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Analysis and Development
of Blind Adaptive Beamforming Algorithms

Thomas E. Biedka

(ABSTRACT)

This dissertation presents a new framework for the development and analysis of blind adap-
tive algorithms. An adaptive algorithm is said to be ‘blind’ if it does not require a known
training sequence. The main focus is on application of these algorithms to adaptive antenna
arrays in mobile radio communications. Adaptive antenna arrays can reduce the effects
of cochannel interference, multipath fading, and background noise as compared to more
conventional antenna systems. For these reasons, the use of adaptive antennas in wireless
communication has received a great deal of attention in the literature.

There are several reasons why the study of blind adaptive algorithms is important. First, it
is common practice to switch to a blind mode once the training sequence has been processed
in order to track a changing environment. Furthermore, the use of a blind algorithm can
completely eliminate the need for a training sequence. This is desirable since the use of a
training sequence reduces the number of bits available for transmitting information.

The analysis framework introduced here is shown to include the well-known Constant Mod-
ulus Algorithm (CMA) and decision directed algorithm (DDA). New results on the behavior
of the CMA and DDA are presented here, including analytic results on the convergence
rate. Previous results have relied on Monte Carlo simulation. This framework is also used
to propose a new class of blind adaptive algorithms that offer the potential for improved
convergence rate.
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Chapter 1

Introduction

The principal objective of this dissertation is to establish a new general framework for the
development and analysis of blind adaptive algorithms for antenna arrays. In order to
describe the contributions of this dissertation, the concepts of antenna array processing
and blind adaptive algorithms must be introduced. Array processing is a broad area of
study that includes any application where multiple antennas (or other sensors) are used
to receive or transmit electromagnetic waves. Using multiple antennas in a receiver can
reduce the effects of cochannel interference, multipath fading, and background noise. For
these reasons, the use of antenna arrays in wireless communication has received a great
deal of attention in the literature (e.g., see [2, 3, 4, 5, 6] and references therein). The
potential benefits include improved geographical coverage of the service area, extended range,
increased capacity, and improved quality of service. An array forms an improved estimate
of the desired signal by weighting and summing the signals received at multiple spatially
separated antennas, as illustrated in Figure 1.1. By appropriately selecting the weights, high
gain can be placed in the direction of a desired signal, and low gain can be placed in the
direction of interfering signals. This process is often referred to as beamforming, or spatial
filtering [1]. The weighting applied to the signal received at each antenna may be fixed,
or may be continuously adjusted, i.e., adapted, to track changes in the signal environment.
The adaptive algorithm used to adjust the weights for each antenna is the focus of this
dissertation.

The performance of the adaptive algorithm determines how well the array will perform rel-
ative to the optimal. The optimal approach generally requires the inclusion of a known
training sequence in the desired signal. If the signal environment is changing, as is typically
the case in mobile radio applications, a training sequence must be transmitted regularly.
This reduces the amount of information that can be transmitted, which clearly is not de-



Thomas E. Biedka Chapter 1. Introduction 2

Signal ——»

/V

Interference

—~
[SNReYRsHh ey
\\f@//

Adaptive
Algorithm

Figure 1.1: Conceptual block diagram of adaptive beamforming for narrowband signals.

sirable. An adaptive algorithm that does not require a training sequence, or other special
knowledge of the environment, is known as a blind adaptive algorithm. The use of a blind
algorithm can potentially eliminate the need for training sequences, thereby increasing the
available data rate. However, blind algorithms have some drawbacks relative to conventional
training sequence-based algorithms. First, blind algorithms cannot in general be guaranteed
to converge to the desired solution, unlike the case when a known training sequence is used.
Furthermore blind adaptive algorithms generally converge more slowly. For these reasons it
is important to understand the behavior of existing blind algorithms, and develop new algo-
rithms that offer faster and, perhaps more importantly, more reliable convergence. Towards
this goal, this dissertation presents a new framework for the analysis and development of
blind adaptive algorithms. The focus is on adaptive antenna array applications, but these
algorithms can also be used in temporal (equalization) applications.

One commonly used blind adaptive algorithm is known as the Constant Modulus Algorithm
(CMA). The CMA can be applied to any signal that has a constant (or nearly constant)
envelope. Examples of such signals include FM, FSK, and PSK. Despite the wide use of CMA
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in practical applications, its convergence behavior is poorly understood. The behavior of the
CMA has principally been studied through computer simulation. Chapter 3 introduces an
analysis framework that leads to important new analytic results on the convergence behavior
of CMA. These analytic results can be used to determine the CMA convergence rate, and
also lead to new insight regarding general algorithm behavior. The results presented in this
chapter have been published in [7].

Another commonly used class of blind adaptive algorithms are known as Decision Directed
Algorithms (DDA). A DDA can be applied to any digitally modulated signal. This algorithm
is implemented by demodulating the beamformer (or equalizer) output, then treating the
resulting estimated symbols in the same way that a known training sequence would be
treated. This algorithm is used extensively in conjuction with a training sequence approach
to track a changing environment during time intervals where a training sequence is not
present. The analysis framework introduced in Chapter 3 can also be applied to a DDA, as
shown in Chapter 4 and Chapter 5. Chapter 4 examines the behavior of a decision directed
algorithm in Gaussian noise and interference, while Chapter 5 examines the behavior in
constant modulus interference. Several new results have been obtained, including

1. a determination of the DDA convergence rate;
2. a comparison of CMA and DDA convergence rate;

3. a modified DDA that incorporates carrier phase estimation for greatly improved con-
vergence rate;

Some of these results were presented in [8]. The algorithm studied in Chapter 4 has also
been studied in [9], which has been widely cited in the literature, including the following
peer-reviewed journal publications: [10, 11, 12, 13, 14, 15, 16]. However, the analysis in [9]
leads to distinctly different conclusions than those presented in Chapter 4. It is believed
that the results in Chapter 4 are more accurate. This conclusion is supported by extensive
simulation results, and by a detailed examination of the analysis in [9], which is presented
in Section 4.4.

The final chapter in this document, Chapter 6, outlines a number of potential directions
for future research. Some of the topics discussed are nearly mature and include preliminary
results. Other topics are less mature and are only briefly discussed. One important area
for future research is the use of the framework introduced here to develop new blind algo-
rithms. A new algorithm called the Least Squares General Modulus Algorithm (LSGMA)
is introduced. This algorithm is very similar to a CMA, except that a general magnitude
non-linearity is used in place of the hard-limit non-linearity used in CMA. The LSGMA
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offers faster convergence relative to the LSCMA in some situations. Other potential areas
for future research are outlined as well, including the behavior of CMA and DDA with a
finite data sequence, the extension of the general analysis framework to include extraction
of multiple signals, and exploitation of multiple non-linearities for blind adaptation.

As with any research endeavor, publication is important both for dissemination and for the
opportunity to interact with other researchers in the field. The following journal articles and
conference papers have been published as a result of the work outlined in this dissertation,
or describe previous work that has been used in the preparation of this document:

e T.E. Biedka, J.H. Reed, and W.H. Tranter, “Statistics of Blind Spatial Signature
Estimators”, Proc. of the Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, November 2000.

e T.E. Biedka, W.H. Tranter, and J.H. Reed, “Convergence Analysis of the Least Squares
Constant Modulus Algorithm in Interference Cancellation Applications”, IEEE Trans.
on Communications, March 2000, pp. 491-501.

e T.E. Biedka, J.H. Reed, and W.H. Tranter, “Mean Convergence Rate of a Decision
Directed Adaptive Beamformer with Gaussian Interference”, First IEEE Sensor Array
and Multichannel Signal Processing Workshop, March 2000.

e T. Biedka, B. Holden, S. Thornton, W. Ferguson, R. Hammons, B. Johnson, S. Kailas,
V. Liau, A. Paulraj, and S. Sandhu, “Implementation of a Prototype Smart Antenna
for Low Tier PCS”, Proc. of the IEEE Vehicular Technology Conference, Houston,
TX, May 1999

e T.E. Biedka, “A Comparison of Initialization Schemes for Blind Adaptive Beamform-
ing”, Proc. of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, May 1998, pp. 1665-1668.

e K.J. Krizman, T.E. Biedka, and T.S. Rappaport, “Wireless Position Location: Funda-
mentals, Implementation Strategies, and Sources of Error” |, Proc. of IEEE Vehicular
Technology Conference, May 1997. (Also included in T.S. Rappaport, ed., Smart An-
tennas: Adaptive Arrays, Algorithms, and Wireless Position Location, IEEE Press,
1998)

e T.E. Biedka, W.H. Tranter, and J.H. Reed, “Convergence Analysis of the Least Squares
Constant Modulus Algorithm” ;| Proc. of the Thirtieth Asilomar Conference on Signals,
Systems, and Computers, Nov 1996.
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e T.E. Biedka, J.H. Reed, and B.D. Woerner, “Direction Finding Methods for CDMA
Systems”, Proc of the Thirtieth Asilomar Conference on Signals, Systems, and Com-
puters, Nov 1996.

e T.E. Biedka, “A Method for Reducing Computations in Cyclostationarity-Exploiting
Beamforming”, Proc. of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, May 1995.

e T.E. Biedka and M.F. Kahn, “Methods for Constraining a CMA Beamformer to Ex-
tract a Cyclostationary Signal” , Proc. of the Second Workshop on Cyclostationary
Signals, Monterey, CA, August 1994.

e M.F. Kahn, M.A. Mow, W.A. Gardner, and T.E. Biedka, “A Recursive Programmable
Canonical Correlation Analyzer”, Proc. of the Second Workshop on Cyclostationary
Signals, Monterey, CA, August 1994.

e T.E. Biedka, “Subspace-Constrained SCORE Algorithms”, Proc. of the Twenty Sev-
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Chapter 2

Adaptive Antenna Arrays in Mobile
Wireless Applications

This chapter presents a brief overview of adaptive beamforming in mobile wireless commu-
nication applications. The motivation for using adaptive beamforming is that such systems
can reduce the effects of cochannel interference, multipath fading, and background noise as
compared to more conventional antenna systems. The potential benefits include improved
geographical coverage of the service area, extended range, increased capacity, and improved
quality of service. For these reasons, the use of adaptive array systems in wireless com-
munication has received a great deal of attention in the literature (e.g., see [2, 3, 4, 5, 6]
and references therein). These systems exploit the spatial separation of co-channel signals
in order to extract a desired signal and reject co-channel interference. This is accomplished
by weighting and summing the signals received at multiple antennas in such a way that
the desired signal combines coherently, while the undesired noise and interference combines
incoherently. This process is illustrated conceptually in Figure 1.1.

When applied in mobile communications, an adaptive antenna array is often referred to as
a form of smart antenna. This term is generally meant to include switched beam systems
and steered beam systems as well. The distinguishing feature of smart antennas, as opposed
to more conventional antennas, is the ability to change the effective antenna pattern. The
various versions of smart antennas differ principally in the degree to which the antenna
pattern can be controlled. A switched beam or steered beam system attempts to place
maximum gain towards the bearing of the desired user. The system is only able to control
the bearing where the antenna pattern is maximum. The performance of an adaptive array
will always be better than that of a steered or switched beam system and is therefore the focus
of this tutorial. However, an adaptive array is generally more complicated, and hence more
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expensive, than a switched/steered beam system. In some applications the added expense of
a fully adaptive array may not warrant the performance improvement over a simpler switched
or steered beam system. The relative performance of a steered beam system versus a fully
adaptive system can depend greatly on the propagation environment (e.g., the angle spread)
and the multiple access scheme (e.g., TDMA versus CDMA).

This chapter presents an overview of some of the concepts and methods used in adaptive
antenna array systems. The tutorial material presented here is only intended as a brief review
of adaptive array techniques and their application in mobile radio communications. The
reader is directed to more detailed information found in the cited references as appropriate.
This overview is organized into the following general topics:

1. mathematical background;
2. mobile radio propagation environment; and

3. adaptive algorithm review;

2.1 Mathematical Background

In this section some of the common concepts and terminology associated with beamforming
are defined and discussed. Important topics include:

1. the narrowband model for array data;

2. the array response vector;

3. the antenna array beampattern;

4. ambiguities in the array response vector;
5. array aperture; and

6. the optimal weight vector.

2.1.1 Narrowband Model

A fundamental concept in adaptive beamforming is the narrowband model for the signals
received by the array of antennas. In this model, a small time delay (relative to the inverse
signal bandwidth) is replaced with a simple carrier phase shift. The individual antennas in
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Figure 2.1: Time difference of arrival for a plane wave signal received by an array of M
antennas, illustrating the dependence on signal angle of arrival (AOA) 6 .

an array are generally closely spaced (on the order of centimeters, or meters in the extreme).
The time delay seen by a signal as it propagates across an antenna array will therefore be on
the order of nanoseconds. It is important to recognize that the narrowband model is used to
describe the difference in the signal received at one antenna relative to another antenna. The
use of the narrowband model for the array data does not preclude the study of frequency
selective channels.

Consider a situation where a plane wave signal is received by an array of M antennas, as
illustrated in Figure 2.1. The signal observed at one antenna will be a delayed version of the
signal observed at some other antenna. Let antenna #1 be the reference antenna. Denote
the signal observed at this antenna as

21(t) = s(t) + 1 (t) (2.1)

where s(t) is the incident signal and ¢;(¢) is the background environmental noise and receiver
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noise. Then the signal observed at the kth antenna will be
z(t) = s(t + %) + qi(t) (2.2)

where 7 is the time difference of arrival (TDOA). By examination of Figure 2.1 it can be
seen that ‘

= Be30) 23
where dy, is the separation of the first and kth antenna, c is the propagation speed, and @ is
the AOA of the signal. For an electromagnetic wave propagating in free space, ¢ ~ 3.0 x 108
meters/sec. Note that if the signal arrives from 0° (broadside to the array) the TDOA is
equal to zero. We will now show that if 75 is small, the signals observed at each antenna

differ only by a phase shift.

Since we are dealing with communication signals, where the carrier frequency can be many
orders of magnitude greater than the bandwidth, the analytic representation of the received
signals is useful to this discussion. Assume that the signal is bandpass, so that its spectrum
is limited to a certain band of frequencies centered about the carrier frequency w.. The
signal can be expressed as

s(t) = sp(t) cos (wet) — sg(t) sin (wet) (2.4)

where s7(t) and sq(t) are the In-phase and Quadrature components, respectively, of the
signal. Because the original signal s(¢) is bandpass, the signals s;(t) and sq(t) are low-pass.
The complex envelope of the signal s(t) is defined as

8(t) = s1(t) + Jsq(t) (2.5)

This is sometimes referred to as the complex baseband representation of the signal. The
signal can also be represented as

s(t) = r(t) cos (wet + ¢(t)) (2.6)
where
r(t) = \/s1(t) + s () (2.7)
is the magnitude and "
_1 Solt
$(t) = tan s(}?(t) (2.8)

is the phase of the information bearing portion of the signal. The original signal can be
recovered from the complex envelope via

s(t) = Real {5(¢) exp(jw.t)} (2.9)
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Now consider the effect of adding a time shift 7, to the signal. Using the complex baseband
representation of the signal, we have

s(t + 1) = Real {5(t + 7%) exp(jwet) exp(jor)} (2.10)

where
Pr = WeT (2.11)

Because the signal is bandpass, the complex envelope §(t) is slowly varying relative to the
carrier period. Therefore

5(t + 1) ~ 5(t) (2.12)

and
s(t+ 1) =~ Real{5(t)exp(jw.t)exp(jor)} (2.13)
~  s1(t) cos (wet + ¢r) — so(t) sin (wet + Pr) (2.14)

This shows that the effect of a small time delay 7 can be accurately modeled as a simple
phase shift ¢ if the delay is small relative to the inverse bandwidth of the signal. Note
that if we express the phase shift ¢ in terms of the signal carrier wavelength .,

(2.15)

s o (2%0) (dk sin@) 27d, sin @
k= WeTk = =

Ae c Ae

In the remainder of this document we will assume that the received signals are in a complex
baseband representation, or are ‘nearly’ at baseband, which would correspond to some rela-
tively small error in carrier frequency knowledge at the receiver. Some of the practical issues
involved in converting a signal to a complex baseband format are addressed in Section 2.6.

Assuming that the received signal is in a complex baseband representation, we have
s(t+ ) ~ ar(0)s(t) (2.16)

where the complex scalar
ar(6) = e (2.17)

and ¢y, is given by (2.15). In some cases, the phase shift ¢, may not be a unitary function
of AOA. If

ak(el) = ak(eg) V k with 61 # 62, (218)

then the angles #; and 6, are said to correspond to an array ambiguity. As an example,
the array geometry shown in Figure 2.1 exhibits an ambiguity at 8, = m — 6, since sinf =
sin(m — #). This ambiguity will exist for any linear array, i.e., an array whose antennas
are distributed along a straight line. Other ambiguities will exist if the separation between
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sensors is larger than d = A./2. This can be seen by the following. Ignore the unavoidable
ambiguity between 6 and m — € by considering only —7/2 < 6 < +x/2. If 6 is restricted
to this range, —1 < sin(f) < 1. To avoid ambiguities in this interval, the phase ¢ must be
strictly between —m and 7. That is, the phase must not wrap. This implies

2mdsin 0

n> LY (2.19)

Ac

Noting that the maximum value of sinf is +1, we must have
2md

2.20
r s 3 (2:20

Ac
d < ) (2.21)

In general, array ambiguities are to be avoided because the array cannot distinguish a desired
signal and interfering signal at ambiguous AOAs. Thus, for example, the array would not be
able to null the interference without also nulling the desired signal. It should be emphasized
that this does not imply that the interelement spacing must always be less than A./2 when
the number of antennas is greater than 2. This issue is addressed later in Subsection 2.1.6.

Since we are dealing with multi-dimensional data, it is convenient to work with a vector
representation of the data. To accomplish this, we introduce the array response vector.
The array response vector describes the amplitude and phase changes seen by a signal as
it propagates across the array of antennas. The array response vector for a signal incident
from 6 is the M x 1 complex vector given by

a@)=| . (2.22)

axi(0)

where M is the number of antennas in the array. Note that the first entry in a(6) is unity,
since this corresponds to the reference antenna. In practice, each antenna may have different
gain, and each channel of the receiver may have different gain. Furthermore the effects of
antenna coupling, uncertainty in antenna position, and near field scattering make it unlikely
that the phase shift seen at each antenna will be exactly given by (2.15). The process of
determining the array response a(f) as a function of 6 is known as array calibration, and
is accomplished by placing a transmitter at a known angle 6 and estimating a(#) from the
received data. This is a non-trivial task, particularly if accurate knowledge of the array
response is required over a range of carrier frequencies. For these reasons, the array response
vector should be treated in practice as an unknown complex vector whose value is, at best,
only approximately known.
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To complete the introduction of the narrowband model, we wil use it to describe the data
received by an antenna array. The M x 1 complex vector

z1(n)
x(n) = ngn) (2.23)
zar(n)

will be referred to as the observed data vector at discrete time instant n. x(n) is also
sometimes referred to as a data snapshot. When only one signal is incident on the array,

x(n) = a(f)s(n) + q(n) (2.24)

where the M x 1 complex vector q(n) contains background noise and receiver noise. When
there are L incident signals,

x(n) = Y a(6,)s:(n) + a(n) (2.25)

i=1

or alternatively
x(n) = As(n) +q(n) (2.26)

where the ith column of the M x L matrix A is the array response vector for the ith signal,
and the L x 1 matrix s(n) contains the source signals.

The narrowband model is exact only for sinusoidal signals. However, the model is generally
a good approximation in many situations. The most obvious source of deviation from the
narrowband model is the actual bandwidth of the incident signal. As a rule of thumb, the
ratio of the signal bandwidth B to the carrier frequency f. should be small. This ratio is
often referred to as the relative bandwidth. Values less than 10%, i.e. B/f. < 0.1, are
generally considered small. However, the phase difference between sensors depends on signal
bandwidth and the time delay between sensors. The phase difference can change significantly
over the bandwidth of the signal if the signal bandwidth is large or if the array is large. For
example, a signal impinging on a linear array from near broadside results in small relative
delays from sensor to sensor, and so the effects of signal bandwidth will be small. However,
the same signal incident on the same array from an angle well off broadside may result in
large relative delays, making the narrowband model inappropriate. As a counter example, the
signal may have a small relative bandwidth, but if the sensors are very far apart, the signal
observed at one sensor will not be simply a phase-shifted version of the signal observed at
another. An extreme example would be a TDOA geolocation system where multiple widely
spaced sensors are used.
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In practice, any deviation from the narrowband model is detrimental to the performance
of a narrowband beamformer. This is usually manifested as a limit in the ability to null
interference, i.e., a limit in the null depth. This means that if very deep nulls are desired,
the narrowband model must be truly appropriate, or a wideband beamformer must be used.
A wideband beamformer uses tapped delay lines or a frequency channelized architecture
to accommodate the frequency-dependent nature of the array response. Conversely, if very
deep nulls are not required, more deviation from the narrowband model can be tolerated.

2.1.2 Antenna Weighting and Antenna Array Beampatterns

The signals received at an array of antennas can be weighted and summed to improve the
quality of the desired signal, as illustrated in Figure 1.1. This process is described mathe-
matically by

y(n) = ;w;‘ zi(n) (2.27)

where w; is the weight applied to the data received at the ith sensor. It is a common
convention to apply the conjugate of the weight because it simplifies later math. Using
matrix notation, the antenna array output can be written as

y(n) = wix(n) (2.28)

where w is the M x 1 vector of complex antenna weights and (-) denotes conjugate transpose.
w is commonly referred to as a beamformer weight vector. Substituting the model for the
received data (2.25) into the expression for the array output, we have

L
() = 3 wa(0:)si(n) + wa(n) (229)
i=1
It can be seen that the inner product of the weight vector w and the array response vector
a(f) determines whether a signal received from angle 6 is nulled or passed. The beampattern,
defined as ,
S(6) = |w'a(0)| (2.30)

describes the gain versus AOA for a particular weight vector. The beampattern is in many
ways analogous to the magnitude of the frequency response of an FIR filter. Care should be
taken when using the beampattern to determine the behavior of a beamformer, since only
the magnitude response is shown. In particular, if the environment contains multipath, the
phase response may be equally important.

An example of an array beampattern is shown in Figure 2.2. The array contains 4 antennas,
and these antennas are arranged along a straight line, with the inter-element spacing equal
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to A/2, with X being the carrier wavelength. This would be described succinctly as a Uniform
Linear Array (ULA) with A\/2 interelement spacing. The antenna weights are all equal to
unity, that is, w = [1111]". The Half Power Beamwidth (HPBW) is an important
parameter of any antenna. This is the width of the main beam of the antenna gain pattern
3 dB below the maximum gain. For a large ULA, the HPBW (in radians) is approximately

HPBW =1/L, (2.31)

where L is the array aperture in wavelengths [19]. The array aperture is the length of the
array. Clearly the HPBW decreases as the array aperture increases. This is demonstrated
by Figure 2.3. This shows the beampattern for a 16-element ULA with the weights again
equal to unity. Note that the main beam is much narrower than for the 4-element ULA.
However, the sidelobe height is not much lower than for the 4-element array.

The sidelobe height can be reduced by applying a non-uniform weighting to the antennas.
This is illustrated in Figure 2.4. Here the 16-element ULA is weighted with a Hamming
window. The figure clearly shows that the sidelobe height has been greatly reduced. Other
antenna weights can be chosen to trade mainlobe width for sidelobe height. This is very
similar to the use of a data window in FIR filter design.

The weight vector w can also be used to steer the beam towards a desired direction. In
order to have maximum gain in a certain direction, the weight vector must compensate for
the phase shift (delay) corresponding to the signal’s AOA. This allows each copy of the
received signal to combine coherently, while signals arriving from other angles will combine
non-coherently. This is accomplished by setting the weight vector equal to the array response
vector for the desired angle. This is why an array response vector is also known as a steering
vector. We show later in Subsection 2.1.3 that w = a(f) is the optimal weighting for a
single signal received from angle 6 in spatially white noise. An example of beamsteering
with a 16-element ULA is shown in Figure 2.5. The weight vector w is set equal to the array
response vector a(f) for § = 15°. The figure clearly shows that this results in maximum
gain at § = 15°. Note that the mainlobe width is also larger than was the case when the
array was steered towards broadside (0°). This is due to the fact that the effective aperture
is smaller for a signal received from off broadside. That is, from the perspective of the
transmitter, the array aperture appears smaller when the signal AOA is off broadside. For a
ULA, the aperture is maximum at broadside, and is minimum at endfire (6 = +90°), where
the effective aperture is zero. The effective aperture of a linear array is

Log = Lysin@ (2.32)

In order to reject co-channel interference, it is clearly desirable to minimize mainlobe width
and sidelobe height. In order to accomplish this, the number of antennas in the array
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Figure 2.2: Beampattern for a uniformly weighted 4-element ULA with interelement spacing
equal to A./2.

must be fairly large, which is impractical in many applications. Furthermore, the antenna
weighting methods discussed above are not able to reject co-channel interference that falls
in the mainlobe of the antenna pattern. For this reason we turn to other antenna weighting
methods which offer greatly improved performance. This is the topic of the next subsection.

2.1.3 Optimal Weight Vector

A reasonable approach to finding the optimal weight vector is to maximize the Signal to
Interference and Noise Ratio (SINR) in the beamformer output. This will maximize the
beamformer gain in the direction of the desired signal while simultaneously minimizing the
gain towards the noise and interference. Assume that the array receives multiple signals.
The beamformer output SINR for the kth signal can be written as

O'QWHa aHW
Pr = % (2.33)
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Figure 2.3: Beampattern for a uniformly weighted 16-element ULA with interelement spacing
equal to A./2.
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Figure 2.5: Beampattern for a uniformly weighted 16-element ULA that has been steered to
15°.
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where o} is the power of the kth signal,
I
Rii = Z afaiaf—i—qu (234)
i=1,i#k

is the noise and interference covariance matrix, and

Ry, = £{ a(n)a" (n) | (2.35)

is the noise covariance matrix. To find the weight vector that maximizes the output SINR
(2.33), we will make use of the Cauchy-Schwarz inequality for complex vectors, which states
that for any two complex vectors u and v,

uvviu < ufluvfv (2.36)

with equality if and only if u oc v, where o is read as ‘proportional to’. Define the vector
u 2R/ *w (2.37)

Note that R;; is Hermitian and full-rank. The only way that R;; could not be full rank is if
no thermal noise were present in the antennas and the receivers. Therefore R;; /2 is defined
in the natural way, and is a Hermitian matrix. The output SINR (2.33) can then be written
as

wR;*aaR; " *u
= = = 2.38
Pk au ( )
Now define the vector
v2R;"%a (2.39)
This allows the output SINR to be written as
ulvviu
R 2.40
Pk =~ (2.40)

Scaling the vector u has no effect on the SINR, so we need only to maximize the numerator
in the above expression in order to maximize the output SINR. By the Cauchy-Schwarz
inequality (2.36), this requires that u o v. Thus the weight vector that maximizes the
output SINR is, by (2.37) and (2.39),

wou = R;'"u (2.41)
R;"R;*a (2.42)
= R;'a (2.43)

The corresponding optimal output SINR is obtained by substituting (2.43) into (2.33), which
yields
popt = 0ra’R;;'a (2.44)
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It is important to note that multiplying the weight vector by any complex scalar has no effect
on the output SINR. It can be seen by inspection of (2.43) that scaling the array response
vector of the desired signal is equivalent to scaling the weight vector. This shows that the
optimal weight vector is not dependent on the signal power o2. However, the optimal output
SINR is clearly dependent on the received signal power.

An alternative expression for the optimal weight vector is given by
Wops = R }a (2.45)
where
R, = &{x(n)x"(n) } (2.46)

is the covariance matrix of the observed data vector x(n). This weight vector can be obtained
by minimizing the Mean Square Error (MSE) between the beamformer output and the
transmitted signal s(n). It can also be obtained as the solution to the following constrained
optimization problem:

Find the weight vector w that minimizes the total beamformer output power,
subject to the constraint that the beamformer gain in the direction of the desired
signal is unity.

Stated mathematically, the problem is
mvérnWHRmW ST.C. wla=1. (2.47)

The weight vector that solves this optimization problem is often referred to as the Minimum
Variance Distortionless Response (MVDR) weight vector. We will now show that (2.45) is
optimal in the maximum output SINR sense.

Using the matrix inversion lemma, which states that [20]

-1 -~ Cluuf’C™!
we have v 1 1
1 o1 O;R;aa"Ry;
This leads to
2. Hp -1
1. 1 o;a"R;;"a -1
o’R;;'aall 1
= < — T UQaHR71a> R; a (2.51)
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Since the quantity in parenthesis in the above expression is a scalar, the weight vector given
by (2.45) is optimal in the maximum output SINR sense.

It is important to point out that simply substituting a finite time estimate of the covariance
matrix, such as

N-1

R, = > x(n)x"(n) (2.52)

n=0
for R, in (2.45) does not in general yield good performance. The MVDR is known to be
hypersensitive to error in the array response vector a. That is, small errors in a will lead to
large loss in output SINR. This issue is addressed is more detail in Subsection 2.4.1.

Optimal Weight Vector - Single Incident Signal It is instructive to examine the
optimal weight vector for the special case of a single signal received in spatially white noise.
The background noise q(n) is spatially white if it is uncorrelated from sensor to sensor.
Assuming that the noise power in each receiver is equal to unity, the background noise will
have covariance matrix

Ry = E{a(n)a”(n) } =1 (2.53)

where I is the M x M identity matrix. Modeling the background noise as unit variance is
typically done so that the Signal to White Noise Ratio (SWNR) is equivalent to the received
signal power. The optimal weight vector (2.43) for spatially white background noise then
reduces to

Wopt = @ (2.54)

Thus the optimal weight vector for a single signal received in spatially white noise is simply
the array response vector of the desired signal. Using the array response vector as a weight
vector phase aligns the signals observed at each sensor and allows them to sum coherently.
The background noise at each sensor will combine noncoherently because it is uncorrelated
from sensor to sensor.

Now consider the optimal output SINR relative to the received SINR. The optimal output

SINR (2.44) is equal to

Popt = UgaHRi_ila = UzaHa (2.55)

Without loss of generality, assume that each antenna is unity gain. This implies that

afa=M (2.56)

and in turn
popt = Mo (2.57)
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Thus the optimal beamformer will improve the SINR by a factor of M when only one signal
is received and the background noise is spatially white. This is often termed the white noise
gain of the array. If co-channel signals must be nulled, the optimal output SINR will be
strictly less than Mo?2. This is therefore a useful bound on the output SINR that can be
achieved with a beamformer in any co-channel environment.

These arguments have demonstrated that the beampatterns shown in Figures 2.2, 2.3, and
2.5 are optimal if only one signal is incident on the array. Note that the use of a tapering
window to reduce sidelobe height, as in Figure 2.4, is not optimal for spatially white noise.

We now examine some optimal beampatterns for situations where multiple signals are re-
ceived. These examples are limited to cases where the signals are uncorrelated, and each
signal arrives from only one direction, i.e., there is no multipath. The optimal array response
in multipath environments is discussed later in Subsection 2.2.1.

We first consider the 4-element ULA with \/2 spacing. We place the desired signal at
broadside (0°) and a co-channel interferer at 15°. We let the signals have the same power,
which is 20 dB higher than the noise floor. We will refer to the signal strength relative to
the noise floor as the Signal to White Noise Ratio (SWNR). Figure 2.6 shows the optimal
beampattern for this particular scenario. Clearly there is a deep null steered towards the
interferer. The optimal output SINR (2.44) for this scenario is 23.8 dB. If the interferer were
not present, the optimal output SINR would be 20 dB + 10log,,(4) = 26 dB.

Figure 2.7 shows the optimal beampattern for a similar scenario, except that two uncorrelated
20 dB co-channel interfering signals are also incident from —60° and 45°, for a total of three
interfering signals. This is the maximum number of interfering signals that can be nulled by
this 4-element array. The optimal output SINR for this scenario is 21.2 dB, which is lower
than the optimal output SINR for the previous example with a single interferer. In general,
the maximum number of nulls that can be steered by an M-element adaptive array is M — 1.
This issue is addressed in more detail in Subsection 2.1.5.

2.1.4 Maximum Likelihood Weight Vectors for Multiple Signals

The weight vector derived in Subsection 2.1.3 is optimal in the maximum output SINR sense.
It can also be derived as the Maximum Likelihood (ML) estimator for a single known signal
in Gaussian noise and interference. If the noise is not Gaussian, the ML weight vector is no
longer given by 2.43, since the MMSE solution is equivalent to the ML solution only when
the noise is Gaussian. Furthermore, (2.43) is not the ML weight vector for multiple signals
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in Gaussian noise.

We will now examine the ML estimator for the case where the array receives L signals and
the background noise is spatially white and Gaussian. Assume that the array response vector
for each of the L incident signals is known. The ML estimator of the signals is found by
minimizing

|x - AS (2.58)

2
F

where

IAlp= 322> i (2.59)

i

is the Frobenious matrix norm,

51
. So
S=1 . (2.60)
3
is the L x N matrix of signal estimates, and
A=Ja a ---ar | (2.61)

is the M x L corresponding set of known array response vectors. The resulting ML signal

estimates are given by
S = WX (2.62)

where the ith column of the weight matrix
W=A(A"A)" (2.63)
extracts the ¢th signal. It is straightforward to show that
WHA =1 (2.64)

so that each column of W steers zero gain (infinitely deep nulls) on the interfering signals.
Thus, these weight vectors do not achieve the optimal output SINR. However, if the SWNR
of each signal is reasonably high, the output SINR of (2.63) is very close to the optimal
SINR.

It is unlikely that the array response vectors of any of the received signals will be known a
priori. A much more likely scenario is one where multiple received signals are known, and
the array response vectors are unknown. Such would be the case where the multiple received
signals contained a known training sequence. By a similar argument used to find the ML
estimator for the unknown signals given the known array response vectors, we can find the
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ML estimator for the unknown array response vectors given the known received signals. The
resulting ML estimator is

A =xs" (ss”) (2.65)

where it is again assumed that all the incident signals are known and the background noise
is Gaussian and spatially white. The corresponding ML weight matrix for estimating the
received signals is given by (2.63) with A replaced by its ML estimate A.

2.1.5 Degrees of Freedom and Overloaded Arrays

A key parameter of a beamformer is the number of interferers that can be nulled. In theory,
a beamformer with M sensors can steer M — 1 nulls. This can be seen by the following
argument. Let the columns of the M x L matrix A correspond to the array response vectors
of the L received signals. Assume for convenience that the first column of A corresponds to
the desired signal. A weight vector that extracts the desired signal while completely rejecting
the other received signals satisfies

wiA=c=[100 ---0] (2.66)

If L < M, then the system of equations (2.66) is underdetermined, and a solution to the set
of linear equations (2.66) exists. The solution is given by

w=A(ATA) " (2.67)

If L > M, then an exact solution to (2.66) does not exist. However, a vector that is as close
as possible to the desired solution in a least squares sense does exist, and is given by [20]

w=(AAT) " AcT (2.68)

This shows that an adaptive array may not fail completely when the number of received
signals exceeds the number of antennas, but the performance can be expected to degrade,
perhaps dramatically, for L > M. When the number of incident signals L exceeds the
number of antennas M, the array is said to be overloaded.

As an example, we consider the 4-element ULA, 3-interferer scenario corresponding to Fig-
ure 2.7, but now add an additional 20 dB interferer at —30°. Now the number of interferers
exceeds the degrees of freedom for the array. The optimal beampattern for this scenario
is shown in Figure 2.8. The corresponding optimal output SINR is 4.3 dB. This is much
lower than the optimal output SINR of 21.2 dB that could be achieved with three interferers.
However, the beampattern in Figure 2.8, while not steering nulls on the interfering signals,
does place low gain in those directions. The input SINR is -6.1 dB, so in fact the array has
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improved the SINR by approximately 10.4 dB. Thus the array is clearly capable of improving
the SINR of the desired signal, even though the array is overloaded.

The array in the above example is only slightly overloaded. As another example, we will
consider a scenario where the 4-element ULA is highly overloaded. We place 16 interferers in
a nearly uniform angular distribution as illustrated in Figure 2.9. The total power of all 16
interferers is 20 dB, i.e., the SWNR of each interferer is approximately 8.0 dB. The desired
signal is again incident from 0° with 20 dB SWNR. The received SINR at each antenna is
approximately 0 dB. The optimal beampattern is shown in Figure 2.9. The corresponding
optimal output SINR is 8.9 dB, which shows that the array can be effective in reducing
the co-channel interference. Note that the beampattern in Figure 2.9 is very similar to the
beampattern of Figure 2.2, which corresponds to the optimal weight vector for spatially
white noise. This demonstrates that a large number of interferers, when equally distributed
and with nearly equal power, is similar to spatially white noise. This has implications for
CDMA applications. In CDMA, the users are intentionally co-channel, and the power of
each user is typically closely controlled in order to maximize capacity [21].

