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Michael S. Meuleners 

 

ABSTRACT 

 

The Software Communications Architecture (SCA) specification defines a framework 

that allows modular software components to be developed and assembled to build larger 

radio applications.  The specification allows for these components to be distributed 

among a set of computing hardware and to be connected by standard interfaces.  This 

research aims to build a spatially distributed SCA application for the Open Source SCA 

Implementation: Embedded (OSSIE) implementation using low-cost Universal Software 

Radio Peripheral (USRP) hardware.  The system collects signals from multiple spatially 

distributed collection devices and use those signals to compute precision estimates for the 

location of emitters using time difference of arrival (TDOA) computations.  Several 

OSSIE components and tools are developed to support this research.  Results are 

presented showing the capabilities of the geolocation system.
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 1 

 

This research aims to build a spatially distributed radio system to perform Time 

Difference of Arrival (TDOA) based geolocation of a specified signal of interest utilizing 

the Internet as a network to connect Software Defined Radios (SDR).  This section 

provides background material on SDR, summarizes contributions of the thesis, and 

provides an overview of the rest of the document.   

 

 

In the past, radio systems were largely developed for a specific purpose.  A radio might 

be defined to support the 802.11(b) standard and implemented in an application-specific 

integrated circuit (ASIC) or other piece of purpose-specific hardware.  If a new standard 

was defined, such as 802.11(g), a new piece of hardware is required to implement that 

standard. SDR defines a class of radios that are largely implemented in, or controlled by 

software [1].  The definition of SDR is a large topic of discussion in the radio 

community, and can have many different definitions depending on who is asked.  While 

one might consider any hardware aside from a digitizer to be contraband in the world of 

SDR, another may allow for a complex configurable RF front-end prior to the digitizer.  

For the purposes of this research, an SDR is defined as “a radio that is substantially 

defined in software and whose physical layer behavior can be significantly altered 

through changes to its software,” as defined by [1].  This definition is important because 

it allows for a radio system to be built with maximum flexibility through use of easily 

reprogrammable general-purpose processors (GPP), while also creating a realistic design 

without the requirement for extremely high-speed digitization hardware.  One radio that 

meets this definition is the Universal Software Radio Peripheral (USRP) [2].  This piece 

of hardware is a modular design incorporating a digitizer and a set of pluggable RF front-

ends of varying capability and complexity.  The flexibility gained with an SDR is not 

without its drawbacks.  With more flexible processing come possible increases in 

required processing power.  This deficiency has become less important recently with 

increased performance and lower cost of commodity computer hardware. 
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In an SDR application, once a hardware solution has been chosen, software must be 

written to control that hardware and utilize the signals that have been digitized.  Devices 

such as the USRP provide a set of libraries for controlling the radio and sending and 

receiving signals. Software can then be written to take those signals and apply any 

processing required. Several frameworks have been defined to facilitate building SDR 

applications.  A software framework is “a universal, reusable software platform used to 

develop applications, products and solutions,” as defined by [3].  A software framework 

is important for developers who wish to concentrate on building software signal 

processing components and applications and allow the framework to provide a means to 

connect those components.  Some frameworks also provide libraries with useful 

collection of signal processing components and utilities to aid in software development.   

 

Several frameworks exist or are being developed.  GNU Radio is a popular tool for 

hobbyists and researchers to use when prototyping software defined signal processing 

systems.  GNU Radio provides a simple framework for connecting software components 

and building SDR applications [4].  Another framework that is available is the Software 

Communications Architecture specification, which was defined for the Joint Tactical 

Radio System (JTRS) by the Joint Program Executive Office (JPEO) [5].  JTRS is a radio 

system that was designed to be implemented by the next generation radio used by the US 

Military [6].  The SCA specification has several implementations, including several 

commercial and open-source implementations.  The SCA specification is built upon the 

Common Object Request Broker Architecture (CORBA), which provides support for 

distributed and multiplatform computing [5].  The ability do define a distributed 

application is important not only because it allows distribution of processing 

requirements over a set of hardware, but also because it allows for those components to 

be distributed over a wide area network so that some components can be placed as close 

as possible to their corresponding RF hardware.  The signal can then be processed 

accordingly, possibly resulting in a smaller amount of data being transmitted over a slow 

or unreliable network. 
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The increasing flexibility of radio systems through implementation in software allows for 

radio systems to change quicker today than ever possible in the past.  A single radio 

device such as a cell phone or tablet may be able to support many different 

communications standards with a single RF/Digital front-end.  A handset could be built 

to support both GSM and CDMA, both utilizing the same RF front-end, with the rest of 

the physical layer being implemented in software.  These possibilities allow for standards 

to be created and updated faster, introducing many more types of signals into the already 

crowded world of radio communications. 

 

In many cases, it is useful to have the ability to locate an RF signal.   This can be useful 

for mapping the location of a set of transmitters in an area of interest, or to locate a radio 

of a user who is in distress.  Because of the increasing variability and complexity of radio 

systems, an SDR is a great platform for signal collection for performing geolocation.  The 

flexibility of the systems allows for a wide variety of signals to be collected, both in 

frequency and in signal type.  Since most of the system can be defined or controlled by 

software, it is possible to take advantage of having access to the signal prior to and after 

demodulation and processing.   There are a number of challenges with generating a 

usable location estimate from an SDR, especially a low-cost device such as a USRP.  For 

this research, TDOA geolocation was considered.  Precision and accuracy in time tagging 

of the data are very important for TDOA geolocation.  Signal-to-noise ratio (SNR), 

bandwidth, and integration time are also important factors, and directly affect the error in 

the TDOA measurement [7]. 

 

Several contributions will be made to the OSSIE framework as a result of this research. 

• OSSIE Bug fixes – Several bugs were found in the OSSIE framework precluding 

the deployment of multiple nodes utilizing the USRP board. 

• OSSIE CORBA Event Service implementation – The OSSIE Core Framework 

was modified to allow CORBA Event Channels to be connected to user developed 

software components.  This allowed for easier development of de-coupled 

command and control for OSSIE software applications. 
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• OSSIE Java Support – Several OSSIE software components were built for the 

Java programming language.  This includes a Java WavLoader, for loading and 

controlling OSSIE applications from Java.  Support for Java OSSIE Resources 

was added to allow for developers to build software components using the Java 

programming language.  Several OSSIE Ports were also implemented in java to 

facilitate connecting Java OSSIE Resources with other Resources. 

 

The OSSIE TDOA geolocation application developed for this research will also be made 

available for anyone interested in continuing this research. 

 

This thesis starts in section 2 by introducing the technologies and key concepts that are 

important for designing and building distributed SDR applications implemented in 

OSSIE.  The Software Communications Architecture (SCA) framework and OSSIE 

implementation of the SCA are introduced.  In addition, the hardware platform utilized 

for this research is introduced, as are concepts related to using that hardware to achieve 

the goal of this research.  In section 3 the components and software built for this research 

are described.  Components for collecting the signal, correlating the signal to generate 

TDOA measurements, and using those measurements to locate an emitter were presented. 

These concepts are then combined to build an OSSIE Application.  The results gained 

from this exercise are then presented in section 4 and conclusions are drawn and future 

work is suggested in section 5.  Important code implementations are included in the 

appendices. 
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Many software and hardware components were utilized in the execution of this research.  

The following technologies and concepts were considered vital in completing the 

research presented in this paper.  SDR is introduced, including the frameworks utilized 

for completing this research.  The signal of interest used in this research is then 

introduced.  Finally, the collection platform used by this research is introduced.  Because 

this research focuses on receiving and processing a signal, signal reception will be the 

focus of this discussion. 

 

SDR has been used to describe many different types of systems.  In its ideal form, it is 

nothing more than a digitizer connected to an antenna, with all other components 

implemented in software.  This is very convenient in theory, but at least for the moment, 

it is not practical in reality.  There are many reasons for this, but mainly it is a result of 

limitations and cost of hardware.  An ideal hardware system for software radio would be 

required to cover the range of all possible signals that could possibly be collected with 

that device [1].  These signals can range from DC all the way up to many gigahertz in 

frequency.  According to Nyquist, an analog to digital converter to cover this range 

would be required to sample at least twice the highest bandwidth of the collected signal.  

Not only is a digitizer of this caliber very expensive, if not impossible to acquire, but 

once captured, the signal would be sampled at such a high rate that it may be impossible 

to process in real time.  Another important factor is dynamic range, because it defines the 

highest and lowest power signals that can be digitized [1].  For an ideal SDR to operate, it 

would be required to capture the lowest and highest power signals in its coverage range.  

This may result in reduced dynamic range and increased quantization error for lower 

power signals in a band where higher power signals exist.  For these reasons, a typical 

software defined radio employs a number of signal conditioning steps prior to 

digitization.   These steps can include [1] 

• Signal amplification/attenuation, to scale the analog signal to match the 

capabilities of the digitizer, 
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• Filtering, to reject out of band signals to prevent aliasing during 

digitization, 

• Down conversion, to shift the frequency range of the desired signal down 

to something that the digitizer can sample.  This can be to an intermediate 

frequency (IF) or directly to baseband with possibly several stages in-

between. 

 

The USRP SDR system used by this research employs all of these components [4].  For 

this research the definition of an SDR is a radio system where much of the system is 

implemented or controlled by software.  It is a system that is capable of multiple modes 

of operation because its input and output behavior is determined by software. 

 

The Software Communications Architecture (SCA) defines a portable, open software 

framework for SDR applications and components that allows for SDR applications to be 

built with a re-usable, common set of components [5]. 

 

According to the Software Communications Architecture Specification document [5], the 

SCA has been designed to: 

i. “Provide for portability of applications software between different SCA 

implementations, 

ii. Leverage commercial standards to reduce development cost, 

iii. Reduce software development time through the ability to reuse design modules, 

iv. Build on evolving commercial frameworks and architectures.” 

 

These requirements were achieved by defining a standards-based, modular platform, 

ensuring that components developed on different platforms and programming languages 

can interoperate together without a great deal of time spent facilitating that 

interoperability by the developer [5]. 
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The Common Object Request Broker Architecture (CORBA) is an Object Management 

Group (OMG) middleware standard that allows for applications written in different 

programming languages and for different platforms to interact together executing on 

distributed processors and platforms [5].  It defines an Interface Definition Language 

(IDL) to define interfaces between components.  Software components developed for use 

with CORBA implement these interfaces, and the Object Request Broker (ORB) provides 

the plumbing to connect these interfaces and pass information between software 

components [5]. 

 

The Core Framework (CF) defines a set of CORBA interfaces defined for different 

components in an SCA system.   The Framework Control Interfaces include the 

DomainManager, DeviceManager, Application, and ApplicationFactory interfaces.   

These components are responsible for installing, managing, and uninstalling software 

from the system [5].  The Framework Services interfaces include the File, FileSystem, 

and FileManager interfaces.  These interfaces provide access to the file system and other 

services [5].  The Devices interfaces include Device, LoadableDevice, ExecutableDevice, 

and AggregateDevice.  These interfaces provide an API for interaction with devices [5]. 

