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ABSTRACT 

The security of powerful systems and large networks is often addressed through complex 

defenses.  While these types of defenses offer increased security, they are resource intensive and 

therefore impractical to implement on many new classes of networked systems, such as mobile 

phones and small, embedded network infrastructure devices.  To provide security for these 

systems, new defenses must be created that provide highly efficient security.  The Moving Target 

IPv6 Defense (MT6D) is a network layer moving target defense that dynamically changes 

Internet Protocol version 6 (IPv6) addresses mid-session while still maintaining continuous 

communication.  MT6D was originally written in Python language, but this implementation 

suffers from severe performance limitations.  By translating MT6D from Python to C and taking 

advantage of operating system specific application programming interfaces (APIs) and 

optimizations, MT6D can become a viable defense for resource constrained systems. 

The Python version of MT6D is analyzed initially to determine what functions might be 

performance bottlenecks that could be performed more efficiently using C.  Based on this 

analysis, specific parts of the Python version are identified for improvement in the C version by 

either using functionality of the Linux kernel and network stack or by reworking the code in a 

more efficient way.  After this analysis, the information gathered about the Python version is 

used to write the C version, using methods specific to a moving target defense to capture, 

analyze, modify, and tunnel packets.  Finally, tests are designed and run to compare the 

performance of the Python and C versions. 
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Chapter 1: Introduction 

 
 

As more devices connect to the Internet, the threat of attack, information theft, and loss of 

privacy to network connected systems increases.  Several recent events, such as the theft of 

credit card information from Target [1] and revelations of spying by the National Security 

Agency [2] in 2014, add urgency to these problems of security.  Typically, the security of 

powerful systems and large networks is addressed through complex, resource intensive defenses.  

However, many new classes of networked systems, such as mobile phones and small, embedded 

network infrastructure devices, have slower processors, less memory, and power usage 

constraints, which make resource hungry defenses impractical to implement.  To address the 

security and privacy of these network devices, new system defenses must be created that provide 

highly efficient security. 

A new class of complex system protection is the moving target defense (MTD).  A MTD 

involves a controlled, but seemingly unpredictable, change to the attack surface of a system that 

increases the uncertainty and perceived complexity for an attacker.  These near constant changes 

reduce the window of opportunity for an attack and increase the cost and time required to probe 

and develop an attack.  With a network layer MTD in Internet Protocol version 6 (IPv6), the 

dynamic parameter providing entropy to the MTD is the address, utilizing the extremely large 

address space in IPv6.  While the increased entropy of a MTD provides security benefits, it also 

requires significant system resources to compute the mutations to addresses and to process and 

tunnel packets. 

The Moving Target IPv6 Defense (MT6D) is a network layer MTD that dynamically 

changes IPv6 addresses mid-session while still maintaining continuous communication [3].  It is 

designed as a network gateway device to be placed between a protected host and the Internet, 

similar to a router or firewall, and should be transparent to the communicating hosts.  MT6D 

regularly changes the source and destination addresses so that a single static address cannot be 

targeted for attack.  Although MT6D provides strong privacy for the protected systems, 

significant computational resources are required to tunnel all the traffic and dynamically change 

network addresses. 
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MT6D was originally written in Python language for ease and speed of development and 

for portability to different system architectures.  However, this implementation suffers from 

severe performance limitations.  By rewriting MT6D in C language, the defense can work with 

operating system specific network application programming interfaces (APIs) and optimizations.  

Consequently, MT6D gains significant performance improvements and increases network 

throughput while operating more efficiently, allowing it to be used in constrained resource 

environments, such as mobile computing platforms, without introducing unacceptable delays. 

 

1.1 Overview 

 

This work describes the development of the C version of MT6D and was conducted in 

three phases.  The first phase involves analysis of the code of the Python version of MT6D to 

understand its design as well as what areas might be performance bottlenecks.  Based on this 

analysis and on feedback from other MT6D research efforts, specific functions of the Python 

version are targeted for improvement in the C version by either using functionality of the Linux 

kernel and network stack or by reworking the function in a more efficient way.  In the second 

phase, information from the first phase is used to write the C version.  An effort is made to use 

functions in C that are not specific to MT6D, but could be used in any MTD that must capture, 

analyze, modify, and tunnel packets.  Finally, the third phase involves testing the new C version 

against the Python version and the performance with no MT6D as a baseline.  Tests are selected 

and designed to show the difference in performance when adding MT6D to an existing system, 

as well as between Python and C, using metrics to measure network performance and host 

resource use. 

 

1.2 Organization 

 

The rest of this work is organized as follows.  Chapter 2 gives some background 

information on IPv6, an overview of the MT6D protocol, and an analysis of the existing Python 

version.  Chapter 3 details the development of the C version, including specific designs that were 

chosen and the expected effect on performance those choices would have.  Chapter 4 describes 

the battery of network and host tests to be performed for comparing the performance of C MT6D 

with the Python version and without MT6D.  Chapter 5 presents the results of these tests and the 

effect various network conditions exerted on the network and host performance of MT6D.  
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Finally, Chapter 6 provides conclusions on the successes and shortcomings of the work and 

proposes what might need to be done to improve future generations of the system.  
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Chapter 2: Overview of MT6D 

 
 

This chapter gives an overview of the MT6D protocol on which this research is based.  

The first section gives some background information on IPv6, which is the primary protocol that 

MT6D is based on.  This overview leads into a discussion of the security concerns in IPv6 that 

prompted the development of MT6D.  The MT6D protocol itself and the way that it handles the 

security issues of IPv6 is covered next.  Finally, the original Python implementation of MT6D, to 

which the C version is compared, is described. 

 

2.1 Background 

 

The Internet Protocol (IP) is one of the most fundamental protocols of the public Internet.  

The Internet Protocol defines the addressing scheme used to uniquely identify every host 

connected to the Internet, it describes the format of packets transmitted on the Internet, and it 

lays the framework that allows packets to be routed from their source to their destination.  

Internet Protocol version 4 (IPv4), which was first defined in September 1981 by RFC 791 [4], is 

the predominant version in use today, but shortcomings in its design led to the creation of its 

successor, IPv6.  

 

2.2 Changes in IPv6 over IPv4 

 

IPv6 is the primary protocol on which MT6D is based.  The IPv6 protocol was originally 

defined in December 1995 by RFC 1883 [5] and updated in December 1998 by RFC 2460 [6].  

As a successor to IPv4, IPv6 provides the same basic functionality as IPv4, but with a number of 

enhancements, which are briefly described in the next sections. 

 

2.2.1 Larger Address Size 

 

The IPv6 protocol increases the size of an Internet protocol address from 32 bits to 128 

bits with the stated goal of supporting “more levels of addressing hierarchy, a much greater 

number of addressable nodes, and simpler auto-configuration of addresses” [6].  As an example 

of the increased address size, the 32 bit address size of IPv4 provides approximately 4.3 billion 

unique addresses, but the 128 bit address size of IPv6 provides approximately 340 undecillion.  
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Numerically, this increase would provide 6.2 x 10
22

 or 62 sextillion addresses per square foot of 

the surface of planet Earth [7]. 

 

2.2.2 Simplified Header Format 

 

Some fields of the IPv4 header were made optional or even dropped, since most packets 

did not make use of these header fields.  The IPv6 header is also fixed at a specific size (40 

bytes) rather than being a variable size.  These changes improve processing time at each hop for 

the most common packets. 

 

2.2.3 Improved Option and Extension Support 

 

In IPv6, options are no longer a part of the header, but are, instead, contained in specific 

sections of the packet, usually following the header and before the payload.  Multiple option 

sections can be chained together, with the size of the option section indicated by the option size 

field of the option header.  This design allows new options to be introduced without substantial 

changes to the protocol and without changes to the network stacks of deployed devices, since 

these devices simply can skip over options they do not understand. 

 

2.2.4 Flow Labeling 

 

IPv6 allows packets to be marked as belonging to a particular “flow” of packets to which 

special consideration should be given, such as a different quality of service.  Flow labeling also 

can be useful in debugging by capturing only packets that are part of a specific flow. 

 

2.2.5 Authentication and Security 

 

The specification of IPv6 acknowledges the many privacy and security issues related to 

the Internet by requiring implementations of IPv6 to support the Internet Protocol security 

(IPsec) security architecture defined in RFC 2401 [8]. 

 

2.3 Address Assignment in IPv6 

 

Addresses can be assigned automatically in IPv6 using Stateless Address 

Autoconfiguration (SLAAC) or the Dynamic Host Configuration Protocol for IPv6 (DHCPv6).  

While both methods may be in use at a particular site at the same time, SLAAC is typically used 
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where local administrators are not concerned with the specific addresses that hosts use as long as 

they are correct and routable; DHCPv6 is used where administrators desire more control over 

specific host address assignment.   

 

2.3.1 Stateless Address Autoconfiguration (SLAAC) 

 

SLAAC, defined in RFC 4862 [9], provides a minimalistic approach to address 

assignment.  No additional servers are required; only a previously configured IPv6 router is 

necessary.  Upon enabling a multicast-capable interface (usually at boot), a host begins the 

autoconfiguration process as shown in Figure 2.1.  The first step in this process is to generate a 

link-local address from an interface specific identifier (usually the media access control (MAC) 

address) and the well-known link-local prefix defined in RFC 4291 [10].  Before this address is 

used on the interface, the host must verify the uniqueness of the address.  The host sends a 

Neighbor Solicitation message to the address it has generated and awaits a response.  A response 

indicates that the generated address is not unique.  Manual intervention may be required and, 

unless an alternate interface identifier is available, the autoconfiguration process fails.  

Otherwise, the generated address is assigned to the interface.  At this point, the host has IP 

connectivity and can communicate with other hosts on the local link.  To continue the 

autoconfiguration process, the host transmits a Router Solicitation message to the all-routers 

multicast group.  If no Router Advertisement messages are received, the host assumes that no 

IPv6 routers are present and autoconfiguration ends (although configuration by DHCPv6 may 

still be possible).  If SLAAC is enabled on a local router, it responds with a Router 

Advertisement message that contains a subnet prefix and a lifetime value.  The subnet prefix is 

combined with an interface specific identifier to form the global address to assign to the 

interface.  The lifetime value determines how long this assigned address may be used.  After 

checking for uniqueness of the global address, it is assigned to the interface and 

autoconfiguration is complete. 

 

2.3.2 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) 

 

DHCPv6 is defined in RFC 3315 [11] as a stateful counterpart to SLAAC.  DHCPv6 

messages are sent using IPv6, so a link-local address or an address assigned by another method  
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Received
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with prefix information option and 
autonomous configuration 

flag set?

No IPv6 routers on local net 
or autoconfiguration not 

allowed
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perform duplicate address detection (DAD)
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Parse router advertisement for address 
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Does router advertisement
Result in generation of a new
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No

Yes
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No Yes

SLAAC fails

SLAAC fails
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Figure 2.1 - Stateless Address Autoconfiguration Process 
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DHCPv6
Client

DHCPv6
Server

Solicit Message

To: DHCP servers
multicast group

Advertise Message

*May receive message
 from multiple servers

Request Message

Includes client identifier
and may include options

Reply Message

Includes client identifier
and confirmed address

must be available on an interface.  

As shown in Figure 2.2, a client 

begins by sending a Solicit message 

to the Internet Assigned Numbers 

Authority (IANA) defined “DHCP 

relays and servers” multicast address.  

A DHCPv6 server, which determines 

that it can service the client’s request, 

responds with an Advertise message.  

The client picks one of the servers 

that responded and replies to it with a 

Request message.  The server then 

replies with a Reply message, which 

confirms the assignment of an address 

and provides related configuration 

information to the client.  Once the 

client receives the Reply message, it 

may begin using the assigned address 

and the DHCPv6 exchange is complete. 

 

2.4 Motivation for MT6D 

 

The two address assignment methods discussed previously (SLAAC and DHCPv6) both use 

identifiers that are unique to the interface and/or host that could potentially be tracked, creating 

privacy and security concerns [12].  In SLAAC, the interface identifier is typically generated 

from the globally unique interface MAC address.  The interface identifier becomes part of the 

global address, which is visible when the host connects to other systems.  This design is 

especially concerning for mobile hosts, such as smart phones and tablets.  In the example 

scenario shown in  Figure 2.3, an attacker could write a malicious app that, once installed on the 

target host, would repeatedly ping the attacker’s systems.  The attacker could monitor the 

movement of the host by recording pings that originate from an address with the interface 

Figure 2.2 - Dynamic Host Configuration Protocol Exchange 
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InternetInternet

Attacker’s SystemAttacker’s System

Mobile Provider Site #1Mobile Provider Site #1

Mobile Provider Site #2Mobile Provider Site #2

Mobile Provider Site #3Mobile Provider Site #3

Mobile Provider Site #nMobile Provider Site #n

Mobile client device that 
moves between different 
networks – uses the same 

interface identifier for each 
network it connects to

Each mobile provider site has a 
unique global address prefix 

that its clients use to generate 
IPv6 addresses

 

Figure 2.3 - An Attacker Tracking a Mobile Client 

 

identifier of the target host and using the network prefix portion of the address to determine the 

geographic location of the host. 

In DHCPv6, a Dynamic Host Configuration Protocol (DHCP) unique identifier (DUID) 

is used by the DHCPv6 server to maintain state about its clients.  This DUID value is maintained 

by the client and included in messages to DHCPv6 servers to facilitate a consistent state.  

