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Introduction: High Speed Deflection Devices (HSDDs)
- Dynamic Surface Disp. of Response of Layered Systems

Issues: 3D- Viscoelastic Continuum (Vehicle Velocity?)
Moving Surface Load (Non—s‘ra‘rionary&
3D Loading - Normal and Shear (Breaking?)

Analytical Modeling: 3D-Move

Formulation of a Generalized Analytical Model
Material Characterization
Calibration of Analytical Model

- Existing Classical Solutions

- Model Tests _ Lab Calibration
- Field Calibration

Use of 3D-Move to FHWA Network Level Project DTFH61-12-C-00031
- Calibration with Field Measurement (Surface Disp.)

- Calibration with MnROAD Measurements (Stress & Strains)
- Future Work in Sensitivity Studies




N Introduction: Pavement Response amec@

University of Nevada, Reno

Existing Methods: -eLsymsmwinLEAIULEA

Static/Stationary/Circular/Uniform, g/ Linear Elastic/Multi-Layer/
“Work Horse” ; Developed in 1970s;
AASHTO Pavement Design1986 and 2002, 2012 (MEPDG &
Pavement ME)

- Finite Element - (Recent “Large” Studies)
Wide-Base Tire (Pool-funded study) - 2011 | e
PANDA Software (Texas A&M) - 2010

ABAQUS (Version 6.7) \
3D — Brick Elements
NOTE: “ Problems” — Stationary Load

Loaded area & and layers are of same size

Loading
area

Infinite
element

“Computer Intensive”




3D-Move Formulation O
Finite Layer Approach ame
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Solution for Single Harmonic Pressure

B [t can be shown that U__ is given by: (th order

differential equation)

d°U d*uU d°u
.-+D,—"+D,—"+DU, =0
dz dz dz -
B D, D, D, & D, = constants that depends on
— layer material properties,

Dl

— velocity of wave propagation,

— A, and 1,




@ Summary: Elements of 3D-Movgmec®
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(1) Uses Finite-Layer Continuum Approach — Takes Advantage of
Horizontally-Layered Pavement Layers; No Discretization; No Lateral
Boundary Effects. — Computer Efficient

(2) Models Moving 3D-Surface Stresses (Dynamic; Normal &
Shear Contact Stresses) — Handles Vehicle Speed

(3) Direct Use of Frequency-Sweep Data (Viscoelastic Modeling)

(4) Ideally-Suited when Responses are Needed at a Selected Few
Locations - Computer Efficient




Material Characterization: CG
Pavement Layers ame
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Pavement Layer Properties
Horizontally-Layered; HMA can be Viscoelastic

- Unbound Materials (?) - Elastic




@Experimen’ral Testing, |E* amec”
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Dynamic Modulus, |E
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Comparison Between 3D-Move
and ViscoRoute (2.0) ameCG
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300 et 20°C 3D-Move
- 1 - Y
S .. HMA thickness = 7.9
—
Q
E Tem p '20C C —_ :ZOOC 10°C 3D-Move
3. 200
w> X 10°C ViscoRoute
c \
| 8 150 \\‘\ —+—0°C 3D-Move
: % ot
(Vp]
8 X 0°C ViscoRoute
— 100
D X 8 .
g) ‘\\/“.\_F A A i( ——-10°C 3D-Move
T 50 *
— o » O -10°C ViscoRoute
J T D'd
0 —@—-20°C 3D-Move
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-20°C ViscoRoute
Ref. 14 Vehicle speed, mph

Both Models are: Dynamic and Viscoelastic.
e




Important Attributes of Pavement Modeling: Load-Related ameCG

Factor

Layered Elastic

Finite Element
Analysis (LEA) 3D-Move
ELSYMS Method
e.g.: ,
g (FEM) Model
WESLEA, JULEA
Non-Circular Loaded
NO YES YES
Shape
Non-Uniform Vertical
NO YES YES
Contact Stress
Contact Shear Stresses
(Braking & Sloping NO YES YES
Pavements)
Moving Load (Non-
Stationary) and Inertia NO NO/YES YES

Included (i.e. Dynamic)

Important Attributes of Pavement Modeling: Material Properties

Viscoelastic Properties

(Modulus and Phase NO YES YES
Shift)
Vehicle Speed NO YES YES
Direct use of Freq.

NO NO YES

Sweep Data




Use of 3D-Move to FHWA

Network Level Project- DTFH61 - an‘)eC(9

12-C-00031
Plane of Observation
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Mid-line Surface Vertical Disp.

