
DESIGN AND IMPLEMENTATION OF A DISTRIBUTED TDOA-BASED

GEOLOCATION SYSTEM USING OSSIE AND LOW-COST USRP BOARDS

Michael S. Meuleners

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Electrical Engineering

Jeffrey H. Reed, Chair

Carl B. Dietrich

Luiz A. DaSilva

May 2, 2012

Ballston, VA

Keywords: SDR, OSSIE, TDOA, Geolocation

Copyright © 2012, Michael S. Meuleners

DESIGN AND IMPLEMENTATION OF A DISTRIBUTED TDOA-BASED

GEOLOCATION SYSTEM USING OSSIE AND LOW-COST USRP BOARDS

Michael S. Meuleners

ABSTRACT

The Software Communications Architecture (SCA) specification defines a framework

that allows modular software components to be developed and assembled to build larger

radio applications. The specification allows for these components to be distributed

among a set of computing hardware and to be connected by standard interfaces. This

research aims to build a spatially distributed SCA application for the Open Source SCA

Implementation: Embedded (OSSIE) implementation using low-cost Universal Software

Radio Peripheral (USRP) hardware. The system collects signals from multiple spatially

distributed collection devices and use those signals to compute precision estimates for the

location of emitters using time difference of arrival (TDOA) computations. Several

OSSIE components and tools are developed to support this research. Results are

presented showing the capabilities of the geolocation system.

 iii

I would like to thank the faculty of Wireless@VT, especially my advisors Dr. Jeff

Reed, Dr. Carl Dietrich, and Dr. Luiz DaSilva for their support in completing this thesis

research. I would also like to thank contributors to both the OSSIE project at Virginia

Tech and the GNU Radio project for providing such useful tools that helped greatly in the

completion of this research.

I would like to thank my parents for allowing me to leave radio hardware at their

house for an extended period of time to assist in collecting data for this research.

Finally, I would like to thank my beautiful wife, Melissa, for her patience and

love. I spent many hours working on this research while also working a full-time job,

leaving little time for us. I am truly thankful for her patience.

 iv

Acknowledgements .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... viii

List of Abbreviations ... ix

1 Introduction ... 1

1.1 Background .. 1

1.2 Contributions .. 3

1.3 Thesis Organization ... 4

2 Contributing Technologies and Concepts ... 5

2.1 Software Defined Radio ... 5

2.2 Software Communications Architecture .. 6

2.2.1 Common Object Request Broker Architecture ... 7

2.2.2 SCA Core Framework ... 7

2.2.3 SCA XML Configuration Files ... 7

2.2.4 SCA Operating Environment .. 8

2.2.5 Applications .. 8

2.2.6 Resources .. 8

2.2.7 Ports .. 9

2.2.8 CORBA Event Service ... 9

2.3 OSSIE .. 9

2.4 GNU Radio .. 10

2.5 FM Radio ... 11

2.6 Universal Software Radio Peripheral ... 12

3 Design and Implementation .. 15

3.1 Hardware .. 15

3.1.1 Distributed Hardware .. 15

3.1.2 USRP Precision Timing .. 16

3.1.3 Trimble Thunderbolt GPS Disciplined Oscillators 17

3.2 OSSIE Frameworks Modifications .. 19

 v

3.2.1 Thesis Interfaces ... 19

3.2.2 OSSIE Event Channel Implementation .. 19

3.2.3 Java OSSIE Support .. 21

3.3 OSSIE Waveforms ... 24

3.3.1 Initial Distributed Test Waveform .. 25

3.3.2 Final TDOA Waveform .. 25

3.4 OSSIE Components ... 26

3.4.1 USRP_TIME Component ... 26

3.4.2 USRP_Commander Component ... 27

3.4.3 Throttler Component ... 27

3.4.4 FM Demodulator Component ... 28

3.4.5 Arbitrary Ratio Resampler Component .. 29

3.4.6 Correlator Component .. 33

3.5 TDOA Geolocation .. 34

3.5.1 Iterative Taylor Series Approximation Method .. 34

3.5.2 Spherical Intersection Method .. 38

3.5.3 Error .. 40

3.6 Web Application .. 44

3.6.1 Signal Data Explorer ... 46

4 Experimentation .. 47

4.1 Procedure ... 47

4.1.1 Signal Collection ... 47

4.1.2 Signal Correlation ... 48

4.1.3 Simulating Collectors .. 49

4.1.4 Simulated Collector Arrangement .. 50

4.1.5 Solving for the Location of the Emitter .. 51

4.1.6 Analyzing the Results ... 51

4.2 Results .. 52

4.2.1 Theoretical Data .. 52

4.2.2 Unbalanced Configuration .. 53

4.2.3 Balanced Configuration .. 54

 vi

4.2.4 Overall Results .. 56

5 Conclusions and Future Work .. 58

5.1 Conclusions .. 58

5.2 Future Work ... 59

5.2.1 Implementation with a Full Set of Collectors ... 59

5.2.2 Analysis of Bias and Error in the System ... 60

5.2.3 Java OSSIE Development ... 60

5.2.4 Improvements in OSSIE to Support Distributed Applications 60

References ... 62

APPENDIX A. TDOA Waveform Software Assembly Descriptor 65

APPENDIX B. TDOA Geolocation Algorithm Implementation 72

APPENDIX C. Polyphase Resampler Octave Code .. 78

APPENDIX D. Fast Correlator Implementation ... 81

APPENDIX E. USRP_TIME Process Implementation ... 84

 vii

Figure 1 FM radio spectrum ... 11

Figure 2 FM signal averaged FFT after demodulation ... 12

Figure 3 VPN between Ashburn and Haymarket ... 15

Figure 4 Verilog change to reset timestamp on USRP ... 16

Figure 5 USRP board .. 17

Figure 6 Voltage divider for 1PPS input on USRP ... 18

Figure 7 Trimble Thunderbolt packet structure .. 18

Figure 8 Timestamp packet ... 18

Figure 9 Event Channel Port connection .. 20

Figure 10 Thesis events .. 21

Figure 11 Command and control GUI for TDOA waveform ... 24

Figure 12 WavLoader Java application .. 24

Figure 13 Initial OSSIE waveform ... 25

Figure 14 Final TDOA waveform ... 26

Figure 15 USRP in-band packet ... 27

Figure 16 FM demodulator ... 28

Figure 17 Polyphase resampler ... 30

Figure 18 Plot for polyphase resampler implemented in Octave 32

Figure 19 Effects of nearest-neighbor interpolation on signal .. 33

Figure 20 Iterative method converging and diverging .. 38

Figure 21 Web application system diagram .. 44

Figure 22 Web application GUI .. 45

Figure 23 Web application configuration XML ... 46

Figure 24 Sample time plot for 91.9MHz ... 47

Figure 25 Sample correlation plot for 91.9MHz ... 48

Figure 26 Plot showing collectors and emitter with TDOA measurements 48

Figure 27 Histogram for real (Haymarket/Ashburn) and simulated (Lorton/Ashburn)

TDOA measurements for 91.9MHz .. 50

Figure 28 Balanced and unbalanced collector placements ... 51

Figure 29 Error ellipsoid for 91.9MHz with unbalanced collector placement 57

 viii

Table 1 TDOA results with theoretical data ... 52

Table 2 Actual location of emitters ... 53

Table 3 TDOA statistics for unbalanced collector placement .. 53

Table 4 Geolocation solutions for unbalanced collector placement 54

Table 5 TDOA statistics for balanced collector placement .. 55

Table 6 Geolocation solutions for balanced collector placement 55

Table 7 Ellipsoids for unbalanced placement ... 56

Table 8 Ellipsoids for balanced placement ... 56

 ix

ADC Analog to Digital Converter

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CF SCA Core Framework

CORBA Common Object Request Broker Architecture

DAC Digital to Analog Converter

DAS Device Assembly Sequence

DCD Device Configuration Descriptor

DMD Domain Manager Configuration Descriptor

DPD Device Package Descriptor

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIR Finite Impulse Response

FM Frequency Modulation

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPS Global Positioning System

GPSDO GPS Disciplined Oscillator

GUI Graphical User Interface

GWT Google Web Toolkit

IDL Interface Definition Language

IF Intermediate Frequency

JAMA Java Matrix Package

JPEO Joint Program Executive Office

JTRS Joint Tactical Radio System

OE SCA Operating Environment

ORB Object Request Broker

OS Operating System

OSSIE Open-Source SCA Implementation: Embedded

 x

PDF Probability Density Function

PGA Programmable Gain Amplifier

PRF Properties Descriptor

RBDS Radio Broadcast Data System

RDOA Range Difference of Arrival

RF Radio Frequency

RX Receive

SAD Software Assembly Descriptor

SCA Software Communications Architecture

SCD Software Component Descriptor

SDR Software-Defined Radio

SNR Signal-to-Noise Ratio

SOI Signal of Interest

SPD Software Package Descriptor

TDOA Time Difference of Arrival

TOA Time of Arrival

TX Transmit

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VPN Virtual Private Network

XML Extensible Markup Language

 1

This research aims to build a spatially distributed radio system to perform Time

Difference of Arrival (TDOA) based geolocation of a specified signal of interest utilizing

the Internet as a network to connect Software Defined Radios (SDR). This section

provides background material on SDR, summarizes contributions of the thesis, and

provides an overview of the rest of the document.

In the past, radio systems were largely developed for a specific purpose. A radio might

be defined to support the 802.11(b) standard and implemented in an application-specific

integrated circuit (ASIC) or other piece of purpose-specific hardware. If a new standard

was defined, such as 802.11(g), a new piece of hardware is required to implement that

standard. SDR defines a class of radios that are largely implemented in, or controlled by

software [1]. The definition of SDR is a large topic of discussion in the radio

community, and can have many different definitions depending on who is asked. While

one might consider any hardware aside from a digitizer to be contraband in the world of

SDR, another may allow for a complex configurable RF front-end prior to the digitizer.

For the purposes of this research, an SDR is defined as “a radio that is substantially

defined in software and whose physical layer behavior can be significantly altered

through changes to its software,” as defined by [1]. This definition is important because

it allows for a radio system to be built with maximum flexibility through use of easily

reprogrammable general-purpose processors (GPP), while also creating a realistic design

without the requirement for extremely high-speed digitization hardware. One radio that

meets this definition is the Universal Software Radio Peripheral (USRP) [2]. This piece

of hardware is a modular design incorporating a digitizer and a set of pluggable RF front-

ends of varying capability and complexity. The flexibility gained with an SDR is not

without its drawbacks. With more flexible processing come possible increases in

required processing power. This deficiency has become less important recently with

increased performance and lower cost of commodity computer hardware.

 2

In an SDR application, once a hardware solution has been chosen, software must be

written to control that hardware and utilize the signals that have been digitized. Devices

such as the USRP provide a set of libraries for controlling the radio and sending and

receiving signals. Software can then be written to take those signals and apply any

processing required. Several frameworks have been defined to facilitate building SDR

applications. A software framework is “a universal, reusable software platform used to

develop applications, products and solutions,” as defined by [3]. A software framework

is important for developers who wish to concentrate on building software signal

processing components and applications and allow the framework to provide a means to

connect those components. Some frameworks also provide libraries with useful

collection of signal processing components and utilities to aid in software development.

Several frameworks exist or are being developed. GNU Radio is a popular tool for

hobbyists and researchers to use when prototyping software defined signal processing

systems. GNU Radio provides a simple framework for connecting software components

and building SDR applications [4]. Another framework that is available is the Software

Communications Architecture specification, which was defined for the Joint Tactical

Radio System (JTRS) by the Joint Program Executive Office (JPEO) [5]. JTRS is a radio

system that was designed to be implemented by the next generation radio used by the US

Military [6]. The SCA specification has several implementations, including several

commercial and open-source implementations. The SCA specification is built upon the

Common Object Request Broker Architecture (CORBA), which provides support for

distributed and multiplatform computing [5]. The ability do define a distributed

application is important not only because it allows distribution of processing

requirements over a set of hardware, but also because it allows for those components to

be distributed over a wide area network so that some components can be placed as close

as possible to their corresponding RF hardware. The signal can then be processed

accordingly, possibly resulting in a smaller amount of data being transmitted over a slow

or unreliable network.