Though the specification allows the DUID value to change, it is generally not changed since 

doing so would interrupt the stateful design.  DHCP traffic would typically not be visible outside 

the link-local network, but an attacker could install a DHCP relay at specific sites to forward 

traffic out of the network.  By monitoring this traffic and making note of the DUID, an attacker 

could track the movements of hosts between networks [13]. 

To combat these vulnerabilities, MT6D was designed to hide a host’s true IPv6 address 

from an attacker by regularly generating new addresses for the hosts it protects, hiding the 

original addresses.  MT6D takes advantage of the large address space of IPv6 by continuously 

changing addresses, creating a moving target that is computationally difficult to reacquire. 

 

2.5 Moving Target IPv6 Defense (MT6D) 

 

The purpose of MT6D is to allow two or more hosts to communicate over a public 
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network without divulging their individual identities.  MT6D accomplishes this by greatly 

increasing the apparent number of active addresses that an attacker might observe, making 

correlation of communication with specific hosts extremely difficult.  The methods used by 

MT6D include dynamic obscuration of IPv6 addresses and transmitting protected traffic inside 

an encrypted (or unencrypted) tunnel [14].   

 

2.5.1 Session Key 

 

The MT6D implementation maintains a session key for each set of two hosts that are 

communicating through it.  The session key is used for encrypting tunneled packets, if enabled, 

and for generating IPv6 addresses, as described below[14].  The size of the session key is 

implementation dependent; the reference implementation of this current research uses a 512 bit 

session key.  The two ends of an MT6D stream renegotiate the session key at a set interval, 

making it more difficult for an attacker to determine the key.  The present implementation 

requires that keys be synchronized at both ends out-of-band before the MT6D implementation is 

started.  This parameter could be changed to use a well-defined key exchange method, such as 

Diffie-Hellman [15]. 

 

2.5.2 Address Hashing 

 

To implement dynamic obscuration of IPv6 addresses, MT6D implementation maintains 

an alternate set of IPv6 addresses, referred to hereafter as “hashed addresses” [14].  As described 

later, the original source and destination addresses of a packet (true addresses) are removed by 

MT6D implementation and the packet is tunneled inside an MT6D packet, which uses the hashed 

addresses for its source and destination.  The hashed addresses are regenerated often, according 

to the parameters of MT6D implementation.  To generate a new hashed address, a hashed 

address calculation ( Equation 2.1) is used where a hash is taken of the host portion of the 

original (source or destination) IPv6 address, the session key, a constantly changing value (such 

as the current time), and an interface specific identifier (such as a MAC address).  The result is 

truncated and added to the original host portion of the address to create a new IPv6 address.  For 

each two hosts that are communicating, a source and destination address are created.  A properly 

configured and synchronized MT6D implementation can create a matching set of source and 
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destination addresses at both ends of the connection.  These addresses are used to communicate 

across the public network. 

 

     trueAddress 0 63bits hashFunction trueAddress 64 127bits sessionKey salt 0 63bits       

Equation 2.1 - Hashed Address Calculation 

 

2.6 MT6D Protocol 
 

Communications using MT6D involve two end hosts that want to exchange information 

across a public network where security and/or privacy is a concern.  In order to protect traffic 

between the two hosts, an implementation of MT6D must be located between each host and the 

border of the public network.  MT6D is designed to operate either on the individual hosts or on a 

gateway device that is located at the edge of a trusted network before transition to the public 

network [14].  Figure 2.4 shows these two operating modes. 

Whether on the host itself or on a gateway device, MT6D implementation intercepts all 

packets that are passing through it and examines each one.  If a packet is not part of an MT6D 

protected stream, it is allowed to pass unchanged.  Otherwise, the packet is modified and 

becomes part of the MT6D tunnel [14]. 
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Figure 2.4 - MT6D Operating Modes 
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When a packet is tunneled, it is placed inside an MT6D packet for transmission across the 

public network.  The Ethernet header and checksum is regenerated by the MT6D implementation 

at the other end, so they are discarded.  Most of the IPv6 packet is directly copied into the 

payload of the MT6D packet, with the exception of IPv6 addresses.  Since one of the major goals 

of MT6D is to prevent address correlation, original IPv6 source and destination addresses are 

removed so that the MT6D packet’s payload consists of the first 8 bytes of the original packet’s 

header, followed immediately by the original packet’s payload.  Original IPv6 source and 

destination addresses are added back to the packet by MT6D implementation at the other end.  

Figure 2.5 shows how the tunneled packet is constructed from the original packet. 

The MT6D packet uses the current set of hashed IPv6 source and destination addresses.  

If encryption is enabled, the MT6D packet’s payload, including the original packet’s remaining 

header fields and payload, is encrypted prior to transmission.  Once this process is complete, the 

packet is sent through the public network to MT6D implementation on the other side. 

Upon receiving a tunneled packet from the public network, MT6D implementation 

checks whether the packet is part of a valid, ongoing communication between two hosts by 

attempting to match the packet’s source and destination addresses with hashed addresses it 

recognizes. If no match is found, the packet is forwarded with no modifications.  If a match is 

found, the packet is processed by the MT6D implementation.  Hashed source and destination 

IPv6 addresses used on the packet are used to identify the MT6D stream to which the packet 

belongs.  The packet payload is extracted as shown in Figure 2.6 and, if enabled, decrypted.  The 

IPv6 header in the extracted payload has the original IPv6 source and destination addresses 

added back and a new Ethernet frame is generated before sending the packet on to its final 

destination. 

 

2.6.1 Overhead 

 

By tunneling packets inside new IPv6 packets, MT6D introduces a certain amount of 

overhead to every packet it handles.  MT6D uses the user datagram protocol (UDP) as the 

transport layer protocol to carry tunneled packets, which results in an increase of 40 bytes for the 

additional IPv6 header [6] and 8 bytes for the UDP header [16], for a total of 48 bytes of 

overhead [14].  The Ethernet frame is ignored since it is stripped off the packet before tunneling  
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Figure 2.5 - Original Packet Fields in Tunneled Packet 
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and added back after tunneling.  The 48 bytes of overhead is reduced by removing the original 

packet’s IPv6 addresses from the payload.  Each IPv6 address is 16 bytes; removing both the 

source and destination address lowers the total overhead to a final 16 bytes.  The overhead may 

be increased if certain MT6D optional features are used.  For example, packet encryption 

requires the use of an IPv6 destination option on the tunneled packets to indicate to the other side 

that encryption is in use – this information adds 8 bytes to the overhead.  The total real-time 

overhead is taken into account by the Maximum Transmission Unit (MTU) that MT6D 

advertises so that “Packet Too Big” errors are not generated. 

 

2.6.2 Neighbor Discovery Protocol (NDP) Packet Handling 

 

Neighbor Discovery Protocol (NDP) [17] packets are handled as necessary to support the 

operations of MT6D.  Devices on the network may send multicast NDP messages, but, as these 

are not host specific, they do not require modification.  Messages such as router solicitations 

required by SLAAC are altered to use the current hashed address before being forwarded.  

Neighbor solicitation messages (used either for duplicate address detection or to determine 

another host’s MAC address) to a host that is protected by MT6D or to an active hashed address 

in use by MT6D is dropped and 

responses generated that contain 

the MT6D implementation’s 

information, rather than the target 

host.  This causes packets 

destined for a protected host or 

hashed address to be addressed to 

the MT6D implementation’s link-

layer address.  Figure 2.7 shows 

this process. 

 

2.6.3 Internet Control Message Protocol (ICMP) Packet Handling 

 

Internet Control Message Protocol (ICMP) for IPv6 (ICMPv6) [18] packets may be 

generated by hosts on either end of the MT6D stream, and are tunneled through MT6D like any 

other packet.  However, ICMP messages generated by intermediate devices in the path between 
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Figure 2.7 - MT6D Handling of NDP Packets 
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two MT6D implementations require special handling.  These ICMP messages typically report a 

communication error and contain as much of the offending packet in their payload as can fit.  

The MT6D implementation extracts this payload, decrypts the original packet if necessary, and 

replaces any hashed addresses with original addresses.  A new ICMP packet of the same type as 

the one received is generated, using the modified payload from the original (Figure 2.8).  In the 

specific case where the ICMP packet is a “Packet Too Big” message, the advertised MTU is 

reduced by the MT6D overhead.  The new ICMP packet is then forwarded to the host. 
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Figure 2.8 - MT6D ICMP Packet Handling 

 

2.7 An Implementation of MT6D in Python 
 

As a means of validation and testing, a working implementation of MT6D is necessary.  

The Python language was chosen for the implementation as a rapid method to produce a working 

prototype.  This section examines Python implementation, how it works, and some issues 

encountered with it. 
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2.7.1 Overview of Python Implementation 

 

The Python implementation captures packets going through it, determines if they are part 

of a protected MT6D communications stream, and tunnels them accordingly.  Packets are not 

actually modified; instead, matching packets are dropped and new packets are generated for 

forwarding. Packets are captured using the Python interface to libpcap [19], and packets are 

dropped by inserting relevant rules into the ip6tables firewall [20].  Python implementation drops 

and generates packets by using three threads – a main (startup) thread, a packet listener thread, 

and a rehash worker thread. 

 

2.7.2 Main Thread 

 

The main thread starts the program and initializes various data structures.  It begins by 

parsing the command line options, parsing the main configuration file, and setting up logging.  

Then, the three auxiliary configuration files are parsed.  The first, the users file, contains 

hostname to IPv6 address mappings.  The second, the ethers file, contains IPv6 address to MAC 

address mappings.  The third, the profiles file, contains statements that describe an end-to-end 

MT6D communications stream by listing the source host, the destination host, and the session 

key that the two hosts have agreed to use. 

Next, the firewall is initialized.  Python implementation uses ipsets [21] as a more 

efficient way to facilitate constant address changes that are needed as IPv6 addresses are 

rehashed.  At startup, a new ipset is created for storing IPv6 addresses by calling the ipset 

executable.  Then rules are added to ip6tables to drop any packets being forwarded through the 

host with a source or destination address that is listed in the ipset.  The last step of the firewall 

initialization is to add rules that drop any neighbor/router solicitation/advertisement packets 

being forwarded, as these packets are also changed by MT6D. 

After initializing the firewall, the key storage is initialized, which uses a SQLite3 [22] file 

to store session keys and related attributes.  The route storage is also initialized, which uses the 

same SQLite3 file to store information about active routes.  Python implementation uses routes 

to refer to a mapping between the true host addresses and hashed addresses.   

Finally, the main thread starts the packet listener thread and the rehash worker thread.  It 

then idles while waiting for a keyboard interrupt, at which point it cleans up the other threads and 

terminates the program. 
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2.7.3 Packet Listener Thread 

 

The job of the packet listener thread is to receive packets from the network and send out 

transformed copies of the received packets (Figure 2.9).  On startup, the packet listener thread 

opens the forwarding network interface with libpcap and applies a filter such that all IPv6 

packets are captured.  Once a packet is received, it is examined; the resulting flow depends on 

the packet type, with router solicitations and advertisements handled first.  For a router 

advertisement, the MTU contained in the packet is adjusted to account for the overhead of 

MT6D; then the packet is forwarded on to the protected hosts.  Router solicitations are modified 

so that no identifying information about the protected host is leaked to the public network by 

setting the source IPv6 address in the IP header to the unspecified address and the source MAC 

address in the Ethernet header to a random value.  These modifications are copied into new 

packets and forwarded to their destinations. 

If the received packet is not a router solicitation or advertisement, the packet listener 

thread looks up the route associated with the packet using the IPv6 source and destination 

address.  If no corresponding route is found, the packet is ignored.  If the packet does match a 

known route, the route that is found (based on the IPv6 addresses) indicates the direction of the 

packet.  A packet containing hashed addresses indicates that the packet originated from the 

public network and should be extracted from its tunnel and forwarded to the end host.  A packet 

containing true addresses indicates that it was received from a protected host and should be 

tunneled before being forwarded through the public network.   

After looking up the route, all remaining ICMPv6 packet types are handled.  For neighbor 

solicitations, a new neighbor advertisement packet is generated with true IPv6 addresses, and 

MAC addresses are resolved from the internal “IPv6 address to MAC address” table.  A “Packet 

Too Big” packet has its MTU adjusted by the MT6D overhead.  Finally, IPv6 addresses in the 

packet payload (which contains a partial copy of the invoking packet) are replaced with route 

addresses.  The packet is then sent to the protected host. 

At this point, only normal (non ICMPv6) packets are left to handle.  The route determines 

if the packet is destined for the protected host or the public network.  Packets destined for the 

public network are tunneled into the payload of a new IPv6/UDP packet using hashed addresses.  

If encryption is enabled, the payload is encrypted, the required destination option header 
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describing the encryption type is added to the IPv6 packet, and the packet is sent.  Packets 

destined for the protected host are extracted from the tunneled packet, decrypted if necessary, 

and the true IPv6 addresses are reinserted before being sent. 
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Figure 2.9 - Python MT6D Packet Listener Thread Flow 

   

 

2.7.4 Rehash Worker Thread 

 

The rehash worker thread is implemented as a repeating loop, as shown in Figure 2.10.  

