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ABSTRACT

The Software Communications Architecture (SCA) specification defines a framework
that allows modular software components to be developed and assembled to build larger
radio applications. The specification allows for these components to be distributed
among a set of computing hardware and to be connected by standard interfaces. This
research aims to build a spatially distributed SCA application for the Open Source SCA
Implementation: Embedded (OSSIE) implementation using low-cost Universal Software
Radio Peripheral (USRP) hardware. The system collects signals from multiple spatially
distributed collection devices and use those signals to compute precision estimates for the
location of emitters using time difference of arrival (TDOA) computations. Several
OSSIE components and tools are developed to support this research. Results are

presented showing the capabilities of the geolocation system.
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1 Introduction

This research aims to build a spatially distributed radio system to perform Time
Difference of Arrival (TDOA) based geolocation of a specified signal of interest utilizing
the Internet as a network to connect Software Defined Radios (SDR). This section
provides background material on SDR, summarizes contributions of the thesis, and

provides an overview of the rest of the document.

1.1 Background

In the past, radio systems were largely developed for a specific purpose. A radio might
be defined to support the 802.11(b) standard and implemented in an application-specific
integrated circuit (ASIC) or other piece of purpose-specific hardware. If a new standard
was defined, such as 802.11(g), a new piece of hardware is required to implement that
standard. SDR defines a class of radios that are largely implemented in, or controlled by
software [1]. The definition of SDR is a large topic of discussion in the radio
community, and can have many different definitions depending on who is asked. While
one might consider any hardware aside from a digitizer to be contraband in the world of
SDR, another may allow for a complex configurable RF front-end prior to the digitizer.
For the purposes of this research, an SDR is defined as “a radio that is substantially
defined in software and whose physical layer behavior can be significantly altered
through changes to its software,” as defined by [1]. This definition is important because
it allows for a radio system to be built with maximum flexibility through use of easily
reprogrammable general-purpose processors (GPP), while also creating a realistic design
without the requirement for extremely high-speed digitization hardware. One radio that
meets this definition is the Universal Software Radio Peripheral (USRP) [2]. This piece
of hardware is a modular design incorporating a digitizer and a set of pluggable RF front-
ends of varying capability and complexity. The flexibility gained with an SDR is not
without its drawbacks. With more flexible processing come possible increases in
required processing power. This deficiency has become less important recently with

increased performance and lower cost of commodity computer hardware.



In an SDR application, once a hardware solution has been chosen, software must be
written to control that hardware and utilize the signals that have been digitized. Devices
such as the USRP provide a set of libraries for controlling the radio and sending and
receiving signals. Software can then be written to take those signals and apply any
processing required. Several frameworks have been defined to facilitate building SDR
applications. A software framework is “a universal, reusable software platform used to
develop applications, products and solutions,” as defined by [3]. A software framework
is important for developers who wish to concentrate on building software signal
processing components and applications and allow the framework to provide a means to
connect those components. Some frameworks also provide libraries with useful

collection of signal processing components and utilities to aid in software development.

Several frameworks exist or are being developed. GNU Radio is a popular tool for
hobbyists and researchers to use when prototyping software defined signal processing
systems. GNU Radio provides a simple framework for connecting software components
and building SDR applications [4]. Another framework that is available is the Software
Communications Architecture specification, which was defined for the Joint Tactical
Radio System (JTRS) by the Joint Program Executive Office (JPEO) [5]. JTRS is a radio
system that was designed to be implemented by the next generation radio used by the US
Military [6]. The SCA specification has several implementations, including several
commercial and open-source implementations. The SCA specification is built upon the
Common Object Request Broker Architecture (CORBA), which provides support for
distributed and multiplatform computing [5]. The ability do define a distributed
application is important not only because it allows distribution of processing
requirements over a set of hardware, but also because it allows for those components to
be distributed over a wide area network so that some components can be placed as close
as possible to their corresponding RF hardware. The signal can then be processed
accordingly, possibly resulting in a smaller amount of data being transmitted over a slow

or unreliable network.



The increasing flexibility of radio systems through implementation in software allows for
radio systems to change quicker today than ever possible in the past. A single radio
device such as a cell phone or tablet may be able to support many different
communications standards with a single RF/Digital front-end. A handset could be built
to support both GSM and CDMA, both utilizing the same RF front-end, with the rest of
the physical layer being implemented in software. These possibilities allow for standards
to be created and updated faster, introducing many more types of signals into the already

crowded world of radio communications.

In many cases, it is useful to have the ability to locate an RF signal. This can be useful
for mapping the location of a set of transmitters in an area of interest, or to locate a radio
of a user who is in distress. Because of the increasing variability and complexity of radio
systems, an SDR is a great platform for signal collection for performing geolocation. The
flexibility of the systems allows for a wide variety of signals to be collected, both in
frequency and in signal type. Since most of the system can be defined or controlled by
software, it is possible to take advantage of having access to the signal prior to and after
demodulation and processing. There are a number of challenges with generating a
usable location estimate from an SDR, especially a low-cost device such as a USRP. For
this research, TDOA geolocation was considered. Precision and accuracy in time tagging
of the data are very important for TDOA geolocation. Signal-to-noise ratio (SNR),
bandwidth, and integration time are also important factors, and directly affect the error in

the TDOA measurement [7].

1.2 Contributions

Several contributions will be made to the OSSIE framework as a result of this research.
* OSSIE Bug fixes — Several bugs were found in the OSSIE framework precluding
the deployment of multiple nodes utilizing the USRP board.
* OSSIE CORBA Event Service implementation — The OSSIE Core Framework
was modified to allow CORBA Event Channels to be connected to user developed
software components. This allowed for easier development of de-coupled

command and control for OSSIE software applications.



* OSSIE Java Support — Several OSSIE software components were built for the
Java programming language. This includes a Java WavLoader, for loading and
controlling OSSIE applications from Java. Support for Java OSSIE Resources
was added to allow for developers to build software components using the Java
programming language. Several OSSIE Ports were also implemented in java to

facilitate connecting Java OSSIE Resources with other Resources.

The OSSIE TDOA geolocation application developed for this research will also be made

available for anyone interested in continuing this research.

1.3 Thesis Organization

This thesis starts in section 2 by introducing the technologies and key concepts that are
important for designing and building distributed SDR applications implemented in
OSSIE. The Software Communications Architecture (SCA) framework and OSSIE
implementation of the SCA are introduced. In addition, the hardware platform utilized
for this research is introduced, as are concepts related to using that hardware to achieve
the goal of this research. In section 3 the components and software built for this research
are described. Components for collecting the signal, correlating the signal to generate
TDOA measurements, and using those measurements to locate an emitter were presented.
These concepts are then combined to build an OSSIE Application. The results gained
from this exercise are then presented in section 4 and conclusions are drawn and future
work is suggested in section 5. Important code implementations are included in the

appendices.



2 Contributing Technologies and Concepts

Many software and hardware components were utilized in the execution of this research.
The following technologies and concepts were considered vital in completing the
research presented in this paper. SDR is introduced, including the frameworks utilized
for completing this research. The signal of interest used in this research is then
introduced. Finally, the collection platform used by this research is introduced. Because
this research focuses on receiving and processing a signal, signal reception will be the

focus of this discussion.

2.1 Software Defined Radio

SDR has been used to describe many different types of systems. In its ideal form, it is
nothing more than a digitizer connected to an antenna, with all other components
implemented in software. This is very convenient in theory, but at least for the moment,
it is not practical in reality. There are many reasons for this, but mainly it is a result of
limitations and cost of hardware. An ideal hardware system for software radio would be
required to cover the range of all possible signals that could possibly be collected with
that device [1]. These signals can range from DC all the way up to many gigahertz in
frequency. According to Nyquist, an analog to digital converter to cover this range
would be required to sample at least twice the highest bandwidth of the collected signal.
Not only is a digitizer of this caliber very expensive, if not impossible to acquire, but
once captured, the signal would be sampled at such a high rate that it may be impossible
to process in real time. Another important factor is dynamic range, because it defines the
highest and lowest power signals that can be digitized [1]. For an ideal SDR to operate, it
would be required to capture the lowest and highest power signals in its coverage range.
This may result in reduced dynamic range and increased quantization error for lower
power signals in a band where higher power signals exist. For these reasons, a typical
software defined radio employs a number of signal conditioning steps prior to
digitization. These steps can include [1]

* Signal amplification/attenuation, to scale the analog signal to match the

capabilities of the digitizer,



* Filtering, to reject out of band signals to prevent aliasing during
digitization,

* Down conversion, to shift the frequency range of the desired signal down
to something that the digitizer can sample. This can be to an intermediate
frequency (IF) or directly to baseband with possibly several stages in-

between.

The USRP SDR system used by this research employs all of these components [4]. For
this research the definition of an SDR is a radio system where much of the system is
implemented or controlled by software. It is a system that is capable of multiple modes

of operation because its input and output behavior is determined by software.

2.2 Software Communications Architecture

The Software Communications Architecture (SCA) defines a portable, open software
framework for SDR applications and components that allows for SDR applications to be

built with a re-usable, common set of components [5].

According to the Software Communications Architecture Specification document [5], the
SCA has been designed to:
1. “Provide for portability of applications software between different SCA
implementations,
ii.  Leverage commercial standards to reduce development cost,
iii.  Reduce software development time through the ability to reuse design modules,

iv.  Build on evolving commercial frameworks and architectures.”

These requirements were achieved by defining a standards-based, modular platform,
ensuring that components developed on different platforms and programming languages
can interoperate together without a great deal of time spent facilitating that

interoperability by the developer [5].



2.2.1 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is an Object Management
Group (OMG) middleware standard that allows for applications written in different
programming languages and for different platforms to interact together executing on
distributed processors and platforms [5]. It defines an Interface Definition Language
(IDL) to define interfaces between components. Software components developed for use
with CORBA implement these interfaces, and the Object Request Broker (ORB) provides
the plumbing to connect these interfaces and pass information between software

components [5].

2.2.2 SCA Core Framework

The Core Framework (CF) defines a set of CORBA interfaces defined for different
components in an SCA system. The Framework Control Interfaces include the
DomainManager, DeviceManager, Application, and ApplicationFactory interfaces.
These components are responsible for installing, managing, and uninstalling software
from the system [5]. The Framework Services interfaces include the File, FileSystem,
and FileManager interfaces. These interfaces provide access to the file system and other
services [5]. The Devices interfaces include Device, LoadableDevice, ExecutableDevice,
and AggregateDevice. These interfaces provide an API for interaction with devices [5].
Finally, the CF provides a set of Base Application Interfaces, including Port, LifeCycle,
TestableObject, PropertySet, PortSupplier, ResourceFactory, and Resource, that provide
an API for system software components, including Resources and Devices [5]. The
Resource interface is important for this research because it is the base class for every
software component written to support this research including the USRP_TIME Device
and each of the signal processing components. An implementation of the SCA must

provide implementations of most of these interfaces [5].

2.2.3 SCA XML Configuration Files

Every component in an SCA system has a set of one or more configuration XML files,
whose purpose is to describe the capabilities and requirements of each component [5].

These files are:



* The Software Package Descriptor (SPD) describes the implementation of a
software component,

* The Software Component Descriptor (SCD) describes a software component,
including what interface Ports the component shall Use or Provide,

* The Software Assembly Descriptor (SAD) describes the components and
connections which make up an SCA waveform, as well as waveform-specific
property values,

* The Properties Descriptor (PRF) describes a set of properties that a software
component has, including its default values,

* The Device Package Descriptor (DPD) describes a Device, including its make and
model,

* The Device Configuration Descriptor (DCD) identifies the Devices associated
with an instance of a DeviceManager,

* The Domain Manager Configuration Descriptor (DMD) describes the

configuration for the DomainManager.

2.2.4 SCA Operating Environment

The SCA Operating Environment (OE) is the set of services that an SCA implementation
provides to users of the framework. The OE includes the POSIX Operating System (OS),
CORBA Middleware, CORBA Naming Service, CORBA Log Service, and CORBA

Event Service [5].

2.2.5 Applications

Each Application (Waveform) that can be installed in an SCA system implements the
Application interface. Each Application has one or more Resources that act together to
perform a function. The Application has a SAD file to describe its Resources, their

configured properties and the Port interconnections [5].

2.2.6 Resources

Each software component that is to be used in an Application implements the Resource

interface. This includes both Device and signal processing Resources. Each Resource



has a PRF, a SCD, and a SPD file, to describe its properties, its capabilities, and its

implementations [5].

2.2.7 Ports

The SCA defines a Port interface for data flow between Resources. The Port defines an
API for connecting and disconnecting ports. A software component can both provide
ports and use ports. The provider of a Port provides an implementation of that Port. The
user of a Port can call the provided methods associated with the port. For this reason, the
SCA specification refers to the Ports differently depending on what side of the port the
component sits. If the component sits on the user side, it is known as a Uses Port. Ifit

sits on the provider side, it is known as a Provides Port [5].

2.2.8 CORBA Event Service

The SCA specification requires that each implementation implement the CORBA Event
Service as part of its OE. The implementation of the CORBA Event Service must
implement both the PushSupplier and PushConsumer interfaces defined in the
CosEventComm module. The SCA uses the CORBA Event Service by allowing a set of
event channels to be set up to allow decoupled connectivity between software
components. The SCA Specification indicates two channels that must be defined, the
Incoming Domain Management Channel (IDM_Channel) and the Outgoing Domain
Management Channel (ODM_Channel). Other event channels may be created and

connected to software components as seen fit [5].

2.3 OSSIE

Open Source SCA Implementation: Embedded (OSSIE) is an implementation of the
Software Communications Architecture (SCA) specification developed by Dr. Max
Robert and a team of Dr. Jeff Reed’s students at Virginia Tech [8]. OSSIE is a free and
open source SCA implementation that was built initially because of high costs associated
with commercial implementations of the SCA. OSSIE has seen continued development

by students at Virginia Tech and has received interest from industry [8].



While OSSIE implements a large portion of the SCA specification, it is missing some
important features. OSSIE does not support automatic allocation of resources. For this
reason, OSSIE defines an additional XML file, the DAS (Device Assembly Sequence)
file, for each application that assigns each software component to the Device where it will
be executed. OSSIE also lacks the ability to allow more than one of the same Device
nodes to be used within one DomainManager at the same time. The most important
missing feature that was required in this research was support for the CORBA Event
Service for software components to allow decoupled command and control of an

Application.

OSSIE provides a limited set of included Port implementations for connecting software
components. It provides a set of generic data Ports for streaming signal data, and a

second set of the same Ports allowing metadata to be transmitted. In general, an OSSIE
Uses Port sends data across an interface and an OSSIE Provides Port receives that data.
For the purposes of this research, where Ports are used or built, the terminology will be

used in the same manner.

2.4 GNU Radio

GNU Radio is another open source framework for building experimental SDR
applications. While GNU Radio does not implement a standard like OSSIE, it also
allows a developer to build up signal-processing applications using modular components.
GNU Radio connects and configures components in a Python application known as a
“flow graph.” Components can be written in several languages, including C++ and
Python [4]. This allows for flexible applications that can be modified and quickly
executed. GNU Radio also provides several out-of-the-box tools that can be used to
visually build a flow graph and other tools that can be used analyze spectrum and verify
that the radio is working. For this research, this was the part of GNU Radio that was
most helpful. The FFT tool and waterfall tool were used to investigate what signals were
available and to choose the proper signals for use in this research. Also used was libusrp,

a library included with GNU Radio providing an API to interface with the USRP Radio.
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This API allows parameters to be set that control the operation of the USRP and its
daughterboards. The API also allows data to be streamed to and from the USRP [4].

