 1 
Q4 Q4.1 A, C, or D 2 2 
  B 1 2 
Q6 Q6.3 A, B, C, or D 2 1 
Q7 Q7.3 A, B, C, or D 2 1 
Q8 Q8.3 A 2 2 
  B, C, or D 1 2 
Q12 Q12.2 A or C 2 1 
  B or D 2 2 
Q14 Q14.2 b A or C 2 2 
  B or D 1 2 
 Q14.2ab A or C 1 2 
  B or D 2 2 
Q15 Q15.2 A 2 2 
  B, C, or D 1 2 
 Q15.3 A 2 2 
  B, C, or D 1 2 
Q18 Q18.2 A, B, C, or D 2 1 
Q19 Q19.2 A, B, C, or D 2 1 
Note. The following reason items are scored as T = 1 and F = 2 for all responses to the associated 

knowledge items: Q1.1, Q1.2, Q2.1, Q2.2, Q3.2, Q4.2, Q5.2, Q5.3, Q6.1, Q6.2, Q7.1, Q7.2, Q8.1, 

Q8.2, Q9.1, Q9.2, Q9.3, Q10.1, Q10.2, Q10.3, Q11.1, Q11.2, Q11.3, Q12.3, Q14.3, Q14.4, Q15.1, 

Q16.1, Q17.1, Q18.1, Q18.3, Q19.1, and Q19.3. 

aA score of “1” indicates the presence of all misconceptions aligned with the item and a score of “2” 

indicates that the absence of at least one of the misconceptions aligned with the item. 

bResponses to Q14.2 correspond to different sets of misconceptions depending on responses to the 

associated reason items. The question occupies two rows in the Q-matrix. The rows are labeled Q14.2 

and Q14.2a. 
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which the presence of misconceptions was indicated by a combination of responses to the 

knowledge item and the reason item together. The scoring for these items was more complicated. 

For instance, an answer of “A” to knowledge item 20 item indicated the presence of no 

misconceptions regardless of the response to the associated reason item 24.  

 Values for the parameter estimates were computed using the R-package CDM (Robitzsch 

et al., 2020a) and choosing the DINA model. For the DINA model, smaller slipping and guessing 

parameters indicate better fit (Rupp et al., 2010). In addition to low slipping and guessing 

parameter estimates, indices for judging item fit include item level RMSEA and item 

discrimination. Rupp et al. (2010) define item discrimination for the DINA model as the 

probability of neither guessing nor slipping with higher values indicating stronger items. 

Generally, RMSEA values greater than 0.10 indicate poor model fit, values between 0.10 and 

0.05 indicate moderate fit and values less than 0.05 indicate good fit. The RMSEA values, item 

discrimination indices (IDI) and slipping and guessing parameters were used to decide whether 

to keep items in the model. When all 38 reason items were included in the model, the mean 

RMSEA was 0.104, some items had RMSEA values greater than 0.30, two items had IDI values 

less than 0.10, and two items had slipping or guessing parameters greater than 0.9. In order to 

improve model fit, items were deleted from the model in a stepwise fashion starting by removing 

items that had RMSEA values greater than 0.15, IDI values less than 0.10, or slipping or 

guessing parameters greater than 0.9 and rerunning the model. This process was repeated for 

RMSEA values greater than 0.14, greater than 0.13, greater than 0.12, greater than 0.11, greater 

than 0.105, and greater than 0.10. There was no need to remove items due to large slipping and 

guessing parameters after the first step because no values exceeded 0.9 after that point. The same 
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was true for items with IDI less than 0.10. At each step, overall model fit statistics, item 

parameters, and other model estimates such as correlations of misconceptions were compared.   

 Many models were compared with different numbers (from 38 to 22) and combinations 

of items. The model that was judged to have the best overall fit statistics included 27 items. Item 

parameters, discrimination indices, and RMSEA for the 27 items are given in Table 3.7. 

Estimates for guessing parameters ranged from 0.000 to 0.429 with a mean value of 0.078. 

Estimates for slipping parameters ranged from 0.114 to 0.783 with a mean value of 0.444. Item 

discrimination index values ranged from 0.303 to 0.821 with a mean value of 0.592. The mean 

RMSEA was 0.076 which is considered a moderate fit.  

The R package CDM provides multiple statistics that can be used to judge overall model 

fit and local item independence. The statistics are based on comparing the expected and observed 

responses for pairs of items (Robitzsch et al., 2020b). These statistics include: the mean absolute 

deviation between observed and model-predicted correlations of item pairs (MADcor), the 

standardized root mean square root of squared residuals (SRMSR) (Maydeu-Olivares, 2013), the 

mean of absolute deviations of residual covariances times 100 (100*MADRESIDCOV) 

(McDonald & Mok, 1995), the mean of absolute values of the Q3 statistic (MADQ3) (Yen, 

1984), and the mean of absolute values of the centered Q3 statistic (MADaQ3). For each of these 

statistics, the closer the value is to zero, the better the model fit (Robitzsch et al., 2020b). Values 

for each of these fit statistics for the 27 reason items were as follows: MADcor = .048, SRMSR 

= .068, 100*MADRESIDCOV = .683, MADQ3 = .058, and MADaQ3 = .058. 

Recommendations for cut-off values for determining overall model fit differ. For instance, 

Maydeu-Olivares (2013) suggests that good model fit is indicated by SRMSR values less than 
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Table 3.7 

Item Parameters and Fit Indices for Reason Items 

Item Guessing 
Parameter 
Estimate 

Slipping 
parameter 
estimate 

Item 
Discrimination 

Index 

RMSEA 

Q1.2 0.000 0.783 0.217 0.065 
Q1.4 0.096 0.261 0.643 0.115 
Q2.1 0.054 0.693 0.253 0.119 
Q3.1 0.251 0.229 0.520 0.079 
Q4.2 0.429 0.280 0.291 0.109 
Q6.2 0.000 0.615 0.385 0.068 
Q7.2 0.002 0.671 0.327 0.052 
Q7.3 0.067 0.524 0.409 0.066 
Q8.1 0.004 0.708 0.287 0.061 
Q8.3 0.190 0.177 0.633 0.082 
Q9.2 0.000 0.511 0.489 0.068 
Q9.3 0.094 0.205 0.701 0.058 
Q10.1 0.094 0.307 0.599 0.059 
Q10.2 0.036 0.309 0.655 0.063 
Q11.1 0.268 0.114 0.618 0.075 
Q12.2 0.022 0.482 0.496 0.100 
Q12.3 0.084 0.056 0.860 0.008 
Q14.4 0.039 0.114 0.847 0.049 
Q15.1 0.022 0.699 0.280 0.063 
Q15.2 0.031 0.329 0.640 0.108 
Q15.3 0.151 0.150 0.699 0.120 
Q16.1 0.023 0.675 0.302 0.068 
Q17.1 0.129 0.528 0.343 0.095 
Q18.1 0.011 0.673 0.316 0.049 
Q18.2 0.000 0.674 0.326 0.094 
Q19.2 0.009 0.677 0.314 0.080 
Q19.3 0.011 0.540 0.449 0.086 
Mean 0.078 0.444 0.478 0.076 

 

0.05, but Hu and Bentler (1999) suggests that values up to .08 indicate good fit. The model fit for 

the MAFA is considered good by the second measure, but not by the first. However, this 27-item 

model had the lowest overall values for the fit measures of all models that were compared. 
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 In addition to the statistics provided above, the CDM package (Robitzsch et al., 2020a) 

provides two hypothesis tests, each accompanied by a p-value, for overall model fit. The first 

test, max(X2), is based on chi-square tests of the frequency of expected and observed responses 

between each set of item pairs. The statistic max(X2) is defined as the maximum of all the chi-

square statistics for item pairs. The p-value for this statistic is determined using the Holm 

procedure. The value of this statistic for the MAFA indicated poor model fit (max(X2) = 26.82, p 

< .001). A second statistic, abs(fcor) is the “absolute value of the deviations of Fisher 

transformed correlations as used in Chen et al. 2013” (Robitzsch et al. 2020b, p.167). The value 

of abs(fcor) for the MAFA also indicated poor model fit (abs(fcor) = 0.48, p < .000).  Overall, 

the 2-PL model showed good fit to the MAFA responses and the DINA model showed moderate 

to poor fit. 

 Tetrachoric correlations between the six misconceptions varied widely from a low of 0.20 

to a high of 0.97. Values for all pairs are given in Table 3.8. The table shows that there are high 

correlations between M1 and all other misconceptions. It should also be noted that there are more 

items that measure M1 than any other misconception. A potential problem with the selection of 

items in the final model is that there is only one item that measures M2. Different combinations 

of items were tested to find a set of items that performed well and included multiple items to 

measure M2, but none were found. 

 The marginal skills distribution for the MAFA is shown in the left side of Figure 3.6. The 

model indicates that the majority of students possessed multiple misconceptions. This is also 

shown by the probabilities for the misconception profiles which are plotted in right side of the 

figure and which indicate that over 30% of respondents are likely to possess misconceptions M1, 
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Table 3.8 

Correlations Between Misconceptions and Number of Items Measuring Each 

Variable 
(# of items) 

1. 2. 3. 4. 5. 

1. Misconception 1 
(14 items) 

     

2. Misconception 2 
(1 item) 

.92     

3. Misconception 3 
(6 items) 

.80 .68    

4. Misconception 4 
(11 items) 

.97 .20 .33   

5. Misconception 5 
(2 items) 

.75 .79 .53 .30  

6. Misconception 6 
(4 items) 

.83 .23 .28 .73 .45 

 

Figure 3.6 

Probabilities of Possessing Misconceptions 
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M2, M3, M5, and M5; over 10% are likely to possess misconceptions M1, M2, M3, M5, and 

M6; and over 10% are likely to possess all six misconceptions.  

Comparison of Responses to FCI Items and MAFA Reason Items 

 An additional measure of validity evidence for the MAFA reasons items was provided by 

comparing responses to two FCI items (included as Q20 and Q21 in the MAFA) and four MAFA 

items (knowledge item Q1 and reason items Q1.3, Q1.4, and Q18.3) that measured the same 

misconceptions. The items are shown side-by-side in Figure 3.7. The first FCI item (Q21) was 

about an object that had been tossed into the air and asked about the forces acting on the object 

as it moved upward to the top of its path and downward toward the ground. This FCI item 

aligned well with the first set of questions on the MAFA about an object that has been tossed into 

the air (Q1, Q1.3, and Q1.4). One difference is that the MAFA item asks only about the first half 

of the trip as the coin is moving upward. The second FCI item (Q20) was about a box that is 

being pushed across the floor at a constant velocity. Two responses to this item (d and e) aligned 

with a MAFA knowledge item (Q18.3) that is written around the same scenario.  

Table 3.9 gives a comparison of responses to the paired items that would be expected to 

be answered similarly. For instance, a person who chooses answer a (“A downward force of 

gravity along with a steadily decreasing upward force”) for Q21 should also choose answer d 

(“Both an upward force and a downward force”) for the Q1. However, not all respondents who 

choose “Both and upward force and a downward force” for the MAFA item would necessarily be 

expected to choose the matching response to the FCI item because they might not think that the 

upward force is steadily decreasing. Therefore, a comparison was made between respondents 

who chose answer d to Q1 and those that chose answers a, b, or c to Q1 for the 36 respondents 

who chose answer a to Q21. A chi-square goodness of fit test was used to determine whether the 
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Figure 3.7 

FCI and MAFA Items Used in Validity Argument 

FCI MAFA 
Q21. A boy throws a steel ball straight up. Consider the 
motion of the ball only after it has left the boy’s hand 
but before it touches the ground, and assume that 
forces exerted by the air are negligible. For these 
conditions, the force(s) acting on the ball is (are) 

Q1. A coin is tossed straight upward. What is/are the 
force(s) that act on the coin after it has been released 
and as it travels upward? (Ignore air resistance.) 

 a. A downward force of gravity along with a 
steadily decreasing upward force 
b. A steadily decreasing upward force from the 
moment it leaves the boy’s hand until it reaches its 
highest point; on the way down there is a steadily 
increasing downward force of gravity as the object 
gets closer to the earth. 
c. An almost constant downward force of gravity 
along with an upward force that steadily decreases 
until the ball reaches its highest point; on the way 
down there is only a constant downward force of 
gravity. 
d. An almost constant downward force of gravity 
only 
e. None of the above. The ball falls back to the 
ground because of its natural tendency to rest on the 
surface of the earth. 

 a. No forces. 
b. An upward force only 
c. A downward force only 
d. Both an upward and a downward force 

Q1.3. The coin slows down because the thtotal force 
decreases as the coin moves upward. 

 a. True 
b. False 

Q1.4. The total force stays the same as the coin gets 
higher. 

 a. True 
b. False 

Q20. A woman exerts a constant horizontal force on a 
large box. As a result, the box moves across a 
horizontal floor at a constant speed “V0”. The constant 
force applied by the woman 

M18.3 A person is pushing a box across a horizontal 
floor so that the box moves at a constant speed to the 
right. There is friction between the box and the floor. 
M18.3. There is a force pushing the box to the right 
that is bigger than the friction force acting on the box. 