To gain further insight into the performance of an adaptive array in overloaded environments,
we perform the following experiment. We again use the 4-element ULA with a 20 dB
desired signal at 0°. We then add L interfering signals at random angles 6, with 6 uniformly
distributed over —7/2 < # < 7/2. The total power of the L interfering signals is equal to
20 dB, with the noise floor at 0 dB. All interfering signals have the same power. The optimal
output is calculated, and the experiment is repeated for 10,000 trials, with the AOAs being
randomly selected for each trial. The mean optimal output SINR over 10,000 independent
trials is shown in Figure 2.10 as a function of the number of interfering signals.

To this point, we have only considered uniformly spaced arrays with interelement spacing
equal to A/2. In the next section we show that other array geometries can yield improved
performance relative to a ULA.

2.1.6 Array Aperture, Ambiguities, and Resolution

If two signals have the same AOA a beamformer will not be able to separate them. A
reasonable question then arises: What angular separation is required in order to extract the
desired signal? Unfortunately, there is no straightforward answer to this. However, it will
be helpful to consider the case of a single signal and a single interferer received in spatially

white noise. In this case
Ri; = (o3aal +1) (2.69)
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Figure 2.6: Optimal beampattern for a 4-element ULA with a desired signal incident from
0° and a single 20 dB co-channel interferer incident from 15°.
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Figure 2.7: Optimal beampattern for a 4-element ULA with a desired signal incident from
0° and three 20 dB co-channel interfering signals incident from —60°, 15°, and 45°.
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Figure 2.8: Optimal beampattern for a 4-element ULA with a desired signal incident from
0° and four 20 dB co-channel interfering signals incident from —60°, —30°, 15°, and 45°. The
array is overloaded.
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Figure 2.9: Optimal beampattern for a 4-element ULA with a desired signal incident from
0° and 16 co-channel interfering signals, each having 8 dB SWNR.
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Figure 2.10: Mean optimal output SINR versus the number of interfering signals with a 4-
element ULA. The AOA of the 20 dB desired signal is 0 dB, and the AOA of each interfering
signal is randomly selected. The total interference power is held constant at 20 dB.



Thomas E. Biedka Chapter 2. Adaptive Arrays 31

where all is the array response vector for the second (interfering) signal and I is the identity
matrix. Using the matrix inversion lemma (2.48),

olazall
Rl=(1-—2"2 . 2.70
i ( 1+ o3alla, ( )

The optimal output SINR is given from (2.44) as

popt = orar Rija (2.71)
2. . H
2 H 052235

= I- 2= . 2.72

01y ( 1 +U§a§{a2> a ( )

Assume that the sensors are unity gain so that alla; = M. Also assume that the received
signals are much stronger than the background noise so that o3 > 1. Then

"
a; a2
Popt = 07 (M - T) : (2.73)

It can be seen that the output SINR is dependent on the number of sensors in the array
and also on the inner product of the array response vectors. The output SINR depends for
the most part on the similarity of the array response vectors for the incident signals. If the
array response vectors are very similar, their inner product will be large and the output
SINR will be small. Increasing the spacing between sensors will increase the relative phase
difference between sensors. This in turn will make the array response vectors less similar
and improve the ability to resolve incident signals. Based on these arguments, it would seem
that the larger the array, the better. This is only true up to the point where the array
response begins to exhibit ambiguities (See Subsection 2.1.1). Array ambiguities are to be
avoided, in general, because if a desired signal and interferer lie at ambiguous AOAs, their
array response vectors are identical, and the interferer cannot be nulled without also nulling
the desired signal. Therefore the sensors should be as far apart as possible, i.e., the array
aperture should be as large as possible, without introducing ambiguities.

Based on the observations made in Subsection 2.1.1, it might be concluded that for an M-
element linear array the inter-element spacing should be no more than \./2 in order to avoid
ambiguities. However, the spacing between individual sensors can be much larger than this
without incurring ambiguities so long as one pair of sensors are less than A./2 apart. This
will be illustrated through a simple example. Consider the problem of determining antenna
placement for a three element linear array. The output SINR for an array of 3 sensors will
be strictly greater than the output SINR that can be achieved with a two element subarray
of the overall array. This can be proved by noting that if this were not true, the output
SINR could be increased simply by placing zero weighting on some antenna elements. Thus
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the third sensor can be spaced more than \/2 away from the next closest sensor, and the
two closely spaced elements will prevent array ambiguities.

The resolution of an array can be examined by plotting the optimal output SINR as a
function of signal separation. Figure 2.11 shows such a plot for a 4-element ULA with \/2
interelement spacing. The desired signal is assumed to have 9 dB SWNR and is incident from
0°. A single 9 dB SWNR interfering signal is also present, and the AOA of the interferer
is varied. Clearly the array has difficulty extracting the desired signal when the angular
separation is small.

Now consider the effect of increasing the array aperture. We keep three of the antennas at
their original locations, with A/2 spacing, but move the 4th antenna so that it is separated by
4 )\ from its nearest neighbor. That is, the array elements are located at z-axis coordinates

z=][01/2 15 ]*\ (2.74)

with the y-axis coordinate equal to zero, i.e., the array lies along the z-axis. According the
argument made earlier, this array should not exhibit any ambiguities. This is supported by
Figure 2.12, which shows the beampattern for a signal incident from 0°. Clearly the sidelobes
are much higher than with the ULA, and the mainlobe is not well defined. However, the
white noise gain is identical to that of the ULA, since this is only dependent on the number
of antennas. Furthermore, the resolution of this array is much better than for the ULA.
Figure 2.13 shows the optimal beampattern for this large aperture array with a desired
signal at 0° and a 20 dB interfering signal at 15°. Comparing Figure 2.13 with the analogous
beampattern for the ULA shown in Figure 2.13, we might conclude that the array with
larger aperture has ‘sharper’ nulls. Thus we would expect the resolution to be higher. This
is demonstrated conclusively in Figure 2.14, which shows the optimal output SINR as a
function of signal separation. Comparing Figure 2.14 with 2.11, it is clear that the array
with larger aperture has higher angular resolution.

Antenna placement can itself be a complicated design issue. Practical effects such as antenna
coupling and near-field scattering affect the behavior of the antenna array pattern. Further-
more the placement of the antennas may be constrained by other issues, such as mechanical
stability, or aesthetic issues.

2.2 Mobile Radio Propagation Environment

In this section we review some of the salient characteristics of the mobile radio channel as
they affect the performance of an adaptive array. A more complete review of the mobile radio
channel can be found in [22]. We are primarily concerned with cellular-type applications,
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Figure 2.11: Optimal output SINR versus signal angular separation. The array is a 4-element
uniform linear array with interelement spacing equal to A./2. A 9 dB signal is received from
0° and the AOA of a 9 dB interferer is varied from -90° to +90°.
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Figure 2.12: Optimal beampattern for a single signal incident from 0° received in spatially

white noise. The array is a 4-element linear array with elements located at [ 0 1/2 1 5 |«
A
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Figure 2.13: Optimal beampattern for a signal incident from 0° with a 20 dB inter-
ferer incident from 15°. The array is a 4-element linear array with elements located at
[0 1/2 1 5 |*xA.
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Figure 2.14: Optimal output SINR versus signal angular separation. The array is a 4-element
linear array with elements located at [ 0 1/2 1 5 ]*A. A 9 dB signal is received from 0°

and the AOA of a 9 dB interferer is varied from -90° to +90°.
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where frequency reuse is employed to maximize capacity, and the mobile users are linked
to a fixed basestation. The generally complicated propagation characteristics in urban and
suburban environments create a situation where the transmitted signal may arrive at the
receiver via different paths. This is referred to as a multipath environment. If the paths have
significantly different lengths (resulting in a delay spread that is large relative to the symbol
period), the channel is said to be frequency selective. If the paths are nearly the same length,
the channel is said to be flat. The mobility of the user, combined with multipath, create
signal envelope fading. Fading occurs when multipath components arriving at an antenna
combine destructively, so that the signal power becomes very small. This undesired effect
limits the capacity of a mobile radio network. An adaptive array has the potential to reduce
the effects of fading and time delay spread (when combined with MLSE, equalization, or a
Rake). Several channel parameters affect the performance of an adaptive array, including

1. angle spread due to multipath,
2. time dispersion to due multipath,

3. Doppler spread due to multipath and the relative motion of the transmitter and re-
ceiver.

These parameters affect the ability to separate signals (beamformer output SINR) and the
rate at which the algorithms must track the environment. The required update rate in
turn has a large impact on computational requirements. The topics reviewed in this section
include:

1. the spatial signature, which is used to describe the array data in a multipath environ-
ment;

2. signal resolution in a multipath environment;

3. Doppler spread and the required weight vector update rate.

2.2.1 Spatial Signature

The spatial signature is used to describe the signal received by an antenna array when the
signal arrives from multiple directions with insignificant delay spread. In such situations,
the array data can be modelled as

x(n) = as(n) + q(n) (2.75)
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where the spatial signature a is in general given by

a— /0 " S(0)a(0) do (2.76)

where ¢(0) is the complex angular distribution of the received signal. If the angular distrib-
ution is a continuous function, the multipath is said to be diffuse. If g(0) is zero everywhere
except for a finite set of discrete angles, then the multipath is said to be specular. Specular
multipath can be modeled as

where L is the number of received paths, g; is the complex amplitude of each path, and 6; is
the AOA of each path. Note that the specular multipath model (2.77) is subsumed by the
diffuse multipath model (2.76) simply by allowing g(f) to contain Dirac delta functions. In
the most general case the signal angular distribution would contain both discrete (specular)
components and diffuse components. Many different models have been proposed for the
angular distribution g(#). A review of many of these models is presented in [23].

Several key properties of the spatial signature have a great impact on the behavior of adaptive
arrays in mobile wireless applications. The following points should be emphasized:

1. When L > 1, the spatial signature can change rapidly as a function of user position,
which is not the case when L = 1 (no multipath). Thus the presence of multipath can
actually improve the ability to separate closely spaced signals.

2. The angular spread partially determines the rate at which the spatial signature varies
with user position.

3. The array aperture also affects the rate at which the spatial signature varies.

4. If the g; are mutually uncorrelated, and nearly equal in power, the spatial signature a
approaches a complex Gaussian distribution as the number of paths L grows large.

These points will now be discussed in more detail.

We will first demonstrate that the presence of multipath can improve the ability of a beam-
former to separate received signals. An important point is that the expressions for the
optimal weight vector (2.43) and optimal output SINR (2.44) are still valid in a multipath
environment — the array response vectors of the desired signal and interfering signal are sim-
ply replaced with the corresponding spatial signatures. Consider the following scenario. The
array is a 4-element ULA with A/2 interelement spacing. A 20 dB desired signal is incident
from 0°. A 17 dB interferer is incident from 0°, which is the same AOA as the desired signal.
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Figure 2.15: Optimal beampattern for a 4-element ULA with the desired signal incident from
0°. A 17 dB interferer is also incident from 0° and a second, perfectly correlated version of
the same interferer is incident from 15°.

As would be expected, the optimal output SINR for this scenario is very low (approximately
3 dB) since the interferer cannot be nulled without also nulling the desired signal. Now a
multipath reflection of the interferer is added to the environment. This multipath arrives
from 15° with the same power as the path from 0°. We assume that the multipath compo-
nents are perfectly correlated. The optimal output SINR is now 20 dB, which is a dramatic
improvement over the case where no multipath was present. Figure 2.15 shows the optimal
beampattern for this multipath scenario. Note that the beampattern does not steer nulls,
and in fact has equal gain towards 0° and 15°, towards the AOA of the multipath. The
array can cancel the interferer by controlling the phase of the array response so that the
components from 0° and 15° combine destructively. Figure 2.16 shows the phase response
of the antenna pattern. The phase at an AOA of 0° is +90°, while the phase at an AOA of
15° is -90°, so that the multipath components will cancel.
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Figure 2.16: Phase of the optimal array response with a 17 dB interferer incident from 0°
and a second, perfectly correlated version of the same interferer incident from 15°.
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The next point to illustrate is that small changes in a user’s position can correspond to large
changes in the spatial signature. Consider a simple two-ray multipath model, where two
copies of the same signal arrive at the receiver from different paths. Let the difference in
length of these two paths be § meters. Then the differential time delay between the two
paths is 7 = d/c, where c is the speed of light in meters per second. If we assume that the
time delay is small relative to the inverse bandwidth of the signal, i.e., 7 << 1/BW, the
two copies of the signal are nearly perfectly correlated. This is referred to as a flat fading
environment, since the channel frequency response is flat. Since the delay is small, it can be
accurately modelled as a simple phase shift. This phase shift is

27 fod
c

o=

(2.78)

where f. is the carrier frequency. This can be expressed in terms of carrier wavelength \. as

2mo
= 2.79
6= (2.79)
The spatial signature for this two-ray multipath scenario is proportional to
a=a(f;) + () (2.80)

where #; and 6y are the AOA of the two paths. It can be seen that the spatial signature
will change if ¢ changes, even if 6, and 6, remain constant. This is precisely what will
occur in practice when the receiver (or transmitter) position changes, assuming that the
transmitter-receiver separation is large relative to the wavelength. If the change in position
is a significant fraction of one wavelength, the differential delay 7 will change. For some
perspective on what would constitute a significant change, the PCS band in the United
States is near 2 Ghz; this corresponds to a wavelength of approximately 15 cm. The amount
by which the spatial signature will change is dependent on several factors, including:

1. the rate at which § changes with receiver or transmitter motion, which depends on the
geometry of the receiver, transmitter, and scattering elements;

2. the similarity of a(f;) and a(6,), which depends on the array aperture and the angular
spread 6, — 6s.

To gain more perspective on this issue we will consider the simplified receiver-transmitter
geometry shown in Figure 2.17. A transmitted signal arrives at the receiver from a direct path
and from a reflected path. For simplicity, we assume that the reflector is a perfectly smooth
plane of infinite extent, and that it lies parallel to the direct path. It is straightforward to
show that

dycos A = d; (2.81)
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Figure 2.17: Simple two-path geometry used to illustrate the effect that small transmitter
displacement can have on the spatial signature.

where d; and dy are the path length corresponding to the direct and reflected path, respec-
tively, and A is the angle between the two paths. The angular difference A is the angle
spread for this scenario. The difference in path length is

di

5:d1_d2:d1_cosA

(2.82)

and the relative phase shift between the two paths is

o 2 d1
$1=~ <d1 ~ A) (2.83)

Note that as A grows small, the relative phase shift between the two paths approaches zero.

Now assume that the receiver moves directly towards the transmitter a distance x. Also
assume that z is small relative to d;, so that the angle between the two paths A remains
nearly constant. The relative phase shift between the two paths is now

by = 22 (dl_x_ dl_w) (2.84)

The phase difference has therefore changed by

27z (cos A — 1)
Acos A

If ¢, is different from ¢,, the spatial signature (2.80) will be different even though the AOA
of each multipath component remains essentially constant.

¢1— 2 = (2.85)

Figure 2.18 shows a plot of (2.85) as a function of receiver displacement x for several different
values of angle spread A. Note that the angle spread has a large impact on the rate at which
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Figure 2.18: Phase difference between two received paths as a function of receiver displace-
ment for several different values of angle spread A in a simple two-ray geometry.
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the spatial signature will change. If the angle spread is small, the spatial signature will
change slowly with changing receiver position. This is a very simple example, and is meant
only to illustrate the basic concept of the effect of receiver (or transmitter) motion. However,
the general conclusions drawn from this simple example hold in more realistic environments
as well.

We finally examine the behavior of the spatial signature as the number of received compo-
nents grows large. The central limit theorem states that a random variable Z that is formed
as a sum of a large number of independent random variables will tend to have a Gaussian
distribution in the limit. Stated formally[24],

Assume that g1, 92, gn is a sequence of independent, identically distributed
random variables with mean x and variance o2. Let

1
4 =—
n

" g —
2.
> 5 (2.86)

=1

Then as n — oo, Z converges, in distribution, to a standard Gaussian distribution
with zero mean and unit variance. There are several variations in the central limit
theorem, including

1. The random variables g; are independent with the same mean and variance
but are not identically distributed.

2. The g; are independent and have different finite variances, and the variances
are neither too small nor too large.

It is clear that (2.86) and (2.77) are directly analogous, which shows that the spatial signature
tends to a Gaussian distribution if the g; are independent. For example, the g; would be
independent if the g; have the same amplitude but uncorrelated, uniformly distributed phase.

As the angle spread of the signals becomes large, each entry in the spatial signature will
tend to an uncorrelated, complex Gaussian random variable. The envelope of a complex
Gaussian random variable is Rayleigh distributed. This is one way to motivate the well-
known Rayleigh model for multipath fading.

2.2.2 Doppler Spread and Fading

The spatial signature model in (2.76) assumes that the transmitter, receiver, and objects
surrounding the transmitter and receiver are not moving. Relative motion will cause the
path length of each multipath component to change with time, causing the amplitude and
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Figure 2.19: Typical fading envelope for a two-ray multipath environment, when each path
has identical power.

phase at each antenna to vary with time. This is shown explicitly by modeling the spatial
signature as

a(n) = /0 7 50, m)a(6) do (2.87)

where the angular distribution g(#,n) is now time dependent. The rate of change of g(0,n)
is generally slow compared to the symbol rate. This implies that g(6,n) is nearly constant
over several symbol periods. This is referred to as slow fading. Most fading communication
channels exhibit slow fading, with the exception of the HF band.

Consider a two-ray multipath environment where the amplitude of each path is equal. As
the transmitter moves in this simple example, the received amplitude will peak when the
signals combine in phase. When the signals are exactly 180° out of phase, the signals will
combine destructively, and the amplitude will be zero, i.e., the signal will be in a fade. This
occurs when path length difference is an integer multiple of the carrier wavelength. This is
illustrated in Figure 2.19, which shows the fading envelope for this simple two-ray multipath
scenario. Note that if one of the paths is stronger than the other, the signal power cannot
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be completely canceled, and the fading will not be as deep.

The change of transmitter position with time induces a linearly time-varying phase shift —
this is simply a frequency shift. This shift is referred to as Doppler. The Doppler induced
by relative transmitter /receiver motion is given by

fa= % cos 0 (2.88)

where v is the speed of the transmitter, A is the carrier wavelength, and 6 is the angle
between the relative direction of travel and the bearing towards the receiver. That is, 8 = 0
when the transmitter moves directly towards the receiver. The Doppler shift is maximum in
this case. If the multipath components arrive at the receiver with the same Doppler shift,
there will be no fading since the signals all have the same carrier frequency. It is only when
there is a difference, or Doppler spread , that fading will occur.

Now consider Figure 2.20, which shows a fading envelope with five equal power specular
multipath components. The Doppler spread in this case is normalized to one. The frequency
of each path, relative to the maximum Doppler shift, is [ 0 4.1 8.3 12.7 16 |/16]. Note that
the received envelope is not periodic. Figure 2.20 shows that the received envelope undergoes
deep fades, and has a much more random appearance than in the two-ray case.

We argued earlier that the sum of a large number of multipath components arriving at an
antenna tends to a complex Gaussian distribution if the amplitude and phase of each arriving
component is independent. The distribution of the magnitude r of a complex Gaussian
random variable follows a Rayleigh distribution, given by

%exp(—J—Z) 0>r< o
R o 2.89
p(r) { 0 -0 (2.89)

In addition to the distribution of the envelope, the duration and frequency of occurrence
of deep fades affects the performance of the communication system. These parameters
are dependent on the Doppler spectrum. The Doppler spectrum describes the frequency
spreading that occurs when a sinusoid is transmitted through a fading channel. For example,
the Doppler spectrum in the five-ray example considered earlier would be zero everywhere
except for five spectral lines at the five discrete Doppler shifts. One commonly used model
for the Doppler spectrum is due to Clarke, and is given by

1

S(7) = 2 (2.90)
mfm 1= (5£)
where f,, is the maximum Doppler frequency, given by
fu== (2.91)
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Figure 2.20: Fading envelope for a five path environment with each path having equal power
and discrete, incommensurate Doppler shift.

where v is the speed of the transmitter, A is the carrier wavelength, and f. is the carrier
frequency. This model results from assuming that the multipath is received from all directions
with equal power. This only requires that either the transmitter or receiver be surrounded
by scatterers. That is, if the mobile subscriber is surrounded by many close reflectors, the
signal arriving at the basestation may still have Rayleigh fading and Doppler spectrum given
by (2.90), even though from the perspective of the basestation the signal arrives from a very
narrow range of AOA. This is due to the reciprocity of transmission paths. Combining
the Rayleigh envelope distribution with Clarke’s Doppler spectrum model leads to fading
envelopes such as the one illustrated in Figure 2.21. The estimated PSD of the complex
envelope is shown in Figure 2.22. This PSD was estimated using the Welch method with a
4096 point Hamming window, 50% overlap, and 131072 temporal samples with the maximum
Doppler frequency equal to 0.125. This PSD is included both to illustrate the shape of the
Doppler spectrum given by Clarke’s model (2.90) and to demonstrate the accuracy of the
simulation.



Thomas E. Biedka Chapter 2. Adaptive Arrays 48

10 T T T T T T T T T T T T T T

_30 1 1 1 1
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (periods of max Doppler)

Figure 2.21: Typical Rayleigh fading envelope using Clarke’s model for the Doppler spec-
trum.



Thomas E. Biedka Chapter 2. Adaptive Arrays 49

|
|_\
o

T

1

Magnitude (dB)
6@
o

_50 o
_60 o
~70 5 '
—f 0
Frequency

Figure 2.22: Estimated PSD of the complex envelope from a simulation of Clarke’s fading
model.
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2.2.3 Diversity Reception

Diversity reception is used in many mobile wireless communication systems in order to com-
bat fading [25]. The basic concept of all diversity techniques is to exploit multiple transmis-
sion channels that have uncorrelated fading. If the fading on each channel is uncorrelated,
it is unlikely that all channels will be in a fade simultaneously. Different forms of diversity
include:

1. spatial;
2. temporal;
3. frequency; and

4. polarization diversity.

These forms of diversity can be exploited through several different approaches, including, in
order of increasing complexity:

1. switched diversity, where the ‘best’ channel is selected and the other channels are
neglected;

2. equal gain combining, where all channels are phase aligned, then summed without
regard to the signal strength in each channel;

3. maximum ratio combining (MRC), where the channels are weighted and summed to
maximize the output power.

We could also add adaptive beamforming to this list; this could be termed ‘optimal combin-
ing’ [26]. The principal difference between MRC and adaptive beamforming is that MRC
makes no attempt to differentiate between signal power and interference power — MRC only
seeks to maximize the total output power.

The performance of a diversity receiver depends in large part on the correlation between the
received envelopes, with uncorrelated envelopes providing the best performance. A method
for generating two Rayleigh fading envelopes having a prescribed correlation is described
in [27].
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2.2.4 Excess Delay Spread

It was stated in Subsection 2.1.1 that the use of the narrowband model does not preclude
the study of frequency selective channels. To illustrate this point, consider a situation where
multipath is present, and the signal received at the reference antenna is given by

z1(t) = s(t) + st +7) + q(t) (2.92)

where 7 is the excess delay spread and 7 is large relative to the symbol period. In such a
case the delay 7 cannot be modelled by a simple phase shift. The signal received at the kth
antenna is

xk(t) = S(t — Ak;71) + S(t +7 - Ak,g) + qk(t) (293)
where Ay ; is the delay seen by the ith multipath component as it propagates across the
array. Note that, in general, Ay1 # Ao since each path may arrive from a different
direction. However, if the antennas are relatively closely spaced, each delay Aj; is small
relative to the inverse signal bandwidth, and

zx(t) = m(t) cos (wet — ¢p,1) + m(t + 7) cos (wet — Pr2) + qr(t) (2.94)

Thus the narrowband model is still appropriate, but each path having significant excess delay
spread must be treated as a separate signal.

2.3 Classical Adaptive Algorithms

There are two main motivations for adaptive, as opposed to fixed, beamforming. First,
adaptive processing provides a means for finding appropriate beamformer weights in an
unknown environment. Since the signal environment will most likely be incompletely known,
this is an important consideration. The second motivation for using adaptive processing is
to track changes in the signal environment caused by, e.g, moving emitters. In this section
we describe several commonly used adaptive architectures. We motivate these architectures
under the assumption that a known training signal is available. However, many of these
adaptive architectures can be modified to operate without the benefit of a training signal.
Such algorithms are generally known as blind adaptive algorithms and will be discussed in
more detail in Section 2.5.

2.3.1 Direct Least Squares

The Least Squares (LS) weight vector is given by

A —1 A

wis=R_R (2.95)

Txr rSs
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where
A N-1
R.. = Y x(n)x(n) (2.96)
n=0
is the sample covariance matrix and
. N-1
Ros = Y x(n)s*(n) (2.97)
n=0

is the sample cross-correlation between the observed data x(n) and the known training
signal s(n). It is assumed that s(n) is known only for 0 < n < N. The LS weight vector
minimizes the sample mean square error between the beamformer output and the finite
duration training sequence. That is,

N-1

2
Wis = argmin > ‘WHX(T?,) — s(n)‘
n=0

(2.98)
where NV is the length of the training signal. If the noise and interference has a Gaussian
distribution, and if only a single incident signal is known, the LS method yields the maximum
output SINR that can be obtained with a finite duration training sequence. If the noise and
interference is not Gaussian, minimizing the mean of the squared error is not optimal. This

is mainly an issue if the noise is impulsive in nature. If multiple signals are known, this can
be exploited from a ML framework, as discussed earlier in Subsection 2.1.4.

The output SINR of the LS weight vector approaches the optimal output SINR as N — cc.
As a rule of thumb, the number of independent samples in the training sequence s(n) should
at least twice the number of antennas in the array [28]. The main drawback of the LS method
is the computational complexity. Generally speaking, the number of computations required
is on the order of M?* where M is the number of antennas [20]. Another potential drawback
is latency. An LS weight vector cannot be calculated until all N samples have been collected.
This introduces an unavoidable latency of N samples before any steps have been taken to
calculate the weight vector. However, in beamforming applications, where the number of
antennas M is usually small, solution of (2.95) may not be prohibitively expensive, and the
rapid convergence rate may be worth the extra computational load.

It should be noted that in a practical, real-time implementation of (2.95), the matrix inverse
is usually not explicitly calculated. Efficient techniques for solving (2.95) generally involve
a Cholesky decomposition, or some form of triangularization of R,,. Furthermore, the LS
weight vector can be found without explicitly calculating the covariance matrix. This is done
by orthogonalizing the data instead of the covariance matrix.
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2.3.2 Least Mean Square (LMS)

The Least Mean Square (LMS) algorithm is one of the most well-established adaptive algo-
rithms, dating to early work by Widrow and others [29]. A detailed analysis can be found
in [30]. It has been studied extensively, yet some important work remains to be done to com-
pletely understand its behavior [31]. The LMS is a type of gradient descent algorithm, and
is perhaps more accurately referred to as a Stochastic Gradient Descent (SGD) algorithm.
The name SGD arises from the fact that the gradient estimate typically used in a steepest
descent algorithm is replaced with an instantaneous, and hence noisy (i.e., stochastic) esti-
mate of the gradient. In general, a steepest descent algorithm iteratively finds the weight
vector w that minimizes a cost function J(w) by the recursion

w(k +1) = w(k) — uVoJ(w) (2.99)

where p is a positive step size and V,, is the gradient operator with respect to the weight
vector. The selection of the step size u is critical. If too large a value is selected, the
algorithm will become unstable and the weight vector w will grow without bound. The
SGD weight vector update replaces the gradient vector with an instantaneous estimate of
the gradient. When the cost function is of the form

J(w) = g{ w'x(n) — s(n)|” } (2.100)
the SGD weight vector update can be written as
w(k+1) =w(k) — ux(n)e*(n) (2.101)
where the error signal e(n) is given by
e(n) = y(n) — s(n) (2.102)

The most attractive feature of the SGD approach is its low computational complexity. The
main drawback of the SGD method is its very slow convergence rate. It is not uncommon
for an SGD method to require hundreds or even thousands of iterations for convergence.

2.3.3 Normalized LMS

The Normalized LMS (NLMS) is very similar to the LMS method, but offers much faster
convergence with only a slightly higher computational load. The NLMS update is given by
x(n)

w(k+1)=w(k)— MW e*(n) (2.103)
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2.3.4 Recursive Least Squares (RLS)

The RLS method is not a steepest descent technique, but rather an iterative, approximate
solution to a LS problem. Because it is an approximate LS method, it typically offers much
faster convergence than SGD methods. The overview presented here closely follows the
development presented in [29], and is mainly intended to illustrate the basic concept behind
the RLS approach.

The key feature of the original RLS approach is an iterative method for estimating the inverse
data covariance matrix R, !. The covariance matrix is estimated using an exponentially
decaying data window, so that the estimate of R, at time n is

R, =Y o™ 'x(i)x (i) (2.104)
=0
where the scalar
0<a<l (2.105)

provides the estimate a ‘fading memory’ that is needed to track non-stationary environments.
The covariance matrix estimate can be updated recursively by noting that

R, = aR,_1 +x(n)x" (n) (2.106)
Now consider a recursive update for an estimate of the matrix inverse of R,. Using Wood-
bury’s identity (2.48), we have

-1 A1 f{ilx(n)xH(n)f{_l

n _— e (2.107)
1+ éxH(n)Rnflx(n)

The cross-correlation vector R, can be updated recursively in the same manner as (2.106).
This allows for a recursive implementation of the LS algorithm that has relatively low com-
plexity. Note that the initial estimate used for f{; " can have a great impact on RLS behavior.
In the absence of a priori information, an initial value that is proportional to the identity
matrix is often used in practice.

2.4 DF/Copy

In addition to beamforming methods that exploit a known training sequence, a great num-
ber of algorithms have been developed which are based on Direction Finding (DF). (An
excellent overview of modern DF approaches can be found in [32]). DF-based beamform-
ing methods first estimate the AOA of the desired signal (and perhaps other signals in the
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environment), then use this information to calculate the beamformer weight vector. These
methods are sometimes referred to as DF/Copy methods, since DF is performed before a
‘copy’ of the desired signal is obtained. These methods are probably of limited practicality in
mobile wireless applications. There are several reasons for this. First, performing DF in an
environment containing coherent multipath requires the use of complicated DF algorithms.
Second, the use of the methods requires that the array response vectors be known. This
typically requires array calibration, which is difficult and expensive to perform. Another
issue is that the multipath may be diffuse, in which case DF is meaningless. Finally, any
beamforming method that relies on DF is sensitive to some extent on DF and calibration
error. Algorithms that exploit known training sequences or some property of the signal (e.g.,
FM and FSK signals exhibit the constant modulus property) are not dependent on array
calibration, and generally perform much better in practice than DF-based methods. Even
though DF/Copy methods are of limited practicality, a review of some of the more common
DF/Copy approaches offers insight into the general behavior of beamforming algorithms.

2.4.1 MVDR

In subsection 2.1.3 the optimal weight vector was derived by explicitly maximizing the output
SINR, using the assumption that the array response vector and the covariance matrix of the
noise and interference are known. Given accurate array calibration data, the array response
vector for the desired signal can be determined by DF. However, the noise and interference
covariance matrix cannot be determined from the observed data because the desired signal
is also present. An alternative to explicitly maximizing the output SINR is to minimize the
total output power subject to the constraint that the gain in the desired look direction be
unity. This approach yields the minimum variance distortionless response (MVDR) weight
vector, given by

wairvpr = R a(f) (2.108)

where R, = <XXH > is an estimate of the observed data covariance matrix. For infinite

collect time, the MVDR weight vector differs only by a scale factor from the weight vector
found by explicitly maximizing the output SINR. Thus the MVDR weight vector is optimal
in the maximum output SINR sense. Unfortunately, the MVDR approach is known to
be hypersensitive to errors in the array response vector a(f), which arise through array
calibration error and DF error [33].

This is demonstrated in Figure 2.23. The scenario used in this demonstration is similar to
that considered in Figure 2.6 — a four element uniform linear array, with a 20 dB SOI at 0°,
and a 20 dB SNOI at 15°. Figure 2.23 shows the output SINR of the MVDR beamformer
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Figure 2.23: Output SINR of the MVDR beamformer as a function of DF error.

as a function of DF error. That is, the weight vector is calculated according to
w=Rla(0+A) (2.109)

where A is the DF error. Note that the output SINR drops dramatically even with very
small DF error. The MVDR also has poor performance in multipath environments. For
these reasons, the MVDR approach is rarely used in practice.

2.4.2 Principal Components

The hypersensitivity of the MVDR beamformer may be viewed as the result of the beam-
former having excess degrees of freedom. When there is DF error, the beamformer is able
to minimize the output power by nulling the desired signal as well as the interferer. One
solution to this problem is to reduce the degrees of freedom by constraining the weight vec-
tor to be a linear combination of the signal subspace eigenvectors [34, 35, 36, 37]. This will
be referred to here as the signal subspace constrained (SSC) approach. In the case where
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the background noise is white, and there are fewer incident signals L than sensors M, the
observed data correlation matrix may be expressed as

Ry = USUY + 0 UUY (2.110)

where Ug is an M x L matrix of signal subspace eigenvectors, 3q is an L x L diagonal matrix
of the corresponding eigenvalues, and Uy is an M x (M — L) matrix of signal nullspace
eigenvectors. Since the steering vector a lies in the signal subspace, Ua = 0 which in turn
implies

XX

1

Rla — (Usz-slUgf+—UNU£>a (2.111)
ON

= UZJUa (2.112)

This clearly shows that w,, lies in the signal subspace. Using (2.112) to solve for the
beamformer weight vector has been shown in practice to yield significantly better results
than direct solution of (2.43).

Many other approaches for robust DF /Copy have been proposed in the literature. In partic-
ular the artificial noise injection (ANI) approach should be mentioned. This approach calls
for finding the beamformer weight vector by solving

want = (Rux + 0I) " a(f) (2.113)

where o is the power of the artificially injected noise. This results in a beamformer that
is much more robust to DF and calibration error than MVDR, but at the cost of reduced
output SINR. Another drawback of this approach is the difficulty in determining the correct
value for o.

2.4.3 Least Squares Beamformer

This approach assumes that the steering vectors of all L incident signals are known or have
been estimated. Let A be the M x L matrix whose columns are the steering vectors of the
incident signals. Then find the signal estimates §(n) that minimizes

E{[x(n) — As(n)|*} (2.114)
The resulting signal estimate is

5(n) = (A"A)" AlMx(n) (2.115)
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and the corresponding beamformer weight vectors are
1
wi, = A (ATA) . (2.116)

Note that the weight vectors for extracting all the incident signals are computed. This
beamformer places unity gain on the desired signal and places zero gain (an infinitely deep
null) on the interferers. This can be seen by noting that

wiA = (A"A) A"A (2.117)
-1 (2.118)

where Iy, is the L x L identity matrix. Because this beamformer steers infinitely deep nulls,
and does not consider the effects of white noise, it does not achieve the optimal output SINR.
However, if the input SWNR of the signals is reasonably high, the difference in output SINR
of the Least Squares and optimal beamformer will be small. This method is more robust to
DF error than the MVDR approach since it does not seek to minimize output power subject
to some (possibly erroneous) weight vector constraint.

2.5 Blind Adaptive Beamforming

To this point we have limited our discussion to algorithms that exploit a known training
sequence in the received data. In so doing, we have neglected some practical issues that
must be addressed. In particular, the exploitation of a training sequence places several
requirements on the receiver that can be difficult to meet in practice. First, the timing of
the training sequence must be known. That is, the receiver may know that the transmitter
periodically transmits a certain sequence of training symbols, but how does the receiver know
when to expect that sequence? Second, the carrier frequency must be known, at least for
classic approaches that seek to directly minimize MSE. Carrier and timing synchronization
are very difficult to obtain in low SINR and multipath environments. However, these are
the very environments where adaptive beamforming offers the most benefits. Therefore, the
use of algorithms that do not require carrier or timing synchronization (at least initially)
is highly desirable. One way to avoid the need for such synchronization is to exploit some
property that the desired signal is known to exhibit. This generally leads to so-called ‘blind’
adaptive algorithms. An adaptive algorithm is described as blind if it does not require a
known training sequence. There are additional reasons why blind adaptive algorithms are
used in practice, in addition to eliminating (or reducing) synchronization requirements. First,
it is common practice to switch to a blind mode after a training sequence has been processed
in order to track a changing environment. Furthermore, the use of a blind algorithm can
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completely eliminate the need for a training sequence. This is desirable since the use of a
training sequence reduces the number of bits available for transmitting information.

These techniques in general exploit some property that the desired signal is known to ex-
hibit so that an indirect measure of the output SINR can be obtained. By optimizing an
appropriate cost function based on this property, a high quality estimate of the desired signal
can be obtained. One such property is the constant modulus property exhibited by phase
and frequency modulated signals. Another is the second order cyclostationarity exhibited
by many communication signals, including PSK, QAM, and AM, at cycle frequencies such
as the baud rate, double carrier frequency, and sums and differences of these. This section
presents a brief overview of several important classes of blind adaptive algorithms, including;:

1. decision directed algorithms (DDA);
2. constant modulus algorithms (CMA);
3. time-, frequency-, and code-gated algorithms;

4. spectral self-coherence restoral (SCORE);

An important blind signal separation approach not discussed here is Independent Compo-
nent Analysis (ICA). An overview of ICA is presented in [38]. These methods operate on
the assumption that the received signals have a non-Gaussian distribution, and use a dis-
crimination function to distinguish between independent signals. Essentially they exploit the
property that, for example, a mix of two random processes with a Laplacian distribution will
not be Laplacian. Thus these methods can be applied to signals that have kurtosis greater
than (or less than) the kurtosis of Gaussian noise. Note that a mix of two Gaussian random
processes is itself Gaussian, and so the ICA methods cannot be used to separate Gaussian
mixtures. These techniques have only recently been applied to communication signals, and
it is felt that other blind algorithms offer the potential for better performance.