Finally, the CF provides a set of Base Application Interfaces, including Port, LifeCycle, 

TestableObject, PropertySet, PortSupplier, ResourceFactory, and Resource, that provide 

an API for system software components, including Resources and Devices [5].  The 

Resource interface is important for this research because it is the base class for every 

software component written to support this research including the USRP_TIME Device 

and each of the signal processing components.  An implementation of the SCA must 

provide implementations of most of these interfaces [5]. 

 

Every component in an SCA system has a set of one or more configuration XML files, 

whose purpose is to describe the capabilities and requirements of each component [5].  

These files are: 
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• The Software Package Descriptor (SPD) describes the implementation of a 

software component, 

• The Software Component Descriptor (SCD) describes a software component, 

including what interface Ports the component shall Use or Provide, 

• The Software Assembly Descriptor (SAD) describes the components and 

connections which make up an SCA waveform, as well as waveform-specific 

property values, 

• The Properties Descriptor (PRF) describes a set of properties that a software 

component has, including its default values, 

• The Device Package Descriptor (DPD) describes a Device, including its make and 

model, 

• The Device Configuration Descriptor (DCD) identifies the Devices associated 

with an instance of a DeviceManager, 

• The Domain Manager Configuration Descriptor (DMD) describes the 

configuration for the DomainManager. 

 

The SCA Operating Environment (OE) is the set of services that an SCA implementation 

provides to users of the framework.  The OE includes the POSIX Operating System (OS), 

CORBA Middleware, CORBA Naming Service, CORBA Log Service, and CORBA 

Event Service [5]. 

 

Each Application (Waveform) that can be installed in an SCA system implements the 

Application interface.  Each Application has one or more Resources that act together to 

perform a function.  The Application has a SAD file to describe its Resources, their 

configured properties and the Port interconnections [5]. 

 

Each software component that is to be used in an Application implements the Resource 

interface.  This includes both Device and signal processing Resources.  Each Resource 



 9 

has a PRF, a SCD, and a SPD file, to describe its properties, its capabilities, and its 

implementations [5]. 

 

The SCA defines a Port interface for data flow between Resources.  The Port defines an 

API for connecting and disconnecting ports.  A software component can both provide 

ports and use ports.  The provider of a Port provides an implementation of that Port.  The 

user of a Port can call the provided methods associated with the port.  For this reason, the 

SCA specification refers to the Ports differently depending on what side of the port the 

component sits.  If the component sits on the user side, it is known as a Uses Port.  If it 

sits on the provider side, it is known as a Provides Port [5]. 

 

The SCA specification requires that each implementation implement the CORBA Event 

Service as part of its OE.  The implementation of the CORBA Event Service must 

implement both the PushSupplier and PushConsumer interfaces defined in the 

CosEventComm module.  The SCA uses the CORBA Event Service by allowing a set of 

event channels to be set up to allow decoupled connectivity between software 

components.  The SCA Specification indicates two channels that must be defined, the 

Incoming Domain Management Channel (IDM_Channel) and the Outgoing Domain 

Management Channel (ODM_Channel).  Other event channels may be created and 

connected to software components as seen fit [5]. 

 

Open Source SCA Implementation: Embedded (OSSIE) is an implementation of the 

Software Communications Architecture (SCA) specification developed by Dr. Max 

Robert and a team of Dr. Jeff Reed’s students at Virginia Tech [8].  OSSIE is a free and 

open source SCA implementation that was built initially because of high costs associated 

with commercial implementations of the SCA.  OSSIE has seen continued development 

by students at Virginia Tech and has received interest from industry [8]. 
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While OSSIE implements a large portion of the SCA specification, it is missing some 

important features.  OSSIE does not support automatic allocation of resources.  For this 

reason, OSSIE defines an additional XML file, the DAS (Device Assembly Sequence) 

file, for each application that assigns each software component to the Device where it will 

be executed.  OSSIE also lacks the ability to allow more than one of the same Device 

nodes to be used within one DomainManager at the same time.  The most important 

missing feature that was required in this research was support for the CORBA Event 

Service for software components to allow decoupled command and control of an 

Application. 

 

OSSIE provides a limited set of included Port implementations for connecting software 

components.  It provides a set of generic data Ports for streaming signal data, and a 

second set of the same Ports allowing metadata to be transmitted.  In general, an OSSIE 

Uses Port sends data across an interface and an OSSIE Provides Port receives that data.  

For the purposes of this research, where Ports are used or built, the terminology will be 

used in the same manner.  

 

GNU Radio is another open source framework for building experimental SDR 

applications.  While GNU Radio does not implement a standard like OSSIE, it also 

allows a developer to build up signal-processing applications using modular components.  

GNU Radio connects and configures components in a Python application known as a 

“flow graph.”  Components can be written in several languages, including C++ and 

Python [4].  This allows for flexible applications that can be modified and quickly 

executed.  GNU Radio also provides several out-of-the-box tools that can be used to 

visually build a flow graph and other tools that can be used analyze spectrum and verify 

that the radio is working.  For this research, this was the part of GNU Radio that was 

most helpful.  The FFT tool and waterfall tool were used to investigate what signals were 

available and to choose the proper signals for use in this research.  Also used was libusrp, 

a library included with GNU Radio providing an API to interface with the USRP Radio.  
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This API allows parameters to be set that control the operation of the USRP and its 

daughterboards.  The API also allows data to be streamed to and from the USRP [4]. 

 

For this research, VHF FM Radio broadcast signals were chosen as the signal of interest 

(SOI) for collection and location determination.  This signal was chosen because it is 

consistently available and easy to collect. In a standard analog FM radio signal, the entire 

signal data is contained within an FM modulated signal.  Once demodulated, the one-

sided spectrum of an FM signal is approximately 100kHz wide.  Figure 1 shows the 

spectrum of the FM signal after demodulation.  In the audible frequency range, the signal 

contains the mono audio channel (left + right) between 30hz and 15kHz.  At 19kHz, there 

is a pilot tone indicating a stereo audio channel (left – right) is centered at twice this 

frequency, 38kHz.  The FM signal may optionally contain several auxiliary channels 

between 53kHz and 99kHz.  Radio Broadcast Data System (RBDS), if present, is 

centered at 57kHz.  Centered at 67.65kHz is DirectBand, or a subcarrier containing 

secondary content (SCA).  A second secondary content subcarrier can sometimes be 

found at 92kHz [9].  When demodulating the audio for mono audio playback, the 

demodulated signal can be filtered to reject anything above 15kHz, but for the purposes 

of this research, the time-varying components above 15kHz were kept to aid in the 

correlation phase by keeping as much time-varying information as possible in the signal 

to maximize the bandwidth of the signal. 

 
Figure 1 FM radio spectrum 
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Figure 2 shows an actual averaged FFT captured using an application built with the GNU 

Radio Companion to demodulate the FM Radio signal and generate an FFT. 

 
Figure 2 FM signal averaged FFT after demodulation 

 

The hardware platform chosen for this research is the original Universal Software Radio 

Peripheral (USRP), also known as the USRP1, since newer USRP boards have since been 

released [4].  The USRP is an open source experimental SDR radio developed by Matt 

Ettus of Ettus Research [4].  The USRP was chosen for its low-cost and for its 

availability for this research. The USRP provides capability for both receiving and 

transmitting digital signals.  It is built with a modular design, allowing different receive 

(RX) and transmit (TX) front-ends to be installed on its four daughterboard slots.  The 

USRP has four A/D converters for signal digitization, four D/A converters for signal 

transmission, an Altera FPGA chip for digital processing, and a Cypress FX2 USB 

interface chip to provide a high speed USB2 interface to the host PC [4]. 

 

Two RX daughterboard slots are provided.  Each slot provides two high-speed 12-bit A/D 

converters capable of digitizing analog signals at 64M samples per second.  Prior to each 

A/D converter is a programmable gain amplifier (PGA) that allows boosting the analog 

signal up to 20dB prior to digitization to make best use of the A/D dynamic range.  

Depending on the RX daughterboard used, the signal is either digitized as a complex 

signal or a real signal and may be either at baseband, an intermediate frequency (IF), or at 

the original frequency.  After digitization, the A/D is received by the digital inputs on the 
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Altera FPGA chip.  The FPGA is loaded with an image that provides several signal 

conditioning steps prior to the data being streamed across the USB2 interface to the PC.  

The signal is first multiplied by a constant frequency signal to shift the signal to 

baseband, and then the signal is decimated.  The in-phase (I) and quadrature (Q) samples 

are then interleaved and transmitted over the USB2 bus to the PC [4].  

 

The USRP board also provides two TX chains for transmitting signals.  The TX process 

is much the same as the RX process, except in reverse.   The interleaved I and Q samples 

are received by the FPGA chip over the USB bus then interpolated and up-converted to 

IF.  Two high-speed 14-bit D/A converters are provided for each TX chain, capable of 

converting signals at 128M samples per second.  After up-conversion to IF, the digital 

signal is passed through the D/A converter and run through a PGA providing up to 20dB 

gain.  The analog signal is then delivered to the TX daughterboard through the provided 

connector where it can be mixed and filtered to the proper band [4]. 

 

The behavior of the daughterboards and the FPGA components for both the TX and RX 

chains are completely programmable over the USB bus. 

 

The RF daughterboard chosen for signal reception in this project is the WBX board.  The 

WBX is a transceiver, having a RX/TX capability from 50-2200MHz [10].  It provides 

on-board analog filtering and mixing to reject out of band interference before digitization.  

Its mixers down-convert the signal to IF and also separate the incoming signal into I and 

Q components such that the signal is digitized as a complex signal.  The WBX was 

chosen for its wide range and coverage around the FM radio band. 

 

The USRP board has a number of limitations, which are important for solving a 

geolocation problem.  First, in order to provide an accurate timestamp for each sample 

recorded, each radio system must have access to a very accurate time source.  If a host 

computer could provide an accurate time source, the signal could be time-tagged on the 

host. The arrival time of each packet on the PC is not deterministic due to the method in 

how the data is transmitted from the FPGA to the PC.  The data is loaded into a buffer on 
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the FPGA and transmitted via the USB interface when possible.  Because of this the jitter 

in arrival time of data on the host is too great.  The USB bus is also too slow to transmit 

data to the PC at the full rate of 64MS/s for maximum timing resolution.  The signal must 

be decimated prior to transfer, so not only is the jitter too great, but the time resolution is 

also too great to generate an accurate timestamp.  The USB2 bus can handle a maximum 

of 480 Mbit/sec.  At 64MS/sec, the USRP transmits 

 64
Msample

sec
32

bits

sample
= 2048Mbit

sec
  (1) 

which is well above the theoretical maximum for the USB interface.  Decimating by 8 

brings the rate down to a more manageable 256Mbit/sec.  If accurate timing could be 

attained using a PC at this rate, corresponding to a sampling rate of 8MS/sec, the time 

resolution would be 

 
1

8
Msample
sec

=1.25 ⋅10−7s   (2) 

during which time a collected signal travels 

 1.25 ⋅10−7s ⋅299792458m
s
= 37.5m   (3) 

which might be acceptable for some targets and requirements for geolocation accuracy 

but not for others.  Therefore, a method of time-tagging the samples coming off of the 

USRP board is used and is described in section 3.1.2. 