 a. has the same magnitude as the weight of the box. 
b. is greater than the weight of the box. 
c. has the same magnitude as the total force which 
resists the weight of the box. 
d. is greater than the total force which resists the 
motion of the box. 
e. is greater than either the weight of the box or the 
total force which resists its motion. 

 a. True 
b. False 
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Table 3.9 

Comparison of Responses for Aligned MAFA and FCI Items 

Group of Interest Number 
in Group 

Question Response Obs Exp df Χ2 

Response a to Q21 36 Q1 d 18 9 1 12.00*** 

   a, b, or c 18 27   
Response b to Q21 131 Q1 b 21 32.75 1 5.62* 

   a, c, or d 110 98.25   
Response a to Q1.3 

 
166 Q21 b 83 33.2 1 93.38*** 

   a, c, d, or e 83 132.8   
Response c to Q21 

 
112 Q1 d 65 28 1 65.19*** 

   a, b, or c 47 84   
Response d to Q21 

 
49 Q1 c 41 8 1 89.97*** 

   a, b, or d 12.25 36.75   
Response a to Q18.3 

 
282 Q20 d or e 167 112.8 1 43.41*** 

   a, b, or c 115 169.2   
*p < .05, **p < .01, ***p < .001 

distribution of responses to the paired items differed from what would be expected by chance 

and these results are also included in Table 3.9. For instance, there were 36 participants who 

chose answer a to Q21. This was the group of interest for the first comparison that is shown in 

Table 3.9. If there were no relationship between this response and responses to Q1, then one-

fourth of participants would be expected to choose each of the four answers to Q1. Because there 

were 36 participants in the group of interest, nine would be expected to choose answer d and the 

other 27 would be expected to choose one of the other three answers. The observed values show 

the actual number who chose answer d (n = 18) and the number that chose one of the other three 

answers (n = 18). The goodness of fit test shows that the number of the participants that chose 

answer a to Q21 that also chose answer d to Q1 was significantly higher than that expected by 
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chance, Χ2 = (1, N = 36) = 12.00, p < .001. A total of six comparisons (including the one 

described in detail above) are summarized in Table 9. For five of the comparisons a significantly 

higher number of participants than would be expected by chance chose the aligned answer. For 

the remaining comparison, a significantly smaller number of participants chose the aligned 

answer. Overall, the results support the assertion that students responded to the MAFA and the 

FCI items in similar ways. 

Discussion 

The purpose of this research was to investigate the efficacy of a new test format for 

cognitive diagnostic assessments that measure knowledge as a continuous latent construct and 

misconceptions as a set of discrete skills. This was done by developing a cognitive diagnostic 

assessment—the Misconceptions About Force Assessment (MAFA)--to measure knowledge and 

misconceptions about Newton’s laws of motion. In the new assessment, misconceptions are 

modeled with a specific DCM, the DINA (deterministic input noisy-and-gate) model. A search of 

the literature revealed three recent DCMs that have been proposed to measure misconceptions. 

The Bug-DINO (Bug-diagnostic input noisy or gate) model (Kuo et al., 2016) is designed to 

measure only misconceptions. The other two models, the SISM (Simultaneously Identifying Skills 

and Misconceptions) model (Kuo et al., 2018) and the SICM (Scaling Individuals and 

Classifying Misconceptions) model (Bradshaw & Templin, 2014), are designed to 

simultaneously measure knowledge and misconceptions. Both measurement models were 

evaluated through simulation studies and by retrofitting them to existing assessment data. 

Neither has been evaluated by creating a cognitive diagnostic assessment such as the MAFA and 

fitting responses from the assessment to the models. In contrast, responses to the FCI, which was 
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designed to provide a single knowledge score based on CTT, have been evaluated using IRT, 

DCMs, and other methods to provide measures of knowledge and misconceptions. A few studies 

have suggested methods to use incorrect answers on the FCI to measure misconceptions (Bao & 

Reddish, 2001; Fulmer, 2015; Martin-Blas et al., 2010; Saivinainen & Scott, 2002a, 2002b; 

Savinainen & Viiri, 2008; Yasuda & Taniguchi, 2013), but none of these methods results in a 

psychometrically sound profile of misconceptions for individuals similar to that provided by the 

MAFA.  

The first research question asked how well the specified measurement models (IRT and 

DINA) fit responses to the MAFA. Because model fit can be a matter of judgement, I will 

provide some context for judging the fit of the MAFA by comparing it to the SISM, SICM, and 

FCI. First, it is useful to consider the structure of the tests. The SISM, SICM and FCI rely on 

typical multiple-choice questions in which the distractors are aligned with student 

misconceptions to gather data about knowledge and misconceptions. The MAFA uses a different 

format. Knowledge is measured using responses to multiple-choice questions (called knowledge 

items) and misconceptions are measured primarily through sets of true/false questions (called 

reason items) that follow each multiple-choice question. Responses to the knowledge items were 

fit to IRT models which were used to estimate overall ability scores for respondents. Responses 

to the reason items were fit to the DINA model and used to estimate the most likely 

misconception profiles for the respondents. This format allows the identification of 

misconceptions for students who answer knowledge items correctly. One other model, the SISM, 

also identified coexisting knowledge and misconceptions. However, the information it provided 

was different than that provided by the other model and tests. The SISM measured knowledge as 

a set of discrete skills instead of a continuous latent construct. Rather than providing a profile of 
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skills and misconceptions, the SISM placed respondents into one of four classes: 1) possesses all 

skills and no misconceptions, 2) possesses all skills and at least one misconception, 3) missing at 

least one skill and has no misconceptions, and 4) missing at least one skill and has at least one 

misconception. Because the misconception profiles provided by the MAFA, SICM, and 

retrofitted FCI provide more detailed information for tailoring instruction, further comparisons 

will focus on these models. 

The MAFA and SICM model knowledge as a continuous latent construct using IRT. The 

FCI models knowledge as a continuous latent construct using CTT, but has been retrofitted with 

IRT models (Planninic et al., 2010; Wang & Bao, 2010). In fact, the SICM was evaluated using a 

set of 10,039 FCI responses (Bradshaw & Templin, 2014). The measurement models used in all 

cases were built upon an assumption of unidimensionality. Exploratory factor analysis of the 

final 12-item version of MAFA knowledge items provided mixed statistical evidence for a 

unidimensional model with the AIC indicating better fit for a two-dimensional model and BIC 

for a one-dimensional model.  However, the case for the unidimensionality of a test should be 

based on both statistical analysis and reasonable judgements about the latent constructs measured 

by the test (Kane, 2006) and, using this guidance, I determined that the one-dimensional model 

made more sense. Although the MAFA knowledge items ask different questions than the FCI 

items, they are based upon the same underlying research and use many of the same scenarios. 

Therefore, it may be useful to compare the dimensionality of MAFA knowledge items to the 

results of research on the dimensionality of the FCI.  

The authors of the FCI claimed that the items represented a single force concept based on 

6 underlying dimensions (Hestenes et al., 1992). Researchers who have investigated the fit of 

multidimensional models to FCI data have presented arguments for multidimensional models 
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and even varying dimensionalities for data sets from different populations (i.e., high school 

students versus university students). Huffman and Heller (1995) performed factor analysis on 

two sets of FCI data—one from high school students and another from university students. For 

the high school data, 7 of the 30 FCI questions loaded onto two main factors and the remaining 

23 items were split between eight factors none of which accounted for a significant amount of 

variance. For the university data, five items loaded onto a single factor and the remaining 25 

items loaded onto eight factors none of which accounted for a significant amount of variance. 

The authors suggested multiple ways that their findings could be explained. First, students may 

not conceptualize the questions on the FCI in the same ways that the FCI authors do. For 

instance, students’ explanations for situations might be context dependent. Second, students’ 

knowledge may not be coherently organized around larger underlying principles. In contrast to 

Huffman and Heller (1995), Scott and Schumayer (2012) performed EFA on an FCI data set and 

found support for both a one-dimensional model and a five-dimensional model. In both cases, 

they found that the factors made sense. It should be noted that the authors of the FCI did not 

necessarily expect students to conceptualize the questions in a manner consistent with a 

unidimensional structure (Hestenes & Halloun, 1995). 

Because the MAFA knowledge items are based on similar scenarios as FCI items, the 

effect of students’ conceptualizations on their responses should be considered. Data on students’ 

interpretations of MAFA items were gathered during the think-alouds that were conducted 

during Phase 2 of the research. Two of the participants indicated some amount of cognitive 

dissonance in their thinking. They questioned whether the same rules that apply to objects on 

Earth applied to the rocket in space. The two knowledge items that asked about the rocket were 

excluded from the final model and would not have affected any measures of model fit. However, 
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it is possible that other items were also interpreted in a context specific manner. Knowledge 

scores from the MAFA, the FCI, and other concept inventories are used in research to measure 

the effect of instruction on student understanding. Fragmented student knowledge affects the 

validity of interpreting any concept inventory responses within these unidimensional 

frameworks, but the practice of using them in this manner is well established. 

Of the two IRT models fit to the 12-item version of the MAFA knowledge items, the 2-

PL model showed better overall fit. Item level fit indices indicated good fit with SEs for all item 

parameters less than or equal to 0.26, no significant item-level chi-square values (as calculated 

using jMetrik), and all chi square values for local dependence less than 10.0. The software used 

to estimate the final IRT models provided only relative measures of overall model fit. This is 

consistent with other studies in which FCI data were fitted to an IRT model. For instance, Wang 

and Bao (2010) fit a 3-PL IRT model to FCI data and showed acceptable item fit but did not 

report any overall model fit statistics such as RMSEA. Similarly, Planinic et al. (2010) fit a 

Rasch model to FCI data and provided only item-level fit data. Finally, Bradshaw and Templin 

(2014), in fitting FCI data to the SICM model, provided only relative measures of overall model 

fit for ability estimates. Measures of model fit for the knowledge items of the MAFA compare 

favorably with the results of the three studies listed above. 

 Responses to the MAFA reason items were fitted to the DINA model. After 11 of the 

original 38 items were deleted based on their item parameters, overall model fit was moderate 

with mean RMSEA = 0.076.  However, there were still five items that had RMSEA values 

greater than 0.10. There are not firm guidelines for what constitutes acceptable model fit in the 

DINA model, but there is information about the fit of other assessments that have been retrofit 

with the model. Here, I report on the fit of the MAFA reason items in comparison to these other 
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studies. The estimated slipping (s) and guessing parameters (g), item-level RMSEA, and item 

discrimination index values were used as a first measure of model fit. In a series of simulation 

studies, de la Torre et al. (2010) found that lower values for s and g resulted in more accurate 

item parameter estimates and attribute classifications. Rupp et al. (2010) consider items with 

small guessing and slipping parameters and large item discrimination values to be well 

performing in the DINA model. Examples of retrofitting DCMs to existing assessments provided 

no guidance on item selection as they did not delete any of the items and included items with 

very large slipping and guessing parameters. For instance, George and Robitzsch (2015) fit 

responses to the Certificate for Proficiency in English to the DINA model included items with 

guessing parameters greater than 0.75. During the stepwise deletion of items as described in the 

methods section, it was noted that the order in which items were deleted and the size of the steps 

used affected which items were left in the final model. If items with large slipping or guessing 

parameters or small item discriminations were removed after the first step, RMSEA values 

varied in ways that caused different items to be deleted at the next step. A more extensive 

investigation of the effect of item deletion on item parameter estimates could help to establish 

guidelines for the construction of future CDAs.  

 The deletion of the eleven reason items from the DINA model resulted in the best model 

fit for the models that were compared, but some fit indices were still greater than desired in the 

final model. The number of items measuring each misconception in the final model varied 

widely with 14 items measuring M1, one item measuring M2, six items measuring M3, 11 items 

measuring M4, two items measuring M5, and four items measuring M6. The large number of 

items measuring M1 may help to explain the large correlations between M1 and the other five 

misconceptions. (Values ranged from 0.75 to 0.97.) In a simulation study using the SICM model, 
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Bradshaw and Templin (2014) suggested that correlations between misconceptions would likely 

be smaller than 0.7--a typical value found in applications for DCMs that measure skills--and 

found correlations of just above 0.5 to near zero between three misconceptions using selected 

FCI data. However, it should be noted that Bradshaw and Templin randomly chose to include the 

first three of over 30 misconceptions specified by the FCI authors in their model. It is possible 

that selecting a different set of misconceptions might have given different results. Other possible 

reasons for the large correlations between M1 and the other misconceptions are that M1 

underlies the other misconceptions or that students do not differentiate between M1 and the other 

misconceptions.  Alternatively, large correlations between misconceptions could be due to other 

factors including misspecification of the Q-matrix, model misspecification in choosing the DINA 

model instead of a different DCM, and examinee error due to examinees not putting forth 

maximum effort in responding to the items. A second concern is that there was only one item 

measuring M2—an object moving in a curved path has an outward force acting on it-- in the 

final model. One possible reason is that the images included in the four knowledge questions that 

aligned to this misconception showed the objects as viewed from above. During think-alouds that 

occurred in Phase 2 of the study, some of the participants indicated confusion about the images 

although they did end up interpreting as intended. It is possible that some respondents were 

confused during the pilot and field tests and that this affected the performance of the items and 

caused them to be deleted. 