2.5.1 Decision Directed Algorithms

Perhaps the most natural approach to blind adaptive signal processing is the decision-directed
approach, which can be applied to any digitally modulated signal. In this approach, the
received data is passed through a linear combiner, then the output is demodulated. The
estimated symbols are then treated in the same manner as a known training signal. A
decision directed algorithm (DDA) is often used in combination with a training sequence.
The training sequence is used to obtain an initial solution, so that the symbol error rate
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Figure 2.24: Simplified block diagram of an adaptive linear combining algorithm, with a
switch between a known training signal mode and decision directed mode. This block dia-
gram omits the timing synchronization and carrier synchronization that must be performed.

is low. Then the algorithm is switched to a decision-directed mode to further refine the
solution, and to track changes in the environment. This is illustrated in Figure 2.24. This
simplified block diagram omits the timing synchronization and carrier synchronization that
must be performed. That is, the symbol timing, timing of the training sequence relative to
the received signal, and the carrier frequency of the received signal must be estimated before
the adaptive algorithm can operate properly. The need for synchronization is often a difficult
problem to overcome in practice. Synchronization is very difficult to obtain in low SINR and
highly dispersive environments. However, these are precisely the environments for which an
adaptive antenna array offers the greatest benefits. This provides additional motivation for
the use of blind algorithms such as CMA, which do not require carrier synchronization and
are robust to symbol timing errors.

A DDA is sometimes referred to as exploiting the ‘finite alphabet’ property of digitally
modulated signals. This simply refers to the fact that a digital message is known to take on
one of a finite set of possible values, i.e, the signalling is drawn from a finite alphabet.

Many different versions of DDA can be derived, including LMS, Normalized LMS, RLS, and
block LS. The block LS method is referred to in this document as the Least Squares DDA,
or LSDDA, and is studied in detail in Chapter 4.

2.5.2 Constant Modulus Algorithms

In this subsection a brief overview of CMA is presented. The CMA is perhaps the most
well-known blind algorithm, and is used in many practical applications because it does not
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require carrier synchronization. In general, CMA seeks a beamformer weight vector that
minimizes a cost function of the form

e = ((Jy(n)[" = 1)) (2.119)

where y(n) = w'x(n) is the estimate of the desired signal, w is the beamformer weight
vector, and x is the observed data. By selecting values of 1 or 2 for p and ¢, different versions
of CMA may be obtained. It is common to refer to a particular CMA as a (p, ¢)-CMA. The
cost function (2.119) makes sense from an intuitive perspective since noise and interference
will destroy the constant modulus property of the desired signal. Passing the signal through
a frequency selective channel will also destroy the constant modulus property. Thus the
CMA cost function provides an indirect measure of the SINR of the received signal. It has
been shown [39, 40] that minimizing the (2,2) CMA cost function is equivalent to minimizing
the kurtosis x, of the beamformer (or equalizer) output, where

s (v
v g (2:120)

Using this definition, a constant modulus signal, such as FM or rectangular pulse shaped
PSK, has a kurtosis of one. In comparison, complex Gaussian noise has a kurtosis of two.
The SNR of a constant modulus signal received in Gaussian noise can be estimated from the
kurtosis of the noisy data. It can be shown that, for infinite time average,

SNR — 2= fu Vf — " (2.121)
/ﬂy —

As k, — 1, the SNR — oo. Furthermore, as x, — 2, the SNR — 0. Therefore if the
background noise is Gaussian, CMA is capable of extracting any signal that has a kurtosis
less than two.

One of the attractive features of the CMA is that carrier synchronization is not required.
Furthermore, it can be applied successfully to non-constant modulus signals if the kurtosis
is less than two. This means that the CMA can be applied to, for example, PSK signals that
have non-rectangular pulse shape. This is important because this implies that the CMA
is also robust to symbol timing error when applied to pulse-shaped PSK signals. Pulse
shaping typically is used to limit the occupied bandwidth of the transmitted signal. Pulse
shaping a PSK signal has the effect of introducing variation in the signal envelope, i.e. the
kurtosis of a pulse shaped PSK signal is larger than one. If the pulse-shaped PSK signal
is filtered and sampled appropriately, (baud synchronous sampling), then the samples will
have a constant envelope. If there is some error in symbol timing, the resulting samples will
not have a constant envelope, and the kurtosis will be larger than one. However, the kurtosis
will still be less than two, so that CMA can still be applied. It is well known that the more
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stringent the pulse-shaping, i.e., the lower the excess bandwidth, the greater the envelope
variation, and hence the larger the kurtosis. The modulation format can also affect the
kurtosis. For example 7/4-QPSK is commonly used in practice because it has lower kurtosis
than conventional QPSK. This is important because signals with small envelope variation
undergo less distortion when transmitted through a non-linear amplifier.

The technique first proposed for minimizing a CMA cost function uses a Stochastic Gradient
Descent (SGD) approach [41]. The weight vector w is updated according to

w(k +1) = w(k) — u Vi Fyy (2.122)

where p is a positive step size and V. is an instantaneous estimate of the gradient of the
cost function with respect to the weight vector. When the (2,2) CMA cost function is used,
the resulting SGD algorithm is given by

w(k + 1) = w(k) — u(ly(k)|* — 1)x(k)y* (k) (2.123)

where y(k) = wx is the processor output. When the (1,2) CMA cost function is used, the
resulting SGD algorithm is

w(k+1) =w(k) — ux(k) (y(k:) - %) (2.124)

Because of the slow convergence rate associated with all SGD algorithms, techniques with
better convergence rates were sought.

Gooch and Lundell proposed the Orthogonalized CMA, or O-CMA, algorithm in [42]. This
algorithm is similar in form to the recursive least squares (RLS) algorithm. It is based on
the (1,2) CMA cost function and is given by

w(k+ 1) = w(k) + uR™ (k + D)x(k)e* (k) (2.125)

where
' (k) = y(k)/ ly(k)| — y(k) (2.126)

and
R (k) 1 oR ™ (k)x(n)x" (n)R™ (k)

l-a 1-al|(l-a)+ax?(n)R(k)x(n)

This algorithm exhibits improved convergence properties compared to the SGD version.

R'(k+1)=

(2.127)

Another fast converging optimization technique is the Least Squares CMA [43, 44]. The
LSCMA is briefly introduced here, and is studied in detail in Chapter 3. The LSCMA
has been found to converge very rapidly and is also guaranteed to be stable. This is a block
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update technique which uses an alternating projections approach to minimize the (1,2) CMA
cost function. From a block of N samples of observed data, an initial estimate for the desired
signal is formed. The signal is then divided by its magnitude to yield

y(n)
d(n) = . (2.128)

|y (n)]
The signal d(n) is the hard limit of y(n). This operation may be viewed as a projection onto
the set of signals which have the desired constant modulus property. The updated weight
vector is found by minimizing the average squared error between d(n) and a new estimate

of the desired signal by
w=Rlr.q (2.129)

where

r.q = (x(n)d(n)). (2.130)

The covariance matrix Ry, is computed from the same block of data used to form the estimate
of the desired signal. This process is then repeated using the new weight vector and is
continued until the algorithm has converged. Thus the approach first projects the signal onto
the set of signals which has the desired property, and then finds the closest approximation to
this projected signal that can be obtained using a beamformer. The technique as described
above uses the same data for all the iterations. However, the technique will also converge
if non-overlapping blocks of data are used at each iteration. In this case the weight vector
computed from a previous block of data is used to form the estimated signal for the next
block. This latter approach might be more practical in a real-time system.

The only parameter that must be selected with LSCMA is the block size N. Smaller block
sizes yield faster convergence at the cost of higher misadjustment error. Therefore the block
size used in LSCMA is similar in some ways to the adaptation step parameter p used in SGD.
A major difference is that LSCMA is numerically stable for any value of N. Typical values
for N range from 30 to 1000 samples of observed data. An interesting feature of LSCMA is
that convergence as a function of the number of weight vector updates is nearly constant.
Thus larger block sizes result in slower convergence only because the number of samples in
each block is larger.

One potential drawback of the CMA is that, in an environment containing multiple CM
signals, a CMA beamformer will typically extract the strongest signal. This may or may
not be the desired signal. The solution proposed by many people is to extract all of the
CM signals in the environment, and then determine which is the desired signal. Several
different methods to extract multiple CM signals have been proposed. One approach is to
apply a CMA beamformer from the data, cancel the CMA beamformer output from the
array data using an adaptive canceller, and then apply a second CMA beamformer to this
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modified array data. This process is then repeated for as many stages as there are signals in
the environment. This is referred to as the Multi-Stage CMA [45]. This method generally
performs sub-optimally since the cancellation stage limits the output SINR of subsequent
stages. An alternative approach that offers much better performance is the Multi-Target
CMA [46]. The MT-CMA applies multiple CMA beamformers independently and in parallel
to the same set of array data, then performs additional processing to ensure that each
beamformer extracts a different CM signal. This additional processing typically performs
some sort of orthogonalization on the set of signals extracted by the multiple independent
CMA beamformers.

The Iterative Least Squares with Projection [47] can be also be used to extract multiple
CM signals. The ILSP can be viewed as a direct generalization of the LSCMA to multiple
signals. This is sometimes referred to as an alternating projections approach. The ILSP is
implemented with the following iterative procedure:

1. At the kth iteration, generate a set of L beamformer outputs Y, with
Y, = WX (2.131)
where each column of Wy is a beamformer weight vector.

2. Hard-limit each of the beamformer outputs, so that

Y

D, = —
“TY

(2.132)

where the absolute value and division here are understood to correspond to element-
by-element operations.

3. Estimate a new set of spatial signatures

. -1

Aiyy = XD/ (D,DY) (2.133)
4. Form a new set of weight vectors

N ~H o~ -1
Wk;+1 - Ak+1 (Ak+1Ak+1> (2134)

The Analytic CMA (ACMA) algorithm presented by van der Veen in [48, 49] should also be
noted. This algorithm solves directly for a set of beamformer weight vectors that spatially
separate a set of CM signals. The ACMA, although effective in many situations, is fairly
complex and its behavior with closely spaced and/or low SNR signals is not clear. For these
reasons it is recommended in [48] that the ACMA be used to initialize the LSCMA, and that
several iterations of the LSCMA be used to find the optimal solutions for the weight vectors.
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2.5.3 Time-, Frequency-, and Code-Gated Algorithms

Many signals are gated in either time or frequency. A push-to-talk signal, for example, is
gated in time, while a narrowband signal in wideband interference is gated in frequency. A
CDMA signal becomes gated in frequency when it is despread. Several different algorithms
have been developed to exploit these properties [50, 51, 52, 53]. The main idea of the
property-gated approach is that some operation can be performed on the array data so
that the desired signal is emphasized relative to the background noise and interference. For
example, the background noise and interference covariance matrix can be measured in a
frequency hop channel before or after the hop. This provides a great deal of information
about the environment.

For illustrative purposes, the time-gated algorithm will be examined. While the desired signal
is off, the covariance matrix of the background noise and interference Rog is computed. When
the desired signal is on, the covariance matrix of the desired signal plus the background noise
and interference, Ry, is computed. Then the weight vector that maximizes the quantity

wHR,,W

F (2.135)

wHR gW

is computed. This weight vector maximizes the output SINR of the desired signal because

R,, = oc’aa’ + Ry (2.136)
R = Ry (2.137)

and therefore
F=SINR+1. (2.138)

The weight vector that maximizes (2.135) is found by solving the generalized eigenequation
R,,w = \Rgw (2.139)

for the dominant eigenvector. This can also be used for detecting the presence of a transient
signal whose on-time is unknown. This could be done by computing R, and R.g for adjacent
(in time) blocks of data, solving the generalized eigenequation, and using the dominant
eigenvalue as the detection statistic. When there is no change in the signal environment, the
dominant eigenvalue will be approximately unity. When a new signal appears in Ry, the
dominant eigenvalue will be approximately equal to the optimal output SINR of the new
signal.
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| Signal | kfo® |2fcb | 2fc:|:kf0|

BPSK V V Vv
QPSK V
SQPSK | k even k odd

¢ fo denotes baud rate, k a nonzero integer
bf. denotes carrier frequency

Table 2.1: Cyclic features of some bauded signals.

2.5.4 Self Coherence Restoral

The class of Self Coherence Restoral (SCORE) algorithms are designed to differentiate be-
tween desired signals and interference by exploiting the second order cyclostationarity ex-
hibited by the desired signal [54, 55, 56, 57]. A complex baseband signal s(n) is said to
exhibit second-order cyclostationarity if the lag-product waveform s(n)s*(n — 7) contains a
finite strength sine wave component, or spectral line. The same signal exhibits conjugate
cyclostationarity if the lag-product waveform s(n)s(n — 7) contains a spectral line. Typical
cyclic features of some commonly used digital communication signals are shown in Table 2.1.
Features associated with the doubled carrier frequency correspond to conjugate cyclic cor-
relation.

The magnitude and phase of the spectral line at cycle frequency « for lag 7 is given by the
(asymmetric) cyclic autocorrelation function defined by

R%(7) 2 < s(n)s*(n — T)e_j27r°‘"> (2.140)

e o]

where (-)», denotes infinite time average. The relative strength of the spectral line is given
by the cyclic correlation coefficient, defined as

P =R (2.141)

Techniques which exploit cyclostationarity in general rely on the property that noise and
interference will not, in the limit as the collect time approaches infinity, contribute to a
cyclic correlation or cyclic spectrum. For finite collect time, there will be some residual
contribution from noise and interference. The weaker the cyclic feature, the longer the collect
time must be in order to sufficiently decorrelate the noise. Therefore the cyclic correlation
coefficient is an important parameter for predicting the performance of cyclostationarity
exploiting algorithms. The strength of cyclic features associated with data rates (e.g. chip
and baud features) is directly dependent on the excess bandwidth, with low excess bandwidth
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signals exhibiting weak second-order cyclostationarity. An approximate expression for the
magnitude of the cyclic correlation coefficient as a function of the excess bandwidth B is [57]

B/8
1— B/4

I

(7] (2.142)
Note that this function rolls off very quickly as the excess bandwidth decreases. Severe pulse
shaping can completely eliminate second order cyclostationarity associated with chip or baud
rates.

There are several different versions of SCORE, with each version behaving differently de-
pending on the environment. The simplest version is Least Squares (LS) SCORE. The weight
vector for this version of SCORE is typically computed as

wi, = R r® (2.143)
where r* is an M X 1 vector given by
re = <x(n) xi(n — T)e’ﬁm"> ) (2.144)

x(n) is the M x 1 vector of observed data, « is the cycle frequency being exploited, 7 is the
lag parameter, and (-) denotes a time averaging operation. If only the desired signal exhibits
cyclostationarity at cycle frequency «, then r* approaches the array response vector of the
desired signal as the collect time approaches infinity. Thus w;s converges to the optimal
weight vector. However, in low SIR environments the convergence is very slow. In such
environments, the cross-SCORE method will outperform LS-SCORE. Cross-SCORE can be
motivated from the Programmable Canonical Correlation Analyzer (PCCA) framework [55],
as discussed below.

The cross-SCORE algorithm essentially yields a weight vector which maximizes the magni-
tude of the cyclic correlation of the beamformer output. In an environment where only one
signal exhibits the cyclostationarity property being exploited, this yields a solution that will
extract the desired signal with nearly the optimal output SINR. When more than one incident
signal exhibits cyclostationarity at the cycle frequency being exploited, cross-SCORE will in
general extract a linear combination of these signals. The exception occurs when the inci-
dent signals exhibit the same cyclic feature but with different strength. Thus, cross-SCORE
would be unable to separate multiple signals that have the same modulation format.

The cross-SCORE weight vectors are solutions to the generalized eigenequation
R RER (R (2.145)

where
RS, = (x(n)x"(n — 7)e 72" ) (2.146)

X



Thomas E. Biedka Chapter 2. Adaptive Arrays 68

is a finite-time estimate of the cyclic correlation matrix of x(n) for cycle frequency « and lag
7. Note that the vector r* used in LS-SCORE is the ith column of R{,. A key point is that
cross-SCORE requires computation of the complete M x M observed data cyclic correlation
matrix, while LS-SCORE requires only one column of this matrix.

In contrast with Least Squares SCORE and cross-SCORE, the phase-SCORE algorithm is
capable of separating uncorrelated signals with the same modulation format if the phase of
the cyclic features is different. For example, this would be the case if the incident signals
had different baud timing. The phase-SCORE weight vectors are found by solving the
eigenequation

R!R% (T)w = Aw. (2.147)

Each of the L* dominant eigenvectors of the phase-SCORE eigenequation will extract one
of the desired signals, assuming that the signals are independent and the phase of the cyclic
features is different. If the phase of the cyclic features is not different, phase-SCORE behaves
like cross-SCORE in that it will extract a linear combination of the signals exhibiting the
desired cyclic feature. In addition, if a desired signal is received from multiple angles (i.e.,
coherent multipath is present) phase-SCORE will extract a linear combination of the signals.
Thus neither phase-SCORE nor cross-SCORE performs properly in the presence of coherent
multipath.

The convergence rate of the SCORE algorithms can be improved in some cases by constrain-
ing the SCORE weight vectors to lie in the signal subspace of the observed data covariance
matrix [58]. In the case where the background noise is white, and there are fewer incident
signals L than sensors M, the observed data correlation matrix may be expressed as

R, = UEUY 40U UE (2.148)

where Ug is an M x L matrix of signal subspace eigenvectors, 3q is an L x L diagonal matrix
of the corresponding eigenvalues, and Uy is an M x (M — L) matrix of signal nullspace
eigenvectors. Define the rank-L, least squares approximation to R, as

R? 2 U3/ UL (2.149)
Then subspace-constrained versions of the cross-SCORE and phase-SCORE algorithms can
be obtained simply by substituting R¥, for R in (2.145) and (2.147), respectively. This
improves the performance of SCORE by eliminating perturbations due to slowly converging
signal nullspace eigenvectors. The incorporation of a signal subspace constraint is beneficial
only when the underlying assumptions are valid. However, the subspace-constrained SCORE
algorithms have been shown to be fairly robust to modeling errors.
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2.5.5 Programmable Canonical Correlation Analysis

The PCCA framework yields a set of weight vectors that maximize the correlation between
a linear combination of two sets of data x(n) and z(n). Typically x(n) is the observed
data and z(n) is a training data set obtained through some transformation of the observed
data. The transformation is designed so that it decorrelates the interference and noise but
does not decorrelate the desired signal. Then the only component that causes correlation
between x(n) and z(n) is due to the desired signal. Finding the linear combination of x(n)
that maximizes the correlation between the two data sets then is equivalent to extracting
the desired signal.

The PCCA weight vectors W, for the observed data are given by the dominant eigenvectors
of the matrix
T, = RuRRIR,,. (2.150)

The linear combiner weights W, for the training data set z(n) are given by the dominant
eigenvectors of the matrix
T. = RLR,RR,,. (2.151)

Note that the combiner weights for the training data set do not need to be computed. The
vectors W, are used as the beamformer weight vectors. The cross-SCORE algorithm can be
derived using a frequency shifted (and possibly time delayed) version of the observed data
for the training set. Thus for cross-SCORE

z(n) = x(n — 7)el*™", (2.152)

Substituting this into (2.150) yields the matrix used in the cross-SCORE eigenequation.

The PCCA framework can also be used, for example, to develop SCORE methods which
exploit multiple cycle frequencies. In this case the training set z(n) has a larger dimension
than the observed data set. The training set can be obtained by a number of other trans-
formations, such as filtering, as well. This makes the PCCA useful as a general framework
for developing blind adaptive algorithms.

2.5.6 Recursive PCCA

The PCCA framework as described in Subsection 2.5.5 is not able to incorporate non-linear
operators, such as the hard-limit employed in CMA or the hard-decision employed in decision-
directed algorithms. An modification of the PCCA to include recursion, feedback, and train-
ing set constraints for improved blind adaptive spatial filtering is described in [59]. This is

referred to as the Recursive PCCA (RPCCA). The RPCCA family of adaptive spatial filters
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Ranking Algorithm

SCORE with a doubled-carrier feature (only present with AM and BPSK)
. (tie)  Time- and Frequency-Gated Algorithms

Decision-Directed Algorithms (DDA)

Constant Modulus Algorithms (CMA)

SCORE with a baud feature

Ll O e

Table 2.2: Relative performance of blind adaptive algorithms, according to output SINR
that can be achieved with a finite amount of data and convergence speed.

is shown in [59] to include previously established beamforming techniques, including the
CMA, as well as several new processors. A key difference between PCCA and RPCCA is
that RPCCA is iterative, whereas PCCA is not. Each RPCCA iteration includes a property
mapping step (where multiple signal properties can be exploited), and a PCCA step, to max-
imize the correlation between a linear combination of the training set and the beamformer
output. The RPCCA property mapping could in principal include any or all of the following:

1. hard-limiting, to exploit CM properties;
2. frequency-shifting, to exploit cyclostationarity;

3. hard-decisions; to exploit finite-alphabet properties.

One area for future research identified in Chapter 6 is the use of the RPCCA framework to
simultaneously exploit CM properties and finite-alphabet properties.

2.5.7 Comments on Relative Performance of Blind Adaptive Al-
gorithms

To this point, we have only described the theory of operation of several blind algorithms,
without regard to their relative performance. We will now examine relative performance,
with particular emphasis on the convergence rate. It is enlightening to consider how well
the cost function of a particular blind algorithm approximates the output SINR, especially
for a small number of samples. For example, when a decision directed algorithm is used, an
accurate estimate of the SINR can be obtained as the difference between the hard decisions
and the soft decisions. This is also true for CMA — the SINR can be accurately determined
from a relatively small number of samples. Conversely, the correlation of a signal with a
frequency-shifted version of itself may not yield a reliable estimate of SINR when a baud
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feature is exploited. This is due to the fact that the cyclic correlation may exhibit a relatively
high degree of variance even for high SINR. The exception here is that the cyclic correlation
is a reliable measure of SINR if the conjugate cyclic correlation of an DSB-AM or BPSK
signal is exploited.

An AM signal is perfectly correlated with a frequency-shifted and conjugated version of itself.
This feature is very strong, and the conjugate cross-SCORE algorithm converges nearly as
quickly as a known training signal method. The Time- and Frequency-Gated algorithms
also exploit a very strong feature, and again converge nearly as quickly as a training signal
method. Decision-directed algorithms may take several iterations to converge, but if no
decision errors are made, the output SINR upon convergence will clearly be the same as if a
known training signal method is used. The main drawback of a decision-directed algorithm
is that it cannot be guaranteed to converge. The constant modulus property is weaker than
the finite alphabet property exploited by a decision-directed algorithm, and hence CMA
converges more slowly than DDA. Finally, the cyclic correlation exhibited at the baud rate
by some digital modulations is dependent on the excess bandwidth. Pulse shaping tends to
limit this excess bandwidth. This is generally a weak feature (the cross-correlation between
the signal and the frequency shifted signal is small), and so SCORE converges very slowly.
Table 2.2 summarizes the relative performance of the blind adaptive algorithms discussed
here.

2.6 Adaptive Array Hardware Requirements

Implementation of adaptive beamforming places certain unique requirements on receiver
design. Similar requirements must be met in order to implement equal gain combining and
maximum ratio combining. The objective is to convert the array data to a complex baseband
representation, while preserving the narrowband model. The data observed at each antenna
may be frequency shifted, filtered, and decimated without violating the narrowband model
so long as each signal is processed in an identical manner. A simple gain and phase offset
for each channel is all that is allowed. In practice, the narrowband model will hold only
approximately. This section identifies some receiver-induced deviations from the narrowband
model, the effects of these deviations on beamforming performance, and design considerations
for combating these effects. The following issues are addressed:

1. coherent mixing and ADC synchronization;
2. receiver channel matching;

3. receiver dynamic range;
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2.6.1 Coherent Mixing and ADC Synchronization

Figure 2.25 shows a simplified block diagram of a phase coherent receiver. The main dif-
ference between a coherent receiver and a conventional receiver is that the mixer LO’s and
Analog to Digital Converter (ADC) clocks are derived from the same sources. This preserves
the correlation (i.e., the coherence) of each version of the signal. A related issue is the need
for synchronizing the ADC clocks. The signal in each receiver channel must be sampled
nearly simultaneously.

Note that the phase of each copy of the LO into the mixer will have different phase. This
will introduce a different phase offset into each signal being mixed. However, this phase
offset affects all the co-channel signals in the same way, so that the narrowband model is
preserved.

This simplified receiver uses a single mixer stage to downconvert the received signals to a
low IF. Multiple downconversion stages are often preferred in practice in order to control
intermodulation terms and image frequencies.

There are essentially two alternative approaches to converting an RF signal to complex
baseband. One approach is quadrature mix the signal to baseband, using a 90° phase splitter
to obtain the in-phase and quadrature components at baseband. Then the I and Q legs are
individually digitized. This approach has several drawbacks. The most important drawback
is that the phase splitter will not provide exactly 90° of phase shift. This is often referred to
as [-Q imbalance. Any I-Q imbalance will cause deviation from the narrowband model, and
limit the null depth that can be achieved with an adaptive beamformer. Another drawback
is that two ADCs are required.

For these reasons, the preferred approach is to mix the RF signal to a relatively low IF,
digitize, and then convert to complex baseband digitally. This has the advantage of requiring
only one ADC per channel. Furthermore, the digital conversion to complex baseband can be
implemented with very high accuracy. The drawback of this approach is that a high speed
digital filter is required when implementing the digital downconversion. If the ADC sample
rate is very high, the digital filter can be difficult to implement. However, special hardware
often makes this practical, especially if high decimation rate filters are used.

2.6.2 Receiver Channel Matching

One of the main sources, perhaps the main source, of deviation from the narrowband model
is caused by receiver mismatch. This means that the filters used in each receiver channel
are not identical. Typically, each filter in the receiver has a certain magnitude and/or phase
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ripple, depending on the type of filter. Typical amplitude ripple may be on the order of
0.1-1.0 dB, and phase ripple may be on the order of a few to tens of degrees. The ripple
amplitude will typically be similar from channel to channel, but the ripples will not occur
at identical frequencies. This causes the frequency response of each channel to be slightly
different. This in turn means that each signal can no longer be modelled as a simple phase
shift and gain offset relative to the reference antenna. This is manifested in a limit to the null
depth that can be achieved with the system. Channel matching can be a serious challenge
if very deep nulls are required, since matching of analog filters is not trivial.

Mismatch between analog filters in the receiver can often be corrected by FIR filtering. The
filter coefficients are determined by first injecting a boresight signal into all receiver channels
to measure the difference in channel transfer functions, then solving for the coefficients that
will make the transfer function through each channel the same. Note that this process can
not correct any non-linear distortion.

When oversampling, the filter bandwidth is typically much larger than the signal bandwidth.
With many filters, the number of ripples remains constant as a function of bandwidth, so
increasing the filter bandwidth means that the signal is affected by fewer ripples in the
response. This in turn means that the channels are better matched. This is one of the
advantages of oversampling.

2.6.3 Receiver Testing

We now describe a simple test that can be performed in the laboratory to determine the
accuracy of the narrowband model given the non-ideal nature of the receiver. The test is
to generate a signal at a carrier frequency of interest, split the signal, and inject the signal
into two or more channels of the receiver. The signals are then digitized and logged. The
logged data is then processed to determine the ability to cancel the signal collected in one
channel from the signal collected in another channel. Ideally, if the receiver channels are
perfectly matched, and if the receiver has infinite dynamic range, and if no thermal noise is
present, the signal in one channel may be perfectly cancelled the signal in any other channel.
In practice, the channels will not be identical, and a residual signal will remain after the
cancellation process. As the channels become better matched, the signals from each channel
will become more similar, and the power of the residual signal will decrease. Thus the power
of the residual signal after cancellation relative to the input power can be used as a figure of
merit. The process of calculating this figure of merit is illustrated in Figure 2.26. We seek
to minimize the power of the residual signal, given by

o2 = (e(n)e*(n)) (2.153)
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= (Ja1(n) — g"za(n)*) (2.154)
This is a standard Least Squares (LS) problem, with the well-known solution

9 = R, Reu, (2.155)

 {mm)as)
= o)) (2:156)

The ratio of input power to the power of the residual cancellation signal is an approximate
measure of the maximum null depth that can be achieved with the receiver. Care should be
taken when using this procedure that the full dynamic range of the receiver is used.

We would expect to get better results as the signal bandwidth decreases. The best possible
performance will be achieved with a tone input signal, since this has (approximately) zero
bandwidth, and the channel mismatch will be eliminated.

The above describes a method to test any two channels of the receiver. The overall nulling
capabilities of the receiver are best tested by considering all the channels simultaneously.
This can be accomplished by calculating the data covariance matrix, then calculating the
ratio of the dominant eigenvalue to the smallest eigenvalue. The dominant eigenvalue is the
maximum output power that can be achieved with a beamformer, subject to the constraint
that the inner product of the weight vector be equal to unity. The smallest eigenvalue is the
minimum output power that can be achieved with a beamformer. Thus this ratio gives a
good approximation to the null depth that can be achieved with the receiver.
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Figure 2.25: Simplified diagram of a phase coherent receiver for use in a digital adaptive
antenna array or diversity combining system.
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Figure 2.26: A method for measuring channel matching in a coherent receiver.
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2.7 Network System Issues

Several system level issues arise when adaptive arrays are applied to wireless networks. These
issues vary depending on the multiple access scheme, and on the duplexing scheme.

2.7.1 Downlink Beamforming

In order to take full advantage of the benefits of adaptive beamforming, the uplink and
downlink must be of comparable quality. The ability to separate multiple co-channel users
on the uplink is not advantageous unless the same feat can be performed on the downlink.
Unfortunately, separation of users on the downlink is much more difficult to achieve. The
main reason for this is that it is very unlikely that more than two antennas can be used at the
mobile handset, thus limiting the ability to reject co-channel interference. As an alternative
to adaptive combining at the handset, it is theoretically possible to have transmit nulls in
the downlink antenna pattern. However, this is much more difficult to achieve than in the
uplink antenna pattern. This is even more difficult in an urban or suburban mobile radio
environment, where the spatial signature can change significantly if the user moves a fraction
of a carrier wavelength.

If the array response on the forward (base to mobile) and reverse (mobile to base) links are
identical, the optimal transmission weight vector is in principal equal to the conjugate of
the optimal receive weight vector. However, most cellular systems use Frequency Division
Duplexing (FDD) for the forward and reverse links. This frequency separation means that
the spatial signatures on the reverse and forward links can be very different, even if the
multipath AOA and delay spread are identical. Just as small changes in user position can
correspond to large changes in the spatial signature, small changes in carrier frequency can
correspond to large changes in the spatial signature.

Downlink beamforming is less of an issue for CDMA systems. In these systems the downlink
signals are synchronous, and each signal arrives at the user with the same power and the
same delay spread. Therefore, if the signals are orthogonal at the transmitter, they will be
orthogonal at the receiver. The only distortion will be due to excess delay spread.

One alternative is to design the system so that the uplink is more heavily loaded than
the downlink. For example, if multiple co-channel signals can be reliably separated at the
base, but not at the mobile, it may make sense to consider a multiple access scheme where
the uplink and downlink bandwidth are asymmetric. Another alternative is to use a Time
Division Duplex (TDD) scheme, so that the same carrier frequency is used for the forward and
reverse links. This allows the reciprocity of the uplink and downlink channels to be exploited.
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Figure 2.27: Illustration of the effect of asynchronous TDMA interference. The location of
the midamble training sequence in GSM is shown as an example.

The optimal receive antenna weights are also the optimal transmit antenna weights in a TDD
system.

2.7.2 Adaptive Arrays in TDMA Applications

One of the main issues when attempting to apply adaptive antenna arrays to TDMA signals
is the typically asynchronous nature of the interference. This has two important effects.
First, if a weight vector is calculated using a training sequence, the data used for training
will most likely not be valid over the entire duration of the desired user’s slot. A second
effect is that the interference is highly non-stationary. Each desired slot may be subject to
several different interference environments over its duration.

Consider the illustration in Figure 2.27, showing a desired TDMA frame and two interfering
TDMA frames. The interfering frames will originate from other cells, and the frame timing of
each basestation is not synchronized. Thus the start time of the interfering slots is essentially
a random variable from the perspective of the receiver. Each interfering slot will have a
unique location, and hence a unique spatial signature. Every transition of an interfering slot
will cause the interference environment to change. The training sequence is only present
during a particular time instant, and a weight vector calculated using this training sequence
will not be valid over the entire slot.

This is a difficult problem to solve in practice, and limits the frequency-reuse that can be
used in a TDMA system where adaptive beamforming is employed.
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2.7.3 Adaptive Arrays in CDMA Applications

The use of adaptive arrays in CDMA might be more practical than in TDMA for the following
reasons:

1. Unlike TDMA, the interference is not rapidly changing.

2. The capacity of a CDMA system is typically limited on the reverse link due to the
asynchronous nature of the mobile subscribers. Because the users are asynchronous,
the orthogonality of the spreading sequences cannot be maintained. On the forward
link, the basestation can easily control the transmitted signals to ensure that they are
orthogonal. Therefore, the use of an adaptive array at the basestation can increase
capacity, even if downlink beamforming is not implemented.

3. A CDMA modulation is designed to operate in co-channel interference, and the capac-
ity can increase with a small reduction in co-channel interference levels. In contrast,
a TDMA waveform, which is typically not spread spectrum, must have relatively high
SNR in order to have low BER, and so does not benefit as much from small im-
provements in SINR. In other words, a TDMA beamformer must completely eliminate
co-channel interference for low BER. This is more difficult than simply trying to reduce
the co-channel interference which is always present in a CDMA system.

One aspect of CDMA beamforming that is unique to this application is the option of beam-
forming before or after the despreading. To implement a post-despreading beamformer, the
coherence of the signals from each antenna is maintained by multiplying each received signal
by the same de-spreading code. This preserves the spatial characteristics (spatial signatures)
of all received signals. Beamforming after the despreading would be preferred since this cor-
responds to a much lower data rate, and hence a much lower computational load. However,
beamforming before despreading offers some performance benefits. The main benefit is that
the changing interference environment can be better tracked.
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Glossary

This Glossary contains some of the terminology and abbreviations commonly used in antenna
array processing.

AOA - Angle of Arrival. Usually denoted by 6.

Angle Spread - In a multipath environment, the signal arrives from multiple AOAs.
The angular spread describes the angular extent from which the signal arrives.

Aperture - The largest dimension of the antenna array, usually expressed in wave-
lengths.

Array Calibration - The process of measuring the steering vectors for all AOA’s of
interest. This usually involves placing a signal at a known AOA and then measuring the
array response vector. The process is repeated for multiple AOAs and/or frequencies.
This is a costly and in some cases impractical process.

Array Response Vector - The M x 1 complex vector, usually denoted by a(6), that
contains the gain and phase difference observed at each antenna (relative to a reference
antenna) for a signal incident from AOA #.

Beampattern - The gain (usually in dB) versus AOA for a particular array of antenna
elements, antenna weights, and carrier frequency.

Blind Adaptive Algorithm - A class of adaptive algorithms that do not require
a training signal or knowledge of the desired signal’s AOA, but instead exploit some
other property (e.g., constant modulus) of the desired signal.

Channel Mismatch - The difference in frequency response between each channel of
the receiver used in the beamformer. Channel mismatch causes deviation from the
narrowband model and hence limits the null depth that may be achieved.

Cochannel Interference - An interferer that shares the same frequency band as the
desired signal, e.g., another signal with the same carrier frequency.

Copy - The process of obtaining an estimate (i.e., copy) of an incident signal.

Copy/DF - A DF method which uses the beamformer weight vector (presumably
obtained with a blind adaptive algorithm) to estimate the AOA.
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CMA - Constant Modulus Algorithm. A blind adaptive algorithm that assumes
that minimizing the variance of the output signal’s envelope, i.e., minimizing J,, =
E{(ly(n)|P — 1)?}, is equivalent to maximizing the output signal SINR. Applicable to
FM signals and certain digital signals if they are sampled appropriately.

Coherent Receiver - A multi-channel receiver whose mixers are all derived from the
same oscillators, so that phase coherence is maintained across all channels.

Cyclostationary - A signal is said to exhibit second order cyclostationarity if it is
correlated with a frequency shifted, time-delayed (and possibly conjugated) version of
itself. Almost all communication signals exhibit this property.

Decision Directed Algorithm (DDA) - A blind adaptive algorithm that replaces
the known symbols typically used in an adaptive algorithm with symbols that are
estimated from the received data.

DF - Direction Finding. The process of determining the AOA of a signal.
Linear Array - An antenna array where all sensors lie on the same axis.

Maximum Attainable SINR - An alternative expression for the optimal output
SINR.