 3

The increasing flexibility of radio systems through implementation in software allows for

radio systems to change quicker today than ever possible in the past. A single radio

device such as a cell phone or tablet may be able to support many different

communications standards with a single RF/Digital front-end. A handset could be built

to support both GSM and CDMA, both utilizing the same RF front-end, with the rest of

the physical layer being implemented in software. These possibilities allow for standards

to be created and updated faster, introducing many more types of signals into the already

crowded world of radio communications.

In many cases, it is useful to have the ability to locate an RF signal. This can be useful

for mapping the location of a set of transmitters in an area of interest, or to locate a radio

of a user who is in distress. Because of the increasing variability and complexity of radio

systems, an SDR is a great platform for signal collection for performing geolocation. The

flexibility of the systems allows for a wide variety of signals to be collected, both in

frequency and in signal type. Since most of the system can be defined or controlled by

software, it is possible to take advantage of having access to the signal prior to and after

demodulation and processing. There are a number of challenges with generating a

usable location estimate from an SDR, especially a low-cost device such as a USRP. For

this research, TDOA geolocation was considered. Precision and accuracy in time tagging

of the data are very important for TDOA geolocation. Signal-to-noise ratio (SNR),

bandwidth, and integration time are also important factors, and directly affect the error in

the TDOA measurement [7].

Several contributions will be made to the OSSIE framework as a result of this research.

• OSSIE Bug fixes – Several bugs were found in the OSSIE framework precluding

the deployment of multiple nodes utilizing the USRP board.

• OSSIE CORBA Event Service implementation – The OSSIE Core Framework

was modified to allow CORBA Event Channels to be connected to user developed

software components. This allowed for easier development of de-coupled

command and control for OSSIE software applications.

 4

• OSSIE Java Support – Several OSSIE software components were built for the

Java programming language. This includes a Java WavLoader, for loading and

controlling OSSIE applications from Java. Support for Java OSSIE Resources

was added to allow for developers to build software components using the Java

programming language. Several OSSIE Ports were also implemented in java to

facilitate connecting Java OSSIE Resources with other Resources.

The OSSIE TDOA geolocation application developed for this research will also be made

available for anyone interested in continuing this research.

This thesis starts in section 2 by introducing the technologies and key concepts that are

important for designing and building distributed SDR applications implemented in

OSSIE. The Software Communications Architecture (SCA) framework and OSSIE

implementation of the SCA are introduced. In addition, the hardware platform utilized

for this research is introduced, as are concepts related to using that hardware to achieve

the goal of this research. In section 3 the components and software built for this research

are described. Components for collecting the signal, correlating the signal to generate

TDOA measurements, and using those measurements to locate an emitter were presented.

These concepts are then combined to build an OSSIE Application. The results gained

from this exercise are then presented in section 4 and conclusions are drawn and future

work is suggested in section 5. Important code implementations are included in the

appendices.

 5

Many software and hardware components were utilized in the execution of this research.

The following technologies and concepts were considered vital in completing the

research presented in this paper. SDR is introduced, including the frameworks utilized

for completing this research. The signal of interest used in this research is then

introduced. Finally, the collection platform used by this research is introduced. Because

this research focuses on receiving and processing a signal, signal reception will be the

focus of this discussion.

SDR has been used to describe many different types of systems. In its ideal form, it is

nothing more than a digitizer connected to an antenna, with all other components

implemented in software. This is very convenient in theory, but at least for the moment,

it is not practical in reality. There are many reasons for this, but mainly it is a result of

limitations and cost of hardware. An ideal hardware system for software radio would be

required to cover the range of all possible signals that could possibly be collected with

that device [1]. These signals can range from DC all the way up to many gigahertz in

frequency. According to Nyquist, an analog to digital converter to cover this range

would be required to sample at least twice the highest bandwidth of the collected signal.

Not only is a digitizer of this caliber very expensive, if not impossible to acquire, but

once captured, the signal would be sampled at such a high rate that it may be impossible

to process in real time. Another important factor is dynamic range, because it defines the

highest and lowest power signals that can be digitized [1]. For an ideal SDR to operate, it

would be required to capture the lowest and highest power signals in its coverage range.

This may result in reduced dynamic range and increased quantization error for lower

power signals in a band where higher power signals exist. For these reasons, a typical

software defined radio employs a number of signal conditioning steps prior to

digitization. These steps can include [1]

• Signal amplification/attenuation, to scale the analog signal to match the

capabilities of the digitizer,

 6

• Filtering, to reject out of band signals to prevent aliasing during

digitization,

• Down conversion, to shift the frequency range of the desired signal down

to something that the digitizer can sample. This can be to an intermediate

frequency (IF) or directly to baseband with possibly several stages in-

between.

The USRP SDR system used by this research employs all of these components [4]. For

this research the definition of an SDR is a radio system where much of the system is

implemented or controlled by software. It is a system that is capable of multiple modes

of operation because its input and output behavior is determined by software.

The Software Communications Architecture (SCA) defines a portable, open software

framework for SDR applications and components that allows for SDR applications to be

built with a re-usable, common set of components [5].

According to the Software Communications Architecture Specification document [5], the

SCA has been designed to:

i. “Provide for portability of applications software between different SCA

implementations,

ii. Leverage commercial standards to reduce development cost,

iii. Reduce software development time through the ability to reuse design modules,

iv. Build on evolving commercial frameworks and architectures.”

These requirements were achieved by defining a standards-based, modular platform,

ensuring that components developed on different platforms and programming languages

can interoperate together without a great deal of time spent facilitating that

interoperability by the developer [5].

 7

The Common Object Request Broker Architecture (CORBA) is an Object Management

Group (OMG) middleware standard that allows for applications written in different

programming languages and for different platforms to interact together executing on

distributed processors and platforms [5]. It defines an Interface Definition Language

(IDL) to define interfaces between components. Software components developed for use

with CORBA implement these interfaces, and the Object Request Broker (ORB) provides

the plumbing to connect these interfaces and pass information between software

components [5].

The Core Framework (CF) defines a set of CORBA interfaces defined for different

components in an SCA system. The Framework Control Interfaces include the

DomainManager, DeviceManager, Application, and ApplicationFactory interfaces.

These components are responsible for installing, managing, and uninstalling software

from the system [5]. The Framework Services interfaces include the File, FileSystem,

and FileManager interfaces. These interfaces provide access to the file system and other

services [5]. The Devices interfaces include Device, LoadableDevice, ExecutableDevice,

and AggregateDevice. These interfaces provide an API for interaction with devices [5].

Finally, the CF provides a set of Base Application Interfaces, including Port, LifeCycle,

TestableObject, PropertySet, PortSupplier, ResourceFactory, and Resource, that provide

an API for system software components, including Resources and Devices [5]. The

Resource interface is important for this research because it is the base class for every

software component written to support this research including the USRP_TIME Device

and each of the signal processing components. An implementation of the SCA must

provide implementations of most of these interfaces [5].

Every component in an SCA system has a set of one or more configuration XML files,

whose purpose is to describe the capabilities and requirements of each component [5].

These files are:

 8

• The Software Package Descriptor (SPD) describes the implementation of a

software component,

• The Software Component Descriptor (SCD) describes a software component,

including what interface Ports the component shall Use or Provide,

• The Software Assembly Descriptor (SAD) describes the components and

connections which make up an SCA waveform, as well as waveform-specific

property values,

• The Properties Descriptor (PRF) describes a set of properties that a software

component has, including its default values,

• The Device Package Descriptor (DPD) describes a Device, including its make and

model,

• The Device Configuration Descriptor (DCD) identifies the Devices associated

with an instance of a DeviceManager,

• The Domain Manager Configuration Descriptor (DMD) describes the

configuration for the DomainManager.

The SCA Operating Environment (OE) is the set of services that an SCA implementation

provides to users of the framework. The OE includes the POSIX Operating System (OS),

CORBA Middleware, CORBA Naming Service, CORBA Log Service, and CORBA

Event Service [5].

Each Application (Waveform) that can be installed in an SCA system implements the

Application interface. Each Application has one or more Resources that act together to

perform a function. The Application has a SAD file to describe its Resources, their

configured properties and the Port interconnections [5].

Each software component that is to be used in an Application implements the Resource

interface. This includes both Device and signal processing Resources. Each Resource

 9

has a PRF, a SCD, and a SPD file, to describe its properties, its capabilities, and its

implementations [5].

The SCA defines a Port interface for data flow between Resources. The Port defines an

API for connecting and disconnecting ports. A software component can both provide

ports and use ports. The provider of a Port provides an implementation of that Port. The

user of a Port can call the provided methods associated with the port. For this reason, the

SCA specification refers to the Ports differently depending on what side of the port the

component sits. If the component sits on the user side, it is known as a Uses Port. If it

sits on the provider side, it is known as a Provides Port [5].

The SCA specification requires that each implementation implement the CORBA Event

Service as part of its OE. The implementation of the CORBA Event Service must

implement both the PushSupplier and PushConsumer interfaces defined in the

CosEventComm module. The SCA uses the CORBA Event Service by allowing a set of

event channels to be set up to allow decoupled connectivity between software

components. The SCA Specification indicates two channels that must be defined, the

Incoming Domain Management Channel (IDM_Channel) and the Outgoing Domain

Management Channel (ODM_Channel). Other event channels may be created and

connected to software components as seen fit [5].

Open Source SCA Implementation: Embedded (OSSIE) is an implementation of the

Software Communications Architecture (SCA) specification developed by Dr. Max

Robert and a team of Dr. Jeff Reed’s students at Virginia Tech [8]. OSSIE is a free and

open source SCA implementation that was built initially because of high costs associated

with commercial implementations of the SCA. OSSIE has seen continued development

by students at Virginia Tech and has received interest from industry [8].

 10

While OSSIE implements a large portion of the SCA specification, it is missing some

important features. OSSIE does not support automatic allocation of resources. For this

reason, OSSIE defines an additional XML file, the DAS (Device Assembly Sequence)

file, for each application that assigns each software component to the Device where it will

be executed. OSSIE also lacks the ability to allow more than one of the same Device

nodes to be used within one DomainManager at the same time. The most important

missing feature that was required in this research was support for the CORBA Event

Service for software components to allow decoupled command and control of an

Application.

OSSIE provides a limited set of included Port implementations for connecting software

components. It provides a set of generic data Ports for streaming signal data, and a

second set of the same Ports allowing metadata to be transmitted. In general, an OSSIE

Uses Port sends data across an interface and an OSSIE Provides Port receives that data.

For the purposes of this research, where Ports are used or built, the terminology will be

used in the same manner.

GNU Radio is another open source framework for building experimental SDR

applications. While GNU Radio does not implement a standard like OSSIE, it also

allows a developer to build up signal-processing applications using modular components.

GNU Radio connects and configures components in a Python application known as a

“flow graph.” Components can be written in several languages, including C++ and

Python [4]. This allows for flexible applications that can be modified and quickly

executed. GNU Radio also provides several out-of-the-box tools that can be used to

visually build a flow graph and other tools that can be used analyze spectrum and verify

that the radio is working. For this research, this was the part of GNU Radio that was

most helpful. The FFT tool and waterfall tool were used to investigate what signals were

available and to choose the proper signals for use in this research. Also used was libusrp,

a library included with GNU Radio providing an API to interface with the USRP Radio.

 11

This API allows parameters to be set that control the operation of the USRP and its

daughterboards. The API also allows data to be streamed to and from the USRP [4].