 The MAFA’s reason questions are designed to measure student misconceptions. It is 

assumed that these misconceptions are part of an organized set of ideas that students engage 

repeatedly when they are asked to make sense of the phenomena presented in the questions. It is 

possible that that some students’ knowledge is so loosely organized that it cannot be measured 
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with an assessment like the MAFA. Vosniadou and Skopeliti (2014) describe this level of 

physics understanding as a “framework theory”—a loosely structured set of related concepts that 

are based on everyday culture and experience and are rooted in a set of ontological beliefs. 

Framework theories are usually private and held to a lower standard of forecasting power and 

internal consistency than scientific theories. Students with such a set of beliefs would be unlikely 

to answer the MAFA reasons items in ways that are consistent with the Q-matrix. This is 

supported by a reliability study of the FCI in which students took the test twice in a week (Lasry 

et al., 2011). While students’ overall scores were found to change little, on average a third of 

answers were changed between the test and retest with incorrect answers changed more often 

than correct answers. There was an 82% chance of choosing a given correct answer both times 

and the chance of choosing the same incorrect answer twice was only 57%. The authors noted 

that they did not find their students’ inconsistency in choosing incorrect answers surprising given 

their low average overall FCI score of less than 50%. Some researchers have argued that 

novice’s conceptualizations, although often incorrect, tend to be organized and applied 

somewhat consistently (diSessa, 1993). The more well organized and consistently applied 

students’ conceptions are, the more effective a concept inventory like the MAFA will be. It is 

possible that the incorrect answers to MAFA items could be more consistent than those to the 

FCI because FCI answer choices tend to be longer and include more information. The structure 

of the MAFA, in which information is spread between multiple items within each set of 

knowledge and reason items, allows for shorter answer choices which may be clearer to novice 

thinkers. In summary, a test design like the one implemented in the MAFA can be used to create 

a CDA for measuring coexisting knowledge and misconceptions. Responses to the MAFA 

knowledge items showed good fit to the 2-PL model. While responses to most reason items 
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showed good item level fit, overall model fit was mediocre to poor as measured by the statistics 

in the CDM package. Overall, the MAFA items showed good fit to the 2-PL IRT model and 

mediocre to poor fit to the DINA model. It is possible that a different combination of reason 

items or a different DCM or combination of DCMs might have resulted in better overall model 

fit. 

 The second research question concerned how consistent students’ responses were 

between MAFA and FCI items that measured the same misconceptions. The results showed that 

five of six matched items showed a significantly greater consistency between answers than 

expected by chance. This consistency provides evidence that the MAFA items and the FCI items 

measured the same latent constructs. It should be noted that the misconceptions assigned to the 

FCI questions in this study were different than the misconceptions assigned by the FCI’s authors. 

For instance, the authors of the FCI aligned the item about an item tossed into the air with the 

misconceptions “impetus dissipation”, “gravity intrinsic to mass”, and “gravity increases as 

objects fall” (Hestenes et al., 1992, p.144), none of which were used in the MAFA. 

This study contributes to the field of educational measurement by suggesting a different 

structure for a cognitive diagnostic assessment to measure misconceptions and by demonstrating 

the development of a new assessment that uses the structure and fitting it with the IRT and DINA 

models. While multiple studies have suggested that cognitive diagnostic models could be applied 

to measure misconceptions, to date the emphasis has been on developing new DCMs and 

retrofitting responses to selected items from existing assessments to them. For instance, 

responses to selected items from the FCI were fit to the SICM model (Bradshaw & Templin, 

2014) and selected responses from a Taiwanese primary school math assessment were fit to the 

Bug-DINO model (Kuo et al., 2016) and the SISM model (Kuo et al., 2018). This study took a 
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different approach. Instead of developing a new DCM and fitting it to a traditionally structured 

concept inventory, it used a different test structure that could be fit with existing measurement 

models.  

This project contributes to Science Education Research by demonstrating a new method 

to construct a concept inventory that provides a profile of student misconceptions. Understanding 

what misconceptions students possess can help teachers to modify instruction so that students are 

less likely to leave school possessing the same misconceptions with which they entered. Tools 

such as the MAFA may help teachers gauge student misconceptions efficiently. The structure of 

the MAFA allows the identification of misconceptions about physical situations for all 

students—both those who answer initial questions about forces and motion correctly and those 

who answer incorrectly. Traditional science questions can be answered correctly even when 

students have misconceptions and this may lead teachers to overestimate their students’ 

understanding (Diakidoy & Iordanou, 2003; Mazur, 2009; Schneps & Sadler, 1988). For 

instance, there is some evidence that students may answer FCI items correctly even when they 

possess underlying misconceptions (Thornton, et al., 2009). The MAFA allows for the 

coexistence of knowledge and misconceptions and provides a tool that can be used to measure 

both. It is possible for researchers to apply the test structure and test development processes 

demonstrated in this paper to modify or create other concept inventories to provide profiles of 

misconceptions in other topics. 

Limitations 

As with any study, there were limitations to this project. First, was the motivation of 

participants. Because all interactions with participants in Phases 3 and 4 were by email, it is 

likely that there were some participants who did not put maximum effort into completing the 
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assessment. Eliminating responses for participants that took less than nine minutes to complete 

the assessment is unlikely to have eliminated all participants who used less than maximum effort. 

Second, in determining which items to include in the final IRT and DINA models, I used one of 

many possible strategies to eliminate poorly performing items. The application of different 

selection strategies resulted in different reason items being included in the final model. It is 

possible that other combinations of items might have provided better overall model fit. Third, 

after deleting items to improve model fit, there was only one reason item that measured M2. 

Fourth, although the sample size was sufficient to make the IRT models converge, it was not 

large enough to test random samples of the data for stability of item parameters and for DIF. 

Fifth is that to achieve a sample size large enough to make the models converge, I combined the 

pilot test data with the field test data. The pilot test data had higher mean knowledge scores, a 

greater percentage of male respondents, and a greater percentage of respondents who had 

completed physics courses—especially advanced physics course—in high school. Finally, the 

reason items were only tested with the DINA model. It is possible that a different DCM or 

combination of DCMs may have produced better model fit.  

Suggestions for Further Research 

 One area for further research is to repeat the project with a larger sample from students 

who are more likely to be motivated to complete the assessment with maximum effort. This 

might be achieved by asking instructors to administer the assessment to their students as part of 

their course. A second area is to investigate different rules for keeping or eliminating items from 

the test. This might help to establish guidelines for construction of CDAs in the future. A third 

possibility is to compare model fit for the DINA and NIDA models. A fourth possibility is to 

apply the structure of the MAFA to develop other concept inventories to measure 
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misconceptions. Finally, it could be possible to research the possibility of presenting items as a 

computer adaptive test in which an individual’s profile is estimated after each item or group of 

items and the test ends once the estimation is precise.  
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Chapter 4 

The Prevalence and Persistence of Physics Misconceptions 

Abstract 

The Misconceptions About Force Assessment (MAFA) was used to estimate misconceptions 

profiles and knowledge scores of 449 undergraduate students who had completed no more than 

two semesters of university physics. These scores along with the numbers and types of physics 

courses completed in high school and college were used to investigate the relationship between 

the possession of misconceptions and two factors: knowledge scores and physics education. One-

way ANOVA showed significant difference in knowledge scores between students who 

possessed each of six misconceptions and those who did not. However, a large proportion of 

students with high knowledge scores still possessed misconceptions. Logistic regression showed 

that students who had completed any physics courses were less likely to possess four of the 

misconceptions than students who had completed no physics courses and that students who had 

completed an AP or IB course in high school were less likely to possess all six misconceptions. 

Because only seven respondents who had taken no high school physics courses had completed a 

college physics course, the performance of this group could not be adequately analyzed. This 

project provides evidence for the persistence of misconceptions even for students who can 

answer many physics problems correctly. 

Introduction 

Understanding science requires more than rote learning. Science is both a “body of 

knowledge that reflects current understanding of the world” and “a set of practices used to 
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extend and refine that knowledge” (National Research Council [NRC], 2012, p.26). The most 

recent national program in the United States to improve K-12 science education and student 

achievement is the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013). The 

NGSS are very different from earlier science standards. They are written as a set of performance 

expectations—three dimensional statements about what students should know and be able to do 

at different grade levels. Each performance expectation specifies that students will perform a 

science or engineering practice (SEP) while applying a disciplinary core idea (DCI) and a cross-

cutting concept (CCC). Mastery of performance expectations requires students to actively make 

meaning as they develop a progression of scientific knowledge and skills that are built over the 

entire course of K-12 education (NRC, 2012). Throughout this process, it is common for students 

to incorporate incorrect conceptions—misconceptions—into their thinking (NRC, 2012; Posner 

et al., 1982; Vosniadou & Skopeliti, 2014). 

Students enter formal science education with a well-established set of beliefs and 

personal theories that they use to explain the world some of which may be incorrect (Halloun & 

Hestenes, 1985a; NRC, 2012). Traditional science education does not eradicate students’ 

misconceptions and even secondary students enter physics instruction with misconceptions that 

may be difficult to change (Halloun & Hestenes, 1985a).  Changing one’s existing conceptions 

requires time. One must be open to new ideas, find a way to incorporate them into one’s existing 

beliefs, and practice applying them to new situations (Montana State University [MSU], 2021). 

Research on conceptual change shows that the process of learning physics is messy. Students do 

not simply replace existing misconceptions with correct physics knowledge.  New information 

must be incorporated into an existing framework of ideas and beliefs, some of which contradict 

scientific thinking (Posner et al., 1982).  Instruction often facilitates the development of 
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misconceptions as students distort the scientific information to fit their existing knowledge 

(NRC, 2012; Vosniadou & Skopeliti, 2014).  The result is a mixture of correct and incorrect 

scientific knowledge.  This allows some students who have misconceptions to appear to 

understand certain topics because they can solve problems correctly (Posner & Gertzog, 1982). 

In physics, misconceptions are resistant to change and often hinder students’ progress 

toward developing a deep understanding of the subject (Halloun & Hestenes, 1985a).  High 

achievement test scores are not always indicators of conceptual understanding—they may be 

achieved despite the presence of misconceptions (Harrison & Treagust, 2001; Brown & 

Hammer, 2013). Identifying student misconceptions in physics can be difficult.  It is easy for 

teachers to mistake rote learning for deeper understanding. Even physics students who perform 

well on tests may retain misconceptions upon completion of a physics course. However, one of 

the most valuable practices for learning is to provide feedback to students about their 

misconceptions along with opportunities to correct them (Hattie, 2015). A measure of the 

prevalence of misconceptions among students of different abilities can help to highlight topics 

that should most likely be addressed in introductory physics courses. 

Currently, there are many concept inventories—multiple choice assessments which 

measure a set of core knowledge—in physics.  Commonly used inventories such as the Force 

Concept Inventory (FCI) (Hestenes et al., 1992) and the Force and Motion Conceptual 

Evaluation (Thornton & Sokoloff, 1998) use misconceptions as distractors but do not score them 

to provide information about the prevalence of specific misconceptions.  This study utilizes a 

new concept inventory—the Misconceptions About Force Assessment (Norris, 2021)—that had 

been developed to simultaneously measure student knowledge/ability level and identify the 

presence of six misconceptions about Newton’s first and second laws of motion. Both 
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misconceptions and the physical situations used as the basis for MAFA items were based on 

prior research into student’s misconceptions about forces and motion (Champagne et al., 1980 

(in McDermott, 1984); Clement, 1982; Clement, 1998 (as cited in Cummings et al., 2004); 

McDermott, 1984; Halloun & Hestenes, 1985b; McCloskey et al., 1980; Minstrell, 1982; Unlu & 

Gok, 2007; Viennot, 1979 (in McDermott, 1984); Wenning, 2008). The use of the MAFA allows 

me to address two questions: 

1. What is the relationship between physics knowledge and the possession of misconceptions 

about Newton’s first and second laws of motion?  

2. How is the possession of misconceptions related to the types of physics courses completed? 

Method 

Participants 

Participants were 449 undergraduates who had completed no more than 2 semesters of 

college level physics at the 200/2000 level. They were recruited through flyers posted on 

campus, in grocery stores and coffee shops and class announcements in introductory social 

science, life science, and physical science courses at six public universities in Virginia. Students 

who were interested in participating contacted me by email and I sent them detailed information 

about participating along with a link to complete the assessment. Respondents were compensated 

$5 for completing the assessment to the best of their ability. The time stamp of the survey 

submission was used as a proxy for effort. 



142 
 

Instrument 

The Misconceptions About Force Assessment (MAFA) is a cognitive diagnostic 

assessment designed to measure knowledge and misconceptions about Newton’s first and second 

laws of motion. The test domain, given in Table 4.1, includes both the knowledge that is 

measured  

Table 4.1 

Test Domain for MAFA 

Domain for Knowledge Items 
Law Part Description 

First Law 1.a. If there are no outside forces acting on an object, it will continue in its 
state of motion—either at rest or in a straight line at a constant speed. 

 1.b. Objects that are either speeding up or slowing down have a non-zero 
net force acting on them. 