The frequency of the loop is the configured rotation time of the hashed addresses, as each 

iteration of the loop generates new hashed addresses.  The loop begins by cleaning up any 

expired hashed addresses and their associated routes.  Hashed addresses expire after a certain 

lifetime as set in the configuration.  The address rotation time and the address lifetime should be 
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set so that at least one current hashed address is always 

present in a profile.  Once the cleanup is complete, new 

hashed addresses are generated in a process called profile 

mutation.  The secure hash algorithm (SHA)-256 [15] 

algorithm is used to generate a hash of the host portion of 

an IPv6 address (the last 64 bits), the profile session key, 

and a salt value (based on the current time).  The first 64 

bits of the hash are appended to the end of the first 64 bits 

of the true IPv6 address to create a new hashed IPv6 

address.  Two of these addresses are created, a source and 

a destination, and stored in a profile object along with the 

session key.  This process is completed for each active 

profile in the MT6D configuration. 

Once new profiles are generated, the profiles are 

bound.  The source address of the profile is bound to the 

network interface of the MT6D host.  The source address 

is also added to the ipset used in ip6tables so that packets 

received to that address are dropped rather than 

forwarded.  The new profiles are then stored in a local 

profile storage object with their calculated lifetimes. 

Finally, two new routes (an internal and external 

route) are created for each mutated profile.  Because the 

packet listener thread uses hashes to look up a route when 

it receives a packet, hashes are used as a key to identify 

the routes.  The hashes are based on the current salt and 

the IPv6 addresses of the related internal or external route.  The internal route is created first, 

followed by the external route.  For the internal route, a new route is created and stored 

consisting of a hash, the true destination IPv6 address, and the true source IPv6 address.  The 

internal route’s hash is created from the external route’s destination IPv6 address, source IPv6 

address, and salt.  Conversely, the new external route is created and stored and consists of a hash, 

the hashed source IPv6 address, and the hashed destination IPv6 address.  The external route’s 

Figure 2.10 - Python MT6D Rehash Worker 
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hash is created from the internal route’s source IPv6 address, destination IPv6 address, and salt.  

These two interlocking routes allow the packet listener thread to look up the internal route when 

it receives a packet with external (hashed) addresses and to look up the external route when it 

receives a packet with internal (true) addresses. 

 

2.8 Python Implementation Performance Concerns 

 

Initial testing of the configuration revealed room for improvement in the performance of 

the Python implementation of MT6D.  The major concern was the use of libpcap to capture 

packets and the interaction of libpcap with Python’s global interpreter lock (GIL) [23].  GIL is a 

mutex that prevents multiple native Python threads from executing Python code at once, due to 

the thread-unsafe nature of the memory management design.  The result is that, when a packet is 

received on an interface, libpcap processing is necessary to capture the packet, which prevents 

other Python threads from running, resulting in decreased performance.  Another concern was 

the performance hit taken by the original design of polling for the proper time to rehash 

addresses.  In the version of Python MT6D studied, this aspect had been changed to a simple 

sleep for the rotation interval.  However, this design requires that clocks on each MT6D device 

are held in tight synchronization by another means (such as the Network Time Protocol (NTP)) 

[24]; otherwise, different hashed addresses are generated by each MT6D implementation, which 

leaves the hosts unable to communicate. 

Results of performance testing of the Python implementation are given in a later chapter.  

Initial concerns led to the decision to create another implementation of MT6D in a more efficient 

language.  The next chapter describes an implementation in C created for this research, the 

design decisions made, and the similarities and differences with the Python version. 
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Chapter 3: Design of C MT6D 

 
 

The C version of MT6D had several design goals, mostly for comparison with the Python 

version.  After analyzing the design of the Python version, specific areas were noted that could 

be redesigned or implemented differently in the C version, with the ultimate goal of increased 

performance and efficiency.  Some decisions made while implementing the C version were 

influenced by the design of the Python version and stand out as uncommon methods of designing 

a C network program.  This chapter describes the design goals of the C version, the differences 

between it and the Python version, and the specific design of the C version, including the 

threading model and program flow.  For the source code of the C version, see Appendix A. 

 

3.1 Design Goals and Version Differences 

 

Most design goals of the C version emerged from examination of the Python version for 

areas that could be improved in terms of performance and efficiency.  A requirement, however, 

was to create a version of MT6D in C that would be compatible with the Python version.  

Specifically, creating a compatible version required an installation of the C version running on 

one host and an installation of the Python version running on another host to be able to 

communicate with each other once the configuration files are synchronized.  Achieving such a 

system required that the C version implement the same features and calculate IPv6 addresses in 

the same way as the Python version.  The assumption was that simply implementing MT6D in C 

would realize some performance and efficiency increases since C is a compiled language and 

Python is an interpreted language [25]. 

In addition to the assumed gains from the C version, specific areas of the Python program 

were targeted for improvement in the C version.  One of the most important areas identified was 

the method by which the Python version receives packets from the network.  As discussed in 

Chapter 2, the Python version uses libpcap to capture packets and iptables rules to drop the same 

packets, effectively “receiving” them.  The typical way to receive packets in a program, by 

listening on a network socket, is not adequate for MT6D since it must intercept all packets 

(regardless of port or protocol) destined for a specific host.  Due to the problems mentioned in 

Chapter 2 with libpcap and Python’s GIL, using libpcap to receive packets results in a major 
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performance decrease in the Python version.  This disadvantage was taken into account when 

designing the C version, which led to the decision to use Netfilter queues [26] instead of libpcap 

to receive packets. 

Other differences between the versions include an attempt to maximize the amount of 

work performed by the Linux kernel, instead of the program itself.  For example, rather than 

MT6D capturing NDP packets to remote hosts and crafting responses to them, the C version 

binds the remote host’s address to the local host, so that NDP packets are received and processed 

by the networking stack.  The C version also uses more threads to leverage a host’s 

multiprocessing capabilities – at least four threads always run, with an additional thread for each 

additional set of hosts communicating.  Locks are also avoided; instead, atomic operations are 

used when data that are shared by multiple threads must be modified [27].  Finally, unlike the 

Python version, the C version does not need to call any external programs (such as ip, or 

iptables) as it uses functionality from other libraries. 

 

3.1.1 External Libraries 

 

The C MT6D program uses several external libraries to provide required functionality.  

These libraries are used so that calls to external programs are not needed, providing an efficiency 

increase.  Libraries used are crypto & ssl [28], netfilter_queue, ip6tc & xtables [29], and netlink 

[30].  Crypto and ssl libraries are included to access cryptographic features of the OpenSSL 

toolkit.  Specifically, MT6D uses the hashing and encryption functions.  The exact algorithms 

used can be configured by the user, but the default is to use the SHA hash function with a 256 bit 

digest and the Advanced Encryption Standard (AES) encryption algorithm [15] with a 256 bit 

key size in Cipher-Block Chaining (CBC) mode.  The hash function is used to generate new IPv6 

addresses by creating a hash of the true IPv6 address, the session key, MAC address, and a salt.  

The hash function output is used as the host portion of the new IPv6 address.  If packet 

encryption is enabled in the MT6D configuration, then the encryption algorithm is used to 

encrypt and decrypt all packets in the stream.  Otherwise, encryption is only used to protect 

session key exchanges between two MT6D devices. 

The netfilter_queue library provides functions that allow the MT6D program to interact 

with the userspace queue functionality of the netfilter infrastructure in the Linux kernel.  This 

design allows for definition of ip6tables rules that direct all packets matching the rule into the 
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queue.  The kernel copies such packets to userspace and places them into a queue, identified by 

an integer that a program can wait on.  When a packet is placed into the queue, the program is 

awakened and can access the full packet data.  After processing a packet, the program can then 

inform the kernel if it should allow the packet to continue traversing ip6tables chains or drop the 

packet.  The MT6D program uses netfilter queues to receive packets by inserting relevant 

ip6tables rules to direct stream packets into specific queues, which are read by the stream threads 

and icmp thread.  Figure 3.1 shows how packets are directed into queues by ip6tables rules. 

 

Ip6tables Rules
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Figure 3.1 - Netfilter Queues 

 

The ip6tc and xtables libraries together give MT6D the ability to construct ip6tables 

firewall rule structures and insert or remove them from the kernel.  The ip6tc library defines the 

functions and structures necessary for creating the actual rules, and the xtables library allows the 

use of extended ip6tables target modules beyond the standard ones (such as ACCEPT and 

DROP), which includes the userspace queues.  The ip6tables rules are manipulated by MT6D 

whenever the rehash thread generates new addresses.  New rules must be inserted into ip6tables 

to direct packets to or from the new addresses to the appropriate stream queue; expired rules 

must be removed. 
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The netlink library is used to manipulate the network stack and has similar operations as 

the ip program.  The library defines the necessary functions and structures to allow the MT6D 

program to send messages to the kernel that describe changes that should be made.  Some 

operations that can be performed using the netlink library include adding, removing, and 

modifying network interfaces; binding and unbinding network addresses on interfaces; defining 

routes; and changing entries in the neighbor cache table.  The MT6D program uses the netlink 

library to bind and unbind IPv6 addresses from network interfaces.  On program startup, the true 

address of the remote host is bound to the internal network interface on the MT6D device, and 

each hashed source address is bound to the external network interface as soon as the address is 

generated.  Binding the addresses in this manner is more efficient and removes some of the load 

from the MT6D program and places it on the kernel.  For example, when the local host initially 

tries to send a packet to the remote host’s true address, the kernel on the MT6D device responds 

to the host with an NDP packet since the remote host’s address is bound and considered local on 

the MT6D device.  This configuration eliminates the MT6D program from crafting NDP packets 

itself. 

 

3.1.2 Streams and Routes 

 

The C version uses the concepts of streams and routes in a different way than the Python 

version.  In the C version, a stream refers to the total, end-to-end communication between two 

hosts that are behind MT6D, with the presence of MT6D being transparent to the hosts. 

Figure 3.2 shows a typical setup.  The two hosts are communicating with each other and are 

separated by the Internet.  Their communications pass through two MT6D devices, one at each 

border with the Internet, which protect the hosts’ traffic inside an MT6D tunnel.  The operation 

of MT6D is transparent to the hosts, and the hosts’ operators may or may not be aware that 

MT6D is in use.  The large outer path in the figure is the “stream,” as the term is used in C 

MT6D.  From the hosts’ point of view, the stream is just the path from one host to the other.  

From the MT6D device point of view, the stream describes communications between two 

specific hosts, with a specific session key and using time dependent, hashed addresses. The 

stream is not specific to the protocol or direction of traffic carried by MT6D. 
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Figure 3.2 - C MT6D Stream 

 

Closely related to a stream is a route.  In C MT6D, a route comprises a hashed set of IPv6 

source and destination addresses, as well as an expiration time when the route can no longer be 

used.  Routes are created by the MT6D program at the interval defined in the configuration using 

true addresses, session key, MAC address, and current time to create new hashed addresses.  A 

stream has several such routes associated with it, one which is active and the rest still valid but 

approaching expiration.  Source and destination addresses on an incoming packet are used to 

match a packet to a route and, in turn, to a stream. 

In C MT6D, a simple linked list of stream structures is maintained.  The structure 

contains the thread ID of the stream thread associated with the stream structure and the netfilter 

queue ID where the stream’s packets are directed.  It contains source and destination IP and 

MAC addresses, the current session key, and information related to session key changing, such 

as a new, temporary key, key expiration time, and key exchange state.  The stream structure also 

contains several route related pointers, as described below.  Routes associated with each stream 

are described by structures and stored in linked lists specific to each stream.  The route structures 

contain the hashed source and destination IPv6 addresses and the time that the route expires. 

Each stream structure contains three route related pointers:  a head pointer, an active 

pointer, and an expired pointer.  Figure 3.3 illustrates the three pointers and their target lists.  

Route structures are stored in an ordered linked list with the newest route at the head of the list 

and the route closest to expiration at the tail of the list.  The head pointer in the stream structure  
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points to the newest route at the head of the list and the active pointer points to the second route 

immediately following the first route.  Due to the delay between binding a new IP address to an 

interface and initial use of that address to send packets, C MT6D always uses the second newest 

route when sending a packet.  The separate active pointer is maintained so that the stream thread 

is not required to go through two pointers when sending a packet.  When a new route is created, 

the active route pointer is updated to point to the first route and the head pointer is updated to 

point to the new route.  Both of these updates are performed using atomic operations (compare 

and swap) so that locking is not needed. 

A separate, temporary list of expired routes is maintained while pending deletion, similar 

in concept to how some interpreted languages perform garbage collection [31].  The expired 

pointer points to this list.  When an expired route is found, it is assumed that all following routes 

in the list have also expired (since they are stored in expiration order).  The expired pointer is set 

to point to the first expired route and the next pointer in the previous (unexpired) route is 

atomically set to null, thus splitting the list.  Once the list is split, no stream thread can iterate 

into the expired list, but a stream thread could possibly have already been in the expired part of 

the list before the list was split.  Due to this possibility, the expired list is not immediately 

deleted.  Instead, it is saved, with the expired pointer pointing to it until the next check for 

expired routes.  Previously expired routes are deleted before searching for new expired routes.  
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Figure 3.3 - C MT6D Stream and Route Structures 
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Maintaining a list of expired routes, rather than deleting them immediately, avoids 

synchronization issues and the need for locks in the multi-threaded environment. 