For this research, VHF FM Radio broadcast signals were chosen as the signal of interest

(SOI) for collection and location determination. This signal was chosen because it is

consistently available and easy to collect. In a standard analog FM radio signal, the entire

signal data is contained within an FM modulated signal. Once demodulated, the one-

sided spectrum of an FM signal is approximately 100kHz wide. Figure 1 shows the

spectrum of the FM signal after demodulation. In the audible frequency range, the signal

contains the mono audio channel (left + right) between 30hz and 15kHz. At 19kHz, there

is a pilot tone indicating a stereo audio channel (left – right) is centered at twice this

frequency, 38kHz. The FM signal may optionally contain several auxiliary channels

between 53kHz and 99kHz. Radio Broadcast Data System (RBDS), if present, is

centered at 57kHz. Centered at 67.65kHz is DirectBand, or a subcarrier containing

secondary content (SCA). A second secondary content subcarrier can sometimes be

found at 92kHz [9]. When demodulating the audio for mono audio playback, the

demodulated signal can be filtered to reject anything above 15kHz, but for the purposes

of this research, the time-varying components above 15kHz were kept to aid in the

correlation phase by keeping as much time-varying information as possible in the signal

to maximize the bandwidth of the signal.

Figure 1 FM radio spectrum

 12

Figure 2 shows an actual averaged FFT captured using an application built with the GNU

Radio Companion to demodulate the FM Radio signal and generate an FFT.

Figure 2 FM signal averaged FFT after demodulation

The hardware platform chosen for this research is the original Universal Software Radio

Peripheral (USRP), also known as the USRP1, since newer USRP boards have since been

released [4]. The USRP is an open source experimental SDR radio developed by Matt

Ettus of Ettus Research [4]. The USRP was chosen for its low-cost and for its

availability for this research. The USRP provides capability for both receiving and

transmitting digital signals. It is built with a modular design, allowing different receive

(RX) and transmit (TX) front-ends to be installed on its four daughterboard slots. The

USRP has four A/D converters for signal digitization, four D/A converters for signal

transmission, an Altera FPGA chip for digital processing, and a Cypress FX2 USB

interface chip to provide a high speed USB2 interface to the host PC [4].

Two RX daughterboard slots are provided. Each slot provides two high-speed 12-bit A/D

converters capable of digitizing analog signals at 64M samples per second. Prior to each

A/D converter is a programmable gain amplifier (PGA) that allows boosting the analog

signal up to 20dB prior to digitization to make best use of the A/D dynamic range.

Depending on the RX daughterboard used, the signal is either digitized as a complex

signal or a real signal and may be either at baseband, an intermediate frequency (IF), or at

the original frequency. After digitization, the A/D is received by the digital inputs on the

 13

Altera FPGA chip. The FPGA is loaded with an image that provides several signal

conditioning steps prior to the data being streamed across the USB2 interface to the PC.

The signal is first multiplied by a constant frequency signal to shift the signal to

baseband, and then the signal is decimated. The in-phase (I) and quadrature (Q) samples

are then interleaved and transmitted over the USB2 bus to the PC [4].

The USRP board also provides two TX chains for transmitting signals. The TX process

is much the same as the RX process, except in reverse. The interleaved I and Q samples

are received by the FPGA chip over the USB bus then interpolated and up-converted to

IF. Two high-speed 14-bit D/A converters are provided for each TX chain, capable of

converting signals at 128M samples per second. After up-conversion to IF, the digital

signal is passed through the D/A converter and run through a PGA providing up to 20dB

gain. The analog signal is then delivered to the TX daughterboard through the provided

connector where it can be mixed and filtered to the proper band [4].

The behavior of the daughterboards and the FPGA components for both the TX and RX

chains are completely programmable over the USB bus.

The RF daughterboard chosen for signal reception in this project is the WBX board. The

WBX is a transceiver, having a RX/TX capability from 50-2200MHz [10]. It provides

on-board analog filtering and mixing to reject out of band interference before digitization.

Its mixers down-convert the signal to IF and also separate the incoming signal into I and

Q components such that the signal is digitized as a complex signal. The WBX was

chosen for its wide range and coverage around the FM radio band.

The USRP board has a number of limitations, which are important for solving a

geolocation problem. First, in order to provide an accurate timestamp for each sample

recorded, each radio system must have access to a very accurate time source. If a host

computer could provide an accurate time source, the signal could be time-tagged on the

host. The arrival time of each packet on the PC is not deterministic due to the method in

how the data is transmitted from the FPGA to the PC. The data is loaded into a buffer on

 14

the FPGA and transmitted via the USB interface when possible. Because of this the jitter

in arrival time of data on the host is too great. The USB bus is also too slow to transmit

data to the PC at the full rate of 64MS/s for maximum timing resolution. The signal must

be decimated prior to transfer, so not only is the jitter too great, but the time resolution is

also too great to generate an accurate timestamp. The USB2 bus can handle a maximum

of 480 Mbit/sec. At 64MS/sec, the USRP transmits

 64
Msample

sec
32

bits

sample
= 2048Mbit

sec
 (1)

which is well above the theoretical maximum for the USB interface. Decimating by 8

brings the rate down to a more manageable 256Mbit/sec. If accurate timing could be

attained using a PC at this rate, corresponding to a sampling rate of 8MS/sec, the time

resolution would be

1

8
Msample
sec

=1.25 ⋅10−7s (2)

during which time a collected signal travels

 1.25 ⋅10−7s ⋅299792458m
s
= 37.5m (3)

which might be acceptable for some targets and requirements for geolocation accuracy

but not for others. Therefore, a method of time-tagging the samples coming off of the

USRP board is used and is described in section 3.1.2.

Another problem with the USRP board is that there is some tolerance in the oscillator

clock rate, such that a signal collected at two separate USRP boards will not be sampled

at precisely the same rate. Because the signals are not collected at the same rate,

correlating the data collected from these sources will not be possible to a high degree of

precision. An arbitrary ratio resampler is described in section 3.4.5 to compensate for

this issue.

 15

This research required many building blocks to assemble a fully working TDOA

geolocation system. The network and hardware infrastructures are introduced. This is

followed by a discussion of hardware modifications required. The OSSIE framework

modifications are then described. Finally, the OSSIE waveforms and components are

described.

Two OSSIE nodes were built, one placed in Haymarket, VA and the other placed in

Ashburn, VA. Each OSSIE node contained a single GPP and a single USRP board. The

USRP boards were connected to 75-ohm antennas through the RG-6 wiring already

present in each house, via a 50/75-ohm converter, to avoid any unnecessary interference.

A Trimble Thunderbolt GPS Disciplined Oscillator (GPSDO) and antenna were installed

in each house, also connected to their antennas through the house RG-6 wiring. The GPP

Devices were connected to the LAN in either house and the house LANs were linked via

a VPN connection installed for this purpose, as seen in Figure 3.

Figure 3 VPN between Ashburn and Haymarket

 16

The USRP board in its default configuration serializes only signal data over the USB bus.

Because the research presented requires precision time tagging to facilitate accurate

TDOA measurements, an accurate time source had to be connected to the USRP board.

Earlier in the development of the GNU Radio project, there was an effort to build an

FPGA firmware version that transmitted metadata in-band with the signal data over USB.

This endeavor was abandoned, but the Verilog codebase still exists [11]. The Verilog

code maintains an internal clock and tags each packet sent to the host with a timestamp in

samples. Because the USRP board could not be modified physically for this research,

there is no way to coherently lock the on-board oscillator to an outside reference. The

on-board oscillator cannot be relied upon to deliver a precise 64MS/s clock. There is a

possibility, however, to connect an accurate 1PPS reference to a high speed input on a

Basic RX daughter board on the unused side of the USRP board. The input can then be

used to reset the clock of the USRP board at each 1PPS signal. The received signal is

later resampled based on the number of clocks per second that were detected, such that

the sampling rate on the data from each USRP matches. The signals are still not

coherently sampled, but they should be aligned to within the period of one sample, which

was deemed accurate enough for the purposes of this research. The Verilog code that

was added/modified to perform this clock reset is shown in Figure 4. Figure 5 shows a

picture of the USRP board with a 1PPS signal wired in.

Figure 4 Verilog change to reset timestamp on USRP

 17

Figure 5 USRP board

Trimble Thunderbolt GPS Disciplined Oscillators (GPSDO) were installed alongside

each USRP board to provide the precise 1PPS signal. The signal provided by the

Thunderbolt is output between 0 and 5V, where there is a precise rise in signal from 0 to

5V at the beginning of each second. Because the signal ranges from 0 to 5V, this signal

would damage the USRP board if connected to the input. A voltage divider was built up

to drop the voltage down to 3.125V, well within the 3.3V allowed by the USRPs high-

speed inputs. A pull-down resistor with capacitor was also added to filter out high

frequency transients in the input. This is the same voltage divider used on the USRP

N210 board [12]. Figure 6 shows the schematic of the implemented voltage divider.

 18

Figure 6 Voltage divider for 1PPS input on USRP

The Thunderbolt also has available a serial output that transmits a number of useful

pieces of information. The most useful for this research are the time packets that indicate

the current time and are broadcast at the beginning of every second. Figure 7 shows the

structure of each packet coming off of the GPSDO [13].

Figure 7 Trimble Thunderbolt packet structure

Figure 8 shows the layout of the <DATA STRING> element for the timestamp packet

[13]. Each row represents 32 bits, and the rows are consecutively transmitted. All fields

shown of greater than one bit are encoded as unsigned integers and are carried in network

byte order, where the most significant byte is carried first [13]. The timestamp defined

by the packet indicates the second at which the last 1PPS signal was received. Because

the Linux system could not keep reliable time, this timestamp was used as an accurate

time reference for the system.

Figure 8 Timestamp packet

 19

Several modifications were made to the OSSIE framework to support this research. A set

of interfaces was added to OSSIE to support distributed data transfer. The OSSIE Event

channel was enabled and implemented for application components. Finally, a set of Java

OSSIE Software Components was built.

To overcome the speed and latency issues found in section 3.3.1 with the OSSIE test

waveform using the OSSIE-provided interfaces, a new type of Port that is buffered on

both ends was defined in order to overcome these issues and still have the ability to

reliably transmit a number of sequential packets. For this research, a new version of the

standardInterfaces complexShort interface was created that has a buffer on both the Uses

and Provides side of the connection. On the Uses side, packets are accumulated in a

buffer until they can be sent and then buffered again on the Provides side. This type of

interface can only be used in between a set of components that is not transmitting at all

times, otherwise the buffer on the Uses side of the Port will be guaranteed to fill up if the

amount of data exceeds the throughput available. It is particularly useful for transmitting

snapshots of continuous data. A TriggerControl interface was also built to allow one

component to request a snapshot of data from another component. These Ports were

placed in a new OSSIE package called thesisInterfaces. The standard OSSIE

standardInterfaces Ports were also modified to allow each Port to optionally transmit

metadata.

The SCA specification calls for the OE to provide an implementation of the CORBA

Event Service that implements the PushSupplier and PushConsumer interfaces from the

CosEventComm module [5]. There is such an implementation defined for use with

omniORB, and that implementation is called omniEvents. In looking at the OSSIE

source code, it appears as though at some point there was an intention to implement this

functionality, as some of this functionality was present, but commented out. The

Incoming Domain Management Channel (IDM_Channel) and the Outgoing Domain

 20

Management Channel (ODM_Channel) were implemented partially, but capability to

connect SCA Resources to event channels was not fully implemented.

For this research, the CORBA Event Service was enabled in OSSIE and functionality was

implemented that allows connecting software components to event channels. A software

component can utilize the event channel by connecting a Uses Port on that component to

an event channel, whether or not the Port is publishing or subscribing to events. The

ApplicationFactory implementation was modified such that when an Application requires

an event channel to be connected to a component’s Uses Port, it passes a reference to the

specified event channel into the connectPort method of the component’s Uses Port. The

component subsequently connects a publisher or subscriber to the connection and allows

the messages to be sent to or received from that event channel. This functionality was

useful in this research as it allowed the command and control GUI to be decoupled from

the waveform code by allowing both the waveform components and the GUI application

to independently publish and subscribe to the same CORBA Event Channels. These

Event Channels can be connected in the software assembly descriptor XML file using the

same <connectinterface> tags used to connect other Uses and Provides Ports [5]. Figure

9 shows an example connection used in this research to connect the Correlator

component’s EVENTS_IN Port to the THESIS_EVENTS event channel.