 1.c. Objects that are moving along a curved path have a non-zero net force 
acting on them with a component that is perpendicular to the line of 

motion. 
Second Law 2.a. Objects that are speeding up have a non-zero net force acting on them 

in the same direction they are moving. 
 2.b. Objects that are slowing down have a non-zero net force acting on 

them opposite the direction in which they are moving. 
 2.c. The bigger the net force acting on an object, the greater its 

acceleration. 
 2.d. Objects that are moving in a circle at a constant speed have a non-zero 

net force acting on them perpendicular to the direction in which they 
are moving/directed toward the center of the circle. 
Domain for Reason Items 

Misconception 
Number 

Description 

1 When an object is moving in a given direction, there must be a force acting in 
that direction. 

2 An object moving in a curved path has an outward force acting on it. 
3 A constant force causes an object to move with a constant velocity/ an 

object’s velocity is proportional to the magnitude of applied force/changes in 
speed are caused by changes in the magnitude of applied force. 

4 The force of gravity pulls on an object only when it is falling downward. 
5 An object that is moving in a curved path will continue to move in a curved 

path after the removal of the centripetal force. 
6 An inanimate or passive object cannot exert a force on a second object 

because inanimate objects cannot push back. 
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and expressed as an ability score and the six misconceptions—M1, M2, M3, M4, M5, and M6. 

The MAFA consists of multiple-choice items (called knowledge items) that ask about the forces 

acting on objects and their resulting motion followed by true/false items (called reason items) 

that ask about reasons for the answers to the multiple-choice items. There are 18 multiple-choice 

items on the assessment. Each multiple-choice item is followed by between one and three 

true/false items for a total of 39 true/false items. To improve model fit, not all items were 

included in the scoring models. 

Multiple choice items measure knowledge of Newton’s first and second laws of motion 

which is modeled as a unidimensional construct. Knowledge scores were estimated using the 

two-parameter logistic (2-PL) item response theory (IRT) model. Because the maximum a 

posteriori (MAP) estimation was used to estimate item parameters, knowledge scores were 

calculated for all response patterns including perfect scores. To improve model fit, only 11 items 

were included in the model. True/false items were aligned to six discrete misconceptions and 

scores were estimated using the diagnostic inputs noisy-and-gate (DINA) model (Junker & 

Sijtsma, 2001), a type of diagnostic cognitive model (DCM). Diagnostic cognitive models are 

designed to measure the possession of a set of discrete skills or attributes. Skills or attributes are 

typically finer grained than the latent constructs measured by other models. For instance, a 

construct such as the ability to add fractions could be represented as a set of three smaller skills: 

1) adding whole numbers, 2) finding common denominators, and 3) changing improper fractions 

to mixed numbers. Instead of estimating an overall ability to add fractions, a CDA would classify 

each respondent as a master (1) or nonmaster (0) of each attribute by placing each respondent 

into the most likely skills profile. A CDA that measures a attributes will have 2a possible skills 



144 
 

profiles. For the adding fractions example, the profiles would be 000, 100, 010, 001, 110, 101, 

011, and 111. For the MAFA, skills are replaced by misconceptions. In the misconceptions 

profiles, a 0 represents the absence of the misconception and a 1 represents the possession of the 

misconception. For instance, a person with the misconceptions profile 101100 most likely 

possesses three of the six misconceptions—M1, M3, and M4. True-false items are aligned to the 

misconceptions “required” to choose a given answer. Not all true-false items are aligned to a 

misconception. Due to this and to improve model fit, only 27 true-false items were included in 

the DINA model when the skills profiles were estimated. 

Data 

Data were collected as part of the pilot and field test for the MAFA. The assessment was 

administered online using the Qualtrics survey platform. The time stamps on the survey were 

used as a proxy for effort and only responses from students who took at least 9 minutes to 

complete the assessment were included in the data set. The responses were used to estimate two 

pieces of information for each respondent: a knowledge score and a profile of misconceptions. 

Respondents also provided information about the physics courses they had completed in high 

school and college. 

Data Analysis 

All data analysis was performed using IBM SPSS Statistics 26. To answer the first 

research question, one-way ANOVA was used to compare the mean knowledge scores of 

students who did and did not have each misconception. Welch’s procedure was used to account 

for significant heterogeneity of variance between groups and the Games-Howell post hoc test 

was used to distinguish which mean differences were significant. To answer the second research 

question, students were placed into one of six groups based on the physics courses that they had 
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completed in high school and college. Binomial logistic regression was used to model the 

probability of having each misconception for students who had completed different types of 

physics courses compared to students who had completed no physics courses. 

Results 

Research Question 1 

Knowledge scores (k) ranged between -1.97 and 1.70 with 𝑘𝑘� = 0.00, 𝑆𝑆𝑆𝑆 = 0.88. The IRT 

model used to estimate the knowledge scores stipulates that the scores fall along a standard 

normal distribution within the population but does not restrict scores in the sample to this 

distribution. The distribution of knowledge scores for the data set is shown in Figure 4.1.  

Figure 4.1 

Distribution of Knowledge Scores in Sample 

 

There were 26 = 64 possible misconceptions profiles for the MAFA, however not every possible 

profile contained respondents. The number and percent of respondents with each misconception 
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profile are shown in Table 4.2. In order to conserve space, only profiles that contained 

respondents  

Table 4.2 

Respondents in Each Misconception (MC) Profile 

Total MCs MC Profile Number of 
Respondents 

Percent of 
Respondents 

Cumulative  
Percent 

0 000000 12 2.7 2.7 
1 001000 23 5.1  
 000010 43 9.6  
 Total 66 14.7 17.4 
2 001010 23 5.1  
 101000 13 2.9  
 100010 2 0.4  
 Total 38 8.5 25.9 
3 100011 5 1.1  
 100101 2 0.4  
 101010 25 5.6  
 101100 2 0.4  
 110010 3 0.7  
 Total 37 8.2 34.1 
4 101011 10 2.2  
 101101 2 0.4  
 101110 5 1.1  
 110011 1 0.2  
 110101 2 0.4  
 111010 149 33.2  
 Total 169 37.6 71.7 
5 101111 18 4.0  
 110111 2 0.4  
 111011 42 9.4  
 111110 21 4.7  
 Total 83 18.5 90.2 
6 111111 44 9.8  

 Total 44 9.8 100.0 
 

are included in the table. Most students possessed four or more misconceptions. The most 

common misconceptions profile of 111010 was assigned to one-third of all students. Three other 

profiles—000010, 111011, and 111111—account for almost one-tenth of students each. Overall, 
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77.5% of students had M1, 58.8% had M2, 84.0% had M3, 21.8 had M4, 87.5% had M5, and 

28.5% had M6. 

 One-way ANOVA was performed to compare the mean knowledge scores for students 

who did and did not have each misconception. Results are shown in Table 4.3. For all six 

misconceptions, mean knowledge scores were significantly lower for students who possessed the 

misconception.  Difference in knowledge scores between students that did not have the 

misconception and those that did ranged from 0.77 for M5 to 1.44 for M1. This result is not 

surprising. Perhaps more interesting are the distributions of knowledge scores for students who 

did and did not possess each misconception which are shown in Figure 4.2. In these dot plots 

each  

Table 4.3 

Difference in Mean Knowledge Score by Misconception 

Misconception Mean knowledge score (SD)  F df1 df2 p 

No 
misconception 

Misconception Δk     

1 1.12 (0.58) -0.32 (0.65) 1.44*** 398.52 1 447 0.000 

2 0.52 (0.91) -0.36 (0.64) 0.88*** 130.65a 1 307.8 0.000 

3 0.91 (0.85) -0.17 (0.77) 1.08*** 117.45 1 447 0.000 

4 0.21(0.83) -0.78 (0.50) 0.99*** 219.905a 1 261.3 0.000 

5 0.67 (0.87) -0.10 (0.84) 0.77*** 40.44 1 447 0.000 

6 0.25 (0.86) -0.63 (0.88) 0.88*** 167.93a 1 366.8 0.000 

a Welch’s test statistic reported due to violation of homogeneity of variance assumption. 

*** p < .001 
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dot represents one person. From these results it is apparent that students of almost all ability 

levels possessed the misconceptions. 

Figure 4.2 

Distribution of Knowledge Scores by Misconception 
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Research Question 2 

 Logistic regression was used to investigate differences in the probability of possessing 

each misconception between groups with different physics education backgrounds. Students 

were placed into one of six groups based on the physics courses that they had completed in high 

school and college. For high school courses, conceptual, regular, and honors physics were placed 

in one group and International Baccalaureate (IB) and Advanced Placement (AP) physics were 

placed in a second group. Some students had completed multiple physics courses in high school. 

This was not accounted for in the model. Students were placed into the 

conceptual/regular/honors group if they had taken only courses in this category and into the 

AP/IB group if they had taken at least one AP or IB course regardless of other high school 

physics courses they had completed. The number and percent of respondents in each group are 

shown in Table 4.4. Only seven respondents who had taken no high school physics had 

completed a physics course in college. More than one-fourth of students had completed no 

physics courses. This group was used as the comparison group for the analysis of misconception 

probability versus physics education. 

Table 4.4 

Respondents’ Physics Education 

Physics Courses 
Completed in 

College 

Types of Courses 
Completed in High School 

Number of 
Respondents 

Percent of 
Respondents 

No physics courses 
in college 

None 123 27.4 
Conceptual/Regular/Honors 155 34.5 

AP or IB 105 23.4 
One or two 
semesters of 
200/2000 level 
physics courses 

None 7 1.6 
Conceptual/Regular/Honors 39 8.7 

AP or IB 20 4.5 

Total  449 100.0 
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 Table 4.5 shows the results of the logistic regression. For the seven students who had 

taken only college physics, none had M4 or M6 and all had M5. The regression cannot estimate a 

meaningful coefficient for these cases, so the coefficients and odds rations for them have been 

left out of the table. In almost all cases, students who had taken no physics courses were 

significantly more likely to have each of the misconceptions than students who had taken physics 

courses. The few exceptions were for students who had taken only conceptual, regular or honors 

physics courses in high school. These students were just as likely to have M3 and M4 as students 

who had taken no physics courses and just as likely to have M4 even if they had also completed 

at least one semester of physics in college. For all six misconceptions, the reduction in odds 

ratios was smallest for students who had taken only conceptual, regular, or honors physics. For 

M1, M3, M5, and M6, the odds ratios are similar for students who had taken completed an 

AP/IB course in high school whether or not they had also completed a college physics course. 

Discussion 

This study compared the probability of students possessing six misconceptions for 

students with different knowledge scores and different levels of physics education. Students with 

higher knowledge scores were less likely to possess all six misconceptions. However, even 

students with high knowledge scores had misconceptions. While students who completed physics 

courses-particularly more advanced physics courses—were less likely to have misconceptions 

than those who had not, students with all levels of education still possessed misconceptions.  

Large scale international comparisons of student achievement in science and mathematics such 

as the Programme for International Student Assessment (PISA), given every three years, and the 

Trends in International Mathematics and Science Study (TIMSS), given every four years, are  
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Table 4.5 

Regression Coefficients for Binomial Regression 

MC Physics Education B (SE) Wald p OR 95% CI OR 
1 None 2.97 (.42)*** 50.36 .000 19.50 --- 
 HS Conc/Reg/Hon -1.00 (.49)* 4.27 .039 .37 [.14, .95] 
 HS AP/IB -2.80 (.46)*** 36.67 .000 .06 [.03, .15] 
 College only -2.68 (.87)** 9.49 .002 .07 [.01, .38] 
 HS Conc/Reg/Hon + 

College 
-2.39 (.54)*** 19.94 .000 .09 [.03, .26] 

 HS AP/IB + College -3.17 (.61)*** 26.66 .000 .04 [.01, .14] 
2 None 1.32 (.22)*** 35.54 .000 3.73 --- 
 HS Conc/Reg/Hon -.72 (.28)* 6.71 .010 .49 [.28, .84] 
 HS AP/IB -1.64 (.30)*** 14.24 .000 .19 [.11, .35] 
 College only -2.23 (.87)* 6.66 .010 .11 [.02, .59] 
 HS Conc/Reg/Hon + 

College 
-1.47 (.39)*** 14.24 .000 .23 [.11, .49] 

 HS AP/IB + College -3.05 (.66)*** 21.11 .000 .05 [.01, .17] 
3 None 2.97 (.42)*** 50.36 .000 19.50  
 HS Conc/Reg/Hon -.88 (.49) 3.18 .074 .42 [.16, 1.09] 
 HS AP/IB -2.01 (.47)*** 18.07 .000 .13 [.05, .34] 
 College only -2.05 (.94)* 4.82 .028 .13 [.02, .81] 
 HS Conc/Reg/Hon + 

College 
-2.16 (.54)*** 15.78 .000 .12 [.04, .34] 

 HS AP/IB + College -2.12 (.64)** 10.91 .001 .12 [.03, .42] 
4 None -.73 (.19)*** 14.38 .000 .48  
 HS Conc/Reg/Hon -.50 (.27) 3.41 .065 .61 [.35, 1.03] 
 HS AP/IB -1.32 (.36)*** 13.24 .000 .27 [.13, .54] 
 College only --- .000 .999 --- [.00, --] 
 HS Conc/Reg/Hon + 