MVDR - Minimum Variance Distortionless Response. The weight vector obtained by
solving the following constrained optimization problem: Minimize the output power
of the beamformer subject to the constraint that the gain at the AOA of the desired
signal is unity.

Narrowband Model - A critical modelling assumption made in many if not most
beamforming applications. Basically this assumes that the only difference between the
signal observed at one sensor and the signal observed at any other sensor is a simple
gain and phase difference. Usually requires that the sensors be relatively close together
and that the incident signals be narrowband compared to the carrier frequency.

Overloaded Array - An environment where the number of incident signals L is greater
than the number of antennas M, thus exceeding the number of nulls that the array
can steer.

RAKE - A type of matched filter used in multipath environments, typically in CDMA
applications. Multiple copies of the received signal are delayed (ideally matching the
channel multipath profile), weighted, and summed.
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Signal Subspace - In an environment with L incident signals, the space spanned by
the L dominant eigenvectors of the observed data covariance matrix. This is the same
space spanned by the steering vectors of the L incident signals.

SCORE - Self Coherence Restoral. A blind adaptive algorithm that is applicable to
any signal that exhibits second order cyclostationarity.

SINR - Signal to Interference and Noise Ratio.
SNOI - Signal Not Of Interest, i.e., a co-channel interfering signal.
SOI - Signal Of Interest, i.e., the desired signal.

Spatial Filtering - An alternative, and perhaps more accurate, expression for beam-
forming.

Spatial Signature - This M x 1 complex vector, usually denoted by a, contains the
gain and phase difference observed at each antenna (relative to a reference antenna)
when a signal is received from multiple directions (multipath). The spatial signature
is a linear combination of array response vectors.

Spurious Free Dynamic Range (SFDR) - A means of measuring the linearity
and sensitivity of a receiver. This is the difference in power between full scale and the
strongest intermodulation terms or other spurs that appear in the receiver output.

Steering Vector - An alternative name for an array response vector.

SWNR - Signal to White Noise Ratio. Usually used to describe the power of the
incident signals relative to the (assumed spatially white) background noise.

Uniform Linear Array (ULA) - An array where the sensors are distributed along
a straight line with equal antenna separation.

Weight Vector - The M x 1 column vector of antenna weights, where M is the number
of antennas in the array.



Chapter 3

Analysis of the Constant Modulus
Algorithm

Summary

The convergence behavior of the Least Squares Constant Modulus Algorithm in an adaptive
beamforming application is examined. It is assumed that the desired signal and the interfer-
ence are uncorrelated. The improvement in output SIR with each iteration of the algorithm
is predicted for several different signal environments. Deterministic results are presented for
an environment containing two complex sinusoids. Probabilistic results are presented for a
constant modulus desired signal with a constant modulus interferer and with a Gaussian
interferer. The asymptotic improvement in output SIR as the output SIR becomes high
is also derived. The results of Monte Carlo simulations using sinusoidal, FM, and QPSK
signals are included to support the derivations.

3.1 Introduction

We will study a member of the class of adaptive algorithms generally known as Godard or
Constant Modulus Algorithms (CMA) [60, 41]. These algorithms can be used for adaptive
beamforming, equalization, and other applications when the desired signal has a constant
envelope. Examples of such signals include FM, PSK, and FSK. The CMA can also be applied
to many non-CM signals (e.g., pulse-shaped PSK, QAM) although the performance may be
degraded relative to the case where the desired signal is CM [40, 39]. The main advantage of
CMA is that it is a ‘blind’ adaptive algorithm, i.e., it does not require a training signal. Other
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blind adaptive algorithms have been designed to exploit cyclostationarity [54, 61, 58], known
signal constellation [9], known spreading code in CDMA [62], and time or frequency gated
properties [50, 51, 52]. The first CMA to be proposed was based on a Stochastic Gradient
Descent (SGD) form [41]. The main drawback of this method is its slow convergence. A faster
converging CMA similar in form to the Recursive Least Squares method is the Orthogonalized
CMA [42]. Another fast converging CMA is the Least Squares CMA (LSCMA) [43, 44|, which
is a block-update iterative algorithm. It is guaranteed to be stable and is easily implemented.

Despite the generally accepted use of the LSCMA, few analytical results on its convergence
have appeared in the open literature. (Portions of this chapter have previously appeared
in [7] and [63]). The performance of the algorithm has instead been demonstrated through
Monte Carlo simulation. The lack of analytical results is due to the difficulty of analyzing the
non-linear CMA cost function. Existing work on the convergence behavior of CMA mostly
deals with finding minima of the CMA cost function and finding undesirable stable equilibria
in equalization applications (e.g., see [64, 65] and references therein).

A notable exception is the work by Treichler and Larimore on convergence of SGD CMA in
an environment containing two complex sinusoids [66]. Their work predicts the output power
of each sinusoid in a temporal filtering application. The Analytic CMA (ACMA) algorithm
presented by van der Veen in [48] should also be noted. This algorithm solves directly for a
set of beamformer weight vectors that spatially separate a set of CM signals. The ACMA,
although effective in many situations, is fairly complex and its behavior with closely spaced
and/or low SNR signals is not clear. For these reasons it is recommended in [48] that the
ACMA be used to initialize the LSCMA, and that several iterations of the LSCMA be used
to find the optimal solutions for the weight vectors.

In this chapter we determine the convergence rate of the LSCMA in some simple environ-
ments, including: (1) high output SIR; (2) sinusoidal desired signal and sinusoidal interferer;
(3) CM desired signal and CM interferer; (4) CM desired signal and Gaussian interferer. We
assume that the interference is uncorrelated with the desired signal. The convergence rate
is expressed in terms of the SIR improvement achieved with one iteration of the LSCMA.
We first examine the situation where the LSCMA output SIR is high. We show that if the
interference is perfectly removable, each LSCMA iteration will increase the output SIR by
approximately 6 dB. This result is valid for any CM desired signal (arbitrary angle mod-
ulation), and any uncorrelated interference. We next examine an environment containing
two complex sinusoids, and show that the LSCMA output SIR can be predicted for each
iteration. The results are analogous to those presented in [66]. An environment containing
two CM signals, each having random phase, is then considered. It is shown that the aver-
age behavior of the LSCMA in this environment is similar to the deterministic behavior in
the two-sinusoid environment. Finally, an environment containing a CM desired signal and
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Gaussian interference is examined.

3.2 Overview of LSCMA

The objective of the adaptive beamformer is to obtain a high-quality estimate of a desired
signal in the presence of cochannel interference using an array of antennas. Letting the M x 1
vector x(n) represent the signals and noise received at an array of M antennas at discrete

time index n gives
I

x(n) =Y a;si(n) +q(n) (3.1)

i=1
where the M x 1 vector a; is the spatial signature corresponding to signal s;(n) and the M x 1
vector g(n) contains environmental and receiver noise. The model defined by (3.1) is often
referred to as the narrowband model, since it is assumed that the signals are narrowband
relative to the carrier frequency. The signals are also assumed to have unit variance and to
be temporally uncorrelated with each other and with the background noise. That is,

. 1 ifi=j
(s} ={ g 15

where £{ -} denotes expectation. The signal power is incorporated in the spatial signature,

(3.2)

which describes the amplitude and phase difference between the signal received at a reference
antenna and all other antennas. In the absence of multipath, the spatial signature is generally
referred to as an array response vector. The array response vector is dependent on the angle
of arrival (AOA) of the signal, the array geometry, the gain pattern of each antenna, the
carrier frequency of the incident signals, etc. When a signal is incident from more than one
direction the spatial signature will be a linear combination of the array response vectors
corresponding to the AOA of each path. This assumes that the multipath delay spread 7
is small relative to 1/B, where B is the signal bandwidth. If 7 > 1/B, each multipath
component received by the array is uncorrelated with other arriving components, and each
component is treated as a different signal. The case in which the delay spread is significant,
but not so large that the multipath arrivals are uncorrelated, is not treated in this chapter.

An adaptive beamformer weights and sums the signals received by the array to form an
estimate y(n) = wix(n) of the desired signal, where w is the M x 1 complex vector of
beamformer weights and w? is, as usual, the Hermitian transpose. This process is illus-
trated conceptually in Figure 1.1. The desired behavior of adaptive beamforming is most
easily visualized for environments that lack multipath. In these environments an adaptive
beamformer seeks to steer a beam towards the AOA of the desired signal while simultaneously

steering nulls towards the AOA’s of the interfering signals.
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Computation of the optimal (maximum output SNR, minimum MSE, etc.) weight vector
requires either a training signal or precise knowledge of the desired signal spatial signature.
In practice, a training signal is not always available. Furthermore the spatial signature may
be impractical to obtain. In such situations the CMA may be used to obtain a nearly optimal
weight vector if the desired signal has constant modulus.

The constant modulus property can in general be exploited by minimizing the non-linear
cost function

Fipg = ((ly(m)[" = 1)) (3.3)

where (- ) denotes time average. The form of (3.3) generally makes analysis of CMA difficult.
The LSCMA is a block update iterative technique for minimizing the F{; »y cost function given
by

Fuz = (lym)] - 1)*) (3.4)

The LSCMA is implemented as follows. At the kth iteration, N temporal samples of the
beamformer output are generated using the current weight vector wy. This gives

yr(n) = wi'x(n) (3.5)

The initial weight vector wq can be taken as wo =[100 --- O]T if no a-priori information
is available. Other initialization methods are considered in [67], where it is shown that the
dominant eigenvectors of the observed data covariance matrix are good choices for initial
weight vectors. The kth signal estimate is then hard limited to yield

i Yyi(n)
) = 1] (3.6)

and a new weight vector is formed according to

Wil = R;clmrmd (37)
where
R, = <x(n) x(n) >N (3.8)
and
rza = (x(n) di(n) ) v (3.9)

In the above expressions, (-), denotes a time average over 0 < n < N — 1. The updated
weight vector wy; minimizes the mean square error

([dem) = witx(m)|*) (310
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The iteration described by (3.5),(3.6), and (3.7) is continued until either the change in the
weight vector is smaller than some threshold, or until the envelope variance of the output
signal is deemed sufficiently small. In a stationary environment, the LSCMA iteration can be
performed using a new block of data, or can be re-applied to the same block of observed data.
The former approach is referred to as dynamic LSCMA in [43], while the latter approach is
referred to as static LSCMA.

The only parameter which must be selected when using the LSCMA is the block size N.
Selection of N will depend on many factors, including the acceptable latency of the update
procedure, the rate at which the signal environment is changing, and the available processing
power. Also, the number of temporal samples of array data must be equal to or greater than
the number of antennas so that the linear system of equations is overdetermined. The
LSCMA block size is similar to the SGD adaptation step parameter in that smaller block
sizes yield faster convergence at the cost of higher variance in the output SNR. By faster
convergence we mean that fewer temporal samples of data need be processed to achieve
steady-state. An interesting feature of the LSCMA is that the output SIR as a function
of the number of iterations is nearly independent of data block size. That is, the LSCMA
typically converges in 5 to 10 iterations regardless of the block size. The effect of finite block
size on the behavior of the LSCMA is addressed in more detail in Section 3.6.

An aside is in order here on the computational complexity of the LSCMA. Direct minimiza-
tion of MSE by solving a set of simultaneous linear equations, as in (3.7), is often considered
impractical for real-time applications because of the computational load. Certainly this may
be true for adaptive equalization applications, where the number of filter coefficients can be
large. However, the computational load is more reasonable for beamforming applications
since adaptation of a relatively small number of coefficients is required.

The LSCMA bears a strong resemblance to the classical least squares method that can be
used when a known training signal is available. The LSCMA can be interpreted as a least
squares method that uses a pseudo-training signal that is derived from the observed data.
This is the viewpoint taken here. We essentially determine the quality of the pseudo-training
signal in some representative situations. A different motivation for the LSCMA is presented
next, along with a discussion of the relationship of the LSCMA to other existing algorithms.

The LSCMA can be viewed as a method where a signal estimate is alternately projected onto
the set of CM signals and the space spanned by the observed data. In this way the LSCMA
resembles the Gerchberg-Saxton algorithm (GSA) [68], as noted by Wang, et al. [69] and
Van der Veen [48]. The problem solved by GSA is to recover the magnitude and phase of a
signal when only the magnitude of the signal and the magnitude of its Fourier transform are
known. This problem arises in many applications, including speech and image processing
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(see, e.g., [70]). The GSA projects a signal estimate in an alternating fashion onto time
domain and frequency domain property sets. The principal similarity of GSA and LSCMA
is that both employ a projection onto a non-convex set. This is in contrast to Projections
Onto Convex Sets (POCS) [70, 71, 72, 73, 74]. POCS can be used to find a signal estimate
which satisfies multiple properties. The POCS takes an initial signal estimate and projects
it in an alternating fashion onto the various property sets being exploited. The POCS is
guaranteed to converge when the sets are closed and convex. The GSA and the LSCMA can
be viewed as belonging to a class of algorithms that are sometimes known as the Method
of Generalized Projections (MGP). The GSA is the archetype of MGP, and some authors
use ‘Gerchberg-Saxton’ as a generic term to describe any MGP. MGP convergence cannot
be assured in general, although in some cases MGP exhibits the ‘error reduction’ property.
This implies that each iteration of a MGP reduces, or at worst does not increase, the cost
function being minimized. The error reduction property of the LSCMA is described in the
original LSCMA paper [43], but the relationship of the LSCMA to the GSA and other MGP
approaches was not recognized.

3.3 Analysis Framework

In this section we describe the general framework used to analyze the LSCMA. A key assump-
tion is that the interference is uncorrelated with the desired signal. We essentially describe
a simple way to measure the quality of the pseudo-training signal, d(n). If no background
noise is present, the quality of the beamformer output y(n) will be identical to the quality
of d(n). When background noise is present, the quality of y(n) is dependent on the quality
of d(n) and the optimal output SINR. The optimal output SINR is in turn dependent on
many factors, including the array geometry, the number of antennas, the number of incident
signals, and the angle of arrival of each signal.

The beamformer output signal at the kth iteration can be expressed, to within a multiplica-
tive constant, as
ye(n) = wix(n) = s(n) + gz(n) (3.11)

where s(n) is the constant modulus desired signal, z(n) is noise and interference, and the
SINR of the beamformer output is controlled by g. Both the desired signal s(n) and the
interference z(n) have unit variance. The hard-limiter output di(n) will contain three com-
ponents: (1) one component which is correlated with the desired signal; (2) one component
which is correlated with the interference; and (3), one component which is correlated with
neither the signal nor the interference. This last component is the result of intermodulation
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between the signal and the interference. We can express the hard-limiter output as

= yk(n) = as(n zZ\n n
) = (50 = acs(m) + B2(0) + () (3.12)

where the scalars @ and (8 control the desired signal power and the interference power,
respectively, and (n) contains the intermodulation terms.

We will now examine the relationship between the SINR in di(n) and the SINR, in the up-
dated beamformer output y;, ;. We initially assume that no background noise is present, and
that the array has sufficient degrees of freedom to completely remove the interference. Given
these assumptions, the optimal beamformer output SINR is infinite. These assumptions are
clearly not realistic, but this helps provide insight into the behavior of the LSCMA.

As the block size N — oo, the updated weight vector wy,.; minimizes the MSE between
Yi+1(n) and di(n),

Jm 5 3 () )l = ]y () — (o)) (3.13)

We can express the updated beamformer output as
Yer1(n) = wil1x(n) = o/s(n) + B'2(n) (3.14)
which, together with (3.12), allows the MSE to be written as
2 / / 2
E{lyera(n) —de(n)[*} = E{I(«/ = @)s(n) + (8’ = B)z(n) —Em)* ) (3.15)
= |/ —af o} + |0~ B’ o2 (3.16)

where we have made use of the fact that s(n), z(n), and {(n) are mutually uncorrelated.
Clearly the MSE is minimized for o/ = «, ' = . This implies that the signal component in
the updated beamformer output will match the magnitude and phase of the signal component
in the hard-limiter output. Thus the MSE between di(n) and the updated beamformer
output yx41(n) is minimized when

yer1(n) = Wil x(n) = as(n) + Bz(n) (3.17)

In order to find o and 3, we calculate the cross-correlation of s(n) and z(n), respectively,
with d(n). Note that

1>
o
~—
V)
S
o ¥
*
S
——

Rsq (3.18)
E{ s(n) (as(n) + Bz(n) +£(n))" } (3.19)

= o (3.20)
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Similarly we have

R.q 2 &{z(n)d*(n)} = B* (3.21)
The SINR p in the hard-limiter output dj, is

_lof® _ |Ral’

187 R’

p (dr) (3.22)
since we model s(n) and z(n) as having unit variance. Thus, the output SIR of the up-
dated LSCMA weight vector can be determined from Ry, and R.4. This requires that the
probability density function (PDF) of the signal and the interference be known.

To further illustrate the concepts behind this analysis framework, we will apply the LSCMA
to a simple environment containing two uncorrelated complex sinusoids. The array configu-
ration consists of two antennas, with the interelement spacing equal to A/2, where A is the
carrier wavelength. One sinusoid, with a frequency of 5/1024, is incident from broadside to
the array, which we define as 0°. This sinusoid is treated as the desired signal. The second
sinusoid, with a frequency of -31/1024, is incident from 30°. This sinusoid is treated as the
interfering signal. The amplitude of the first sinusoid is unity, and the amplitude of the
second sinusoid is 0.9. The LSCMA is applied to this environment with the initial weight
vector wo = [ 1 0 ]. Thus the initial SIR is approximately -0.9 dB. The LSCMA block size
N is set to 1024 samples. The periodogram of the initial beamformer output yo(n) is shown
in Figure 3.1. The next step in the LSCMA is to hard-limit the beamformer output. The
periodogram of the hard-limited beamformer output is shown in Figure 3.2. Note that the
original sinusoidal frequencies are still present, along with intermodulation products. Also
note that the relative amplitude of the desired sinusoid is now slightly higher relative to the
interfering sinusoid. The exact change in relative amplitude is calculated later in Subsec-
tion 3.3.2. The next step in the LSCMA is to update the weight vector using the hard-limiter
output in the same manner as a training signal. Figure 3.3 shows the periodogram of the
updated beamformer output. As discussed earlier, the amplitude of each sinusoid in the
updated beamformer output matches the amplitude of the corresponding sinusoids in the
hard-limiter output. The intermodulation products are orthogonal to the signals present in
the array data, and so have no effect on the weight update. It can be seen that the SIR in
the updated beamformer output is approximately 3 dB higher than the initial SIR.
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Figure 3.1: Periodogram of the initial beamformer output for the simple two-sinusoid envi-
ronment. The initial SIR of 0.9 dB is indicated by the dotted horizontal lines.
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Figure 3.2: Periodogram of the hard-limited beamformer output for the simple two-sinusoid
environment. The SIR of 3.09 dB is indicated by the dotted horizontal line. Note that the
calculation of SIR does not take into account the intermodulation terms.
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Figure 3.3: Periodogram of the updated beamformer output for the simple two-sinusoid
environment. The SIR of 3.09 dB is identical to the SIR in the hard-limiter output.
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When background noise is present the interference and noise cannot be completely removed
by beamforming. Independent thermal noise generated by each of the M receivers required
for the M antennas in the array is a common source of background noise. The relationship
between the SINR in di(n) and the updated LSCMA output SINR is then somewhat more
complicated.

We now derive an expression for the output SINR of the updated LSCMA weight vector
when background noise is present. This will be shown to be dependent only on the optimal
output SINR, the initial SINR, and the SINR gain provided by the hard limit non-linearity.
The observed data is modeled as

x(n) = as(n) + q(n) (3.23)

where a is the spatial signature of the desired signal and q(n) contains the noise and inter-
ference. We assume that R, is equal to the identity matrix. There is no loss of generality
since whitening the data has no effect on the LSCMA. The cross-correlation vector R4 is
given by
R, = caaTwg + wy (3.24)
where w( is the initial weight vector, and c is the square root of the SINR gain, with
A (07

C = 3.25
N (3.25)
The covariance matrix of the data is
R,, =aal +1 (3.26)
By the matrix inversion lemma
Rl 7 22 (3.27)
where p is the optimal output SINR, (4.36). The updated weight vector w1 is
Wit = Rt (3.28)
_ (o2 H 3.2
= — ]_—{—p (caa W0—|—W0) ( . )
= aa’ +1|w 3.30
($5paa 1) w (330
The output SINR of the updated weight vector is
2
SINR 2t 3.31
S 30
c—1 2 H 2
+1F [aw
{p (1+P> } ‘ 0‘ (332)

7
) ((1?;) |afwg|* 4 2 (%) lafwo|” + wlwy
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Since the initial SINR py is

H‘Q

e 3.33
po = WOHWO ( : )
the output SINR of the updated LSCMA weight vector can be written
2
c—1
p +1; p
SINR; 1 = w(i5) 1) e (3.34)

oo (555)+ 200 (555) +1

We argued earlier that the output SINR of the updated LSCMA beamformer is equal to the
SINR in the hard limited signal di(n) if no background noise is present. This can be verified
by letting the optimal output SINR p approach infinity in (4.34). It is straightforward to

show that
o?

Jlim SINRj41 = = 7 (3.35)
which supports the argument made earlier. Also note that when ¢ = 1 the hard limit
operation provides no gain, and

SINRk+1 = Pk (336)
=1
Here the output SINR of the updated weight vector equals the initial output SINR, as
expected.

In order for LSCMA to converge, the hard-limiter must emphasize the desired signal relative
to the noise and interference. The effect of hard-limiting and other non-linear operations
on communication signals and noise has been a topic of study since the 1950’s, e.g., see [75,
76] and references therein. A central motivation for this work is to understand the effect
of non-linear amplifiers on communication signals, which are commonly used in satellite
transponders. Non-linear processing has also been studied as a possible means for reducing
the effects of noise and interference, e.g., [77, 78]. These studies have clearly shown that
hard-limiting and filtering a constant envelope signal will increase the SNR, even when the
intermodulation components are considered. In fact, for a constant envelope signal, the
hard-limiter becomes the optimal nonlinearity as the SNR tends to infinity [79].

3.3.1 High SIR

We first examine the situation where the beamformer output SIR is high, as might be the
case near LSCMA convergence. We model y(n) as

y(n) = s(n) + gz(n) = & + gm(n)e™ (3.37)



Thomas E. Biedka Chapter 3. Constant Modulus Algorithm 96

where ¢(n) is the phase of the desired signal s(n), and m(n) and ¥ (n) are the magnitude
and phase, respectively, of the unit-variance interference term, z(n). The scalar g controls
the SIR, and we assume g < 1. Note that we have assumed for convenience that the desired
signal has unit amplitude in the beamformer output. This has no effect on the behavior of
the LSCMA, since any scaling of y(n) is removed by hard-limiting.

The cross-correlation of s(n) and d(n) is

Ry =&{s(n)d*(n)} = 5{ % } (3.38)
Using the binomial approximation (1 +7)~%/2 ~1 —r/2,
L
ly(n)| y(n)y*(n)
— (14 g m(n) + 2gm(n) cos((n) — $i(n)))
~ 1—gm(n)cosA(n) (3.39)

where A(n) = ¢(n) — 1p(n). Before proceeding further we consider the PDF of A(n).

We are concerned here with the PDF of the phase difference of two independent complex
baseband signals for the case in which the PDF of the phase of each signal is uniform over
(—m, 7). The desired PDF is obtained by convolving two uniform PDFs, which results in a
triangular-shaped PDF over (—2m, 27]. Since the phase wraps (e/® = ¢/2™2) the PDF of A
is uniform over (—, 7]. This is true even if the received signals have the same modulation
format and identical carrier frequencies.

The cross-correlation of s(n) and d(n) can now be approximated as
Ry =~ S{ 7o) (6_j¢(”) + gm(n)e_jw(")) (1 — gm(n)cos A(n)) }
~ 5{ (1 + gm(n)ejA(”)) (1 — gm(n)cos A(n)) }
~ 1 (3.40)
where the magnitude of the interfering signal m(n) and the phase difference A(n) are assumed
independent. The result that Rs; ~ 1 is intuitively appealing since the SIR is high.
The cross-correlation of z(n) and d(n) is
R.q =~ 5{ m(n)e*™ (e 36 4 gm(n)e ¥ ”)> (1 — gm(n)cos A(n)) }
o~ 8{ (m(n) e 8™ 1 gm?(n )) (1 — gm(n)cos A(n)) }
~ g&{m*(n) } - (9/2)E{m’(n) }
~ g/2 (3.41)
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The output SIR (3.22) now becomes

|de’2

SIR = =4
|de|

=4/g? (3.42)

Since the input SIR is 1/¢2, the ratio of the output SIR to the input SIR is 4, so that the
SIR increases by 6 dB. This result for high SIR holds for any CM signal with uncorrelated
cochannel noise and interference and will be observed in the simulation results to follow.

3.3.2 Two Complex Sinusoid Environment

We now examine the behavior of the LSCMA in an environment where the antenna array
receives two orthogonal complex sinusoids in the absence of background noise. We show
that if the SIR at iteration k is known, the LSCMA output SIR can be predicted exactly
for all later iterations. We also show that these results are a very good approximation with
sinusoids having arbitrary, but well separated, frequencies. The results presented here are
deterministic. Other results presented later examine the mean behavior of the LSCMA using
a probabilistic framework.

The beamformer output signal obtained with the existing LSCMA weight vector is modeled
as
y(n) = s(n) + gz(n) = 7™ + gel“" (3.43)

where w; = 27k;/N for integer k;. The parameter g determines the relative power of the
sinusoids. In (3.43), s(n) and z(n) represent the desired signal and the interferer, respectively.
The amplitude of the desired signal in y(n) is assumed to be unity, which has no effect on
the behavior of the LSCMA.

The temporal cross-correlation of the desired signal, s(n), and the hard-limiter output signal,
d(n), is

Ry = (s(n)d(n))y

_ < % >N (3.44)

where A £ w; —w,. We note that since y is periodic, 1/ |y| is also periodic and may therefore
be expressed as a Fourier series. The period of 1/ |y(n)| is 27 /A. The function is real and
even, so the Fourier series is given by

1 ao ad
=—+ ) aicoskAn (3.45)
ly(n)| 2 kz::l
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where
B 2A rm/A cos kAn

W= V14 g%+ 2gcosAn
The Fourier coefficients given by (3.46) are independent of A, which implies that the results

dn (3.46)

to follow hold true for any frequencies w; and ws, if these frequencies lead to orthogonal
sinusoids. Substituting (3.45) into (3.44) yields

de = < (1 + gejAn> <% + Z aj, COS /{:An) >N

k=1
a ' oo

= 24 <ge”A” > ay cos k:An>
2 k=1 N
ap + gay

- o (3.47)

The Fourier coefficients ay and a; may be found using numerical integration. Using a similar
approach for R4 yields

ﬁizd _ < (e*jAn + g) <% + Z ag COs k:An) >
k=1

N
— WOTM (3.48)
The output SIR of the hard-limiter is
2
SIR,,, = [Real” _ (@04 ga (3.49)
"R \ga0+a |
and the SIR gain is )
SIR
in g(g9ao + a1)

Figure 3.4 shows the SIR gain (3.50) as a function of input SIR !. Note that the SIR gain
tends asymptotically to 6 dB as predicted by the high SIR analysis.

The results presented in Figure 3.4 are now used to predict the output SIR of the LSCMA
in an environment containing a sinusoidal desired signal and a sinusoidal interferer. A two
element beamformer is simulated with the inter-element spacing equal to one-half the carrier
wavelength, A\. The desired signal is incident from broadside with an amplitude of one,
and the interferer is incident from 30° off broadside with an amplitude of 0.9. The initial
LSCMA weight vector is set to [1 0], so that the initial SIR ~ +0.9 dB. The block size is
1024 samples, with f; = 5/1024 and f; = —31/1024. Table 3.1 compares the predicted and

LThe Fourier series coeflicients were computed with the MATLAB™ pnumerical integration routine quad8
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Figure 3.4: Improvement in SIR achieved by one iteration of LSCMA with sinusoidal desired

signal and sinusoidal interferer.
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Figure 3.5: Amplitude of both complex sinusoids in the beamformer output as a function
of the number of LSCMA iterations. Solid line indicates predicted amplitude, ‘+’ indicates
amplitude measured in simulation.
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measured output SIR at several iterations of the algorithm, which shows excellent agreement
with theory. These same results are presented in an alternative manner in Figure 3.5.
This figure shows the amplitude of each sinusoid as a function of the number of LSCMA
iterations. A similar figure, showing the behavior of the SGD CMA in an environment with
two sinusoids, appears in [66].

Iteration | Output SIR (dB) | SIR Gain
Measured | Theory
0.915 0.915 -
3.097 3.095 2.181
7.195 7.193 4.099
12.554 12.552 5.358
18.390 | 18.388 5.837
24.363 | 24.361 5.973
30.372 | 30.370 6.009
36.389 | 36.387 6.018
42.409 42.407 6.020

||| O Y= ]|WIN|—]O

Table 3.1: Comparison of predicted and measured LSCMA output SIR in an environment
containing two complex sinusoids.

We now briefly consider the case in which the two complex sinusoids are not orthogonal.
The cross-correlation between the two sinusoids will be small if the two sinusoids are well
separated in frequency. For this case we would expect the preceding analysis to be a good
approximation to the observed behavior. This is supported by the results shown in Table 3.2.
The simulation parameters are the same as in Table 3.1, except that f; = 0.5/1024 and
fo = 3/1024. The agreement with theory is still very good even though the sinusoids are not
orthogonal.

3.3.3 CM Signal with CM Interference

We now consider an environment where the antenna array receives a CM desired signal and
a CM interferer in the absence of background noise. Unlike the deterministic framework
employed in the sinusoidal environment, we now rely on a probabilistic framework. These
results therefore describe the mean behavior of the LSCMA. The initial beamformer output
signal y(n) is modeled as

y(n) = €M™ 4 gedv) (3.51)
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Iteration | Output SIR (dB) | SIR Gain
Measured | Theory

0.915 0.915 -

3.084 3.095 2.17
7.119 7.193 4.035
12.358 12.552 5.239
18.054 18.388 5.697
23.885 24.361 5.831
29.752 30.370 5.867
35.627 36.387 5.876
41.505 42.407 5.878

(|| O | W N~ O

Table 3.2: Comparison of predicted and measured LSCMA output SIR in an environment
containing two complex sinusoids when the sinusoids are not orthogonal.

where ¢(n) and 1(n) denote the phase of the desired signal and interfering signal, respec-
tively, and g determines the relative power. We assume that ¢(n) and ¢ (n) are independent
random variables uniformly distributed over (—, 7].

The cross-correlation of the desired signal s(n) and the hard-limiter output signal d(n) is

4 1+ gei®
—r /14 ¢?>+2gcos A

(A)dA (3.52)

where A £ d(n) —1(n) and p(A) = 1/27, —1 < A < 7, is the PDF of A. We simplify the
expression for R,y by noting that /2 = cos A + jsin A, and odd functions when integrated
over —m to 7 yield zero. We thus obtain

1 = 14 gcosA

Ry = —
T o ) a VI g+ 2gcos A

(3.53)

Similarly, the cross-correlation of the interferer z(n) and the hard-limiter output signal can

be expressed as
1 = g+ cos A
de =35
21 J—x /1 + g% +2gcos A
The SIR (3.22) is calculated by evaluating both (3.53) and (3.54) by numerical integration.

The resulting SIR gain is shown in Figure 3.6. The expected gain of hard-limiting in this

(3.54)

environment is identical to the deterministic gain achieved in the sinusoidal signal environ-
ment. The mean SIR gain measured from simulation when the LSCMA is applied to an
environment containing two FM signals with low-pass Gaussian messages is also shown in
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SIR Gain (dB)

Input SIR (dB)

Figure 3.6: Improvement in output SIR achieved with one iteration of LSCMA with an FM
desired signal and an FM interferer. Solid line indicates theoretical gain, ‘4’ indicates mean
gain measured in simulations.

the Figure 3.6. The array configuration and AOA of the signal and interference are the
same as those used previously in the sinusoidal environment. The signals are generated by
low-pass filtering Gaussian noise to a normalized bandwidth of 0.125, and then frequency
modulating using a frequency deviation of 0.1. The baseband FM signals have no carrier fre-
quency offset. The mean SIR gain is measured from 1000 Monte Carlo trials using N = 256
samples. Figure 3.6 shows excellent agreement between the theoretical and measured SIR
gain.

As further evidence of the applicability of the above derivation to other CM modulation
formats, we apply LSCMA to an environment with two QPSK signals. In order for the
QPSK signals to be CM, we assume that they have the same symbol timing, and that they
have been appropriately match-filtered and sampled baud-synchronously. We also assume
that the QPSK signals have no carrier frequency offset. Thus each QPSK signal takes on
one of four values which are drawn randomly from the set {:I:l /N2, +i/V2 } The carrier
phase of each QPSK signal is randomly drawn from a uniform distribution for each trial.
Simulation results are shown in Figure 3.7. All simulation parameters are the same as those
used in the FM signal environment. Once again, there is excellent agreement between the
predicted and observed behavior of LSCMA.
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SIR Gain (dB)

Input SIR (dB)

Figure 3.7: Improvement in output SIR achieved with one iteration of LSCMA with a QPSK
desired signal and a QPSK interferer. Solid line indicates theoretical gain, ‘4’ indicates mean
gain measured in simulations.

In most practical applications, PSK signals with non-rectangular pulse shape are used in
order to reduce the signal bandwidth. Unless the PSK signal is appropriately match-filtered
and sampled baud synchronously it will not be CM. Accurate estimation of symbol timing
is difficult in the presence of strong co-channel interference. However, this is precisely the
sort of environment where adaptive beamforming would be applied. Thus the preceding
assumption that the desired QPSK signal is sampled baud synchronously will not be valid
in general. One solution to this problem is to apply the LSCMA to oversampled data, i.e.,
sample the digital signal at a rate higher than the symbol rate, since the CMA can be
applied to non-constant modulus signals [40, 39]. The symbol timing can be re-estimated
as the LSCMA converges. Ultimately the LSCMA can be adapted using only the baud-
synchronous (constant modulus) samples instead of the oversampled (non-constant modulus)
data. The analysis framework described here can be used to determine the performance of
the LSCMA with pulse-shaped PSK signals. However, such an analysis is beyond our scope,
and we instead rely on simulation to gain some insight into this issue. We would expect that
the LSCMA will still converge with a pulse-shaped QPSK signal, but that the convergence
will be slower.

We examine the behavior of LSCMA with two pulse-shaped 7/4 QPSK signals. This modu-
lation is commonly used in cellular and PCS applications. The signals are sampled at 8 times
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Figure 3.8: SIR gain of LSCMA with non-constant modulus pulse-shaped 7/4 QPSK signals.
The results are parametric in the percent of excess bandwidth for each signal. The dotted
curves are based on Monte Carlo simulation, the solid curve is the theoretical result for a
CM desired signal with CM interference.

the symbol rate, and Nyquist-type pulse shaping is used. It is well known that signals having
lower excess bandwidth have higher modulus variation. Thus we would expect LSCMA to
converge more quickly with higher excess bandwidth signals. This is verified by Figure 3.8,
which shows the SIR gain for both 20% and 100% excess bandwidth. The simulation para-
meters used to generate these results are the same as those used previously. The SIR gain
for the 100% excess bandwidth signal appears to asymptotically approach ~ 4.7 dB as the
initial SIR becomes high. The SIR gain for the 20% excess bandwidth signal appears to
approach =~ 3.9 dB as the initial SIR becomes high. These results indicate that the LSCMA
will converge more slowly with a non-constant modulus signal than with a CM signal.

3.3.4 CM Signal with Gaussian Interference

We now examine the behavior of the LSCMA with a CM signal and Gaussian interference.
These results are of interest since the distribution of a large number of co-channel interferers,
as might be encountered in CDMA applications, will tend toward Gaussian by the central
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limit theorem. The input to the hard-limiter is expressed as
() = s(n) + g2(n) = ) + g m(n) I (355)

where s(n) is an angle-modulated signal and z(n) is unit-variance complex Gaussian interfer-
ence. Note that ¢(n) is uniformly distributed over (—m, 7] while m(n) is Rayleigh distributed

with PDF 2
2me™™ m >0
= 3.56
r(m) { 0 m <0 (3.56)
The cross-correlation of s(n) and d(n) is
1 joo 2
R = ;/ Q(m)me™™ dm (3.57)
0
where n A
U gmcos
= dA 3.58
Qm) /_ﬂ V14 g?m? +2gmcos A (3:58)
In a similar fashion it can be shown that
1 0
R.qa = —/ P(m)me™™ dm (3.59)
7 Jo
where A )
P(m) — MCSDTIN___ A (3.60)

Ja T+ @PmZ+ 2gmcos A

Both (3.57) and (3.59) are evaluated by numerical integration and used to obtain the SIR
gain shown in Figure 3.9. The SIR gain as measured from simulations is also shown in
Figure 3.9 and verifies the theoretical analysis. The simulation parameters are the same
as those used previously. As before the SIR gain tends to 6 dB as the input SIR becomes
high. Note that the SIR gain is greater than 0 dB even for an input SIR of -10 dB. This
would seem to indicate that LSCMA can be expected to converge even at low initial input
SIR. However, it is important to bear in mind that these results are based on probabilistic
notions. The SIR gain will be a random variable for finite block size and Figure 3.9 shows
only the expected value of this random variable.