Figure 9 Event Channel Port connection

 21

The CosEventComm interface indicates that events passed on the event channel must be

the CORBA Any type, which means that any CORBA data type can be used as an event

on an event channel [14]. For this research, several event types were defined and used,

including a TdoaEvent that is sent whenever a TDOA measurement is made. A

TriggerCollect event is defined to allow a trigger to be sent from the control application.

A TuneRequestEvent is also defined to allow tuning of the USRP during operations. The

CORBA IDL definition of these events is illustrated in Figure 10.

Figure 10 Thesis events

Decoupling the software components means that components do not have to care or know

if other components are interacting on its event channels. If a component is generating

status, it does not care if anyone is consuming that status. In the same way, if a

component is listening for command and control events, it does not care who sends the

event or if they are not online at any given point in time. This is useful in a large system

where it may be unknown how many waveforms are online at a given point in time,

where single or multiple points of command and control are desired.

OSSIE supports building signal processing components in two programming languages,

the first being C++ [15]. C++ is a statically typed, multi-level programming language

that combines the features of an Object-Oriented programming language with similar

syntax to and interoperability with C [16]. This allows usage of many existing legacy

signal-processing libraries. C++ is also a native, compiled language that is compiled to

machine language before execution. This allows for very fast, efficient code that is

 22

optimized for the operating system and hardware. Because of these traits, C++ is a great

language for writing signal processing components for a SDR system.

Python, the other supported language, is a higher-level programming language than C++

and is an interpreted language. Python’s emphasis is an ability to write powerful code

that is very readable [17]. Python also provides a very large standard library that

provides many functions, including graphical user interface (GUI) functionality [17].

Python is often used as a glue language, connecting software from different languages.

Python, being an interpreted language, will not run as fast as compiled C++, so it is best

left for less intensive usage in an application like OSSIE. Some possible usages are GUIs

and application control software [17].

When choosing which programming language to use for this research, the choice was

clear for the signal processing components in the system (C++) because of performance

reasons and availability of signal processing libraries. For the user interface and web

application portions, Java was the chosen language. This was done partially because of

the researcher’s experience with Java, but also because of the large popularity of the Java

language both in user interface (UI) development and in web application development

[18]. It was also done as an exercise in learning how to interact with the SCA framework

from a new programming language. Java has built-in CORBA support, which is

interoperable with omniOrb’s naming service, making it a great choice for interacting

with OSSIE [19]. Because OSSIE does not support Java, new software had to be written

to allow development in Java. Several types of OSSIE software were implemented in

Java for this research, a Java OSSIE Resource implementation, a Java WavLoader, and

several Port implementations.

The SCA Resource interface and its parent interfaces, LifeCyle, TestableObject,

PropertySet, and PortSupplier were implemented in Java. The Java Resource class is

implemented in a very similar way to how the Resource class is implemented in C++, but

extra care was made to define the software in such a way that minimal code had to be

written for each software component that was built. The Resource class thus

 23

implemented the property configure and query methods, to allow configuring of

parameters on the Resource. The Java Resource class also implements a port

management system allowing the child class to simply add and retrieve Ports as

necessary. Because of this, when the core framework requests a Port with the getPort

method on the Resource, the child class no longer needs to respond to this message

because it is already taken care of by the provided implementation of Resource. Another

convenience added into the system is a static method runApplication, intended to start the

application from its main method, given parameters required to connect to the CORBA

Naming Service by the ApplicationFactory. All threading and thread control is also built

into the Java Resource class. Because of these added convenience methods, a component

need only implement the process method, a constructor that defines and adds Ports to the

Resource, and a main method to call runApplication.

In addition to the Resource class, several Port interfaces were implemented in Java. Two

existing Ports from the OSSIE standard interfaces, complexShort_p, a Provides Port and

complexShort_u, a Uses Port, were implemented. A Port from thesisInterfaces was also

implemented, TriggerControl_u, a Uses Port. Finally, implementations of publisher and

subscriber Ports were implemented in Java for interoperability with the CORBA Event

Service.

A graphical OSSIE component was built with the capability to trigger a TDOA collection

to be made using the TriggerControl Port. This component was later deprecated in favor

of a component that would use the THESIS_EVENTS event channel to send trigger events

to the TDOA collection waveform using the TriggerCollect event. This decoupled

connection allows the same trigger event to trigger collections in multiple simultaneously

deployed waveforms. The GUI interface for both applications can be seen in Figure 11.

The GUI can trigger a set of TDOA measurements to be made, allowing the user to set

the frequency channels to collect, the number of TDOA samples to take at each channel,

and the integration time in samples for each collection.

 24

Figure 11 Command and control GUI for TDOA waveform

The other java application that was built was the Java OSSIE WavLoader application.

This application provides a Java GUI allowing a user to install/uninstall and start/stop

one or more waveforms. The Java OSSIE WavLoader is able to load and run multiple

waveforms on the same OSSIE nodes. It also allows a user to inspect the current

parameters on a loaded waveform. It can also be used as a library to programmatically

control an OSSIE Domain, including starting and stopping waveforms and configuring

properties of a loaded waveform. The application is shown running multiple copies of

the ossie_demo waveform in Figure 12.

Figure 12 WavLoader Java application

Two OSSIE waveforms were built. The first waveform was built to test the data transfer

between the distributed hardware. The second waveform was the full TDOA collection

waveform built for this research.

 25

Figure 13 Initial OSSIE waveform

An initial OSSIE waveform with two USRP boards was built, as seen in Figure 13. The

waveform was built simply to test whether it was realistic to transmit the required data

over the VPN link. As it turned out, the speed of the network over the VPN was not fast

enough to keep up with the data rate coming off of the USRP boards, not even at the

maximum USRP decimation of 256 [4]. Because the packet data was buffered only at the

Provides side of the Port, a bottleneck was encountered at the Uses side of the Port and

packets were lost. This was a problem for a TDOA computation because the correlation

procedure requires that there are no missing samples in the signal data. The Throttler

component was built to solve this problem, and is presented in section 3.4.3.

A final TDOA waveform was built encompassing all of the components described in

section 3.4 as seen in Figure 14. Once the waveform is installed and run, it sits idle

waiting for a TriggerCollect event to be delivered into the Correlator to begin the

collection, demodulation, resampling, and correlation process. The TriggerCollect event

specifies which time in the future the collection should occur, what frequency to collect

on, and how many samples to collect. It also allows the requester to indicate how many

trials should be run at each frequency and how many frequencies should be tested, along

with the interval between frequencies. In the case of this research, the TriggerCollect

event was sent from the decoupled Java command and control GUI.

 26

Figure 14 Final TDOA waveform

Several OSSIE Components were built to collect, transmit, demodulate, resample, and

correlate signal data to produce TDOA samples.

Because the data coming off of the USRP board contains header data in-band with the

signal data, a new USRP OSSIE component had to be built to decode this packet data.

After receiving packet data from the libusrp library, the data is inserted into a circular

buffer of 512 byte packets. The packets are read from the circular buffer and processed

in sequence to extract the metadata in the header.

Each packet contains 8 bytes of header data and 504 bytes of sampled signal data. Each

sample contains two 16 bit signed integer values comprising the I and Q components of

 27

the digitized signal. The header contains 4 bytes of bit-packed header data and 4 bytes

containing a 32-bit unsigned timestamp. Figure 15 illustrates the USRP in-band packet

structure. The first 32 bits of the header include several bit-packed fields including the

payload length, which is always 504 bytes. The timestamp follows in the next 32 bits and

contains the number of samples (at 64MS/s, regardless of decimation rate) elapsed since

the last 1PPS signal from the GPSDO. All fields of greater than one bit are encoded as

unsigned integers and are carried in network byte order.

Figure 15 USRP in-band packet

When a packet is received, the timestamp is read from the packet. When a counter

recycle is detected, the number of samples since the last recycle is computed and is

considered to be the new sampling rate. The packet data is then pushed out onto a Uses

standardInterfaces complexShort Port with metadata. The metadata is populated with the

timestamp of the first sample in each packet and the USRP sampling rate, both in

samples. The USRP decimation ratio is also included in the metadata.

The OSSIE USRP_Commander component was modified to take in events from the

CORBA Event Service, specifically a TuneRequestEvent. This event instructs the

USRP_Commander to change its parameters, specifically decimation factor and carrier

frequency.

The Throttler component is an OSSIE component used to take snapshots of collected data

when requested. It utilizes a Uses complexShort Port from thesisInterfaces to allow

buffering of data on the slow side of a wide area network. It has a Provides

thesisInterfaces TriggerControl Port to allow other components to trigger snapshot data

 28

collection. When this trigger is received, it indicates the amount of data that should be

collected, and at what time the collection should start. After sending out the snapshot

data, the Throttler then returns to its default state of sending no data.

The WFMDemod component included with OSSIE was used for the demodulation task.

This component implements a simple differentiator to demodulate the incoming signal.

Because the amplitude data for the FM signal is encoded in the signal as a changing

frequency, all that is required to demodulate the signal is computing the instantaneous

frequency at any given point in time [20]. This can be accomplished by computing the

derivative of the signal’s instantaneous phase. The phase can be computed by taking the

arctangent of the ratio of the quadrature signal to the in-phase signal. The derivative of

this signal results in the instantaneous frequency [20]:

 Δθ (n) =
i(n)

d q(n)[]
dn

− q(n) d i(n)[]
dn

i2 (n)+ q2 (n)
 (4)

This equation can be implemented in software using tapped-delay line Finite Impulse

Response (FIR) differentiating filters as shown in Figure 16, where the result is scaled by

 fs
2π

 (5)

to compute the instantaneous frequency, and fs is the sampling rate [20].

Figure 16 FM demodulator, adapted from [20]

 29

Because the USRP board does not have its oscillator locked on to any reliable reference,

the rate at which the signal is sampled is not precisely 64MS/s, nor does it remain

consistent over time. It is, however, relatively consistent from one second to the next.

Because of this, the sampling rate of the signal can be calculated by counting the number

of samples generated in a one-second period. Using the calculated sampling rate, the

collected signal can be resampled to an accurate 64MS/s.

A traditional rational (fractional) resampler can achieve non-integer resampling ratios by

first interpolating by an integer ratio, M, and then decimating by an integer ratio, N,

producing an effective M/N resampling ratio [21]. The signal is first zero-padded with

M-1 samples for each input sample, then low pass filtered to remove spectral images, and

finally down-sampled by removing every N-1 samples. This type of resampling wastes

computing cycles both during up-sampling, where multiply-by-zero operations are

computed when low-pass filtering, and during down-sampling, where newly computed

samples are thrown away. A polyphase filter can avoid this problem by building the

resampler in a way that it skips these unnecessary operations. In a polyphase filter, the

low-pass filter designed for the rational resampler can be broken up into M partitions of

length L
M

, where each partition computes a single output sample [21]. Because of zero

padding, the only filter coefficients that contribute to each output sample are those where

c = iM + p , where c is the coefficient number in the original filter, i is the index within

the partitioned filter, L is the filter length, M is the number of partitions, and p is the

current partition number. Iterating from i = 0 to i = L M −1 will produce the filter

coefficients for each partition. The partitioned filter can be used in the same way as the

original filter, except the signal need not be zero padded. After each output sample is

calculated, the filter partition is incremented and the next output sample is calculated.

After all the filter partitions are used, the input sample is incremented and the process

starts over again, as illustrated in Figure 17.

 30

Figure 17 Polyphase resampler

The polyphase filter discussed thus far implements only the interpolation portion of the

rational resampler. If a rational (fractional) ratio is needed, the partition can be

incremented by N instead of one, where N is the decimation factor [21]. The resulting

resampling ratio will be M/N. In any case the low-pass filter should be designed to

operate at the interpolated rate, M*(initial sampling rate), and to filter appropriately for

the decimated rate, M*(initial sampling rate)/N.