2.5 FM Radio

For this research, VHF FM Radio broadcast signals were chosen as the signal of interest
(SOI) for collection and location determination. This signal was chosen because it is
consistently available and easy to collect. In a standard analog FM radio signal, the entire
signal data is contained within an FM modulated signal. Once demodulated, the one-
sided spectrum of an FM signal is approximately 100kHz wide. Figure 1 shows the
spectrum of the FM signal after demodulation. In the audible frequency range, the signal
contains the mono audio channel (left + right) between 30hz and 15kHz. At 19kHz, there
is a pilot tone indicating a stereo audio channel (left — right) is centered at twice this
frequency, 38kHz. The FM signal may optionally contain several auxiliary channels
between 53kHz and 99kHz. Radio Broadcast Data System (RBDS)), if present, is
centered at 57kHz. Centered at 67.65kHz is DirectBand, or a subcarrier containing
secondary content (SCA). A second secondary content subcarrier can sometimes be
found at 92kHz [9]. When demodulating the audio for mono audio playback, the
demodulated signal can be filtered to reject anything above 15kHz, but for the purposes
of this research, the time-varying components above 15kHz were kept to aid in the
correlation phase by keeping as much time-varying information as possible in the signal

to maximize the bandwidth of the signal.

DirectBand
or
SCA

OkHz 15kHz | 23kHz 67.65kHz 92kHz ~ 99kHz

19kHz 57kHz

Figure 1 FM radio spectrum
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Figure 2 shows an actual averaged FFT captured using an application built with the GNU

Radio Companion to demodulate the FM Radio signal and generate an FFT.
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Figure 2 FM signal averaged FFT after demodulation

2.6 Universal Software Radio Peripheral

The hardware platform chosen for this research is the original Universal Software Radio
Peripheral (USRP), also known as the USRP1, since newer USRP boards have since been
released [4]. The USRP is an open source experimental SDR radio developed by Matt
Ettus of Ettus Research [4]. The USRP was chosen for its low-cost and for its
availability for this research. The USRP provides capability for both receiving and
transmitting digital signals. It is built with a modular design, allowing different receive
(RX) and transmit (TX) front-ends to be installed on its four daughterboard slots. The
USRP has four A/D converters for signal digitization, four D/A converters for signal
transmission, an Altera FPGA chip for digital processing, and a Cypress FX2 USB
interface chip to provide a high speed USB2 interface to the host PC [4].

Two RX daughterboard slots are provided. Each slot provides two high-speed 12-bit A/D
converters capable of digitizing analog signals at 64M samples per second. Prior to each
A/D converter is a programmable gain amplifier (PGA) that allows boosting the analog
signal up to 20dB prior to digitization to make best use of the A/D dynamic range.
Depending on the RX daughterboard used, the signal is either digitized as a complex
signal or a real signal and may be either at baseband, an intermediate frequency (IF), or at

the original frequency. After digitization, the A/D is received by the digital inputs on the
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Altera FPGA chip. The FPGA is loaded with an image that provides several signal
conditioning steps prior to the data being streamed across the USB2 interface to the PC.
The signal is first multiplied by a constant frequency signal to shift the signal to
baseband, and then the signal is decimated. The in-phase (I) and quadrature (Q) samples
are then interleaved and transmitted over the USB2 bus to the PC [4].

The USRP board also provides two TX chains for transmitting signals. The TX process
is much the same as the RX process, except in reverse. The interleaved I and Q samples
are received by the FPGA chip over the USB bus then interpolated and up-converted to
IF. Two high-speed 14-bit D/A converters are provided for each TX chain, capable of
converting signals at 128M samples per second. After up-conversion to IF, the digital
signal is passed through the D/A converter and run through a PGA providing up to 20dB
gain. The analog signal is then delivered to the TX daughterboard through the provided

connector where it can be mixed and filtered to the proper band [4].

The behavior of the daughterboards and the FPGA components for both the TX and RX

chains are completely programmable over the USB bus.

The RF daughterboard chosen for signal reception in this project is the WBX board. The
WBX is a transceiver, having a RX/TX capability from 50-2200MHz [10]. It provides
on-board analog filtering and mixing to reject out of band interference before digitization.
Its mixers down-convert the signal to IF and also separate the incoming signal into I and
Q components such that the signal is digitized as a complex signal. The WBX was

chosen for its wide range and coverage around the FM radio band.

The USRP board has a number of limitations, which are important for solving a
geolocation problem. First, in order to provide an accurate timestamp for each sample
recorded, each radio system must have access to a very accurate time source. If a host
computer could provide an accurate time source, the signal could be time-tagged on the
host. The arrival time of each packet on the PC is not deterministic due to the method in

how the data is transmitted from the FPGA to the PC. The data is loaded into a buffer on
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the FPGA and transmitted via the USB interface when possible. Because of this the jitter
in arrival time of data on the host is too great. The USB bus is also too slow to transmit
data to the PC at the full rate of 64MS/s for maximum timing resolution. The signal must
be decimated prior to transfer, so not only is the jitter too great, but the time resolution is
also too great to generate an accurate timestamp. The USB2 bus can handle a maximum
of 480 Mbit/sec. At 64MS/sec, the USRP transmits

Msample 1 bits 2048 Mbit

sec sample sec

64

(1)

which is well above the theoretical maximum for the USB interface. Decimating by 8
brings the rate down to a more manageable 256Mbit/sec. If accurate timing could be
attained using a PC at this rate, corresponding to a sampling rate of 8MS/sec, the time
resolution would be

1

2 Msample

=1.25-107"s (2)
SecC

during which time a collected signal travels

1.25-1075-299792458 " = 37.5m (3)
s

which might be acceptable for some targets and requirements for geolocation accuracy
but not for others. Therefore, a method of time-tagging the samples coming off of the

USRP board is used and 1s described in section 3.1.2.

Another problem with the USRP board is that there is some tolerance in the oscillator
clock rate, such that a signal collected at two separate USRP boards will not be sampled
at precisely the same rate. Because the signals are not collected at the same rate,
correlating the data collected from these sources will not be possible to a high degree of
precision. An arbitrary ratio resampler is described in section 3.4.5 to compensate for

this issue.
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3 Design and Implementation

This research required many building blocks to assemble a fully working TDOA
geolocation system. The network and hardware infrastructures are introduced. This is
followed by a discussion of hardware modifications required. The OSSIE framework
modifications are then described. Finally, the OSSIE waveforms and components are

described.

3.1 Hardware

3.1.1 Distributed Hardware

Two OSSIE nodes were built, one placed in Haymarket, VA and the other placed in
Ashburn, VA. Each OSSIE node contained a single GPP and a single USRP board. The
USRP boards were connected to 75-ohm antennas through the RG-6 wiring already
present in each house, via a 50/75-ohm converter, to avoid any unnecessary interference.
A Trimble Thunderbolt GPS Disciplined Oscillator (GPSDO) and antenna were installed
in each house, also connected to their antennas through the house RG-6 wiring. The GPP
Devices were connected to the LAN in either house and the house LANs were linked via
a VPN connection installed for this purpose, as seen in Figure 3.

b 4 f E2)(

"% Sterling

Figure 3 VPN between Ashburn and Haymarket
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3.1.2 USRP Precision Timing

The USRP board in its default configuration serializes only signal data over the USB bus.
Because the research presented requires precision time tagging to facilitate accurate
TDOA measurements, an accurate time source had to be connected to the USRP board.
Earlier in the development of the GNU Radio project, there was an effort to build an
FPGA firmware version that transmitted metadata in-band with the signal data over USB.
This endeavor was abandoned, but the Verilog codebase still exists [11]. The Verilog
code maintains an internal clock and tags each packet sent to the host with a timestamp in
samples. Because the USRP board could not be modified physically for this research,
there is no way to coherently lock the on-board oscillator to an outside reference. The
on-board oscillator cannot be relied upon to deliver a precise 64MS/s clock. There is a
possibility, however, to connect an accurate 1PPS reference to a high speed input on a
Basic RX daughter board on the unused side of the USRP board. The input can then be
used to reset the clock of the USRP board at each 1PPS signal. The received signal is
later resampled based on the number of clocks per second that were detected, such that
the sampling rate on the data from each USRP matches. The signals are still not
coherently sampled, but they should be aligned to within the period of one sample, which
was deemed accurate enough for the purposes of this research. The Verilog code that
was added/modified to perform this clock reset is shown in Figure 4. Figure 5 shows a

picture of the USRP board with a 1PPS signal wired in.

wire ts_reset_in;
reg ts_reset_a;
reg ts_reset_b;

assign ts_reset_in = ~io_rx_b[15];

initial ts_reset_a=0;
initial ts_reset_b = 0;

always @ (posedge clk64) begin
ts_reset_a <=ts_reset_in;
ts_reset_b <=ts_reset_a;
if (ts_reset_a & ~ts_reset_b)
timestamp_counter = 32'd0;
else if (tx_dsp_reset | rx_dsp_reset)
timestamp_counter <= 32'd0;
else
timestamp_counter <= timestamp_counter + 32'd1;
end

Figure 4 Verilog change to reset timestamp on USRP
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3.1.3 Trimble Thunderbolt GPS Disciplined Oscillators

Figure 5 USRP board

Trimble Thunderbolt GPS Disciplined Oscillators (GPSDO) were installed alongside
each USRP board to provide the precise 1PPS signal. The signal provided by the
Thunderbolt is output between 0 and 5V, where there is a precise rise in signal from 0 to
5V at the beginning of each second. Because the signal ranges from 0 to 5V, this signal
would damage the USRP board if connected to the input. A voltage divider was built up
to drop the voltage down to 3.125V, well within the 3.3V allowed by the USRPs high-
speed inputs. A pull-down resistor with capacitor was also added to filter out high
frequency transients in the input. This is the same voltage divider used on the USRP

N210 board [12]. Figure 6 shows the schematic of the implemented voltage divider.

17



R2 1.2k
IN out
0-5V —0 0-3125v

R1 R3

499 é 2k

<

Cc1
220pF

17

Figure 6 Voltage divider for 1PPS input on USRP

The Thunderbolt also has available a serial output that transmits a number of useful
pieces of information. The most useful for this research are the time packets that indicate
the current time and are broadcast at the beginning of every second. Figure 7 shows the

structure of each packet coming off of the GPSDO [13].

<DLE> <ID> <DATA STRING> <DLE> <ETX>

Figure 7 Trimble Thunderbolt packet structure

Figure 8 shows the layout of the <DATA STRING> element for the timestamp packet
[13]. Each row represents 32 bits, and the rows are consecutively transmitted. All fields
shown of greater than one bit are encoded as unsigned integers and are carried in network
byte order, where the most significant byte is carried first [13]. The timestamp defined
by the packet indicates the second at which the last 1PPS signal was received. Because
the Linux system could not keep reliable time, this timestamp was used as an accurate

time reference for the system.

TN 2N WSN 21N RSN NN W78 RSN RTTR BN SN 2 NN RZI RSN W78 RN B0 RN W 7N W TN BN S 78 e RO R o
TIME OF WEEK

WEEK NUMBER UTC OFFSET
T P 'S U PADDING SECONDS MINUTES HOURS
DAY OF MONTH MONTH YEAR

Figure 8 Timestamp packet
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3.2 OSSIE Frameworks Modifications

Several modifications were made to the OSSIE framework to support this research. A set
of interfaces was added to OSSIE to support distributed data transfer. The OSSIE Event
channel was enabled and implemented for application components. Finally, a set of Java

OSSIE Software Components was built.

3.2.1 Thesis Interfaces

To overcome the speed and latency issues found in section 3.3.1 with the OSSIE test
waveform using the OSSIE-provided interfaces, a new type of Port that is buffered on
both ends was defined in order to overcome these issues and still have the ability to
reliably transmit a number of sequential packets. For this research, a new version of the
standardInterfaces complexShort interface was created that has a buffer on both the Uses
and Provides side of the connection. On the Uses side, packets are accumulated in a
buffer until they can be sent and then buffered again on the Provides side. This type of
interface can only be used in between a set of components that is not transmitting at all
times, otherwise the buffer on the Uses side of the Port will be guaranteed to fill up if the
amount of data exceeds the throughput available. It is particularly useful for transmitting
snapshots of continuous data. A TriggerControl interface was also built to allow one
component to request a snapshot of data from another component. These Ports were
placed in a new OSSIE package called thesisInterfaces. The standard OSSIE
standardlInterfaces Ports were also modified to allow each Port to optionally transmit

metadata.

3.2.2 OSSIE Event Channel Implementation

The SCA specification calls for the OE to provide an implementation of the CORBA
Event Service that implements the PushSupplier and PushConsumer interfaces from the
CosEventComm module [5]. There is such an implementation defined for use with
omniORB, and that implementation is called omniEvents. In looking at the OSSIE
source code, it appears as though at some point there was an intention to implement this
functionality, as some of this functionality was present, but commented out. The

Incoming Domain Management Channel (IDM_ Channel) and the Outgoing Domain
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Management Channel (ODM_Channel) were implemented partially, but capability to

connect SCA Resources to event channels was not fully implemented.

For this research, the CORBA Event Service was enabled in OSSIE and functionality was
implemented that allows connecting software components to event channels. A software
component can utilize the event channel by connecting a Uses Port on that component to
an event channel, whether or not the Port is publishing or subscribing to events. The
ApplicationFactory implementation was modified such that when an Application requires
an event channel to be connected to a component’s Uses Port, it passes a reference to the
specified event channel into the connectPort method of the component’s Uses Port. The
component subsequently connects a publisher or subscriber to the connection and allows
the messages to be sent to or received from that event channel. This functionality was
useful in this research as it allowed the command and control GUI to be decoupled from
the waveform code by allowing both the waveform components and the GUI application
to independently publish and subscribe to the same CORBA Event Channels. These
Event Channels can be connected in the software assembly descriptor XML file using the
same <connectinterface> tags used to connect other Uses and Provides Ports [5]. Figure
9 shows an example connection used in this research to connect the Correlator

component’s EVENTS IN Port to the THESIS EVENTS event channel.