College 
-.34 (.41) .65 .42 .72 [.32, 1.61] 

 HS AP/IB + College -2.21 (1.04)* 4.50 .034 .11 [.01, .85] 
5 None 3.39 (.51)*** 44.55 .000 29.75  
 HS Conc/Reg/Hon -1.54 (.56)** 7.56 .006 .21 [.07, .64] 
 HS AP/IB -1.82 (.57)** 10.15 .001 .16 [.05, .50] 
 College only --- .000 .999 --- [.000, ---] 
 HS Conc/Reg/Hon + 

College 
-1.69 (.68)* 6.26 .012 .19 [.05, .69] 

 HS AP/IB + College -2.77 (.69)*** 16.09 .000 .06 [.02, .24] 
6 None -.32 (.18) 2.91 .088 .73  
 HS Conc/Reg/Hon -.46 (.25) 3.35 .067 .63 [.39, 1.03] 
 HS AP/IB -1.48 (.33)*** 19.73 .000 .23 [.12, .44] 
 College only --- .000 .999 --- [.00, ---] 
 HS Conc/Reg/Hon + 

College 
-.89 (.42)* 4.48 .034 .41 [.18, .94] 



152 
 

MC Physics Education B (SE) Wald p OR 95% CI OR 
 HS AP/IB + College -1.42 (.65)* 4.76 .029 .24 [.07, .87] 

*p < .05 ** p < .01 *** p < .001 

 
designed to compare achievement in science and other disciplines across different countries. The 

United States has participated in every administration of the PISA which assesses knowledge 

among students at age 15.  Items on the assessment are designed to measure how well students 

can apply knowledge and skills they have learned in school rather than rote learning—the type of 

conceptual understanding that is needed for a prepared workforce (Organisation for Economic 

Cooperation and Development [OECD], 2018).  In 2015, seventy-two countries participated in 

the assessment (OECD, 2018).  Results showed the U.S. had only average performance in 

science—a performance level that has been relatively stable since the Programme’s inception 

(OECD, 2016). Another measure, the Trends in International Mathematics and Science Study 

(TIMSS) Advanced, measures math and physics achievement among students in their final year 

of secondary school.  In 2015, nine countries participated in the physics portion and the US 

scored about average—scoring higher than three countries, lower than four, and the same as one 

other country (Provasnik et al., 2016). Compared to their international peers, secondary students 

in the United States show average performance in physics. 

Average performance in physics by US students may be related to multiple factors. First, 

the percent of students who complete a high school physics course tends to be low. In 2013 only 

39% of US high school students had completed at least one course in physics at graduation 

(Meltzer et al., 2012). A second reason for the average performance of US students may be that 

secondary physics courses in the United States tend to be less demanding than those in many 

other countries. TIMSS Advanced reports the coverage rate—the percent of 18-year-olds who 

have either taken or are enrolled in a physics course that covers a set list of topics--for each 
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participating education system.  In 2015, the only types of US courses that adequately covered 

the topics were AP, IB, or second-year physics courses.  This put the US coverage rate at 4.8%--

second only to Lebanon.  In comparison, France, Italy, and Slovenia have coverage rates of 

21.5%, 18.2%, and 14.3% respectively (Provasnik et al., 2016).  Fewer students in the United 

States complete rigorous secondary physics courses than in other developed nations despite a 

ninefold increase in the number of US high school students who take an AP or second course in 

physics in the last two decades (Meltzer et al., 2012). Changing misconceptions requires 

engagement with correct conceptions over time. Ideally, students who complete higher level 

physics courses have more time to form accurate conceptions of the physical world. A third 

challenge for the United States is a lack of well-prepared secondary physics teachers. Many high 

school physics courses are taught by teachers who lack an appropriate physics education or 

experiential background (Meltzer et al., 2012). Teachers who have a tenuous understanding of 

physics concepts themselves are unlikely to be able to identify and alleviate their student’s 

misconceptions. 

 The best predictor of student achievement in STEM courses is having a teacher who is 

certified and has a degree in the field (National Academy of Sciences et al., 2007).  Even though 

fewer than half of high school students take physics, the supply of physics teachers with a degree 

in the field has not kept up with physics enrollments.  According to a report from the Task Force 

on Teacher Education in Physics (T-TEP), there is a severe, long-term shortage of qualified 

physics teachers in the US (Meltzer et al., 2012).  This shortage poses a great challenge to 

offering students who enroll in physics a quality physics education. According to the most recent 

report from the American Institute of Physics, only 39% of recent high school graduates had 

taken at least one course in physics and only 47% of those courses were taught by a teacher with 
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either a physics or physics education degree.  For comparison, 73% of biology courses and 80% 

of humanities courses were taught by an educator with a degree in the field (Meltzer et al., 2012). 

The large number of students who complete a physics course and continue to have 

misconceptions about the physical world may be impacted by this lack of preparation in the 

teaching force. The authors of the NGSS acknowledge that one of the greatest challenges of 

implementing the NGSS is that teachers must undergo conceptual change in their own 

understanding of what it means to do and teach science before they can lead students to a new 

understanding (NRC, 2012).  

 The results of this study agree with earlier research that states that misconceptions in 

physics are common and resistant to change (Halloun & Hestenes, 1985a; NRC, 2012). Most 

students who completed the MAFA—even those with high knowledge scores--had multiple 

misconceptions. Many students who were able to answer questions about the numbers and types 

of forces acting on objects and the object’s motion correctly failed to answer conceptual 

questions about the reasons for the forces and motion correctly. Students who had completed 

only conceptual, regular, or honors physics courses in high school had the smallest reduction in 

the probability of possessing misconceptions compared to students who had completed other 

courses. Possible reasons for this are that these courses are less demanding, that students are less 

engaged with the content of the courses, and that teachers of these courses may tend to have a 

weaker physics background than teachers of more demanding physics courses. Although students 

who had completed physics courses—particularly AP or IB courses in high school or college 

courses—were less likely to possess misconceptions, many of these students still had 

misconceptions.  
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Finally, the two least common misconceptions, M4 and M6, had the smallest reductions 

in odds ratios for students who had taken only conceptual, regular, or honors physics. For M4, 

the odds ratio was 0.48 for students who had taken no physics, 0.29 for students who had taken 

only conceptual/regular/honors courses in high school, and 0.34 for students who had also 

completed a college course. For M6, the odds ratio was 0.73 for students who had taken no 

physics, 0.46 for students who had taken only conceptual/regular/honors courses in high school, 

and 0.30 for students who had also completed a college course. It could be that less common 

misconceptions are addressed less frequently in instruction or that students find these 

misconceptions particularly useful for explaining phenomena and are unlikely to change them. 

Limitations of the study include that there was no control for the number of physics 

courses completed by students, the types of college physics courses completed (i.e. engineering 

physics versus physics for liberal arts majors), the performance of students in their coursework, 

or for the quality of teaching students received in the courses they did complete. Each of these 

factors is likely to affect the probability of possessing misconceptions. In addition, the data were 

gathered virtually and some respondents may not have put forth maximum effort in completing 

the assessment. Further research might control for these and other factors to determine the extent 

to which they affect misconception possession. Future studies might also gather data to compare 

the effects of completing only a college physics course versus completing a high school course 

and a college physics course. 
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Chapter 5 

Conclusions 

 For this dissertation research, I proposed a new format for diagnostic cognitive 

assessments that measure knowledge and misconceptions. I provided proof of the concept by 

developing the Misconceptions About Force Assessment (MAFA)--an assessment for 

simultaneously measuring knowledge of and diagnosing misconceptions about Newton’s first 

and second laws of motion. I gathered and reported on data related to the validity of the 

assessment and I used responses to the MAFA to investigate the relationship between students’ 

knowledge and the possession of misconceptions. The research addressed three questions: 

1. How well do the specified psychometric models (IRT and DCM) fit responses to the 

instrument?  

2. How do responses on this instrument compare to responses to FCI items which measure 

the same knowledge and misconceptions? 

3. What is the relationship between knowledge (ability) and the presence of specific 

misconceptions as measured by this instrument? 

 

The methods and research questions were presented in the form of two manuscripts. Chapter 3 

consists of the first manuscript which focuses on the test development process and addresses the 

first two research questions. Chapter 4 consists of the second manuscript which addresses the 

third research question. In this final chapter I review the main findings of the two manuscripts, 

describe how they fit within the context of the literature described in Chapters 1 and 2, review 
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possible future directions for research that were identified, and outline the overall limitations of 

the study. 

Review of Main Findings 

 The main findings of the study can be divided into four areas. First are findings about the 

CDA test format that was proposed and demonstrated. Second are findings regarding the 

application of general test development principles and processes to the development of a 

diagnostic cognitive assessment. Third are findings related to the types of information provided 

by the MAFA. The fourth area is findings related to the relationship between knowledge level, 

physics education, and the presence of misconceptions about Newton’s laws. Next, I review the 

findings and discuss their implications in the same order as they were listed above. 

 This study presented a test format for a CDA that allows for the simultaneous measure of 

knowledge and misconceptions. Previous studies approached the application of DCMs to 

measuring misconceptions by developing new, more complex DCMs that could be used to model 

responses to typical multiple-choice items (Bradshaw & Templin, 2014; Kuo et al., 2018; Kuo et 

al., 2016). In addition to their added complexity, each of the new measurement models had 

limitations. For instance, the Bug-diagnostic input noisy or gate (Bug-DINO) model (Kuo et al. 

2016) measured misconceptions, but not knowledge. The Simultaneously Identifying Skills and 

Misconceptions (SISM) model (Kuo et al., 2018) failed to provide complete information about 

the possession of specific misconceptions. It merely placed respondents into one of two 

categories based on whether they had no misconceptions or at least one misconception. Finally, 

the Scaling Individuals and Classifying Misconceptions (SICM) model (Bradshaw & Templin, 

2014) did not allow for the identification of misconceptions by respondents who chose correct 
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answers. The limitations of the three proposed models make them less useful as models upon 

which to base assessments to be used formatively or in a research setting. Simply knowing 

whether students have at least one misconception will be of little help to designing instruction 

that targets problematic thinking or to understanding the effects of instruction on the possession 

of misconceptions. More fine-grained information, such as the presence of specific 

misconceptions, would be a greater aid to both of these tasks. In addition, it is important to be 

able to identify misconceptions for students who answer typical test items correctly. Students 

who perform well on traditional assessments may still possess misconceptions (Brown & 

Hammer, 2013; Harrison & Treagust, 2001; Schneps & Sadler, 1988). The CDA format 

proposed here eliminates the limitations of the previous models. It allows for the simultaneous 

measure of knowledge and diagnosis of specific misconceptions as well as the diagnosis of 

misconceptions for students who answer questions about topics correctly. 

This project approached the problem of diagnosing student’s misconceptions differently 

from previous studies. Instead of creating a new, more complex measurement model, it proposed 

a new, more complex test structure that used separate sets of test items to measure knowledge 

and misconceptions. This allowed responses to the items to be fit with existing measurement 

models--the two-parameter logistic (2-PL) model and the diagnostic inputs noisy-and-gate 

(DINA) model. The 2-PL model provides an estimate of individual student’s knowledge and the 

DINA model places students into their most probable specific misconception profile. An 

assessment that diagnoses specific misconceptions is important because all students come to 

science instruction with preconceptions—facts and mental models--that they use to make sense 

of the world (Halloun & Hestenes, 1985a; NRC, 2012). Some of their preconceptions are correct 

and can be used as anchors around which to construct scientifically correct ideas (Lucariello & 
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Naff, n.d.). However, most students also enter science instruction with misconceptions, ideas that 

do not agree with scientific theories and facts and their misconceptions can be resistant to change 

(Halloun & Hestenes, 1985a; NRC, 2012). When misconceptions are included in the 

construction of new ideas students end up with new misconceptions (NRC, 2012; Posner et al., 

1982; Vosniadou & Skopeliti, 2014). The process of restructuring existing mental models to 

incorporate new knowledge is referred to as conceptual change (DiSessa & Sherin, 1998; Duit & 

Treagust, 2003). For the conceptual change process to lead to scientifically correct knowledge, 

students must engage their misconceptions and actively reshape them to produce accurate mental 

models (NRC, 1997). Knowing which misconceptions students possess can help science 

educators to design instruction that helps students to meaningfully engage with their 

misconceptions. Similarly, being able to measure the presence or absence of specific 

misconceptions can help science education researchers to better understand the extent to which 

instructional interventions affect their persistence. Both purposes can be aided by assessments 

such as the MAFA.  

Despite taking a different approach to using DCMs to measure misconceptions, this study 

fills a gap in the literature by providing proof of concept. While Bradshaw and Templin (2014) 

and Kuo et al. (2018; 2016) suggested that DCMs could be used to diagnose student’s science 

misconceptions, a search of the literature did not reveal any CDAs that did so. The development 

of a CDA requires the use of more complex psychometric models than those that are frequently 

used in small-scale assessments as well as knowledge of the topics being tested and this is likely 

one reason that no examples of CDAs to measure misconceptions were found (de la Torre, 

2009). In addition to showing the feasibility of creating a CDA to measure knowledge and 

misconceptions, the study described the process of test creation. It is a process that can be 
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followed to create similar assessments. Because the DINA model that was used in the study is 

the most widely used DCM and one of the least complex (George et al., 2016), it should be more 

accessible than other models such as the SICM model (Bradshaw & Templin, 2014) to subject 

matter experts who aim to use the model to create new assessments. Next, I describe the 

implications of the study for the development of similar assessments about other topics. 