Response, R(y,t)

Layer 2

Layer i

Layer N 'z =~

SIS
Rigid Boundary

Pavement Responses from 3D-Move

Responses: Vertical Disp., HMA strain, Earth Pressure =



Use of 3D-Move in FHWA
Network Level Project- DTFH61-ameCG
12-C-00031
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Focus: High Speed Deflection Devices
(HSDDs)

HSDDs: TSD & RWD

Main Goals:

Phase 1: Calibration of 3D-Move using Surface Disp. (UTEP)

and with MNROAD Measurements (Stresses & Strains)
- Three HMA Cells (3, 19 & 34)

Phase 2: Sensitivity Studies: Robust Indicators for
Pavement Deterioration




@MnROAD Cells under Investigationgme
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Cell 3 Cell 19
HMA ! 3in HMA 5in
FWD Modulus = 554 kst PWD Modulus = 301 ksi
o = 34 ksi o= 65 ksi
Base Base
E=68.8ks L E = 32 ksi 2.
g = B.5 ksi o= 5.8 ksi
Subgrade Subgrade )
E=17.7 ks 122.4 in E = 6.1 ks 18.1 in
g = 2.9ksi o= 0.6 ksi
Cell 34
HMA
FWD Modulus = 299 ksi 4
o= 67 ks
B ase :
E=15.7 ks s
o= 3.1 ksi
Subgrade
E=28.5ks 46.3 in




Material Characterization: FWD
Field Measurements
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Backcalculated Stiffnesses of Pavement

Layers for Accuracy Cells

amec?

. Thickness, in. Average Modulus, S“"‘T‘d?‘rd Coefficient of
Cell Material (cm) ksi, (MPa) Deviation, Variation (%)
’ ksi, (MPa) 0
HMA 3(7.6) 554 (3820) 34 (234) 14
3 Base 43 (109.2) 68.8 (474) 13.6 (94) 19.8
Subgrade 122.4 (310.9) 17.7 (122) 2.2 (15) 12.3
HMA 5(12.7) 301 (2075) 65 (448) 22
19 Base 31 (78.7) 32 (221) 5.8 (40) 18
Subgrade 18.1 (46) 6.1 (42) 0.6 (4) 10.2
HMA 4(10.2) 299 (2062) 67 (462) 22
34 Base 12 (30.5) 15.7 (108) 3.1(21) 19.9
Subgrade 46.3 (117.6) 8.5 (59) 0.9 (6) 10.2




@ Pavement Temperature ameCG
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B HMA Modulus is sensitive to temp.

- Require Ave. HMA temp. @ time of testing (FWD & HSDDS)
All FWD and HSDDs Trials “within” 3 Weeks

B Use thermocouple measurements made within HMA (Incomplete data for
Cells 19 & 34)

B Use BELLS equation to find appropriate temperature for missing data




Average temperatures within HMA layer ameCS
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Temperature at | Temperature at | Temperature
time of FWD, °F | time of TSD, °F at time of

(°C) (°C) RWD, °F (°C)

99 (37) 91 (33) 99 (37)
81 (27) 68 (20) 63 (17)
108 (42) 91 (33) 90 (32)




@Pavemem‘ Materials Properties gmacd
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Procedure:

B Backcalculate “Existing” Layer Moduli
- Use FWD Data (HMA, Base & Subgrade)
All FWD and HSDDs Trials “within” 3 Weeks

B Use Wictzack Equn. to find Master Curve for HMA Modulus (Temp. & Freq.)
- Note: fryp = 30Hz; Use FWD Test Temp.

Parameters needed for the dynamic modulus predictive equation are:

M Air void content.
B Asphalt content.
m Gradation. . .
B A & VTS for the recovered binder. — Uﬂdamaged
Master Curve

=




Obtaining Damaged/Existing Modulus:
Witczak Equn. amecG
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" . ol
I.og Modulus, E lﬂg E =0+ +vlogt
A | + gPrrioen
Undamaged O
e Mastercurve . Solve for
I},ifnlmgfd , “‘--.._‘ Eprep  (Witzack equation & field cores o fatlgue
By Mastercurve ~ oroperties) | damage,
1 M H 1 m
Existing dac
- o
Y,
t, for NDT Log Reduced Time, t,
E*-10°
NS
E *dam =10% + 14 e—0.3+5><log(dAC)




HMA Modulus at HSDDs Trial Temps amec@
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Master Curve - Cell 34

Log E*

' —e—TSD-T=91°F
4
RWD-T£90 °F
3.5 -

’ &
<
3 . - == CRV-T=86 F

-20 -15 -10 -5 0 5 10 15
Log(f)




HSDDs Trials at MnROAD

amec?
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Cell 3 RWD
CRV
TSD
Cell 19 RWD
CRV
TSD
Cell 34 RWD
CRV