<connectinterface id="DCE:89dbcca3-1ea9-11e1-b0a0-000c297957ca">
<usesport>
<usesidentifier>EVENTS_IN</usesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</usesport>
<findby>
<domainfinder type="eventchannel" name="THESIS_EVENTS"/>
</findby>
</connectinterface>

Figure 9 Event Channel Port connection
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The CosEventComm interface indicates that events passed on the event channel must be
the CORBA Any type, which means that any CORBA data type can be used as an event
on an event channel [14]. For this research, several event types were defined and used,
including a TdoaEvent that is sent whenever a TDOA measurement is made. A
TriggerCollect event is defined to allow a trigger to be sent from the control application.
A TuneRequestEvent is also defined to allow tuning of the USRP during operations. The
CORBA IDL definition of these events is illustrated in Figure 10.

struct TdoaEventAvg { struct TuneRequestEvent { struct TdoaEvent {
float freq; string tuner id; float freq;
string id; float freq; string id;
string collid; short decim; string collid;
float colllat; }; float colllat;
float colllon; ' float colllon;
string col2id; struct TriggerCollect { string col2id;
float col2lat; float start_freq; float col2lat;
float col2lon; float freq_interval; float col2lon;
unsigned long num collects; 5h°ft delay; long tdoa;
long tdoa avg; unsigned long num_channels; 3.
float tdoa std; unsigned long repetitions;
}: B unsigned long duration;

}:

Figure 10 Thesis events

Decoupling the software components means that components do not have to care or know
if other components are interacting on its event channels. If a component is generating
status, it does not care if anyone is consuming that status. In the same way, if a
component is listening for command and control events, it does not care who sends the
event or if they are not online at any given point in time. This is useful in a large system
where it may be unknown how many waveforms are online at a given point in time,

where single or multiple points of command and control are desired.

3.2.3 Java OSSIE Support

OSSIE supports building signal processing components in two programming languages,
the first being C++ [15]. C++ is a statically typed, multi-level programming language
that combines the features of an Object-Oriented programming language with similar
syntax to and interoperability with C [16]. This allows usage of many existing legacy
signal-processing libraries. C++ is also a native, compiled language that is compiled to

machine language before execution. This allows for very fast, efficient code that is
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optimized for the operating system and hardware. Because of these traits, C++ is a great

language for writing signal processing components for a SDR system.

Python, the other supported language, is a higher-level programming language than C++
and is an interpreted language. Python’s emphasis is an ability to write powerful code
that is very readable [17]. Python also provides a very large standard library that
provides many functions, including graphical user interface (GUI) functionality [17].
Python is often used as a glue language, connecting software from different languages.
Python, being an interpreted language, will not run as fast as compiled C++, so it is best
left for less intensive usage in an application like OSSIE. Some possible usages are GUIs

and application control software [17].

When choosing which programming language to use for this research, the choice was
clear for the signal processing components in the system (C++) because of performance
reasons and availability of signal processing libraries. For the user interface and web
application portions, Java was the chosen language. This was done partially because of
the researcher’s experience with Java, but also because of the large popularity of the Java
language both in user interface (UI) development and in web application development
[18]. It was also done as an exercise in learning how to interact with the SCA framework
from a new programming language. Java has built-in CORBA support, which is
interoperable with omniOrb’s naming service, making it a great choice for interacting
with OSSIE [19]. Because OSSIE does not support Java, new software had to be written
to allow development in Java. Several types of OSSIE software were implemented in
Java for this research, a Java OSSIE Resource implementation, a Java WavLoader, and

several Port implementations.

The SCA Resource interface and its parent interfaces, LifeCyle, TestableObject,
PropertySet, and PortSupplier were implemented in Java. The Java Resource class is
implemented in a very similar way to how the Resource class is implemented in C++, but
extra care was made to define the software in such a way that minimal code had to be

written for each software component that was built. The Resource class thus
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implemented the property configure and query methods, to allow configuring of
parameters on the Resource. The Java Resource class also implements a port
management system allowing the child class to simply add and retrieve Ports as
necessary. Because of this, when the core framework requests a Port with the getPort
method on the Resource, the child class no longer needs to respond to this message
because it is already taken care of by the provided implementation of Resource. Another
convenience added into the system is a static method runApplication, intended to start the
application from its main method, given parameters required to connect to the CORBA
Naming Service by the ApplicationFactory. All threading and thread control is also built
into the Java Resource class. Because of these added convenience methods, a component
need only implement the process method, a constructor that defines and adds Ports to the

Resource, and a main method to call runApplication.

In addition to the Resource class, several Port interfaces were implemented in Java. Two
existing Ports from the OSSIE standard interfaces, complexShort _p, a Provides Port and
complexShort _u, a Uses Port, were implemented. A Port from thesisInterfaces was also
implemented, TriggerControl u, a Uses Port. Finally, implementations of publisher and
subscriber Ports were implemented in Java for interoperability with the CORBA Event

Service.

A graphical OSSIE component was built with the capability to trigger a TDOA collection
to be made using the TriggerControl Port. This component was later deprecated in favor
of a component that would use the THESIS EVENTS event channel to send trigger events
to the TDOA collection waveform using the 7TriggerCollect event. This decoupled
connection allows the same trigger event to trigger collections in multiple simultaneously
deployed waveforms. The GUI interface for both applications can be seen in Figure 11.
The GUI can trigger a set of TDOA measurements to be made, allowing the user to set
the frequency channels to collect, the number of TDOA samples to take at each channel,

and the integration time in samples for each collection.
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Figure 11 Command and control GUI for TDOA waveform

The other java application that was built was the Java OSSIE WavLoader application.
This application provides a Java GUI allowing a user to install/uninstall and start/stop
one or more waveforms. The Java OSSIE WavLoader is able to load and run multiple
waveforms on the same OSSIE nodes. It also allows a user to inspect the current
parameters on a loaded waveform. It can also be used as a library to programmatically
control an OSSIE Domain, including starting and stopping waveforms and configuring
properties of a loaded waveform. The application is shown running multiple copies of

the ossie_demo waveform in Figure 12.

0SSIE::LabSExample 0SSIE::0ssie_demo_2 [TEST4]
0SSIE::FMDemod OSSIE::0ssie_demo_3 [TEST5]
0SSIE::0ssie_demo

0SSIE::ThesisWaveform
0SSIE::DummyWaveform
0SSIE::0SSIETalkLoopBack e eatatHid N 2500

0SSIE::ml403_ossie_demo | [OSSIE::0ssie_demo_1 [TEST3] ‘

ChannelDemol

phase_offset [10.0] |
List Waveforms

OSSIE::FMDemod2
0SSIE::pass_data_waveform

Load waveform | selected waveform: IR

Load And Start Waveform 0SSIE::ml403_ossie_demo TxDemol
packet_delay_ms [500
start Waveform |
Stop Waveform
Uninstall Waveform Inspect Parameters
List Installed Waveforms

Figure 12 WavLoader Java application

3.3 OSSIE Waveforms

Two OSSIE waveforms were built. The first waveform was built to test the data transfer
between the distributed hardware. The second waveform was the full TDOA collection

waveform built for this research.
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3.3.1 Initial Distributed Test Waveform

Commander

FM Demod | Deployed to Local Node
[ IDeployed to Remote Node

FM Demod

Figure 13 Initial OSSIE waveform

An initial OSSIE waveform with two USRP boards was built, as seen in Figure 13. The
waveform was built simply to test whether it was realistic to transmit the required data
over the VPN link. As it turned out, the speed of the network over the VPN was not fast
enough to keep up with the data rate coming off of the USRP boards, not even at the
maximum USRP decimation of 256 [4]. Because the packet data was buffered only at the
Provides side of the Port, a bottleneck was encountered at the Uses side of the Port and
packets were lost. This was a problem for a TDOA computation because the correlation
procedure requires that there are no missing samples in the signal data. The Throttler

component was built to solve this problem, and is presented in section 3.4.3.

3.3.2 Final TDOA Waveform

A final TDOA waveform was built encompassing all of the components described in
section 3.4 as seen in Figure 14. Once the waveform is installed and run, it sits idle
waiting for a TriggerCollect event to be delivered into the Correlator to begin the
collection, demodulation, resampling, and correlation process. The TriggerCollect event
specifies which time in the future the collection should occur, what frequency to collect
on, and how many samples to collect. It also allows the requester to indicate how many
trials should be run at each frequency and how many frequencies should be tested, along
with the interval between frequencies. In the case of this research, the TriggerCollect

event was sent from the decoupled Java command and control GUI.
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Figure 14 Final TDOA waveform

3.4 OSSIE Components

Several OSSIE Components were built to collect, transmit, demodulate, resample, and

correlate signal data to produce TDOA samples.

3.4.1 USRP_TIME Component

Because the data coming off of the USRP board contains header data in-band with the
signal data, a new USRP OSSIE component had to be built to decode this packet data.
After receiving packet data from the libusrp library, the data is inserted into a circular
buffer of 512 byte packets. The packets are read from the circular buffer and processed

in sequence to extract the metadata in the header.

Each packet contains 8 bytes of header data and 504 bytes of sampled signal data. Each

sample contains two 16 bit signed integer values comprising the I and Q components of
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the digitized signal. The header contains 4 bytes of bit-packed header data and 4 bytes
containing a 32-bit unsigned timestamp. Figure 15 illustrates the USRP in-band packet
structure. The first 32 bits of the header include several bit-packed fields including the
payload length, which is always 504 bytes. The timestamp follows in the next 32 bits and
contains the number of samples (at 64MS/s, regardless of decimation rate) elapsed since
the last 1PPS signal from the GPSDO. All fields of greater than one bit are encoded as

unsigned integers and are carried in network byte order.

N R T N T

e ——————— T [T PR

PAYLOAD LEN(504) TAG  MBZ CH# RSS! BE BSPDDU
TIMESTAMP
PAYLOAD....

Figure 15 USRP in-band packet

When a packet is received, the timestamp is read from the packet. When a counter
recycle is detected, the number of samples since the last recycle is computed and is
considered to be the new sampling rate. The packet data is then pushed out onto a Uses
standardlInterfaces complexShort Port with metadata. The metadata is populated with the
timestamp of the first sample in each packet and the USRP sampling rate, both in

samples. The USRP decimation ratio is also included in the metadata.

3.4.2 USRP_Commander Component

The OSSIE USRP_Commander component was modified to take in events from the
CORBA Event Service, specifically a TuneRequestEvent. This event instructs the
USRP Commander to change its parameters, specifically decimation factor and carrier

frequency.

3.4.3 Throttler Component

The Throttler component is an OSSIE component used to take snapshots of collected data
when requested. It utilizes a Uses complexShort Port from thesisInterfaces to allow
buffering of data on the slow side of a wide area network. It has a Provides

thesisInterfaces TriggerControl Port to allow other components to trigger snapshot data

27



collection. When this trigger is received, it indicates the amount of data that should be
collected, and at what time the collection should start. After sending out the snapshot

data, the Throttler then returns to its default state of sending no data.

3.4.4 FM Demodulator Component

The WFMDemod component included with OSSIE was used for the demodulation task.
This component implements a simple differentiator to demodulate the incoming signal.
Because the amplitude data for the FM signal is encoded in the signal as a changing
frequencys, all that is required to demodulate the signal is computing the instantaneous
frequency at any given point in time [20]. This can be accomplished by computing the
derivative of the signal’s instantaneous phase. The phase can be computed by taking the
arctangent of the ratio of the quadrature signal to the in-phase signal. The derivative of

this signal results in the instantaneous frequency [20]:

i 1L _ gy 4L
Ae(n) — dn dn (4)
i*(n)+q’°(n)

This equation can be implemented in software using tapped-delay line Finite Impulse

Response (FIR) differentiating filters as shown in Figure 16, where the result is scaled by

Ji
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to compute the instantaneous frequency, and f, is the sampling rate [20].

i(n) =

q(n) =

Figure 16 FM demodulator, adapted from [20]
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3.4.5 Arbitrary Ratio Resampler Component

Because the USRP board does not have its oscillator locked on to any reliable reference,
the rate at which the signal is sampled is not precisely 64MS/s, nor does it remain
consistent over time. It is, however, relatively consistent from one second to the next.
Because of this, the sampling rate of the signal can be calculated by counting the number
of samples generated in a one-second period. Using the calculated sampling rate, the

collected signal can be resampled to an accurate 64MS/s.

A traditional rational (fractional) resampler can achieve non-integer resampling ratios by
first interpolating by an integer ratio, M, and then decimating by an integer ratio, N,
producing an effective M/N resampling ratio [21]. The signal is first zero-padded with
M-1 samples for each input sample, then low pass filtered to remove spectral images, and
finally down-sampled by removing every N-1 samples. This type of resampling wastes
computing cycles both during up-sampling, where multiply-by-zero operations are
computed when low-pass filtering, and during down-sampling, where newly computed
samples are thrown away. A polyphase filter can avoid this problem by building the
resampler in a way that it skips these unnecessary operations. In a polyphase filter, the
low-pass filter designed for the rational resampler can be broken up into M partitions of

length %/[ , where each partition computes a single output sample [21]. Because of zero

padding, the only filter coefficients that contribute to each output sample are those where

c=IM + p where c is the coefficient number in the original filter, i is the index within
the partitioned filter, L is the filter length, M is the number of partitions, and p is the

current partition number. Iterating from i=0to ;i = %4

—1 will produce the filter
coefficients for each partition. The partitioned filter can be used in the same way as the
original filter, except the signal need not be zero padded. After each output sample is
calculated, the filter partition is incremented and the next output sample is calculated.
After all the filter partitions are used, the input sample is incremented and the process

starts over again, as illustrated in Figure 17.
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Figure 17 Polyphase resampler

The polyphase filter discussed thus far implements only the interpolation portion of the
rational resampler. If a rational (fractional) ratio is needed, the partition can be
incremented by N instead of one, where N is the decimation factor [21]. The resulting
resampling ratio will be M/N. In any case the low-pass filter should be designed to
operate at the interpolated rate, M*(initial sampling rate), and to filter appropriately for

the decimated rate, M*(initial sampling rate)/N.

For a typical resampling rate used in this research, where the incoming sampling rate
might be 63,984,333S/s, an interpolation factor of 256*64,000,000 and decimation factor
0f 63,9843,33 are required to both return the signal to its original sampling rate (after
decimation by 256 on the USRP) and to correct the error in the sampling rate. A
polyphase filter for this ratio would require M=1.6384E10 partitions and a
correspondingly large low pass filter length, L. Because of the size, this filter would be
impractical to implement. The polyphase concept can be taken a step further to design a
resampler with ratio M/N, or any irrational ratio, without this complexity. If the
partitions are incremented at a non-integer rate, such a large filter is no longer necessary.
The problem with this approach is that, when incremented at this rate, partitions are
needed between actual partitions defined in the polyphase filter. These intermediate
filters can be handled in one of three ways [21]:

* The nearest neighboring filter partition can be chosen,
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* A linear interpolation can be performed between the two filters,
* A more sophisticated curve fitting interpolation method can be used to interpolate
between the two filters (known as a “Farrow” filter).

The first option, choosing the nearest neighbor, has a great advantage in that it is very
simple. Some noise will be injected into the signal in the appearance of spectral imaging,
because the resultant sample is chosen that should have occurred to the right or left of the
desired sample. This has a similar effect on a signal as a zero-order-hold, because of the
re-use of output samples [21]. These images should be tolerable by designing a filter
such that the stop band has sufficient attenuation so that these images do not contribute to
the resulting signal. Because the filter is in effect an interpolation followed by a
decimation, the filter should, however, be designed such that the stop band has a
continuous roll off rather that an equiripple design to avoid the zero-order hold images
being folded back into the passband and accumulating during the effective decimation

[21].

According to Harris [21], to ensure that the maximum amplitude of any residual spectra
caused by the usage of the nearest-neighbor approach is smaller than any imaging
injected by quantization error, the number of phases must meet the following requirement
N>20 (6)
where b is the number of bits in the digitizer and N is the number of phases in the
polyphase resampler. For the USRP board, where the number of bits in the ADC is 12,
this would require 2048 phases in the resampler. For this research, to simplify the design
of the filter, the number of phases was held back to 64, and, instead, the filter was
designed to attenuate the signal further to compensate for the spectral artifacts. Since the
filter used has continuous roll-off in its stop-band, the energy contained in these images

should not accumulate substantially when folded back into the pass-band.