 The study demonstrated that a psychometrically sound assessment of student knowledge 

and misconceptions could be developed using the proposed test format and previous research 

about student misconceptions. The test development process is described in enough detail that it 

could be used to develop new assessments that follow the same format. Tests that are designed to 

identify the prevalence of student misconceptions about a scientific topic are often called concept 

inventories. While there are many existing concept inventories (see Table 2.1), I found none that 

were based on a multidimensional model—the type of model needed to compute a profile of 

misconceptions. Typically, concept inventories are designed to measure misconceptions 

indirectly. They are unidimensional tests composed of multiple-choice items in which the 

distractors are designed to be chosen by students who possess common misconceptions, but the 

distractors are not scored. Higher overall scores (more correct answers) indicate better 

conceptual understanding and the presence of fewer misconceptions. Oftentimes, concept 

inventories are used as a pre- and post-test with the improvement measured as normalized gain 

(Hake, 1998; LoPresto & Murrell, 2011; Thornton et al., 2009; Williamson et al., 2016; Yeo & 

Zadnick, 2001). While normalized gain provides a measure of how student knowledge changed, 

it does not provide diagnostic information that can be used to plan instruction. Using the process 

described in the project could make it possible to create new CDAs using the research that was 

used to create existing concept inventories. 
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 Almost all concept inventories that I found were developed by subject-matter experts 

using classical test theory (CTT). The mathematics of CTT is simpler than that of IRT or DCMs. 

This allows item parameters to be estimated and interpreted more easily and with smaller sample 

sizes. Although the 2-PL and DINA models used in this study are more complex than CTT, they 

are less complex than other models that have been proposed to diagnose misconceptions. In 

addition, there are open-source software packages (e.g. The R package CDM: Cognitive 

Diagnosis Modeling (Robitzsch et al., 2020a)) that can be used to estimate both models. Both the 

lower complexity of the measurement model and the availability of estimation software may 

make these models more accessible to subject matter experts who want to develop new concept 

inventories and help to bridge the gap between measurement research and science education 

research. However, one thing that makes science educators less likely to use the test format 

presented here is that there is little guidance on determining model fit for the DINA model. The 

guidelines that I found were ambiguous. Although I described the choices that I made and the 

reasoning that I used in developing the MAFA, it was clear that different choices about which 

items to retain might have also produced a moderately well-fitted model. More research is 

needed to compare different metrics that can be used to retain or delete items from the test before 

less ambiguous guidelines can be developed. Until such guidelines are available, it is likely that 

test developers would work in teams of subject matter experts and measurement specialists to 

develop new CDAs for measuring misconceptions. Next, I discuss the implications of the types 

of information provided by the MAFA in relation to science education. 

The MAFA provides individual student estimates of knowledge about Newton’s first and 

second laws of motion along with a list of which of six misconceptions students are likely to 

have. Here, I explain how the MAFA can contribute to more effective student learning and why 
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this is important. There has been a repeated call to improve US STEM education over the past 40 

years with the purpose of preparing skilled workers and knowledgeable citizens for an 

increasingly technical environment (National Academy of Sciences et al., 2007; NCEE, 1983; 

NRC, 2012; NSF, 2020). Still, US high school students show only average performance in 

science compared to their international counterparts (OECD, 2016; Provasnik et al., 2016). 

Researchers have argued that preparation in physics is a key element of science education 

(Bessin, 2007; Feierman et al., 2006; White, 2008) yet fewer than half of high school graduates 

complete at least one course in physics (Meltzer et al., 2012). In addition, high school physics 

courses in the US tend to cover fewer demanding topics than courses in other industrialized 

countries (Provasniak et al., 2016) and fewer than half of high school physics courses are taught 

by a teacher who has a physics or physics education degree (Meltzer et al., 2012). The MAFA 

(and potentially future CDAs modeled after the MAFA) could eventually serve as a tool to 

strengthen student preparation in physics. It can provide information about student knowledge to 

teachers who may lack the knowledge or time to recognize student misconceptions without the 

tool. It could also be used by individual students to self-assess their mastery about Newton’s 

laws. Because the assessment takes little time--most students who took the online test completed 

it in 10-20 minutes--and because it can be accessed online, teachers and students could use the 

resource without taking much time from instruction. Of course, one limitation is that that the 

MAFA has not been field tested with high school students. The most commonly used concept 

inventory in physics, the Force Concept Inventory, is used with both high school and college 

students. It is likely that the MAFA would also be valid for use with high school students, but for 

now this remains an important area for future research. 
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While the MAFA and, perhaps, future instruments that follow the same design have the 

potential to improve science instruction, questions remain about how feedback would best be 

provided. For instance, what should a score report look like and how would the report differ for 

different users?  Novice teachers, experienced teachers, and students would all likely need 

different types of feedback about their scores and next instructional steps to take based on them. 

Given that so few high school physics instructors have a physics degree, it is likely that some 

novice teachers have the same misconceptions as their students. In this case, the MAFA would 

serve to identify misconceptions in teachers and students. Resources could be provided for 

novice instructors and students to help them use MAFA scores most effectively. While expert 

physics instructors may have the skills to identify misconceptions in their students and even 

know how to design instruction to counteract the misconceptions, they may not have the time to 

track individual student’s misconceptions. The MAFA could provide this information. Research 

is needed to investigate how novice and experienced physics instructors and physics students 

would use feedback from the MAFA to improve instruction and learning. 

 The fourth area to review and discuss is findings about the relationship between 

knowledge level, physics education, and misconceptions about Newton’s laws as measured by 

the MAFA. For all six misconceptions, students who did not have the misconception had 

significantly higher knowledge scores compared to students who did have the misconception. 

However, many students with high knowledge scores still had misconceptions. This was 

especially pronounced for misconceptions 3 and 5 for which there were students with the highest 

knowledge score who had the misconception. These results support earlier findings that show the 

presence of misconceptions even for high-performing students (Halloun & Hestenes, 1985a; 

Mazur, 2009; NRC, 2012). With a few exceptions (see Table 4.5), students who had completed 



169 
 

any physics course in high school or college were significantly less likely to have 

misconceptions compared to students who had completed no physics courses. This is good news 

as it implies that, in general, physics education is effective in helping some students to overcome 

misconceptions. Students who had completed only conceptual, regular, or honors physics in high 

school were more likely to have misconceptions than students who had completed a high school 

AP or IB course or a university course in physics. Possible reasons for this are that the 

conceptual/regular/honors courses are less rigorous, that the students in these courses tend to be 

less engaged, and that the teachers of these course tend to have a weaker physics education. In 

any case, this implies that high school physics teachers and students might best benefit from 

using the MAFA as an instructional tool. As described above, this remains an important area for 

research. 

 The MAFA is an example of a CDA that can be used to measure knowledge and the 

presence of misconceptions about a science topic. The test format and test creation process 

described here can serve as a starting point for the creation of new CDAs about other topics. The 

background research about student misconceptions upon which existing concept inventories are 

based can be used in the CDA creation process.  

Directions for Future Research 

 Areas for future research fall into multiple categories. First is research about the MAFA 

itself. The MAFA was only tested with college students. It would be valuable to collect and 

analyze responses from high school students as well and compare the model fit between the data 

sets—especially because results indicate that high school instructors and students would benefit 

more by using the MAFA. How MAFA results would be used and what this means for how they 
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should be reported is another area for research. It is possible that different users (e.g. experienced 

teachers, novice teachers, students, and researchers) would benefit from different score reports. 

In creating the MAFA, data were fitted to only one DCM, the DINA model. Future researchers 

might investigate the possibility that a different DCM would provide better model fit. Finally, 

many, but not all, combinations of items were compared to decide which items would be 

included in the final version of the MAFA. Future research could investigate different 

combinations for items. It is possible that a different combination of items would also result in a 

viable test. A second category of research is about the test format and creation process. Future 

research involving the creation of other CDAs that use the test format can help to further 

investigate its usability and to refine the test creation process. A third direction for future 

research involves determining more definite model fit guidelines for the DINA model as used in 

this context. Reducing ambiguity in model fit guidelines would increase the likelihood that the 

DINA model will be used to create future assessments. A fourth direction for future research is 

to use the MAFA to measure the prevalence of misconceptions in different groups and the effects 

of instructional interventions misconceptions. It could be used as a single tool or it could be used 

with and compared to other sources of evidence to further build the validity argument. 

Limitations 

 There were several limitations to this project. First, the MAFA was only tested with 

college students. Second, it is possible that, even after eliminating responses based on the time 

stamp, some responses in the data set came from poorly motivated students. Third, was the 

sample size. Although it was large enough to make the IRT models converge, a larger sample 

would have allowed the comparison of parameter estimates from random samples to check for 
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for stability and DIF. Fourth, although the item level fit of the response data to the DINA model 

was good for most items, the overall model fit was mediocre to poor depending on the fit criteria 

used. While the MAFA could be used in its current form in low stakes environments, further 

research and/or modifications should be completed before using it in a high-stakes situation. 

Finally, when comparing student’s knowledge scores and physics education to the possession of 

misconceptions, there were factors such as performance in physics courses and number of 

physics courses completed that were not controlled for. 
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Appendix A 

Final Version of Misconceptions About Force Assessment 

 

9/11/2020 Qualtrics Survey Software 

https://virginiatech.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_aXlx2sQULbxJYEZ&ContextLibraryID=UR_cuvNpwNEw4iTNrv 1/42 

 

 

 
 
 

Default Question Block 
 
 
Thank you for your interest in this study. 
 
Because many of the questions on this assessment use pictures, we suggest 
that you use a tablet, laptop, or desktop computer (not a phone) to access the 
questions. 

 
Please read the consent form below. It contains information to help you 
decide whether to participate and how to contact the researchers if needed. 

 
RESEARCH SUBJECT CONSENT FORM 
Title: Developing an Assessment to Diagnose Physics 
Misconceptions—Phase 1 
Protocol No.: VT IRB # 18-917 
Sponsor: Virginia Tech School of Education 
Investigator: Gary Skaggs (Principal Investigator) and Mary Norris 

Virginia Tech School of Education 
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1750 Kraft Drive, Room 2104 
Blacksburg, VA, 24061 
USA 

Daytime Phone Number: 540-239-0593 
You are being invited to take part in a research study. Participation is voluntary. 
You can choose not to take part, or agree to take part and later change your mind. 
There will be no penalty or loss of benefits to which you are otherwise entitled. 
The purpose of this research is to ask you questions and determine your feedback. 
Your participation in this research will last until you have completed the 
questionnaire. The only risk is effort involved in the questionnaire. There are no 
benefits to you from your taking part in this research. Others may benefit from the 
information gained during this research. Your alternative is to not take part in the 
research. We may publish the results of this research. As we are not collecting any 
identifiable information, your information will be confidential. 
If you have questions, concerns, or complaints, or think this research has hurt you, 
talk to the research team at the phone number listed above. This research is being 
overseen by the Virginia Tech Institutional Review Board (“IRB”). An IRB is a group 
of people who perform independent review of research studies. You may talk to 
them at (540) 231-3732, irb@vt.edu if you have questions, concerns, or complaints 
that are not being answered by the research team or you have questions about 
your rights as a research subject. 
For taking part in this research, you may be paid up to a total of $5. 
By continuing in the survey, you are consenting to continue. 
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This questions on this page ask for demographic data which will be used to test 
how the items on this assessment perform for different groups of students. 

What is your age? 

   18 years or older (You must be at least 18 years old to participate.) 

  Younger than 18 years 

What year are you in school? 

   Freshman 

  Sophomore

 Junior 

   Senior 

   Prefer not to answer 

Graduate Student (You must be an undergraduate student to participate.) 

What is your sex? 

   Male 

  Female 

Intersex 
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Prefer not to answer 

Which of the following high school physics classes did you complete? 

   I completed no physics courses in high school. 

  Physics First 

   Conceptual Physics 

  Regular Physics 

   Honors Physics 

   AP Physics 1 (Mechanics, Energy, Waves, and Circuits) 

   AP Physics 2 (Fluids, Thermodynamics, Electricity and Magnetism, and Atomic & 
Nuclear Physics) 

   AP Physics C-Mechanics 

   AP Physics C--Electricity & Magnetism 

  IB Physics SL 

   IB Physics HL 

  Other 

If you answered "Other", please state the title of the course(s) below: 
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How many semesters of high school physics did you complete? 

   0 

   1 

   2 

   3 

   4 

5 or more 

How many semesters of your high school physics courses were dual-enrolled? 
(Dual enrolled courses are those for which you receive credit through a community 
college without having to take an AP or IB exam.) 

   0 

   1 

   2 

   3 

   4 

5 or more 
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How many semesters (not semester hours) of 200 or 2000 level or higher college 
physics courses have you completed? Please do not include courses in which you 
are currently enrolled. (Note that you must have completed no more than two 
semesters of these courses to participate.) 