We have now calculated o and (3 for several important signal and interference distributions.
At this point we have sufficient information to study the (1,2)-CMA cost function using these
expressions for v and S.

3.4 Cost Function Analysis

In order to perform a thorough analysis of any blind algorithm, it is necessary to find the
stationary points of the cost function. A stationary point occurs when the gradient with
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Figure 3.9: Improvement in output SIR achieved with one iteration of LSCMA for a CM
signal plus Gaussian interference. Solid line indicates theoretical gain, ‘4’ indicates mean

gain measured in simulations with an FM signal and a Gaussian interferer.

respect to the weight vector is equal to zero. These stationary points are important because
they correspond to local minima, local maxima, or saddlepoints of the cost function. The
gradient of a blind cost function with respect to the weight vector cannot, in general, be
solved for directly. If this could be accomplished, the weight vector that minimizes the cost
function could be solved for directly without the need for iterative algorithms. However, it
is sometimes possible to express the cost function in terms of the output SINR and other
parameters as opposed to the weight vector. This can simplify the analysis.

We show in Appendix A that for the (1,2)-CMA cost function

F(p) =2 = <= (o V5 + ) (3.61)

where o and ( are as defined earlier, and p is the beamformer output SINR. Note that «
and (3 are dependent on the SINR p.

Figure 3.10 shows the (1,2) CMA cost function as calculated from (3.61) for the case of a CM
signal and CM interference. Simulation results are included to support the analytic results.
These simulation results are based on a CM signal and a CM interferer. The signal and
interference are white, and the phase in each case is random and uniformly distributed. The
(1,2) CMA cost function was measured with a data length of 1024 samples, and averaged
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Figure 3.10: (1,2) CMA cost function versus SIR with a CM signal and CM interference.
The solid line shows the analytic expression, the ‘o’ show simulation results.

over 1000 independent Monte Carlo trials.

Note that the cost function in Figure 3.10 is symmetric about 0 dB SIR. This is to be
expected, since the CMA cost function cannot distinguish between a CM signal and a CM
interferer. Also note that the cost function has a global maximum at 0 dB SIR. Since the
gradient is small in the neighborhood of 0 dB SIR, a gradient search algorithm, such as
steepest descent, will converge slowly in this environment if the initial SIR is low.

Figure 3.11 shows the (1,2) CMA cost function as calculated from (3.61) for the case of a
CM signal and Gaussian noise and interference. Simulation results are again included to
support the analytic expression (3.61). The simulation parameters are identical to those
used previously, except that the noise is complex Gaussian as opposed to CM. As expected,
the cost function grows small as the SIR grows large. However, the behavior for low SIR is
very different for Gaussian noise than for CM noise. In Gaussian noise, the cost function
remains large, but the gradient approaches zero as the SIR grows small. Since a gradient-
based algorithm seeks to find a point in the cost function where the gradient is zero, a
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Figure 3.11: (1,2) CMA cost function versus SIR with a CM signal and Gaussian interference.
The solid line shows the analytic expression, the ‘o’ show simulation results.

gradient-based CMA may become trapped in a low output SIR state. This is known as noise
capture [80]. In noise capture, the output of a CMA-adapted array consists of Gaussian
background noise; any CM signals received by the array are nulled.

3.5 Inclusion of Background Noise

In this section we examine the effect of background noise on the behavior of the LSCMA.
We assume that the noise has a complex circularly symmetric Gaussian distribution and
is uncorrelated from sensor to sensor. We consider one environment where the interference
is Gaussian, and another where the interference is CM. In both cases the desired signal
is QPSK and is assumed to have been match filtered and sampled so that it is CM. All
simulation results are based on 1000 trials with the LSCMA block size equal to 256 symbols.
The array is linear with eight elements and uniform interelement spacing equal to A/2. The
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Figure 3.12: Improvement in output SIR achieved with one iteration of LSCMA with a
QPSK desired signal received with a Gaussian interferer and Gaussian background noise.
Solid lines indicate theoretical result, ‘+’,’0’, and 'z’ denote mean gain from simulation.

signal power is measured relative to the unit variance background noise, and is termed the
Signal to White Noise Ratio (SWNR).

First consider the case where the desired signal is incident from 0° and a single Gaussian
interferer is incident from 5°. Since the noise and interference is Gaussian, the SINR gain
from hard-limiting is given by (3.57) and (3.59). The LSCMA output SINR is related to
the SINR gain from hard-limiting by (4.34). The mean LSCMA SINR gain is presented in
Figure 3.12 for SWNR equal to 5, 10, and 20 dB. The power of the interferer is kept equal to
the power of the desired signal. The figure shows excellent agreement between the measured
and predicted SINR gain. As the SWNR increases, the optimal output SINR increases, and
the SINR gain approaches the gain obtained when no background noise is present.

Now consider the case where the interference is CM. Since the interference is not Gaussian,
calculation of the SINR gain is tedious and it is appropriate to make some approximations.
When the beamformer output SINR is low, the dominant source of distortion is the CM
interferer, and the SIR gain from hard-limiting can be accurately predicted by the results
for CM interference, given by (3.53) and (3.54). As the output SINR becomes higher, the
interferer is nulled, and the background noise becomes the dominant source of distortion.
However, we have shown that in all cases the SINR gain from hard-limiting approaches 6 dB
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Figure 3.13: Improvement in output SIR achieved with one iteration of LSCMA with a
QPSK desired signal received with a QPSK interferer and Gaussian background noise. Solid
lines indicate theoretical result, ‘+’,’0’, and ’x’ denote mean gain from simulation.

as the SINR becomes high. Therefore the behavior of LSCMA in this case can be predicted
by using the results for CM interference (3.53) and (3.54) together with (4.34). Simulation
results for an environment similar to that described above, except that the Gaussian interferer
is replaced with a CM QPSK interferer, are presented in Figure 3.13. This figure shows very
good agreement between the approximate theoretical result and the simulation results.

3.6 Finite Block Size

The effect of finite block size on classical least squares beamforming (with a known training
signal) has been considered previously [28, 81]. While it should be possible to apply some
of these same techniques to the analysis of the LSCMA, we instead rely on simulation to
obtain some intuition regarding the effect of finite block size. The mean behavior of the
LSCMA should be very close to that predicted by the analysis, even for small block size.
Furthermore the variance of the SIR gain should decrease with increasing block size. This is
verified by Figure 3.14, which shows the distribution of SIR gain versus the LSCMA block
size with an FM desired signal and an equal power Gaussian interferer. The results are
based on 1000 trials. Note that a significant number of trials had SIR gain of less than 0 dB,
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Figure 3.14: SIR gain of LSCMA versus block size with an FM desired signal and 0 dB
Gaussian interferer. Dotted line indicates theoretical gain. Upper and lower traces define
region where 98% of trials fell.

i.e., the Gaussian interferer was emphasized. The LSCMA will not converge to the desired
solution in these cases, but will instead capture the Gaussian interferer. However, for block
sizes of 64 samples and higher, no trials were observed to have negative SIR gain. Thus the
algorithm tends to behave in the desired manner as the block size increases. Proper selection
of the initial weight vector can also help ensure LSCMA convergence to the desired solution.

3.7 Conclusions

We have examined the convergence behavior of the LSCMA in some simple environments.
The results are derived by calculating the improvement in SIR caused by hard-limiting a
CM signal plus additive noise and interference. These results help to explain why LSCMA
converges, and are helpful in explaining the general behavior of LSCMA. However, we have
made several simplifying assumptions which must be addressed in order to extend the analysis
to more realistic situations.

We have assumed that the desired signal and the interfering signals are not correlated. This
does not in general allow the direct analysis of correlated multipath environments. However,
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the analysis presented here is valid for the case where the multipath delay spread is very
small. In this case, the delayed paths are highly correlated with the desired path, and the
overall effect is simply to change the spatial signature.

Many applications require the extraction of multiple signals. Algorithms such as Multi-
Target CMA [46], Multistage CMA [45], and Iterative Least Squares with Projection [47]
can be used for this purpose. The results presented here can form a basis for analysis of
these multi-signal extraction techniques. Clearly the variance and distribution of output
SINR obtained with the LSCMA is also an important area for investigation.

We finally comment on the hard-limit non-linearity. For high SIR, the hard-limiter is the
optimal non-linearity when the desired signal has a constant envelope [79]. However, at
low SIR other non-linearities can yield greater SIR gain. Thus it is possible that non-linear
functions other than the hard-limit can be used to develop blind adaptive algorithms which
converge faster for low initial SINR.



Chapter 4

Decision Directed Algorithm in
(Gaussian Interference

Summary

We examine the convergence of an existing decision directed adaptive algorithm in an adap-
tive beamforming application. This analysis allows us to compare the convergence rate of
a decision directed algorithm and a constant modulus algorithm analytically. The signal
environment which we examine consists of a desired PSK signal received at multiple anten-
nas in the presence of additive Gaussian co-channel interference. Results are presented for
M-ary PSK in general and for BPSK and QPSK in particular. As expected, the results show
that the decision directed algorithm converges rapidly for moderately high initial SINR. The
block-update algorithm considered here can converge even when the initial symbol error rate
is very high. The effect of carrier phase offset on algorithm performance is examined, and a
modified algorithm that offers faster convergence with unknown carrier phase is presented.

4.1 Introduction

The focus of this chapter is on the convergence properties of an algorithm which we will
refer to as the Least Squares Decision Directed Algorithm (LSDDA). The LSDDA is a fast-
converging, block update algorithm which has been studied by Swindlehurst et al. in [9].
The results presented in [9] have been widely cited by other authors, including [10, 11, 12,
13, 14, 15, 16]. It is argued in [9] that the LSDDA will converge in one iteration as the block
size grows large, independent of the initial SNR. In contrast we argue that multiple LSDDA

113
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iterations are required for convergence, even for infinite block size (unless the initial SNR is
high).

We make several simplifying assumptions in order to make the analysis of the LSDDA
tractable. First, we assume that the signal is uncorrelated with the noise and interfer-
ence. Thus we do not consider frequency selective channels in general. We also assume
that the carrier frequency of the desired signal is known to the receiver. Finally, we assume
that the symbol timing is known to the receiver. Clearly there are many situations where
these assumptions are not reasonable. However, these assumptions are made as a first step
towards understanding the behavior of the LSDDA.

This chapter is organized as follows. First an overview of the LSDDA is given along with
a description of the array data model. The Least Squares Constant Modulus Algorithm
(LSCMA) [43, 44], which is very similar to the LSDDA, is also reviewed. Then the framework
used to analyze the performance of the LSDDA is presented. This framework has also been
used to study the LSCMA [63, 7]. Since our analysis yields distinctly different results from
those reported in [9], Section 4.4 presents a detailed comparison of our approach and the
approach employed in [9]. The behavior of the LSDDA with a PSK signal received in
Gaussian noise and interference is considered in Section 4.5, including an analysis of the
effect of carrier phase offset. Results are presented for BPSK, QPSK, and general M-ary
PSK. The relative convergence rate of the LSCMA and the LSDDA is also studied. This is
believed to be the first analytic comparison of the convergence rate of CMA and a decision
directed algorithm. Section 4.7 demonstrates that the LSDDA analysis framework proposed
here may prove useful for a full analysis of the LSDDA for finite block size. We conclude
with a summary of the results presented here and describe some directions for future work.

4.2 Overview of the Decision Directed Algorithm

This section presents an overview of the LSDDA in an adaptive beamforming application.
We first describe the model used for the observed data and then describe the LSDDA in
detail. The objective is to obtain an estimate of a desired signal in the presence of cochannel
interference using an array of antennas. Letting the M X 1 vector x(n) represent the signals
and noise received at an array of M antennas at discrete time n gives

x(n) = ags(n) + q(n) (4.1)

where the M X 1 column vector a; is the spatial signature of the unit variance desired signal
s(n), and the M x 1 vector q(n) contains noise and interference. The power of the noise and
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interference is normalized so that

tr(&{am)a’(n) }) = tr (Reg) = M (4.2)

where tr(-) denotes the matrix trace. Note that, in this model, the amplitude of the received
signal is incorporated in the spatial signature. In the absence of multipath, the spatial
signature is only dependent on the angle of arrival, the carrier frequency, and the array
geometry. In this case it is often referred to as an array response vector. When flat fading
multipath is present, the spatial signature is a linear combination of the array response
vectors corresponding to each path taken by the desired signal. This assumes that the delay
spread is small relative to the symbol rate. If the delay spread is large, those paths having
large differential delay can be incorporated into the noise and interference term. A linear
estimate y(n) of the desired signal is given by y(n) = wx(n), where w is the M x 1 vector

of beamformer weights and w is the Hermitian transpose.

The LSDDA is implemented as follows. First N temporal samples of the data observed at
M antennas are collected and arranged to form the M x N matrix X. The nth column of X
is the data observed at time index n. For simplicity we assume that the samples are taken
baud synchronously with one sample per symbol. Denote the M x 1 vector of beamformer
weights at the kth iteration by wy. This weight vector is used to form a beamformer output

Yi = wi X (4.3)

where y, is the 1 x N row vector of beamformer output samples. If no a-priori information
is available, the initial weight vector wo may be taken as wo = [100 ---0]". The use
of other initial weight vectors has been reported in [67], where the dominant eigenvectors
of the spatial covariance matrix have been shown to speed convergence. The beamformer
output yx(n) is then passed to a demodulator which estimates the transmitted symbols. We
denote the 1 x N row vector of estimated symbols as d. For example, for a BPSK signal
the demodulator output di(n) is defined as

{ 1 if Real{yx(n)} >0

di(n) = —1 if Real{yx(n)} <0

(4.4)

The demodulator will naturally be specific to the modulation format of the desired signal.
In any case the demodulator output is a non-linear function of the demodulator input. A
new weight vector wg,; is then found which minimizes

2
| di = wil X | (4.5)
where || e |2 = |eo)* 4 --- + |ex_1|*. Thus the new weight vector is given by

wi = (XXT) ' Xdll, (4.6)
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The weight vector update can also be expressed as

A1

Wgi1 = wa f'wd (47)
where
A N—1
Re. = Y x(n)x(n) (4.8)
n=0
and
N—1
toa = Y x(n)dyn) (4.9)
n=0

The iteration described by (4.3),(4.4) (using the appropriate demodulator), and (4.7) is
continued until no changes are made in the estimated symbols d.

The LSDDA is designed to extract a single signal from the array data. An algorithm similar
to the LSDDA can be derived for extracting L > 1 signals [9]. Assume that the array
receives L signals and that the background noise is white and Gaussian. Then the Maximum
Likelihood (ML) estimator of the signals is found by minimizing

L2
|Xx-AD| (4.10)
where
A llp = 1/ZZI%I (4.11)
is the Frobenious matrix norm,
d;
d:
D=| . (4.12)
dr

is the L x N matrix of estimated signals, and
A=[a a ---ay | (4.13)

is the M x L corresponding set of estimated spatial signatures. Direct minimization of the
ML cost function (4.10) requires a costly multidimensional search over the signal space [14].
One suboptimal approach to finding the ML solution is to estimate the signals and the spatial
signature matrix in an alternating fashion. This is sometimes referred to as an alternating
projections approach. This can be accomplished with the following iterative procedure:

1. At the kth iteration, generate a set of L beamformer outputs Y, with
Y, = WX (4.14)

where each column of Wy is a beamformer weight vector.
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2. Demodulate each of the beamformer outputs, denoting the demodulation function by
f(-), so that
D; = f(Yy) (4.15)

3. Estimate a new set of spatial signatures
. " 7l
Aiy1 = XD/ (D,DY) (4.16)
4. Form a new set of weight vectors
o ~H A -1
Wk+1 == Ak+1 (Ak+1Ak+l) (417)

The LSSDA as described applies multiple iterations to the same block of data. The LSDDA
can also be implemented so that a new block of data is used for each weight vector update.
This may be beneficial in some applications. For example, the LSDDA may be more likely
to converge if each update uses an independent block of data, especially if the block size is
small. However, it is more computationally efficient to apply multiple iterations to the same
set of data. Direct solution of a set of simultaneous linear equations, as in (4.7), requires
that the data covariance matrix, or equivalently the data, be orthogonalized. Once the data
has been orthogonalized, the cost of multiple iterations is not much higher than a single
iteration. Loosely speaking, once the covariance matrix R, has been inverted, each update
only requires a demodulation, cross-correlation, and matrix-vector multiply. In practice, of
course, a matrix inverse is rarely explicitly calculated.

An aside is in order here on the computational complexity of the LSDDA. Direct minimiza-
tion of MSE by solving a set of simultaneous linear equations is often considered impractical
for real-time applications because of the computational load. Certainly this can be true
for adaptive equalization applications, where the number of filter coefficients can be large.
However, the computational load is more reasonable for beamforming applications since
adaptation of a relatively small number of coefficients is required.

An example of LSDDA convergence is shown in Figure 4.1. This figure shows the mean
LSDDA output SINR versus the number of weight vector updates for one particular environ-
ment. The environment consists of a QPSK desired signal and a single Gaussian interfering
signal received at a 4 element uniform linear array. The antenna spacing is equal to \/2,
where A is the wavelength corresponding to the QPSK carrier frequency. The QPSK signal
is incident from 10° off broadside, and the Gaussian interferer is incident from 65°. Spatially
and temporally white complex Gaussian background noise is also present in the observed
data. The desired signal is 6.3 dB stronger than the background noise, and the Gaussian
interferer is 6 dB stronger than the desired signal. (In the remainder of this chapter we
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Figure 4.1: Mean output SINR of LSDDA and LSCMA versus the number of weight vector
updates. Solid lines show theoretically predicted output SINR, the ‘*’ and ‘o’ show results
from simulation.

will denote signal strength relative to the white background noise as the Signal to White
Noise Ratio, or SWNR). The optimal output SINR is 12.0 dB. The initial weight vector
is wo = [1000]". This gives an initial output SINR of ~ -0.67 dB. The corresponding
symbol error rate is approximately 0.18. The LSDDA block size is 1024 symbols, and re-
sults are based on 1000 independent trials. The results of each trial are based on multiple
LSDDA iterations applied to the same block of data. The figure shows that the LSDDA
has converged after 4 iterations. It was found that all 1000 trials converged to the desired
solution, even though the initial SINR is very low.

Figure 4.1 also shows results for the LSCMA. The LSCMA weight update is nearly identical
to the LSDDA update described by (4.3),(4.4), and (4.7). The difference is that LSCMA
uses

a(n) = |§ZEZ§| (4.18)

in place of hard decision di(n). Figure 4.1 shows that LSDDA converges more quickly than
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the LSCMA, at least in this particular environment. However, it may be misleading to
conclude that LSDDA is always to be preferred over LSCMA. First, the carrier frequency
of the desired signal will not always be known. Second, the LSDDA has knowledge of the
received signal carrier frequency and carrier phase, so the LSDDA results in 4.1 are optimistic.

The main goal of this chapter is to predict and understand the observed behavior of the
LSDDA. To show that progress has been made towards reaching this goal, Figure 4.1 includes
an approximate theoretical prediction for the mean LSDDA output SINR at each iteration
based on results derived in this chapter. (The theoretical prediction is more accurately
described as an upper bound on the mean LSDDA output SINR. This bound grows tighter
as the block size N grows larger.) The theoretical approximation to the observed behavior
is very good. The approach used to obtain this theoretical approximation is described in the
next section.

4.3 Analysis Framework

In this section we describe the general framework used to analyze the LSDDA. This frame-
work has also been used to analyze the LSCMA [63, 7]. Central to this framework is an
interpretation of demodulation as a non-linear operator applied to the beamformer output.
We essentially describe a simple way to measure the SINR of di(n). We then relate the SINR
of di(n) to the output SINR achieved with the updated beamformer weight vector wy;. In
general, the updated output SINR is dependent on the SINR of di(n), the initial SINR, and
the optimal output SINR. The optimal output SINR is in turn dependent on many factors,
including the array geometry, the number of antennas, the number of incident signals, and
the angle of arrival of each signal.

Our approach is to determine the expected values of R, and #,4 and insert these expressions
into (4.7). This gives the asymptotic ( as N — co) value of wy, 1. The corresponding output
SINR is then calculated. This yields the asymptotic output SINR of the updated weight
vector. A clear distinction must be made between the mean and the asymptotic output
SINR of wi,;. The mean output SINR is defined as the ensemble average output SINR
observed over multiple independent realizations of the data for finite N. The mean output
SINR will be dependent on N and the number of antennas in the array. In contrast, the
asymptotic output SINR is not dependent on N or on the number of antennas. However,
the asymptotic output SINR is shown to be very close to the mean output SINR observed
in simulations when N is significantly greater than the number of antennas. An exact
determination of the mean output SINR for finite NV would be much more complicated than
the approach used here. An analogy can be made to the use of a training sequence in a
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classical Least Squares (LS) approach. The use of a finite duration training sequence means
that the output SINR of the LS beamformer will be strictly less than the optimal value. As
a general rule of thumb, the duration of the training sequence must be approximately twice
the number of antennas in order to achieve reasonable performance [28].

The beamformer output signal at the kth iteration can be expressed as

ye(n) = wix(n) (4.19)
wila 4+ wiq(n) (4.20)

= /pr €5(n) + z(n) (4.21)

where /py, is the real amplitude of the signal in the beamformer output, 6 is the output
signal phase, and z(n) = wiq(n) is the residual noise plus interference term. Note that we
can scale yi(n) in any convenient manner because multiplying the beamformer output by
any real scalar has no effect on the PSK demodulator output. That is, if f(-) denotes the
demodulation function for a PSK signal,

fley(n)) = f(y(n)) V real c (4.22)

This would not be the case for, e.g., a QAM demodulator. Since we limit our analysis to
PSK signals, we assume in the remainder that the beamformer output has been normalized
so that z(n) has unit variance. This can be written as

o2 =wlR,w=1 (4.23)

Thus the beamformer output SINR is simply py, .

The next step in the LSDDA is to demodulate yi(n). Clearly demodulation is a non-linear
operation. In general, when a signal plus additive noise is passed through a non-linearity,
the output will contain the signal, the noise, and intermodulation products of the signal
and noise. The demodulator output may therefore be partially correlated with the signal
and partially correlated with the interference. The non-linear operation may also create
components that are correlated with neither the signal nor the interference. Thus we allow a
model for di(n) that may contain three components: (1) one component which is correlated
with the desired signal; (2) one component which is correlated with the interference; and (3),
one component which is correlated with neither the signal nor the interference. We model
the demodulator output as

d(n) = as(n) + Bz(n) + £(n) (4.24)

where the scalars a and ( are the complex amplitude of the signal and residual noise and
interference components in the demodulator output, respectively, and £(n) contains those
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terms that are uncorrelated with both s(n) and z(n). In the model (4.24), the term £(n) is
by definition uncorrelated with both the signal and the interference. In order to find « and
B3, we calculate the cross-correlation of s(n) and z(n), respectively, with d(n). Note that

Ry 2 &{s(n)d*(n)} (4.25)
E{s(n) (as(n) + Bz(n) +£(n))" } (4.26)
— (4.27)
Similarly we have
R.q 2 E{ 2(n)d*(n) } = B* (4.28)

The SINR p in the demodulator output dj, is

o’ Rl

187 R’

p (di) (4.29)

since we model s(n) and z(n) as having unit variance.

We now seek to relate the SINR of dj to the output SINR of the updated LSDDA weight
vector wi, 1. Let us initially assume that no background noise is present, and that the
number of received signals is less than the number of antennas. In this case the beamformer
has sufficient degrees of freedom to place any desired gain on the interference, independent
of the gain on the signal. The interference can be completely removed by the beamformer,
and the optimal beamformer output SINR is infinite. As the block size N — oo, the updated
weight vector wy,; minimizes the MSE between yx,1(n) and dg(n),

1 V=

A 55 3 fy(n) - di(n)” = &{ [yes1(n) — di(n)* } (4.30)

We can express the updated beamformer output as
Y1 (n) = wilyx(n) = o's(n) + 5'2(n) (4.31)
which, together with (3.12), allows the MSE to be written as
2 / / 2
E{lgra(n) —d(m)?} = (I —a)s(n)+ (8 = B)z(n) —Em)*}  (4.32)
= |o' —af ol + |6~ B’ o2 (4.33)

where we have made use of the fact that s(n), z(n), and £(n) are mutually uncorrelated.
Clearly the MSE is minimized for o/ = «a, ' = . This implies that the signal component in
the updated beamformer output will match the magnitude and phase of the signal component
in the demodulator output. This also implies that the MSE between dj(n) and the updated
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beamformer output yx.;(n) is minimized when the SIR of yx,1(n) is equal to the SIR of
di(n) (4.29). Thus, the output SIR of the updated LSDDA weight vector can be determined
from Rs; and R.4. This in turn requires that the probability density function (pdf) of the
signal and the interference be known.

When background noise is present, the interference and noise cannot be completely removed
by beamforming. Independent thermal noise generated by each of the M receivers required
for the M antennas in the array is a common source of background noise. The relationship
between the SINR in dj(n) and the updated LSDDA output SINR is then more complicated.
We show in [7] that the output SINR of the updated LSDDA weight vector is

b(E) 1) w31)

o () + 200 (53 +1

Pk+1 =

where )
‘aHWk ‘

wWHR W,
is the initial beamformer output SINR and wy is the initial weight vector. The optimal
output SINR #~ is given by

v 2 aHR;qla (4.36)

The noise and interference matrix Ry, has full rank, since the optimal output SINR would
otherwise be infinite. Finally,
A laf?

B 18 |2 Pk
is the SINR gain provided by the demodulator.

G2

(4.37)

We argued earlier that the output SINR of the updated LSDDA beamformer is equal to the
SINR in dg(n) if no background noise is present. This can be verified by letting the optimal
output SINR v approach infinity in (4.34). It is straightforward to show that

Jim piyy = G¥pp = (4.38)
which supports the argument made earlier. We would also expect that as the SINR, of d(n)
grows large, the output SINR of the updated weight vector will approach the optimal output
SINR. This can be verified by letting G as defined in (4.37) approach infinity in (4.34). This
yields

Jim i =1 (4.39)

as expected.
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In the material to follow we determine the SINR gain G? provided by demodulating a BPSK,
QPSK, and M-ary PSK signal received in Gaussian noise and interference. We also find the
SINR gain and the output phase when the carrier phase is not known at the receiver.

4.4 LSDDA Analysis by Swindlehurst et al.

It is argued in [9] that the LSDDA will converge in one iteration as N — oo. Since we draw
a distinctly different conclusion, it is important to review the analysis of [9] and identify
the key differences in these two approaches. To summarize, the analysis presented in [9]
implicitly assumes that any decision errors are uncorrelated with the noise. In contrast, we
implicitly assume that the decision errors are correlated with the noise.

To begin, we first demonstrate through simulation that the LSDDA may require more than
one iteration for convergence, even as the block size N — co. We re-examine the behavior
of the LSDDA in the environment corresponding to Figure 4.1. Recall that Figure 4.1 shows
the LSDDA output SINR versus the number of weight vector updates with the block size
N = 1024 QPSK symbols. Figure 4.2 shows the distribution of the LSDDA output SINR
after one update, with the block size varied from 8 symbols to 1024 symbols. These results
are based on 10,000 independent trials. The figure shows that the LSDDA output SINR
after one update asymptotically approaches 1.57 dB, which is much less than the optimal
output SINR of 12.0 dB.

Let us now review the approach used in [9]. The output of the demodulator is modeled as
d(n) = s(n) +e(n) (4.40)

where s(n) is an M-ary PSK signal and e(n) is the error signal. When a correct decision is
made, d(n) = s(n), and e(n) = 0. It is then noted that, “When an error occurs, with high
probability it will be because the symbol was associated with an immediately adjacent point
on the signal constellation”, in which case

d(n) = eX12"/Mg(p) (4.41)
Thus, when an error occurs, the error signal can be written as
e(n) = (7™M — 1) 5(n) (4.42)

Continuing to follow [9], if we let b denote the probability of a symbol error, and assume
that each of the two most likely demodulation errors is equally likely, we have

e(n) = A(n)s(n) (4.43)
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Figure 4.2: Empirical distribution of the LSDDA output SINR versus block size. The envi-
ronment contains a QPSK desired signal with Gaussian interference. The asymptotic output
SINR predicted by analysis is -1.94 dB.
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where
0 with probability 1—10
A(n) ={ (e*?”M —1) with probability ~ b/2 (4.44)
e 27/M _ 1) with probability ~— b/2

In order for the updated weight vector wy,; to converge to the optimal solution as N — oo,
we must have

]\}l_rg(l)o R,;=ca (4.45)
where a is the spatial signature of the desired signal and ¢ can be any non-zero scalar. We

have, using the expression (4.43),

R — E{x(n)d"(n)}
£{ (as(n) + q(n)) (s(n) + e(n))"}
£{ (as(n) + q(n)) (s"(n) + A" (n)s" (n)) }
= a+taf{A@m)} +E{am)A(n)s"(n)

where we have assumed that s(n)s*(n) = 1, and that the signal s(n) and the interference g(n)
are uncorrelated. The term involving £{ A(n) } is not of interest, since this is proportional
to a. The term of critical interest is

E{a(n)A*(n)s*(n) } (4.50)

A

If this term is equal to zero, then limy_.., R.q = ca. If this term is non-zero, the noise
and interference contributes to R.4, and more than one update will be required even for
N — oo. It is argued in [9] that, “ while q(n) may be correlated with A(n), the signal s(n)
is uncorrelated with both A(n) and q(n)”, hence (4.50) will be zero. However, by definition
(4.44),

Aln) = &M (4.51)

This leads to

E{am)A ()5 (n)} = s{qm)e*(")s*(n)} (452)
— Eam)e )} (453)

This shows that assuming that (4.50) is equal to zero is equivalent to assuming that the
error signal e(n) is uncorrelated with the noise q(n). The analysis framework presented here
in Section 4.3 does not explicitly define an error sequence. However, we will show that we
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implicitly assume that the error signal e(n) is correlated with the noise q(n). Using our
model (3.12) for d(n), we have

e(n) = d(n)—s(n) (4.54)
= (a—1)s(n) + pw"q(n) +&(n) (4.55)

and

Elam)e’(n)} = £{am) ((a" - 1)s*(n) - p'a (m)w+¢&*(n)) } (4.56)
= ﬁ*quW (457)
# 0 (4.58)

4.5 PSK Signal with Gaussian Interference

In this section we examine the behavior of the LSDDA when the desired signal is PSK and
the interference is Gaussian. Results are also presented for the LSCMA for comparison.
BPSK, QPSK, and general M-ary PSK are considered. Clearly it is unlikely that a single
Gaussian interferer will be encountered in practice, except perhaps in an anit-jam application.
However, the performance of the LSDDA is not determined by the distribution of each
individual interferer, but by the distribution of the sum of all interferers plus the background
noise. The distribution of a sum of many co-channel interferers will tend asymptotically
towards a Gaussian distribution, even if each interferer has a constant modulus.

4.5.1 BPSK Signal

Before we address the behavior of the LSDDA with a BPSK signal, we note that the conjugate
SCORE algorithm [54, 55] is a much more effective algorithm for extracting a BPSK signal
with known carrier frequency. The conjugate SCORE algorithm exploits the conjugate
cyclostationarity of the BPSK signal exhibited at twice the carrier frequency. This property
is manifested when a BPSK signal is squared, causing a spectral line to be regenerated at
twice the carrier frequencny. The SCORE algorithm is guaranteed to converge to the optimal
solution, except for finite data effects. Given that SCORE is the perferred algorithm, it may
be questioned whether the analysis of LSDDA for a BPSK signal is even necessary. One
motivation for this analysis is that general insight into the LSDDA are obtained. Another
motivation is that the analysis of BPSK must be included for completeness and to compare
to results obtained for QPSK and general M-ary PSK.
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We now examine the behavior of the LSDDA with a BPSK signal and Gaussian interference.
Before the algorithm has converged, the beamformer output will contain both the desired
signal and the interference. Thus the beamformer output is proportional to

y(n) = /o s(n) + 2(n). (4.59)

The BPSK desired signal s(n) takes on the values +1 and —1 with equal probability. We
assume initially that the signal carrier phase is known to the receiver, so that /py is real.
The interferer z(n) is complex, circularly symmetric Gaussian with variance equal to unity.
Thus the real and imaginary parts of z(n) are independent, Gaussian distributed random
variables with each having variance equal to 1/2. The hard decisions d(n) are given by

d(n) = sign(y, ) = sign( /px, s(n) + z.(n)) (4.60)

where vy, is the real component of y and z, is the real component of z. We show in Appendix C
that the cross correlation R, of the BPSK signal s with the demodulator output d is

Ryq = erf(\/pi ). (4.61)

Appendix C also shows that the cross correlation R.; of the Gaussian noise z with the

demodulator output d is
1

R.g=—=e "*. 4.62
d \/7_'('6 ( )
Using (4.29) together with (4.61) and (4.62), the SINR of the hard decisions dy(n) is

R

R
If the SINR at the demodulator output is higher than the SINR at the demodulator input,
the LSDDA beamformer output SINR will improve with each iteration, and the LSDDA will
converge. Thus we are interested in the SINR gain (4.37) provided by BPSK demodulation,

= e (erf(\/pr))”. (4.63)

which is
G2 (4.64)
= —e2 (erf (Vpr))?. (4.65)

The SINR gain (4.65) grows large as the initial SINR p; increases, since erf(\/pr ) — 1 as
/pr. grows large. This makes sense since the probability of symbol error approaches zero as

/pr grows large. For small ,/py ,

Reg = exf(\/or) ~ 2/ 2. (4.66)

™
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We also have that R.4 ~ # Therefore the SINR gain for a low SINR BPSK signal is

SINRyoim |~ 4. (4.67)
gk1

This indicates that, even for very low initial SINR, each LSDDA update will increase the out-
put SINR by least 6 dB when the desired signal is BPSK. (This assumes that no background
noise is present. When background noise is present, the beamformer output SINR can never
exceed the optimal SINR, and the 6 dB improvement per update may not be possible). This
is a direct consequence of the fact that the Gaussian noise is complex while the desired
BPSK signal is real. That is, if the above derivation is repeated under the assumption that
the noise and interference is real with unit variance, the BPSK SINR gain approaches unity
as the initial SINR grows small. We note that modeling the noise as complex rather than
real is more appropriate. It is difficult to imagine a scenario where all noise and interference
would be in-phase with the desired BPSK signal.

We must emphasize that this 6 dB minimum gain per iteration with a BPSK signal was
derived under the assumption that the carrier phase is known to the receiver. If the carrier
phase is not known, the LSDDA can behave very differently, as discussed in Subsection 4.6.

The SINR gain function for BPSK (4.65) is shown in Figure 4.3 as a function of input
SINR. The gain at low SINR approaches 6 dB as pr — 0, as predicted by the low SINR
approximation given above. Furthermore the SINR gain increases very rapidly as the input
SINR increases, as would be expected. The figure also includes results from Monte Carlo
simulation. The simulation generates a noisy set of BPSK symbols, demodulates the sym-
bols according to (4.60), and calculates the cross-correlation of the BPSK symbols and the
Gaussian noise with the demodulator output. A simplified block diagram of the simulation
is shown in Figure 4.4. The simulation results are based on 1000 independent trials and
a sample size of N = 1024 symbols. Figure 4.3 shows very good agreement between the
theoretical and measured SINR gain provided by the demodulator.

We now show that the BPSK SINR gain (4.65), along with (4.34), can be used to predict the
output SINR of the LSDDA. We consider an environment similar to the QPSK environment
corresponding to Figure 4.1 and Figure 4.2. The only difference is that the QPSK signal is
replaced with a BPSK signal. The theoretical output SINR at each iteration k is found by
the following procedure. Given the initial output SINR py,

1. Calculate the BPSK SINR gain (4.65), which is a function of py;
2. Calculate the updated output SINR pg,1 (4.34);

3. Let k =k + 1 and return to Step #1.
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Figure 4.3: Improvement in output SIR achieved with one iteration of LSDDA with a PSK
desired signal and Gaussian interference. Solid lines denote gain predicted by analysis, ‘*’,‘0’,

and ‘x’ denote mean gain measured from simulation. Gain achieved with CMA shown for
comparison.
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Figure 4.4: Block diagram of the simulation used to support SINR gain calculations.

Figure 4.6 shows the predicted output SINR of the LSDDA versus the number of weight
vector updates. Results are shown for several different values of initial SINR py. Supporting
results from simulation are also included. The simulation results are based on N = 1024 bits
and 1000 independent trials. The agreement between the theoretical asymptotic output SINR
and the mean output SINR from simulation is very good for this block size. An important
simulation issue is the method used to calculate an initial weight vector wq that achieves a
desired output SINR py. There can be an infinite number of weight vectors that achieve a
certain sub-optimal output SINR. The method used here is described in Appendix B. Some
examples of the corresponding initial beampatterns are shown in Figure 4.5, which includes
the optimal beampattern for comparison.