The other two options, whereby a more sophisticated interpolation is performed on the
partitioned filters before resampling, require a partial recomputation of the filter phase
prior to each filter computation. This was considered too great a computational

requirement to be considered for this research.
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An octave application was built to experiment with different filter parameters. A Kaiser
windowed FIR filter was designed utilizing the Octave window-based FIR filter design
tools. The desire was to keep all images attenuated to at least 50dB below the filter pass-
band. A Kaiser window was selected and designed to generate a stop-band attenuation of
-100dB to also attenuate the spectral imaging produced by the zero-order hold effect. A
test filter was designed with 64 phases and a resampling ratio of
256*64,000,000/63,9843,33=256.06. A signal with two tones was passed through that
filter and the resulting spectrum is presented in Figure 18. Because the resampling ratio
is non-integer and some phases of the filter are used multiple times, you can see zero-
order hold induced images present in the spectrum, though they are all kept under -50dB.
The inset in Figure 18 also shows a magnification of the plot showing the main signal
components. Figure 19 shows the zero-order hold effect on the time-domain signal. The
figure shows samples being re-used and forming a “stair-step” effect. In-fact, the average
number of re-used samples is roughly four, since the resampling rate is roughly four

times the number of phases in the designed filter.
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Figure 18 Plot for polyphase resampler implemented in Octave
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Figure 19 Effects of nearest-neighbor interpolation on signal

An OSSIE Component was also built as a port from this Octave code, but was later
abandoned in favor of using the polyphase resampler that is part of the LiquidDSP library
[22]. The LiquidDSP resampler was utilized in a new OSSIE Resampler component.

3.4.6 Correlator Component

The Correlator component controls the process of collecting and correlating a signal
from a pair of receivers. When a TriggerCollect event is received by the Correlator
component, the process of collecting and correlating a pair of signals is started. The
TriggerCollect event indicates what channels should be collected, how long the snapshots
should be, and the number of TDOA samples that should be made per channel. After
receiving the event, the Correlator sends a TuneRequestEvent to tune each collector, then
a trigger is sent through the TriggerControl Port to start a snapshot collect from both
Throttler components. The Correlator then buffers data from each collector until the
proper number of samples is received. The signals are then aligned in time and
correlated. The maximum correlation is detected, and used as a TDOA sample. After the
correlation is computed, the Correlator writes the TDOA sample, buffered signal data,

and the correlation plot to disk for analysis. A TdoaEvent is then published to the
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THESIS EVENTS event channel for each TDOA sample generated. This process is

repeated until all TDOA samples are collected for all channels requested.

The fast correlation algorithm takes advantage of the fact that convolution in the time
domain translates to multiplication in the frequency domain.

a(t)*b(t) & A(w)-B(w) (7)
The demodulated FM data that is being correlated translates into a complex FFT, and, as

such, the multiplication for each element is accomplished by:

C(),,, =A®),,,B®),,, —A®),,.B(®),,, (8)

+ B(@),,,, A(@),,,., )

real real real

Clw), =Aw).  B(w)

imag real imag real

Once the product is computed, an inverse FFT is performed on the result, the magnitude

of the resulting signal is computed, and the peak is detected to determine the TDOA.

3.5 TDOA Geolocation

Two methods of geolocating an emitter using TDOA samples are considered. The first
method utilizes an iterative Taylor series approximation method [23]. The second
method is the closed form spherical intersection method [24]. These methods are
presented and the error in the measurements is translated to error in position estimation of

the emitter.

3.5.1 Iterative Taylor Series Approximation Method

The TDOA samples generated in the Correlator component can be converted into range-
difference of arrival (RDOA) samples and used to solve for the location of the unknown
emitter. An RDOA value is simply a TDOA value converted from time in samples to

distance in meters. The RDOA is computed,

TD OAsam les
TDOA,, = ———lee (10)
1
RDOA, =TDOA_, - (11)

where c is the speed of light in meters per second and f, is the sampling rate of the

collector.
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The emitter is located in three-dimensional space. Because each TDOA measurement
requires the difference of arrival at two collectors, four collectors and three TDOA
measurements are required to compute the three-dimensional location of the emitter.
Converting the location of the emitter and the collectors from Geodetic (Latitude,
Longitude, Altitude) to Cartesian (X, y, z) coordinates, the following RDOA equations are

formulated using the Pythagorean theorem,

Ry = f(x.3,2) ==, + (7= 3, + (2= 2,0 =/ (x=x) +(y= )’ +(z—2,)’

R31 =f2(x,y,z)=\/(x—x3)2 +(y—)’3)2 +(Z_Z3)2 _\/(x_x1)2 +(y—yl)2+(Z—Zl)2 (12)

Ry =1, (x3.2) = =2, +(y=,) +(z=2,) =J(x =) +(y=y)* +(z-2,)’
where x, y, and z are the location of the emitter in Cartesian coordinates, x;, y,, and z,

are the location of the i"" collector, and Rjjis the RDOA measurement between the i and
™ collector. Each equation defines a hyperbolic curve with the collectors as points of
focus [23]. Alternatively, if the emitter can be considered to be on the surface of the
earth, only three collectors are needed, the third equation in (12) with an equation

describing an oblate spheroid that the earth closely resembles [25],

1= (o) =24 2 (13)
a C
where
a=FEARTH _EQUITORIAL _RADIUS (14)
c=a(l-EARTH _ FLATTENING _FACTOR) (15)

These equations are non-linear and can be difficult to solve with a closed form solution,
even if each measurement is made without error. The system of equations can be made
approximately linear by using the Taylor series expansion centered on an initial estimate

for the location of the emitter, neglecting all terms other than the first order [23],

Ru=A(5p5p) = Gelx= )+ Sy ) E o) 16)

where x,, y,,and z, are the location of the initial guess. In matrix form this becomes,

AM = JAX (17)
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where the Jacobian, J , is the set of partial derivatives forming the first order term of the

Taylor series expansion,

9 L af |
dx dy Jz
o, 9f, 9f,
J=| odx dy Iz (18)
adf, 9f. 91,
dx dy 0Jz

and AM is the difference between the measured value and the value at the initial guess,

R, —fl(xg,zg,zg)

AM = R, —fz(xg,zg,zg)

(19)
Rnl - f;’l (xg ’Zg ’Zg )
and AX is the delta between the initial guess and the solution to the Taylor series
approximation,
X=X,
AX=| Y=Y, (20)
-2,

Because this system can be over-determined if there are more equations than unknowns
(n > 3) and the measurements are not precise, it cannot be solved exactly, and there will
be some error in these equations. To account for error in the system, equation (17) can be
re-organized as,

e=JAX-AM (21)

where € is the error.

A least-squared minimization can be used to minimize the sum of the squares of the error,
min||JAX — AM|f (22)

This can be accomplished by multiplying both sides of equation (17) by J ,
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J'AM = J"JAX (23)
then solving for AX [23],
AX =TI I AM (24)
If a confidence can be placed on each measurement, a weighting matrix may be
employed to place an appropriate weighting value on each measurement,
AX =(J"WI)'T"'WAM (25)

This weighting matrix W, is simply a diagonal matrix of weights,

i w, 0 - 0 ]
0 e 0
w=l - M (26)
0 0 - w,

where w;is the weight for each measurement. If the variance is known for each

measurement, the inverse of the diagonal matrix of variances from each measurement can

be used as the weighting matrix.

In either case, AX can then be added to the initial guess, and used as a subsequent guess

to approach closer to the solution,

XG,new = AX + XG,old (27)

until the absolute value of AX is smaller than some minimum €error, errmijn.

|AX| < err,;, (28)

The main problem with this technique is that it can be rather difficult to choose the initial
location. If the initial location is improperly chosen, the iteration can quickly diverge due
to the highly imperfect approximation using only the first order part of the Taylor series
approximation. Large steps in each increment can easily jump right over the actual
emitter location and possibly never approach the emitter location. Figure 20 shows a
converging iteration sequence where the algorithm gradually approaches the target. The
figure also shows a situation where the algorithm diverges, oscillating around the earth,

not finding the emitter.
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Figure 20 Iterative method converging and diverging

3.5.2 Spherical Intersection Method

There are also several methods for approximating a closed-form solution for the location
of the emitter. One considered here is the spherical intersection method [24]. This
method says that the location of the emitter can be found by finding the intersection of
the spheres inscribed by the range from each collector to the emitter. Given that one of
the collectors is considered to be the origin of the system, the range from each collector

to the emitter is [24]

Dl :De
D,=D,+R,, (29)
D,=D,+R,

where D, is the distance from collector i to the emitter , D, is the distance from the origin
(in the case of this problem, collector 1) to the emitter, and R, is the RDOA between
collector 1 and collector 1 (the origin). D, through D, are the set of equations that are

used to solve for the location of the emitter. Using the distance from the emitter to

collector i, and the Pythagorean theorem, these equations become,
(D6+R“)2 :(xi_x)z_'_(yi_y)z_l_(zi_z)z (30)
expanding, and simplifying, this becomes [24],
D+DR,+R =x’+y +7 +xX +y +7° = 2xx—-2yy—2z2 (31)

D}+2D,R,+R’=D’+D>-2X'X (32)

e Nl
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0=D’-R:-2D,R,—2X'X (33)

and in matrix form,

0=86-2D,R—25X (34)
where
Dz2 _R221
2 2
5=| DR (35)
Do |
X, Yo 4
s=| 7T (36)
xn yn Zn
R21
R
R=| 7 (37)
Rnl

If the system is over-determined system, there will be some error,
e=0-2D,R-2SX (38)

This error can be minimized by using a least square’s method, minimizing the sum of the

squares,
min||6 —2D,R—25x|[ (39)
This can be accomplished by reorganizing the equation [24],
0-2D,R=2S8X (40)
multiplying both sides by S”,
S"(6-2D,R)=2S5"SX (41)
and solving for X yields,
X= %(STS)I S"(§-2D,R) (42)
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Equation (42) can be inserted into the Pythagorean equation for the range of the emitter
from the origin [24],
D}=X"X (43)

expanding this equation results in [24],

aD> +bD,+c=0 (44)
where
a=4-4D" ((STS)‘1 s )T (s7s)"s™D, (45)
p=a((ss)"s") (ss)"s"5 (46)
c=-5"((ss)"s") (s7s) " 5" (47)
and

_ —b+b*—4ac

DE
2a

(48)

yields an approximation for D,. Plugging D, into (42) leads to a linear closed-form

solution for X [24].

This method results in a large error in location estimation for any error in range
difference measurements if the collectors are not located near the emitter [24].
Therefore, this closed-form method is to be used as an initial guess to the iterative

method.

3.5.3 Error

The error in the TDOA measurements can be transformed into a corresponding error in
the estimated position of the emitter. The variations in each TDOA measurement made
can be described by a random variable. A single random vector can represent the random

variables for a set of measurements [26],
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T = : (49)
g
and
wy = E(T) (50)
is the mean vector for T and
S, =E[(T-w)(T-u,)" ] (51)
is the covariance matrix for T. Expanding the equation,
i 612 512 61n |
5| O % O (52)
5. 5, - &

where & is the variance of the nth measurement, and &, is the covariance between n

and m [26],
6”1’71 = p6n6m (53)
and p is the correlation coefficient,
0
= 54
p 5.6 (54)

Assuming that all of the random variables defining the TDOA measurements are

independent, and therefore uncorrelated, p =0, and the covariance terms disappear and a

purely diagonal matrix results [26],

5. 0 0
2
s,=f 0% 0 (55)
0 0 52

This covariance matrix can be translated from TDOA measurements to Cartesian (X,y,z)

coordinates by taking advantage of the law of propagation of uncertainty [27],
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Yz = E(EXYZE;YZ) (56)

>y = E(((]TJ)_I JTETDOA)((JTJ)_I J'E,,, )T) (57)
nyz = E((JTJ)_I JTETDOAE;—DOAJ(‘]T‘])_I) (58)
Yz = (JTJ)il JTE(ETDOAETTDOA)J(‘]T‘])A (59)

e = (TT) T Sen I(77) (60)

Finally, ¥.,,, can be rotated into the local east-north-up (ENU) coordinate system by
again using the laws of propagation of uncertainty. A simple rotation can be performed,

with the following rotation matrix, given geodetic latitude and geodetic longitude [25],

—sin(lon) cos(lon) 0
R=| —sin(lat)cos(lon) —sin(lat)sin(lon) cos(lat) (61)

cos(lat)cos(lon)  cos(lat)sin(lon)  sin(lat)

Thus, the > ,,,, can be calculated,

S ovo = E(EpvuEiny ) (62)
S = E((RE ;) (REy,)') (63)
S ovo = RE(EyzExy, )R (64)
Yo =RE R (65)

resulting in a covariance matrix in the local coordinate system, ENU, in meters at the

location of the solution calculated in the solution step.

The eigenvectors and eigenvalues of the covariance matrix can then be used to generate
an error ellipsoid (3D) and error ellipse (2D) to represent the error in the local coordinate
system [26],

A =eigvec(X ) (66)

v =eigval(Y,,,) (67)
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where A is a matrix containing the eigenvectors of >, in its columns and v is a vector
containing the eigenvalues of »,,,. The square roots of the eigenvalues are then

proportional to the lengths of the axis of the ellipsoid and the eigenvectors point in the

direction of the axis [26],

axis, = KA (68)

n

where K is described by a chi-squared random variable with n degrees of freedom

X (69)
and n is the number of Gaussian random variables in the random vector. The chi-squared
random variable has a probability density function (PDF) [26],

1 n,_x

fn()c)zﬁ—x2 e’ (70)
22F(Zj

where the probability of containment is equal to the integral of the PDF from zero to K,

P=["f(x)dx (71)

If a two-dimensional error ellipse is desired, the covariance matrix tangent to the surface
of the earth at the emitter must be generated. This covariance matrix is simply the first

two rows/columns in the ENU covariance matrix.

For this research, the TDOA error was calculated by first making many TDOA
measurements then calculating the variance of these measurements. The resulting data
generally resembled a Gaussian distribution. Any error due to differing signal delay in
the collection systems is considered system bias and needs to be removed from the
system before performing the geolocation computations to produce the most accurate
prediction possible. The delays induced by the USRP or software processing components
such as the resampler are ignored in this research because they do not affect the TDOA

result, as they are the same in each collection path.
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3.6 Web Application

For this research, a unique method of displaying and analyzing results was envisioned
and built. A Java web application was built using Google Web Toolkit (GWT) [28] and a
Tomcat web application server. GWT allows a developer who is familiar with Java to
build an entire web application with the Java programming language, allowing both the
server-side and client-side to be written in Java [28]. The client-side is compiled into
JavaScript at build-time and is embedded into a web page to dynamically build the user
interface at runtime. The web application provides the capability for a user to load and
analyze a set of TDOA data and its corresponding geolocations. The web application has
a set of visualization tools including a data grid, map plot, signal plot, and histogram

plots. A system diagram is shown in Figure 21.