For a typical resampling rate used in this research, where the incoming sampling rate

might be 63,984,333S/s, an interpolation factor of 256*64,000,000 and decimation factor

of 63,9843,33 are required to both return the signal to its original sampling rate (after

decimation by 256 on the USRP) and to correct the error in the sampling rate. A

polyphase filter for this ratio would require M=1.6384E10 partitions and a

correspondingly large low pass filter length, L. Because of the size, this filter would be

impractical to implement. The polyphase concept can be taken a step further to design a

resampler with ratio M/N, or any irrational ratio, without this complexity. If the

partitions are incremented at a non-integer rate, such a large filter is no longer necessary.

The problem with this approach is that, when incremented at this rate, partitions are

needed between actual partitions defined in the polyphase filter. These intermediate

filters can be handled in one of three ways [21]:

• The nearest neighboring filter partition can be chosen,

 31

• A linear interpolation can be performed between the two filters,

• A more sophisticated curve fitting interpolation method can be used to interpolate

between the two filters (known as a “Farrow” filter).

The first option, choosing the nearest neighbor, has a great advantage in that it is very

simple. Some noise will be injected into the signal in the appearance of spectral imaging,

because the resultant sample is chosen that should have occurred to the right or left of the

desired sample. This has a similar effect on a signal as a zero-order-hold, because of the

re-use of output samples [21]. These images should be tolerable by designing a filter

such that the stop band has sufficient attenuation so that these images do not contribute to

the resulting signal. Because the filter is in effect an interpolation followed by a

decimation, the filter should, however, be designed such that the stop band has a

continuous roll off rather that an equiripple design to avoid the zero-order hold images

being folded back into the passband and accumulating during the effective decimation

[21].

According to Harris [21], to ensure that the maximum amplitude of any residual spectra

caused by the usage of the nearest-neighbor approach is smaller than any imaging

injected by quantization error, the number of phases must meet the following requirement

 N > 2(b−1) (6)

where b is the number of bits in the digitizer and N is the number of phases in the

polyphase resampler. For the USRP board, where the number of bits in the ADC is 12,

this would require 2048 phases in the resampler. For this research, to simplify the design

of the filter, the number of phases was held back to 64, and, instead, the filter was

designed to attenuate the signal further to compensate for the spectral artifacts. Since the

filter used has continuous roll-off in its stop-band, the energy contained in these images

should not accumulate substantially when folded back into the pass-band.

The other two options, whereby a more sophisticated interpolation is performed on the

partitioned filters before resampling, require a partial recomputation of the filter phase

prior to each filter computation. This was considered too great a computational

requirement to be considered for this research.

 32

An octave application was built to experiment with different filter parameters. A Kaiser

windowed FIR filter was designed utilizing the Octave window-based FIR filter design

tools. The desire was to keep all images attenuated to at least 50dB below the filter pass-

band. A Kaiser window was selected and designed to generate a stop-band attenuation of

-100dB to also attenuate the spectral imaging produced by the zero-order hold effect. A

test filter was designed with 64 phases and a resampling ratio of

256*64,000,000/63,9843,33=256.06. A signal with two tones was passed through that

filter and the resulting spectrum is presented in Figure 18. Because the resampling ratio

is non-integer and some phases of the filter are used multiple times, you can see zero-

order hold induced images present in the spectrum, though they are all kept under -50dB.

The inset in Figure 18 also shows a magnification of the plot showing the main signal

components. Figure 19 shows the zero-order hold effect on the time-domain signal. The

figure shows samples being re-used and forming a “stair-step” effect. In-fact, the average

number of re-used samples is roughly four, since the resampling rate is roughly four

times the number of phases in the designed filter.

Figure 18 Plot for polyphase resampler implemented in Octave

 33

Figure 19 Effects of nearest-neighbor interpolation on signal

An OSSIE Component was also built as a port from this Octave code, but was later

abandoned in favor of using the polyphase resampler that is part of the LiquidDSP library

[22]. The LiquidDSP resampler was utilized in a new OSSIE Resampler component.

The Correlator component controls the process of collecting and correlating a signal

from a pair of receivers. When a TriggerCollect event is received by the Correlator

component, the process of collecting and correlating a pair of signals is started. The

TriggerCollect event indicates what channels should be collected, how long the snapshots

should be, and the number of TDOA samples that should be made per channel. After

receiving the event, the Correlator sends a TuneRequestEvent to tune each collector, then

a trigger is sent through the TriggerControl Port to start a snapshot collect from both

Throttler components. The Correlator then buffers data from each collector until the

proper number of samples is received. The signals are then aligned in time and

correlated. The maximum correlation is detected, and used as a TDOA sample. After the

correlation is computed, the Correlator writes the TDOA sample, buffered signal data,

and the correlation plot to disk for analysis. A TdoaEvent is then published to the

 34

THESIS_EVENTS event channel for each TDOA sample generated. This process is

repeated until all TDOA samples are collected for all channels requested.

The fast correlation algorithm takes advantage of the fact that convolution in the time

domain translates to multiplication in the frequency domain.

 a(t)*b(t)⇔ A(ω) ⋅B(ω) (7)

The demodulated FM data that is being correlated translates into a complex FFT, and, as

such, the multiplication for each element is accomplished by:

 C(ω)real = A(ω)real B(ω)real − A(ω)imag B(ω)imag (8)

 C(ω)imag = A(ω)real B(ω)imag + B(ω)real A(ω)imag (9)

Once the product is computed, an inverse FFT is performed on the result, the magnitude

of the resulting signal is computed, and the peak is detected to determine the TDOA.

Two methods of geolocating an emitter using TDOA samples are considered. The first

method utilizes an iterative Taylor series approximation method [23]. The second

method is the closed form spherical intersection method [24]. These methods are

presented and the error in the measurements is translated to error in position estimation of

the emitter.

The TDOA samples generated in the Correlator component can be converted into range-

difference of arrival (RDOA) samples and used to solve for the location of the unknown

emitter. An RDOA value is simply a TDOA value converted from time in samples to

distance in meters. The RDOA is computed,

 TDOAsec =
TDOAsamples

fs
 (10)

 RDOAm = TDOAsec ⋅c (11)

where c is the speed of light in meters per second and fs is the sampling rate of the

collector.

 35

The emitter is located in three-dimensional space. Because each TDOA measurement

requires the difference of arrival at two collectors, four collectors and three TDOA

measurements are required to compute the three-dimensional location of the emitter.

Converting the location of the emitter and the collectors from Geodetic (Latitude,

Longitude, Altitude) to Cartesian (x, y, z) coordinates, the following RDOA equations are

formulated using the Pythagorean theorem,

R21 = f1 x, y, z() = (x − x2)
2 + (y − y2)

2 + (z − z2)
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

R31 = f2 x, y, z() = (x − x3)
2 + (y − y3)

2 + (z − z3)
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

Rn1 = fn x, y, z() = (x − xn)
2 + (y − yn)

2 + (z − zn)
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

 (12)

where x , y , and z are the location of the emitter in Cartesian coordinates, xi , yi , and zi

are the location of the ith collector, and Rij is the RDOA measurement between the ith and

jth collector. Each equation defines a hyperbolic curve with the collectors as points of

focus [23]. Alternatively, if the emitter can be considered to be on the surface of the

earth, only three collectors are needed, the third equation in (12) with an equation

describing an oblate spheroid that the earth closely resembles [25],

 1= f3 x, y, z() = x2 + y2

a2
+ z

2

c2
 (13)

where

 a = EARTH _EQUITORIAL _RADIUS (14)

 c = a(1− EARTH _FLATTENING _FACTOR) (15)

These equations are non-linear and can be difficult to solve with a closed form solution,

even if each measurement is made without error. The system of equations can be made

approximately linear by using the Taylor series expansion centered on an initial estimate

for the location of the emitter, neglecting all terms other than the first order [23],

 Ri1 − fi xg , zg , zg() = ∂ fi
∂ x

x − xg() + ∂ fi
∂ y

y − yg()∂ fi∂ z
z − zg() (16)

where xg , yg , and zg are the location of the initial guess. In matrix form this becomes,

 ΔM = JΔX (17)

 36

where the Jacobian, J , is the set of partial derivatives forming the first order term of the

Taylor series expansion,

 J =

∂ f1
∂ x

∂ f1
∂ y

∂ f1
∂z

∂ f2
∂ x

∂ f2
∂ y

∂ f2
∂z

∂ fn
∂ x

∂ fn
∂ y

∂ fn
∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (18)

andΔM is the difference between the measured value and the value at the initial guess,

ΔM =

R21 − f1 xg , zg , zg()
R31 − f2 xg , zg , zg()

Rn1 − fn xg , zg , zg()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (19)

and ΔX is the delta between the initial guess and the solution to the Taylor series

approximation,

 ΔX =

x − xg
y − yg
z − zg

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (20)

Because this system can be over-determined if there are more equations than unknowns

(n > 3) and the measurements are not precise, it cannot be solved exactly, and there will

be some error in these equations. To account for error in the system, equation (17) can be

re-organized as,

 ε = JΔX − ΔM (21)

where ε is the error.

A least-squared minimization can be used to minimize the sum of the squares of the error,

 min JΔX − ΔM 2 (22)

This can be accomplished by multiplying both sides of equation (17) by JT ,

 37

 JTΔM = JT JΔX (23)

then solving for ΔX [23],

 ΔX = (JT J)−1JTΔM (24)

If a confidence can be placed on each measurement, a weighting matrix may be

employed to place an appropriate weighting value on each measurement,

 ΔX = (JTWJ)−1JTWΔM (25)

This weighting matrix W, is simply a diagonal matrix of weights,

W =

w1 0 0

0 w2 0

0 0 wn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (26)

where wi is the weight for each measurement. If the variance is known for each

measurement, the inverse of the diagonal matrix of variances from each measurement can

be used as the weighting matrix.

In either case,ΔX can then be added to the initial guess, and used as a subsequent guess

to approach closer to the solution,

 XG,new = ΔX + XG,old (27)

until the absolute value ofΔX is smaller than some minimum error, errmin.

 ΔX < errmin (28)

The main problem with this technique is that it can be rather difficult to choose the initial

location. If the initial location is improperly chosen, the iteration can quickly diverge due

to the highly imperfect approximation using only the first order part of the Taylor series

approximation. Large steps in each increment can easily jump right over the actual

emitter location and possibly never approach the emitter location. Figure 20 shows a

converging iteration sequence where the algorithm gradually approaches the target. The

figure also shows a situation where the algorithm diverges, oscillating around the earth,

not finding the emitter.

 38

Figure 20 Iterative method converging and diverging

There are also several methods for approximating a closed-form solution for the location

of the emitter. One considered here is the spherical intersection method [24]. This

method says that the location of the emitter can be found by finding the intersection of

the spheres inscribed by the range from each collector to the emitter. Given that one of

the collectors is considered to be the origin of the system, the range from each collector

to the emitter is [24]

D1 = De

D2 = De + R21

Dn = De + Rn1

 (29)

where Di is the distance from collector i to the emitter ,De is the distance from the origin

(in the case of this problem, collector 1) to the emitter, and Ri1 is the RDOA between

collector i and collector 1 (the origin). D2 through Dn are the set of equations that are

used to solve for the location of the emitter. Using the distance from the emitter to

collector i, and the Pythagorean theorem, these equations become,

 De + Ri1()2 = xi − x()2 + yi − y()2 + zi − z()2 (30)

expanding, and simplifying, this becomes [24],

 De
2 + DeRi1 + Ri1

2 = xi
2 + yi

2 + zi
2 + x2 + y2 + z2 − 2xix − 2yiy − 2ziz (31)

 De
2 + 2DeRi1 + Ri1

2 = Di
2 + De

2 − 2Xi
T X (32)

 39

 0 = Di
2 − Ri1

2 − 2DeRi1 − 2Xi
T X (33)

and in matrix form,

 0 = δ − 2DeR − 2SX (34)

where

 δ =

D2
2 − R21

2

D3
2 − R31

2

Dn
2 − Rn1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (35)

 S =

x2 y2 z2
x3 y3 z3

xn yn zn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (36)

R =

R21
R31

Rn1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (37)

If the system is over-determined system, there will be some error,

 ε = δ − 2DeR − 2SX (38)

This error can be minimized by using a least square’s method, minimizing the sum of the

squares,

 min δ − 2DeR − 2SX 2 (39)

This can be accomplished by reorganizing the equation [24],

 δ − 2DeR = 2SX (40)

multiplying both sides by ST ,

 ST δ − 2DeR() = 2STSX (41)

and solving for X yields,

 X = 1
2
STS()−1 ST δ − 2DeR() (42)

 40

Equation (42) can be inserted into the Pythagorean equation for the range of the emitter

from the origin [24],

 De
2 = XTX (43)

expanding this equation results in [24],

 aDe
2 + bDe + c = 0 (44)

where

 a = 4 − 4De
T STS()−1 ST()T STS()−1 STDe (45)

 b = 4De
T STS()−1 ST()T STS()−1 STδ (46)

 c = −δ T STS()−1 ST()T STS()−1 STδ (47)

and

 De =
−b ± b2 − 4ac

2a
 (48)

yields an approximation for De . Plugging De into (42) leads to a linear closed-form

solution for X [24].