Figure 4.6 shows the mean output SINR of the LSDDA. The variance and distribution of the
LSDDA output SINR is also of interest. Calculation of these parameters is beyond the scope
of this dissertation. However, simulation results are presented in Figure 4.7 that illustrate
the distribution of the output SINR as the LSDDA converges in the BPSK environment.
This figure shows the empirical 90% confidence interval for the output SINR whose mean is
shown in Figure 4.6. A true confidence interval would be based on theoretical considerations,
so that the empirical nature of these results must be emphasized. The LSDDA is initialized
with the same weight vector over all 1000 interations, so there is no variance in the initial
output SINR. One trend that is evident in Figure 4.6 is that the output SINR variance
increases as the initial SINR decreases. Also note that the variance decreases as the LSDDA
nears convergence. The variance at convergence would be expected to be very close to the
variance achieved with a known training sequence. We would also expect the variance to
decrease with increasing block size, as demonstrated in Figure 4.2 for the QPSK environment.
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Figure 4.5: Beampatterns used to obtain certain initial output SINR.
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Figure 4.6: Theoretical output SINR of the LSDDA beamformer versus the number of iter-
ations. The signal is BPSK and the background noise and interference is Gaussian. Solid
lines show theoretically predicted output SINR, ‘*’ show results from simulation.
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Figure 4.7: Output SINR of the LSDDA with a BPSK signal. The shaded regions show
where 90% of the 1000 trials fell.
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4.5.2 (QPSK Signal

We now consider the case where the signal is QPSK and the interference is Gaussian. The
QPSK signal is modeled by
s — ed(km/24m/4) (4.68)

where k is an integer random variable taking on the values 0, 1, 2, or 3 with equal probability.
With the QPSK signal defined as above, the hard decisions d(n) are given by

d = sign(y,) + 7 sign(y;) (4.69)

where y, and y; are the real and imaginary parts, respectively, of the beamformer output y.
We show in Appendix D that the cross correlation Ry, of the desired signal and the hard

Rog = V2 erf (W ) . (4.70)

It is also shown that the cross correlation R.4 of the Gaussian noise and the hard decisions

decisions is

1S
\/_

The demodulator output SINR when the input is a QPSK signal plus Gaussian noise is
obtained by substituting (4.70) and (4.71) into (4.29). This yields

R? T 2
R—Z = Eep’“ (erf ( Pk /2)) (4.72)
The SINR gain for QPSK demodulation is

G? = %e"’“ (erf( Pk /2))2 (4.73)

Figure 4.3 shows the QPSK SINR gain (4.73), along with supporting results from Monte
Carlo simulation. The simulation results are obtained using the same method used to support
the BPSK SINR gain calculations. Clearly the QPSK SINR gain becomes large as the
input SINR increases, as would be expected. However, the QPSK gain is much lower than
the BPQK gain, especially at low SINR. For small p; , the QPSK output SIR gain is
approximately

2
s Pk 2
SIR gqin 2 < 5 ﬁ) (4.74)
~ 1. (4.75)

gkl

Because the SINR gain for QPSK is very small for low input SINR, the LSDDA is susceptible
to noise capture when extracting a QPSK signal. The noise capture properties of CMA have



Thomas E. Biedka Chapter 4. Decision Directed - Gaussian 135

been examined by several authors [80, 39]. It has been shown that noise capture corresponds
to a saddlepoint in the CMA cost function. Noise capture can be viewed from the following
perspective. Assume that the initial LSDDA weight vector nulls the incident signal so that
the output is dominated by Gaussian noise. The SINR gain will be very small in such a
case. A single LSDDA update causes very little change to the beamformer weight vector.
Therefore the LSDDA may stay in this noise capture state indefinitely. By contrast, since
the SINR gain for BPSK is always greater than 6 dB, noise capture is not possible with the
LSDDA when applied to BPSK. As an aside, a noise capture weight vector lies in the signal
nullspace of the observed data covariance matrix. Therefore in order to avoid noise capture
it makes sense to use an initial weight vector which lies in the signal subspace, as proposed
in [67].

Given that the QPSK gain is lower than the BPSK gain, but higher than the hard-limit gain,
we would expect the LSDDA with a QPSK signal to converge more quickly than the LSCMA,
but not as quickly as the LSDDA with a BPSK signal. Figure 4.8 verifies this anticipated
result. Figure 4.8 shows the theoretical output SINR versus the number of LSDDA iterations
for the QPSK environment. Results are shown for several different initial SINRs. The mean
output SINR measured in simulation is very close to the asymptotic output SINR predicted
by theory. The output SINR distribution observed in simulations is shown in Figure 4.9.

4.5.3 M-ary PSK

We now consider the case where the desired signal is M-ary PSK. The desired signal is
modeled as

s = eJ2mk/M (4.76)

where k is an integer random variable taking on the values 0 < k < M — 1 with equal
probability and M is the number of symbols. Consider the case where the transmitted
signal phase is equal to zero, so that s = 1. The demodulator input is then equal to

y(n) = Voi + 2 (n) + jz(n) (4.77)

where ,/pr is the signal amplitude. The cross-correlation of s with the hard decisions is
given by

Efsd |s=1}= [ F(6)pl0) do (4.78)

where f(¢) is the PSK demodulation function expressed as a function of the received signal
phase. We show in Appendix E that pys(¢), the pdf of the phase of y, is given by

Po(9) = / re~(P=2VPRTCosotpr) gy (4.79)
0
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Figure 4.8: Theoretical output SINR of the LSDDA beamformer as a function of number
of iterations. The desired signal is QPSK and the background noise and interference is
Gaussian. Results are shown for several different values of initial output SINR.
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Figure 4.9: Output SINR of the LSDDA with a QPSK signal. The shaded regions show
where 90% of the 1000 trials fell.
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The PSK demodulation function can be defined as
2k — 2rk + 7

— pli2mk/M h 4.
f(o)=e where 7 <P < 7 (4.80)
Thus
elsd [s=1}= 3 e [ ) ag (4.81)
s s=1}= e 7 .
k=0 (2nk—m) /M ¢

Since each symbol is equally likely, the cross-correlation Rg; is equal to the conditional
cross-correlation given by (4.81).

We now consider the cross-correlation of z with the hard decisions d. Again consider the case
where s = 1. We first describe the hard decisions as a function of the Gaussian interference
z. We operate in polar coordinates and use z = me’® where m is the magnitude of z and @
is the angle of z. The angle of the demodulator input is

1 Yi 1 msin 6
Ly =tan~' = =t . 4.82
y=tat Y o mcos 0 + /pr (4:82)
The demodulation function is then given by
: 21k — 2rk
g (m,0,/pr) = ™M where T y < WM+ T (4.83)

and k is an integer. The conditional cross-correlation can then be expressed as
E{zd" |s=1} = / / me’ g* (m, 0, \/pr ) po(0) pm(m) dO dm (4.84)
= —/ {/ (m,0,\/pr ) me ™ dm} e/’ do (4.85)

Since each symbol is equally likely, the cross-correlation R.; is equal to the conditional
cross-correlation given by (4.85).

The SINR gain provided by 8-ary PSK demodulation (4.37) can be determined using nu-
merical integration to evaluate (4.81) and (4.85). Results for 8-PSK are shown in Figure 4.3.
Supporting results from Monte Carlo simulation are also shown. The simulation results and
the analytic results predicted by (4.81) and (4.85) agree very well. The simulation approach
is identical to that used for BPSK and QPSK signals, except that the desired signal is 8-ary
PSK. Note that the SINR gain for 8-ary PSK falls between the gain for QPSK and the gain
for hard-limiting. This is the expected result. As the number of symbols M in the PSK
constellation increases, the process of M-ary demodulation becomes more similar to hard-
limiting. The SINR gain for 8-ary PSK is within 1 dB of the SINR gain for hard-limiting up
~ 7 dB input SINR.



Thomas E. Biedka Chapter 4. Decision Directed - Gaussian 139

We expect the behavior of the LSDDA with an 8-ary PSK signal in Gaussian interference
to be predictable in the same manner as previously shown for BPSK and QPSK signals.
for brevity, full simulation results of the LSDDA with an 8-ary PSK signal are not included
here.

4.5.4 Comparison with CMA

In this section we compare the performance of the LSDDA beamformer with the LSCMA
beamformer. The convergence of the LSCMA has been examined in [63, 7]. As noted
previously, the LSCMA and the LSDDA are very similar. The only difference is that LSCMA
uses a hard-limit non-linearity, while LSDDA uses a demodulator.

The hard-limited beamformer output ci(n) was defined in (4.18). The cross-correlation R,
of a constant modulus desired signal s(n) with ¢(n) can be shown to be [63, 7]

1 o A 2
R, — = / / v/ Pk M Cos dA me™ dm (4.86)
o Jox \/pk + m? + 2m./pr_cos A

It can also be shown that the cross-correlation R,. of the Gaussian interference z(n) with
the hard-limited beamformer output ¢(n) is

0o P / A 2 5
R..= ! / / prmcoso tm dAme ™™ dm (4.87)
0 Jom \/ Pk

oo + m? + 2m,/pr cos A

Both (4.86) and (4.87) are evaluated by numerical integration and used to predict the SINR
gain shown in Figure 4.3. One important feature of the LSCMA is that the output SIR gain
tends asymptotically to 6 dB as the input SIR becomes high.

From the figure we can see that the LSDDA always yields higher output SIR than the
LSCMA. This is intuitive since the LSDDA exploits more information than the LSCMA.
However, for QPSK and higher order PSK there is very little difference between the LSDDA
and the LSCMA for low initial SINR. The expected difference in SINR gain is shown explicitly
in Table 4.1. This is a significant result, since it shows analytically that there is little to be
gained by using a decision directed algorithm over CMA at low SINR, even when the carrier
frequency and phase are known perfectly. In practice, the carrier frequency and phase will
not be known. This provides some justification for the common practice of using CMA to
bootstrap a decision directed algorithm. In particular, CMA can be used to raise the output
SINR to a point where the carrier frequency and symbol timing can be estimated accurately.

We will now present a direct comparison of the number of iterations required for convergence
of LSDDA and LSCMA. The number of LSDDA iterations required for convergence is clearly
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SIR;, | AG? (dB)
QPSK | 8-PSK
6dB| 0.2 0.0
-3dB| 0.5 0.0
0dB | 1.1 0.0
3dB | 29 0.0
6dB | 8.2 0.5
9dB | 22.0 2.6

Table 4.1: Difference in the SINR gain achived with hard-limiting (CMA) versus QPSK
demodulation and 8-ary PSK demodulation.

dependent on the modulation format and the initial SINR po. A plot that directly shows
the number of LSDDA iterations required for convergence as a function of initial SINR is
presented in Figure 4.10. The LSDDA was deemed to have converged when the output
SINR was within 1 dB of the optimal. This convergence criterion is somewhat arbitrary,
but this provides a simple way to determine relative convergence rates. The figure shows
that, with a BPSK signal, the LSDDA will converge in one iteration if the initial SINR is
greater than ~ 1.94 dB. It should be emphasized that this 1.94 dB threshold is dependent
on the optimal output SINR. Figure 4.10 also includes supporting results from simulation.
The simulation results are based on 1000 trials with 1024 symbols, and are presented as
the mean number of iterations required. For example, if 100 trials converge in 2 iterations,
while 900 trials converge in 3 iterations, the mean number of iterations for convergence is
(2 % 100 4+ 3 * 900)/1000 = 2.9. This figure also includes results for LSDDA with a QPSK
signal and LSCMA. In this environment, the LSDDA with a QPSK signal will converge in
one iteration if the initial SINR is greater than 5.57 dB. In contrast, the LSCMA requires
that the initial SINR be greater than 9 dB in order to converge in one iteration.
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4.6 Behavior with Carrier Phase Offset

To this point we have assumed that the carrier frequency and carrier phase are known.
We now investigate the effect of carrier phase offset on the performance of the LSDDA.
The discussion here is limited to BPSK and QPSK desired signals, although the general
conclusions will be valid for higher order PSK as well.

When the signal phase is known to the receiver, we have shown that R, is real, so that the
phase of the signal in the beamformer output is not preserved. In this case the output SINR
at iteration k + 1 is only dependent on the SINR at iteration k. When the carrier phase
is not known to the receiver, or when there is carrier phase offset, R,; will in general be
complex. Thus the output SINR at iteration k£ + 1 is dependent on the SINR at iteration k
and the phase of R,4. Furthermore the output phase at iteration k + 1 will be dependent on
pr and and the output phase at iteration k.

4.6.1 BPSK

We first consider the effect of carrier phase offset on the LSDDA when the desired signal is
BPSK. We model the beamformer output signal as

y(n) = /pr,_s(n) e’ + z(n) (4.88)

where the BPSK signal s takes on the values +1 and —1 with equal probability and € is the
carrier phase offset. Since the demodulator operates only on the real part of the beamformer
output, the effect of carrier phase offset is equivalent to scaling the signal amplitude by cos 6.
Thus we can write an expression for the output SINR gain for BPSK by simply substituting
V/Pr cosB for \/pr in (4.65). This yields

G? = pl ¢ 20k 05”0 (erf(y/pr cosf))” (4.89)

k

Note that we have defined SINR here as the SINR measured at the antenna, not as the SINR
into the demodulator. The SINR gain (4.89) as a function of carrier phase offset 6 is shown
in Figure 4.11, along with supporting results from Monte Carlo simulation. Note that the
SINR gain for BPSK demodulation with carrier phase offset is not bounded from below by
6 dB, as was the case when the carrier phase was known. However, this does not necessarily
imply that LSDDA is susceptible to noise capture in this environment. Since R4 is real,
the phase of the signal component in the beamformer output will have zero offset. That is,
we expect the LSDDA with a BPSK signal to perfectly correct for any carrier phase offset,
unless the initial phase offset is +7/2, in which case there is no signal present in the the
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Figure 4.11: Output SINR gain for a BPSK signal in Gaussian interference with carrier
phase offset. Solid lines denote gain predicted by analysis, ‘*’ denotes mean gain measured
from simulation. Results are for an input SINR of 0 dB.

demodulator input. Even in this case, however, random fluctuations due to finite block size
may cause a small fraction of the signal to appear in the output. One a small component
of the signal appears in the beamformer output, the output phase will be correct. We have
shown that the LSDDA with a BPSK signal will converge even for very low initial SINR.
Thus the LSDDA with a BPSK signal might be expected to converge so long as the initial
phase (into the demodulator) is not exactly equal to +7/2.

To show that we have correctly anticipated the behavior of the LSDDA, we examine a
situation where the phase is such that the SINR gain is less than unity. Let the initial weight
vector be wop =[100 O]T, which gives an initial output SINR of -0.67 dB in the simulation
environment. After one update, we expect the output SINR to be -3.10 dB, with the output
phase equal to zero. That is, the output SINR initially decreases, but the output phase
should be correct. After this first update the LSDDA should behave as described earlier for
a BPSK signal with known carrier phase. Figure 4.12 shows the expected output SINR of
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Figure 4.12: Comparison of expected and observed behavior of the LSDDA with a BPSK
signal having initial output phase equal to 70°. The ‘x’ denote results from simulation.

the LSDDA based on these arguments, along with supporting results from simulation. The
simulation results are again based on 1024 symbols and 1000 independent trials. The figure
shows that the LSDDA does in fact decrease the output SINR initially, but then converges
very rapidly.

A key conclusion is that the behavior of the LSDDA is indeed dependent on the initial phase
of the signal estimate. Therefore it is possible that the performance of the LSDDA can be
improved by the addition of a carrier phase estimator that is not decision directed. This
is investigated in the following material, and it is shown that a simple non-linear phase
estimator can dramatically improve LSDDA performance in some cases.

4.6.2 QPSK

We now consider the effect of carrier phase offset on the performance of LSDDA with a QPSK
signal. The QPSK signal is modeled as described previously in (4.68). The cross-correlation
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R4 may be written as

Ry = Zpsk(k)g{sd*|s:sk} (4.90)
_ %zg{sd*mzsk} (4.91)

Following the derivation presented in Appendix D it can be shown that

E{sd" | s=s,}=serf (Re{\//fsk eje}) — j sgerf (Im{\/ﬁsk eje}) (4.92)

where Re{-} and Im{-} denote real part and imaginary part, respectively. We have

Re{,/pk skeﬂ’} = /pr cos(km/2+7/4+6) (4.93)
Im{,/p;,C skeje} = /pr sin(kr/2 4+ 7w/4+ 0) (4.94)
The cross-correlation R.; may be written as
3
Ra = Y ps(k)E{zd"|s=s;} (4.95)
k=0
1 3
= —ZS{zd*|s:sk} (4.96)
45
Following the derivation presented in Appendix D it can be shown that
1 3
Ry=——= exp (—pr cos’¢) + exp (—pp sin (4.97)
L5 e (o) o (o sn0)
where
Y=Fkr/2+7/4+0. (4.98)

The QPSK SINR gain in the presence of carrier phase offset is shown in Figure 4.13. Sup-
porting results from Monte Carlo simulation are included. Results are shown for several
different values of initial SINR. As mentioned earlier, the SINR gain is not sufficient to de-
termine the behavior of the LSDDA with carrier phase offset — we must also consider the
phase of the updated beamformer output. The angle of the updated beamformer output
corresponding to the SINR gain curves shown in Figure 4.13 is shown in Figure 4.14.

Figure 4.15 shows that we can accurately predict LSDDA behavior with a QPSK signal and
phase offset. The environment and simulation parameters are identical to those considered
previously, except that the initial output phase is 30°. It is evident that carrier phase offset
can slow LSDDA convergence. This is shown more directly in Figure 4.16. This figure shows
the number of LSDDA iterations required for convergence in the same signal environment,
with the carrier phase offset varied from -45° to +45°. The initial SINR is o dB. Note that the
required number of interations increases dramatically as the initial carrier phase approaches
45°. A simple modification that can greatly improve LSDDA convergence is introduced next.
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Figure 4.13: Output SINR gain for a QPSK signal in Gaussian interference with carrier
phase offset. Solid lines denote gain predicted by analysis, ‘o’, ‘+’, and ‘*’ denote mean gain
measured from simulation. Results are parametric in input SINR.
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Figure 4.14: Output phase for a QPSK signal in Gaussian interference with carrier phase
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offset. Solid lines denote phase predicted by analysis, ‘o’ ‘+’, and ‘*’ denote mean gain

measured from simulation.
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Figure 4.15: Comparison of expected and observed behavior of the LSDDA with a QPSK
signal having initial output phase equal to 30°. The ‘x’ denote results from simulation.
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Figure 4.16: Number of iterations required for LSDDA convergence with a QPSK signal as
a function of initial carrier phase offset. The intial SINR is 0 dB. The solid line denotes the
theoretically predicted value, the ‘x’ shows results from simulation.
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4.6.3 Modified LSDDA with Carrier Phase Tracking

We have shown that the initial carrier phase offset can have an impact on the LSDDA
convergence rate. A simple remedy to this problem is to add a phase compensation step to
the algorithm. Before the signal is demodulated, the QPSK carrier phase is estimated by
raising the output to the 4th power and averaging. This removes the modulation from the
signal. This phase estimate is then removed from the beamformer output. The kth iteration
of the modified LSDDA for a QPSK signal is then

1. Form a beamformer output yx(n) = wix(n).

2. Estimate the phase offset 6 of the signal with
A N-1

0=, 3 yi(n) (4.99)
n=0

where / denotes the angle of the summation.

3. Remove the estimated phase offset from the beamformer output
Jk(n) = yi(n) exp (—30) (4.100)

4. Demodulate gx(n) to form dy(n)

A1
5. Solve for the updated weight vector w1 = R, T24

Figure 4.17 compares the output SINR of the existing and the modified versions of LSDDA.
The figure shows that the speed of convergence is nearly the same as when the carrier phase
is known. The effectiveness of this modified LSDDA in other environments, with smaller N,
etc., remains an open issue.
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Figure 4.17: Comparison of conventional LSDDA and LSDDA with a separate carrier phase
estimation step in the QPSK environment. The initial output phase is 45°. The shaded
areas define the region where 98% of the trials fell.
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4.7 Statistics for Finite Block Size

The main focus of this chapter is the mean behavior of the LSDDA. Hence we have not to
this point considered the effect of finite data block size. This is in general a difficult problem
to analyze, but some behavior can be readily identified.

To begin, we note that if no decision errors are made, the LSDDA will converge in one
iteration to the best solution possible from the given block of data. Some deviation from
the optimal solution will be unavoidable due to finite-data effects. A well-established rule
of thumb is that the block size must be greater than twice the number of antennas in order
for the mean output SINR to be within 3 dB of the optimal. The probability of making no
decision errors over a block of N received symbols is given by

(1—p)V (4.101)

where p is the probability of making a symbol decision error. For very small block sizes
there is a significant probability of selecting the correct symbols, even if the symbol error
probability p is fairly high. As the block size increases, the probability of making no decision
errors decreases rapidly unless p is very small.

Some insight into the behavior of the LSDDA and LSCMA for finite block size can be
obtained by examining the bias and variance of the cross-correlation vector R,4, which may
be viewed as an estimate of the SOI spatial signature a. A spatial signature estimate can
also be used directly in the following applications:

1. As a weight vector in a diversity combining system,;

2. As a beamformer weight vector, which can be especially effective in CDMA applica-
tions.

4.7.1 Estimators with Known Waveform

Before proceeding with the derivation of the mean and variance of blind spatial signature
estimators, we derive the mean and variance of estimators that exploit a known waveform.
The reason for progressing in this fashion is to allow us to compare the performance of blind
and known waveform-based parameter estimators. We would expect the performance of
the blind estimators to approach the performance of the known waveform estimators as the
SNR becomes large. First we examine the estimator of the (scalar) amplitude of a known
waveform in Gaussian noise. Next we derive the mean and variance of the spatial signature
estimator for a known waveform in unknown noise and interference. We expect the results for
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the vector parameter case to reduce to the results for the scalar case if the vector dimension
is set to one. We make several important assumptions about the signal and additive noise in
this work. First we assume that the signal is constant modulus, i.e., |s(n)| = 1¥n. This is a
simplifying assumption, but it is important to note that a wide class of common modulation
formats are constant modulus, including FM, FSK, and PSK. We also assume that the signal
and noise are uncorrelated. It is interesting that the mean and variance of these estimators
are not dependent on the distribution of the noise and interference as long as the waveform
is constant modulus. Of course, the values of o and § are dependent on the distribution of
the signal and the noise.

First consider the scalar case where the data is modeled as
z(n) = as(n) + z(n) (4.102)

where a is an unknown complex constant, s(n) is the known modulated signal, and z(n) is
complex Gaussian noise. The signal and the noise are assumed to be white and have unit
variance.

Define the estimate of a with a known waveform as

1 N-1
a= N 2 z(n)s*(n) (4.103)

Clearly this is an unbiased estimator since
E{a}=a (4.104)

The covariance of this estimator is

fanry = ] 3z (X (st + 20005 @)) (32 s+ = (st ) 105

= % Zo 2_05{ (as(n) + z(n))s*(n)(as™(m) + z*(m))s(m) } (4.106)

This expression can be evaluated by examining the terms where n # m and the terms where
n = m separately. For n # m, we have

E{ (as(n) + z(n))s*(n)(as*(m) + z*(m))s(m) (4.107)
= &{(as(n) + z(n))s*(n) } E{ (as*(m) + z*(m))s(m) } (4.108)
— 42 (4.109)

For n = m, we have
E{ (as(n) + z(n))s*(n)(as*(m) + z*(m))s(m) } (4.110)
= &{(as(n) + z(n))(as*(n) + z*(n)) } (4.111)
= a*+1 (4.112)
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where we have made use of the fact that s(n)s*(n) = 1. We note that there are N(N — 1)
terms with n # m, and N terms with n = m. This yields

cova = N]\_fla2+%(a2+1) (4.113)
1
= + ¥ (4.114)
We are also interested in the variance, given by
vara 2 &{aa*} —|E{a}|? (4.115)
1
- ¥ (4.116)

We now derive the mean and variance of a spatial signature estimator with known waveform.
The array data is modeled as

x(n) = as(n) + q(n) (4.117)
where s(n) is the constant modulus signal, a is the spatial signature of the signal s(n),
and g(n) is the M x 1 vector of noise and interference. The power of the received signal

is incorporated in the spatial signature. The background noise and interference covariance
matrix is therefore assumed to satisfy

trace {Ry} = S{ a(n)q™(n) } =M (4.118)

The spatial signature estimate is given by

RS )
as > x(n)s*(n) (4.119)

=0

S

The mean value is
E{a} =&{x(n)s*(n)} =a (4.120)
As expected, the estimator is unbiased. The covariance is
H 1 N-1N-1
e{aa} = = 3 3 { (as(n) +a(m) s*(n) (as"(m) + " (m)) s(m) |} (4.121)

nOmO

For n = m, and asssuming that s(n)s*(n) = 1, we have

£{ (as(n) +q(n)) (a”s*(n) + q"(n)) } = aa + Ry, (4.122)

For n # m,

£{(as(n) + a(n)) s"(n) } { (a"s"(m) + q"(m)) s(m) | = aa’ (4.123)
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This yields

g{aa" | = aa' + %qu (4.124)

Note that if the dimension of a is set to one, the results for the vector parameter case reduce
to the results for the scalar parameter case. The variance of the known waveform spatial
signature estimator is then

e{aa} —e{ayefa”} = %qu (4.125)

The total variance of each element in the estimated spatial signature is

trace {Ry,} (4.126)

=~

glaa} —efa le{a} =

==

(4.127)

4.7.2 Blind Estimators

We now turn our attention to deriving the mean and variance of blind parameter estimators
for both scalar and vector parameters. First consider the scalar case where the data is
modeled as described by (4.102). We are interested in the mean and variance of a blind
estimate of a, which is given by

N )
Q= 7;) z(n) d*(n) (4.128)

where d(n) is obtained by either a constant modulus mapping of the data or by demodu-
lating the data. In either case, d(n) is some nonlinear function of the data. As previously
established , we can model the demodulator output signal as

d(n) = as(n) + Bz(n) + v(n) (4.129)

In general, a and § will be complex. Since the signal and noise are uncorrelated and have
unit variance, the mean value of a is

E{a} = &{z(n)d*(n)} (4.130)
= a'a+ " (4.131)
This clearly shows that the estimator is biased. However, this bias may be small if the SNR is

high. For example, for a finite alphabet mapping, o — 1 and # — 0 as the SNR grows high,
i.e., as the probability of symbol decision error grows small. In practice the absolute bias is
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not very revealing. The bias relative to the parameter being estimated is more revealing. For
example, an absolute bias of 1 is large if a = 1, but is relatively small if a = 100. Therefore
we are interested in the relative bias defined as

Ela}—a a*a+p"—a

- (4.132)
The covariance is found as follows:
cova = E£{aa*} (4.133)
= 5{ % (Zo( s(n) + z(n > <Zo as” (m))d(m)> } (4.134)
_ ]\172 Zo Zog{ as(n) + z(n))d"*(n)(as™(m) + z*(m))d(m) } (4.135)
We assume that s(n) and z(n) are white and uncorrelated with each other. For n # m, we
have
E{ (as(n) + z(n))d*(n)(a*s*(m) + z*(m))d(m) } (4.136)
= &{(as(n) + z(n))d"(n) } €{ (as"(m) + z"(m))d(m) } (4.137)
= la*a+ 87 (4.138)

For n = m, we have
E{ (as(n) + z(n))d*(n)(a*s*(m) + z*(m))d(m) } (4.139
= &{(as(n) + z(n))(a*s*(n) + z*(n)) } (4.140
la|* +1 (4.141

where we have made use of the fact that d(n)d*(n) = 1. We note that there are N(N — 1
terms with n # m, and N terms with n = m. This yields

cov i = Lara+ g2+ = (|a| +1) (4.142)
The variance is given by
vara 2 5{M*} E{a})? (4.143)
N
= |a + 8+ = (ya| +1) — |a*a + 87" (4.144)
= N(|a| +1>—N|a*a+ﬂ*| (4.145)

Several features of the variance bear further discussion. First we note that the variance
of the blind estimate approaches the variance of the known waveform estimate as o — 1
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and 8 — 0. A somewhat surprising result is that the wvariance is not dependent on the
intermodulation term y(n).

Now consider the case where a spatial signature is to be estimated. The blind spatial
signature estimate is

N )
a= ngo x(n)d"(n) (4.146)

where d(n) is, in general, derived as a non-linear function of a linear combination of the
array data. In particular,

d(n) = f(y(n)) (4.147)
= f(w"x(n)) (4.148)

where w are the linear combiner (i.e., beamformer) weights. We are free to scale the weights
or d(n) in any convenient manner, since the only effect will be to multiply the estimated
spatial signature by a simple scalar. Therefore we choose to scale w so that the scalar time
series w q(n) is unit power,

wRyw =1 (4.149)

This allows us to write a model for d(n) as
din) = f (WHas(n) + WHq(n)) (4.150)
= as(n) + pwq(n) +v(n) (4.151)

The mean of the blind spatial signature estimate is then

g{a} = &{x(n)d*(n)} (4.152)
= &{(as(n) +a(n)) (o"s"(n) + 5"a" ()w) | (4.153)
= o*fa+ 5*5{ q(n)q” } w (4.154)
= a’a+ [ Ryw (4.155)

Clearly the blind estimator is biased. The bias is dependent on the relative power of the
signal component and noise component in d(n), since & — a as § — 0. The bias is also
dependent on the spatial distribution of the noise and interference, and the weight vector
used to derive d(n). It is instructive to examine the mean of a when the optimal weight

vector
Wopt = R a (4.156)
is used to derive d(n). In this case we obtain
E{a} = a’a+ " RyWop (4.157)
a*a+ 3 RyR;a (4.158)

= (a"+f)a (4.159)
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so that the estimated spatial signature differs only by a simple scale factor.

The covariance of the blind estimator is

1N1N1

e{aa”} = 55 X X &{ (as(w) + a) &' (w) (a"s"(m) + a”"(m)) d(m) | (4.160)

We again treat the cases n # m and n = m separately. For n # m,

&{ (as(n) + a(n)) d*(n) (as"(m) + q" (m)) d(m) } (4.161)
= &{(as(n) +aq(n))d*(n) } €] (a”s*(m) + " (m)) d(m) } (4.162)
= (a"a+ BRgw) (0a” + W R,,) (4.163)
For n =m,

&{ (as(n) + a(n)) d(n) (as*(m) + " (m)) d(m) } (4.164)
= &{(as(n) +q(n)) (a”s"(m) + q"(m)) } (4.165)
= aa” + R, (4.166)

Collecting the n = m and n # m terms, we obtain

~~H N-—1 H H 1 H

S{ aa } I (a"a+ " Ryqw) (aa + Bw qu) N (aa + qu) (4.167)

This expression reduces to the previously obtained result for scalar a if we set Ry, = 1 and
w = 1.

The variance of the blind spatial signature estimate is

S{ AAH} &{a }5{ } - % (aaH+qu) - % (a*a+ "Reqw) (O‘aHjLﬁWHfzqq) )
4.168

4.7.3 Simulation Results

To support these derivations we will examine the specific problem of estimating the unknown
amplitude of a QPSK signal with unknown message received in additive white complex
Gaussian noise. We assume that the QPSK signal is at complex baseband, i.e., the carrier
frequency is known, and we also assume that the carrier phase is known. The effect of carrier
phase offset is to modify the values of a and 3, so carrier phase offset can be accounted
for in a straightforward way. The QPSK signal is modeled as having been sampled baud
synchronously with zero ISI. Figure 4.18 shows the relative bias given by (4.132) along with
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Figure 4.18: Relative bias of a decision directed estimate of signal amplitude as a function of
SNR with a QPSK signal and Gaussian noise. Solid line denotes theoretical bias, ‘o’ denotes
bias measured from simulation.

results from Monte Carlo simulation. The simulation results are based on 10,000 independent
trials with NV = 1024 symbols. The agreement between theory and simulation is excellent.
Clearly the relative bias of the estimator is small for moderately high SNR. To examine the
overall performance of the blind estimator, we use the Root Mean Square Error (RMSE),
defined as

RMSE = /€{|a—a| | (4.169)

The RMSE is convenient since it includes both bias and variance. Figure 4.19 shows the
RMSE of the blind decision-directed estimate of the QPSK amplitude as a function of Signal
to Noise Ratio (SNR). The SNR is defined here as the ratio of signal variance to noise

variance.

We have now obtained the mean and variance of the estimator. The distribution is also
of interest. Direct calculation of the distribution of a from basic principles is certainly
possible. We take the simpler approach of assuming that, by the Central Limit Theorem,
the distribution of a will tend to Gaussian as N becomes large.

We have shown that the general analysis framework introduced in this document can be used
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Figure 4.19: RMSE of a decision directed estimate of signal amplitude as a function of SNR
with a QPSK signal and Gaussian noise. Solid lines denote theoretical RMSE, ‘o’ denote
RMSE measured from simulation. Results are parametric in number of symbols processed
N.
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Figure 4.20: Variance of a decision directed estimate of a QPSK signal spatial signature in
Gaussian noise. Solid lines denote theoretical variance, ‘o’ denote variance measured from
simulation. Results are parametric in number of symbols processed N.
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to determine the mean and variance of the cross-correlation vector R,4y. We have found that
the mean and variance of a blind spatial signature estimator based on CMA or DDA is not
dependent on the intermodulation terms. However, the intermodulation terms affect the
statistics of the weight vector, and the corresponding output SINR distribution. This has
implications for the design of new algorithms. Specifically, the selection of a non-linearity
that gives excellent SIR, but also generates strong intermodulation terms, may not give
better performance.

4.7.4 Finite Block Size Analysis of Non-Linear Least Squares

An exact analysis of the LSCMA and LSDDA for finite block size N should be possible,
at least in principal. One approach is to re-express the weight vector update as a set of
simultaneous linear equations. This yields

-1

w = R_ R (4.170)
ZO x(n)x"(n)w = ZO x(n)d*(n) (4.171)
__0 x(n)y*(n) — __0 x(n)d* (n) (4.172)
3= x(r) (y(m) ()" = 0 (4.173)
Z_O x(n)e*(n) = 0 (4.174)
where

e(n) 2 y(n)—d(n) (4.175)
= y(n) —as(n) — Bz(n) —v(n) (4.176)
= w'as(n) + wq(n) — as(n) — Bz(n) — y(n) (4.177)

This yields
= x(n) ((w"a — a)s(n) + (1 = H)waln) —9(m) " = 0 (417
(a"w — a) 2__:0 x(n)s*(n) + (1 — B) Z_O x(n)q (n)w — Z_o x(n)y*(n) = 0 (4.179)

Note that the intermodulation terms «y(n) do indeed have an effect on the statistics of the
weight vector, even though they do not affect the mean and variance of the cross-correlation
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vector R,4. This shows that while we can ignore the intermodulation terms when considering
the asymptotic algorithm performance, they cannot be ignored in a finite-time analysis.

4.8 Cost Function Analysis

As we noted earlier in Section 3.4, where the (1,2) CMA cost function was presented, it
is important to examine the properties of any blind cost function. We apply the same
methodology previously used to calculate the CMA cost function to the decision-directed
cost function.

We show in Appendix A that the decision-directed cost function has the general form

F(p,0) =2—

2 .
* 70 *
\/mReal {oz e’ \p+ B } (4.180)
where p is the beamformer output SINR and 6 is the phase at the demodulator input. Note
that a and ( are dependent on p and also on 6.

We begin by considering the simplest decision-directed cost function, that of a BPSK signal
with known carrier phase in Gaussian noise. By evaluating (4.180) with « given by (4.61)
and [ given by (4.62), we obtain the function shown in Figure 4.21. The resulting function
decreases monotonically with increasing SIR. Recall that we showed earlier that noise capture
is not possible with a BPSK signal.

We next consider a QPSK signal in Gaussian noise with known carrier phase. By evaluating
(4.180) with « given by (4.70) and [ given by (4.71), we obtain the function shown in
Figure 4.22. Recall that noise capture is possible with a QPSK signal. It can be seen that
the gradient tends to zero as the SIR grows small, which is consistent with susceptibility to
noise capture.

Finally we consider a more interesting situation, that of a QPSK signal with carrier phase
offset in Gaussian noise. The decision directed cost function is shown in Figure 4.23. Note
that the cost function does not necessarily decrease wth increasing SIR. In particular, if the
carrier offset is large, the cost function increases as the SIR increases. Clearly this is not
a desirable characteristic for a blind cost function. This would indicate that the LSDDA is
more susceptible to noise capture when the carrier phase is unknown. However, if the SIR
is reasonably large, the gradient is large in the phase dimension. This indicates that, in the
presence of carrier phase offset, the LSDDA will tend to correct the phase of the output
signal more quickly than it will optimize output SINR.
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Figure 4.21: Decision-directed cost function for a BPSK signal with known carrier phase in

complex Gaussian noise.
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Figure 4.22: Decision-directed cost function for a QPSK signal with known carrier phase in

complex Gaussian noise.
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Figure 4.23: Decision-directed cost function for a QPSK signal in complex Gaussian noise
as a function of carrier phase offset and SINR.
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4.9 Conclusions

Analytic expressions have been presented for the mean improvement in output SIR achieved
with each iteration of a block-update decision directed adaptive algorithm known as the
Least Squares Decision Directed Algorithm (LSDDA). We have obtained results for M-ary
PSK in general, and for BPSK and QPSK in particular. We have also analyzed the effect of
carrier phase offset. The analysis framework described here can be used to predict the mean
behavior of the LSDDA in any environment, so long as the pdf of the noise and interference
is known. Using results previously established in Chapter 3, we are able to compare the
performance of the LSDDA and the Least Squares Constant Modulus Algorithm (LSCMA).