 

Another problem with the USRP board is that there is some tolerance in the oscillator 

clock rate, such that a signal collected at two separate USRP boards will not be sampled 

at precisely the same rate.  Because the signals are not collected at the same rate, 

correlating the data collected from these sources will not be possible to a high degree of 

precision.  An arbitrary ratio resampler is described in section 3.4.5 to compensate for 

this issue. 
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This research required many building blocks to assemble a fully working TDOA 

geolocation system.  The network and hardware infrastructures are introduced.  This is 

followed by a discussion of hardware modifications required.  The OSSIE framework 

modifications are then described.  Finally, the OSSIE waveforms and components are 

described. 

 

 

Two OSSIE nodes were built, one placed in Haymarket, VA and the other placed in 

Ashburn, VA.  Each OSSIE node contained a single GPP and a single USRP board.  The 

USRP boards were connected to 75-ohm antennas through the RG-6 wiring already 

present in each house, via a 50/75-ohm converter, to avoid any unnecessary interference.  

A Trimble Thunderbolt GPS Disciplined Oscillator (GPSDO) and antenna were installed 

in each house, also connected to their antennas through the house RG-6 wiring.  The GPP 

Devices were connected to the LAN in either house and the house LANs were linked via 

a VPN connection installed for this purpose, as seen in Figure 3. 

 
Figure 3 VPN between Ashburn and Haymarket 
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The USRP board in its default configuration serializes only signal data over the USB bus.  

Because the research presented requires precision time tagging to facilitate accurate 

TDOA measurements, an accurate time source had to be connected to the USRP board.  

Earlier in the development of the GNU Radio project, there was an effort to build an 

FPGA firmware version that transmitted metadata in-band with the signal data over USB.  

This endeavor was abandoned, but the Verilog codebase still exists [11].  The Verilog 

code maintains an internal clock and tags each packet sent to the host with a timestamp in 

samples.  Because the USRP board could not be modified physically for this research, 

there is no way to coherently lock the on-board oscillator to an outside reference.  The 

on-board oscillator cannot be relied upon to deliver a precise 64MS/s clock.  There is a 

possibility, however, to connect an accurate 1PPS reference to a high speed input on a 

Basic RX daughter board on the unused side of the USRP board.  The input can then be 

used to reset the clock of the USRP board at each 1PPS signal.  The received signal is 

later resampled based on the number of clocks per second that were detected, such that 

the sampling rate on the data from each USRP matches.  The signals are still not 

coherently sampled, but they should be aligned to within the period of one sample, which 

was deemed accurate enough for the purposes of this research.  The Verilog code that 

was added/modified to perform this clock reset is shown in Figure 4.  Figure 5 shows a 

picture of the USRP board with a 1PPS signal wired in. 

 
Figure 4 Verilog change to reset timestamp on USRP 
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Figure 5 USRP board 

 

Trimble Thunderbolt GPS Disciplined Oscillators (GPSDO) were installed alongside 

each USRP board to provide the precise 1PPS signal.  The signal provided by the 

Thunderbolt is output between 0 and 5V, where there is a precise rise in signal from 0 to 

5V at the beginning of each second.  Because the signal ranges from 0 to 5V, this signal 

would damage the USRP board if connected to the input.  A voltage divider was built up 

to drop the voltage down to 3.125V, well within the 3.3V allowed by the USRPs high-

speed inputs.  A pull-down resistor with capacitor was also added to filter out high 

frequency transients in the input.  This is the same voltage divider used on the USRP 

N210 board [12]. Figure 6 shows the schematic of the implemented voltage divider. 
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Figure 6 Voltage divider for 1PPS input on USRP 

 

The Thunderbolt also has available a serial output that transmits a number of useful 

pieces of information.  The most useful for this research are the time packets that indicate 

the current time and are broadcast at the beginning of every second.  Figure 7 shows the 

structure of each packet coming off of the GPSDO [13]. 

 

 
Figure 7 Trimble Thunderbolt packet structure 

Figure 8 shows the layout of the <DATA STRING> element for the timestamp packet 

[13].  Each row represents 32 bits, and the rows are consecutively transmitted.  All fields 

shown of greater than one bit are encoded as unsigned integers and are carried in network 

byte order, where the most significant byte is carried first [13].  The timestamp defined 

by the packet indicates the second at which the last 1PPS signal was received.  Because 

the Linux system could not keep reliable time, this timestamp was used as an accurate 

time reference for the system. 

 

 
Figure 8 Timestamp packet 
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Several modifications were made to the OSSIE framework to support this research.  A set 

of interfaces was added to OSSIE to support distributed data transfer.  The OSSIE Event 

channel was enabled and implemented for application components.  Finally, a set of Java 

OSSIE Software Components was built. 

 

To overcome the speed and latency issues found in section 3.3.1 with the OSSIE test 

waveform using the OSSIE-provided interfaces, a new type of Port that is buffered on 

both ends was defined in order to overcome these issues and still have the ability to 

reliably transmit a number of sequential packets.  For this research, a new version of the 

standardInterfaces complexShort interface was created that has a buffer on both the Uses 

and Provides side of the connection.  On the Uses side, packets are accumulated in a 

buffer until they can be sent and then buffered again on the Provides side.  This type of 

interface can only be used in between a set of components that is not transmitting at all 

times, otherwise the buffer on the Uses side of the Port will be guaranteed to fill up if the 

amount of data exceeds the throughput available.  It is particularly useful for transmitting 

snapshots of continuous data.  A TriggerControl interface was also built to allow one 

component to request a snapshot of data from another component.  These Ports were 

placed in a new OSSIE package called thesisInterfaces.  The standard OSSIE 

standardInterfaces Ports were also modified to allow each Port to optionally transmit 

metadata. 

 

The SCA specification calls for the OE to provide an implementation of the CORBA 

Event Service that implements the PushSupplier and PushConsumer interfaces from the 

CosEventComm module [5].  There is such an implementation defined for use with 

omniORB, and that implementation is called omniEvents.  In looking at the OSSIE 

source code, it appears as though at some point there was an intention to implement this 

functionality, as some of this functionality was present, but commented out.    The 

Incoming Domain Management Channel (IDM_Channel) and the Outgoing Domain 
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Management Channel (ODM_Channel) were implemented partially, but capability to 

connect SCA Resources to event channels was not fully implemented. 

 

For this research, the CORBA Event Service was enabled in OSSIE and functionality was 

implemented that allows connecting software components to event channels.  A software 

component can utilize the event channel by connecting a Uses Port on that component to 

an event channel, whether or not the Port is publishing or subscribing to events.  The 

ApplicationFactory implementation was modified such that when an Application requires 

an event channel to be connected to a component’s Uses Port, it passes a reference to the 

specified event channel into the connectPort method of the component’s Uses Port.  The 

component subsequently connects a publisher or subscriber to the connection and allows 

the messages to be sent to or received from that event channel.  This functionality was 

useful in this research as it allowed the command and control GUI to be decoupled from 

the waveform code by allowing both the waveform components and the GUI application 

to independently publish and subscribe to the same CORBA Event Channels. These 

Event Channels can be connected in the software assembly descriptor XML file using the 

same <connectinterface> tags used to connect other Uses and Provides Ports [5].  Figure 

9 shows an example connection used in this research to connect the Correlator 

component’s EVENTS_IN Port to the THESIS_EVENTS event channel. 

 
Figure 9 Event Channel Port connection 

 



 21 

The CosEventComm interface indicates that events passed on the event channel must be 

the CORBA Any type, which means that any CORBA data type can be used as an event 

on an event channel [14].  For this research, several event types were defined and used, 

including a TdoaEvent that is sent whenever a TDOA measurement is made.  A 

TriggerCollect event is defined to allow a trigger to be sent from the control application.  

A TuneRequestEvent is also defined to allow tuning of the USRP during operations.  The 

CORBA IDL definition of these events is illustrated in Figure 10. 

 
Figure 10 Thesis events 

Decoupling the software components means that components do not have to care or know 

if other components are interacting on its event channels.  If a component is generating 

status, it does not care if anyone is consuming that status.  In the same way, if a 

component is listening for command and control events, it does not care who sends the 

event or if they are not online at any given point in time.  This is useful in a large system 

where it may be unknown how many waveforms are online at a given point in time, 

where single or multiple points of command and control are desired.   

 

OSSIE supports building signal processing components in two programming languages, 

the first being C++ [15].  C++ is a statically typed, multi-level programming language 

that combines the features of an Object-Oriented programming language with similar 

syntax to and interoperability with C [16].  This allows usage of many existing legacy 

signal-processing libraries.  C++ is also a native, compiled language that is compiled to 

machine language before execution.  This allows for very fast, efficient code that is 
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optimized for the operating system and hardware.  Because of these traits, C++ is a great 

language for writing signal processing components for a SDR system. 

 

Python, the other supported language, is a higher-level programming language than C++ 

and is an interpreted language.  Python’s emphasis is an ability to write powerful code 

that is very readable [17].  Python also provides a very large standard library that 

provides many functions, including graphical user interface (GUI) functionality [17].  

Python is often used as a glue language, connecting software from different languages.  

Python, being an interpreted language, will not run as fast as compiled C++, so it is best 

left for less intensive usage in an application like OSSIE.  Some possible usages are GUIs 

and application control software [17]. 

 

When choosing which programming language to use for this research, the choice was 

clear for the signal processing components in the system (C++) because of performance 

reasons and availability of signal processing libraries.  For the user interface and web 

application portions, Java was the chosen language.  This was done partially because of 

the researcher’s experience with Java, but also because of the large popularity of the Java 

language both in user interface (UI) development and in web application development 

[18].  It was also done as an exercise in learning how to interact with the SCA framework 

from a new programming language.  Java has built-in CORBA support, which is 

interoperable with omniOrb’s naming service, making it a great choice for interacting 

with OSSIE [19].  Because OSSIE does not support Java, new software had to be written 

to allow development in Java. Several types of OSSIE software were implemented in 

Java for this research, a Java OSSIE Resource implementation, a Java WavLoader, and 

several Port implementations. 

 

The SCA Resource interface and its parent interfaces, LifeCyle, TestableObject, 

PropertySet, and PortSupplier were implemented in Java.  The Java Resource class is 

implemented in a very similar way to how the Resource class is implemented in C++, but 

extra care was made to define the software in such a way that minimal code had to be 

written for each software component that was built.  The Resource class thus 
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implemented the property configure and query methods, to allow configuring of 

parameters on the Resource.  The Java Resource class also implements a port 

management system allowing the child class to simply add and retrieve Ports as 

necessary.  Because of this, when the core framework requests a Port with the getPort 

method on the Resource, the child class no longer needs to respond to this message 

because it is already taken care of by the provided implementation of Resource.  Another 

convenience added into the system is a static method runApplication, intended to start the 

application from its main method, given parameters required to connect to the CORBA 

Naming Service by the ApplicationFactory.  All threading and thread control is also built 

into the Java Resource class.  Because of these added convenience methods, a component 

need only implement the process method, a constructor that defines and adds Ports to the 

Resource, and a main method to call runApplication. 