 

3.2 Threading Model 

 

The C MT6D program consists of four or more threads that control various aspects of the 

program’s operations.  The main thread handles initialization routines and listens for signals.  

The rehash thread maintains the streams and routes by removing expired routes and generating 

new ones.  The ICMP thread handles ICMPv6 packets that are outside a stream.  One or more 

stream threads handle the packets within a stream.  Each of these threads is discussed in detail in 

the following sections. 

 

3.2.1 Main Thread 

 

The main thread runs when the program 

starts and handles initialization and housekeeping 

duties, which is illustrated in Figure 3.4.  The 

thread begins by initializing a blank configuration 

structure and setting some default values. The 

most important default value is the location of the 

configuration file, which is used if the user does 

not specify a location.  The configuration 

structure is a memory object that is shared by all 

threads that contains settings defining how the 

program should operate.  This structure is not 

protected by any synchronization mechanism 

(such as locks) since it is only modified by the 

main thread before any other threads have been 

started.  Once the other threads have started, the 

configuration structure is treated as read-only.   

Next, the main thread loads the 

configuration file, either from the default location 

or from the location specified on the command 
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Read configuration file (mt6d.ini)

Read command line options
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Start rehash thread

Start ICMP thread
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Stop all threads

Main thread 
terminates
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Figure 3.4 - C MT6D Main Thread Flow 
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line.  This process fills the configuration structure with settings from the configuration file.  See 

Table 3.1 for a description of settings stored in the configuration structure.  The rest of the 

command line is read last so that settings specified on the command line override ones specified 

in the configuration file.  The main thread then reads the auxiliary configuration files containing 

stream definitions (consisting of source and destination hostnames and a session key), hostname 

to IP address mappings, and IP address to MAC address mappings.  At this point, all necessary 

configuration information has been read in. 

Structure Entry Description 

bridging_nic Network interface to bind route addresses to 

internal_nic Network interface connected to protected hosts 

external_nic Network interface connected to Internet 

rotation_time How often (in seconds) to generate new route addresses 

log_handlers Which log handlers (file, console) are in use 

log_file Log filename to use 

log_level Verbosity of logging output 

users_location Location of users auxiliary configuration file 

ethers_location Location of ethers auxiliary configuration file 

profiles_location Location of profiles auxiliary configuration file 

crypt_type Cryptographic algorithm to use 

hash_type Hashing function to use 

regen_interval How often (in seconds) to generate new session keys 

regen_window Window (in seconds) for session key exchange to take place 

packets Boolean value signifying packet manipulation is enabled 

firewall Boolean value signifying firewall manipulation is enabled 

routes Boolean value signifying route generation is enabled 

flow_label Boolean value signifying that flow labels are used on packets 

Encrypt Boolean value signifying that packet encryption is enabled 

Urand File handle to random number source 
Table 3.1 - C MT6D Configuration Structure 

 

The main thread then starts the other threads.  The rehash thread is started first, followed 

by the ICMP thread.  Then, one stream thread is started for each stream defined in the 

configuration file.  Once the threads are started, the main thread waits to receive a termination 

signal from the operating system.  Upon receipt of a signal, the main thread stops the other 

threads and terminates the program. 

 

3.2.2 Rehash Thread 

 

The main job of the rehash thread is to maintain each stream’s routes.  At startup, 
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however, the thread also performs some other tasks.  The thread begins by adding a rule to 

ip6tables that directs all ICMPv6 traffic into the netfilter queue that is serviced by the ICMP 

thread.  As mentioned in the Design Goals (section 3.1.1), the C MT6D program does not make 

external calls to other programs, such as the ip6tables executable.  To add or remove a rule from 

ip6tables, the MT6D program uses functions made available through the ip6tc library.  To help 

the reader understand, below is the equivalent ip6tables command that could be typed into a 

terminal.  Table 3.2 gives an example ip6tables chain before starting MT6D, and Table 3.3 

shows the effect of adding this rule.  In this example, the ICMP thread is using queue number 1.   

 

# ip6tables -I INPUT 1 -p ipv6-icmp -j NFQUEUE --queue-num 1 

 

It is important to note that the rule is inserted with a priority of 1, causing the rule to 

appear at the top of the input chain.  This arrangement gives it precedence over all other rules 

already loaded in the input chain.  Later, when the stream threads start, they insert rules to direct 

stream (tunneled) traffic to the stream thread.  The stream thread rules also have a priority of 1, 

which places them ahead of the ICMP rules.  The end result, once the MT6D program has fully 

started, is that the initial MT6D rules are at the top of the input chain, with the stream rules first, 

followed by the ICMP rule.  This ordering causes any packets that are part of a stream, including 

ICMP packets, to be directed to the relevant stream thread.  All other ICMP packets, which are 

not part of a stream, are handled by the ICMP thread. 

 

Chain INPUT (policy DROP) 

 prot: all; source: ::/0; destination: ::/0; state: RELATED,ESTABLISHED; target: 

ACCEPT 
Table 3.2 - ip6tables Example Rules Before MT6D Startup 

Chain INPUT (policy DROP) 

 prot: icmpv6; source: ::/0; destination: ::/0; target: NFQUEUE; num: 1 

 prot: all; source: ::/0; destination: ::/0; state: RELATED,ESTABLISHED; target: 

ACCEPT 
Table 3.3 - ip6tables Rules After Inserting ICMP Rule 

The next initialization task that the rehash thread performs is opening the RTNETLINK 

interface.  The RTNETLINK interface is defined in the netlink library and is used to send 

messages to the Linux kernel to manipulate routing and addressing related structures.  To open 

the interface, the rehash thread calls a helper function that interfaces with the netlink library to 
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open a NETLINK_ROUTE protocol socket.  This socket is used later when address changes are 

needed. 

The rehash thread then moves into the main loop of the thread.  It starts by calculating the 

salt to be used during the current loop iteration.  The salt is calculated using the current time, the 

rotation time specified in the program configuration, and an offset.  The offset is not used (set to 

zero) on the very first iteration during startup.  Equation 3.1describes the salt calculation [32]. 

 

   _ _ mod10 _

_

current time current time offset rotation time
salt

rotation time

      

Equation 3.1 - Salt Calculation 

 

The next step on the first loop iteration is to initialize each stream that is defined in the 

configuration.  To initialize a stream, the rehash thread binds the stream destination address (that 

is, the true IPv6 address of the remote host that the local host communicates with behind MT6D) 

to the internal network interface, making it a local address on the MT6D device and causing the 

MT6D device to receive all packets destined to that address from the internal network.  Next, the 

rehash thread creates a permanent entry in the neighbor cache for the stream source IPv6 and 

MAC addresses on the internal interface.  This design removes the need for the MT6D device to 

use NDP packets to determine the link-layer address of the local host.  Finally, the rehash thread 

creates an ip6tables rule that directs all traffic from the local host’s true address to the remote 

host’s true address into that stream’s netfilter queue for processing by a stream thread.  Shown 

below are the equivalent commands for binding the address, adding the cache entry, and 

inserting the ip6tables rule.  Table 3.4 shows the rule added to the ip6tables chain. 

 

# ip -6 addr add <stream destination>/64 dev <internal interface> 

# ip -6 neigh add <stream source> lladdr <source MAC> nud permanent dev <internal interface> 

# ip6tables -I INPUT 1 -s <stream source> -d <stream destination> -j NFQUEUE --queue-num 

<stream queue> 
 

Chain INPUT (policy DROP) 

 prot: all; source: <stream source>; destination: <stream destination>; target: 

NFQUEUE; num: 2 

 prot: icmpv6; source: ::/0; destination: ::/0; target: NFQUEUE; num: 1 

 prot: all; source: ::/0; destination: ::/0; state: RELATED,ESTABLISHED; target: 

ACCEPT 
Table 3.4 - ip6tables Rules After Inserting Stream Rule, Using Queue 2 as an Example 
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On all subsequent loop iterations, after calculating the salt, the rehash thread searches for 

expired routes to remove from each stream.  It begins by garbage collecting expired routes from 

the previous iteration.  For each previously expired route, the ip6tables rule for the route is 

removed and the route IPv6 address is unbound from its interface.  Then the route structure is 

deleted.  The rehash thread then searches for newly expired routes by the expiration time of each 

route in the route list.  Once an expired route is found, the list is atomically separated and the 

expired list is saved to the expired pointer to be deleted during the next iteration. 

The rehash thread is now ready to create new routes.  After allocating a new route 

structure, the route source IPv6 address is created by hashing the session key, current salt, source 

MAC address, and true source IPv6 address.  The route destination IPv6 address is created by 

hashing the session key, current salt, destination MAC address, and true destination IPv6 

address.  The route’s expiration time is set by adding the current time to the route lifetime set in 

the configuration.  The completed route structure is atomically added to the head of the route 

linked list for that stream, and, finally, the route source IPv6 address is bound to the network 

interface and a rule is added to ip6tables.  Packets utilizing the new route can now be received, 

but packets are not sent using the route that was just created until the next iteration when it 

becomes the active route.  The equivalent commands for binding the address and adding the 

ip6tables rule are shown below, and Table 3.5 shows the route rule added to the ip6tables chain. 

 

# ip -6 addr add <route source>/64 dev <external interface> 

# ip6tables -A INPUT -s <route destination> -d <route source> -j NFQUEUE --queue-num 

<stream queue> 

 

Chain INPUT (policy DROP) 

 prot: all; source: <stream source>; destination: <stream destination>; target: 

NFQUEUE; num: 2 

 prot: icmpv6; source: ::/0; destination: ::/0; target: NFQUEUE; num: 1 

 prot: all; source: ::/0; destination: ::/0; state: RELATED,ESTABLISHED; target: 

ACCEPT 

 prot: all; source: <route source>; destination: <route destination>; target: 

NFQUEUE; num: 2 
Table 3.5 - ip6tables Rules After Appending Route Rule 

After repeating the preceding steps for each stream, the rehash thread has completed the 

current iteration of the main loop.  If the current iteration was the initial iteration, the rehash 
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thread immediately executes the loop again.  Otherwise, the rehash thread sleeps for the rotation 

time interval as specified in the configuration.  The thread operation is summarized in Figure 3.5. 

  

Rehash 
Thread Start

Insert ICMP ip6tables rule

Bind stream destination IPv6 address to 
internal network interface

Add host MAC address to neighbor cache

Add stream ip6tables rule to direct stream 
traffic into netfilter queue

Garbage collect routes in old routes list

Search for expired routes and create new 
old routes list

Is initial run?

Add new route to linked list
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Add route ip6tables rule to direct route 
traffic into netfilter queue

Create route with new hashed IPv6 
addresses and expiration time

Sleep until rotation time has expired

YesNo

Yes

No

Figure 3.5 - C MT6D Rehash Thread Flow 
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3.2.3 ICMP Thread 

 

The ICMP thread handles all MT6D related ICMPv6 packets, but does not include 

ICMPv6 packets between protected hosts.  For example, if one protected host is pinging another, 

those packets would be handled by a stream thread, rather than the ICMP thread.  The ICMP 

thread typically handles error packets from a hop along the path between the two MT6D devices. 

The flow of the ICMP thread is illustrated in Figure 3.6.  On startup, the first task of the 

ICMP thread is to register itself as the handler for the netfilter queue that ICMPv6 packets are 

directed into by the ip6tables rule that the rehash thread added.  To register, the thread opens a 

handle to the netfilter queue library, binds itself as a queue handler, and opens a socket that is 

bound to the specific queue that is configured as the ICMP queue.  The thread then waits for a 
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Figure 3.6 - C MT6D ICMP Thread Flow 
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packet to arrive in the queue by calling recv() on the queue’s filehandle.  When a packet is 

placed into the queue, the callback function of the thread that was registered as the queue handler 

is called, which is where the rest of the ICMP thread’s work is done. 

When the callback function is called to handle a packet, it first determines what the type 

code of the packet is, which dictates how the packet is handled.  The first case considered is a 

NDP router advertisement.  A router advertisement received from the external network must be 

modified before being forwarded to internal hosts.  Specifically, the MTU must be reduced to 

accommodate the overhead imposed by MT6D, and the router’s MAC address, if included, must 

be changed to the MAC address of the MT6D device so that internal hosts forward their packets 

through MT6D.  To accomplish this process, the MT6D program generates a new router 

advertisement packet to replace the one received.  The options and payload of the original packet 

are copied to the new packet, while checking the option types.  If the MTU option is found, the 

value is changed to the MT6D value.  If the source link-layer address option is found, the value 

is changed to the MAC address of the MT6D device’s internal network interface.  The rest of the 

options and payload are copied unchanged.  After sending the new packet out into the internal 

network, the kernel is instructed to drop the original packet. 

Another ICMPv6 packet type that receives special handling is the NDP router solicitation 

packet.  Router solicitations must not pass because they typically contain the source link-layer 

address option with the MAC address of the sending host.  Since the MAC address can uniquely 

identify a host on the network, which is what MT6D is designed to prevent, it is dropped and a 

new one is generated.  Because router solicitations do not have to be received by the router from 

a specific host to trigger a router advertisement, MT6D simply generates a uniquely new one that 

is not copied from the original one at all.  The ICMP thread generates a new router solicitation 

with the MAC address of the MT6D external network interface in the source link-layer address 

option and sends it to the external network. 