This method results in a large error in location estimation for any error in range

difference measurements if the collectors are not located near the emitter [24].

Therefore, this closed-form method is to be used as an initial guess to the iterative

method.

The error in the TDOA measurements can be transformed into a corresponding error in

the estimated position of the emitter. The variations in each TDOA measurement made

can be described by a random variable. A single random vector can represent the random

variables for a set of measurements [26],

 41

T =

T1
T2

Tn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (49)

and

 μT = E T() (50)

is the mean vector for T and

 ∑T = E T − μT() T − μT()T⎡
⎣

⎤
⎦ (51)

is the covariance matrix for T. Expanding the equation,

∑T =

δ1
2 δ12 δ1n

δ 21 δ 2
2 δ 2n

δ n1 δ n2 δ n
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (52)

where δ n
2 is the variance of the nth measurement, and δ nm is the covariance between n

and m [26],

 δ nm = ρδ nδm (53)

and ρ is the correlation coefficient,

 ρ = δnm

δnδm

 (54)

Assuming that all of the random variables defining the TDOA measurements are

independent, and therefore uncorrelated, ρ = 0 , and the covariance terms disappear and a

purely diagonal matrix results [26],

∑T =

δ1
2 0 0

0 δ 2
2 0

0 0 δ n
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (55)

This covariance matrix can be translated from TDOA measurements to Cartesian (x,y,z)

coordinates by taking advantage of the law of propagation of uncertainty [27],

 42

 ∑XYZ = E EXYZEXYZ
T() (56)

 ∑XYZ = E JT J()−1 JTETDOA() JT J()−1 JTETDOA()T⎛
⎝⎜

⎞
⎠⎟ (57)

 ∑XYZ = E JT J()−1 JTETDOAETDOA
T J JT J()−1() (58)

 ∑XYZ = JT J()−1 JTE ETDOAETDOA
T()J JT J()−1 (59)

 ∑XYZ = JT J()−1 JT ∑TDOA J JT J()−1 (60)

Finally, can be rotated into the local east-north-up (ENU) coordinate system by

again using the laws of propagation of uncertainty. A simple rotation can be performed,

with the following rotation matrix, given geodetic latitude and geodetic longitude [25],

 R =
−sin(lon) cos(lon) 0

−sin(lat)cos(lon) −sin(lat)sin(lon) cos(lat)

cos(lat)cos(lon) cos(lat)sin(lon) sin(lat)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (61)

Thus, the can be calculated,

 ∑ENU = E EENUEENU
T() (62)

 ∑ENU = E REXYZ() REXYZ()T() (63)

 ∑ENU = RE EXYZEXYZ
T()RT (64)

 ∑ENU = R∑XYZ R
T (65)

resulting in a covariance matrix in the local coordinate system, ENU, in meters at the

location of the solution calculated in the solution step.

The eigenvectors and eigenvalues of the covariance matrix can then be used to generate

an error ellipsoid (3D) and error ellipse (2D) to represent the error in the local coordinate

system [26],

 Λ = eigvec(∑ENU) (66)

 ν = eigval(∑ENU) (67)

∑XYZ

∑ENU

 43

where is a matrix containing the eigenvectors of in its columns and is a vector

containing the eigenvalues of . The square roots of the eigenvalues are then

proportional to the lengths of the axis of the ellipsoid and the eigenvectors point in the

direction of the axis [26],

 axisn = Kλn (68)

where K is described by a chi-squared random variable with n degrees of freedom

 χn
2 (69)

and n is the number of Gaussian random variables in the random vector. The chi-squared

random variable has a probability density function (PDF) [26],

 fn x() = 1

2
n

2Γ n
2

⎛
⎝⎜

⎞
⎠⎟
x
n

2
−1
e
− x
2 (70)

where the probability of containment is equal to the integral of the PDF from zero to K,

 P = fn x()dx
0

K

∫ (71)

If a two-dimensional error ellipse is desired, the covariance matrix tangent to the surface

of the earth at the emitter must be generated. This covariance matrix is simply the first

two rows/columns in the ENU covariance matrix.

For this research, the TDOA error was calculated by first making many TDOA

measurements then calculating the variance of these measurements. The resulting data

generally resembled a Gaussian distribution. Any error due to differing signal delay in

the collection systems is considered system bias and needs to be removed from the

system before performing the geolocation computations to produce the most accurate

prediction possible. The delays induced by the USRP or software processing components

such as the resampler are ignored in this research because they do not affect the TDOA

result, as they are the same in each collection path.

Λ ∑ENU ν

∑ENU

 44

For this research, a unique method of displaying and analyzing results was envisioned

and built. A Java web application was built using Google Web Toolkit (GWT) [28] and a

Tomcat web application server. GWT allows a developer who is familiar with Java to

build an entire web application with the Java programming language, allowing both the

server-side and client-side to be written in Java [28]. The client-side is compiled into

JavaScript at build-time and is embedded into a web page to dynamically build the user

interface at runtime. The web application provides the capability for a user to load and

analyze a set of TDOA data and its corresponding geolocations. The web application has

a set of visualization tools including a data grid, map plot, signal plot, and histogram

plots. A system diagram is shown in Figure 21.

Figure 21 Web application system diagram

When the web application starts up, the TDOA datasets are loaded into memory. The

TDOA measurements for each FM radio station are loaded and statistics (mean and

standard deviation) are computed. The location estimate and error ellipse are then

produced using the algorithms presented in section 3.5. When a user loads a dataset, a list

of FM radio stations is listed. Each FM radio station is displayed along with its predicted

location and error ellipse size and orientation. If a user selects an FM radio station, the

 45

data associated with that FM radio station is loaded. The map is updated to show the

actual location of the emitter and the predicted location of the emitter and the

measurements’ error ellipse. The location of each collector used in the geolocation is

also plotted. In another list, the set of TDOA pairs used to locate the emitter is listed. If

one of these pairs is selected, a histogram is loaded showing the distribution of TDOA

measurements made for that pair. The signal data explorer plots an example the collected

signal and correlation for the pair of collectors. The web application server uses the Java

Matrix Package (JAMA) [29] to do matrix math and NeXtMidas [30] for position

translations.

Figure 22 Web application GUI

Figure 22 shows the thesis web application GUI built for this research. On the top of the

screen is the data grid showing the list of FM stations collected. The section immediately

below this is a set of user controls. The user can set an option as to whether the map plot

will zoom to the target or remain at the current zoom position after each FM Radio

station selection. A “Zoom To Extents” button is available that will zoom the map to

display the region of consideration for this research. The “Load Dataset” button loads a

 46

popup where the user may select a dataset to load. Below the user inputs, a map is

available to plot any map-related data. Below the map is a set of tabs that contain the

pair statistics and the signal data explorer plots.

The web application is fully configurable with an XML file. The XML file defines the

locations of each collector and emitter. The XML file also defines any bias present in the

measurements for each collector so that bias can be removed prior to position estimation.

The simulated error standard deviation for each collected signal at the real collectors is

included for use when all the collectors are simulated. An example XML file is shown in

Figure 23.

Figure 23 Web application configuration XML

The Signal Data Explorer is the software component used to plot signal data and

correlation data in the web application. It was built to allow interaction with a large set

of sampled data. Many plotting applications are available for HTML/JavaScript

applications, but none could be found that allowed interacting with a server-side dataset

with 2-4+ million data points. All data points could not be transmitted or plotted at once

due to both limitations in the Internet connection speed with clients and the

computational load of attempting to plot all data points at once. The Signal Data

Explorer defines a server interface that asynchronously makes requests to the server for

more data as the user zooms deeper into a signal data plot.

 47

Two OSSIE DeviceManager nodes, each with a USRP_TIME Device and a GPP device

were initialized, along with a single DomainManager instance. The TDOA waveform

described in section 3.3.2 was built, installed, and started. For each FM radio station

considered, 4,000,000 up-sampled and demodulated samples were buffered and

correlated to generate TDOA measurements. 5000 TDOA samples were made for each

station. The TDOA samples taken were plotted as a histogram in the web application and

those channels that produced Gaussian-shaped histograms were considered for this

research. Two additional simulated collectors were simulated for each station and used to

generate the two additional TDOA measurements required to solve the system of TDOA

equations. Finally, the TDOA data was loaded and analyzed using the web application,

where estimates for the location of each emitter were generated and analyzed.

A signal was collected with both USRP_TIME Devices at each center frequency

considered, and 4,000,000 samples were collected at each distributed collector. An

example of one of these collections is shown in Figure 24 where the 91.9MHz channel

captured from the Ashburn collector is shown in red and the capture from the Haymarket

collector is shown in blue. Correlation of the signals is clear in this plot.

Figure 24 Sample time plot for 91.9MHz

 48

After the signals were collected and aligned in time, the signals were then correlated.

The maximum value was found and recorded as the TDOA measurement. In Figure 25, a

sample correlation plot can be seen. In this plot, a peak was detected at -1589 samples,

indicating that the signal was received by the Haymarket collector 1589 samples after the

Ashburn collector.

Figure 25 Sample correlation plot for 91.9MHz

5000 TDOA samples were made at 91.9MHz, and the mean TDOA value was determined

to be -1586.06 samples with a variance of 104.67 samples. Figure 26 illustrates the

location of each collector along with the location of the 91.9MHz radio tower, illustrating

the TDOA measurement associated with each pair of collectors.

Figure 26 Plot showing collectors and emitter with TDOA measurements

 49

Because the system of equations to solve for the location of the emitter has three

unknowns (x, y, z), at least three TDOA measurements are required to solve for the

location of the emitter. Two additional TDOA measurements were simulated for this

research, utilizing two simulated collectors and one of the real collectors. The location of

each emitter was known, thus the distance from each emitter to each collector could be

calculated. The simulated mean TDOA can be calculated by finding the difference

between the distances to the emitter from each collector in each pair, as shown before in

equation (12). It can be shown that the variance of the TDOA measurement is given by

[7],

 δTDOA
2 ≈ 1

β 2BTγ
 (72)

where β is the frequency in radians, B is the noise bandwidth at the collector inputs, T is

the integration time, and γ is the SNR. The value ofγ can then be found from [7],

 γ = 2γ 1γ 2
γ 1 + γ 2 +1

 (73)

where γ 1 and γ 2 are the SNRs at either collector. Because bandwidth, frequency, and

integration time are assumed to be equal at all collectors, they can be ignored and,

 δ 2 ∝ 1
γ

 (74)

Since the signal strength is inversely proportional to the square of the distance,

substituting
1
r1
2 for γ 1 and 1

r2
2 for γ 2 in (73) and (74) yields

 δ 2 ∝ 2

r2
2 + r1

2 + r2
2r1
2 (75)

Knowing the TDOA variance of one pair of receivers (that are r11 and r21 meters from the

emitter), δ1
2 , the TDOA variance of another pair of receivers (that are r12 and r22 meters

from the same emitter),δ 2
2 , can be approximated,

 50

 δ2
2 ≈ δ1

2 r22
2 + r12

2 + r22
2 r12

2

r21
2 + r11

2 + r21
2r11
2

 (76)

This variance can then be used for the simulated collectors. Simulated TDOA

measurements were made using Java’s Gaussian Random Number Generator and used

for the simulated collectors. Figure 27 shows a sample Histogram for both a real

(91.9MHz with Haymarket and Ashburn) and simulated (91.9MHz with Lorton and

Ashburn) TDOA Measurements. 5000 samples were taken for each histogram.