 

In addition to the Resource class, several Port interfaces were implemented in Java.  Two 

existing Ports from the OSSIE standard interfaces, complexShort_p, a Provides Port and 

complexShort_u, a Uses Port, were implemented. A Port from thesisInterfaces was also 

implemented, TriggerControl_u, a Uses Port.  Finally, implementations of publisher and 

subscriber Ports were implemented in Java for interoperability with the CORBA Event 

Service.   

 

A graphical OSSIE component was built with the capability to trigger a TDOA collection 

to be made using the TriggerControl Port.  This component was later deprecated in favor 

of a component that would use the THESIS_EVENTS event channel to send trigger events 

to the TDOA collection waveform using the TriggerCollect event.  This decoupled 

connection allows the same trigger event to trigger collections in multiple simultaneously 

deployed waveforms.  The GUI interface for both applications can be seen in Figure 11.  

The GUI can trigger a set of TDOA measurements to be made, allowing the user to set 

the frequency channels to collect, the number of TDOA samples to take at each channel, 

and the integration time in samples for each collection. 

 



 24 

 
Figure 11 Command and control GUI for TDOA waveform 

 

The other java application that was built was the Java OSSIE WavLoader application.  

This application provides a Java GUI allowing a user to install/uninstall and start/stop 

one or more waveforms.  The Java OSSIE WavLoader is able to load and run multiple 

waveforms on the same OSSIE nodes.  It also allows a user to inspect the current 

parameters on a loaded waveform.  It can also be used as a library to programmatically 

control an OSSIE Domain, including starting and stopping waveforms and configuring 

properties of a loaded waveform.   The application is shown running multiple copies of 

the ossie_demo waveform in Figure 12. 

 
Figure 12 WavLoader Java application 

 

 

Two OSSIE waveforms were built.  The first waveform was built to test the data transfer 

between the distributed hardware.  The second waveform was the full TDOA collection 

waveform built for this research. 
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Figure 13 Initial OSSIE waveform

An initial OSSIE waveform with two USRP boards was built, as seen in Figure 13.  The 

waveform was built simply to test whether it was realistic to transmit the required data 

over the VPN link.  As it turned out, the speed of the network over the VPN was not fast 

enough to keep up with the data rate coming off of the USRP boards, not even at the 

maximum USRP decimation of 256 [4].  Because the packet data was buffered only at the 

Provides side of the Port, a bottleneck was encountered at the Uses side of the Port and 

packets were lost.  This was a problem for a TDOA computation because the correlation 

procedure requires that there are no missing samples in the signal data.  The Throttler 

component was built to solve this problem, and is presented in section 3.4.3. 

 

A final TDOA waveform was built encompassing all of the components described in 

section 3.4 as seen in Figure 14.  Once the waveform is installed and run, it sits idle 

waiting for a TriggerCollect event to be delivered into the Correlator to begin the 

collection, demodulation, resampling, and correlation process.  The TriggerCollect event 

specifies which time in the future the collection should occur, what frequency to collect 

on, and how many samples to collect.  It also allows the requester to indicate how many 

trials should be run at each frequency and how many frequencies should be tested, along 

with the interval between frequencies.  In the case of this research, the TriggerCollect 

event was sent from the decoupled Java command and control GUI.
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Figure 14 Final TDOA waveform 

 

 

Several OSSIE Components were built to collect, transmit, demodulate, resample, and 

correlate signal data to produce TDOA samples. 

 

Because the data coming off of the USRP board contains header data in-band with the 

signal data, a new USRP OSSIE component had to be built to decode this packet data.  

After receiving packet data from the libusrp library, the data is inserted into a circular 

buffer of 512 byte packets.  The packets are read from the circular buffer and processed 

in sequence to extract the metadata in the header.   

 

Each packet contains 8 bytes of header data and 504 bytes of sampled signal data.  Each 

sample contains two 16 bit signed integer values comprising the I and Q components of 
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the digitized signal.  The header contains 4 bytes of bit-packed header data and 4 bytes 

containing a 32-bit unsigned timestamp.  Figure 15 illustrates the USRP in-band packet 

structure. The first 32 bits of the header include several bit-packed fields including the 

payload length, which is always 504 bytes.  The timestamp follows in the next 32 bits and 

contains the number of samples (at 64MS/s, regardless of decimation rate) elapsed since 

the last 1PPS signal from the GPSDO.  All fields of greater than one bit are encoded as 

unsigned integers and are carried in network byte order. 

 
Figure 15 USRP in-band packet

 

When a packet is received, the timestamp is read from the packet.  When a counter 

recycle is detected, the number of samples since the last recycle is computed and is 

considered to be the new sampling rate.  The packet data is then pushed out onto a Uses 

standardInterfaces complexShort Port with metadata.  The metadata is populated with the 

timestamp of the first sample in each packet and the USRP sampling rate, both in 

samples.  The USRP decimation ratio is also included in the metadata. 

 

The OSSIE USRP_Commander component was modified to take in events from the 

CORBA Event Service, specifically a TuneRequestEvent.  This event instructs the 

USRP_Commander to change its parameters, specifically decimation factor and carrier 

frequency. 

 

The Throttler component is an OSSIE component used to take snapshots of collected data 

when requested.  It utilizes a Uses complexShort Port from thesisInterfaces to allow 

buffering of data on the slow side of a wide area network.  It has a Provides 

thesisInterfaces TriggerControl Port to allow other components to trigger snapshot data 
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collection. When this trigger is received, it indicates the amount of data that should be 

collected, and at what time the collection should start.  After sending out the snapshot 

data, the Throttler then returns to its default state of sending no data. 

 

The WFMDemod component included with OSSIE was used for the demodulation task.  

This component implements a simple differentiator to demodulate the incoming signal.  

Because the amplitude data for the FM signal is encoded in the signal as a changing 

frequency, all that is required to demodulate the signal is computing the instantaneous 

frequency at any given point in time [20].  This can be accomplished by computing the 

derivative of the signal’s instantaneous phase. The phase can be computed by taking the 

arctangent of the ratio of the quadrature signal to the in-phase signal.  The derivative of 

this signal results in the instantaneous frequency [20]: 

 Δθ (n) =
i(n)

d q(n)[ ]
dn

− q(n) d i(n)[ ]
dn

i2 (n)+ q2 (n)
  (4) 

This equation can be implemented in software using tapped-delay line Finite Impulse 

Response (FIR) differentiating filters as shown in Figure 16, where the result is scaled by  

 fs
2π

  (5) 

to compute the instantaneous frequency, and fs  is the sampling rate [20]. 

 

 
Figure 16 FM demodulator, adapted from [20] 
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Because the USRP board does not have its oscillator locked on to any reliable reference, 

the rate at which the signal is sampled is not precisely 64MS/s, nor does it remain 

consistent over time.  It is, however, relatively consistent from one second to the next.  

Because of this, the sampling rate of the signal can be calculated by counting the number 

of samples generated in a one-second period.  Using the calculated sampling rate, the 

collected signal can be resampled to an accurate 64MS/s.   

 

A traditional rational (fractional) resampler can achieve non-integer resampling ratios by 

first interpolating by an integer ratio, M, and then decimating by an integer ratio, N, 

producing an effective M/N resampling ratio [21].  The signal is first zero-padded with 

M-1 samples for each input sample, then low pass filtered to remove spectral images, and 

finally down-sampled by removing every N-1 samples.  This type of resampling wastes 

computing cycles both during up-sampling, where multiply-by-zero operations are 

computed when low-pass filtering, and during down-sampling, where newly computed 

samples are thrown away.  A polyphase filter can avoid this problem by building the 

resampler in a way that it skips these unnecessary operations.  In a polyphase filter, the 

low-pass filter designed for the rational resampler can be broken up into M partitions of 

length L
M

, where each partition computes a single output sample [21].  Because of zero 

padding, the only filter coefficients that contribute to each output sample are those where 

c = iM + p , where c is the coefficient number in the original filter, i  is the index within 

the partitioned filter, L  is the filter length, M is the number of partitions, and p  is the 

current partition number.  Iterating from i = 0 to i = L M −1  will produce the filter 

coefficients for each partition.  The partitioned filter can be used in the same way as the 

original filter, except the signal need not be zero padded.  After each output sample is 

calculated, the filter partition is incremented and the next output sample is calculated.  

After all the filter partitions are used, the input sample is incremented and the process 

starts over again, as illustrated in Figure 17. 
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Figure 17 Polyphase resampler 

The polyphase filter discussed thus far implements only the interpolation portion of the 

rational resampler.  If a rational (fractional) ratio is needed, the partition can be 

incremented by N instead of one, where N is the decimation factor [21].  The resulting 

resampling ratio will be M/N.  In any case the low-pass filter should be designed to 

operate at the interpolated rate, M*(initial sampling rate), and to filter appropriately for 

the decimated rate, M*(initial sampling rate)/N.  

 

For a typical resampling rate used in this research, where the incoming sampling rate 

might be 63,984,333S/s, an interpolation factor of 256*64,000,000 and decimation factor 

of 63,9843,33 are required to both return the signal to its original sampling rate (after 

decimation by 256 on the USRP) and to correct the error in the sampling rate.  A 

polyphase filter for this ratio would require M=1.6384E10 partitions and a 

correspondingly large low pass filter length, L.  Because of the size, this filter would be 

impractical to implement.  The polyphase concept can be taken a step further to design a 

resampler with ratio M/N, or any irrational ratio, without this complexity.  If the 

partitions are incremented at a non-integer rate, such a large filter is no longer necessary.  

The problem with this approach is that, when incremented at this rate, partitions are 

needed between actual partitions defined in the polyphase filter.  These intermediate 

filters can be handled in one of three ways [21]: 

• The nearest neighboring filter partition can be chosen, 
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• A linear interpolation can be performed between the two filters, 

• A more sophisticated curve fitting interpolation method can be used to interpolate 

between the two filters (known as a “Farrow” filter). 

The first option, choosing the nearest neighbor, has a great advantage in that it is very 

simple.  Some noise will be injected into the signal in the appearance of spectral imaging, 

because the resultant sample is chosen that should have occurred to the right or left of the 

desired sample.  This has a similar effect on a signal as a zero-order-hold, because of the 

re-use of output samples [21].  These images should be tolerable by designing a filter 

such that the stop band has sufficient attenuation so that these images do not contribute to 

the resulting signal.  Because the filter is in effect an interpolation followed by a 

decimation, the filter should, however, be designed such that the stop band has a 

continuous roll off rather that an equiripple design to avoid the zero-order hold images 

being folded back into the passband and accumulating during the effective decimation 

[21]. 

 

According to Harris [21], to ensure that the maximum amplitude of any residual spectra 

caused by the usage of the nearest-neighbor approach is smaller than any imaging 

injected by quantization error, the number of phases must meet the following requirement 

 N > 2(b−1)   (6) 

where b is the number of bits in the digitizer and N is the number of phases in the 

polyphase resampler.  For the USRP board, where the number of bits in the ADC is 12, 

this would require 2048 phases in the resampler.  For this research, to simplify the design 

of the filter, the number of phases was held back to 64, and, instead, the filter was 

designed to attenuate the signal further to compensate for the spectral artifacts.  Since the 

filter used has continuous roll-off in its stop-band, the energy contained in these images 

should not accumulate substantially when folded back into the pass-band. 