The ICMP thread also handles error packets that are generated when a problem exists 

somewhere along the path between the two MT6D devices.  Error types that are handled are 

“destination unreachable,” “packet too big,” “time exceeded,” and “parameter problem.”  These 

errors must be delivered to the sending host so that the application that sent the original packet 

can take corrective action.  However, the error packet contains information from outside the 

MT6D tunnel that the end host should not receive, so it must be modified first.  The ICMP thread 
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first extracts the original packet from the tunnel packet (which is the packet that caused the error) 

in the ICMPv6 payload and changes the IPv6 addresses from the hashed route addresses to the 

true addresses that the host would have used when sending the packet.  If the error type is 

“packet too big,” the ICMP thread also reduces the MTU contained in the packet by the size of 

the MT6D overhead.  The destination address on the packet is changed from the route address to 

the true address of the sending host, and the packet is sent via the internal interface.  When the 

sending host receives the packet, no MT6D tunnel information or route addresses are present in 

the packet. 

These ICMP thread actions hide the presence of MT6D and the tunneling from the hosts 

behind MT6D, but still allow the hosts to receive notification of transmission errors.  After 

receiving the error notice, the host’s network stack or application can fix the problem and 

retransmit or inform the user.  The ICMP thread allows all other types of ICMPv6 packets to 

continue through ip6tables rule processing and eventually be delivered as they are either not 

relevant to MT6D or do not require modification. 

 

3.2.4 Stream Thread 

 

The stream thread is responsible for handling all packets that are part of the MT6D 

tunnel.  Packets that are received on the internal interface are tunneled inside an MT6D packet 

for transmission over the external interface to the remote MT6D device.  MT6D packets received 

on the external interface are extracted from the tunneled packet and prepared for transmission 

over the internal interface to the protected host.  The MT6D program starts one stream thread 

and allocates one netfilter queue for each stream that is defined in the configuration.  Each 

stream thread is bound to a specific queue.  Due to the number of modifications to packets that is 

necessary to tunnel packets in MT6D, all packets received in the stream queues are dropped and 

new ones are eventually transmitted, rather than attempting to modify the existing packet and 

allowing it to pass. 

The flow of the stream thread is illustrated in Figure 3.7.  At startup, the stream thread 

performs several size calculations and memory allocations that are used later in the callback 

function when a packet is received.  This action is completed to improve performance – the 

structures are all reusable and allocating them once at startup, rather than continually allocating 

and freeing for each packet received, is more efficient.  Two sockets are opened first – one raw 
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Figure 3.7 - C MT6D Stream Thread Flow 

 

socket for transmitting packets on the internal interface and one UDP socket for transmitting 

packets on the external interface.  The OpenSSL context used for encryption is initialized and set 

up for encrypting and decrypting.  This action is necessary even if packet encryption is not 

enabled, as session key exchanges also use encryption.  Buffer sizes needed to hold destination 

options with and without a session key are pre-computed.  Finally, the input and output (I/O) 

vectors and message headers used to pass additional options to the transmission function 

(sendmsg()) are initialized and preset with default options.  These structures are reused 

throughout the program by changing pointer addresses.  Once these initialization steps are 

complete, the stream thread opens a handle to the netfilter queue library and binds its callback 

function to its assigned queue in much the same way as the rehash thread. 
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The stream thread callback function begins by determining the direction of the packet 

received.  Because packets are directed to the stream thread queue by IPv6 address matching 

ip6tables rules, the stream thread need not verify that the packet is part of a valid MT6D stream 

or which stream it is a part of.  To determine the packet direction, the stream thread compares the 

packet source and destination address with the true stream addresses.  If they match, the packet is 

coming from the internal network and needs to be tunneled.  If the addresses do not match, then 

the packet has hashed route addresses and is coming from the external network and, therefore, 

needs to be extracted.   

For packets that are outbound (coming from the internal network), the stream thread 

checks the size of the packet to verify that it does not exceed the MT6D MTU.  If the packet is 

too big, the stream thread generates a new ICMPv6 packet “too big message,” sends it to the 

source host, and then drops the original packet.  Otherwise, the stream thread prepares to tunnel 

the packet inside an MT6D packet.  First, the stream thread checks the state of the session key.  

The session key state, indicating the progress of a key exchange, determines the UDP port 

number the packet uses to indicate the key state to the receiving MT6D device.  If packet 

encryption is enabled, the packet is encrypted in two parts.  The first part consists of the IPv6 

header before the IPv6 source and destination addresses, and the second part is the remainder of 

the packet after the addresses.  Excluding the IPv6 addresses is possible because the remote 

MT6D device knows what true addresses need to be reinserted into the packet; in addition, not 

transmitting the addresses reduces the MT6D overhead.   

Next, the destination options are built.  MT6D uses IPv6 destination options to 

communicate encryption settings and session key exchanges to the remote MT6D device.  If 

packet encryption is not enabled and a key exchange is not taking place, no destination options   

are sent with the packet.  If packet encryption is enabled, a destination option indicating the 

presence of encryption and the encryption algorithm used is generated.  If a session key 

exchange is in progress, a destination option containing the encrypted new session key and key 

change time is generated.  One or both of these destination options may be sent with a packet as 

required. 

The stream thread now prepares the data structures needed for transmission, which were 

already allocated during startup.  The C MT6D implementation uses the sendmsg() system call to 

transmit packets which, while more complex, allows the transmission of ancillary data (i.e., IPv6 
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destination options) and the use of vectored I/O [33].  When packet encryption is enabled, the 

two parts of the packet (the header before the addresses and the payload after) are combined in 

the encryption operation into one buffer for transmission.  The I/O vector has only one entry, 

which will point to the buffer containing the encrypted packet.  When packet encryption is not 

enabled, the entire packet is located in one buffer, but the IPv6 addresses in the header should 

not be transmitted.  In this case, the I/O vector will have two entries:  one pointing to the 

beginning of the packet but only 8 bytes long (40 byte IPv6 header minus two 16 byte IPv6 

addresses) and one pointing to the byte after the end of the IPv6 header.   

Control message structure is built next.  If any destination options were generated, the 

structures describing those are linked into the control message structure, along with a packet 

information structure that indicates which network interface and source address to use in sending 

the packet.  The control message structure and I/O vector structure are linked into a message 

header structure and passed, along with the previously opened UDP socket, to the sendmsg() 

function, which sends the packet to the external network. 

For packets that are inbound (coming from the external network), the stream thread 

iterates through each header in the packet, recording the location of a destination options header, 

if it exists, and continuing until it finds a UDP header or reaches the end of the packet.  Since 

MT6D uses UDP as the transport layer protocol, a packet without a UDP header is classified as a 

malformed packet and is dropped.  Once the UDP header is located, the destination port is read 

to determine if a key exchange state change is necessary. 

If the initial header search found a destination options header, it is processed next.  If 

packet encryption is enabled, a destination option should indicate this situation, as well as 

identify which encryption algorithm was used; then, the packet is decrypted.  The destination 

options may also contain a session key exchange.  If the internal session key exchange state 

indicates that a new key should be received, the destination option is processed and the included 

key is decrypted.  The decrypted key will be stored in temporary memory until the key exchange 

is complete and the stream is updated to use the new key. 

Once destination options processing is complete, the packet is ready is sent to the 

destination host.  The IPv6 addresses are still missing from the packet, as they are not included in 

the tunneled packet’s header when it is transmitted across the external network.  Rather than 

perform the additional steps of copying the true stream addresses into the proper position in the 
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packet, the I/O vector is used to assemble the complete packet.  In this case, the vector has four 

entries.  The first entry points to the 8 byte IPv6 header portion of the received packet.  The 

second and third entries point to the memory location in the stream structure where the true IPv6 

addresses are stored.  The fourth entry points to the remainder of the received packet.  See Figure 

3.8 for an example of the I/O vector in this case.  As with tunneling a packet, the control message 

structure (describing which source address to use) and I/O vector structure are linked into a 

message header structure and passed, along with the previously opened raw socket, to the 

sendmsg() function, which sends the packet to the internal network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Stream Flow 

 

To illustrate the operation of C MT6D, this section describes a communication session 

between two hosts behind MT6D.  The first host opens a Hypertext Transfer Protocol (HTTP) 

connection to the second host and transfers enough data that the session continues through one 

address rotation.  The details of the two hosts are shown below. 

 

Host A 

Hostname: mt6d-host-a 

IPv6 Address: 2001:468:c80:c111::1 

MAC Address: 00:ab:cd:11:22:01 

 

Host B 

Hostname: mt6d-host-b 

IPv6 Address: 2001:468:c80:c111::2 

MAC Address: 00:ab:cd:11:22:02

Figure 3.8 - Scatter/Gather I/O Vector 
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Each host is behind an MT6D device that separates the hosts from the Internet, called an 

MT6D gateway.  The gateway details are shown below. 

 

Gateway A 

Hostname: mt6d-gw-a 

Internal Network: eth1 connected to Host A 

Internal MAC Address: 00:ab:cd:11:33:01 

External Network: eth0 connected to Internet 

External MAC Address: 00:ab:cd:11:44:01 

 

Gateway B 

Hostname: mt6d-gw-b 

Internal Network: eth1 connected to Host B 

Internal MAC Address: 00:ab:cd:11:33:02 

External Network: eth0 connected to Internet 

External MAC Address: 00:ab:cd:11:44:02 

 

The gateways communicate with each other over the Internet by using a multi-hop, 

possibly changing route.  The network layout is illustrated in Figure 3.9. 

InternetInternet

Host AHost A Host BHost B

Gateway AGateway A Gateway BGateway B
 

Figure 3.9 - MT6D Example Network Layout 

 

This setup is defined in the relevant configuration files of both MT6D gateways, and a 

session key is generated for the stream.  The sequence of steps taken on Gateway A during 

MT6D program startup is described below.  The steps on Gateway B are the same, but with the 

addresses swapped. 

First, the rehash thread starts and inserts the ICMP rule into the top of the ip6tables input 

chain.  This insertion is done programmatically, but the equivalent command that could be 

executed from a command prompt is 

 

# ip6tables -I INPUT 1 -p ipv6-icmp -j NFQUEUE --queue-num 1 

 

Next, the rehash thread will enter its main loop and begin setting up each stream defined 

in the configuration.  As this is the initial execution of the loop, the rehash thread will bind Host 
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B’s IPv6 address to the internal interface and add Host A’s MAC address to the neighbor cache.  

It will also add the ip6tables rule that directs stream traffic into the netfilter queue that the stream 

thread is bound to.  The equivalent commands are listed below. 

 

# ip -6 addr add 2001:468:c80:c111::2/64 dev eth1 

# ip -6 neigh add 2001:468:c80:c111::1 lladdr 00:ab:cd:11:22:01 nud permanent dev eth1 

# ip6tables -I INPUT 1 -s 2001:468:c80:c111::1 -d 2001:468:c80:c111::2 -j NFQUEUE --queue-

num 2 

 

The rehash thread now creates a route with hashed addresses to use when sending packets 

to the external network.  As this is the initial run, two routes are created.  The exact route 

addresses created are dependent on the true IPv6 address, current time, session key, and MAC 

address.  The route source addresses are bound to the external interface and a new ip6tables rule 

is appended to the input chain.  The equivalent commands are listed below. 

 

# ip -6 addr add 2001:468:c80:c111:886b:14a9:cc13:8991/64 dev eth0 

# ip6tables -A INPUT -s 2001:468:c80:c111:f93b:abcc:ac79:2613 -d 

2001:468:c80:c111:886b:14a9:cc13:8991 -j NFQUEUE --queue-num 2 

# ip -6 addr add 2001:468:c80:c111:9988:1463:cccc:1b62/64 dev eth0 

# ip6tables -A INPUT -s 2001:468:c80:c111:6197:abbf:ac16:9898 -d 

2001:468:c80:c111:9988:1463:cccc:1b62 -j NFQUEUE --queue-num 2 

 

The work of the rehash thread is now complete.  It sleeps until the rotation time has 

expired, when it generates the next new set of addresses.  In the meantime, the ICMP thread has 

started and is now bound to the ICMP netfilter queue (queue number 1) and is waiting for 

packets.  The stream thread has also started, and, after initializing data structures and binding to 

the stream queue (queue number 2), it is also waiting for packets.  At this point, the MT6D 

gateways are ready to begin forwarding packets. 

Host A now prepares to open a transmission control protocol (TCP) connection to carry 

HTTP traffic to Host B.  First, Host A sends an NDP neighbor solicitation packet to the all-nodes 

multicast group with Host B’s IPv6 address (2001:468:c80:c111::2) as the target address.  

Because Host B’s IPv6 address is bound to the internal interface of Gateway A, the networking 

stack on Gateway A, independent of MT6D, responds with an NDP neighbor advertisement, with 

the target IPv6 address contained in the neighbor solicitation and the target link-layer address set 

to the MAC address of Gateway A’s internal interface.  Host A can now begin IPv6 

communications with Host B.   
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Host A begins communicating with Host B as the first packet is the start of the TCP 

three-way handshake.  This packet has a source address of 2001:468:c80:c111::1 and a 

destination address of 2001:468:c80:c111::2 and is sent by Host A to Gateway A and placed in 

netfilter queue 2 by the ip6tables rules on Gateway A.  The stream thread tunnels this packet 

inside an MT6D packet, removing the original IPv6 addresses from the inner packet in the 

process.  Using the active route, the MT6D packet sent over the external interface to Gateway B 

uses a source address of 2001:468:c80:c111:886b:14a9:cc13:8991 and a destination address of 

2001:468:c80:c111:f93b:abcc:ac79:2613.   