   0 

   1 

   2 

3 or more 

Please enter the names or course numbers of the 2000 level or higher college 
physics courses you have completed. 

If you are enrolled in a physics course this semester, please list the name or 
course number here. Otherwise, type "None". 

Please enter the name of the university you are currently attending. 
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I nstructions: This assessment consists of 19 multiple-choice questions each of which is followed by 2-4 true/false 

questions. Each page of the assessment will present either a single multiple-choice question, or a set of 2-4 

true/false questions. Each multiple-choice question and the true/false questions that follow it ask about the same 

situation. Sometimes, the true/false questions that are presented will differ depending on your answer to the 

multiple-choice question. 

Please choose the single best answer for each question. 

Use the forward and back arrows at the bottom of each page to navigate between pages. You can return to previous 

questions and change your answers as you navigate through the assessment by using the back arrows. 

There is a practice question before the assessment so that you can practice answering the questions and using the 

navigation arrows. 

Use the forward arrow at the bottom of this page to begin. 

Choose the single best answer: 

Sample Question S: When a gas-filled balloon is placed in the freezer so that its temperature decreases, what 

happens to the volume of the air inside the balloon? 

   It decreases. 

   It stays the same. 
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It increases. 

Indicate whether each statement about the gas molecules in the balloon is true or 
false. 

S.1 The gas molecules in the balloon get smaller when it is in the freezer. 

   True 

  False 

S.2 The space between the gas molecules decreases when the balloon is in the freezer. 

   True 

False 

S.3 The space between the gas molecules increases when the balloon is in the freezer. 

   True 

False 

S.4 The gas molecules stay the same size when the balloon is in the freezer. 

   True 

  False 
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Choose the single best answer: 

Question 1: A coin is tossed straight upward. What is/are the force(s) that act on the coin after it has been released 
and as it travels upward? (Ignore air resistance.) 

   No forces 

   An upward force only 

  A downward force only 

   Both an upward and a downward force 

Indicate whether each of the following statements about the coin's motion and the forces acting on the coin is true 
or false. 

1.1 The coin slows down as it gets higher. 

   True 

False 

1.2 Gravity does not act on the coin while it is moving upward. 

True 
False 
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1.3 The coin slows down because the total force decreases as the coin moves 
upward. 
 

   True 

False 
 
 

1.4The total force stays the same as the coin gets higher. 
 

   True 

  False 

 
 

Choose the single best answer. 
 
Question 2: A coin is tossed straight upward. When the coin is at the top of its path, it is momentarily at rest 
because it has stopped moving up and has not started to fall yet. What force(s) act on the coin when it is at this 
point? (Ignore air resistance.) 

 
 
 

   No forces 

   An upward force only 

  A downward force only 

Both an upward force and a downward force 
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Indicate whether each of the following statements about the forces acting on the coin and the coin’s motion is true 
or false. 

2.1 Gravity does not act on the coin when it is at the top of its path. 

   True 

  False 

2.2 The coin's acceleration is zero when it is at the top of its path. 

   True 

False 
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Choose the single best answer. 

   Picture a 

  Picture b 

  Picture c 

Picture d 
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Indicate whether each of the following statements about the rocket is true or false. 

3.1 There is no force pushing the rocket from A to B. 

   True 

False 

3.2 The rocket changes direction because the engine pushes the fuel exhaust into 
space. 

   True 

  False 

Question 4: The same rocket’s engines are turned off once the rocket reaches point C. Which picture best 
describes the rocket’s path including the part after it passes point C? 
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Choose the single best answer. 

   Picture a 

  Picture b 

  Picture c 

Picture d 

  



203 
 

 

 

 

 

 

Choose the single best answer. 

   Picture a 

  Picture b 

  Picture c 

Picture d 
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Choose the single best answer. 

   Picture a 

  Picture b 

  Picture c 

Picture d 
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Choose the single best answer. 

   Picture a 

  Picture b 

  Picture c 

Picture d 

Indicate whether each of the following statements about the rocket is true or false. 

4.1 When the engine is turned off at point C, the rocket keeps moving in the same way because no forces are 
acting on it. 

   True 
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False   
  
  
  
4.2   After the engine is turned off, the original force makes the rocket move in the direction   shown.   

  

     True  

False   

  
  
Question   5: A book is at rest on a table as shown. What force(s) are acting on the book? There is no wind in the  

room.   

  
  

  
  
  
  

Choose the single best answer.   
  

     No forces are acting on the book   

An upward force only   
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   A downward force only 

An upward force and a downward force 

Indicate whether each of the following statements about the book is true or false. 

5.2 The table does not exert a force on the book, it simply gets in the way to keep the book from falling. 

   True 

False 

5.3 There are no horizontal forces acting on the book. 

   True 

False 

Question 6: A book is at rest hanging from a string as shown. Which forces are acting on the book? There is no 
wind in the room. 
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Choose the single best answer. 

   No forces are acting on the book. 

  An upward force only 

   A downward force only 

An upward force and a downward force 

Indicate whether each of the following statements about the book is true or false. 

6.1 There are no horizontal forces acting on the book. 

   True 

False 
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6.2   The book is at   rest; therefore, the force of gravity is not pulling it down.   
  

     True   

    False   

  
  
6.3   The string exerts an upward force on the book.   

  

     True  

False   

  
  
Question 7: A book is at rest on a person’s hand as shown. How many forces are acting on the book? There i s  no  
wind in the room and the book is horizontal.   

  
  

  
  
  
Choose the single best   answer.   

  

No forces act on the book.   
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   An upward force only. 

  A downward force only 

An upward force and a downward force 

Indicate whether each of the following statements about the book is true or false. 

7.1 There are no horizontal forces acting on the book. 

   True 

  False 

7.2 The book is at rest; therefore the force of gravity is not pulling it down. 

   True 

False 

7.3 The hand exerts an upward force on the book. 

   True 

False 

For questions 8 & 9: A ball is hung from a string attached to the ceiling. A person raises the ball to Point A and 
releases it so that it swings back and forth. The ball speeds up and slows down as it swings. When the ball is at 
Points A and C, it is momentarily at rest. When the ball is at Point B, it is going fastest. Assume that there is no 
air resistance. 
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Choose the single best answer. 

Question 8: How many forces are acting on the ball when it is moving from point B to point A? 

   Zero 

  One 

  Two 

Three 

Indicate whether each of the following statements about the ball is true or false. 

8.1 The ball is not falling; therefore, the force of gravity is not pulling it down. 

   True 
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False   

  
  
  
8.2   The ball slows down as it gets  closer to point A.   

  

     True  

False   

  
  
8.3   There is a force in the direction of the  ball’s  motion and this force gets smaller as the ball slows   down.   

  

     True   

    False   

  
  
For questions 8 & 9: A ball is hung from a string attached to the ceiling. A person raises   the ball to Point A and   
releases it so that it swings back and forth. The ball speeds up and slows down as it swings. When the ball is at  
Points A and C, it is momentarily at rest. When the ball is at Point B, it is going fastest. Assume that there is no  
air resistance.   
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Choose the single best answer. 

Question 9: How many forces are acting on the ball when it is at point B? 

   Zero 

  One 

  Two 

Three 

Indicate whether each of the following statements about the ball is true or false. 

9.1 Gravity does not pull on the ball when it is at its lowest point. 

   True 

False 

9.2 The string does not exert a force on the ball. 

   True 

False 

9.3 There is a force pushing the ball in the direction of motion and the force is largest when the ball is at point B. 

True 
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False 

Question 10: A person swings from a rope swing above a lake. The person starts high in the tree and lets go of the 
rope when they are at the bottom of the swing. Which line best shows the path the person takes as they fall into the 
lake? 
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Choose the single best answer. 

   Path A 

  Path B 

  Path C 

Path D 

Indicate whether each of the following statements about the person is true or false. 

10.1 There is a constant force pushing the person forward as they fall. 

   True 

False 

10.2 There is a force pushing the person forward that gets smaller as they fall. 

   True 

False 

10.3 Gravity pulls the person downward as they fall. 

   True 

  False 
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For questions 11 and 12: A ball is tied to the end of a string and being swung along a circular path around a 
person’s head at a constant speed when the string breaks. Imagine you are looking at the ball from directly above. 
The picture shows what you would see. There is no air resistance. 

Question 11: How many forces act on the ball before the string breaks? 

   One 

  Two 

  Three 

Four 

Indicate whether each of the following statements about the ball before the string breaks is true or false. 
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11.1 There is a constant force that pushes the ball in the direction of motion. 

   True 

  False 

11.2 There is a constant force that pushes the ball away from the center of the circle. 

   True 

False 

11.3 The ball is pulled toward the center of the circle by the string. 

   True 

False 

Question 12: Imagine that you are viewing the ball from directly above. The string breaks when the ball is at the 

position shown. Which path would you see the ball follow after the string breaks? 
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Choose the single best answer. 

   Path A 

  Path B 

  Path C 

Path D 

Indicate whether each of the following statements about the ball is true or false. 

12.2 The only force acting on the ball as it falls is gravity. 

   True 
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False   
  
  
  
12.3   There is a force pulling the ball away from the center of the circle as it falls.   

  

     True  

False   

  
  
Question 14: A puck is shot th rough a smooth, curved, horizontal tube.  The tube is attached to the  floor.   The   
floor is smooth so that the puck can slide across it without slowing down. The picture shows the tube and puck as  
seen from above. Which line best describes the path the puc k takes when it leaves the tube? (There is no friction  or  
air resistance acting on the puck as it slides across the table.)   
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Choose the single best answer. 

   Path A 

  Path B 

  Path C 

Path D 

Indicate whether each of the following statements about the puck is true or false. 

14.2 There are no horizontal forces acting on the puck as it slides across the floor after leaving the tube. 

   True 

False 

14.3 There is a force pulling the puck toward the outside of the circle when it is in the tube. 

   True 

False 

14.4 After the puck leaves the tube and is sliding across the floor, there is a force acting in the direction of 
motion. 

   True 

  False 
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Question 15: A juggler throws a ball into the air so that it follows the path shown. How many forces are acting on 
the ball when it is at point A? Ignore air resistance. 

Choose the single best answer. 

   Zero 

  One 

  Two 

Three 

Indicate whether each of the statements about the forces acting on the ball when it is at point A is true or false. 

15.1 The force of gravity does not act on the ball as it is moving upward. 
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     True   

    False   

  
  
15.2   There is a constant force in the direction of the  ball’s   motion.   

  

     True  

False   

  
  
15.3   There is a force in the direction of the  ball’s  motion and the force gets smaller as th e ball approaches the  top  
of its path.   

  

     True  

False   

  
  
Question 16: An elevator that is lifted by a cable as shown is moving upward at a constant speed. What forces are  
acting on the elevator?   
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Choose the single best answer 

   A single upward force only 

  A single downward force only 

   A single upward force and a single downward force 

Two upward forces and a single downward force 

Indicate whether each of the following statements about the elevator is true or false while it is moving upward at a 
constant speed. 
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16.1 The force of gravity does not act on the elevator while it is moving upward. 

   True 

  False 

Question 17: A person is in an elevator that is suspended by a cable and is moving downward and slowing down 
as shown. What forces are acting on the person? 

Choose the single best answer. 

A single downward force only 
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   Two downward forces 

   A single upward force and a single downward force 

One upward force and two downward forces 

Indicate whether each of the following statements about the person is true or false. 

17.1 The person slows down because the downward force gets smaller 

   True 

  False 

Question 18: A person is pushing a box across a horizontal floor so that the box moves at a constant speed to the 
right. There is friction between the box and the floor. How many forces act on the box while it is being pushed? 
Ignore air resistance. 
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Choose the single best answer. 

   One 

  Two 

  Three 

Four 

Indicate whether each of the following statements about the box is true or false. 

18.1 Neither gravity nor the floor exert a force on the box. 

   True 

False 

18.2 Gravity exerts a downward force on the box. 

   True 

False 

18.3 There is a force pushing the box to the right that is bigger than the friction force acting on the box. 

   True 

  False 
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Question 19: A box is sitting at rest on a floor. A person walks up to the box, pushes it to the right, and lets it go. 
The box is sliding to the right across the floor and slowing down. There is friction between the box and the floor. 
How many forces act on the box while it is sliding to the right and slowing down? Ignore air resistance. 

Choose the single best answer. 

   One 

  Two 

  Three 

Four 

Indicate whether each of the following statements about the box is true or false. 

19.1 The force of the push acts on the box as it is sliding and gets smaller as the box slows down. 

   True 
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False   
  
  
  
19.2   Gravity exerts a downward force on the box while it is sliding.   

  

     True  

False   

  
  
19.3   Neither gravity nor the floor   exert a force on the box while it is sliding.   

  

     True   

    False   

  
  

20.   A   woman   exerts   a   constant   horizontal   force   on   a   large   box.   As   a   result,   the   box   moves   across   a   horizontal   floor   at   a   constant  

speed   "v0".   