 

The other two options, whereby a more sophisticated interpolation is performed on the 

partitioned filters before resampling, require a partial recomputation of the filter phase 

prior to each filter computation.  This was considered too great a computational 

requirement to be considered for this research. 
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An octave application was built to experiment with different filter parameters.  A Kaiser 

windowed FIR filter was designed utilizing the Octave window-based FIR filter design 

tools.  The desire was to keep all images attenuated to at least 50dB below the filter pass-

band.  A Kaiser window was selected and designed to generate a stop-band attenuation of 

-100dB to also attenuate the spectral imaging produced by the zero-order hold effect.  A 

test filter was designed with 64 phases and a resampling ratio of 

256*64,000,000/63,9843,33=256.06.  A signal with two tones was passed through that 

filter and the resulting spectrum is presented in Figure 18.  Because the resampling ratio 

is non-integer and some phases of the filter are used multiple times, you can see zero-

order hold induced images present in the spectrum, though they are all kept under -50dB.  

The inset in Figure 18 also shows a magnification of the plot showing the main signal 

components.  Figure 19 shows the zero-order hold effect on the time-domain signal.  The 

figure shows samples being re-used and forming a “stair-step” effect.  In-fact, the average 

number of re-used samples is roughly four, since the resampling rate is roughly four 

times the number of phases in the designed filter. 

 
Figure 18 Plot for polyphase resampler implemented in Octave 
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Figure 19 Effects of nearest-neighbor interpolation on signal 

 

An OSSIE Component was also built as a port from this Octave code, but was later 

abandoned in favor of using the polyphase resampler that is part of the LiquidDSP library 

[22].  The LiquidDSP resampler was utilized in a new OSSIE Resampler component. 

 

 

The Correlator component controls the process of collecting and correlating a signal 

from a pair of receivers.  When a TriggerCollect event is received by the Correlator 

component, the process of collecting and correlating a pair of signals is started.  The 

TriggerCollect event indicates what channels should be collected, how long the snapshots 

should be, and the number of TDOA samples that should be made per channel.  After 

receiving the event, the Correlator sends a TuneRequestEvent to tune each collector, then 

a trigger is sent through the TriggerControl Port to start a snapshot collect from both 

Throttler components.  The Correlator then buffers data from each collector until the 

proper number of samples is received.  The signals are then aligned in time and 

correlated.  The maximum correlation is detected, and used as a TDOA sample.  After the 

correlation is computed, the Correlator writes the TDOA sample, buffered signal data, 

and the correlation plot to disk for analysis.  A TdoaEvent is then published to the 
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THESIS_EVENTS event channel for each TDOA sample generated.  This process is 

repeated until all TDOA samples are collected for all channels requested.  

 

The fast correlation algorithm takes advantage of the fact that convolution in the time 

domain translates to multiplication in the frequency domain. 

 a(t)*b(t)⇔ A(ω ) ⋅B(ω )   (7) 

The demodulated FM data that is being correlated translates into a complex FFT, and, as 

such, the multiplication for each element is accomplished by: 

 C(ω )real = A(ω )real B(ω )real − A(ω )imag B(ω )imag   (8) 

 C(ω )imag = A(ω )real B(ω )imag + B(ω )real A(ω )imag   (9) 

Once the product is computed, an inverse FFT is performed on the result, the magnitude 

of the resulting signal is computed, and the peak is detected to determine the TDOA. 

 

Two methods of geolocating an emitter using TDOA samples are considered. The first 

method utilizes an iterative Taylor series approximation method [23].  The second 

method is the closed form spherical intersection method [24].  These methods are 

presented and the error in the measurements is translated to error in position estimation of 

the emitter. 

 

The TDOA samples generated in the Correlator component can be converted into range-

difference of arrival (RDOA) samples and used to solve for the location of the unknown 

emitter.  An RDOA value is simply a TDOA value converted from time in samples to 

distance in meters.  The RDOA is computed, 

 TDOAsec =
TDOAsamples

fs
  (10) 

 RDOAm = TDOAsec ⋅c   (11) 

where c is the speed of light in meters per second and fs  is the sampling rate of the 

collector. 
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The emitter is located in three-dimensional space.  Because each TDOA measurement 

requires the difference of arrival at two collectors, four collectors and three TDOA 

measurements are required to compute the three-dimensional location of the emitter.  

Converting the location of the emitter and the collectors from Geodetic (Latitude, 

Longitude, Altitude) to Cartesian (x, y, z) coordinates, the following RDOA equations are 

formulated using the Pythagorean theorem, 

 

 

R21 = f1 x, y, z( ) = (x − x2 )
2 + (y − y2 )

2 + (z − z2 )
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

R31 = f2 x, y, z( ) = (x − x3)
2 + (y − y3)

2 + (z − z3)
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

Rn1 = fn x, y, z( ) = (x − xn )
2 + (y − yn )

2 + (z − zn )
2 − (x − x1)

2 + (y − y1)
2 + (z − z1)

2

 (12) 

where x , y , and z  are the location of the emitter in Cartesian coordinates, xi , yi , and zi  

are the location of the ith collector, and Rij is the RDOA measurement between the ith and 

jth collector.  Each equation defines a hyperbolic curve with the collectors as points of 

focus [23]. Alternatively, if the emitter can be considered to be on the surface of the 

earth, only three collectors are needed, the third equation in (12) with an equation 

describing an oblate spheroid that the earth closely resembles [25], 

 1= f3 x, y, z( ) = x2 + y2

a2
+ z

2

c2
  (13) 

where 

 a = EARTH _EQUITORIAL _RADIUS   (14) 

 c = a(1− EARTH _FLATTENING _FACTOR)   (15) 

These equations are non-linear and can be difficult to solve with a closed form solution, 

even if each measurement is made without error.  The system of equations can be made 

approximately linear by using the Taylor series expansion centered on an initial estimate 

for the location of the emitter, neglecting all terms other than the first order [23], 

 Ri1 − fi xg , zg , zg( ) = ∂ fi
∂ x

x − xg( ) + ∂ fi
∂ y

y − yg( )∂ fi∂ z
z − zg( )   (16) 

where xg , yg , and zg  are the location of the initial guess.  In matrix form this becomes, 

 ΔM = JΔX   (17) 
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where the Jacobian, J , is the set of partial derivatives forming the first order term of the 

Taylor series expansion, 

 J =

∂ f1
∂ x

∂ f1
∂ y

∂ f1
∂z

∂ f2
∂ x

∂ f2
∂ y

∂ f2
∂z

∂ fn
∂ x

∂ fn
∂ y

∂ fn
∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (18) 

andΔM is the difference between the measured value and the value at the initial guess, 

 

 

ΔM =

R21 − f1 xg , zg , zg( )
R31 − f2 xg , zg , zg( )

Rn1 − fn xg , zg , zg( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (19) 

and ΔX  is the delta between the initial guess and the solution to the Taylor series 

approximation, 

 ΔX =

x − xg
y − yg
z − zg

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (20) 

Because this system can be over-determined if there are more equations than unknowns 

(n > 3) and the measurements are not precise, it cannot be solved exactly, and there will 

be some error in these equations.  To account for error in the system, equation (17) can be 

re-organized as, 

 ε = JΔX − ΔM   (21) 

where ε is the error. 

 

A least-squared minimization can be used to minimize the sum of the squares of the error, 

 min JΔX − ΔM 2   (22) 

This can be accomplished by multiplying both sides of equation (17) by JT , 
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 JTΔM = JT JΔX   (23) 

then solving for ΔX  [23], 

 ΔX = (JT J )−1JTΔM   (24) 

If a confidence can be placed on each measurement, a weighting matrix may be 

employed to place an appropriate weighting value on each measurement, 

 ΔX = (JTWJ )−1JTWΔM   (25) 

This weighting matrix W, is simply a diagonal matrix of weights, 

 

 

W =

w1 0 0

0 w2 0

0 0 wn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (26) 

where wi is the weight for each measurement.  If the variance is known for each 

measurement, the inverse of the diagonal matrix of variances from each measurement can 

be used as the weighting matrix. 

 

In either case,ΔX  can then be added to the initial guess, and used as a subsequent guess 

to approach closer to the solution, 

 XG,new = ΔX + XG,old   (27) 

until the absolute value ofΔX  is smaller than some minimum error, errmin. 

 ΔX < errmin   (28) 

 

The main problem with this technique is that it can be rather difficult to choose the initial 

location.  If the initial location is improperly chosen, the iteration can quickly diverge due 

to the highly imperfect approximation using only the first order part of the Taylor series 

approximation.  Large steps in each increment can easily jump right over the actual 

emitter location and possibly never approach the emitter location. Figure 20 shows a 

converging iteration sequence where the algorithm gradually approaches the target.  The 

figure also shows a situation where the algorithm diverges, oscillating around the earth, 

not finding the emitter. 
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Figure 20 Iterative method converging and diverging 

 

There are also several methods for approximating a closed-form solution for the location 

of the emitter.  One considered here is the spherical intersection method [24].  This 

method says that the location of the emitter can be found by finding the intersection of 

the spheres inscribed by the range from each collector to the emitter.  Given that one of 

the collectors is considered to be the origin of the system, the range from each collector 

to the emitter is [24] 

 

 

D1 = De

D2 = De + R21

Dn = De + Rn1

  (29) 

where Di is the distance from collector i to the emitter ,De  is the distance from the origin 

(in the case of this problem, collector 1) to the emitter, and Ri1  is the RDOA between 

collector i and collector 1 (the origin). D2 through Dn are the set of equations that are 

used to solve for the location of the emitter.  Using the distance from the emitter to 

collector i, and the Pythagorean theorem, these equations become, 

 De + Ri1( )2 = xi − x( )2 + yi − y( )2 + zi − z( )2   (30) 

expanding, and simplifying, this becomes [24], 

 De
2 + DeRi1 + Ri1

2 = xi
2 + yi

2 + zi
2 + x2 + y2 + z2 − 2xix − 2yiy − 2ziz   (31) 

 De
2 + 2DeRi1 + Ri1

2 = Di
2 + De

2 − 2Xi
T X   (32) 
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 0 = Di
2 − Ri1

2 − 2DeRi1 − 2Xi
T X   (33) 

and in matrix form, 

 0 = δ − 2DeR − 2SX   (34) 

where  

 δ =

D2
2 − R21

2

D3
2 − R31

2

Dn
2 − Rn1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (35) 

 S =

x2 y2 z2
x3 y3 z3

xn yn zn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (36) 

 

 

R =

R21
R31

Rn1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (37) 

If the system is over-determined system, there will be some error, 

 ε = δ − 2DeR − 2SX   (38) 

This error can be minimized by using a least square’s method, minimizing the sum of the 

squares, 

 min δ − 2DeR − 2SX 2   (39) 

This can be accomplished by reorganizing the equation [24], 

 δ − 2DeR = 2SX   (40) 

multiplying both sides by ST , 

 ST δ − 2DeR( ) = 2STSX   (41) 

and solving for X yields, 

 X = 1
2
STS( )−1 ST δ − 2DeR( )   (42) 
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Equation (42) can be inserted into the Pythagorean equation for the range of the emitter 

from the origin [24], 

 De
2 = XTX   (43) 

expanding this equation results in [24], 

 aDe
2 + bDe + c = 0   (44) 

where 

 a = 4 − 4De
T STS( )−1 ST( )T STS( )−1 STDe   (45) 

 b = 4De
T STS( )−1 ST( )T STS( )−1 STδ   (46) 

 c = −δ T STS( )−1 ST( )T STS( )−1 STδ   (47) 

and 

 De =
−b ± b2 − 4ac

2a
  (48) 

yields an approximation for De .  Plugging De  into (42) leads to a linear closed-form 

solution for X [24]. 