Figure 27 Histogram for real (Haymarket/Ashburn) and simulated (Lorton/Ashburn) TDOA measurements for
91.9MHz

In [31] it is shown that a balanced placement of collectors around an emitter will produce

the best possible TDOA position estimation, minimizing the effects of error in each

measurement. For these results, the simulated collectors were placed in two

configurations. The first configuration was an off-balanced configuration that maximized

the effect of the real collectors. The second configuration was a balanced configuration

that should produce more precise position estimations. Figure 28 shows a comparison of

the unbalanced and balanced collector placements for locating the 91.9MHz emitter. In

the unbalanced configuration, the simulated collectors are concentrated on the left-hand

side of the circle around the emitter. In the balanced arrangement, the simulated

collectors are placed in a balanced arrangement, making a triangle centered at the emitter.

The TDOA equations intersection with the earth is shown in red. The balanced

arrangement has more evenly distributed intersections, resulting in a tighter estimate for

the emitter location given error in the measurements, as seen in the inset error ellipses.

 51

Figure 28 Balanced and unbalanced collector placements

The spherical intersection method was used to find an initial guess for the location of the

emitter. With the initial guess, the iterative method was used to solve for the final

predicted position of the emitters. The covariance matrix for each set of measurements

was then transformed to the local coordinate system and used to generate a 95% error

ellipse. The geolocation algorithm was implemented in the web application to allow

quick reconfiguration of the application for differing locations of simulated collectors.

The web application was used to request and analyze results. The application was

opened in the Chrome web browser and each dataset was requested. The data was

 52

verified by loading the data associated with each FM radio station in each dataset

(theoretical, unbalanced, and balanced). The actual location of each emitter was plotted,

along with the predicted location for each emitter and the 95% error ellipse. The TDOA

measurements for each pair of collectors were loaded, their histogram plotted, and

statistics analyzed for each FM radio station in each dataset.

Three sets of results are presented. Theoretically perfect data is used to test the position

estimation algorithm. This is followed by position estimations using real and simulated

data with the simulated collectors placed in both unbalanced and balanced configurations.

The TDOA geolocation algorithm was first tested with theoretical data to ensure that the

algorithm worked properly. Theoretical TDOA measurements were generated by first

calculating the distance between the actual position of the emitter and the actual location

of each collector. The TDOA was then determined by finding the difference between

these two distances. These predicted measurements were used to solve for the location of

the emitter assuming no error. The results from this experiment are shown in Table 1.

The actual locations of the emitters are shown in Table 2. Latitude and longitude are in

degrees and altitude is in meters. The results matched very closely with some error in the

altitude, resulting from floating-point rounding error.

Table 1 TDOA results with theoretical data

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE

WAMU-FM 88.50MHz 38.936111 -77.092499 248.565

WETA-FM 90.90MHz 38.891664 -77.131938 45.299

WGTS-FM 91.90MHz 38.891664 -77.131938 45.299

WKYS-FM 93.90MHz 38.939996 -77.081672 185.223

WIAD-FM 94.70MHz 38.963611 -77.104998 336.588

WASH-FM 97.10MHz 38.950281 -77.079719 327.560

 53

Table 2 Actual location of emitters

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE

WAMU-FM 88.50MHz 38.936110 -77.092500 223

WETA-FM 90.90MHz 38.891670 -77.131940 252

WGTS-FM 91.90MHz 38.891670 -77.131940 252

WKYS-FM 93.90MHz 38.940000 -77.081670 286

WIAD-FM 94.70MHz 38.963610 -77.105000 312

WASH-FM 97.10MHz 38.950280 -77.079720 315

Position estimations were first calculated with an unbalanced collector arrangement seen

in Figure 28. Table 3 shows the mean TDOA measurements and their standard deviation

for the 5000 TDOA samples made for both the real and simulated pairs. The mean and

standard deviation are both in USRP samples. In each case, the histogram was found to

have a Gaussian distribution.

Table 3 TDOA statistics for unbalanced collector placement

STATION FREQUENCY COL 1 COL 2 TDOA MEAN TDOA STD SIMULATED

WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N

ASHBURN LORTON 2322.565 2.614 Y

ASHBURN ROCKVILLE 4365.900 1.691 Y

WETA-FM 90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N

ASHBURN LORTON 3048.071 2.436 Y

ASHBURN ROCKVILLE 2914.009 2.518 Y

WGTS-FM 91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N

ASHBURN LORTON 3048.124 5.010 Y

ASHBURN ROCKVILLE 2913.875 5.152 Y

WKYS-FM 93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N

ASHBURN LORTON 2340.867 12.170 Y

ASHBURN ROCKVILLE 4581.956 7.397 Y

WIAD-FM 94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N

ASHBURN LORTON 1550.633 1.449 Y

ASHBURN ROCKVILLE 4786.493 0.702 Y

WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N

ASHBURN LORTON 2126.476 36.799 Y

 ASHBURN ROCKVILLE 4815.395 20.690 Y

 54

The mean and standard deviation for each TDOA pair were used to solve for the location

and 95% error ellipse for each FM radio station, shown in Table 4. The altitude, semi

major, and semi minor axis are in meters. The tilt is in degrees.

Table 4 Geolocation solutions for unbalanced collector placement

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT

WAMU-FM 88.50MHz 38.936526 -77.089678 -3581.827 577.637 23.322 13.778

WETA-FM 90.90MHz 38.890611 -77.126387 -6154.107 232.973 21.491 -10.642

WGTS-FM 91.90MHz 38.891227 -77.129824 -3702.751 460.512 42.588 -10.554

WKYS-FM 93.90MHz 38.947708 -77.041903 -14074.380 4099.278 132.865 14.920

WIAD-FM 94.70MHz 38.964158 -77.103263 -2652.102 535.919 13.743 25.453

WASH-FM 97.10MHz 38.954907 -77.061014 -9035.710 14650.950 375.645 18.790

These results show a precise geolocation estimate despite the unbalanced collector

placement as seen in Figure 28. The unbalanced collector arrangement generally made

good predictions for the location of the emitter in the earth-tangent direction (latitude and

longitude), but resulted in a large miss on the altitude. The 95% error ellipse in the east

and north directions remained relatively small, being larger in the axis corresponding to

the measurements made from the real collectors.

Position estimates were then computed with a more balanced collector arrangement seen

in Figure 28. Table 5 shows the mean TDOA measurements and their standard deviation

for the 5000 samples made. The mean and standard deviation are both in USRP samples.

In each case, the histogram was found to represent a Gaussian distribution.

 55

Table 5 TDOA statistics for balanced collector placement

STATION FREQUENCY COL 1 COL 2 TDOA MEAN TDOA STD SIMULATED

WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N

ASHBURN LORTON -1415.046 4.302 Y

ASHBURN ROCKVILLE 375.863 3.494 Y

WETA-FM 90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N

ASHBURN LORTON -1479.430 5.036 Y

ASHBURN ROCKVILLE -1442.158 4.980 Y

WGTS-FM 91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N

ASHBURN LORTON -1479.238 10.113 Y

ASHBURN ROCKVILLE -1442.159 10.095 Y

WKYS-FM 93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N

ASHBURN LORTON -1206.691 19.161 Y

ASHBURN ROCKVILLE 761.771 15.728 Y

WIAD-FM 94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N

ASHBURN LORTON -2365.560 2.364 Y

ASHBURN ROCKVILLE 458.203 1.707 Y

WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N

ASHBURN LORTON -1385.267 58.524 Y

 ASHBURN ROCKVILLE 995.672 44.239 Y

The mean and standard deviation for each TDOA pair were used to solve for the location

and 95% ellipse for each FM radio station, shown in Table 6. The altitude, semi major,

and semi minor axis are in meters. The tilt is in degrees.

Table 6 Geolocation solutions for balanced collector placement

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT

WAMU-FM 88.50MHz 38.936187 -77.092530 -3195.813 65.781 20.080 -83.371

WETA-FM 90.90MHz 38.891488 -77.132798 -6990.493 52.998 42.478 -72.860

WGTS-FM 91.90MHz 38.891550 -77.132262 -4239.078 105.951 84.771 -73.780

WKYS-FM 93.90MHz 38.941739 -77.081587 -11145.248 332.864 94.072 -89.946

WIAD-FM 94.70MHz 38.963650 -77.105025 -1849.543 46.270 9.773 -78.884

WASH-FM 97.10MHz 38.951006 -77.079636 -6711.528 1104.310 270.775 269.360

These results show an even more precise geolocation estimate than with the unbalanced

collector placement. Predictions were generally good with smaller, more rounded 95%

error ellipses. Again, a large error in altitude is present.

 56

Overall, the results were quite good. The balanced collector placement resulted in better

estimates for the emitter location than the unbalanced placement, while both resulted in

what appears to be large errors in the altitude direction. In the theoretical case, floating

point error introduced enough error into the system to cause relatively large deviations in

the altitude estimates. The results above only showed the ellipse cross-section at the

surface of the earth. Three-dimensional ellipsoids were generated to show the error in the

vertical direction. The 95% error ellipsoids for the unbalanced collector placement can

be seen in Table 7 and for the balanced collector placement in Table 8. This explains the

much larger error seen for the vertical direction and indicates more ambiguity in the

vertical direction resulting from the system of TDOA equations.

Table 7 Ellipsoids for unbalanced placement

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU

WAMU-FM 88.50MHz 5030.659 33.470 18.816 -7.310 -1.808

WETA-FM 90.90MHz 1762.333 32.033 24.216 -8.483 1.614

WGTS-FM 91.90MHz 5497.694 62.985 47.416 -5.358 1.009

WKYS-FM 93.90MHz 11312.877 182.964 109.678 -23.711 -6.692

WIAD-FM 94.70MHz 5244.829 17.742 7.603 -6.054 -2.892

WASH-FM 97.10MHz 50089.594 519.381 272.448 -18.543 -6.519

Table 8 Ellipsoids for balanced placement

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU

WAMU-FM 88.50MHz 22.860 4456.368 43.198 0.111 -0.793

WETA-FM 90.90MHz 29.311 2030.373 56.207 1.093 -0.598

WGTS-FM 91.90MHz 58.579 6500.863 112.746 0.678 -0.378

WKYS-FM 93.90MHz 106.447 197.124 7099.851 -0.031 -2.634

WIAD-FM 94.70MHz 11.193 3649.260 23.497 0.147 -0.730

WASH-FM 97.10MHz 300.733 32705.284 576.132 -0.077 -1.975

An example ellipsoid for 91.9MHz with an unbalanced collector placement is plotted in

Figure 29 and shows a much larger error in the vertical direction.

 57

Figure 29 Error ellipsoid for 91.9MHz with unbalanced collector placement

 58

Software Defined Radio is changing the radio industry as we know it. Not only does it

make experimenting with radio technology more accessible to students and hobbyists, but

it also makes radio systems more flexible and able to adapt to the constantly changing

field and even have the potential to drive the field due to the ease to which new designs

can be prototyped. Frameworks like GNU Radio and OSSIE have allowed developers to

easily utilize existing modular components to build complex radio systems that can take

advantage of a distributed network of computing systems. This research aimed to take

advantage of that distributed possibility and build a useful distributed application using

the OSSIE SDR framework and to expand that framework to support this research. The

resulting TDOA geolocation system was able to successfully locate emitters by first

capturing signals using spatially distributed OSSIE nodes, correlating those signals to

produce TDOA measurements, and then solving a system of equations to find the

location of the emitter.

After building a spatially distributed OSSIE system, it is clear that this kind of system can

be a great benefit to the SDR community. The ability to break up an application into

components and spread the processing requirements out among a set of processors and

machines is invaluable. The ability to deploy devices and components over a wide area

network means that data sources can also be located in different locations. In addition to

precision geolocation, there are many other uses for a system like this. One possible use

would be a distributed beam-forming system. Another use could be a system to detect

and analyze spectrum usages in an urban area.