  

The constant horizontal force applied by the woma n   
  

     has the same magnitude as the weight of the  box.   

    is greater than the weight of the box.   

     has the same magnitude as the total force which resists the weight of the  box.   

    is greater than the total force which resists the motion of the box.   

is   greater than either the weight of the box or the total force which resists its motion   
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20. A boy throws a steel ball straight up. Consider the motion of the ball only after it 
has left the boy's hand but before it touches the ground, and assume that forces 
exerted by the air are negligible. For these conditions, the force(s) acting on the ball 
is (are) 

   a downward force of gravity along with a steadily decreasing upward force. 

   a steadily decreasing upward force from the moment it leaves the boy's hand until it 
reaches its highest point; on the way down there is a steadily increasing downward force of 
gravity as the object gets closer to the earth. 

   an almost constant downward force of gravity along with an upward force that steadily 
decreases until the ball reaches its highest point; on the way down there is only a constant 
downward force of gravity. 

   an almost constant downward force of gravity only. 

   none of the above. The ball falls back to the ground because of its natural tendency to 
rest on the surface of the earth. 

Thank you for completing this assessment! Your input is important for making valid 
interpretations of assessment responses. 
Please indicate how you would like to be paid (Venmo, PayPal, GooglePay, or by 
check) and the email or physical address associated with the account.
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Appendix B 

Q-Matrix for Final Version of MAFA 

Knowledge 
Item 

Reason 
Item 

Knowledge 
Item 
Answer 

M1 M2 M3 M4 M5 M6 

Q1 Q1.1 A, B, C, D 0 0 0 0 0 0 
 Q1.2 A, B, C, D 0 0 0 1 0 0 
 Q1.3 A  0 0 0 0 0 0 
  B, C, D 1 0 0 1 0 0 
 Q1.4 A, C 0 0 0 0 0 0 
  B, D 1 0 0 0 0 0 
Q2 Q2.1 A, B, C, D 1 0 0 1 0 0 
 Q2.2 A, B, C, D 0 0 0 0 0 0 
Q3 Q3.1 A, B, C, D 1 0 0 0 0 0 
 Q3.2 A, B, C, D 0 0 0 0 0 0 
Q4 Q4.2 A, C, D 0 0 0 0 0 0 
  B 0 0 0 0 1 0 
Q5 Q5.2 A, B, C, D 0 0 0 0 0 1 
 Q5.3 A, B, C, D 0 0 0 0 0 0 
Q6 Q6.1 A, B, C, D 0 0 0 0 0 0 
 Q6.2 A, B, C, D 0 0 0 1 0 0 
 Q6.3 A, B, C, D 0 0 0 0 0 1 
Q7 Q7.1 A, B, C, D 0 0 0 0 0 0 
 Q7.2 A, B, C, D 0 0 0 1 0 0 
 Q7.3 A, B, C, D 0 0 0 0 0 1 
Q8 Q8.1 A, B, C, D 0 0 0 1 0 0 
 Q8.2 A, B, C, D 0 0 0 0 0 0 
 Q8.3 A 0 0 0 0 0 0 
  B, C, D 1 0 1 0 0 0 
Q9 Q9.1 A, B, C, D 0 0 0 1 0 0 
 Q9.2 A, B, C, D 0 0 0 0 0 1 
 Q9.3 A, B, C, D 1 0 1 0 0 0 
Q10 Q10.1 A, B, C, D 1 0 0 0 0 0 
 Q10.2 A, B, C, D 1 0 1 0 0 0 
 Q10.3 A, B, C, D 0 0 0 0 0 0 
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Knowledge 
Item 

Reason 
Item 

Knowledge 
Item 
Answer 

M1 M2 M3 M4 M5 M6 

Q11 Q11.1 A, B, C, D 1 0 1 0 0 0 
 Q11.2 A, B, C, D 0 1 1 0 0 0 
 Q11.3 A, B, C, D 0 0 0 0 0 0 
Q12 Q12.2 A, C 1 0 0 0 1 0 
  B, D 0 0 0 0 0 0 
 Q12.3 A, B, C, D 0 1 0 0 0 0 
Q14 Q14.2 A, C 0 0 0 1 1 0 
  B, D 0 0 0 1 0 0 
 Q14.3 A, B, C, D 0 1 0 0 0 0 
 Q14.4 A, B, C, D 1 0 0 0 1 0 
Q15 Q15.1 A, B, C, D 0 0 0 1 0 0 
 Q15.2 A 0 0 0 0 0 0 
  B, C, D 1 0 0 0 0 0 
 Q15.3 A 0 0 0 0 0 0 
  B, C, D 1 0 1 0 0 0 
Q16 Q16.1 A, B, C, D 0 0 0 1 0 0 
Q17 Q17.1 A, B, C, D 1 0 1 0 0 0 
Q18 Q18.1 A, B, C, D 0 0 0 0 0 1 
 Q18.2 A, B, C, D 0 0 0 1 0 0 
 Q18.3 A, B, C, D 1 0 1 0 0 0 
Q19 Q19.1 A, B, C, D 1 0 1 0 0 0 
 Q19.2 A, B, C, D 0 0 0 1 0 0 
 Q19.3 A, B, C, D 0 0 0 1 0 1 
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Appendix C 

Virginia Tech IRB Approval 
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IRB Number 18-917 page 2 of 2 Virginia Tech Institutional Review Board 

SPECIAL INSTRUCTIONS: 

This amendment, submitted October 30, 2019, updates research protocol to extend participant recruitment for 
phases 3 and 4 to other four-year public institutions of higher education in Virginia. These are: Christopher 
Newport University, William and Mary, George Mason University, University of Virginia, James Madison University, 
Radford University, Old Dominion University, Norfolk State University, Virginia Commonwealth University, UVA-
Wise, University of Mary Washington, Virginia Military Institute, and Virginia State University. Consent forms were 
updated to updated IRB name and contact information. 

 

 

 

Date* OSP Number Sponsor Grant Comparison Conducted? 

    

    

    

    

    

    

    

    

    

* Date this proposal number was compared, assessed as not requiring comparison, or comparison 
information was revised. 

 

If this protocol is to cover any other grant proposals, please contact the HRPP office (irb@vt.edu) 
immediately.  
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Appendix D 

George Mason University IRB Approval 

 

 

 

  

Mason Institutional Review Board <irb@gmu.edu> Fri, Apr 24, 2020 at 8:24 AM 
To: Mary Norris <mnorris@vt.edu> 

 
Hi Mary, 

 
You may begin your project since you had already sent us the documents that we requested in January. 

If you have any additional questions, please let me know. 

Thank you and stay safe, 
Kim 

 
Kim Paul, MA 
IRB Compliance Specialist 
Office of Research Integrity and Assurance 
George Mason University 
Research Hall, Room 141 

 
Telephone: (703) 993-4208 **Note that I am teleworking, so please email for a more immediate reply** 
Fax: (703) 993-9590 
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Appendix E 

Christopher Newport University IRB Approval 

From: Alice Veksler <alice.veksler@cnu.edu> 
Date: Thu, Jan 23, 2020 at 8:34 AM 
Subject: Re: Seeking Approval for Research 
To: Mary Norris <mnorris@vt.edu> 
 

Hi Mary,  
Because you are not affiliated with CNU, the CNU IRB would not generally review your project since you are not conducting 
work under the supervision of our institution. If the only interaction you have with CNU is requesting faculty to offer the study 
to their students, IRB review on our end is not needed. If you are looking to post fliers, you should contact student affairs to 
find out if there are campus rules pertaining to posting things but again, this would be outside the purview of IRB. As long as 
you have approval from your home institutions' IRB, and your only interaction with CNU is participant recruitment, our IRB 
will not need to review your project. I appreciate you reaching out to confirm. 
With kind regards, 
Alice 
 
 
 
 
 

 

Alice E. Veksler, Ph.D. | Associate Professor & Chair 
| Christopher Newport University | Department of Communication 
 
| Chair, Institutional Review Board (IRB) 
| Director, Health Communication Research Lab 

| phone:  757-594-7461 
| email:  Alice.Veksler@cnu.edu 
| office : Luter 255A 
  
 

 

  

mailto:alice.veksler@cnu.edu
mailto:mnorris@vt.edu
tel:7575977461
mailto:Alice.Veksler@cnu.edu
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Appendix F 

University of Virginia IRB Approval 

From: Blackwood, Bronwyn L (blb2u) <blb2u@virginia.edu> 

Date: Thu, Feb 6, 2020 at 10:52 AM 

Subject: RE: Seeking Approval for Research 

To: Mary Norris <mnorris@vt.edu> 

 

Hi Mary, Robert Jones, the Chair of Physics has said yes.  You may contact him to discuss how best to 
approach students from that angle.  I am waiting to hear from the Dean of Students to see if you are allowed 
to recruit in person on campus (aside from whatever Dr. Jones allows).  I’m also waiting to hear from my 
contact at Wise.  Anyway, it’s a start.  Will get back with you.  Bronwyn 

  

Ms Bronwyn L Blackwood 

Director, Institutional Review Board for the Social and Behavioral Sciences 

Office of the Vice President for Research, University of Virginia 

PO Box 800392 

Charlottesville, VA  22908-0392 

Tel 434-243-2915 

Fax 434-924-1992 

http://www.virginia.edu/vpr/irb/sbs/ 

 

From: Blackwood, Bronwyn L (blb2u) <blb2u@virginia.edu> 

Date: Thu, Feb 6, 2020 at 11:34 AM 

Subject: RE: Seeking Approval for Research 

To: Mary Norris <mnorris@vt.edu> 

 

http://www.virginia.edu/vpr/irb/sbs/
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Hi Mary,  Just hear from Mark Clark at UVA Wise.  He grants permission as long as your recruiting methods do 
not involve work on their part.  My sense was that you may contact faculty and ask if they would be willing to 
announce in class, or have you visit the class, and he was okay with your standing in front of the library.  I’m 
still waiting to hear if that is an option for you here at UVA Charlottesville. Best, Bronwyn 

  

Ms Bronwyn L Blackwood 

Director, Institutional Review Board for the Social and Behavioral Sciences 

Office of the Vice President for Research, University of Virginia 

PO Box 800392 

Charlottesville, VA  22908-0392 

Tel 434-243-2915 

Fax 434-924-1992 

http://www.virginia.edu/vpr/irb/sbs/ 
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Appendix G 

Radford University IRB Approval 

From: irb-iacuc <irb-iacuc@radford.edu> 
Date: Tue, Jan 14, 2020 at 11:02 AM 
Subject: RE: Seeking Approval for Participant Recruitment 
To: Mary Norris <mnorris@vt.edu> 
Cc: Lee, Anna Marie <alee16@radford.edu> 

Good Morning Mary, 

Thank you for your note. Please allow me to introduce myself. I am the Research Compliance Manager and newest member of 
the College of Graduate Studies and Research. I arrived in December and wanted to reach out after seeing your note 
yesterday. Has your VA Tech IRB protocol been approved? If so and you have noted all of the necessary recruitment and 
consent documents in your VA Tech approved submission, you ought to be able to move forward. Did someone tell you it was 
necessary to have Radford IRB approval? 

I look forward to hearing from you  

Best regards,  

Anna Marie 

 

Anna Marie Lee, MHA, CPIA 

Research Compliance Manager 

Buchanan House 

540.831.5290 

https://www.radford.edu/content/research-compliance/home.html 

mailto:irb-iacuc@radford.edu
mailto:mnorris@vt.edu
mailto:alee16@radford.edu
https://www.radford.edu/content/research-compliance/home.html
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From: irb-iacuc <irb-iacuc@radford.edu> 

Date: Thu, Jan 16, 2020 at 3:28 PM 

Subject: RE: Seeking Approval for Participant Recruitment 

To: Mary Norris <mnorris@vt.edu> 

 

Thank you for your note and for the document, Mary. I am forwarding to our IRB persons and will let you 
know if there is anything else needed.  

  

Best regards, 

  

Anna Marie  

  

  

  

Anna Marie Lee, MHA, CPIA 

Research Compliance Manager 

Buchanan House 

540.831.5290 

https://www.radford.edu/content/research-compliance/home.html 

  

https://www.radford.edu/content/research-compliance/home.html
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Appendix H 

James Madison University IRB Approval 

 

From: Morgan, Cindy - morgancs <morgancs@jmu.edu> 
Date: Mon, Dec 2, 2019 at 2:24 PM 
Subject: IRB Notice of Exemption from James Madison University 
To: mnorris@vt.edu <mnorris@vt.edu> 

 

Dear Mary, 

  

I want to let you know that your IRB protocol entitled, “Developing an Assessment to Diagnose Physics 
Misconceptions” has been approved for you to begin your study.  The exemption notice memo is attached to 
this email.  Your protocol has been assigned No. 20-0012 for tracking purposes.  Thank you again for working 
with us to get your protocol approved. 

  

If you have any questions, please do not hesitate to contact me. 

  

Best Wishes, 

Cindy 

  

Cindy Morgan 

IRB Coordinator 

Office of Research Integrity - James Madison University 

Engineering/Geosciences Bldg., Room 3152 

MSC 5738 

Harrisonburg, VA  22807 

morgancs@jmu.edu 

mailto:morgancs@jmu.edu
mailto:mnorris@vt.edu
mailto:mnorris@vt.edu
mailto:morgancs@jmu.edu
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