 

This method results in a large error in location estimation for any error in range 

difference measurements if the collectors are not located near the emitter [24].  

Therefore, this closed-form method is to be used as an initial guess to the iterative 

method. 

 

The error in the TDOA measurements can be transformed into a corresponding error in 

the estimated position of the emitter.  The variations in each TDOA measurement made 

can be described by a random variable.  A single random vector can represent the random 

variables for a set of measurements [26], 
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T =

T1
T2

Tn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (49) 

and 

 μT = E T( )   (50) 

is the mean vector for T and 

 ∑T = E T − μT( ) T − μT( )T⎡
⎣

⎤
⎦   (51) 

is the covariance matrix for T.  Expanding the equation, 

 

 

∑T =

δ1
2 δ12 δ1n

δ 21 δ 2
2 δ 2n

δ n1 δ n2 δ n
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (52) 

where δ n
2  is the variance of the nth measurement, and δ nm  is the covariance between n 

and m [26], 

 δ nm = ρδ nδm   (53) 

and ρ  is the correlation coefficient, 

 ρ = δnm

δnδm

  (54) 

Assuming that all of the random variables defining the TDOA measurements are 

independent, and therefore uncorrelated, ρ = 0 , and the covariance terms disappear and a 

purely diagonal matrix results [26], 

 

 

∑T =

δ1
2 0 0

0 δ 2
2 0

0 0 δ n
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (55) 

This covariance matrix can be translated from TDOA measurements to Cartesian (x,y,z) 

coordinates by taking advantage of the law of propagation of uncertainty [27], 
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 ∑XYZ = E EXYZEXYZ
T( )   (56) 

 ∑XYZ = E JT J( )−1 JTETDOA( ) JT J( )−1 JTETDOA( )T⎛
⎝⎜

⎞
⎠⎟   (57) 

 ∑XYZ = E JT J( )−1 JTETDOAETDOA
T J JT J( )−1( )   (58) 

 ∑XYZ = JT J( )−1 JTE ETDOAETDOA
T( )J JT J( )−1   (59) 

 ∑XYZ = JT J( )−1 JT ∑TDOA J JT J( )−1   (60) 

 

Finally,  can be rotated into the local east-north-up (ENU) coordinate system by 

again using the laws of propagation of uncertainty.  A simple rotation can be performed, 

with the following rotation matrix, given geodetic latitude and geodetic longitude [25], 

 R =
−sin(lon) cos(lon) 0

−sin(lat)cos(lon) −sin(lat)sin(lon) cos(lat)

cos(lat)cos(lon) cos(lat)sin(lon) sin(lat)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   (61) 

Thus, the  can be calculated, 

 ∑ENU = E EENUEENU
T( )   (62) 

 ∑ENU = E REXYZ( ) REXYZ( )T( )   (63) 

 ∑ENU = RE EXYZEXYZ
T( )RT   (64) 

 ∑ENU = R∑XYZ R
T   (65) 

resulting in a covariance matrix in the local coordinate system, ENU, in meters at the 

location of the solution calculated in the solution step. 

 

The eigenvectors and eigenvalues of the covariance matrix can then be used to generate 

an error ellipsoid (3D) and error ellipse (2D) to represent the error in the local coordinate 

system [26], 

 Λ = eigvec(∑ENU )   (66) 

 ν = eigval(∑ENU )   (67) 

∑XYZ

∑ENU
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where  is a matrix containing the eigenvectors of  in its columns and  is a vector 

containing the eigenvalues of .  The square roots of the eigenvalues are then 

proportional to the lengths of the axis of the ellipsoid and the eigenvectors point in the 

direction of the axis [26],   

 axisn = Kλn   (68) 

where K is described by a chi-squared random variable with n degrees of freedom 

 χn
2   (69) 

and n is the number of Gaussian random variables in the random vector.  The chi-squared 

random variable has a probability density function (PDF) [26], 

 fn x( ) = 1

2
n

2Γ n
2

⎛
⎝⎜

⎞
⎠⎟
x
n

2
−1
e
− x
2   (70) 

where the probability of containment is equal to the integral of the PDF from zero to K, 

 P = fn x( )dx
0

K

∫   (71) 

 

If a two-dimensional error ellipse is desired, the covariance matrix tangent to the surface 

of the earth at the emitter must be generated.  This covariance matrix is simply the first 

two rows/columns in the ENU covariance matrix. 

 

For this research, the TDOA error was calculated by first making many TDOA 

measurements then calculating the variance of these measurements.  The resulting data 

generally resembled a Gaussian distribution.  Any error due to differing signal delay in 

the collection systems is considered system bias and needs to be removed from the 

system before performing the geolocation computations to produce the most accurate 

prediction possible.  The delays induced by the USRP or software processing components 

such as the resampler are ignored in this research because they do not affect the TDOA 

result, as they are the same in each collection path. 

Λ ∑ENU ν

∑ENU
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For this research, a unique method of displaying and analyzing results was envisioned 

and built.  A Java web application was built using Google Web Toolkit (GWT) [28] and a 

Tomcat web application server.  GWT allows a developer who is familiar with Java to 

build an entire web application with the Java programming language, allowing both the 

server-side and client-side to be written in Java [28].  The client-side is compiled into 

JavaScript at build-time and is embedded into a web page to dynamically build the user 

interface at runtime.  The web application provides the capability for a user to load and 

analyze a set of TDOA data and its corresponding geolocations.  The web application has 

a set of visualization tools including a data grid, map plot, signal plot, and histogram 

plots.  A system diagram is shown in Figure 21. 

 

 
Figure 21 Web application system diagram 

 

When the web application starts up, the TDOA datasets are loaded into memory.  The 

TDOA measurements for each FM radio station are loaded and statistics (mean and 

standard deviation) are computed.  The location estimate and error ellipse are then 

produced using the algorithms presented in section 3.5. When a user loads a dataset, a list 

of FM radio stations is listed.  Each FM radio station is displayed along with its predicted 

location and error ellipse size and orientation.  If a user selects an FM radio station, the 
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data associated with that FM radio station is loaded. The map is updated to show the 

actual location of the emitter and the predicted location of the emitter and the 

measurements’ error ellipse.  The location of each collector used in the geolocation is 

also plotted.  In another list, the set of TDOA pairs used to locate the emitter is listed.  If 

one of these pairs is selected, a histogram is loaded showing the distribution of TDOA 

measurements made for that pair.  The signal data explorer plots an example the collected 

signal and correlation for the pair of collectors.  The web application server uses the Java 

Matrix Package (JAMA) [29] to do matrix math and NeXtMidas [30] for position 

translations. 

 

 
Figure 22 Web application GUI 

Figure 22 shows the thesis web application GUI built for this research.  On the top of the 

screen is the data grid showing the list of FM stations collected.  The section immediately 

below this is a set of user controls.  The user can set an option as to whether the map plot 

will zoom to the target or remain at the current zoom position after each FM Radio 

station selection.  A “Zoom To Extents” button is available that will zoom the map to 

display the region of consideration for this research.  The “Load Dataset” button loads a 
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popup where the user may select a dataset to load.  Below the user inputs, a map is 

available to plot any map-related data.  Below the map is a set of tabs that contain the 

pair statistics and the signal data explorer plots. 

 

The web application is fully configurable with an XML file.  The XML file defines the 

locations of each collector and emitter.  The XML file also defines any bias present in the 

measurements for each collector so that bias can be removed prior to position estimation.  

The simulated error standard deviation for each collected signal at the real collectors is 

included for use when all the collectors are simulated.  An example XML file is shown in 

Figure 23. 

 
Figure 23 Web application configuration XML 

 

The Signal Data Explorer is the software component used to plot signal data and 

correlation data in the web application.  It was built to allow interaction with a large set 

of sampled data.  Many plotting applications are available for HTML/JavaScript 

applications, but none could be found that allowed interacting with a server-side dataset 

with 2-4+ million data points.  All data points could not be transmitted or plotted at once 

due to both limitations in the Internet connection speed with clients and the 

computational load of attempting to plot all data points at once.  The Signal Data 

Explorer defines a server interface that asynchronously makes requests to the server for 

more data as the user zooms deeper into a signal data plot. 
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Two OSSIE DeviceManager nodes, each with a USRP_TIME Device and a GPP device 

were initialized, along with a single DomainManager instance.  The TDOA waveform 

described in section 3.3.2 was built, installed, and started.  For each FM radio station 

considered, 4,000,000 up-sampled and demodulated samples were buffered and 

correlated to generate TDOA measurements. 5000 TDOA samples were made for each 

station. The TDOA samples taken were plotted as a histogram in the web application and 

those channels that produced Gaussian-shaped histograms were considered for this 

research.  Two additional simulated collectors were simulated for each station and used to 

generate the two additional TDOA measurements required to solve the system of TDOA 

equations.  Finally, the TDOA data was loaded and analyzed using the web application, 

where estimates for the location of each emitter were generated and analyzed.

 

A signal was collected with both USRP_TIME Devices at each center frequency 

considered, and 4,000,000 samples were collected at each distributed collector.  An 

example of one of these collections is shown in Figure 24 where the 91.9MHz channel 

captured from the Ashburn collector is shown in red and the capture from the Haymarket 

collector is shown in blue.  Correlation of the signals is clear in this plot. 

 
Figure 24 Sample time plot for 91.9MHz 

 



 48 

After the signals were collected and aligned in time, the signals were then correlated.  

The maximum value was found and recorded as the TDOA measurement.  In Figure 25, a 

sample correlation plot can be seen.  In this plot, a peak was detected at -1589 samples, 

indicating that the signal was received by the Haymarket collector 1589 samples after the 

Ashburn collector.  

 
Figure 25 Sample correlation plot for 91.9MHz 

5000 TDOA samples were made at 91.9MHz, and the mean TDOA value was determined 

to be -1586.06 samples with a variance of 104.67 samples.  Figure 26 illustrates the 

location of each collector along with the location of the 91.9MHz radio tower, illustrating 

the TDOA measurement associated with each pair of collectors.  