GWT-Generated :
Javascript _ |
Web Application =

JAMA NeXtMidas

GWT RPC Servlet i Norary

Tomcat Web Application Server

Figure 21 Web application system diagram

When the web application starts up, the TDOA datasets are loaded into memory. The
TDOA measurements for each FM radio station are loaded and statistics (mean and
standard deviation) are computed. The location estimate and error ellipse are then
produced using the algorithms presented in section 3.5. When a user loads a dataset, a list
of FM radio stations is listed. Each FM radio station is displayed along with its predicted

location and error ellipse size and orientation. If a user selects an FM radio station, the
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data associated with that FM radio station is loaded. The map is updated to show the
actual location of the emitter and the predicted location of the emitter and the
measurements’ error ellipse. The location of each collector used in the geolocation is
also plotted. In another list, the set of TDOA pairs used to locate the emitter is listed. If
one of these pairs is selected, a histogram is loaded showing the distribution of TDOA
measurements made for that pair. The signal data explorer plots an example the collected
signal and correlation for the pair of collectors. The web application server uses the Java

Matrix Package (JAMA) [29] to do matrix math and NeXtMidas [30] for position
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B3R o
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Figure 22 Web application GUI

Figure 22 shows the thesis web application GUI built for this research. On the top of the
screen is the data grid showing the list of FM stations collected. The section immediately
below this is a set of user controls. The user can set an option as to whether the map plot
will zoom to the target or remain at the current zoom position after each FM Radio
station selection. A “Zoom To Extents” button is available that will zoom the map to

display the region of consideration for this research. The “Load Dataset” button loads a
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popup where the user may select a dataset to load. Below the user inputs, a map is
available to plot any map-related data. Below the map is a set of tabs that contain the

pair statistics and the signal data explorer plots.

The web application is fully configurable with an XML file. The XML file defines the
locations of each collector and emitter. The XML file also defines any bias present in the
measurements for each collector so that bias can be removed prior to position estimation.
The simulated error standard deviation for each collected signal at the real collectors is
included for use when all the collectors are simulated. An example XML file is shown in

Figure 23.

<XML>

<STATIONS>
<!-- USE THE POSITIONS OF THE TRANSMITTERS TO SIMULATE A THIRD AND FOURTH COLLECTOR -->
<STATION FREQ="88500000" NAME="WAMU-FM" LAT="38.93611" LON="-77.09250" ALT="223" 5IM_STD="4.586"/>
<STATION FREQ="90900000" NAME="WETA-FM" LAT="38.89167" LON="-77.13194" ALT="252" SIM_STD="5.05"/>
<STATION FREQ="97900000" NAME="WGTS-FM" LAT="38.89167"LON="-77.13194" ALT="252" SIM_STD="10.231"/>
<STATION FREQ="93900000" NAME="WKYS5-FM" LAT="38.94000" LON="-77.08167" ALT="286" SIM_STD="21.222"/>
<STATION FREQ="94700000" NAME="WIAD-FM" LAT="38.96361" LON="-77.10500" ALT="312" SIM_STD="2.344"/>
<STATION FREQ="97100000" NAME="WASH-FM" LAT="38.95028" LON="-77.07972" ALT="315" SIM_STD="62.827"/>

< /STATIONS>

<RECEIVERS >
<RECEIVER NAME="ASHBURN" LAT="38.968886" LON="-77.523353" ALT="94" SIMULATED="NO" BIAS="0"/>
<RECEIVER NAME="HAYMARKET" LAT="38.829525" LON="-77.614909" ALT="103" SIMULATED="NQO" BIAS="45"/>
<RECEIVER NAME="ROCKVILLE" LAT="39.191039" LON="-76.839861"ALT="115"SIMULATED="YES" BIAS="0"/>
<RECEIVER NAME="LORTON" LAT="38.591039"LON="-76.839861"ALT="100" SIMULATED="YES" BIAS="0"/>
<RECEIVER NAME= "FREDERICK" LAT="39.426389" LON="-77.420278" ALT="200" SIMULATED="YES" BIAS="0"/>

< /RECEIVERS >

< /XML>

Figure 23 Web application configuration XML
3.6.1 Signal Data Explorer

The Signal Data Explorer is the software component used to plot signal data and
correlation data in the web application. It was built to allow interaction with a large set
of sampled data. Many plotting applications are available for HTML/JavaScript
applications, but none could be found that allowed interacting with a server-side dataset
with 2-4+ million data points. All data points could not be transmitted or plotted at once
due to both limitations in the Internet connection speed with clients and the
computational load of attempting to plot all data points at once. The Signal Data
Explorer defines a server interface that asynchronously makes requests to the server for

more data as the user zooms deeper into a signal data plot.
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4 Experimentation

4.1 Procedure

Two OSSIE DeviceManager nodes, each with a USRP_TIME Device and a GPP device
were initialized, along with a single DomainManager instance. The TDOA waveform
described in section 3.3.2 was built, installed, and started. For each FM radio station
considered, 4,000,000 up-sampled and demodulated samples were buffered and
correlated to generate TDOA measurements. 5000 TDOA samples were made for each
station. The TDOA samples taken were plotted as a histogram in the web application and
those channels that produced Gaussian-shaped histograms were considered for this
research. Two additional simulated collectors were simulated for each station and used to
generate the two additional TDOA measurements required to solve the system of TDOA
equations. Finally, the TDOA data was loaded and analyzed using the web application,

where estimates for the location of each emitter were generated and analyzed.

4.1.1 Signal Collection

A signal was collected with both USRP_TIME Devices at each center frequency
considered, and 4,000,000 samples were collected at each distributed collector. An
example of one of these collections is shown in Figure 24 where the 91.9MHz channel
captured from the Ashburn collector is shown in red and the capture from the Haymarket

collector is shown in blue. Correlation of the signals is clear in this plot.

Signal Data for ASHBURN/HAYMARKET ASHBURN HAYMARKET
‘ " ‘l F
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Figure 24 Sample time plot for 91.9MHz
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4.1.2 Signal Correlation

After the signals were collected and aligned in time, the signals were then correlated.

The maximum value was found and recorded as the TDOA measurement. In Figure 25, a
sample correlation plot can be seen. In this plot, a peak was detected at -1589 samples,
indicating that the signal was received by the Haymarket collector 1589 samples after the

Ashburn collector.

Correlation Plot for ASHBURN/HAYMARKET ASHBURNHAYMARKET
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Figure 25 Sample correlation plot for 91.9MHz

5000 TDOA samples were made at 91.9MHz, and the mean TDOA value was determined
to be -1586.06 samples with a variance of 104.67 samples. Figure 26 illustrates the
location of each collector along with the location of the 91.9MHz radio tower, illustrating

the TDOA measurement associated with each pair of collectors.
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Figure 26 Plot showing collectors and emitter with TDOA measurements
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4.1.3 Simulating Collectors

Because the system of equations to solve for the location of the emitter has three
unknowns (X, y, z), at least three TDOA measurements are required to solve for the
location of the emitter. Two additional TDOA measurements were simulated for this
research, utilizing two simulated collectors and one of the real collectors. The location of
each emitter was known, thus the distance from each emitter to each collector could be
calculated. The simulated mean TDOA can be calculated by finding the difference
between the distances to the emitter from each collector in each pair, as shown before in
equation (12). It can be shown that the variance of the TDOA measurement is given by
[71,

) 1

S1pon = m (72)
where [ is the frequency in radians, B is the noise bandwidth at the collector inputs, 7 is

the integration time, and ¥ is the SNR. The value of ¥ can then be found from [7],

— 2]/17/2 (73)
ity +l

where ¥, and 7, are the SNRs at either collector. Because bandwidth, frequency, and

integration time are assumed to be equal at all collectors, they can be ignored and,

§? oc — (74)
Y

Since the signal strength is inversely proportional to the square of the distance,

1 1 :
substituting — for ¥, and — for ¥, in (73) and (74) yields
T r

1 2

2

2 2 2.2
r,+rn +nr

5% o (75)

Knowing the TDOA variance of one pair of receivers (that arer; and r, meters from the
emitter), &, , the TDOA variance of another pair of receivers (that are r, and r, meters

from the same emitter), 8, , can be approximated,
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2 2 2.2
L R

622 = 512 (76)

oA A

This variance can then be used for the simulated collectors. Simulated TDOA
measurements were made using Java’s Gaussian Random Number Generator and used
for the simulated collectors. Figure 27 shows a sample Histogram for both a real
(91.9MHz with Haymarket and Ashburn) and simulated (91.9MHz with Lorton and
Ashburn) TDOA Measurements. 5000 samples were taken for each histogram.

Collected Data Collected Data (SIMULATED)
400 500
300 380
200 260
100 140
0 20
=1,600 -1,592 -1,584 =1,576 -1,568 3,040 3,044 3,048 3,052 3,056
TDOA TDOA

Figure 27 Histogram for real (Haymarket/Ashburn) and simulated (Lorton/Ashburn) TDOA measurements for
91.9MHz

4.1.4 Simulated Collector Arrangement

In [31] it is shown that a balanced placement of collectors around an emitter will produce
the best possible TDOA position estimation, minimizing the effects of error in each
measurement. For these results, the simulated collectors were placed in two
configurations. The first configuration was an off-balanced configuration that maximized
the effect of the real collectors. The second configuration was a balanced configuration
that should produce more precise position estimations. Figure 28 shows a comparison of
the unbalanced and balanced collector placements for locating the 91.9MHz emitter. In
the unbalanced configuration, the simulated collectors are concentrated on the left-hand
side of the circle around the emitter. In the balanced arrangement, the simulated
collectors are placed in a balanced arrangement, making a triangle centered at the emitter.
The TDOA equations intersection with the earth is shown in red. The balanced
arrangement has more evenly distributed intersections, resulting in a tighter estimate for

the emitter location given error in the measurements, as seen in the inset error ellipses.

50



rerrToTEr 695
U b I d Winchester . ) Gerfantown Femdale
Bemyvile - { Glen Burnie
n a ance Ej Round Bl Pucelhille | Gaithefsburg Qlney NogRULSR! Saverm
~ Stephens Boyoe Leesburg Laurel Pasadgae
Wardensvill S
@) ‘j’xe““‘ - M:"":' Ashburn Sevemna
Middletown
2 @ Crofton Lok =
‘_,L,/ o agia anham-Seabrook Farole ACDSES S St
o1 gL T Front Royal . Greater Gras
v v
ias /j ~ Ther Chantilly FKto &
- Woodstock EElnerPare oo ntrevile =i 2 glon, T s
/Mountain b andri 1
) Edinburg Sairdsvile Alexandria
Bull Run Burke Springfield Clinton Rosaryville
o % 7 : - 5 = 6
¥ v\ ot | " ¢ e Manassa emon Hybla Valig T‘H"’”:“
i \ 3 3 \ . sl
} \ \ K e LaNJnge pes=ren
# ) Dale Gty ,/ Washington Chesapeake
I\, S N L - - } o Walds Huntingtown Bay
< e . .- \ -
S~ - WpE - N \ &3 Dumfries Prince
S — e N\ Remington 3 J g La Plata Frederck
— N 5 ~— Triangle:
- \, \ Aquia . Charlotte Calvert
S Harbou | Hall -~ Solden” Gt Leonard “geachtiong
% Beach
t
‘i Ehesapeake Ranch
\ - Estgtes-Drum Point
5 Summit T Abutus - Dundalk
Balanced Pw"- . iq Elkridge’ “o—u’ = Edgemere
4 Winchester R Feidale o
) Bemyvile -, f s Glen Burnie
) (1) Round by 7 Purceivile - | GaithersBurg Qlney CHh LRl Sorhen
e Stephens. Boyce Leesburg 'y, Laure| Pasadena
Wardenswill i e H
& ardensuile City ashbum ey ockville Wheéton-Glenmont Odenton Saverns
s Middletown — Park.
> €] Sterling Potomac \5 Siiver Bowie crofian AFn
/ — nnapolis
Ay Strasburg Reston Spring Lanham-Seabrook: pgrole b Stel
T Brook
~1 . ff pop- /-1 Front Royal et s Greater g
e - . Landover
ids il e Chantilly q
e Plains ; -
= f‘sye-Bn.-ce Woodstock (55 = Centreville Fairtax ) Sulua;?‘-IS\lver
JMountain - .-
/ LT Gaingsville xa['d”a &
Bull Run Burkg 4 Clinten Rosaryville
% 2 3 " sy \ i
3 b p X Tiighman
N . 3 ) g \ > renton Manassas pla Valley :Iam
Y E . \ % - 1
40 A, 3 @ Chesapeake
- L e s Waldarf Huntingtown Bay
< Y —
- ‘2 - . 293 Dumfries )f T Prince
5 N ington Tiang ol lata A 2L
Aguia Charlotte Calvert
Harbour | Hal Golden” 8 st beonard. “gegeh:Long
Beach
& { Chesapeake Ranch
L Estates-Drum Point

Figure 28 Balanced and unbalanced collector placements
4.1.5 Solving for the Location of the Emitter

The spherical intersection method was used to find an initial guess for the location of the
emitter. With the initial guess, the iterative method was used to solve for the final
predicted position of the emitters. The covariance matrix for each set of measurements
was then transformed to the local coordinate system and used to generate a 95% error
ellipse. The geolocation algorithm was implemented in the web application to allow

quick reconfiguration of the application for differing locations of simulated collectors.

4.1.6 Analyzing the Results

The web application was used to request and analyze results. The application was

opened in the Chrome web browser and each dataset was requested. The data was
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verified by loading the data associated with each FM radio station in each dataset
(theoretical, unbalanced, and balanced). The actual location of each emitter was plotted,
along with the predicted location for each emitter and the 95% error ellipse. The TDOA
measurements for each pair of collectors were loaded, their histogram plotted, and

statistics analyzed for each FM radio station in each dataset.

4.2 Results

Three sets of results are presented. Theoretically perfect data is used to test the position
estimation algorithm. This is followed by position estimations using real and simulated

data with the simulated collectors placed in both unbalanced and balanced configurations.

4.2.1 Theoretical Data

The TDOA geolocation algorithm was first tested with theoretical data to ensure that the
algorithm worked properly. Theoretical TDOA measurements were generated by first
calculating the distance between the actual position of the emitter and the actual location
of each collector. The TDOA was then determined by finding the difference between
these two distances. These predicted measurements were used to solve for the location of
the emitter assuming no error. The results from this experiment are shown in Table 1.
The actual locations of the emitters are shown in Table 2. Latitude and longitude are in
degrees and altitude is in meters. The results matched very closely with some error in the

altitude, resulting from floating-point rounding error.

Table 1 TDOA results with theoretical data

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE

WAMU-FM 88.50MHz 38.936111  -77.092499 248.565
WETA-FM  90.90MHz 38.891664  -77.131938 45.299
WGTS-FM  91.90MHz 38.891664  -77.131938 45.299
WKYS-FM  93.90MHz 38.939996  -77.081672 185.223
WIAD-FM  94.70MHz 38.963611  -77.104998 336.588
WASH-FM  97.10MHz 38.950281 -77.079719 327.560
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Table 2 Actual location of emitters

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE

WAMU-FM 88.50MHz 38.936110 -77.092500 223
WETA-FM  90.90MHz 38.891670 -77.131940 252
WGTS-FM  91.90MHz 38.891670 -77.131940 252
WKYS-FM  93.90MHz 38.940000 -77.081670 286
WIAD-FM  94.70MHz 38.963610 -77.105000 312
WASH-FM  97.10MHz 38.950280 -77.079720 315

4.2.2 Unbalanced Configuration

Position estimations were first calculated with an unbalanced collector arrangement seen
in Figure 28. Table 3 shows the mean TDOA measurements and their standard deviation
for the 5000 TDOA samples made for both the real and simulated pairs. The mean and
standard deviation are both in USRP samples. In each case, the histogram was found to

have a Gaussian distribution.