After travelling through the Internet, the packet is received by Gateway B and placed in 

netfilter queue 2 by the ip6tables rules on Gateway B.  The tunneled packet is extracted from the 

MT6D packet and sent via the internal interface to Host B with a source address of 

2001:468:c80:c111::1 and a destination address of 2001:468:c80:c111::2.  This packet is 

received by Host B, and, as far as it knows, the packet came directly from Host A.  Host B 

responds with the second packet in the TCP handshake, and the packet is transmitted in the same 

manner back to Host A. 

Once the TCP connection is established, Host A establishes an HTTP connection to Host 

B and requests a large file, which Host B begins transmitting to Host A.  While the data are 

being transmitted, the rotation time interval expires and the rehash thread is awakened to create 

new routes.  The rehash thread starts by searching for expired routes, but, as this is only the third 

iteration through the main loop, the rehash thread finds that none of the routes have expired yet.  

Next, the rehash thread generates a new route for the stream, binds the new address, and inserts 

the ip6tables rule.  The equivalent commands are listed below. 

 

# ip -6 addr add 2001:468:c80:c111:6611:e4b9:b9d9:1647/64 dev eth0 

# ip6tables -A INPUT -s 2001:468:c80:c111:0011:b600:22aa:1942 -d 

2001:468:c80:c111:6611:e4b9:b9d9:1647 -j NFQUEUE --queue-num 2 

 

Once the routes are generated, the rehash thread updates the route pointers in the stream 

structure.  First, the next pointer in the new route is set to point to the current head of the routes 

list.  Next, the active route pointer is atomically changed to point to the current head of the routes 

list.  Finally, the routes list head is atomically changed to point to the new route.  Once the active 

route pointer is changed, the packets in the HTTP data stream immediately begin using a 

different set of addresses.  In this example, the source address changes from 
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2001:468:c80:c111:886b:14a9:cc13:8991 to 2001:468:c80:c111:9988:1463:cccc:1b62 and the 

destination address changes from 2001:468:c80:c111:f93b:abcc:ac79:2613 to 

2001:468:c80:c111:6197:abbf:ac16:9898.  This new set of addresses is the second newest set 

(which is now the active set) and was generated by the second execution of the rehash thread 

loop during thread startup. 

The route address change is invisible to Host A and Host B and does not interfere with 

the TCP connection in any way.  The source and destination addresses used by Host A and Host 

B do not change, and so the endpoints of the TCP connection do not change.  Because the second 

most recent set of route addresses are used as the active route, both MT6D gateway devices have 

had at least one rotation time interval to bind the addresses to their network interfaces and 

perform duplicate address detection and any other steps the operating system may perform when 

assigning new addresses.  This result should mean that the addresses are immediately usable and 

no packets will be dropped when MT6D switches to those addresses.  If some packets are 

dropped, the MT6D transport protocol (UDP) does not notice, but the tunneled transport protocol 

of the communicating hosts (TCP) detects the lost packets and simply triggers a retransmission, 

as it is designed to do.   
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Chapter 4: Testing and Analysis 

 
 

To evaluate the overall performance of C MT6D, including the effectiveness of the 

specific design choices described in the previous chapter (Chapter 3), a suite of tests are 

designed.  The tests allow for comparisons between C MT6D and Python MT6D, as well as 

between C MT6D and no MT6D.  In addition to network metrics (such as bandwidth and 

latency), several host metrics are monitored to determine the effect of running MT6D on a 

specific host.  The results of the tests evaluated to see if the C version is able to offer substantial 

efficiencies and if some of the specific points of the C version’s design make a difference. 

In all of the tests, the basic topology used, as shown in Figure 4.1, consists of two devices 

running the MT6D software in gateway mode and one host device behind each MT6D device.  

Host A is where the tests are initiated and their results recorded, with the target of the tests being 

Host B.  When profiling is used, the software on Gateway A is profiled.  The network connection 

between the two MT6D gateway devices is changed to create different test scenarios, as 

described later in this chapter. 

 

Host AHost A Host BHost B

Gateway AGateway A Gateway BGateway B
 

Figure 4.1 - Basic Testing Topology 

 

Each type of test is run 10 times for each MT6D scenario – first with no MT6D running, 

second with Python MT6D, and third with C MT6D.  In the first case where no MT6D is used, 

the two gateway devices are configured as simple network bridges to pass all traffic from one 

side to the other without modification.  This setup allows for a performance baseline to be 
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established before MT6D is introduced.  The MT6D settings are kept the same throughout the 

tests and between the Python and C versions – packet encryption is disabled, the SHA-256 

hashing function is used, the session key is regenerated every 86400 ± 30 seconds, and the 

MT6D addresses are mutated every 10 seconds. 

The hardware used in the tests is the GuruPlug Server [34], manufactured by GlobalScale 

Technologies.  The GuruPlug Server is used for the two hosts and the GuruPlug Server Plus 

(which has two Ethernet ports) is used for the gateway devices.  The GuruPlug Server is a small, 

wall plug sized, embedded system containing a Marvell Kirkwood 6281 (ARM) central 

processing unit (CPU) running at 1.2 GHz, 512 MB double data rate (DDR2) 800 MHz random 

access memory (RAM), two universal serial bus (USB) 2.0 ports, and one or two gigabit 

Ethernet ports.  It also contains NAND flash memory as its primary persistent storage, but these 

tests use a root filesystem contained on a USB flash drive and the internal flash memory is not 

used.  The devices run the Angstrom Distribution, version 2011.09, with Linux kernel 2.6.37.6 

and are built using the OpenEmbedded build framework [35].  The actual installed software is a 

minimal install, with only the packages necessary to run MT6D, the tests, and the 

instrumentation installed.  For further information about the build environment, see Appendix B. 

All tests are conducted on the Virginia Tech production IPv6 network.  SLAAC is used to 

assign globally unique IPv6 addresses to each network device, and the network is connected to 

the IPv6 Internet and carries live traffic. 

 

4.1 Network Topologies 

 

During testing, three network topologies (referred to as switched, routed, and tunneled)  

are used to separate the two MT6D gateway nodes.  The topologies provide varying levels of 

exposure to external network traffic and intermediate hops and show varying levels of 

performance and compatibility with MT6D. 

The switched topology is the simplest, where the two MT6D gateways are connected to 

each other through a single switch, as shown in Figure 4.2. 
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Host AHost A Host BHost B

Gateway AGateway A Gateway BGateway B

 
Figure 4.2 - Switched Testing Topology 

 

In this topology, the MT6D traffic is not exposed to any other network traffic and 

contains no layer 3 hops in the path.  The tests that use this topology are intended to show the 

best possible performance of MT6D on these hosts.  The compatibility of MT6D with routers 

and other network equipment is not tested here. 

Routed topology builds on the switched topology and is slightly more complex, as shown 

in Figure 4.3.   

InternetInternet

Host AHost A Host BHost B

Gateway AGateway A Gateway BGateway B

 
Figure 4.3 - Routed Testing Topology 

 

In this topology, MT6D traffic that leaves one of the gateways will pass through at least 

one switch, go through one of the main routers on Virginia Tech’s IPv6 network, and pass 

through at least one more switch before reaching the other gateway.  These switches and the 

router are also carrying production traffic from many other systems, and the Internet is accessible 

through the router. 

The purpose of the routed topology is to expose the MT6D traffic to other, unrelated 

traffic that exists in the switches and router.  This traffic can introduce unexpected latencies and 

packet loss, which MT6D must be able to handle, while not impacting the overall performance 

significantly.  Also, the presence of the router tests the correctness of the layer 3 headers of the 

MT6D traffic and also tests the MT6D gateway’s ability to handle router advertisements. 
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Tunneled topology builds on routed topology and is the most complex.  As shown in 

Figure 4.4, one of the MT6D gateway hosts remains connected to Virginia Tech’s IPv6 network, 

while the other gateway host is directed through a 6in4 tunnel provided by Hurricane Electric 

[36].  The red parts of the path in the figure are where IPv6 packets are tunneled in IPv4 packets.  

The entire red path appears as a single hop to IPv6.   

 

Host AHost A

Host BHost B

Gateway AGateway A
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Figure 4.4 - Tunneled Testing Topology 

 

During tunnel setup, Hurricane Electric allows a choice of which geographically diverse 

tunnel endpoint to use.  For these tests, the tunnel endpoint in Seattle, Washington, was chosen.  

This choice requires packets to traverse the United States twice to travel from Gateway A to 

Gateway B, providing a diverse path with many other types of unrelated traffic along the way.  

The use of a 6in4 tunnel also requires the MT6D software to handle a reduced MTU, which is 

necessary to accommodate the 6in4 tunnel overhead.  The network metrics being measured are 
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expected to show less performance on this network topology due to the longer round trip 

distance and quantity of unrelated traffic. 

 

4.2 Traffic Types 

 

Three different types of traffic (ICMP, TCP, and UDP) are tested, which represent 

realistic traffic patterns that a production MT6D setup might be expected to handle.  Each type is 

also used to collect a specific network performance metric, as described in the following 

sections. 

 

4.2.1 Internet Control Message Protocol (ICMP) 

 

The ping command is used to generate ICMP traffic (echo requests and replies).  Three 

different tests use the ping command – standard, flood (10k), and flood (50k).  The standard ping 

test sends 1,000 64 byte packets with a one-second delay between packets.  This test is intended 

to show the latency and packet loss of the path under a very light load.  The latency during this 

test is expected to be very low and very constant, especially in the switched topology, so that any 

variations are caused by MT6D.  Packet loss should stay at zero percent.  The International 

Telecommunication Union (ITU), in its recommendation G.114, suggests that one-way latencies 

should be less than 150 milliseconds for acceptable transmission of real-time data, such as Voice 

over Internet Protocol (VoIP) [37].  As communication is a likely application where a user’s 

privacy should be protected, MT6D should be able to maintain a latency that is low enough to 

permit the transfer of real-time data. 

The second two tests send floods of 64 byte packets (10,000 or 50,000 total packets, 

respectively) from one host to the other.  In the flood tests, packets are sent as fast as they come 

back, or 100 times per second, whichever is greater.  This test is intended to show the latency 

and packet loss of the path during periods of heavy traffic, although the traffic size is small.  

Ideally, the latency should remain unchanged from the standard ping test and packet loss should 

stay at zero percent, but if delays are introduced by MT6D, for example during address rotations, 

they will be detected during this test.  It is expected that the C version will have a lower packet 

loss and less deviation in the latency than the Python version. 
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4.2.2 Transmission Control Protocol (TCP) 

 

In order to test TCP connections, the wget command is used to download files of various 

sizes over a HTTP session.  Host A is the client where wget is run, and Host B is the server 

where the Apache HTTPD web server software is running.  Pre-generated files of random data in 

sizes 500 kB, 1 MB, 10 MB, 50 MB, and 500 MB are available for download.  The TCP tests 

download each file size an equal number of times.  The various file sizes are used to generate 

variable timed HTTP sessions so that both short-lived and long-lived TCP connections can be 

tested.  This test focuses on the bandwidth of the connection observed while downloading the 

complete file.  Ideally, using MT6D should decrease the available bandwidth as little as possible 

over the base scenario (no MT6D).  The C version is expected to have significantly higher 

bandwidth than the Python version. 

 

4.2.3 User Datagram Protocol (UDP) 

 

The Iperf tool is used to test packet latency variation (jitter), using specially generated 

UDP packets sent from Iperf running in server mode on Host B to the client on Host A.  Three 

versions of the test are done, transferring 1 MB, 10 MB, or 100 MB of data between the two 

hosts.  Having a low jitter is also crucial for real-time data transfer; the ideal is packet loss 

remaining at zero percent and jitter minimal.  The Python version is expected to have a higher 

jitter than the C version, due to its method of rotation of IPv6 addresses. 

 

4.3 Host Performance 

 

In addition to the network tests discussed above, additional tests measure certain metrics 

on the host running MT6D (Gateway A and Gateway B in the first figure).  Three metrics are 

measured – CPU usage, memory usage, and kernel/user time.  MT6D in gateway mode was 

designed to run on a device between two communicating hosts, such as a router, which is 

typically a small, embedded system with limited resources.  Therefore, MT6D must be designed 

to minimize the load on the host’s CPU and the amount of memory it consumes.   

 The CPU usage of MT6D is collected using the ps program, just before killing the MT6D 

executable after a test run.  This measurement gives the average CPU usage during the life of the 

MT6D executable, which is restarted for each test run.  The ps program calculates the CPU usage 

using Equation 4.1and the variables shown below [38].  As used here, “jiffy” refers to the time 
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between two interrupts of the system timer.  On the GuruPlugs used for these tests, the system 

timer operates at 100 Hz. 