 
Figure 26 Plot showing collectors and emitter with TDOA measurements 
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Because the system of equations to solve for the location of the emitter has three 

unknowns (x, y, z), at least three TDOA measurements are required to solve for the 

location of the emitter.  Two additional TDOA measurements were simulated for this 

research, utilizing two simulated collectors and one of the real collectors.  The location of 

each emitter was known, thus the distance from each emitter to each collector could be 

calculated.  The simulated mean TDOA can be calculated by finding the difference 

between the distances to the emitter from each collector in each pair, as shown before in 

equation (12).   It can be shown that the variance of the TDOA measurement is given by 

[7],  

 δTDOA
2 ≈ 1

β 2BTγ
  (72) 

where β is the frequency in radians, B is the noise bandwidth at the collector inputs, T is 

the integration time, and γ is the SNR.  The value ofγ can then be found from [7], 

 γ = 2γ 1γ 2
γ 1 + γ 2 +1

  (73) 

where γ 1 and γ 2 are the SNRs at either collector.  Because bandwidth, frequency, and 

integration time are assumed to be equal at all collectors, they can be ignored and, 

 δ 2 ∝ 1
γ

  (74) 

Since the signal strength is inversely proportional to the square of the distance, 

substituting 
1
r1
2 for γ 1 and 1

r2
2 for γ 2  in (73) and (74) yields 

 δ 2 ∝ 2

r2
2 + r1

2 + r2
2r1
2   (75) 

Knowing the TDOA variance of one pair of receivers (that are r11 and r21 meters from the 

emitter), δ1
2 , the TDOA variance of another pair of receivers (that are r12 and r22 meters 

from the same emitter),δ 2
2 , can be approximated, 



 50 

 δ2
2 ≈ δ1

2 r22
2 + r12

2 + r22
2 r12

2

r21
2 + r11

2 + r21
2r11
2

  (76) 

This variance can then be used for the simulated collectors.  Simulated TDOA 

measurements were made using Java’s Gaussian Random Number Generator and used  

for the simulated collectors.  Figure 27 shows a sample Histogram for both a real 

(91.9MHz with Haymarket and Ashburn) and simulated (91.9MHz with Lorton and 

Ashburn) TDOA Measurements.  5000 samples were taken for each histogram. 

 
Figure 27 Histogram for real (Haymarket/Ashburn) and simulated (Lorton/Ashburn) TDOA measurements for 
91.9MHz 

 

In [31] it is shown that a balanced placement of collectors around an emitter will produce 

the best possible TDOA position estimation, minimizing the effects of error in each 

measurement.  For these results, the simulated collectors were placed in two 

configurations.  The first configuration was an off-balanced configuration that maximized 

the effect of the real collectors.  The second configuration was a balanced configuration 

that should produce more precise position estimations.  Figure 28 shows a comparison of 

the unbalanced and balanced collector placements for locating the 91.9MHz emitter.  In 

the unbalanced configuration, the simulated collectors are concentrated on the left-hand 

side of the circle around the emitter.  In the balanced arrangement, the simulated 

collectors are placed in a balanced arrangement, making a triangle centered at the emitter.  

The TDOA equations intersection with the earth is shown in red.  The balanced 

arrangement has more evenly distributed intersections, resulting in a tighter estimate for 

the emitter location given error in the measurements, as seen in the inset error ellipses. 
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Figure 28 Balanced and unbalanced collector placements 

 

The spherical intersection method was used to find an initial guess for the location of the 

emitter.  With the initial guess, the iterative method was used to solve for the final 

predicted position of the emitters.  The covariance matrix for each set of measurements 

was then transformed to the local coordinate system and used to generate a 95% error 

ellipse.  The geolocation algorithm was implemented in the web application to allow 

quick reconfiguration of the application for differing locations of simulated collectors.   
 

 

The web application was used to request and analyze results.  The application was 

opened in the Chrome web browser and each dataset was requested.  The data was 
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verified by loading the data associated with each FM radio station in each dataset 

(theoretical, unbalanced, and balanced).  The actual location of each emitter was plotted, 

along with the predicted location for each emitter and the 95% error ellipse.  The TDOA 

measurements for each pair of collectors were loaded, their histogram plotted, and 

statistics analyzed for each FM radio station in each dataset.  

 

Three sets of results are presented.  Theoretically perfect data is used to test the position 

estimation algorithm.  This is followed by position estimations using real and simulated 

data with the simulated collectors placed in both unbalanced and balanced configurations. 

 

The TDOA geolocation algorithm was first tested with theoretical data to ensure that the 

algorithm worked properly.  Theoretical TDOA measurements were generated by first 

calculating the distance between the actual position of the emitter and the actual location 

of each collector.  The TDOA was then determined by finding the difference between 

these two distances.  These predicted measurements were used to solve for the location of 

the emitter assuming no error.  The results from this experiment are shown in Table 1.  

The actual locations of the emitters are shown in Table 2.  Latitude and longitude are in 

degrees and altitude is in meters.  The results matched very closely with some error in the 

altitude, resulting from floating-point rounding error. 

 
Table 1 TDOA results with theoretical data 

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE 

WAMU-FM 88.50MHz 38.936111 -77.092499 248.565 

WETA-FM 90.90MHz 38.891664 -77.131938 45.299 

WGTS-FM 91.90MHz 38.891664 -77.131938 45.299 

WKYS-FM 93.90MHz 38.939996 -77.081672 185.223 

WIAD-FM 94.70MHz 38.963611 -77.104998 336.588 

WASH-FM 97.10MHz 38.950281 -77.079719 327.560 
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Table 2 Actual location of emitters 

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE 

WAMU-FM 88.50MHz 38.936110 -77.092500 223 

WETA-FM 90.90MHz 38.891670 -77.131940 252 

WGTS-FM 91.90MHz 38.891670 -77.131940 252 

WKYS-FM 93.90MHz 38.940000 -77.081670 286 

WIAD-FM 94.70MHz 38.963610 -77.105000 312 

WASH-FM 97.10MHz 38.950280 -77.079720 315 

 

 

Position estimations were first calculated with an unbalanced collector arrangement seen 

in Figure 28.  Table 3 shows the mean TDOA measurements and their standard deviation 

for the 5000 TDOA samples made for both the real and simulated pairs.  The mean and 

standard deviation are both in USRP samples.  In each case, the histogram was found to 

have a Gaussian distribution.  
 

Table 3 TDOA statistics for unbalanced collector placement 

STATION FREQUENCY COL 1 COL 2 TDOA MEAN TDOA STD SIMULATED 

WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N 

ASHBURN LORTON 2322.565 2.614 Y 

ASHBURN ROCKVILLE 4365.900 1.691 Y 

WETA-FM 90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N 

ASHBURN LORTON 3048.071 2.436 Y 

ASHBURN ROCKVILLE 2914.009 2.518 Y 

WGTS-FM 91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N 

ASHBURN LORTON 3048.124 5.010 Y 

ASHBURN ROCKVILLE 2913.875 5.152 Y 

WKYS-FM 93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N 

ASHBURN LORTON 2340.867 12.170 Y 

ASHBURN ROCKVILLE 4581.956 7.397 Y 

WIAD-FM 94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N 

ASHBURN LORTON 1550.633 1.449 Y 

ASHBURN ROCKVILLE 4786.493 0.702 Y 

WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N 

ASHBURN LORTON 2126.476 36.799 Y 

    ASHBURN ROCKVILLE 4815.395 20.690 Y 
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The mean and standard deviation for each TDOA pair were used to solve for the location 

and 95% error ellipse for each FM radio station, shown in Table 4.  The altitude, semi 

major, and semi minor axis are in meters.  The tilt is in degrees. 

 
Table 4 Geolocation solutions for unbalanced collector placement 

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT 

WAMU-FM 88.50MHz 38.936526 -77.089678 -3581.827 577.637 23.322 13.778 

WETA-FM 90.90MHz 38.890611 -77.126387 -6154.107 232.973 21.491 -10.642 

WGTS-FM 91.90MHz 38.891227 -77.129824 -3702.751 460.512 42.588 -10.554 

WKYS-FM 93.90MHz 38.947708 -77.041903 -14074.380 4099.278 132.865 14.920 

WIAD-FM 94.70MHz 38.964158 -77.103263 -2652.102 535.919 13.743 25.453 

WASH-FM 97.10MHz 38.954907 -77.061014 -9035.710 14650.950 375.645 18.790 

 

These results show a precise geolocation estimate despite the unbalanced collector 

placement as seen in Figure 28.  The unbalanced collector arrangement generally made 

good predictions for the location of the emitter in the earth-tangent direction (latitude and 

longitude), but resulted in a large miss on the altitude.  The 95% error ellipse in the east 

and north directions remained relatively small, being larger in the axis corresponding to 

the measurements made from the real collectors. 

 

Position estimates were then computed with a more balanced collector arrangement seen 

in Figure 28.  Table 5 shows the mean TDOA measurements and their standard deviation 

for the 5000 samples made.  The mean and standard deviation are both in USRP samples.  

In each case, the histogram was found to represent a Gaussian distribution.   
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Table 5 TDOA statistics for balanced collector placement 

STATION FREQUENCY COL 1 COL 2 TDOA MEAN TDOA STD SIMULATED 

WAMU-FM 88.50MHz ASHBURN HAYMARKET -1985.236 4.586 N 

ASHBURN LORTON -1415.046 4.302 Y 

ASHBURN ROCKVILLE 375.863 3.494 Y 

WETA-FM 90.90MHz ASHBURN HAYMARKET -1569.462 5.050 N 

ASHBURN LORTON -1479.430 5.036 Y 

ASHBURN ROCKVILLE -1442.158 4.980 Y 

WGTS-FM 91.90MHz ASHBURN HAYMARKET -1586.060 10.231 N 

ASHBURN LORTON -1479.238 10.113 Y 

ASHBURN ROCKVILLE -1442.159 10.095 Y 

WKYS-FM 93.90MHz ASHBURN HAYMARKET -1965.269 21.222 N 

ASHBURN LORTON -1206.691 19.161 Y 

ASHBURN ROCKVILLE 761.771 15.728 Y 

WIAD-FM 94.70MHz ASHBURN HAYMARKET -2220.577 2.344 N 

ASHBURN LORTON -2365.560 2.364 Y 

ASHBURN ROCKVILLE 458.203 1.707 Y 

WASH-FM 97.10MHz ASHBURN HAYMARKET -2077.486 62.827 N 

ASHBURN LORTON -1385.267 58.524 Y 

    ASHBURN ROCKVILLE 995.672 44.239 Y 

 

The mean and standard deviation for each TDOA pair were used to solve for the location 

and 95% ellipse for each FM radio station, shown in Table 6.  The altitude, semi major, 

and semi minor axis are in meters.  The tilt is in degrees. 

 
Table 6 Geolocation solutions for balanced collector placement 

STATION FREQUENCY LATITUDE LONGITUDE ALTITUDE SEMI MAJOR SEMI MINOR TILT 

WAMU-FM 88.50MHz 38.936187 -77.092530 -3195.813 65.781 20.080 -83.371 

WETA-FM 90.90MHz 38.891488 -77.132798 -6990.493 52.998 42.478 -72.860 

WGTS-FM 91.90MHz 38.891550 -77.132262 -4239.078 105.951 84.771 -73.780 

WKYS-FM 93.90MHz 38.941739 -77.081587 -11145.248 332.864 94.072 -89.946 

WIAD-FM 94.70MHz 38.963650 -77.105025 -1849.543 46.270 9.773 -78.884 

WASH-FM 97.10MHz 38.951006 -77.079636 -6711.528 1104.310 270.775 269.360 

 

These results show an even more precise geolocation estimate than with the unbalanced 

collector placement.  Predictions were generally good with smaller, more rounded 95% 

error ellipses.  Again, a large error in altitude is present. 