As would be expected, the LSDDA converges very rapidly for moderately high initial SIR.
When the interference is Gaussian, the improvement in output SIR obtained with the LSDDA
is bounded from below by the improvement obtained with the LSCMA. This makes sense
intuitively since the decision directed algorithm exploits more information than the CMA.
The performance of the LSDDA and LSCMA at low SIR is very similar (except for the special
case of a BPSK desired signal). This gives some theoretical justification for the common
practice of using CMA to bootstrap a decision directed algorithm. An intuitively appealing
result is that a decision directed algorithm behaves more and more like CMA as the number
of symbols in the PSK constellation increases.

The LSDDA can be susceptible to the phenomenon known as noise capture. Noise capture
occurs when the algorithm extracts Gaussian noise and interference and nulls the desired
signal. This phenomenon has been studied extensively for CMA, but the existence of noise
capture in decision directed algorithms has not been recognized previously.

Some directions for future work include:

e extension of the analysis to other modulation formats, especially FSK and M-ary
orthogonal modulation;

e extensions to the popular Stochastic Gradient Descent (SGD) and Normalized SGD
versions of the DDA;

e extension to extraction of multiple signals, e.g., Multi-Target DDA, ILSP.

e extensions to equalization applications, where the primary source of distortion is fre-
quency selective multipath, not co-channel interference;

e obtain results for finite block size using results from multivariate statistics;

e extension to wideband space-time processing;



Chapter 5

Decision Directed Algorithm in
Constant Modulus Interference

Summary

In Chapter 4 we studied the behavior of the LSDDA when the interference has a complex
Gaussian distribution. We now consider the case where the interference has constant en-
velope. We show that the LSDDA behavior with constant modulus interference is quite
different from the behavior with Gaussian interference.

5.1 BPSK with Constant Modulus Interference

We first consider the situation where the desired signal is BPSK and the interference is
constant modulus (CM). We initially assume that the carrier phase of the BPSK signal is
known to the receiver. We model the beamformer output signal as

y = /or e 4 ei® (5.1)

where k = 0,1 and ¢ is the phase of the CM interferer. We assume that the CM interference
has uniform phase distribution. This is equivalent to assuming that the carrier phase is a
uniformly distributed random variable. Since the BPSK demodulator operates on only the
real part of the beamformer output, we only need the PDF of the real part of the interferer.

This is given by
1

Pz (2r) = 71'\/T7 (5.2)

168
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over —1 < z. < 1, with p,,(z.) equal to zero outside this interval.

The cross-correlation of the desired BPSK signal s(n) with the hard-decisions d(n) is shown
in Appendix F to be

E{sd} = %arcsin Dk (5.3)

Appendix F shows that the cross-correlation of the CM interferer with the hard decisions is

5{zd}:%\/1—pk (5.4)

The SIR in the demodulator output is thus given by

(arcsin Dk )2

SIRou: = T~ (5.5)
The ratio of output SIR over input SIR is
_ 2
IR, — (arcsm Dk > (5.6)

ok (1= pr)

Figure 5.1 shows the SIR gain for BPSK given by (5.6) versus the initial beamformer output
SIR pr . Results from scalar Monte Carlo simulation are also included to support the
derivations. The simulation results are based on 1000 trials with a BPSK desired signal
and a tone interferer. The frequency of the sinusoid is 13/1024, with uniformly distributed
random phase. The simulation results agree very well with theory.

A key property of the BPSK SIR gain is that the SIR gain is always greater than unity
(0 dB). As the initial SIR grows small, the SIR gain approaches unity. This is similar to the
behavior of the LSCMA with Gaussian noise. Thus we expect that the LSDDA with a BPSK
signal is susceptible to capture of a CM interferer, such as a CW signal or another co-channel
BPSK signal. Since the SIR gain only asymptotically approaches 0 dB, we would expect the
CM capture of LSDDA here to correspond to a saddlepoint in the LSDDA cost function,
and not a true minima. When the SIR is higher than 0 dB there will be no decision errors.
Therefore the SIR gain tends asymptotically towards infinity as the initial SIR approaches
0 dB.

5.2 QPSK with Constant Modulus Interference

We now examine the behavior of the LSDDA with a QPSK desired signal received in CM
interference. It is shown in Appendix G that the cross-correlation of the desired signal s(n)
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with the demodulator output is

E{sd"} = ¥arcsin\/pk /2 (5.7)

Appendix G shows that the cross-correlation of the interfering signal z(n) with the demod-

ulator output is
4
€{zd*}:;y/1—pk /2 (5.8)

2
SIR..., = (arcsin\/pk /2) (5.9

2= pi

The output SIR is

The ratio of output SIR over input SIR is

2
SIR, . (arcsin\/pk /2) (5.10)

o (2= pr)

Figure 5.1 shows the SIR gain for QPSK given by (5.10) versus the initial beamformer output
SIR pi . Supporting results from Monte Carlo simulation are also included. The simulation
is identical to that used with the BPSK signal, except that a QPSK signal is used. Again,
the simulation results agree very well with theory. Note that, as was the case with Gaussian
interference, the performance with QPSK is much worse than that obtained with BPSK.

Figure 5.1 shows that the behavior of the LSDDA with a QPSK signal in CM interference
is unexpected. The SIR gain for QPSK with a constant modulus interferer is less than one
for initial SIR less than approximately 1.203 dB. If the initial SIR is less than this value, the
LSDDA is likely to capture the CM interferer instead of the desired QPSK signal. This will

occur even though the LSDDA has perfect knowledge of the carrier frequency and carrier
phase of the desired QPSK signal.

Also note that SIR gain for LSDDA with a QPSK signal approaches -6 dB as the SIR grows
small. This is very similar to the behavior of LSCMA with two CM signals. Thus we expect
the CM capture here to correspond to a true minimum in the LSDDA cost function.

Figure 5.2 compares the behavior of the LSDDA and the LSCMA with a QPSK signal
received in strong CM interference. The simulation environment consists of a QPSK signal
incident from 10° with 16.5 dB SWNR. A complex sinusoid interferer is received with 16.0 dB
SWNR from 65°. The array has two elements with A/2 spacing, and the LSDDA block size
is set to 1024 symbols. The initial weight vector is wo = [1 0], which gives an initial SINR of
approximately +0.4 dB. The analysis presented above predicts that the LSDDA will capture
the CM interferer, since the initial SINR is less than the capture threshold of 1.2 dB. However,
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Figure 5.1: Output SINR gain achieved with one iteration of LSDDA with a PSK desired
signal and constant modulus interference. Solid lines denote gain predicted by theory, ‘x’
and ‘o’ denote mean gain measured from simulations. Gain achieved with CMA shown for
comparison.

it is important to bear in mind that this is an asymptotic analysis, and the asymptotic results
are only an approximation to the mean behavior of the algorithms with a finite amount of
data. Thus, due to the effects of finite collect time, and Gaussian background noise, the
LSDDA does not always capture the CM interferer in this simulation. Out of 1000 trials,
89.9% resulted in capture of the interferer. In contrast, the LSCMA always converged to the
desired QPSK-capture solution in this environment. Despite the fact that the simulation
results do not exactly agree with the asymptotic analysis, the analysis did accurately predict
that capture of a CM interferer was more likely with LSDDA than with LSCMA.
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Figure 5.2: Output SINR of LSDDA and LSCMA with a QPSK desired signal and a sinusoid
interferer, with the initial SINR equal to +0.4 dB. The shaded regions show where 95% of
trials fell.
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5.3 Constant Modulus Interference and Phase Offset

We have assumed to this point that the carrier phase of the desired signal is known. We will
now consider the more general case where the carrier phase is either unknown, or there is
some error in carrier phase knowledge.

When the signal is BPSK, the effect of carrier phase offset is the same as reducing the signal
amplitude by cos @, where 6 is the phase offset. The behavior with a QPSK signal and CM
interference is more complicated. We model the beamformer output as

y(n) = \/ﬁejkﬁ/erﬁ/llej@ + el (5.11)

where £ = 0,1,2,3 is an integer random variable, 6 is the phase offset of the signal, and
¢ is the random phase modulation of the CM interferer. The cross-correlation R4 may be

written as
3
Ry = D> po(k)E{sd |s=s,} (5.12)
k=0
1 3
= =) E{sd*|s=sp} (5.13)
4550
We have
* or/2 gmja L [P kr w
E{sd |s=s,} = &% %/ sign < 4/p cos ?—{—th@ +cos ¢ p +(5.14)
0

j sign {\/ﬁsin (%T + % +9> +Sin¢H do

Let us define the function f(-) as

2w
flz) & / sign(z + cos ¢) do (5.15)
Then it is straightforward to show that
21 < -1
f(x) =4 4darcsin(z) —1<z<+1 (5.16)
2r +1>uw

This allows the cross-correlation of the QPSK signal with the demodulator output to be
written as

jm/4 3 k k
de:e27r kZej’”/Q{f< Dk cos<§+£+9>>—jf< Dk sin(%%—%jt&))}

- (5.17)
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We now turn our attention to calculation of R.;. The conditional cross-correlation is
. L2 il kr m
E{zd"|s=sp} = —/ e’? | signq/pcos| —+—+6 )| +cospp, + (5.18)
2w Jo 2 4
k
j sign {\/ﬁsin (g + % + 9) + Sinng do
It is straightforward to show that

/027r cos ¢sign{z + cos ¢} dp = 4v'1 — x? (5.19)

This shows that the cross-correlation of the CM interferer with the demodulator output is

1S kr w kr w
R.g=— 411 —cos?2 [ —+—+0)+4,|1—sin? | —+=+14 5.20
d 27Tk:0{d cos<2+4+>+¢ sm<2+4—1—>} (5.20)

To support these derivations, we will examine the magnitude and phase of Ry and R.4

before proceeding further. Figure 5.3 shows the magnitude of Ry, versus carrier phase offset
for a QPSK signal in CM interference with the SIR equal to 0.5 dB. Since this SIR is
less than 1.2 dB, this corresponds to a situation where we expect LSDDA to capture the
CM interference. Supporting results from simulation are included in Figure 5.3. These
simulations are based on 1000 Monte Carlo trials, with each trial based on 1024 QPSK
symbols and a complex sinusoidal interferer. Figure 5.5 shows the magnitude of R.; for
the same scenario. Again, the results from simulation agree very well with the results from
analysis.

The phase of Ry is examined in Figure 5.4. This figure shows the difference between the
signal phase at the demodulator input and the demodulator output. Note that if the phase
difference is zero, the demodulator will not alter the phase of the signal. The phase difference
in Figure 5.4 is equal to zero at integer multiples of /2, as expected. A decision directed
algorithm is insensitive to phase shifts of 7/2. However, Figure 5.4 shows that the phase
difference is also equal to zero at integer multiples of w/4. This is an indication that the
LSDDA may have an undesirable local minima where the output phase of the QPSK signal
is offset by 7/ from what is expected.

Finally, we examine the SIR gain verusus phase offset for this scenario. This is shown in
Figure 5.6. Note that the SIR gain at zero phase offset is less than 0 dB, even though the
input SIR is positive. Also note that the SIR gain at odd integer multiples of /4 is greater
than one. However, this does not prove that the LSDDA will converge to the desired solution
if the phase offset is an integer multiple of 7/4. To do this we must examine the SIR gain as
a function of initial SIR with the carrier phase offset set to 7/4. This is shown in Figure 5.7.
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Figure 5.3: Magnitude of Ry; with a QPSK signal and CM interference versus the carrier
phase offset at the demodulator input. The SIR at the demodulator input is +0.5 dB. Solid
line denotes theoretical expression, ‘x’ denotes result measured from simulations.
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Figure 5.4: Difference in the angle of s at the demodulator input and demodulator output,
with a QPSK signal and CM interference, versus the carrier phase offset at the demodu-
lator input. The SIR at the demodulator input is +0.5 dB. Solid line denotes theoretical
expression, ‘x’ denotes result measured from simulations.
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Figure 5.5: Magnitude of R.; with a QPSK signal and CM interference versus the carrier
phase offset at the demodulator input. The SIR at the demodulator input is +0.5 dB. Solid
line denotes theoretical expression, ‘x’ denotes result measured from simulations.
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Figure 5.6: SIR gain with a QPSK signal and CM interference versus the carrier phase offset
at the demodulator input. The SIR at the demodulator input is +0.5 dB.

Note that the SIR gain is equal to zero for an input SIR of approximatley 4 dB. The signal
phase at the demodulator output remains equal to the phase at the input. This shows that
the SIR will remain the same, and the signal phase will remain the same, so the LSDDA will
remain at this solution. Thus this is a local minimum of the cost function. This is a new
and unanticipated result.

We now perform a simulation of the LSDDA to see if it will in fact converge to this local
minimum. We apply the LSDDA an environment with a 20.5 dB SWNR, QPSK signal at
10°, and an uncorrelated 20 dB SWNR CM interfering signal at 65°. The phase of the CM
interferer is random with uniform distribution. The initial carrier phase offset is 30°, and
the LSDDA block size is 1024 symbols. Due to the effects of background noise and finite
data block size, the LSDDA does not always converge to the local minimum identified above.
However, for some realizations of data the LSDDA can converge to the solution shown in the
I-Q plot of Figure 5.8. As a second example, we apply the LSDDA to a similar environment,
except that the interfering signal is an uncorrelated QPSK signal. Again, the LSDDA is
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Figure 5.7: SIR gain with a QPSK signal and CM interference versus the SIR at the demod-
ulator input. The carrier phase at the demodulator input is 45°.
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Quadrature

Figure 5.8: I-Q plot of the LSDDA beamformer when the algorithm converges to an undesired
local minimum. The desired signal is QPSK, and the interferer is CM with random phase.

not always trapped in the local minimum, but it does sometimes converge to the solution
illustrated in Figure 5.9. In order to better understand the behavior of the LSDDA in this
environment, we examine the LSDDA cost function in the next section.
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Figure 5.9: I-Q plot of the LSDDA beamformer when the algorithm converges to an undesired
local minimum. The input is two independent QPSK signals.
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5.4 Cost Function Analysis

We show in Appendix A that the decision-directed cost function has the general form

2
v1i+p

where p is the beamformer output SINR and 6 is the phase at the demodulator input. Note

F(p,0) =2 — Real {a* el \/p+ ﬁ*} (5.21)

that a and (8 are dependent on p and also on 6.

We begin with the simple case of a QPSK signal in CM interference. By evaluating (5.21)
with « given by (5.7) and (3 given by (5.8), we obtain the function shown in Figure 5.10.
The cost function peaks near an SIR of +1.5 dB, and decreases for both SIR greater than
+1.5 dB and less than +1.5 dB. This shows clearly that a local minimum exists for capture
of the CM interferer. Thus the DDA can be said to exhibit tone capture, just as CMA [66].

We next consider the more complicated cost function that arises when a QPSK signal having
carrier offset is received in CM interference. By evaluating (5.21) with « given by (5.17) and
B given by (5.20), we obtain the function shown in Figure 5.11. This figure shows a possible
local minimum corresponding to an output SINR of approximately 4 dB and output phase
of 45°. Figure 5.12 shows the cost function versus SIR with the phase fixed at 45°. The
cost function minimum occurs at an output SINR of 3.92 dB. Figure 5.13 shows the cost
function versus output phase with the SIR fixed at 3.92 dB. This figure shows that a local
minimum is present at 45°. Since a minimum occurs in both the SIR and the output phase,
we conclude that a local minimum exists in the DDA cost function at an output SIR of
3.92 dB and output phase of 45°. This corresponds to the undesirable LSDDA convergence
shown in Figures 5.9 and 5.8. This verifies the existence of the undesired solution.
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Figure 5.10: Decision-directed cost function for a QPSK signal with known carrier phase in
constant modulus interference.
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Figure 5.12: Decision-directed cost function for a QPSK signal in constant modulus inter-
ference as a function of SINR, corresponding to output phase of 45°.
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Figure 5.13: Decision-directed cost function for a QPSK signal in constant modulus inter-
ference as a function of phase, corresponding to output SINR of 3.92 dB.
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5.5 Conclusions

We have shown that the behavior of the LSDDA with CM interference is much more compli-
cated than in Gaussian interference. In particular, the LSDDA is susceptible to capture of
a CM interferer when the initial SINR is low. Furthermore, the LSDDA is more susceptible
to capture of a CM interferer than LSCMA. This non-intuitive behavior is predicted by the
analysis presented here.

The LSDDA is also susceptible to being trapped in a local minima when desired signal is
QPSK and the interference is CM. This local minima corresponds to a state where the both
the QPSK signal and the CM interferer are present in the demodulator output. The LSCMA
does not exhibit this undesired behavior.

Based on the results obtained here, it appears that the CMA has more reliable convergence
properties compared to the LSDDA when the initial SINR is low and the interference is CM.
It might be postulated that this conclusion would generalize to other more complicated, and
hence more realistic, environments.



Chapter 6

Directions for Future Research

Summary

This chapter outlines several potential remaining research topics to be explored. Some of
these ideas are more well-developed than others. Significant work has been accomplished in
some research areas, including the Least Squares General Modulus Algorithm, introduced in
Section 6.4. The discussion presented in this chapter can be viewed as a ‘shopping list’ for
research topics, and is meant to be a starting point for discussions.

6.1 Constant Modulus Algorithm

In this section we outline additional research that can be performed with the CMA using
some of the basic principles outlined in this dissertation.

6.1.1 Stochastic Gradient Descent

The SGD algorithm has been studied extensively for the case where a known training signal
is available. However, similar results for blind SGD algorithms are generally not available,
mainly because an appropriate model for the ‘training signal’ used in a blind algorithm has
not been identified. We will now seek to show that the model for the hard-limiter output
introduced in the document may be helpful in analyzing certain SGD versions of CMA,
particularly the (1,2) version. Specifically, the model

d(n) = as(n) + Bz(n) +&{(n) (6.1)

188
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can be used for the hard-limiter output, and then existing results on SGD algorithms with
known training signals can be applied. We will now show that this procedure should be
possible in principal.

We know that the SGD algorithm converges to the LS solution in the limit as n — oo
for sufficiently small adaptive step size p. By analogy, we would expect the SGD CMA to
converge to the solution found after one LSCMA update in the limit as n — oo for sufficiently
small adaptive step size p. That is, consider the signal dy(n), where

yo(n) = wgx(n) (6.2)
Yo(n)
do(n) = (6.3)
|yo(n)]
and wy is the initial weight vector. The updated LSCMA weight vector is
W1 = R;I_;;I}R:L‘do (64)

If we implement the SGD algorithm using dy(n) as the training signal, then the weight
vector found by the SGD method should approach the weight vector found by the LSCMA
in one iteration. To demonstrate that this is true, we return to a simple environment used
to help analyze the LSCMA: two orthogonal complex sinusoids with no background noise.
The behavior of the LSCMA in this environment is deterministic — the SGD behavior in this
environment should be also. We simulate a two-element A/2 array, with one sinusoid incident
from 0°, and a second sinusoid incident from 65°. The sinusoid at 0° has frequency equal to
5/1024, and power equal to 9 dB. The sinusoid at 65° has frequency equal to -31/1024, and
power equal to 6 dB. When the LSCMA is applied to this environment, the output SIR after
one iteration is 7.04 dB. If the same training signal dy(n) is used by a SGD algorithm instead
a direct LS algorithm (as used by LSCMA), we would expect the SGD algorithm to converge
to the same output SIR of 7.04 dB. This is verified by the results shown in Figure 6.1. A
block update version of the (1,2) SGD CMA is implemented, where the weight vector update
is

Wi = Wi — p(X(n)e"(n)) (6.5)
and () denotes a time average over the entire data block of N = 1024 temporal samples.
The adaptation step size pu = 0.02, and the initial weight vector wo =10 ]T. This shows
that the non-linear model for the hard-limiter output should also be useful for analyzing
SGD versions of CMA.

6.1.2 Pulse-Shaped Signals

It should be possible to use the same general framework to analyze CMA performance with
non-CM signals, such as pulse-shaped PSK. The analysis procedure would still be the same,
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Figure 6.1: Output SIR of the (1,2) SGD CMA with a fixed training signal, derived by
hard-limiting the initial beamformer output. The LSCMA output SIR after one iteration is
indicated by the horizontal dotted line. This shows that the SGD CMA converges to the
same solution as the LSCMA.

relying on the calculation of Ryy and R.4. The only difficulty would be that an expression for
the amplitude distribution of a pulse-shaped PSK signal would be needed. This pdf does not
appear to be well-known, but may be found after a more diligent literature search. If this
proves to be impractical, an alternative approach would be to examine CMA performance
with an AM signal. The simplest case would be a tone-modulated AM signal. It may prove
useful to consider the AM case initially as a starting point at any rate. The analysis of
LSCMA for AM signals might be sufficient for a peer-reviewed journal publication. The
analysis of LSCMA for pulse-shaped signals is of interest to a broader audience, and would
probably require more effort, and so would probably be sufficient for publication in a peer-
reviewed journal publication.
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6.2 Decision Directed Algorithm

In this section we outline future research for the analysis and development of decision directed
algorithms.

6.2.1 Cost Function Stationary Points

In order to perform a thorough analysis of decision-directed (DD) algorithms, or in fact
any blind algorithm, it is necessary to find the stationary points of the cost function. A
stationary point of the cost function would correspond to a weight vector for which the cost
function gradient with respect to the weight vector is equal to zero. The DD cost function
can be written as

F(w) = 5{ ‘WHX(R) —f (wa(n)) 2} (6.6)

where f(-) denotes the appropriate demodulation function. The gradient of the cost function
with respect to the weight vector cannot be solved for directly. If this could be accomplished,
the weight vector that minimizes the cost function (6.6) could be solved for directly without
the need for iterative algorithms. Nevertheless, a method has been identified to find the
stationary points of (6.6). This method calls for expressing the cost function in terms of
the signal amplitude, noise and interference amplitude, signal phase, and noise phase. In
the case of Gaussian noise and interference, the cost function is not dependent on the noise
phase, since the noise is assumed to be circularly symmetric.

We will set up the problem for the simplest case of a PSK signal with known carrier phase in
Gaussian noise and interference. Note that the beamformer output w’x(n) can be expressed
in terms of a signal component s(n) and noise component z(n) as

wx(n) = /ps(n) + z(n) (6.7)
where p is the SINR. If we define
e(n) = w'x(n) — f (wix(n)) (6.8)
then we can write, using the general framework developed here,
e(n) = /ps(n) + z(n) +&£(n) — alp)s(n) — B(p)z(n) (6.9)

Recall that for the special case of known carrier phase, the variables o and (3 are real. Also
recall that we have defined s(n) and z(n) earlier so that they have unit variance. Then we
can express (6.6) in terms of output SINR p as

F(p) = &{le(n)”} (6.10)
= (p—2vpalp) +*(p)) + (1 = 2y/pB(p) + B*(p)) + 0% (6.11)
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To find the stationary points, we take the derivative of (6.11) with respect to p and set
the result equal to zero. In order to determine whether the stationary points are minima,
maxima, or saddlepoints, we must examine the second derivative. We expect to find one
stationary point for BPSK, corresponding to a global minimum for SOI capture. We expect
to find two stationary points for QPSK: one corresponding to a global minimum for SOI
capture, and one corresponding to a saddlepoint for noise capture. Results for higher order
PSK may be intractable. To consider the effect of carrier phase offset, the DD cost function
can be expressed in terms of output SINR p and the phase offset 8. The case of constant
modulus interference (when the interference has random phase) with carrier phase offset
must take into account signal amplitude, signal phase, and interference amplitude. If the
interference is PSK with non-random phase ¢, the cost function must also include this
variable.

6.2.2 Investigation of Other Decision Functions

The use of a hard-decision non-linearity may not be optimal. Other non-linearities may
yield better performance. In particular, the so-called null-zone non-linearity might be worth
investigating. This function is defined as

—1 T < —c
f(z) = 0 —c<z<+c (6.12)
+1 T > +c

and is illustrated in Figure 6.2. This function in effect places zero weight on decisions that
may have high probability of error. It should be straightforward, at least conceptually, to
investigate other decision functions. The resulting integrals may not be as easily evaluated
as for the hard-decision case, but we may rely on numerical integration in such cases.

Many other decision functions could be investigated as well, including the magnitude non-
linearities discussed in Section 6.4.

6.2.3 QAM and Orthogonal Modulation

Results for the decision-directed algorithm have only been obtained for PSK modulation. It
should be straightforward to obtain similar results for QAM, since this is a linear modulation
like PSK. Extension to orthogonal modulation would also be very desirable. Examples of
orthogonal modulation include binary FSK, and the 64-ary orthogonal modulation based on
Walsh functions used in the IS-95 reverse link. Extension to orthogonal modulation may not
be quite as straightforward as extension to QAM, but should not be too difficult.
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Figure 6.2: Null-zone decision non-linearity.

6.2.4 Extensions for Multiple Signals

The LSDDA is designed to extract a single signal. Other algorithms exist which are designed
to simultaneously extract multiple signals. These algorithms typically converge more rapidly
since they exploit more information about the environment. Two approaches for extracting
multiple signals are the

1. Multi-Target LSDDA - This algorithm essentially applies multiple LSDDA beamform-
ers to the same set of received data, and performs an additional layer of processing

to ensure that each beamformer extracts a unique signal. This is typically done with
a so-called ‘soft orthogonalization’, where the output signals of each independent LS-
DDA beamformer are made to have low correlation rather than zero correlation. This
is a generalization of the MT-CMA described in [46].

2. Tterative Least Squares with Projection (ILSP) - This algorithm uses an alternating

projections approach, alternating between estimating the transmitted signals by beam-
forming and making hard decisions, and using these estimated signals to estimate the
spatial signatures via (2.65). This algorithm is reviewed in Subsection 2.5.2.

It should be straightforward to investigate at least the mean convergence of both the MT-
LSDDA and the ILSP algorithms using the general framework introduced here. The only
additional work needed would be to determine the correlation of two signal estimates d;(n)
and da(n).
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6.2.5 Extension to SGD

The general non-linear model introduced may be useful for investigating the popular Sto-
chastic Gradient Descent (SGD) decision-directed algorithms. The argument for why this
should be true follows that presented for generalizing the LSCMA analysis to SGD CMA.

6.3 LSCMA and LSDDA Statistics for Finite N

The analytic results presented for the LSCMA and LSDDA to this point have been for the
asymptotic behavior. Exact calculation of the mean and distribution of the output SINR
for finite data block size N would of course be of great interest, but would be much more
challenging to obtain. However, the mean and variance of the cross-correlation vector R4
used in LSCMA and LSDDA are relatively easy to find, and are presented in Section 4.7. This
demonstrates that the non-linear model for the hard-limiter output and PSK demodulator
output can be used in principal to determine the exact behavior of LSCMA and LSDDA for
finite V. Such an analysis would rely on principles from multivariate statistics.

6.3.1 Decision-Directed Phase Tracking

One interesting topic would be to apply the methods used to analyze the LSDDA to the
analysis of a decision-directed carrier phase tracker. A literature search for such an analysis
has not been performed, so it is not known if such an analysis has already been performed.
However, it should be fairly straightforward to take the results presented in Section 4.7 for
a decision-directed estimate of signal amplitude and generalize them to a decision-directed
estimate of complex signal amplitude.

6.4 (eneral Modulus Algorithm

In this section we introduce a novel blind adaptive algorithm that is motivated by the general
framework used to analyze the LSCMA and the LSDDA. This algorithm is referred to here
as the General Modulus Algorithm (GMA). This algorithm replaces the hard-limit non-
linearity used in CMA with a general magnitude-only non-linearity. One particular version
of the GMA simply raises the modulus to a certain power. This version is particularly
easy to analyze, and offers some potential for faster convergence relative to CMA. We also
consider the possibility of using other non-linearities to derive a training signal, with the



Thomas E. Biedka Chapter 6. Future Research 195

goal of improving the rate and reliability of algorithm convergence.

6.4.1 Overview of the Least Squares General Modulus Algorithm

The LSCMA essentially uses the signal
d(n) = e (6.13)
as a training signal, where

¢(n) = Ly(n) (6.14)

is the angle of the beamformer output y(n) = wfx(n). This is a magnitude-only non-
linearity, since the phase is not modified. Now consider the possibility of using the signal

d(n) = mP(n)e*™ (6.15)
as a training signal, where ¢(n) is the phase as defined above,

m(n) = y(n)| (6.16)

is the magnitude, and p is some real scalar. This algorithm will satisfy the Bussgang crite-
rion [82]. Note that with p = 0, the algorithm reduces to the LSCMA. Also note that with
p =1, we have d(n) = y(n), so the ‘non-linearity’ has no effect.

6.4.2 SINR Gain for High Initial SINR

The SINR gain provided by the non-linearity defined in (6.15) can be derived directly for the
case where the input SINR is high. We use the same approach as employed in Subsection 3.3.1
to analyze the LSCMA for high SINR. Let the initial beamformer output be

y(n) = s(n)+gz(n) (6.17)
9™ 4 gm(n)elt™ (6.18)

where ¢(n) is the phase of the desired signal, while m(n) and ¥(n) are the magnitude and
phase, respectively, of the noise and interference. The ‘training signal’ d(n) can be written
as

d(n) = y(n) [y(n)y*(n)]" (6.19)
where

U=— (6.20)
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We first examine the cross-correlation of the desired signal s(n) with the training signal d(n).
We have

Ry 2 E{s(n)d'(n)} (6.21)
E{ s(n)y"(n) [y(n)y"(n)]" } ) (6.22)
= 5{ (1 +gm(n)eﬂA> {1 + 2gm(n) cos A +92m2(n)} } (6.23)

where A = ¢(n) — ¥(n). For high SINR, we have ¢ < 1, and we therefore ignore terms
containing ¢g2. Furthermore, the binomial expansion gives

(1+2)"~1+ux (6.24)
so that
Ry~ 8{ (1 + gm(n)ejA) (1 + 2m(n)ucos A + ngQ(n)) } (6.25)

If we again ignore terms containing ¢?, and assume that A is uniformly distributed over
(0,27], we have

We now calculate the cross-correlation of the interference and noise z(n) with the training
signal. Using similar arguments as made above for R4, we have

Ry 2 E{x(n)d"(n)} (6.27)
= 5{ (m(n e A +gm2(n ) {1 + 2gm(n) cos A + g°m?(n )}u} (6.28)

~ 5{ (m(n e 2 + gm?(n) ) (14 2ugm(n)cos A) } (6.29)
{mQ(n) } + ugé'{ m?(n) } (6.30)

g(l + u) (6.31)

We have also made use of the fact that z(n) is unit variance. The output SIR in the training

signal (6.15) is therefore
SIR = Ra ! (6.32)
Ry g2(1+uw)? '

Since the input SIR is 1/g¢%, the SIR gain is

SIRout ut 1
SIRgain = Po = 6.33
& SIRinput (1 + ’U)2 ( )
Expressing this as a function of p where p is defined in (6.15), we have
4
SIRgain = (6.34)

(1+p)°
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Figure 6.3: Theoretical SINR gain per iteration at high SINR as a function of modulus
exponent.

Note that the SINR gain is equal to 4 (i.e., 6 dB) for p = 0, which is consistent with the
results for LSCMA obtained in Subsection 3.3.1.

A plot of the GMA SINR gain for high initial SINR is shown in Figure 6.3. Note that the
SINR gain tends to infinity as p — —1. Previous analysis indicates that the LSGMA would
converge in a single iteration if the SINR gain is infinite. However, the mean analysis does
not consider the effect of the intermodulation terms. These intermodulation terms have no
effect for N — oo, but do have an effect for finite N. Thus the behavior for finite IV is not
immediately obvious. Preliminary simulation results have indicated that the LSGMA does
hold promise for faster convergence relative to LSCMA.
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6.5 Extension to Equalization Applications

The analysis framework developed here has only been applied to the adaptive beamforming
problem. It should be possible to apply the same principles to an equalization or RAKE
application.

6.6 Exploitation of Multiple Non-Linearities

One way to improve the performance of blind adaptive algorithms may be to exploit multiple
cost functions. For example, it may be beneficial to jointly exploit the CM property and
the finite-alphabet property exhibited by PSK signals. One approach to exploiting multiple
non-linearities is to use the Recursive PCCA framework.

6.7 Beamforming with Non-Coherent Demodulation

A common approach to finding a nearly optimal set of antenna weights is to minimize
the mean squared error between the received signal and a known training sequence. In
order to calculate the Least Squares (LS) weight vector, the system must know the carrier
frequency and symbol timing of the desired signal. However, estimation of these parameters is
particularly difficult in low SINR situations. Therefore it is important to investigate adaptive
beamforming methods which are either robust to synchronization parameter estimation error,
or eliminate the need for knowledge of these parameters.

6.8 Update Rate Requirements

The update rate requirements for an adaptive array can have great impact on system re-
quirements. If the environment is changing rapidly, the weight must be updated very rapidly,
and converge rapidly, which places high demands on the system hardware and software. The
update rate requirements for adaptive arrays in fading environments have not been thor-
oughly studied. Some preliminary results have been obtained in this area, based on the
following procedure. For some time-varying, multipath-fading environment, calculate the
optimal weight vector for time ¢ = 0. Then determine the output SINR with this fixed
weight vector as a function of time. Then measure the time interval over which the output
SINR is acceptable. This is one way to describe the rate at which the weight vector must be
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updated. This issue can be studied using various models for the environment, and can also
be used to study live data collected in field experiments.

6.9 Adaptive Arrays for CDMA Applications

Most of the wok presented in this document has centered on conventional, non-spread spec-
trum modulation. However, the use of Code Division Multiple Access (CDMA) schemes
in mobile wireless applications is growing rapidly. There are several motivations for this.
First, the use of a wideband spread spectrum modulation allows resolution of closely spaced
multipath components, which can then be combined using a RAKE receiver. This provides
a form of diversity which combats fading and improves performance. A second motivation is
that the wider bandwidth typically employed in CDMA systems allows for the transmission
of higher data rates. Therefore the use of adaptive antenna arrays in CDMA may be a
worthwhile field for further investigation.

One promising approach has been proposed by Naguib [53]. We will refer to this approach
as the Code Gated Algorithm (CGA) due to its similarity to time-gated and frequency-
gated algorithms. The CGA calls for setting the weight vector equal to the eigenvector
corresponding to the dominant eigenvalue of the generalized eigenequation

R.oW = ARdesprW (6.35)
The covariance matrix of the observed array data asymptotically approaches

R,, = c’a,al + R, (6.36)

S

The covariance matrix of the despread array data asymptotically approaches
Raespr = Gotaall + Ry, (6.37)

where G is the spreading gain of the system. The dominant eigenvector of (6.35) maximizes
the quantity

wiR,.,w
F = ———— .
WHRdeser (6 38)
Go? WHaS‘2 +wiR,w
2 (6.39)
o?|wHa,|” + wHR,w
Define the output SINR as
2
o2 |wha,
v = (6.40)

H
wHiR W
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| Environment #1

Array Geometry | 4 Element Uniform Linear Array A/2 Spacing
Data Modulation | QPSK
Spreading Code Modulation | QPSK
SOI AOA (degrees) | 30
SOI SWNR | 9 dB
Spreading Gain | 32 (15.05 dB)
Number of Interferers | 9
SNOI AOA (degrees) | -50 -45 -40 -35 -30 -20 10 20 45
SNOI SWNR | 9 dB for all
Max SINR | 11.42 dB

Table 6.1: Parameters for a simple stationary environment with zero delay spread and no
multipath.

Then by dividing the numerator and denominator of (6.39) through by wR,,w, we obtain

G 1
F=07
v+1

(6.41)

Now note that F' is a monotonically increasing function of v if G > 1. For this reason
maximizing F' is equivalent to maximizing the output SINR . Thus the CGA weight vector
maximizes the beamformer output SINR. A block diagram of the CGA is presented in 6.4.

Some preliminary results on the relative performance of several CDMA beamforming algo-
rithms have been obtained. A key figure of merit for any adaptive algorithm is the integration
time required for convergence. To determine the required integration time we examine the
mean output SINR versus integration time in a simple stationary environment. The envi-
ronment parameters are listed below in Table 6.9.

The mean output SINR of several algorithms of interest are shown in Table 6.9.
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| | Mean Output SINR in Stationary Environment

N | LS-Chip | CGA | Beam | CMA | LS-Symbol | DDA

41 11.09 | 11.06 | 10.58 | 5.36 3.36 3.34

8| 11.26 | 11.24 | 10.90 | 9.25 9.04 9.04
16 | 11.35 | 11.34 | 11.04 | 10.41 10.45 10.45
32| 11.38 | 11.38 | 11.13 | 10.91 10.98 10.98
64 11.40 11.40 | 11.17 | 11.15 11.20 11.19
128 11.41 11.41 | 11.19 | 11.28 11.31 11.31

Table 6.2: Relative algorithm performance in a stationary environment with 4 antennas. ‘LS-
Chip’ refers to a block Least Squares method with known message operating on data sampled
at the chip rate, CGA refers to the Code-Gated Algorithm, ‘Beam’ refers to the beam-steered
method, CMA refers to the block Least Squares Constant Modulus Algorithm, ‘LS-Symbol’
refers to a block Least Squares method with known message operating on data sampled at
the symbol rate, DDA refers to the block Least Squares Decision Directed Algorithm.
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Figure 6.4: Block diagram of the Code-Gated Algorithm (CGA) for CDMA signals with
known spreading code.