 UTIME: Amount of time (in jiffies) MT6D is scheduled in user mode 

 STIME: Amount of time (in jiffies) MT6D is scheduled in kernel mode 

 DBOOT: Amount of time (in seconds) since system boot 

 PTIME: Process start time (in jiffies), relative to system boot 

 HZ: Timer interrupt frequency (in hertz) 

 

CPU Usage = 
 

 

100UTIME STIME HZ

DBOOT PTIME HZ

   


 

Equation 4.1 - ps CPU Usage Calculation 

 

During the design of C MT6D, CPU usage was not specifically targeted for improvement 

beyond the changes discussed in Chapter 3, but it was assumed that simply writing the program 

in C would reduce its CPU usage over the Python version.  However, memory usage is addressed 

in the C version.  The memory footprint is kept small, memory is freed as soon as possible, 

temporary objects are avoided, and the frequency of allocations is reduced by pre-allocating and 

reusing certain objects.  Due to these considerations, the C version is expected to use 

significantly less memory than the Python version. 

The memory usage of MT6D is recorded in two ways.  The first is by using the heap 

profiler from Gperftools, which is designed and used by Google [39].  The heap profiler is 

loaded at MT6D runtime and creates periodic profiles that are analyzed using a separate program 

after test run completion.  The second method makes use of the Linux kernel’s page monitor 

functionality (and the /proc/[pid]/smaps file), which reports the memory consumption for each 

memory mapping of a process [40].  In both cases, only the private memory (memory that is not 

marked as shared with other processes) is recorded. 

The third metric, kernel/user time, refers to the amount of time the CPU is executing code 

in kernel space versus user space.  One goal of the C version is to move as much work as 

possible from the MT6D program to the Linux kernel.  One example of this move is neighbor 

discovery packets – the Python version generates these packets itself, but the C version binds the 

remote address to the local interface so that the network stack will generate these packets 
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automatically.  Also, it is assumed that the Python version, which is dependent on many other 

libraries (including the Python library itself), will spend a significant amount of time executing 

code in these libraries.  The C version is designed to depend minimally on other libraries (other 

than the C library, but even this use should be minimal). 

The kernel/user time metric is collected using the performance counters that are built into 

the Linux kernel [41].  This structure is an event-based sampling system, with a sample recorded 

whenever the performance counter in use overflows.  Sampling data are analyzed by a separate 

program after the test run is complete.  The analysis determines what symbol is being executed at 

the time the sample is taken and the location of the symbol (MT6D executable, library, or 

kernel).  Summing and grouping by source give a measurement of how much time is spent in 

kernel code versus user code. 

 

4.4 Summary 

 

Tests described in this chapter are designed to stress various aspects of the MT6D 

program and determine if the C version is improved in specific areas over the Python version.  

They are also designed to show how an implementation of a MTD uses the resources on a host 

system and where attention is needed so that an MTD can be implemented on a resource 

constrained system.  The three network topologies (switched, routed, and tunneled) are combined 

with the tests for each traffic type (ICMP, TCP, and UDP) and host performance metric (CPU 

usage, memory usage, and kernel/user time) to show the overall performance of MT6D under 

realistic network conditions.  Table 4.1 lists each type of test that is run, and Table 4.2 lists the 

combinations of MT6D, topology, and host metric used. 

 

Traffic Test Names 

ping_std_1k wget_50M 

ping_flood_10k wget_100M 

ping_flood_50k iperf_1M 

wget_500k iperf_10M 

wget_1M iperf_100M 

wget_10M  
Table 4.1 - Traffic Test Names 
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Network 

Topology 

Host Metric 

 

None 

CPU 

Usage 

Memory 

Usage 

Kernel/ 

User Time 

 Switched                   

 Routed                   

 Tunneled                   

 

                          

 

  

= No 

MT6D   

= Python 

MT6D   

= C 

MT6D 
Table 4.2 - Test Topology/Metric/MT6D Combinations  
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Chapter 5: Analysis of Results 

 
 

Tests described in the previous chapter were run over an extended time interval in each 

scenario, generating over 140 GB of data.  Data from the 10 iterations of each test were averaged 

together, and the results are presented in the following sections. 

 

5.1 Switched Topology 

 

As described in the previous chapter, the first series of tests were run under the switched 

network topology, where the two gateway devices are separated by a single network switch.  

Tests run under this topology are expected to show the best performance since the path between 

the two hosts is short and has minimal unrelated traffic. 

 

5.1.1 No MT6D 

 

The first set of tests run under the switched topology was run without using MT6D.  The 

two gateway devices were configured to simply pass traffic from one interface to the other as a 

network bridge.  These tests will be used to establish a baseline for performance that all of the 

following tests can be compared with.   

Figure 5.1 shows the results of the ICMP tests.  This figure plots the minimum, average, 

and maximum latencies, as well as packet loss observed during the three tests.  The latency 

vertical axis uses a logarithmic scale to allow the three latency values easier visibility.  As 

expected, the results of this test show a stable, low latency network between Host A and Host B.  

No packets were lost during any of these tests, and the average latency is less than 1 millisecond.  

Results indicate that much larger maximum times occurred at the beginning of the tests when a 

neighbor discovery packet was sent to determine the MAC address of the hosts. 
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Figure 5.1 - Results of Switched Network, No MT6D, ICMP Tests 

 

Figure 5.2 shows the results of the TCP tests.  Each bar on the graph represents a 

different data file size that is being fetched via the HTTP protocol.  As expected, the throughput 

is fairly consistent across all the tests, except the largest one.  However, the most important result 

from these tests is the overall average throughput, which is 19.584 megabytes per second.  

Translated into bits, the speed is 156.672 megabits per second, which is significantly less than 

anticipated.  All four GuruPlug devices used in this test for the hosts and gateways have gigabit 

network interfaces, and the switch connecting the gateways is a gigabit switch with more than 

sufficient switching capacity, leading to an anticipated throughput close to 1 gigabit per second.  

Unfortunately, the GuruPlug devices are simply not capable of passing large amounts of data any 

faster.  These results indicate that the baseline throughput, which will be compared with future 

results, is only 19.584 megabytes per second. 
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Figure 5.2 - Results of Switched Network, No MT6D, TCP Tests 

 

Finally, Table 5.1 shows the average network jitter observed for different data transfer 

sizes during the UDP tests.  The overall average is 0.0605 milliseconds, which is very low and 

falls within the expectations for this topology. 

 

Data 

Size: 

1 MB 10 MB 50 MB 500 MB 

Jitter 

(ms): 

0.061 0.054 0.065 0.062 

Table 5.1 - Results of Switched Network, No MT6D, UDP Tests 

 

5.1.2 Python MT6D 

 

The same set of tests was run again on the switched topology, but this time the Python 

version of MT6D was running on the two gateways.  This setup forces packets travelling from 

Host A to Host B to be tunneled through MT6D between the two gateways.  No other changes 

were made to the setup.  Due to the addition of MT6D, the results of these tests are expected to 

show inferior performance compared to the tests run with no MT6D. 

Figure 5.3 shows the results of the ICMP tests and is similar in layout to the ICMP test 

figure in the previous section.  The Python version performed very poorly in the ping flood tests, 
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with over 90% packet loss and maximum latencies as high as 30 seconds.  Observation of the test 

in progress showed that the packet loss occurred consistently throughout the test, indicating that 

the Python version simply cannot keep up with the number of packets traveling through it, even 

though the ping packets are only 64 bytes in size.  This result indicates that the Python version is 

not suited to handling large volumes of packets. 

Closer inspection of the standard ping test shows a more reasonable, though still 

problematic, packet loss of 2.32% and an average latency of 103 milliseconds.  Observation of 

the tests showed that most of the packet loss in this test occurs when Python MT6D rotates its 

IPv6 addresses, as the method it uses causes packets to be dropped momentarily just after 

binding the new address.  These results also suggest that Python MT6D is unsuitable for use in 

real-time data applications, such as VoIP.  The average latency of the standard ping test (103 ms) 

is acceptable according to the ITU’s recommendation, but the much higher latency in the flood 

tests indicate that the average latency would likely rise when under stress from constant real-time 

data packets. 

 

 
Figure 5.3 - Results of Switched Network, Python MT6D, ICMP Tests 
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Figure 5.4 shows the results of the TCP tests.  At first glance, these results appear similar 

to, if not better than, the results with no MT6D.  However, this figure’s vertical axis units are 

kilobytes per second, rather than megabytes per second as in the previous section.  The overall 

average throughput for Python MT6D is 24.072 kilobytes per second, three orders of magnitude 

less than with no MT6D.  This calculation is a very significant decrease and would be readily 

noticed by any user transferring data through MT6D.  Also, the throughput decreases with larger 

file sizes; the average for the 500 megabyte test is 18.34 kilobytes per second. 

 

 
Figure 5.4 - Results of Switched Network, Python MT6D, TCP Tests 

 

Finally, Table 5.2 shows the average network jitter observed for different data transfer 
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fluctuations in the network delay. 
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5.1.3 C MT6D 

 

Once again, the same set of tests was run on the switched network topology, but C MT6D 

was used in this testing on the two gateway devices.  No other changes were made to the testing 

setup.  These results are expected to show much better performance than the Python version and 

approximate the baseline established with no MT6D. 

Figure 5.5 shows the results of the ICMP tests.  These results are significantly improved 

over the Python version and track the baseline results very closely.  The minimum and average 

values have increased by approximately 0.2 milliseconds over the baseline, while the maximum 

values have increased 2-5 milliseconds over the baseline.  Two of the tests, the 50,000 packet 

ping flood and the 1000 packet standard ping, show minimal packet losses.  These losses 

occurred in only one iteration of each test and could not be correlated with any other events in 

the test.  In contrast to Python MT6D, these results indicate that C MT6D could easily carry real-

time data. 

 

 
Figure 5.5 - Results of Switched Network, C MT6D, ICMP Tests 

 

Figure 5.6 shows the results of the TCP tests.  Similar to the results for the baseline tests, 

the units of the vertical axis are again shown in megabytes per second.  The performance of C 

0.385 0.3807 0.4463 

0.4454 0.4314 

1.1406 

12.5338 15.5237 
14.7456 

0 0.1694 0.11 
0

10

20

30

40

50

60

70

80

90

100

0.1

1

10

100

P
ac

ke
t 

Lo
ss

 (
%

) 

La
te

n
cy

 (
m

s)
 

Switched Network, C MT6D, ICMP Tests 

Maximum

Average

Minimum

Packet Loss

Ping Flood 10k Ping Flood 50k Ping Standard 1k 



59 

MT6D shown here is two to three orders of magnitude better than Python MT6D, and only 

slightly less than the baseline.  The overall average throughput for C MT6D is 10.57 megabytes 

per second, compared with 24.10 kilobytes per second for Python MT6D and 19.58 megabytes 

per second for the baseline.  The closest result between the baseline and C MT6D is in the 500 

megabyte test, where the baseline average is 15.41 megabytes per second and the C MT6D 

average is 11.55 megabytes per second.  In addition, the throughput in the C MT6D results 

increases with larger data sizes – due to the influence of the startup delays (neighbor discovery 

and initial session key exchange) being reduced by the length of the data transfer.  This result is 

especially obvious in the 500 kilobyte data transfer, which only takes 50 milliseconds to 

complete. 

 

 
Figure 5.6 - Results of Switched Network, C MT6D, TCP Tests 
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Data 

Size: 

1 MB 10 MB 50 MB 500 MB 

Jitter 

(ms): 

0.081 0.085 0.094 0.095 

Table 5.3 - Results of Switched Network, C MT6D, UDP Tests 

 

5.1.4 Host Performance 

 

The following results show the effect that running MT6D had on the host serving as the 

gateway.  As detailed in the previous chapter, the average CPU usage, memory usage, and 

kernel/user time were collected for comparison.  MT6D is likely to be deployed on a resource 

constrained system, such as a router, which would require that it be very efficient in its resource 

use.  In the next sections, the host metrics mentioned are compared between the Python and C 

versions. 

Figure 5.7 shows a comparison of CPU usage and memory usage between the Python and 

C versions.  Data from the ping flood and standard ping tests are shown.  These two tests were 

chosen because the ping flood generates an extremely large volume of constant traffic, while the 

standard ping only generates one small packet each second.  Therefore, results from the ping 

flood show how resources are used by the two versions under heavy load, and results from the 

standard ping show how resources are used by the two versions while they are mostly idle. 

As shown, a big difference exists between the two versions.  Under heavy load, the 

Python version uses almost 32% of the CPU, while the C version uses only 12%.  As expected, 

the CPU usage is much less under the standard ping test, with the Python version using 2% of the 

CPU and the C version barely registering at 0.01%.  Memory usage is different, with usage in 

both versions mostly constant between the two tests.  The Python version uses around 4 

megabytes while the C version uses around 60 kilobytes.  This result indicates that, once both 

versions have started, their memory usage remains mostly constant, regardless of load.  These 

results show that the C version is better suited for a small, resource constrained system. 
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Figure 5.7 - Results of Switched Network, CPU and Memory Usage Tests 

 

The results of the third host metric tests, kernel/user time, are shown in the next figures 

with the ping flood test first (Figure 5.8).  In the ping flood test, most of the work involves 

copying and manipulating fields in packet data.  The figure on the right shows that the Python 

version spends most of its execution time (81.7%) executing code in the Python library, while 

only 4.97% of execution time is spent in the Linux kernel.  By contrast, the figure on the left 

shows that 79.4% of the C version’s execution time is spent in the kernel and only 3% is spent in 

the MT6D executable.  
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Figure 5.8 - Results of Switched Network, Kernel/User Time, Ping Flood Tests 

 

Figure 5.9 shows the same information as in Figure 5.8 for the standard ping test, when 

the MT6D gateways are mostly idle.  When idle, most of the work revolves around 

binding/unbinding IPv6 addresses and using the cryptographic hash function to generate new 

addresses. 