 56 

 

Overall, the results were quite good.  The balanced collector placement resulted in better 

estimates for the emitter location than the unbalanced placement, while both resulted in 

what appears to be large errors in the altitude direction.  In the theoretical case, floating 

point error introduced enough error into the system to cause relatively large deviations in 

the altitude estimates.  The results above only showed the ellipse cross-section at the 

surface of the earth.  Three-dimensional ellipsoids were generated to show the error in the 

vertical direction.  The 95% error ellipsoids for the unbalanced collector placement can 

be seen in Table 7 and for the balanced collector placement in Table 8.  This explains the 

much larger error seen for the vertical direction and indicates more ambiguity in the 

vertical direction resulting from the system of TDOA equations. 

 
Table 7 Ellipsoids for unbalanced placement 

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU 

WAMU-FM 88.50MHz 5030.659 33.470 18.816 -7.310 -1.808 

WETA-FM 90.90MHz 1762.333 32.033 24.216 -8.483 1.614 

WGTS-FM 91.90MHz 5497.694 62.985 47.416 -5.358 1.009 

WKYS-FM 93.90MHz 11312.877 182.964 109.678 -23.711 -6.692 

WIAD-FM 94.70MHz 5244.829 17.742 7.603 -6.054 -2.892 

WASH-FM 97.10MHz 50089.594 519.381 272.448 -18.543 -6.519 

 
Table 8 Ellipsoids for balanced placement 

STATION FREQUENCY SEMI1 SEMI2 SEMI3 TILT EU TILT NU 

WAMU-FM 88.50MHz 22.860 4456.368 43.198 0.111 -0.793 

WETA-FM 90.90MHz 29.311 2030.373 56.207 1.093 -0.598 

WGTS-FM 91.90MHz 58.579 6500.863 112.746 0.678 -0.378 

WKYS-FM 93.90MHz 106.447 197.124 7099.851 -0.031 -2.634 

WIAD-FM 94.70MHz 11.193 3649.260 23.497 0.147 -0.730 

WASH-FM 97.10MHz 300.733 32705.284 576.132 -0.077 -1.975 

 

An example ellipsoid for 91.9MHz with an unbalanced collector placement is plotted in 

Figure 29 and shows a much larger error in the vertical direction. 
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Figure 29 Error ellipsoid for 91.9MHz with unbalanced collector placement 
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Software Defined Radio is changing the radio industry as we know it.  Not only does it 

make experimenting with radio technology more accessible to students and hobbyists, but 

it also makes radio systems more flexible and able to adapt to the constantly changing 

field and even have the potential to drive the field due to the ease to which new designs 

can be prototyped.  Frameworks like GNU Radio and OSSIE have allowed developers to 

easily utilize existing modular components to build complex radio systems that can take 

advantage of a distributed network of computing systems.  This research aimed to take 

advantage of that distributed possibility and build a useful distributed application using 

the OSSIE SDR framework and to expand that framework to support this research.  The 

resulting TDOA geolocation system was able to successfully locate emitters by first 

capturing signals using spatially distributed OSSIE nodes, correlating those signals to 

produce TDOA measurements, and then solving a system of equations to find the 

location of the emitter. 

 

After building a spatially distributed OSSIE system, it is clear that this kind of system can 

be a great benefit to the SDR community.  The ability to break up an application into 

components and spread the processing requirements out among a set of processors and 

machines is invaluable.  The ability to deploy devices and components over a wide area 

network means that data sources can also be located in different locations. In addition to 

precision geolocation, there are many other uses for a system like this.  One possible use 

would be a distributed beam-forming system.  Another use could be a system to detect 

and analyze spectrum usages in an urban area. 

 

A distributed OSSIE system requires careful thought because of added hurdles imposed 

in a wide area network.  The limited connection speed and unpredictable latency mean 

that signals cannot always be transmitted at their full rate or in real time.  Because of this, 

the signals must be processed as much as possible at the source such that the signal/data 

is reduced in size prior to transmission.  For this research, this entailed decimating the 
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collected signal to a band-limited signal to reduce its data rate prior to transmission.  

Transmitting only required snapshots of the signal data further reduced the data rate.  

Several OSSIE software components were built to buffer and transmit snapshot data over 

the slow and unreliable link.  Another issue was controlling a set of waveforms deployed 

to an OSSIE Domain.  The TDOA waveform built for this research was built with the 

idea that if more radio nodes were available, multiple TDOA waveforms could be 

deployed to the same OSSIE domain.  Direct coupling of the GUI to a waveform using 

the provided CORBA interfaces can be cumbersome, especially for a system with many 

waveforms.  The CORBA Event Service makes it relatively simple to interact with a set 

of waveforms from a single, decoupled GUI. 

 

The results showed that the USRP device could be used as a platform for TDOA signal 

collection.  While not the ideal collectors for performing precision TDOA geolocation, 

the workarounds necessary to use the USRP boards without permanent hardware 

modifications proved to be a good learning experience.  Even when the emitters were 

placed in an unbalanced arrangement to magnify the effects of the real TDOA 

measurement, the results were fairly accurate.  The web application developed to 

visualize results proved to be invaluable in more ways than simply being a unique way to 

deliver results.  The web application provided a streamlined way to load result sets from 

the collection system and analyze different simulated scenarios, all by simply changing 

an XML configuration file.  The web application also provided the source for many of the 

tables and figures found in this research. 

 

The research presented in this paper concentrated on building an overall system.  Time 

was not available to concentrate on any one aspect of the system.  There are several areas 

of this research that could be expanded and improved upon in the future. 

 

Because hardware was not available for this research, there were not enough collectors 

available to perform a TDOA geolocation without simulating several collectors.   Future 
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research could add several collectors to the system in order to provide a complete TDOA 

geolocation system.  These collectors could either be more USRP boards or more 

advanced collectors with built-in time references.  Multiple TDOA waveforms could be 

deployed to the distributed network of collectors.  All waveforms could then be triggered 

to make TDOA collections by the same decoupled, event-based user interface. 

 

From the results, it is clear that some amount of bias was present in the statistics, as the 

mean of the TDOA measurements did not always match exactly with the actual location 

of the emitter.  The cable length delay was taken into account for the signal reception, but 

a more formal analysis could be performed to determine biases in the system.  Specific 

sources of random error that contributed to the variance in TDOA measurements could 

also be found and analyzed. 

 

Another area for improvement would be a formal integration of Java into the OSSIE 

framework.  Some functionality was implemented for this research, but this could be 

extended to create a complete toolkit for Java users. This would open up OSSIE to a 

whole new set of developers with Java skills.  An application for this would possibly be 

integration of OSSIE waveforms into interactive web applications, similar to the one built 

for displaying the results of this research.  The web application could interact with, 

control, and display live results from installed waveforms. 

 

This research made improvements to OSSIE where necessary to support the distributed 

application built for this research.  This work could be expanded to improve OSSIE to 

allow easier development of distributed applications.  The concept of utilizing snapshot 

data could be integrated into the standard set of OSSIE Ports to add the signaling and 

buffering that is required to transmit data over a slower network.  Work could also be 

completed to make it easier to deploy many Device nodes of the same type.  For this 

research, two or more USRP_TIME/GPP Device nodes were required. Separate nodes 

had to be defined with different IDs for each Device so that the waveform components 
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would be deployed to the correct location.  Nodes could be built that would allow 

deployment simultaneously across many nodes with minimal configuration changes.  

Automatic resource allocation could be implemented in OSSIE to allow automatic 

deployment of waveforms rather than relying on a predefined DAS file to specify where 

components are deployed. 
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Polyphaseresampler.m 
 
clc;clear all;close all; 
 
# Set up  
 
#set ratio for polyphase filter 
interp=256.06 
 
# Number of Phases on polyphase Filter 
M = 64; 
 
# Set up Source Sampling rate, filter design sampling rate 
# and final sampling rate 
 
fs1=250; 
fs2=M * fs1 
fs3=interp * fs1 
 
# Compute Nyquist Rates 
 
fn1= fs1/2; 
fn2= fs2/2; 
fn3= fs3/2; 
 
 
# Number of taps per filter phase 
PS=5; 
 
n=M*PS; 
 
# build Kaiser windowed FIR filter 
ftype='low' 
fstop=75 
Wn=fstop/fn3 
sba = 100 
# From http://www.mathworks.com/help/toolbox/signal/ref/kaiserord.html 
if (sba > 50) 
 beta = 0.1102*(sba-8.7); 
elseif (sba > 21) 
 beta = 0.5842*(sba-21)^0.4 + 0.07886*(sba-21); 
else 
 beta = 0; 
end 
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filt = M*fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale'); 
 
# Build filter partitions 
partfilt = zeros(M,PS); 
for i=1:M 
 for j=1:PS 
  partfilt(i,j) = filt(i+(j-1)*M); 
 end 
  
end 
 
 
# Build initial signal  
t=0:1/fs1:1; 
x1 = sin(2*pi*72*t); 
x2 = sin(2*pi*35*t); 
x = x1+x2; 
 
# Up sample signal and prepare for filtering with control case 
xup = upsample(x,M); 
 
# Filter signal for control case 
y = filter(filt,1,xup); 
 
# Filter and up sample signal with multirate method 
y1=zeros(1,length(x)*interp); 
yindex = 1; 
xinterval=M/interp; 
xindex=1; 
xindexminor = 0; 
 
for i=1:length(x) 
 while (xindexminor < M) 
  if (i>PS) 
   xf = floor(xindexminor+1); 
   for k=1:PS 
    y1(yindex) = y1(yindex)+x(xindex-k+1)*partfilt(xf,k); 
   end 
   yindex++; 
  end 
  xindexminor=xindexminor + xinterval; 
 end 
 xindexminor=xindexminor-M; 
 xindex++; 
end 
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figure(1) 
clf 
plot(x) 
title('Original Signal'); 
 
figure(2) 
clf 
plot(y(1:75*M)) 
figure(3) 
title('Control Filtered Signal'); 
 
clf 
plot(y1(1:75*interp)) 
title('Multirate Filtered Signal'); 
 
figure(4) 
clf 
NFFT = length(y); 
fs = fs1*M; 
f=fs/2*linspace(0,1,NFFT/2); 
f3 = 2*fft(y)(1:NFFT/2); 
f3 = sqrt(real(f3).^2+imag(f3).^2); 
plot(f,20*log10(f3/max(f3))) 
xlabel('Frequency (Hz)') 
ylabel('Power (dB)') 
title('Control Spectrum') 
 
figure(5) 
clf 
NFFT=length(y1); 
fs = fs1*interp; 
f=fs/2*linspace(0,1,NFFT/2); 
f3 = 2*fft(y1)(1:NFFT/2); 
f3 = sqrt(real(f3).^2+imag(f3).^2); 
plot(f,20*log10(f3/max(f3))) 
xlabel('Frequency (Hz)') 
ylabel('Power (dB)') 
title('Multirate Spectrum') 
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