Table 3 TDOA statistics for unbalanced collector placement

STATION FREQUENCY COL1 COL 2 TDOA MEAN TDOA STD SIMULATED
WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N
ASHBURN LORTON 2322.565 2.614 Y
ASHBURN ROCKVILLE 4365.900 1.691 Y
WETA-FM  90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N
ASHBURN LORTON 3048.071 2.436 Y
ASHBURN ROCKVILLE 2914.009 2.518 Y
WGTS-FM  91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N
ASHBURN LORTON 3048.124 5.010 Y
ASHBURN ROCKVILLE 2913.875 5.152 Y
WKYS-FM  93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N
ASHBURN LORTON 2340.867 12.170 Y
ASHBURN ROCKVILLE 4581.956 7.397 Y
WIAD-FM  94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N
ASHBURN LORTON 1550.633 1.449 Y
ASHBURN ROCKVILLE 4786.493 0.702 Y
WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N
ASHBURN LORTON 2126.476 36.799 Y
ASHBURN ROCKVILLE 4815.395 20.690 Y
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The mean and standard deviation for each TDOA pair were used to solve for the location
and 95% error ellipse for each FM radio station, shown in Table 4. The altitude, semi

major, and semi minor axis are in meters. The tilt is in degrees.

Table 4 Geolocation solutions for unbalanced collector placement

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT

WAMU-FM 88.50MHz 38.936526 -77.089678 -3581.827 577.637 23.322 13.778
WETA-FM  90.90MHz 38.890611 -77.126387 -6154.107 232.973 21.491 -10.642
WGTS-FM  91.90MHz 38.891227  -77.129824 -3702.751 460.512 42.588 -10.554
WKYS-FM  93.90MHz 38.947708  -77.041903 -14074.380 4099.278 132.865 14.920
WIAD-FM  94.70MHz 38.964158 -77.103263 -2652.102 535.919 13.743  25.453
WASH-FM 97.10MHz 38.954907 -77.061014 -9035.710 14650.950 375.645 18.790

These results show a precise geolocation estimate despite the unbalanced collector
placement as seen in Figure 28. The unbalanced collector arrangement generally made
good predictions for the location of the emitter in the earth-tangent direction (latitude and
longitude), but resulted in a large miss on the altitude. The 95% error ellipse in the east
and north directions remained relatively small, being larger in the axis corresponding to

the measurements made from the real collectors.

4.2.3 Balanced Configuration

Position estimates were then computed with a more balanced collector arrangement seen
in Figure 28. Table 5 shows the mean TDOA measurements and their standard deviation
for the 5000 samples made. The mean and standard deviation are both in USRP samples.

In each case, the histogram was found to represent a Gaussian distribution.
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Table S TDOA statistics for balanced collector placement

STATION FREQUENCY COL1 COL 2 TDOA MEAN TDOA STD SIMULATED
WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N
ASHBURN LORTON -1415.046 4.302 Y
ASHBURN ROCKVILLE 375.863 3.494 Y
WETA-FM  90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N
ASHBURN LORTON -1479.430 5.036 Y
ASHBURN ROCKVILLE -1442.158 4.980 Y
WGTS-FM  91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N
ASHBURN LORTON -1479.238 10.113 Y
ASHBURN ROCKVILLE -1442.159 10.095 Y
WKYS-FM  93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N
ASHBURN LORTON -1206.691 19.161 Y
ASHBURN ROCKVILLE 761.771 15.728 Y
WIAD-FM  94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N
ASHBURN LORTON -2365.560 2.364 Y
ASHBURN ROCKVILLE 458.203 1.707 Y
WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N
ASHBURN LORTON -1385.267 58.524 Y
ASHBURN ROCKVILLE 995.672 44.239 Y

The mean and standard deviation for each TDOA pair were used to solve for the location

and 95% ellipse for each FM radio station, shown in Table 6. The altitude, semi major,

and semi minor axis are in meters. The tilt is in degrees.

Table 6 Geolocation solutions for balanced collector placement

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT

WAMU-FM 88.50MHz 38.936187  -77.092530 -3195.813 65.781 20.080 -83.371
WETA-FM  90.90MHz 38.891488 -77.132798 -6990.493 52.998 42.478 -72.860
WGTS-FM  91.90MHz 38.891550 -77.132262 -4239.078 105.951 84.771 -73.780
WKYS-FM  93.90MHz 38.941739  -77.081587 -11145.248 332.864 94.072 -89.946
WIAD-FM  94.70MHz 38.963650 -77.105025 -1849.543 46.270 9.773 -78.884
WASH-FM 97.10MHz 38.951006 -77.079636 -6711.528 1104.310 270.775 269.360

These results show an even more precise geolocation estimate than with the unbalanced

collector placement. Predictions were generally good with smaller, more rounded 95%

error ellipses. Again, a large error in altitude is present.
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4.2.4 Overall Results

Overall, the results were quite good. The balanced collector placement resulted in better
estimates for the emitter location than the unbalanced placement, while both resulted in
what appears to be large errors in the altitude direction. In the theoretical case, floating
point error introduced enough error into the system to cause relatively large deviations in
the altitude estimates. The results above only showed the ellipse cross-section at the
surface of the earth. Three-dimensional ellipsoids were generated to show the error in the
vertical direction. The 95% error ellipsoids for the unbalanced collector placement can
be seen in Table 7 and for the balanced collector placement in Table 8. This explains the
much larger error seen for the vertical direction and indicates more ambiguity in the

vertical direction resulting from the system of TDOA equations.

Table 7 Ellipsoids for unbalanced placement

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU

WAMU-FM 88.50MHz 5030.659 33.470 18.816 -7.310 -1.808
WETA-FM  90.90MHz 1762.333 32.033 24.216 -8.483 1.614
WGTS-FM  91.90MHz 5497.694 62.985 47.416 -5.358 1.009
WKYS-FM  93.90MHz 11312.877 182.964 109.678 -23.711 -6.692
WIAD-FM  94.70MHz 5244.829 17.742 7.603 -6.054 -2.892
WASH-FM  97.10MHz 50089.594 519.381 272.448 -18.543 -6.519

Table 8 Ellipsoids for balanced placement

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU

WAMU-FM 88.50MHz 22.860 4456.368 43.198 0.111 -0.793
WETA-FM  90.90MHz 29.311 2030.373 56.207 1.093 -0.598
WGTS-FM  91.90MHz 58.579 6500.863 112.746 0.678 -0.378
WKYS-FM  93.90MHz 106.447 197.124 7099.851 -0.031 -2.634
WIAD-FM  94.70MHz 11.193 3649.260 23.497 0.147 -0.730
WASH-FM  97.10MHz 300.733 32705.284 576.132 -0.077 -1.975

An example ellipsoid for 91.9MHz with an unbalanced collector placement is plotted in

Figure 29 and shows a much larger error in the vertical direction.
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5 Conclusions and Future Work

5.1 Conclusions

Software Defined Radio is changing the radio industry as we know it. Not only does it
make experimenting with radio technology more accessible to students and hobbyists, but
it also makes radio systems more flexible and able to adapt to the constantly changing
field and even have the potential to drive the field due to the ease to which new designs
can be prototyped. Frameworks like GNU Radio and OSSIE have allowed developers to
easily utilize existing modular components to build complex radio systems that can take
advantage of a distributed network of computing systems. This research aimed to take
advantage of that distributed possibility and build a useful distributed application using
the OSSIE SDR framework and to expand that framework to support this research. The
resulting TDOA geolocation system was able to successfully locate emitters by first
capturing signals using spatially distributed OSSIE nodes, correlating those signals to
produce TDOA measurements, and then solving a system of equations to find the

location of the emitter.

After building a spatially distributed OSSIE system, it is clear that this kind of system can
be a great benefit to the SDR community. The ability to break up an application into
components and spread the processing requirements out among a set of processors and
machines is invaluable. The ability to deploy devices and components over a wide area
network means that data sources can also be located in different locations. In addition to
precision geolocation, there are many other uses for a system like this. One possible use
would be a distributed beam-forming system. Another use could be a system to detect

and analyze spectrum usages in an urban area.

A distributed OSSIE system requires careful thought because of added hurdles imposed
in a wide area network. The limited connection speed and unpredictable latency mean
that signals cannot always be transmitted at their full rate or in real time. Because of this,
the signals must be processed as much as possible at the source such that the signal/data

is reduced in size prior to transmission. For this research, this entailed decimating the
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collected signal to a band-limited signal to reduce its data rate prior to transmission.
Transmitting only required snapshots of the signal data further reduced the data rate.
Several OSSIE software components were built to buffer and transmit snapshot data over
the slow and unreliable link. Another issue was controlling a set of waveforms deployed
to an OSSIE Domain. The TDOA waveform built for this research was built with the
idea that if more radio nodes were available, multiple TDOA waveforms could be
deployed to the same OSSIE domain. Direct coupling of the GUI to a waveform using
the provided CORBA interfaces can be cumbersome, especially for a system with many
waveforms. The CORBA Event Service makes it relatively simple to interact with a set

of waveforms from a single, decoupled GUI.

The results showed that the USRP device could be used as a platform for TDOA signal
collection. While not the ideal collectors for performing precision TDOA geolocation,
the workarounds necessary to use the USRP boards without permanent hardware
modifications proved to be a good learning experience. Even when the emitters were
placed in an unbalanced arrangement to magnify the effects of the real TDOA
measurement, the results were fairly accurate. The web application developed to
visualize results proved to be invaluable in more ways than simply being a unique way to
deliver results. The web application provided a streamlined way to load result sets from
the collection system and analyze different simulated scenarios, all by simply changing
an XML configuration file. The web application also provided the source for many of the

tables and figures found in this research.

5.2 Future Work

The research presented in this paper concentrated on building an overall system. Time
was not available to concentrate on any one aspect of the system. There are several areas

of this research that could be expanded and improved upon in the future.

5.2.1 Implementation with a Full Set of Collectors

Because hardware was not available for this research, there were not enough collectors

available to perform a TDOA geolocation without simulating several collectors. Future
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research could add several collectors to the system in order to provide a complete TDOA
geolocation system. These collectors could either be more USRP boards or more
advanced collectors with built-in time references. Multiple TDOA waveforms could be
deployed to the distributed network of collectors. All waveforms could then be triggered

to make TDOA collections by the same decoupled, event-based user interface.

5.2.2 Analysis of Bias and Error in the System

From the results, it is clear that some amount of bias was present in the statistics, as the
mean of the TDOA measurements did not always match exactly with the actual location
of the emitter. The cable length delay was taken into account for the signal reception, but
a more formal analysis could be performed to determine biases in the system. Specific
sources of random error that contributed to the variance in TDOA measurements could

also be found and analyzed.

5.2.3 Java OSSIE Development

Another area for improvement would be a formal integration of Java into the OSSIE
framework. Some functionality was implemented for this research, but this could be
extended to create a complete toolkit for Java users. This would open up OSSIE to a
whole new set of developers with Java skills. An application for this would possibly be
integration of OSSIE waveforms into interactive web applications, similar to the one built
for displaying the results of this research. The web application could interact with,

control, and display live results from installed waveforms.

5.2.4 Improvements in OSSIE to Support Distributed Applications

This research made improvements to OSSIE where necessary to support the distributed
application built for this research. This work could be expanded to improve OSSIE to
allow easier development of distributed applications. The concept of utilizing snapshot
data could be integrated into the standard set of OSSIE Ports to add the signaling and
buffering that is required to transmit data over a slower network. Work could also be
completed to make it easier to deploy many Device nodes of the same type. For this
research, two or more USRP TIME/GPP Device nodes were required. Separate nodes

had to be defined with different IDs for each Device so that the waveform components
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would be deployed to the correct location. Nodes could be built that would allow
deployment simultaneously across many nodes with minimal configuration changes.
Automatic resource allocation could be implemented in OSSIE to allow automatic
deployment of waveforms rather than relying on a predefined DAS file to specify where

components are deployed.
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APPENDIX A. TDOA Waveform Software Assembly Descriptor