 

 
Figure 5.9 - Results of Switched Network, Kernel/User Time, Standard Ping Tests 

 

As these two figures show, the goal of moving most of the processing to kernel code in 

the C version was met.  This goal is at least partially responsible for the improved performance 
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exhibited by the C version in the other host metrics.  These figures also show what other libraries 

are used most frequently by the two programs.  The C version uses functions from the nfnetlink 

library (used for instructing the kernel to bind/unbind addresses and to add/remove ip6tables 

rules) and the Crypto library (cryptographic hashing functions).  The Python version uses 

functions from the SQLite library (SQLite is the storage engine used to maintain information 

about routes and addresses).  Both versions make use of utility functions in the C library. 

 

5.2 Routed Topology 

 

The following results were obtained under the routing topology.  As discussed in the 

previous chapter, the routing topology uses a single router between the two MT6D gateways.  

The purpose of routed topology is to expose the MT6D traffic to other, unrelated traffic that 

exists in the switches and router.  This traffic can introduce unexpected latencies and packet loss, 

which MT6D must be able to handle, while not causing a significant negative impact on the 

overall performance. 

 

5.2.1 ICMP Tests 

 

The following two figures show the results of the ICMP tests.  Figure 5.10 shows the 

average latency for each of the three ICMP tests for no MT6D, Python MT6D, and C MT6D.  

Figure 5.11 shows the packet loss for the same tests.  These results are very similar to the results 

for the ICMP tests on the switched topology.  Again, the Python version’s latency and packet 

loss are significantly higher, while the C version’s latency and packet loss approximate the 

baseline performance.  This result indicates that MT6D is not affected by the presence of a 

router, and the relative performance of Python MT6D versus C MT6D is also not affected by a 

router. 
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Figure 5.10 - Results of Routed Network, ICMP Latency Tests 

 

 
Figure 5.11 - Results of Routed Network, ICMP Packet Loss Tests 
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switched topology, the throughput with the Python version is three orders of magnitude less than 

the baseline and two to three orders of magnitude less than the C version.  Once again, the 

absolute throughput for each case is almost identical to the results in the switched topology, 

showing that it has minimal effect on MT6D. 

 
Figure 5.12 - Results of Routed Network, TCP Tests 
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Figure 5.13 - Results of Routed Network, CPU and Memory Usage Tests 

 

Figure 5.14 and Figure 5.15 show the kernel/user time comparison for Python MT6D and 

C MT6D during the ping flood and standard ping tests.  As with other host metrics, these results 

are very similar to those obtained on the switched topology and confirm that the addition of the 

router does not affect the host resources required by MT6D. 

 

 
Figure 5.14 - Results of Routed Network, Kernel/User Time, Ping Flood Tests 
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Figure 5.15 - Results of Routed Network, Kernel/User Time, Standard Ping Tests 

 

5.3 Tunneled Topology 

 

As described in the previous chapter, tunneled topology is the most complicated and 

routes traffic through a 6in4 gateway in Seattle, Washington.  This configuration causes traffic to 

be tunneled inside IPv4 traffic for part of its trip, and it must cross the United States twice to 

make the journey.  This test is designed to validate the ability of MT6D to be tunneled inside 

another protocol and to coexist with large amounts of unrelated traffic on the Internet.  However, 

due to the nature of this topology, performance is expected to be much lower for this topology, 

even without MT6D.  

 

5.3.1 ICMP Tests 

 

Figure 5.16 shows the latency of tunneled topology for tests using no MT6D, Python 

MT6D, and C MT6D.  While this chart bears some similarities to the previous latency charts, 

some important differences exist.  First, the latency of the baseline test (with no MT6D) has 

increased, due to the nature of tunneled topology.  Like previous tests, the Python version is 

unable to cope with ping floods and shows very high latencies for those tests.  The C version has 

only slightly higher latencies than the baseline for all the tests.  The other major difference is the 

latency of the Python version for the standard ping test.  The Python version’s latency is only 

about 20 milliseconds higher than the baseline.  This result is due to the network topology 
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introducing a delay, which allows the Python version to “catch up” with the baseline and the C 

version. 

 

 
Figure 5.16 - Results of Tunneled Network, ICMP Latency Tests 

 

Figure 5.17 shows the packet loss recorded during the ICMP tests.  This figure is almost 

identical to results for the other topologies, except that the baseline now shows a small amount of 

packet loss. 

 

 
Figure 5.17 - Results of Tunneled Network, ICMP Packet Loss Tests 
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5.3.2 TCP Tests 

 

Figure 5.18 shows the results of the TCP tests for tunneled topology.  The Python version 

results are the same as for previous topologies.  The baseline results report a much lower 

throughput for this topology than for the other topologies.  The reduced throughput is less than 

the maximum that the C version attained in previous results; consequently, in these results, the 

throughput of the C version is almost equivalent to the baseline.  These results also show that the 

tunneled network topology is better suited to larger file transfers than small ones. 

 

 
Figure 5.18 - Results of Tunneled Network, TCP Tests 
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deliver, so CPU usage of the Python version remains the same. However, the rate is less than the 

C version can deliver, so the C version is idle some of the time during this test. 

 
Figure 5.19 - Results of Tunneled Network, CPU and Memory Usage Tests 

 

Figure 5.20 and Figure 5.21 show the kernel/user time for tunneled topology.  As 

expected, these figures are very similar to the same metrics for the other topologies, with one 

small difference.  If results for the C version in the other topologies are closely examined,  the 

conclusion is that time spent in the kernel is a lower percentage for the standard ping test, since 

less time is spent handling packets in that test.  In these results, the same reduction in kernel time 

is observed in the ping flood results, due to the lower volume of packets. 
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Figure 5.20 - Results of Tunneled Network, Kernel/User Time, Ping Flood Tests 

 

 
Figure 5.21 - Results of Tunneled Network, Kernel/User Time, Standard Ping Tests 

 

5.4 Summary 

 

This chapter presents the results of the live network tests of MT6D.  Tests performed 

were designed to test the ability of MT6D to carry different types of traffic and to test the design 

of the C version to determine if the goal of improved performance was met.  Three network 

topologies, switched, routed, and tunneled, were used during the test to expose MT6D traffic to 

varied network conditions, paths, and unrelated traffic.  Each test and topology was tested with 

no MT6D to establish a baseline, and then with Python MT6D and C MT6D to compare the 
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performance of the two versions with the baseline and with each other.  For each test, network 

metrics – such as latencies, packet loss, throughput, and jitter – and host metrics – including 

CPU usage, memory usage, and kernel/user time – were collected, compared, and analyzed. 

Figure 5.22, Figure 5.23, and Figure 5.24 show the combined results for switched 

topology for no MT6D, Python MT6D, and C MT6D, showing latencies, packet loss, and 

throughput.  These results show that C version consistently delivers lower latencies and packet 

losses and higher throughput than the Python version, while performing very closely to the 

baseline.  These results validate the design choices made in Chapter 3. 

 

 

 

 

 

 

 

 
Figure 5.22 - Results of Switched Network, ICMP Latency Tests 
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Figure 5.23 - Results of Switched Network, ICMP Packet Loss Tests 

 

 
Figure 5.24 - Results of Switched Network, TCP Tests 
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Chapter 6: Conclusion 

 
 

The primary goal of this work was to identify specific parts of the Python version of 

MT6D that could be used as improvements in the development of the C version.  The largest area 

identified for improvement was the way in which packets are captured in the Python version, 

using libpcap.  In the C version, packet capturing is done by having the Linux kernel identify 

packets using ip6tables and copying them to the MT6D program using netfilter queues.  This 

strategy is part of a broader effort to move as much work as possible to the kernel from the 

MT6D program.  Other examples of moving work to the kernel include binding remote addresses 

locally so that the network stack will generate neighbor discovery packets and using libraries to 

send address and table commands to the kernel directly, rather than calling external programs 

such as ‘ip’ and ‘ip6tables .’  

Another goal in the C version was better utilization of multiprocessing capabilities.  The 

C version maintains one thread to handle ICMP error messages, one thread to handle address 

mutations, and one thread for each pair of hosts communicating via MT6D.  The multithreaded 

design also avoids locks, instead using atomic operations whenever shared data must be 

modified. 

This document details the steps taken to meet these goals.  Chapter 2 describes the MT6D 

protocol and its implementation in Python.  Flow of the Python program is described and specific 

concerns noted in its efficiency and operations.  Chapter 3 describes the steps that would be 

taken in the C version to mitigate the concerns in the Python version.  The chapter also describes 

in detail how the C version works and documents an example packet exchange.  Chapter 4 lists 

various topologies, scenarios, and tests that were performed to test the C version and the Python 

version to evaluate the effectiveness of the design choices.  Finally, Chapter 5 presents the 

results of the tests and shows how the design choices are validated and delivered significant 

performance improvement. 

 

6.1 Future Work 

 

 Since design choices made for the C version have been validated by tests and have 

resulted in significant performance improvements, they provide some insight into future work 
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that could be done to improve MT6D even further.  As this work demonstrates, closer integration 

with the kernel provides performance increases for an MTD.  Future work should focus on 

moving MT6D closer to the Linux kernel, either as a kernel module or even integrating it with 

the network stack.  Once a part of the kernel, MT6D would be in a better position to capture, 

modify, and control the disposition of packets without requiring that the packet first be copied to 

user space.   

Another possible future direction would be to integrate MT6D into hardware.  On a 

small, embedded system, such as a router, an MTD could be made very efficient if it were 

implemented on a Field Programmable Gate Array (FPGA) or Application Specific Integrated 

Circuit (ASIC).  In this way, the MTD could control packets before they are even delivered to 

the operating system.  An example of this type of integration can be seen with cryptographic 

functions – historically crypto operations were implemented only in software but are now 

available as hardware crypto chips [42] and even as instructions in some processors [43]. 

 

6.2 Concluding Thoughts 

 

Results of the tests that were conducted in the third phase of this work show significant 

performance gains made by the C version of MT6D.  While the bandwidth available using the C 

version is less than the bandwidth available without MT6D, it is much more than is available 

with the Python version.  Also, network latency and jitter decrease and are very close to the 

values without MT6D.  The C version also drops very few packets compared to the Python 

version.  Execution time of the program is spent more efficiently by using kernel code to do 

much of the work in the C version, rather than running code from the Python library.  The C 

version uses less memory and less processor time to accomplish its work.  These results show the 

performance gains made possible by converting MT6D to the C language. 

Moving target defenses require significant and frequent modifications to system 

parameters to create successful entropy and act as a viable defense.  System architecture 

independent languages, such as Python and Java, have many benefits that enhance rapid 

development of a working prototype and allow for code portability and reuse.  However, the 

operations of a MTD that are required to create entropy are too resource intensive for these 

languages.  By using compiled languages and operating system specific features, MTDs such as 
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MT6D can be deployed successfully in many different types of network systems, including 

resource constrained environments.  
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Appendix A: C MT6D Code 

 
 

 The source code of C MT6D developed as part of this research is stored in the git 

repository of the Virginia Tech Information Technology Security Office and can be accessed at 

the following location: 

 

https://git.cirt.vt.edu/mt6d-c.git 
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Appendix B: Build Environment 

 
 

 This Appendix documents the build environment, compiler settings, and library versions 

used to compile C MT6D and the Python packages used by Python MT6D for the performance 

tests detailed in Chapters 4 and 5. 

The hardware used in the tests is the GuruPlug Server [34], manufactured by GlobalScale 

Technologies.  The GuruPlug Server is used for the two host devices and the GuruPlug Server 

Plus (which has two Ethernet ports) is used for the gateway devices.  The devices run the 

Angstrom Distribution, version 2011.09, with Linux kernel 2.6.37.6 and are built using the 

OpenEmbedded build framework [35].  The GNU Compiler Collection (GCC) compiler system, 

version 4.5.3, was used to cross compile C MT6D for the GuruPlug target.  The exact compiler 

command follows: 

arm-angstrom-linux-gnueabi-gcc -march=armv5te -mtune=arm926ej-s -mthumb-interwork  

-mno-thumb -Wl,-O1 -Wl,--hash-style=gnu -g -ggdb -O0 -fno-omit-frame-pointer -pg  

-lcrypto -lssl -lnetfilter_queue -lip6tc -lxtables -pthread -o mt6d mt6d.c rehash.c stream.c 

icmp_packet.c icmp.c packet.c network.c -lnetlink session.c lib.c 

The following packages were used to satisfy the library requirements of C MT6D: 

 libcrypto:   openssl-1.0.0e 

 libssl:    openssl-1.0.0e 

 libnetfilter_queue:  libnetfilter_queue-0.0.16 

 libip6tc:   iptables-1.4.9.1 

 libxtables:   iptables-1.4.9.1 

 libnetlink:   iproute2-2.6.38 

The following OpenEmbedded Python packages were used by Python MT6D: 

 python-2.6.6   python-pycairo-1.8.0 

 python-dbus-0.83.2  python-pygobject-1_2.20.0 

 python-ipy-0.75  python-pygtk-2.16.0 

 python-libpcap-0.6.4    

 python-pycrypto-2.0.1+gitrd087280d7e9643a3e3f68f209932119fe6738b3c 
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