3 Passes

3 Passes

3 Passes

3 Passes

3 Passes

3 Passes

3 Passes

3 Passes

3 Passes

48, 72 km/h

48, 72, & 97 km/h

17.6 km/h

48, 72, & 97 km/h

48, 72, & 97 km/h

17.6 km/h

48 & 72 km/h

48 & 72 km/h

17.6 km/h

Total: 15 Cases (TSD & RWD) + 3 Cases (CRV)




TSD Loading and UTEP Instruments amecO
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4

Laser Beam

Vehicle Pass

—

. Plane of Measurement for HSDDs
oin

Lateral Wander
Outer Wheel

1ft, 1ft] 1ft
Inner Wheel | | |




Typical UTEP Measurements aIneC<9
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Cell #34 - Pass #1 -V =48 km/h

0.1

(mm)
=
X
T~

|

\ -GEO1
GEO2

) —GEO3
—Acct

)\/ /&/ — GEO4

. V' N GEO3

o
o

, Deflection

o
\‘

[TI\

-0.9 G

-11
-3 -2 -1 0 1 2 3

Distance (m

NOTE: Ideally GEO1l & GEOS3 should yield same resu]ts (Indication of variability)
For 3D-Move Calibration use Highest UTEP Geophone Disp. Sensor Measurements

(i.e., GEO3)
e




RWD Sensor Locations for Disp.
Measurements ameCG
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Dual Tires

Locate sensor behind wheel, when looking for w,_,




Looking for Maximum Displacement
N (Transverse Plane) ameco
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3D-Mo
Runs |-

Vehicle Path

\ Location of Max Disp
- =

Layerl

1

Lagerl

w7 LT 1 "Responses on Trans%
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amec?

Plane of HSDD Measurements

Role of Transverse Wander
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Role of Variation in Tire Load in amecO
TSD
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Dynamic wheel loads: Testing@BASt [ | b&t
5 axle truck-semitrailer - 40 t gross weight - winding country road - v ~40-50 km/h
60
Fapn =52 kN = 1.33 Fyy
-7 J e e e e e A |
b J ' '
Eg 40_-E€EE:;39 kh{ W-{hﬂﬁiﬂ — Ilh!=1‘=‘fﬁ%ﬁf:' il ! r.T4|ﬁ*{ _——=
_g | ! ] . |1! | |
o | | i | il |
E 30 - - ] | I
£ |[Fyn=25kN =064 Fy,
L
E
]
c
&

— left wheel
—  right wheel

100 110 120 130 140 150 160 170 180 190 200 210 220
Time [s]

NOTE: Uneven Load Distribution within Axle
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Rear A Load= 5575 Ibs/tre Ind driver Load= 2525 Thstire
- Front Ade Load= 2450 Ibsftire
(2.79 ton/ tire) (1.26 tontire) /

Iy (272 toTre)
)
15t driver Load = 2437.5 Thsftire
0 50

% inch Tire size code 275/70 R22.5 89 inch (226 cm)
(241.3 m) Tire Pressure=116 psi (800 kPa)

0 0 0

13.5inch(34.3 cm)

0
\
200 inch (508 cm)
252 |nch (640 cm)

554 inch (1407.2 cm)

¢

TSD Axle Configuration and
Load

amec?

Rear Acel Load= 4730 Isfte Drive Axels Load=1900 Insftire
(237 ton/tire) (145 ton tire)
Steering Axle Load= 4650 Ths/tire
(2.3 ton/tire)
£ A
T inch Tire Pressure=100 psi (689.5 kPa) 82 inch
(188 ) (2083 cm)
& 00
\

S \
14.5inch I L
(36.8 am) 9inch .

Y {229 UTI) 204inch
(518.2 cm)
51 inch
473 inch (195 cm)
(1201.4 cm)

RWD Axel Configurationand
Load e
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3D-Move Case Scenarios

Case 1. Three layer pavement structure with same thicknesses as
used in the FWD backcalculation and corresponding mean layer
moduli derived from the FWD backcalculation results;

Case X: Three layer pavement with: (a) thicknesses used in the FWD
backcalculation except decreasing the HMA layer thickness by 1 in,
(b) (mean — o) of FWD backcalculated layer moduli for HMA and
base layers, (c) (mean + o) of FWD backcalculated layer moduli for
subgrade, and (d) +25% of nominal tire load;

Case X1: Same as Case X, but with no reduction in HMA layer
thickness.