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE softwareassembly SYSTEM "../../xml/dtd/softwareassembly.dtd">
<l-- Created with OSSIE WaveDev-->
<l--Powered by Python-->
<softwareassembly id="DCE:899cbfec-1ea9-11e1-a6e5-000c297957ca"
name="0SSIE:: ThesisWaveform">
<componentfiles>
<componentfile id="Throttler_5b1d57f4-187c-11e1-b36¢c-000c297957ca" type="SPD">
<localfile name="/xml/Throttler/Throttler.spd.xml"/>
</componentfile>
<componentfile id="WFMDemod_9f5b8058-1ea8-11e1-b0b8-000c297957ca" type="SPD">
<localfile name="/xml/WFMDemod/WFMDemod.spd.xml"/>
</componentfile>
<componentfile id="Resampler_fc93fc6a-187b-11e1-9d31-000c297957ca" type="SPD">
<localfile name="/xml/Resampler/Resampler.spd.xml" />
</componentfile>
<componentfile id="Correlator_fb88164e-187b-11e1-9ce8-000c297957ca" type="SPD">
<localfile name="/xml/Correlator/Correlator.spd.xml"/>
</componentfile>
<componentfile id="USRP_Commander_0dccc114-189b-11e1-be79-000c297957ca" type="SPD">
<localfile name="/xml/USRP_Commander/USRP_Commander.spd.xml" />
</componentfile>
</componentfiles>
<partitioning>
<componentplacement>
<componentfileref refid="Throttler_5b1d57f4-187c-11e1-b36¢c-000c297957ca" />
<componentinstantiation id="DCE:89al5aca-1ea9-11e1-96be-000c297957ca">
<usagename>Throttler_1</usagename>
<findcomponent>
<namingservice name="Throttler_1"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="WFMDemod_9f5b8058-1ea8-11e1-b0b8-000c297957ca" />
<componentinstantiation id="DCE:89ab125e-1ea9-11e1-9d01-000c297957ca">
<usagename>WFMDemod_1</usagename>
<findcomponent>
<namingservice name="WFMDemod_1"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="Throttler_5b1d57f4-187c-11e1-b36¢c-000c297957ca" />
<componentinstantiation id="DCE:89b1b848-1ea9-11e1-b3b4-000c297957ca">
<usagename>Throttler_2</usagename>
<findcomponent>
<namingservice name="Throttler_2"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
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<componentfileref refid="WFMDemod_9f5b8058-1ea8-11e1-b0b8-000c297957ca" />
<componentinstantiation id="DCE:89bb60aa-1ea9-11e1-8705-000c297957ca">
<usagename>WFMDemod_2</usagename>
<findcomponent>
<namingservice name="WFMDemod_2"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="Resampler_fc93fc6a-187b-11e1-9d31-000c297957ca"/>
<componentinstantiation id="DCE:89c292ee-1ea9-11e1-b93d-000c297957ca">
<usagename>Resampler_1</usagename>
<findcomponent>
<namingservice name="Resampler_1"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="Resampler_fc93fc6a-187b-11e1-9d31-000c297957ca"/>
<componentinstantiation id="DCE:89c95f70-1ea9-11e1-bd15-000c297957ca">
<usagename>Resampler_2</usagename>
<findcomponent>
<namingservice name="Resampler_2"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="Correlator_fb88164e-187b-11e1-9ce8-000c297957ca" />
<componentinstantiation id="DCE:89d03066-1ea9-11e1-ab55-000c297957ca">
<usagename>Correlator_1</usagename>
<findcomponent>
<namingservice name="Correlator_1"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
<componentfileref refid="USRP_Commander_0dccc114-189b-11e1-be79-000c297957ca"/>
<componentinstantiation id="DCE:89d8d446-1ea9-11e1-b9c3-000c297957ca">
<componentproperties>
<simpleref description=""name="rx_gain_max" refid="DCE:2d9c5ee4-a6f3-4ab9-834b-
2b5c95818e53" value="0"/>
<simpleref description=""name="rx_gain" refid="DCE:99d586b6-7764-4dc7-83fa-
72270d0f1el1b" value="36"/>
<simpleref description=""name="rx_freq" refid="DCE:3efc3930-2739-40b4-8c02-
ecfb1b0da9ee" value="92500000"/>
<simpleref description=""name="rx_decim" refid="DCE:92ec2b80-8040-47c7-ald8-
4c9caa4aded2"” value="256"/>
</componentproperties>
<usagename>USRP_Commander_1</usagename>
<findcomponent>
<namingservice name="USRP_Commander_1"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
<componentplacement>
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<componentfileref refid="USRP_Commander_0dccc114-189b-11e1-be79-000c297957ca"/>
<componentinstantiation id="DCE:89df592e-1ea9-11e1-9b8c-000c297957ca">
<componentproperties>
<simpleref description=""name="rx_gain_max" refid="DCE:2d9c5ee4-a6f3-4ab9-834b-
2b5c95818e53" value="0"/>
<simpleref description=""name="rx_gain" refid="DCE:99d586b6-7764-4dc7-83fa-
72270d0f1elb" value="65"/>
<simpleref description=""name="rx_freq" refid="DCE:3efc3930-2739-40b4-8c02-
ecfb1b0da9ee” value="92500000"/>
<simpleref description=""name="rx_decim" refid="DCE:92ec2b80-8040-47c7-ald8-
4c9caa4aded2"” value="256"/>
</componentproperties>
<usagename>USRP_Commander_2</usagename>
<findcomponent>
<namingservice name="USRP_Commander_2"/>
</findcomponent>
</componentinstantiation>
</componentplacement>
</partitioning>
<assemblycontroller>
<componentinstantiationref refid="DCE:89a15aca-1ea9-11e1-96be-000c297957ca" />
</assemblycontroller>
<connections>
<connectinterface id="DCE:89a4b724-1ea9-11e1-9b04-000c297957ca">
<providesport>
<providesidentifier>IN</providesidentifier>
<findby>
<namingservice name="Throttler_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>RX_Data_1</usesidentifier>
<findby>
<namingservice name="USRP_TIME_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89a7b578-1ea9-11e1-be74-000c297957ca">
<providesport>
<providesidentifier>dataln</providesidentifier>
<findby>
<namingservice name="WFMDemod_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>OUT</usesidentifier>
<findby>
<namingservice name="Throttler_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89ae9bae-1ea9-11el-a71a-000c297957ca">
<providesport>
<providesidentifier>IN</providesidentifier>
<findby>
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<namingservice name="Resampler_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>dataOut</usesidentifier>
<findby>
<namingservice name="WFMDemod_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89b4b12e-1ea9-11el-a2e5-000c297957ca">
<providesport>
<providesidentifier>dataln</providesidentifier>
<findby>
<namingservice name="WFMDemod_2"/>
</findby>
</providesport>
<usesport>
<usesidentifier>OUT</usesidentifier>
<findby>
<namingservice name="Throttler_2"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89b7ce22-1ea9-11e1-885d-000c297957ca">
<providesport>
<providesidentifier>IN</providesidentifier>
<findby>
<namingservice name="Throttler_2"/>
</findby>
</providesport>
<usesport>
<usesidentifier>RX_Data_1</usesidentifier>
<findby>
<namingservice name="USRP_TIME_2"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89bf564c-1ea9-11e1-9b27-000c297957ca">
<providesport>
<providesidentifier>IN</providesidentifier>
<findby>
<namingservice name="Resampler_2"/>
</findby>
</providesport>
<usesport>
<usesidentifier>dataOut</usesidentifier>
<findby>
<namingservice name="WFMDemod_2"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89c5dee0-1ea9-11el-b7e2-000c297957ca">
<providesport>
<providesidentifier>IN1</providesidentifier>
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<findby>
<namingservice name="Correlator_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>OUT</usesidentifier>
<findby>
<namingservice name="Resampler_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89cd5daa-1ea9-11e1-9e0f-000c297957ca">
<providesport>
<providesidentifier>IN2</providesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>OUT</usesidentifier>
<findby>
<namingservice name="Resampler_2"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:99d348a0-1ea9-11e1-97dc-000c297957ca">
<providesport>
<providesidentifier>TRIGGER_IN</providesidentifier>
<findby>
<namingservice name="Throttler 2" />
</findby>
</providesport>
<usesport>
<usesidentifier>TRIGGER_OUT</usesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89d348a0-1ea9-11e1-97dc-000c297957ca">
<providesport>
<providesidentifier>TRIGGER_IN</providesidentifier>
<findby>
<namingservice name="Throttler_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>TRIGGER_OUT</usesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89dbcca0-1ea9-11e1-b0a0-000c297957ca">
<providesport>
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<providesidentifier>RX_Control</providesidentifier>
<findby>
<namingservice name="USRP_TIME_1"/>
</findby>
</providesport>
<usesport>
<usesidentifier>RX_Control</usesidentifier>
<findby>
<namingservice name="USRP_Commander_1"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89e279ce-1ea9-11e1-901d-000c297957ca">
<providesport>
<providesidentifier>RX_Control</providesidentifier>
<findby>
<namingservice name="USRP_TIME_2"/>
</findby>
</providesport>
<usesport>
<usesidentifier>RX_Control</usesidentifier>
<findby>
<namingservice name="USRP_Commander_2"/>
</findby>
</usesport>
</connectinterface>
<connectinterface id="DCE:89dbccal-1ea9-11e1-b0a0-000c297957ca">
<usesport>
<usesidentifier>EVENTS_IN</usesidentifier>
<findby>
<namingservice name="USRP_Commander_1"/>
</findby>
</usesport>
<findby>
<domainfinder type="eventchannel”" name="THESIS_EVENTS"/>
</findby>
</connectinterface>
<connectinterface id="DCE:89dbcca2-1ea9-11e1-b0a0-000c297957ca">
<usesport>
<usesidentifier>EVENTS_IN</usesidentifier>
<findby>
<namingservice name="USRP_Commander_2"/>
</findby>
</usesport>
<findby>
<domainfinder type="eventchannel" name="THESIS_EVENTS"/>
</findby>
</connectinterface>
<connectinterface id="DCE:89dbcca3-1ea9-11e1-b0a0-000c297957ca">
<usesport>
<usesidentifier>EVENTS_IN</usesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</usesport>
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<findby>
<domainfinder type="eventchannel" name="THESIS_EVENTS"/>
</findby>
</connectinterface>
<connectinterface id="DCE:89dbcca5-1ea9-11e1-b0a0-000c297957ca">
<usesport>
<usesidentifier>EVENTS_OUT</usesidentifier>
<findby>
<namingservice name="Correlator_1"/>
</findby>
</usesport>
<findby>
<domainfinder type="eventchannel" name="THESIS_EVENTS"/>
</findby>
</connectinterface>
</connections>
</softwareassembly>
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APPENDIX B. TDOA Geolocation Algorithm Implementation

package com.meuleners.thesis.webapp.server.util;

import java.util. ArrayList;
import java.util.Arrays;
import java.util.List;

import nxm.sys.inc.Constants;

import nxm.sys.lib.Position;

import nxm.sys.lib.Transform;

import Jama.EigenvalueDecomposition;
import Jama.Matrix;

import com.meuleners.thesis.webapp.shared.beans.GeoLocation;

public class GeoUtil {
public static final double SPEED_OF LIGHT = 299792458;
public static final double EARTH_FLATTENING_FACTOR =1 / 298.257223563d;
public static final double EARTH_EQUITORIAL_RADIUS = 6378137.00;
public static final double A = EARTH_EQUITORIAL_RADIUS;
public static final double C = A * (1 - EARTH_FLATTENING_FACTOR);

/**

* Computes the distance in meters from one position to another.
*

* @param pl

* Position 1

* @param p2

* Position 2

* @return distance in meters

*
/

private static double dist(Position p1, Position p2) {
Transform.geoZ2car(pl);

Transform.geoZ2car(p2);

double dx = (pl.x - p2.x);
double dy = (pl.y - p2.y);
double dz = (pl.z - p2.z2);

double dist = Math.sqrt(dx * dx + dy * dy + dz * dz);

return dist;

}
/**

* Predict location of emitter using the Spherical Interpolation method.
*

* @param p  Positions of collectors

* @param r RDOAs (length = p.length - 1)

* @return Position of emitter

*/
public static Position predictSX(Position[] p, double[] r) {

assert (p.length ==r.length - 1);
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for (inti=0; i< p.length; i++)
Transform.geo2car(pl[i]);

double[][] s = new double[r.length][3];
double[][] de = new double|[r.length][1];
double[][] delta = new double|r.length][1];
for (inti=0; i< rlength; i++) {

s[i][0] = p[i + 1]x - p[0].x;

s[i][1] = p[i + 1].y - p[0].y;

s[i][2] = p[i + 1].z - p[0].7;

def[i][0] = r[i];

double R = dist(p[i + 1], p[0]);

delta[i][0] = Math.pow(R, 2) - Math.pow(r[i], 2);
}

Matrix S = new Matrix(s);

Matrix STSIS = S.transpose().times(S).inverse().times(S.transpose());
Matrix De = new Matrix(de);

Matrix Delta = new Matrix(delta);

double a = 4 - De.times(4).transpose().times(STSIS.transpose()).times(STSIS)
.times(De).get(0, 0);

double b = De.times(4).transpose().times(STSIS.transpose()).times(STSIS)
.times(Delta).get(0, 0);

double c = -Delta.transpose().times(STSIS.transpose()).times(STSIS)
.times(Delta).get(0, 0);

double R = (-b + Math.sgrt(Math.pow(b, 2) -4 *a*c)) / (2 * a);

System.out.println("A: "+a+"B:"+b+"C:"+c+"R:"+R);

Matrix X = STSIS.times(Delta.minus(De.times(2).times(R))).times(0.5);
X.print(10, 5);r

Position rVal = new Position();

rVal.setCar(X.get(0, 0) + p[0].x, X.get(1, 0) + p[0].y, X.get(2, 0)
+p[0].2);

Transform.carZgeo(rVal);

return rval;

}

public static Matrix computeJacobian(double xg, double yg, double zg,
Position[] p1, Position[] p2, int len, boolean onEarth) {
double[][] jacobian = new double[len + (onEarth ? 1: 0)][3];
for (intj=0;j <len;j++) {
jacobian[j][0] = (xg - p1[j]-x)
/ Math.sqrt(Math.pow(zg - p1[j].z, 2) + Math.pow(yg - p1[jl.y, 2)
+ Math.pow(xg - p1[j].x, 2))
- (xg - p2[j]x)
/ Math.sqrt(Math.pow(zg - p2[j].z, 2) + Math.pow(yg - p2[jl.y, 2)
+ Math.pow(xg - p2[j].x, 2));
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jacobian[j][1] = (yg - p1[il.y)
/ Math.sqrt(Math.pow(zg - p1[j].z, 2) + Math.pow(yg - p1[jl.y, 2)
+ Math.pow(xg - p1[j].x, 2))
- (vg-p2[jly)
/ Math.sqrt(Math.pow(zg - p2[j].z, 2) + Math.pow(yg - p2[jl.y, 2)
+ Math.pow(xg - p2[j].x, 2));
jacobian[j][2] = (zg - p1[j].z)
/ Math.sqrt(Math.pow(zg - p1[j].z, 2) + Math.pow(yg - p1[jl.y, 2)
+ Math.pow(xg - p1[j].x, 2))
- (zg - p2[j].2)
/ Math.sqrt(Math.pow(zg - p2[j].z, 2) + Math.pow(yg - p2[jl.y, 2)
+ Math.pow(xg - p2[j]-x, 2));
}
if (onEarth) {
// Initialize ellipsoid parameters
jacobian[jacobian.length - 1][0] = (2 * xg) / Math.pow(4, 2);
jacobian[jacobian.length - 1][1] = (2 *yg) / Math.pow(4, 2);
jacobian[jacobian.length - 1][2] = (2 * zg) / Math.pow(C, 2);

}

return new Matrix(jacobian);
}
/**

* Predict location of emitter based on TDOA measurements

*

* @param p1l Array of collector Positions for collector 1
* @param p2 Array of collector Positions for collector 2
* @param m Array of TDOA measurements, in seconds
* @param e Array of TDOA error standard deviations, in seconds
* @param start Position to start iteration

* @param maxError Maximum error for iteration.
* @param onEarth  On the surface of the earth?
* @param weightWithlnverse
* Should the inverse measurement covariance matrix be used for
weighting?
* @return GeoLocation product including position of emitter and error ellipse
*
/
public static GeoLocation predictTDOA(Position[] p1, Position[] p2,
double[] m, double[] e, Position start, double maxError, boolean onEarth,
boolean weightWithInverse) {
// Check to make sure all arrays are the same lenght
assert (pl.length == p2.length && p1.length == m.length && p1.length == e.length);

*

if (onEarth) {
double[] et = new double[e.length + 1];
System.arraycopy(e, 0, et, 0, e.length);
e=et;
e[e.length - 1] = 0.000000001;

}

// Convert TDOA to RDOA
double[] r = new double[m.length + (onEarth ? 1: 0)];
for (inti=0; i < m.length; i++)

r[i] = m[i] * SPEED_OF _LIGHT;
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// Transform positions to CARTESION (XYZ) Coordinates

for (inti=0; i< pl.length;i++)
Transform.geo2car(p1[i]);

for (inti=0; i< p2.length; i++)
Transform.geo2car(p2[i]);

Transform.geoZ2car(start);

// initialize initial guess
double xg = start.x;
double yg = start.y;
double zg = start.z;

GeoLocation geo = new GeoLocation();

// SET INITIAL POSITION FOR GEO
geo.setlnitialPosition(start);

// KEEP TRACK OF INTERIM POSITIONS ON WAY TO FINAL SOLUTION
List<Position> interim = new ArrayList<Position>();

Position position = new Position(Position.GEODETIC);
position.setCar(xg, yg, zg);

position.referenceFrame = Position.GEODETIC;
position.car2geo();

interim.add(position);