Appendix A

General Expression for Blind
Adaptive Cost Functions

A general method for calculating the cost functions of a certain class of blind cost functions
is described. This class includes the popular Constant Modulus Algorithm (CMA) and
Decision Directed Algorithm (DDA). The method described here calls for expressing the
cost function in terms of readily accessible signal parameters, such as SNR and carrier
phase. This approach is described in detail below, and expressions are obtained for several
important cost functions and signal/interference combinations, including:

1. (1,2) CMA cost function for CM signal and CM interference;

2. (1,2) CMA cost function for CM signal and Gaussian interference;
3. decision-directed cost function for a BPSK signal in Gaussian noise;
4. decision-directed cost function for a QPSK signal in Gaussian noise;

5. decision-directed cost function for a QPSK signal in CM interference.

Many blind adaptive algorithms have a cost function of the form

Fw) = { ly(n) — £ ()P’ } (A1)
where
y(n) = w'x(n) (A.2)
and f(-) is some memoryless non-linearity. For example, the (1,2) CMA cost function
Fuz = E{(ly(m)] - 1)} (A.3)

203
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can also be written as

f :5{ Y= Ty

yg”) 2 } (A.4)

A decision-directed cost function also has this form, where f(-) denotes the appropriate
demodulation function. For example, for a BPSK decision-directed cost function

f(y) = sign (y,) (A.5)

where y, is the real component of y(n). A decision-directed cost function for a QPSK signal
uses the non-linearity

f(y) = sign (y») + 7 sign () (A.6)

where y; is the imaginary component of y(n).

The first step in our analysis is to note that the cost function (A.1) can be written as

F(w) =0, — Rya — Ray — 05 (A7)
where
02 = E{y(n)y'(n)) (A8)
and
d(n) = f (y(n)) (A.9)

The cost function is dependent on the power of the linear combiner output y(n). However,
this has no effect on the symbol error rate or the SINR. Furthermore the output power is
easily controlled so that it is equal to the demodulator output power. We therefore assume
that JZ = 02. We also assume, without loss of generality, that 02 = 1. This gives

F =2 —2Real {Ryq} (A.10)

This shows that minimizing the cost function F' is equivalent to maximizing the real part of
the cross-correlation between the beamformer output y and the demodulator output d. We
now calculate [2yq.

H

The beamformer output y(n) = w' x(n) can be expressed as the sum of a signal component

s(n) and a noise component z(n) as
wix(n) = gs(n) + cz(n) (A.11)

where

(A.12)
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is the SINR. Note that we allow g to be complex in order to allow for carrier phase offset at
the demodulator input. That is,

g=lg| & (A.13)
where 6 is the carrier phase offset. We model the phase of the noise as being a uniformly
distributed random variable, so the phase of the noise at the demodulator input has no
impact. Therefore we assume that c is real. Without loss of generality, let 02 = 02 = 1.
Since we have constrained 05 = 1, we have

g+ =1 (A.14)
This in turn implies that
0
- A.15
ol =\ (A.15)
1+p

Using the previously established model for the demodulator output,

d(n) = as(n) + Bz(n) + £(n) (A.17)
the cross-correlation R,q is
Ry = E{y(n)d"(n)} (A.18)
= &{(gs(n) + cz(n)) (as(n) + Bz(n) + £(n))" } (A.19)
— ga* +cf (A.20)

= — + — A.21
@c V1+p ﬁV1+p ( )

The cost function can now be expressed as a function of the SINR p and the phase at the
demodulator input 6:

F(p,0)=2— \/%_pReal {a* e’ \/p+ ﬁ*} (A.22)

Note that a and ( are dependent on the SINR p and also, in some cases, on the phase at
the demodulator input 6.

The (1,2)-CMA cost function is not dependent on the phase of the signal. Furthermore, o
and [ are real for CMA. Thus for the (1,2)-CMA cost function (A.22) reduces to

Flp) =2 = —=={a" V5 + ) (A.23)

The stationary points of F' can be found by taking the partial derivatives with respect to the

SINR p and phase 6, setting the resulting expressions equal to zero, and solving for p and 6.



Appendix B

Initial Weight Vector

In this appendix we describe a method for obtaining a beamformer weight vector that has
a desired output SINR p . First, assume that the noise is white so that R,, = I, where I is
the identity matrix. Then express the desired weight vector as two orthogonal components,
one which is proportional to the signal spatial signature, and one which is orthogonal to the
spatial signature:

w = Pw+P,w (B.1)

= a+w, (B.2)

Note that we can ignore any scaling of w since this has no effect on output SINR. Therefore
we assume for convenience that P,w = a. The output SINR of this weight vector is

H,H

wlaal’w
S T o
_ (atwy)"aa (a+w,) (B.4)
(a+ Wq)H (a+ Wq)

B alaaa (B.5)

o aHa -+ ngwq .

This can be written as 0" I
whHy, o daa-paa (B.6)
q q p

Thus, in order for w to have output SINR p, we generate a w according to (B.2) that satisfies
(B.6). We can choose w, to be any vector that lies in the nullspace of a. For simplicity, we
take w, to be the first column of P, That is,

w,=P,g (B.7)

206
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where
g=[100---0]" (B.8)
In general, the noise and interference will not be spatially white. This can be handled by
performing the above procedure on the whitened spatial signature
a=R, '/ a (B.9)

The resulting weight vector is then multiplied by R;ql/ 2 to obtain the desired weight vector.



Appendix C

BPSK Signal in Gaussian Noise

In this appendix we derive expressions for Rs; and R,; when s is BPSK, z is complex

circularly symmetric Gaussian, and d is the output of a BPSK hard-decision device with

Yy = VpPrs+z
d = signRe(z)

The cross-correlation of the BPSK signal s with the hard-decisions d is given by

E{sd} = [ ssign(Vprs+2) pa () ds

1 o)
= ﬁ/oos sign (v/pr S+ 2r) e~ dz,

We consider the case where the desired signal is equal to +1. In this case

1 oo
S{Sd’S:—i—l} = ﬁ/ Slgn( /pk +ZT) e*ZEdZT

1 /*ka .2 1 © .2
= — —1) e ™ dz,»i——/ +1) e * dz,.
Vil OV NI

The error function and complementary error function are defined as

2 z 2
erf(x) 2 ﬁ/o e " dt
erfc(z) £ % /ooe_t2dt.

This allows the expression for Ry to be written as

1 1 1
E{sd|s=+1} = ) erfe(y/pr ) + Eerf(w/pk )+ 5
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— %(1—erf(\//f))+%erf(\/p_k)+% (C.10)

= erf(\/pr ) (C.11)

The same expression is obtained for the case where s = —1. Since each symbol is equally

likely, the final expression for the cross-correlation of s(n) and d(n) is

Ryq = erf(\/pr ). (C.12)

We now find the cross-correlation of the hard decisions d(n) with the Gaussian noise z(n).
We again consider the case where the desired signal is equal to +1. In this case

E{zd|s=+1} / / (zr + jzi)sign (\/pr + 2r) D (2r) D2, (21) dzp dz; (C.13)
/ zpsign (v/px + 2r) D2, (20) dzr/ 2 02, (2i) dz; (C.14)
1 oo 2
NG /_oo 2z sign (\/pr + 2r) € 7 dz, (C.15)
1 /_M 2 1 o 2
— zr (—1) e * dzT—i——/ zy (+1) e *r dz, (C.16
=/ = == (C.16)
— Pk 00
1 /1 _ 1 1 _
—_ | —p*r —_ | ——p R '1
N (26 ) T ( 5° ) (C.17)
0o — Pk
1
—e Pk, 1
ﬁe (C.18)
The same expression is obtained for the case where s = —1. Thus the final expression for

the cross-correlation of z(n) and d(n) is

— Pk



Appendix D

QPSK Signal in Gaussian Noise

In this appendix we derive expressions for Ry, and R.4 for the the case of a QPSK signal in
Gaussian noise. We first find an expression for R, for the case where s = e/™*. We have

S{sd*]s:ej"/4} (D.1)
/oo /Oo sd* p,, (2r) D2, (2i) dzr dz; (D.2)

e]”/‘l/ / {sug;n (\/——1— zr> +7 sign <\/_ + zlﬂ (20) Pz, (2i) dz dz(D.3)
= e”/4 7 81gn <\/—+ zr> D2, (2 dzr/ P2, (2i) dz;

— jeim/4 [00 sign <\/§ + zl> P2 (2:) dz; /oo Pz (2r) dzy (D.4)
= e/t /o:o sign (@ + zT> s, (2) — jed™* /o:o sign (@ + zi> P2, (2i) dz; (D.5)

From the results obtained for BPSK we know that
2
sign(a + z) e=* dz = erf(a) (D.6)
=1

Thus

S{Sd*|s:\/ﬁej”/4}:\/§erf<\/pk/2>. (D.7)

Since the four symbols are equally likely, and the same expression is obtained for each of the
four symbols, the cross correlation of the desired signal and the hard decisions is

Ry = V2 erf (W) : (D.8)
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We now find an expression for R.4 given that s = e/™* We have
S{Zd*]s:ej"/4} (D.9)

/_":o /_o:o zd" p(2r) p(2:) dzr dz; (D.10)

= / / (zr + jzi) [sign (1/% + zr> + jsign (,/%C + zlﬂ p(zr) p(2;) dz d3).11)

= /oo /oo {zrsign (,/p—k —{—zr> — jzysign (,/p—k —1—zi>

—00 J—00 2 2
.o Pk . Pk
—jz;sign (1/7 + ZT> + z; sign (@ / > + zz>] p(z) p(2;) dz. dz; (D.12)
There are four terms to consider. For the first term
/ / 2, sign (1/ + ZT> p(zr) p(2:) dz, dz; (D.13)
= / 2z sign (4 /p2 + zT> p(z) dz, /oo p(z) dz; (D.14)
1 o0 2

— ﬁ /_OO 2, sign (1/% + ZT> e *rdz, (D.15)

/ / jzp sign (\/?—1—21) p(z) p(2i) dz dz; (D.16)
= _ 81gn <\/>+ zl> 2i dzl/o:o p(z) dz, (D.17)

because the expected value of z, is zero. By a similar argument the third term is also equal

For the second term

to zero. The fourth term is equal to the first term by inspection. Thus we have that

S{zd* | s = e””/4 \/_/ z sign (1/%—1—2) e dz (D.19)

By comparison with the results obtained for BPSK, and because the four symbols are equally

likely, we have
2
de = ﬁe_pk /2. (D20)



Appendix E

pdf of the Angle of a Signal plus
(Gaussian Noise

In this appendix we derive an expression for the pdf of the angle of a signal plus complex,
unit variance Gaussian noise. This expression can be found in other sources, such as [25],
and is included here for completeness. The received noisy signal y(n) is modeled as

y(n) = ok +2(n) + jzi(n) (E.1)

where ,/py_ is the signal and z, and z; are independent and Gaussian distributed, each having
zero mean and variance equal to 1/2. The joint pdf of the real and imaginary parts of y is

Pyrs Urs ¥i) = Py, (Yr) Dy, (s) (E.2)
1 ) 1 .
_ (L @y R E.3
L) ()
- le—(yﬁ—%/ﬁ ok +47) (E.4)
T

We now transform to polar coordinates

¢ = tan! <y—> (E.5)

Yr
ro= YRty (E.6)

where ¢ is the angle and r is the magnitude of y. Noting that

Yp = TCOSQP (E.7)
y; = rsing (E.8)
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and also noting that the Jacobian of the transformation is 1/r, the joint pdf becomes

prolr,) = Lot =romssn) ©9)

The pdf of ¢ is found by integrating p, 4(r, ¢) over r,

ps(9) = / re(TRVRETCoRdtRL) gy (E.10)
0

which is not easily expressed in closed form.



Appendix F

BPSK in Constant Modulus
Interference

In this appendix we derive expressions for Rs; and R.; when s is BPSK, z is constant modulus
with random, uniformly distributed phase ¢, and d is the output of a BPSK hard-decision
device with

y = Vprs+é? (F.1)
d = signRe(\/pks—l—ej‘b) (F.2)

Since ¢ is uniformly distributed, the pdf of cos ¢ is

1
P(2) = A=

First consider the cross-correlation of s and d.

—1<2<1 (F.3)

Ry 2 &{sd*}
= / S Sign( V Pk S+ Zv‘) Dz, (Zr) dz,

Consider the case where s = +1. For clarity of notation, drop the subscript ‘r’ from z,., with
the understanding that we are only concerned with the real part of z. Then

E{sd"|s=+1} = /o:o sign(y/pr + 2) p-(2) dz (F.6)

= l/H sign(\/p7~|—z)\/17dz (F.7)

Plc 1
1 SRRy
/ 1—22 Pt \/1—22
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From standard integration tables,

. X
— arcsin

/ _dr z
Vaz — 22 |al
Therefore

—/Pk 1

+ — arcsin z
T

-1
E{sd*|s=+4+1} = —arcsinz
™

—1

/PR

2 :
= — arcsin /py
™

Since each BPSK symbol is equally likely, this is the final expression for Rq4.

Using a similar approach for R.4,

E{zd"|s=+1} = /_oozsign(\/[fjtz)pz(z)dz

Plc z
_ 2 d /
/ 1—z2 - \/1—22

From standard integration tables,

zdx
/a2 2
rop— a x
Therefore
-1 —/Pk 1 1
lad [s=+1}) = —(—VI=A)| +=(-VI-)
7T T

Since each BPSK symbol is equally likely, this is the final expression for R.4.
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Appendix G

QPSK in Constant Modulus
Interference

In this appendix we derive expressions for Ry and R.; when s is QPSK, z is constant
modulus with random, uniformly distributed phase, and d is the output of a QPSK hard-
decision device with

d = signRe(z)+ jsignlm (z) (G.2)

To calculate R4, we consider the case where s = eI™/* Then

8{ sd* | s = ejfr/4} — 62:4 /027r {sign (W—i— coS <;5> — jsign <W+ coS QS)} do

(G.3)

7y = arccos (—W) (G_4)

Examining each integral separately,

[ siem (Vou/2 +cosg) do = /__7(+1)d¢+/+j(—1)d¢+ " nas (@)

e

To clarify notation, define

= 21 — 4y (G.6)

This gives
E{sd | s ="} ;::4 {21 — 47) — j(2m — 47)} (G.7)
= V2 (1 — %arccos (—\/pk/2 )) (G.8)

= —27\T/§ arcsin (\/m) (G.9)
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Turning our attention now to R.g4,

5{ 2d" | s = ej”/‘l}

L[ [ovoton (7 )
jsin ¢ sign (W + cos cb) +

j cos ¢ sign (m +sin cb) +
sing sign (y/p/2 +sing) | do
iR
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(G.10)

(G.11)
(G.12)



Bibliography

1]

B. D. van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial
filtering”, IEEE ASSP Magazine, vol. 5, no. 2, pp. 424, Apr. 1988.

J. Litva and T.K. Lo, Digital Beamforming in Wireless Communications, Artech,
Boston, MA, 1996.

L.C. Godara, “Application of antenna arrays to mobile communications. I. Performance
improvement, feasibility, and system considerations”, Proc. of the IEEE, , no. 7, pp.
1031-1060, July 1997.

L.C. Godara, “Application of antenna arrays to mobile communications. II. Beam-
forming and direction-of-arrival considerations”, Proc. of the IEEE, , no. 8, pp. 1195—
1245, Aug 1997.

R.B. Ertel, Antenna Array Systems: Propagation and Performance, PhD thesis, Viginia
Tech, 1999.

J.C. Liberti and T.S. Rappaport, Smart Antennas for Wireless Communications: 1S-95
and Third Generation CDMA Applications, Prentice Hall, Englewood Cliffs, NJ, 1999.

T. E. Biedka, W. H. Tranter, and J. H. Reed, “Convergence analysis of the least squares
constant modulus algorithm in interference cancellation applications”, IEEFE Trans. on
Commun., vol. 48, no. 3, pp. 491-501, March 2000.

T.E. Biedka, J.H. Reed, and W.H. Tranter, “Mean convergence rate of a decision
directed adaptive beamformer with Gaussian interference”, Proc. of the IEEE Sensor
Array and Multichannel Signal Processing Workshop, March 2000.

A L. Swindlehurst, S. Daas, and J. Yang, “Analysis of a decision directed beamformer”,
IEEFE Trans. on Signal Processing., vol. 43, no. 12, pp. 2920-2927, December 1995.

218



[10]

[11]

[12]

[13]

[14]

[16]

[17]

219

C.M.S See, C.F.N. Cowan, and A. Nehorai, “Spatio-temporal channel identification and
equalization in the presence of strong co-channel interference”, Signal Processing, vol.
78, no. 2, pp. 127-138, Oct. 1999.

A.V. Keethi and J.J. Shynk, “Separation of cochannel signals in TDMA mobile radio”,
IEEE Trans. on Signal Processing., vol. 46, no. 10, pp. 2684-2697, Oct. 1998.

A.-J. van der Veen, “Algebraic methods for deterministic blind beamforming”, Proc.
of the IEEE, vol. 86, no. 10, pp. 1987-2008, Oct. 1998.

A.-J. van der Veen, S. Talwar, and A. Paulraj, “A subspace approach to blind space-
time signal processing for wireless communication systems”, IEEE Trans. on Signal
Processing., vol. 45, no. 1, pp. 173-190, Jan. 1997.

S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous co-channel
digital signals using an antenna array: Part I. algorithms”, IEEE Trans. on Signal
Processing., vol. 44, no. 5, May 1996.

A.V. Keethi, J.J. Shynk, and A. Mathur, “Steady-state analysis of the multistage
constant modulus array”, IEEE Trans. on Signal Processing., vol. 44, no. 4, pp. 948-
962, Apr. 1996.

J.J. Shynk and R.P. Gooch, “The constant modulus array for cochannel signal copy
and direction finding”, IEFEFE Trans. on Signal Processing., vol. 44, no. 3, pp. 652—660,
Mar. 1996.

T.E. Biedka, J.H. Reed, W.H. Tranter, and A.L. Swindlehurst, “Convergence analysis
of a decision directed beamformer. Part I: Gaussian interference”, to be submitted to
IEEE Trans. on Commun., April 2000.

T.E. Biedka, J.H. Reed, W.H. Tranter, and A.L. Swindlehurst, “Convergence analysis of
a decision directed beamformer. Part II: Constant modulus interference”, to be submitted
to IEEE Trans. on Commun., April 2000.

J.D. Kraus, Radio Astronomy, Cygnus-Quasar Books, Powell, OH, 2nd edition, 1986.

G. H. Golub and C. F. van Loan, Matriz Computations, Johns Hopkins University
Press, Baltimore, Maryland, second edition, 1989.

A.J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison-Wesley,
Reading, MA, 1995.

T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall,
Upper Saddle River, NJ, 1996.



[23]

28]

[29]

[30]

[31]

[32]

[33]

220

R.B. Ertel, P. Cardieri, K.W. Sowerby, T.S Rappaport, and J.H. Reed, “Overview
of spatial channel models for antenna array communication systems”, IEEE Personal
Communcations, vol. 5, pp. 10-22, Feb. 1998.

M.C. Jeruchim, P. Balaban, and K.S. Shanmugan, Simulation of Communication Sys-
tems, Plenum Press, New York, NY, 1992.

J. G. Proakis, Digital Communications, McGraw—Hill, New York, third edition, 1995.

J. H. Winters, “Optimum combining in digital mobile radio with cochannel interfer-
ence”, IEEFE Trans. Vehic. Tech., vol. VT-33, no. 3, pp. 144-155, Aug. 1984.

R.B. Ertel and J.H. Reed, “Generation of two equal power correlated rayleigh fading
envelopes”, IEEE Commun. Letters, vol. 2, no. 10, pp. 276-278, Oct. 1998.

I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate in adaptive
arrays”, IEEE Trans. Aerospace Electron. Syst., vol. AES-10, pp. 853-863, Nov. 1974.

B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.

W.A. Gardner, “Learning characteristics of stochastic-gradient-descent algorithms: a
general study, analysis, and critique”, Signal Processing, vol. 6, no. 2, pp. 113-133,
April 1984.

W. A. Sethares, “The LMS family”, in Efficient System Identification and Signal
Processing Algorithms, N. Kalouptsidis and S. Theodoridis, Eds. Springer-Verlag, 1993.

H. Krim and M. Viberg, “T'wo decades of array signal processing research: The para-
metric approach”, IEEE Signal Processing Magazine, pp. 67-94, July 1996.

R. T. Compton, “Pointing accuracy and dynamic range in a steered beam adaptive
array”, IEEE Transactions on Aerospace and Electronics Systems, vol. AES-16, no. 3,
pp- 280287, September 1980.

J. W. Kim and C. K. Un, “Signal subspace method for beamsteered adaptive arrays”,
Electronics Letters, vol. 25, no. 16, pp. 1076-1077, August 1989.

D. Feldman and L. J. Griffiths, “A constraint projection approach for robust adap-
tive beamforming”, in Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, May 1991, pp. 1381-1384.

R. O. Schmidt and R. E. Franks, “Multiple source DF signal processing: An experi-
mental system”, IEEE Transactions on Antennas and Propagation, vol. AP-34, no. 3,
pp- 281-290, March 1986.



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

221

B. G. Wahlberg, I. M. Y. Mareels, and I. Webster, “Experimental and theoretical
comparison of some algorithms for beamforming in single receiver adaptive arrays”,

IEEE Transactions on Antennas and Propagation, vol. AP-39, no. 1, pp. 21-28, January
1991.

J.-F. Cardoso, “Blind signal separation: Statistical principles”, Proc. of the IEEE, |
no. 10, pp. 2009-2026, Oct. 1998.

B. G. Agee, “Convergent behavior of modulus-restoring adaptive arrays in gaussian
interference environments”, Proc. of the Asilomar Conf. on Signals, Systems, and Com-
puters, pp. 818-822, Dec. 1988.

J. Lundell and B. Widrow, “Application of the constant modulus adaptive beamformer
to constant and nonconstant modulus signals”, Proc. of the Asilomar Conf. on Signals,
Systems, and Computers, pp. 432436, Nov. 1987.

J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant
modulus signals”, IEEE Trans. on Acous., Speech, and Signal Process., vol. ASSP-31,
no. 2, pp. 459-471, April 1983.

R. Gooch and J. Lundell, “The CM array: An adaptive beamformer for constant
modulus signals”, Proc. of Inter. Conf. on Acous., Speech, and Signal Process., pp.
2523-2526, April 1986.

B. G. Agee, “The least-squares CMA: A new technique for rapid correction of constant
modulus signals”, Proc. of Inter. Conf. on Acous., Speech, and Signal Process., pp.
953-956, April 1986.

B.G. Agee, “Maximum likelihood approaches to blind adaptive signal extraction using
narrowband arrays”, Proc. of the Asilomar Conf. on Signals, Systems, and Computers,
pp. 716-720, Nov. 1991.

J. J. Shynk and R. P. Gooch, “Convergence properties of the multistage CMA adaptive
beamformer”, Proc. of the Asilomar Conf. on Signals, Systems, and Computers, pp.
622—626, Nov. 1993.

B. G. Agee, “Blind separation and capture of communication signals using a multitarget
constant modulus beamformer”, Proc. of IEEE Military Commun. Conf., pp. 340-346,
May 1989.

I. Parra, G. Xu, and H. Lui, “A least squares projective constant modulus approach”,
Personal Indoor Mobile Radio Conference, pp. 673—676, 1995.



[48]

[49]

[50]

222

Alle-Jan van der Veen and A. Paulraj, “An analytical constant modulus algorithm”,
IEEFE Trans. Signal Processing, vol. 44, no. 5, pp. 1136-1155, May 1996.

A.J. van der Veen, “Algebraic methods for deterministic blind beamforming”, Proc. of
the IEEE, , no. 10, pp. 1987-2008, Oct. 1998.

K. Bakhru and D. Torrieri, “The maximin algorithm for adaptive arrays and frequency-
hopping communications”, IEEFE Trans. on Antennas and Propagation, vol. AP-32, pp.
919-928, Sept. 1984.

B. G. Agee, “Fast acquisition of burst and transient signals using a predictive adaptive
beamformer”, Proc. of IEEE Military Commun. Conf., pp. 19.3.1-19.3.6, 1989.

M. Viberg, “Sensor array processing using gated signals”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, no. 3, pp. 447-450, March 1989.

A F. Naguib, Adaptive Antennas for CDMA Wireless Networks, PhD thesis, Stanford
University, 1996.

B. G. Agee, S. V. Schell, and W. A. Gardner, “Spectral self-coherence restoral: A new
approach to blind adaptive signal extraction”, Proceedings of the IEEFE, vol. 78, no. 4,
pp. 756767, April 1990.

S. V. Schell and W. A. Gardner, “Programmable canonical correlation analysis: A flex-
ible framework for blind adaptive spatial filtering”, IEEFE Trans. on Signal Processing,
vol. 43, no. 12, pp. 2898-2908, Dec. 1995.

S.V. Schell, Exploitation of Spectral Correlation for Signal-Selective Direction Finding,
PhD thesis, University of California, Davis, CA, 1990.

B. G. Agee, The Property-Restoral Approach to Blind Adaptive Signal Extraction, PhD
thesis, University of California, Davis, CA, 19809.

T. E. Biedka, “Subspace constrained SCORE algorithms”, Proc. of the Asilomar
Conference on Signals, Systems, and Computers, pp. 716-720, November 1993.

M. F. Kahn, M. A. Mow, W. A. Gardner, and T. E. Biedka, “A recursive programmable
canonical correlation analyzer”, Proc. of the Second Workshop on Cyclostationary Sig-
nals, August 1994.

D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional
data communication systems”, IEFE Trans. on Commun., vol. COM-28, no. 11, pp.
1867-1875, Nov. 1980.



[61]

[64]

[65]

[66]

[67]

[68]

[69]

223

S. V. Schell and W. A. Gardner, “Maximum likelihood and common factor analysis-
based blind adaptive spatial filtering for cyclostationary signals”, in Proc. IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN,
April 1993, pp. 292-295.

D. M. Dlugos and R. A. Scholtz, “Acquisition of spread spectrum signals by an adaptive
array”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-37, no. 8, pp. 1253—
1270, Aug. 1989.

T. E. Biedka, W. H. Tranter, and J. H. Reed, “Convergence analysis of the least squares
constant modulus algorithm”, Proc. of the Asilomar Conf. on Signals, Systems, and
Computers, pp. 541-545, Nov. 1996.

Z. Ding, R.A. Kennedy, B.D.O. Anderson, and C.R. Johnson, Jr., “Ill-convergence of
Godard blind equalizers in data communication systems”, IEEE Trans. on Commun.,
vol. 39, no. 9, pp. 1313-1327, Sept. 1991.

Y. Li and Z. Ding, “Convergence analysis of finite length blind adaptive equalizers”,
IEEE Trans. Signal Processing, vol. 43, no. 9, pp. 2120-2129, Sept. 1995.

J. R. Treichler and M. G. Larimore, “The tone capture properties of CMA-based
interference suppressors”, IEEE Trans. on Acous., Speech, and Signal Process., vol.
ASSP-33, no. 4, pp. 946-958, August 1985.

T. E. Biedka, “A comparison of initialization schemes for blind adaptive beamforming”,
Proc. of Inter. Conf. on Acous., Speech, and Signal Process., pp. 1665-1668, May 1998.

R.W. Gerchberg and W.O. Saxton, “A practical algorithm for the determination of
phase from image and diffraction plane pictures”, Optik, vol. 35, no. 2, pp. 237-246,
1972.

Y. Wang, Y.C. Pati, Y.M. Cho, A. Paulraj, and T. Kailath, “A matrix factorization
approach to signal copy of constant modulus signals arriving at an antenna array”, Proc.
of the 28th Conf. on Information Science and Systems (Princeton, NJ), pp. 178-183,
Mar. 1994.

Henry Stark, Ed., Image Recovery - Theory and Application, Academic Press, 1987.

D.C. Youla, “Generalized image restoration by the method of alternating projections”,
IEEE Trans. on Circuits Syst., vol. CAS-25, pp. 694-702, Sept. 1978.

D.C. Youla and H. Webb, “Image restoration by the method of convex projections:
Part I, theory”, IEEE Trans. Medical Imaging, vol. MI-1, pp. 81-94, Oct. 1982.



73]

[76]

[77]

78]

[79]

[80]

[81]

[82]

224

H.J. Trussell and M.R. Civanlar, “The feasible solution in signal restoration”, IEEFFE
Trans. on Acous., Speech, and Signal Process., vol. ASSP-32, no. 2, pp. 201-212, April
1984.

Z. Kostic, M.I. Sezan, and E.L. Titlebaum, “Estimation of parameters of a multipath
channel using set-theoretic deconvolution”, IEEE Trans. on Commun., vol. 40, no. 6,
pp. 1006-1011, June 1992.

N.M. Blachman, “Detectors, bandpass nonlinearities, and their optimization: Inversion
of the Chebyshev transform”, IEEFE Trans. on Information Theory, vol. IT-17, no. 4,
pp. 398-404, July 1971.

N.M. Blachman, “The output signal-to-noise ratio of a bandpass limiter”, IEEE Trans.
on Aerosp. and Electronic Systems, p. 635, July 1968.

K.J. Friederichs, “A novel canceller for strong CW and angle modulated interferers in
spread spectrum receivers”, Proc. of IEEE Military Commun. Conf., pp. 32.4/1-4, Oct
1984.

Y.C. Pati, G.G. Raleigh, and A. Paulraj, “Estimation of co-channel FM signals with
multitarget adaptive phase-locked loops and antenna arrays”, Proc. of Inter. Conf. on
Acous., Speech, and Signal Process., pp. 1741-1744, May 1995.

N.M. Blachman, “Optimum nonlinearities and pessimum interference”, Proc. of the
Second Workshop on Cyclostationary Signals, pp. 5.1-9, Aug. 1994.

J. R. Treichler and M. G. Larimore, “The noise capture properties of the constant
modulus algorithm”, Proc. of Inter. Conf. on Acous., Speech, and Signal Process., pp.
1165-1168, August 1985.

R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, John Wiley and
Sons, NY, 1980.

S. Haykin, Adaptive Fitler Theory, Prentice Hall, Englewood Cliffs, NJ, third edition,
1996.



Vita

Thomas E. Biedka
EDUCATION
Ph.D. in Electrical Engineering: October 2001, Virginia Tech, Blacksburg, VA. Disser-

tation Title: Analysis and Development of Blind Adaptive Beamforming Algorithms

M.S. in Electrical Engineering: December 1989, University of Pittsburgh, Pittsburgh,
PA.

B.S. (with Honors) in Engineering Science: May 1987, Pennsylvania State University,
University Park, PA.

EXPERIENCE

June 2000-Present: Tropian, Inc. Title: Senior Systems Engineer

e Systems engineer for an effort to demonstrate the viability of a polar modulator for
generation of IS-95 and UMTS signals. This included an analysis of RF hardware
impairments and finite precision DSP limitations. Also responsible for testing of pro-
totype systems, including creation of LabWindows automated test software.

e Systems engineer for a mixed signal IC development. Responsible for development of
VCO calibration techniques and definition of system requirements for analog signal
processing paths. Developed novel techniques for time-aligning two analog waveforms.

e Responsible for modification and debugging of an ARM-based controller for cellphone
baseband emulation for test and evaluation of a polar modulation IC.

e Responsible for definition, programming, and debugging of a LabWindows GUI control
interface.

225



226

April 1990-June 2000: Raytheon Systems Company, Greenville TX Last Title: Senior Engi-

neer

Sept.

TDOA-FDOA Geolocation System - Primarily responsible for DSP algorithm develop-
ment, and supervision of real-time DSP software implementation. Assisting in hard-
ware implementation and system level issues.

CDMA Interference Cancellation - Responsible for the development and analysis of
techniques that combine non-linear multi-user detection approaches and linear multi-
sensor approaches.

PACS Smart Antenna - Supervised software development and testing; assisted with
field data collection; analyzed the data to determine channel parameters; assisted in
system integration and test; responsible for presentations and quarterly progress re-
ports to the customer and consortium members. This DARPA-sponsored program was
performed in cooperation with consortium members Hughes Network Systems, Hughes
Research Labs, and Stanford University.

Interference Cancellation and Direction Finding System - Responsible for DSP algo-
rithm development and performance analysis for a wireless communication application.

Various other signal processing development and analysis applications.

1988 - March 1990: University of Pittsburgh, Pittsburgh, PA

Teaching Assistant (Communications Classes) and Research Assistant (System Mod-
eling)

May 1998 - August 1988: NCR, Inc., Cambridge OH

Designed and constructed a prototype low-cost proprietary Local Area Network.

PUBLICATIONS

[1] T. E. Biedka, J. H. Reed, and W. H. Tranter, Statistics of Blind Spatial Signature
Estimators, Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,

Nov.

2000

[2] T. E. Biedka, W. H. Tranter, and J. H. Reed, ” Convergence Analysis of the Least Squares
Constant Modulus Algorithm in Interference Cancellation Applications”, IEEE Transactions
on Communications, vol. 8, no. 43, pp. 491-501, March 2000.



227

[3] T. E. Biedka, J. H. Reed, and W. H. Tranter, ”Mean Convergence Rate of a Decision
Directed Adaptive Beamformer with Gaussian Interference”, Proc. of the IEEE Sensor Array
and Multichannel Signal Processing Workshop, March, 2000.

[4] T. Biedka, B. Holden, S. Thornton, W. Ferguson, R. Hammons, B. Johnson, S. Kailas, V.
Liau, A. Paulraj, and S. Sandhu, ”Implementation of a Prototype Smart Antenna for Low
Tier PCS”, Proc. of the IEEE Vehicular Technology Conference, Houston, TX, May 1999.

[5] S. Thornton, B. Holden, T. Biedka, W. Nolan, B. Johnson, W. Ferguson, V. Liau, A.
Paulraj, S. Sandhu, ”Design and Testing of a Prototype Smart Antenna System for Low-Tier
PCS”, Presented at the 5th Stanford Workshop on Smart Antennas, July 1998.

[6] T. E. Biedka, ” A Comparison of Initialization Schemes for Blind Adaptive Beamforming”
, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.
1665-1668, May 1998.

[7] K. J. Krizman, T. E. Biedka, and T. S. Rappaport, ”"Wireless Position Location: Fun-
damentals, Implementation Strategies, and Sources of Error” , Proc. of IEEE Vehicular
Technology Conference, May 1997. (Also included in T.S. Rappaport, ed., Smart Antennas:
Adaptive Arrays, Algorithms, and Wireless Position Location , IEEE Press, 1998)

[8] T. E. Biedka, W. H. Tranter, and J. H. Reed, ” Convergence Analysis of the Least Squares
Constant Modulus Algorithm” | in Proc of the Thirtieth Asilomar Conference on Signals,
Systems, and Computers, Nov 1996.

[9] T. E. Biedka, J. H. Reed, and B. D. Woerner, ”Direction Finding Methods for CDMA
Systems” , in Proc of the Thirtieth Asilomar Conference on Signals, Systems, and Computers,
Nov 1996.

[10] T. S. Rappaport, J. H. Reed, and T. E. Biedka, " Position Location and E-911 Techniques
for Wireless Systems” , Tutorial presented at IEEE Intl. Conf. on Universal Personal
Communications, Cambridge, MA, Oct 1996.

[11] T. E. Biedka, L. M. Mili, and J. H. Reed, ”"Robust Estimation of Cyclic Correlation in
Contaminated Gaussian Noise” , Proc. of the Twenty-Ninth Asilomar Conference on Signals,
Systems, and Computers, Nov 1995.

[12] T. E. Biedka, " A Method for Reducing Computations in Cyclostationarity-Exploiting
Beamforming”, Proc of the International Conference on Acoustics, Speech, and Signal Process-
ing, May 1995.

[13] T. E. Biedka and M. F. Kahn, "Methods for Constraining a CMA Beamformer to
Extract a Cyclostationary Signal” , Proc. of the Second Workshop on Cyclostationary
Signals, Monterey, CA, August 1994.



228

[14] M. F. Kahn, M. A. Mow, W. A. Gardner, and T. E. Biedka, A Recursive Programmable
Canonical Correlation Analyzer, Proc. of the Second Workshop on Cyclostationary Signals,
Monterey, CA, August 1994.

[15] T. E. Biedka, ” Subspace-Constrained SCORE Algorithms”, Proc. of the Twenty Seventh
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November,
1993.

[16] M. F. Kahn, T. E. Biedka, and N. B. Whitley, Progress in Cyclostationary-Signal
Processing , Presented at the First Workshop on Cyclostationary Signal Processing, Yountville,
CA, August 1992.

[17] T. E. Biedka and B. G. Agee, Subinterval Cyclic MUSIC - Robust DF with Error in
Cycle Frequency Knowledge , Proc. of the Twenty Fifth Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, pp. 262-266, November 1991.