A distributed OSSIE system requires careful thought because of added hurdles imposed

in a wide area network. The limited connection speed and unpredictable latency mean

that signals cannot always be transmitted at their full rate or in real time. Because of this,

the signals must be processed as much as possible at the source such that the signal/data

is reduced in size prior to transmission. For this research, this entailed decimating the

 59

collected signal to a band-limited signal to reduce its data rate prior to transmission.

Transmitting only required snapshots of the signal data further reduced the data rate.

Several OSSIE software components were built to buffer and transmit snapshot data over

the slow and unreliable link. Another issue was controlling a set of waveforms deployed

to an OSSIE Domain. The TDOA waveform built for this research was built with the

idea that if more radio nodes were available, multiple TDOA waveforms could be

deployed to the same OSSIE domain. Direct coupling of the GUI to a waveform using

the provided CORBA interfaces can be cumbersome, especially for a system with many

waveforms. The CORBA Event Service makes it relatively simple to interact with a set

of waveforms from a single, decoupled GUI.

The results showed that the USRP device could be used as a platform for TDOA signal

collection. While not the ideal collectors for performing precision TDOA geolocation,

the workarounds necessary to use the USRP boards without permanent hardware

modifications proved to be a good learning experience. Even when the emitters were

placed in an unbalanced arrangement to magnify the effects of the real TDOA

measurement, the results were fairly accurate. The web application developed to

visualize results proved to be invaluable in more ways than simply being a unique way to

deliver results. The web application provided a streamlined way to load result sets from

the collection system and analyze different simulated scenarios, all by simply changing

an XML configuration file. The web application also provided the source for many of the

tables and figures found in this research.

The research presented in this paper concentrated on building an overall system. Time

was not available to concentrate on any one aspect of the system. There are several areas

of this research that could be expanded and improved upon in the future.

Because hardware was not available for this research, there were not enough collectors

available to perform a TDOA geolocation without simulating several collectors. Future

 60

research could add several collectors to the system in order to provide a complete TDOA

geolocation system. These collectors could either be more USRP boards or more

advanced collectors with built-in time references. Multiple TDOA waveforms could be

deployed to the distributed network of collectors. All waveforms could then be triggered

to make TDOA collections by the same decoupled, event-based user interface.

From the results, it is clear that some amount of bias was present in the statistics, as the

mean of the TDOA measurements did not always match exactly with the actual location

of the emitter. The cable length delay was taken into account for the signal reception, but

a more formal analysis could be performed to determine biases in the system. Specific

sources of random error that contributed to the variance in TDOA measurements could

also be found and analyzed.

Another area for improvement would be a formal integration of Java into the OSSIE

framework. Some functionality was implemented for this research, but this could be

extended to create a complete toolkit for Java users. This would open up OSSIE to a

whole new set of developers with Java skills. An application for this would possibly be

integration of OSSIE waveforms into interactive web applications, similar to the one built

for displaying the results of this research. The web application could interact with,

control, and display live results from installed waveforms.

This research made improvements to OSSIE where necessary to support the distributed

application built for this research. This work could be expanded to improve OSSIE to

allow easier development of distributed applications. The concept of utilizing snapshot

data could be integrated into the standard set of OSSIE Ports to add the signaling and

buffering that is required to transmit data over a slower network. Work could also be

completed to make it easier to deploy many Device nodes of the same type. For this

research, two or more USRP_TIME/GPP Device nodes were required. Separate nodes

had to be defined with different IDs for each Device so that the waveform components

 61

would be deployed to the correct location. Nodes could be built that would allow

deployment simultaneously across many nodes with minimal configuration changes.

Automatic resource allocation could be implemented in OSSIE to allow automatic

deployment of waveforms rather than relying on a predefined DAS file to specify where

components are deployed.

 62

[1] Jeffrey H. Reed, Software Radio: A Modern Approach to Radio Engineering. Upper

Saddle River, NJ: Prentice Hall PTR, 2002.

[2] GNU Radio. (2012, April) GNU Radio - USRP. [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki/USRP

[3] Wikipedia: The Free Encyclopedia. (2012, April) Software framework. [Online].

Available: http://en.wikipedia.org/wiki/Software_framework

[4] GNU Radio. (2012, April) GNU Radio Wiki. [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki

[5] Joint Program Executive Office. (2006, May) SOFTWARE COMMUNICATIONS

ARCHITECTURE SPECIFICATION. [Online]. Available:

http://jpeojtrs.mil/sca/Documents/SCAv2_2_2/SCA_version_2_2_2.pdf

[6] Wikipedia: The Free Encyclopedia. (2012, March) Joint Tactical Radio System.

[Online]. Available: http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System

[7] Seymour Stein, "Algorithms for Ambiguity Function Processing," IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, pp. 588-

599, June 1981.

[8] Carl B. Dietrich et al. (2010, March) Experiences From the OSSIE Open Source

Software Defined Radio Project. [Online]. Available:

http://www.osbr.ca/ojs/index.php/osbr/article/view/1054/1013

[9] WikiAudio.org. (2012, March) FM broadcasting. [Online]. Available:

http://en.wikiaudio.org/FM_broadcasting

[10] Ettus Research. (2012, April) WBX 50-2200 MHz Rx/Tx. [Online]. Available:

https://www.ettus.com/product/details/WBX

[11] Matt Ettus et al. (2010, Sept.) USRP inband FPGA code. [Online]. Available:

https://github.com/etschneider/usrp-fpga-inband

[12] Ettus Research. (2010, December) USRP N210 and N200 schematic. [Online].

Available: http://code.ettus.com/redmine/ettus/attachments/87/n210.pdf

 63

[13] Trimble Navigation Limited. (2000, September) Thunderbolt GPS Disciplined Clock

Manual. [Online]. Available:

http://www.novotech.com/productinfo/trimble/Timing/Thunderbolt%20Manual.pdf

[14] Object Management Group. (2004, October) Event Service Specification. [Online].

Available: http://www.omg.org/spec/EVNT/1.2/PDF/

[15] Matt Carrick et al. (2010, September) OSSIE 0.8.1 Installation and User Guide.

[Online]. Available:

http://ossie.wireless.vt.edu/download/user_guides/OSSIE_0.8.1_User_Guide.pdf

[16] Wikipedia: The Free Encyclopedia. (2012, April) C++. [Online]. Available:

http://en.wikipedia.org/wiki/C++

[17] Wikipedia: The Free Encyclopedia. (2012, April) Python (programming language).

[Online]. Available: http://en.wikipedia.org/wiki/Python_(programming_language)

[18] Wikipedia: The Free Encyclopedia. (2012, April) Java (programming language).

[Online]. Available: http://en.wikipedia.org/wiki/Java_(programming_language)

[19] omniORB. (2012, Jan.) omniORB Frequently Asked Questions. [Online]. Available:

http://www.omniorb-support.com/omniwiki/FrequentlyAskedQuestions

[20] Richard G. Lyons, Understanding Digital Signal Processing. Upper Saddle River,

NJ: Prentice Hall, 2011.

[21] Fredric J. Harris, Multirate Signal processing for Communications Systems. Upper

Saddle River, NJ: Prentice Hall PTR, 2008.

[22] Joseph D. Gaeddert. (2011) liquid: software defined radio signal processing library

User's Manual. [Online]. Available: https://github.com/downloads/jgaeddert/liquid-

dsp/liquid-dsp-1.0.0.pdf

[23] Huai-Jing Du and Jim P.Y. Lee, "Passive Geolocation Using TDOA Method from

UAVs and Ship/Land-Based Platforms for Maritime and Littoral Area Surveillance,"

Defence R&D Canada - Ottawa, Ottawa, 2004. [Online].

http://pubs.drdc.gc.ca/PDFS/unc21/p521218.pdf

[24] Jonathan S. Abel and Julius O. Smith, "Closed-Form Least-Squares Source Location

Estimation from Range-Difference Measurements," IEEE Transactions on

 64

Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 12, p. 1661, December

1987.

[25] Wikipedia: The Free Encyclopedia. (2012, March) Geodetic system. [Online].

Available: http://en.wikipedia.org/wiki/Geodetic_system

[26] Maria Isabel Ribeiro, "Gaussian Probability Density Functions: Properties and Error

Characterization," Institute for Systems and Robotics, Instituto Superior Tcnico,

Lisboa, Portugal, February 2004.

[27] Geoffrey Blewitt, "Basics of the GPS Technique: Observation Equations,"

Department of Geomatics, University of Newcastle, Newcastle upon Tyne, 1997.

[28] Google. (2012, April) Google Web Toolkit. [Online]. Available:

https://developers.google.com/web-toolkit/

[29] JAMA: A Java Matrix Package. [Online]. Available:

http://math.nist.gov/javanumerics/jama/

[30] NeXtMidas. [Online]. Available: http://nextmidas.techma.com/

[31] Jason T. Isaacs, Daniel J. Klein, and Joao P. Hesphanha, "Optimal Sensor Placement

For Time DIfference of Arrival Localization,".

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

Polyphaseresampler.m

clc;clear all;close all;

Set up

#set ratio for polyphase filter
interp=256.06

Number of Phases on polyphase Filter
M = 64;

Set up Source Sampling rate, filter design sampling rate
and final sampling rate

fs1=250;
fs2=M * fs1
fs3=interp * fs1

Compute Nyquist Rates

fn1= fs1/2;
fn2= fs2/2;
fn3= fs3/2;

Number of taps per filter phase
PS=5;

n=M*PS;

build Kaiser windowed FIR filter
ftype='low'
fstop=75
Wn=fstop/fn3
sba = 100
From http://www.mathworks.com/help/toolbox/signal/ref/kaiserord.html
if (sba > 50)
 beta = 0.1102*(sba-8.7);
elseif (sba > 21)
 beta = 0.5842*(sba-21)^0.4 + 0.07886*(sba-21);
else
 beta = 0;
end

 79

filt = M*fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

Build filter partitions
partfilt = zeros(M,PS);
for i=1:M
 for j=1:PS
 partfilt(i,j) = filt(i+(j-1)*M);
 end

end

Build initial signal
t=0:1/fs1:1;
x1 = sin(2*pi*72*t);
x2 = sin(2*pi*35*t);
x = x1+x2;

Up sample signal and prepare for filtering with control case
xup = upsample(x,M);

Filter signal for control case
y = filter(filt,1,xup);

Filter and up sample signal with multirate method
y1=zeros(1,length(x)*interp);
yindex = 1;
xinterval=M/interp;
xindex=1;
xindexminor = 0;

for i=1:length(x)
 while (xindexminor < M)
 if (i>PS)
 xf = floor(xindexminor+1);
 for k=1:PS
 y1(yindex) = y1(yindex)+x(xindex-k+1)*partfilt(xf,k);
 end
 yindex++;
 end
 xindexminor=xindexminor + xinterval;
 end
 xindexminor=xindexminor-M;
 xindex++;
end

 80

figure(1)
clf
plot(x)
title('Original Signal');

figure(2)
clf
plot(y(1:75*M))
figure(3)
title('Control Filtered Signal');

clf
plot(y1(1:75*interp))
title('Multirate Filtered Signal');

figure(4)
clf
NFFT = length(y);
fs = fs1*M;
f=fs/2*linspace(0,1,NFFT/2);
f3 = 2*fft(y)(1:NFFT/2);
f3 = sqrt(real(f3).^2+imag(f3).^2);
plot(f,20*log10(f3/max(f3)))
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
title('Control Spectrum')

figure(5)
clf
NFFT=length(y1);
fs = fs1*interp;
f=fs/2*linspace(0,1,NFFT/2);
f3 = 2*fft(y1)(1:NFFT/2);
f3 = sqrt(real(f3).^2+imag(f3).^2);
plot(f,20*log10(f3/max(f3)))
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
title('Multirate Spectrum')

 81

 82

 83

 84

 85