// Build the measurement covariance matrixpre
double[][] covM = new double[e.length][e.length];
for (inti=0; i < elength; i++) {
for (intj = 0; j < elength; j++) {
if (j==1)
covM[i][j] = Math.pow(e[i] * SPEED_OF_LIGHT, 2);
else
covM[i][j] = 0;

}
}

Matrix CovM = new Matrix(covM);

double len = 100;
for (inti=0;i<400;i++){

double[][] deltaM = new double|r.length][1];
for (intj = 0; j < m.length; j++) {
double wy = Math.sqrt(Math.pow((xg - p1[j].x), 2)
+ Math.pow((yg - p1[jl.y), 2) + Math.pow((zg - p1[j]-z), 2))
- Math.sqrt(Math.pow((xg - p2[j].x), 2)
+ Math.pow((yg - p2[j].y), 2) + Math.pow((zg - p2[j]-z), 2));
deltaM[j][0] = r[j] - wy;
}
if (onEarth) {
deltaM[r.length - 1][0] = 1 - (Math.pow(xg, 2) + Math.pow(yg, 2))
/ Math.pow(4, 2) + Math.pow(zg, 2) / Math.pow(C, 2);
}

Matrix DeltaM = new Matrix(deltaM);
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// Build the jacobian, approximating the set of TDOA equations with
// the first order terms of the Taylor Series expansion
Matrix ] = computeJacobian(xg, yg, zg, p1, p2, m.length, onEarth);

Matrix W = (weightWithInverse) ? CovM.inverse() : Matrix.identity(
elength, elength);

Matrix DeltaX = ].transpose().times(W).times(]).inverse()
.times(J.transpose()).times(W).times(DeltaM);

xg = xg + DeltaX.get(0, 0);
yg = yg + DeltaX.get(1, 0);
zg = zg + DeltaX.get(2, 0);

// FIND THE MAGNATUDE OF DeltaX
len = Math.sqrt(Math.pow(DeltaX.get(0, 0), 2)
+ Math.pow(DeltaX.get(1, 0), 2) + Math.pow(DeltaX.get(2, 0), 2));

position = new Position();

position.setCar(xg, yg, zg);
position.referenceFrame = Position.GEODETIC;
position.car2geo();

interim.add(position);

// IF DeltaX is sufficiently small, then quit
if (len < maxError)

break;
if (Double.isNaN(len))

break;

}

geo.setInterim(interim);

if (Double.isNaN(len) || len > 1)
geo.setSolutionFound(false);

else
geo.setSolutionFound(true);

Position rVal = new Position();
rVal.setX(xg);

rValsetY(yg);

rVal.setZ(zg);

Transform.carZgeo(rVal);
rVal.referenceFrame = Position.GEODETIC;

// Build the Jacobian once more for the final value of xg
Matrix ] = computeJacobian(xg, yg, zg, p1, p2, m.length, onEarth);

// Compute covariance in XYZ coordinates
Matrix JT]I = ].transpose().times(]).inverse();

Matrix CovX = JT]Ltimes(J.transpose()).times(CovM).times(]).times(JT]I);

// Build Rotation matrix to rotate from earth centered to local ENU
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// (East-North-Up) Coordinates
double sLat = Math.sin(Constants.DEG2RAD * rVal.lat);
double cLat = Math.cos(Constants.DEG2RAD * rVal.lat);
double sLon = Math.sin(Constants.DEG2RAD * rVal.lon);
double cLon = Math.cos(Constants.DEGZRAD * rVal.lon);
double[][] rot = {{ -sLon, cLon, 0 },

{-sLat * cLon, -sLat * sLon, cLat },

{cLat * cLon, cLat * sLon, sLat } };
Matrix R = new Matrix(rot);

// Compute ENU covariance matrix
Matrix CovENU = R.times(CovX).times(R.transpose());

// Select the EN part of the ENU matrix
Matrix covEN = CovENU.getMatrix(0, 1, 0, 1);

// Compute Eigenvalues and Eigenvectors of covariance matrix
EigenvalueDecomposition eig = covEN.eig();

Matrix V = eig.getV();

eig.getV().print(10, 5);

// Compute tilt angle for ellipse

double angl = Constants.RADZ2DEG * Math.atan2(V.get(0, 0), V.get(1, 0));
double ang2 = Constants.RADZ2DEG * Math.atan2(V.get(0, 1), V.get(1, 1));

double[] vals = eig.getRealEigenvalues();

// Compute axis lengths of Error Ellipse
double al = 2.447 * Math.sqrt(vals[0]);
double a2 = 2.447 * Math.sqrt(vals[1]);

if (a1l >a2){
geo.setPredTgt(rVal);
geo.setSemiMajor(al);
geo.setSemiMinor(a2);
geo.setTilt(90 - angl);
} else {
geo.setPredTgt(rVal);
geo.setSemiMajor(a2);
geo.setSemiMinor(al);
geo.setTilt(90 - ang2);
}
return geo;
}
}
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APPENDIX C. Polyphase Resampler Octave Code

Polyphaseresampler.m
clc;clear all;close all;
# Set up

#set ratio for polyphase filter
interp=256.06

# Number of Phases on polyphase Filter
M = 64;

# Set up Source Sampling rate, filter design sampling rate
# and final sampling rate

fs1=250;
fs2=M * fs1
fs3=interp * sl

# Compute Nyquist Rates

fnl=1s1/2;
fn2=1s2/2;
fn3=£s3/2;

# Number of taps per filter phase
PS=5;

n=M*PS;

# build Kaiser windowed FIR filter
ftype="low'
fstop=75
Wn=fstop/fn3
sba =100
# From http://www.mathworks.com/help/toolbox/signal/ref/kaiserord.html
if (sba > 50)
beta = 0.1102*(sba-8.7);
elseif (sba > 21)
beta = 0.5842*(sba-21)"0.4 + 0.07886*(sba-21);
else
beta = 0;
end
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filt = M*firl (n,Wn, ftype kaiser(n+1,beta), noscale');

# Build filter partitions
partfilt = zeros(M,PS);

fori=1:M
for j=1:PS
partfilt(i,j) = filt(i+(G-1)*M);
end
end

# Build initial signal
t=0:1/fs1:1;
x1 = sin(2*pi*72*t);
x2 = sin(2*pi*35%t);
X =x1+x2;

# Up sample signal and prepare for filtering with control case
xup = upsample(x,M);

# Filter signal for control case
y = filter(filt,1,xup);

# Filter and up sample signal with multirate method
yl=zeros(1,length(x)*interp);

yindex = 1;

xinterval=M/interp;

xindex=1;

xindexminor = 0;

for i=1:length(x)
while (xindexminor < M)

if (iI>PS)
xf = floor(xindexminor+1);
for k=1:PS
y1(yindex) = y1(yindex)+x(xindex-k+1)*partfilt(xf,k);
end
yindex++;
end
xindexminor=xindexminor + xinterval;
end
xindexminor=xindexminor-M;
xindex++;

end
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figure(1)

clf

plot(x)

title('Original Signal');

figure(2)

clf

plot(y(1:75*M))

figure(3)

title('Control Filtered Signal');

clf
plot(y1(1:75*interp))
title('Multirate Filtered Signal');

figure(4)

clf

NFFT = length(y);

fs = fs1*M;
f=fs/2*linspace(0,1,NFFT/2);
3 = 2*fft(y)(1:NFFT/2);,

3 = sqrt(real(f3).”2+imag(f3).”2);
plot(f,20*log10(f3/max(f3)))
xlabel('Frequency (Hz)")
ylabel('Power (dB)")
title('Control Spectrum')

figure(5)

clf

NFFT=length(y1);

fs = fs1*interp;
f=fs/2*linspace(0,1,NFFT/2);
3 = 2*fft(y1)(1:NFFT/2);

3 = sqrt(real(f3).”2+imag(f3).”2);
plot(f,20*log10(f3/max(f3)))
xlabel('Frequency (Hz)")
ylabel('Power (dB)")
title('Multirate Spectrum")
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APPENDIX D. Fast Correlator Implementation

float Correlator_i::doCorrelation(CORBA::Float freq, int num) {
char filename[100];

short * 10 = cd1->getlData();

short * Q0 = cd1->getQData();

unsigned long length0 = cd1->getLength();
short * I1 = cd2->getlData();

short * Q1 = cd2->getQData();

unsigned long length1 = cd2->getLength();

float *maxes = new float[length0];
float rval = 0;

if (lengthO ==length1) {
ffewf_complex *in1 = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*length0);
ffewf_complex *in2 = (fftwf_complex*)fftwf_malloc(sizeof(fftwf _complex)*length0);
ffewf_complex *outl =
(fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*length0);
ffewf_complex *out2 =
(fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*length0);

for (unsigned int i=0; i<lengthO; i++) {
in1[i][0] = IO[i];
inl[i][1] = 0;
in2[i][0] = I1[i];
in2[i][1] = 0;
}

ffewf_plan p1 =

fftwf_plan_dft_1d(length0,in1,outl, FFTW_FORWARD,FFTW_ESTIMATE);
ffewf_plan p2 =

fftwf_plan_dft_1d(length0,in2,out2, FFTW_FORWARD,FFTW_ESTIMATE);
ffewf_plan p3 =

fftwf_plan_dft_1d(lengthO,outl,out2, FFTW_BACKWARD,FFTW_ESTIMATE);

fftwf_execute(p1);
fftwf_execute(p2);

for (unsigned int i=0; i<lengthO; i++) {

float reall = out1[i][0];

float real2 = out2[i][0];

float imag1 = out1[i][1]; // CONJUGATE

float imag?2 = -out2[i][1]; // CONJUGATE

out1[i][0] = reall *real2 - imag1 * imag2;

outl[i][1] = (reall + imag1) * (real2 + imag2) - reall *real2 - imag1 *
imag2;

}

fftwf_execute(p3);
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float max = -1;
float max2 = -1;

unsigned int maxi = lengthO;
unsigned int maxi2 = lengthO;

for (unsigned int i=0; i<lengthO; i++) {
maxes[i] = sqrt(pow(out2[i][1]/length0,2) + pow(out2[i][0]/length0,2));
if (maxes[i] > max){
max = maxes[i];
maxi = i;

}

for (unsigned int i=0; i<lengthO; i++) {
if ((maxes[i] > max2) && (abs((int)i-(int)maxi) > 200000)) {
max2 = maxes[i];
maxi2 =i;
}
}
int out = ((int)maxi+(int)length0/2)%/(int)length0-(int)length0/2;

if (abs(out) < 20000)
tCorr++;

rval = max-max2;
correlation[maxi]++;

correlation2->push_back(out);
fftwf_destroy_plan(p1);
fftwf_destroy_plan(p2);
fftwf_destroy_plan(p3);
fftwf_free(inl);
fftwf_free(in2);
fftwf_free(outl);
fftwf_free(out2);

else {
std::cout<<"BAD CORRELATION LENGTHS"<<std::end];

std::ofstream file;
sprintf(filename," /sdr/%d/",(int)freq,num);
mkdir(filename,S_IRWXU);

sprintf(filename," /sdr/%d/maxes.dat",(int)freq);
file.open(filename, std::ios:trunc | std::ios::binary);
std::cout<<"Writing "<<filename<<" of length "<<lengthO<<std::endl;

file.write((char*)maxes,sizeof(float)*length0);

file.flush();

file.close();

sprintf(filename," /sdr/%d/file1l.dat",(int)freq);
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file.open(filename, std::ios:trunc | std::ios::binary);
std::cout<<"Writing "<<filename<<" of length "<<lengthO<<std::endl;

file.write((char*)10,sizeof(short)*length0);

file.flush();

file.close();

sprintf(filename," /sdr/%d/file1Q.dat",(int)freq);
file.open(filename, std::ios::trunc | std::ios::binary);
std::cout<<"Writing "<<filename<<" of length "<<lengthO<<std::endl;

file.write((char*)Q0,sizeof(short)*length0);

file.flush();

file.close();

sprintf(filename," /sdr/%d/file2l.dat",(int)freq);
file.open(filename, std::ios:trunc | std::ios::binary);
std::cout<<"Writing "<<filename<<" of length "<<lengthO<<std::endl;

file.write((char*)11,sizeof(short)*length1);

file.flush();

file.close();

sprintf(filename," /sdr/%d/file2Q.dat",(int)freq);
file.open(filename, std::ios:trunc | std::ios::binary);
std::cout<<"Writing "<<filename<<" of length "<<lengthO<<std::endl;

file.write((char*)Q1,sizeof(short)*length1);

file.flush();

file.close();

delete [] maxes;

return rval;
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APPENDIX E. USRP_TIME Process Implementation

void USRP_TIME_i::rx_data_process() {
uint32_t *rx_buffer = NULL;

unsigned int mux = usrp_rx->determine_rx_mux_value(0);
if (number_of_rx_channels > 1)

mux = usrp_rx->determine_rx_mux_value(0, 1);
usrp_rx->set_mux(mux);

unsigned int muxity = usrp_rx->mux();
int nchan = usrp_rx->nchannels();

std::cout << "nchan: " << nchan << "number of chan"
<< number_of rx_channels << std::end];

int decim = usrp_rx->decim_rate();
std::cout << "decim: " << decim << std::endl;

DEBUG(3, USRP_TIME, "rx_packet_size " << rx_packet_size)
unsigned int buf_size = rx_packet_size * number_of_rx_channels
* (complex ? 2: 1); // number of shorts to read

DEBUG(3, USRP_TIME, "buf_size: " << buf_size) // 16384

PortTypes::ShortSequence 10;
PortTypes::ShortSequence QO;

usrp_rx->start();
omni_thread *collection_thread = new omni_thread(Collect, (void *) this);
collection_thread->start();

unsigned long long time_per_1sec = 0;
uint32_t lastPktTimestamp;

while (rx_active && ((rx_packet_count == -1) || (rx_packet_count > 0))) {
usrp_packet_t rx_data[10];

unsigned int readLen = ReadData(rx_data, 10);
10.length(readLen * 126);
QO0.length(readLen * 126);

uint32_tts;
intii=0;
for (inti=0; i <readLen; i++) {
usrp_packet_t packet = rx_data[i];
if(i==0){
ts = packet.timestamp;

if (packet.timestamp < lastPktTimestamp) {
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time_per_1sec = lastPktTimestamp + (126 * decim)
- packet.timestamp;
DEBUG(3,USRP_TIME, "One second has passed, clocks per sec: " <<
time_per_1lsec<< " Buffer size: "<<bufLen)
}
lastPktTimestamp = packet.timestamp;
if (USRP1_HEADER_BURST_CHAN(packet.header) == 0) {
for (intj=0;j<126;j++) {
intj 1=j%2;
intj2=j*2+1;
10[ii] = (CORBA::Short) packet.data[j_1];
QO[ii] = (CORBA::Short) packet.data[j_2];
ii++;

}
}

PortTypes::MetaData md;

time_t tm = time(NULL);

md.timestamp = tm;

md.samples = ts;

md.sampling_frequency = time_per_1sec;
rx_data_1_port->pushPacket(10, Q0, md);

if (rx_packet_count !=-1)
--rx_packet_count;

}
DEBUG(3, USRP_TIME, "Exiting rx_data_process thread")
usrp_rx->stop();

rx_active = false;
rx_thread->exit();
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