3D-Move Results in TSD Trials amec
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3D-Move Results in RWD Trials amec
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Y
(6}

Computed Maxi
o

Computed vs Measured Maximum Displaceme

pmec”
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Constant-=-1.47-mils 4 //
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0
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15 Datasets (TSD & RWD)
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Computed vs Measured Pulse Width

University of Nevada, Reno

5.2

o
\l

Constant = -0,2951 ft

Slope=0.9843
L
R2 = 0.8734 R /o /
SEE=0-43ft { * Q“. ¢

\ |
*® o

\ o 25 % of W 1,5,

B
(V)

w
\l

—

w
N

N
\‘
<

=
\‘

\

<
() [
/ L

75 % of W .,
1.2 2.2 3.2 4.2 5.2 6.2

=
N

~

©
\l

Computed Pulse Width/ (3D-Move) (ft)
N
N

o

(V)
o
N

Measured Pulse Width /(Project Sensors) (ft)

45 Datasets (TSD & RWD)




3D-Move Comparisons with MnROAD ameCO
Measurements
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Vertical Earth Pressures and Long. Strains in HMA

Issues: Lateral wheel wander
Size of sensors

Pressure Cell Response Points

Size: 9”

Strain Gauge Response Points

o O O 0 ©O

o

Oi+1 Inner Wheel Vehicle Pass
—_—

Location,i oi
-~

0il
(o]

o) Distance of Pressure Cell
Inner Wheal to Midline Between of Tires

Zimhi: 6in
0 Size: 6”

0 v Midiine Between of Tires

A

Midline Between of Tires

B

Outer Wheel
Vehicle Pass
—p

QOuter Wheel
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Maximum of Pressure (psi)

Computed and Measured MnROAD Earth
Pressures in TSD Trials

amec?

MnRoad /PG 1 /Max Pressure
® MnRoad/PG 2/ Max Pressure
MnRoad/PG 3/ Max Pressure
—¢—3D-Move/Case 1
3D-Move/ Case X1
=—#=\Neslea/ Case 1

S\sskleal Case X1

“Wheel Wander”

H ®
12
0 5 10 15 20 25 30
Distance of Center of Pressue Cell to Midline Between of Tires (inch) 1
. d
‘© o .
o ;’ \ === 3D-Move/ Case 1
= 7 ‘.
hd A 1%
o ] X ------ 3D-Move/ Case x1
S . |}
0 (] .
0 ° W\
Q (7] 0-A
a , b . MnRoad Pressure Cell/ Max
° "' \\
S P 02 N\
—_ o L4 .o N
i .2l S
g —-om-om jﬂ.ﬂ.‘.." 0 N.- S S -
-10 -8 -6 -4 -2 ) 2 4 6 8 10
0.2



Computed and Measured Longitudinal Strains a,necG
In TSD Trials
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m = MnRoad SG/MAX
3
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Distance (ft)
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Computed and Measured Longitudinal Strain afnec5
In RWD trial
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MnRoad SG/MAX

=== 3D-Move /Case 1

------ 3D-Move/ Case x1

Longitudinal Strain (ps)

10

100

Distance (ft)




Maximum longitudinal strains from ameCj
—_— o MNROAD sensors and 3D-Move computations
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Use of 3D-Move in FHWA Network
Level Project- amec”
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Phase 2: What are the Robust Indicators that can
Capture HMA Deterioration?

Following Issues are to be Investigated by 3D-Move
Solutions:

(1) What is the sensitivity of measured deflections in HSDDs with respect to: (a) speed of
test vehicle; (b) change in material properties of all pavement layers (i.e., temperature,
aging and moisture related stiffness changes); and (c) sloping pavements (require inclusion
of interface shear);

(2) Are there any other pavement response parameters that may be sensitive to pavement
condition? For example, can the velocities measured in TSD be directly used as indicators,
instead of relying on displacement bowl| obtained using the slopes at a few locations
(potentially introducing errors) recognizing that the focus is on surface bound layer;




Phase 2: 3D-Move Investigations ameC<9
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(3) 3D-Move analyses to understand best way to implement devices

a) What are the ideal locations for measurements (e.g., between the
tires, in front or back of the tires)

b) Are there any pavement response parameters other than the
deflection between tires (RWD) and SCI 300 (TSD) that may be sensitive
to pavement condition?

c) Are there any indices that can be used where the existing
measurements made by HSDDs can be utilized? (e.g., w,, SCI300,
Thompson: (5D, -2D,. -2D,,.— D34)/2; BCI = D, - Dgg; SD =tan't (D, - D, )/r
etc.)

(4) What are the “error” margins when periodically measured HSDD
responses obtained at various times of a year during the life of a
pavement are compared?

This is important, when looking for progressive deterioration of pavement.
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