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Abstract

Background: Genes work coordinately as gene modules or gene networks. Various computational approaches
have been proposed to find gene modules based on gene expression data; for example, gene clustering is a
popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering
often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-
expressed but not necessarily co-regulated.

Results: We propose a novel approach, motif-guided sparse decomposition (mSD), to identify gene regulatory
modules by integrating gene expression data and DNA sequence motif information. The mSD approach is
implemented as a two-step algorithm comprising estimates of (1) transcription factor activity and (2) the strength
of the predicted gene regulation event(s). Specifically, a motif-guided clustering method is first developed to
estimate the transcription factor activity of a gene module; sparse component analysis is then applied to estimate
the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first
tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing
functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated
the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory
modules related to endocrine therapy of breast cancer.

Conclusion: We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD) of
gene expression data, for regulatory module identification. The mSD method features a novel motif-guided
clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-
expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation.
The experimental results show that such a motif-guided strategy can provide context-specific regulatory modules
in both yeast and breast cancer studies.

Background
Transcriptional gene regulation is a complex process
that uses a network of interactions to [1]. A central pro-
blem remains the accurate identification of transcrip-
tional modules or gene sub-networks involved in the
regulation of critical biological processes [2]. For cancer
research, these sub-networks can help provide a signa-
ture of the disease that is potentially useful for

diagnosis, or suggests novel targets for drug interven-
tion. The biomedical research literature and several spe-
cific databases contain sequence information, gene
expression profiling data, and small scale biological
experiments that allow investigators to reconstruct gene
regulatory networks and explore the direct effects of
transcription factors on gene expression.
Recently, the bioinformatics community has explored

various computational approaches for transcriptional
module identification [3-7]. These approaches can be
classified into two major categories. The first category
uses clustering methods to explore the similarity in gene
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expression patterns to form gene modules. The second
approach uses projection methods to infer latent (hid-
den) components with which to group genes into mod-
ules. A growing literature documents attempts to
reconstruct gene networks by applying clustering meth-
ods [8,9] and their more sophisticated variants such as
statistical regression [10] and Bayesian networks [11].
While this line of work is important to help formulate
hypotheses, there are many limitations on using cluster-
ing methods for regulatory module inference. One com-
mon challenge is detecting the interactions between
transcription factors and their target genes based on
gene expression data alone. For regulatory module iden-
tification, it is critical to distinguish ‘co-regulation’ from
‘co-expression’, and to understand the relationship
between co-regulation and co-expression. Generally,
genes with highly homologous regulatory sequences (co-
regulation) should have a similar expression pattern (co-
expression). However, the reverse is likely not true; co-
expressed genes must not necessarily exhibit common
regulatory sequences [12]. Traditional clustering analysis
often returns clusters lacking shared regulatory
sequences, thus making the biological relevance of these
clusters relatively low for the identification of regulatory
mechanisms.
A group of projection methods from the second cate-

gory, including principle component analysis (PCA),
independent component analysis (ICA), and non-nega-
tive matrix factorization (NMF) [13-15], have also been
extensively applied for transcriptional module identifica-
tion. These methods decompose gene expression data
into components that are constrained to be mutually
uncorrelated or independent, and then cluster genes
based on their loading in the components. Since these
methods do not cluster genes based on their expression
similarity, they are better equipped to find co-regulated
gene modules. One major difficulty using such projec-
tion approaches is that the components usually repre-
sent the joint effects of many underlying transcription
factors. Thus, the components do not correspond to
individual known transcription factors (TFs), making the
biological interpretation of the components very
difficult.
To overcome the above-mentioned shortcomings, sev-

eral integrative methods have been proposed that inte-
grate TF-gene interaction data with gene expression
data. For instance, network component analysis (NCA)
has been recently developed to successfully estimate the
TF activities of regulatory networks using both ChIP-
on-chip and gene expression data [16]. Note that NCA
heavily relies on ChIP-on-chip data for network connec-
tivity information with which to define regulatory mod-
ules. Thus, the NCA scheme is not readily applicable to
many biological studies where adequate network

connectivity information is not available (due to lack of
adequate ChIP-on-chip data). To deal with this diffi-
culty, Sabatti and James [17] were among the first to
use motif information as the initial network topology,
subsequently adopting a Bayesian algorithm to recon-
struct regulatory modules. While theoretically elegant,
this approach needs to estimate the posterior probabil-
ity, a joint distribution of network topology and tran-
scription factor activity. Even using the Gibbs sampling
technique, it is a formidable task to estimate the joint
distribution when the number of samples is limited.
We now propose a novel approach, namely motif-

guided sparse decomposition (mSD), to identify co-regu-
lated transcriptional modules by integrating motif infor-
mation and gene expression data. The mSD method is a
Bayesian-principled method without the need to esti-
mate the joint distribution. Instead, a two-step approach
is used to first estimate transcription factor activity and
then regulation strength on the target genes. A motif-
guided clustering method is developed to help estimate
transcription factor activity by taking into account both
co-expression and co-regulation. A sparse decomposi-
tion step is then applied to estimate the regulation
strength of predicted regulatory networks. To evaluate
the performance of the proposed approach, we applied
the mSD method to simulated and real yeast cell cycle
data, showing an improved performance in identifying
three kinds of coherent modules associated with known
cell cycle transcription factors. We then applied our
approach to a molecular profiling study of estrogen
dependence in breast cancer cells, with the goal of reco-
vering condition-specific transcriptional modules related
to estrogen action. The results demonstrated that our
approach effectively finds important condition-specific
regulatory modules that are functionally relevant to
estrogen signaling pathways.

Methods
The overall scheme of the proposed mSD approach is
illustrated in Figure 1. We start by extracting motif
information from upstream DNA sequences of genes,
followed by a two-stage approach to integrate motif
information and gene expression data for regulatory
module identification. In the first stage, we use a motif-
guided clustering method for transcription factor activity
estimation by maximizing the motif support for co-
expressed gene modules. In the second stage, we use a
sparse decomposition method for regulation strength
estimation to enforce that the genes in a module are
likely regulated by a few transcription factors. Finally,
regulatory modules are reconstructed from the detected
active regulators and their target genes that exhibit large
regulation strengths. In this section, we will give a
detailed description of each major component in the
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mSD approach. Note that the mSD software package is
implemented and made available at http://www.cbil.ece.
vt.edu/software.htm.

Latent variable model
We adopt a latent variable model that has been used in
Liao et al. [16] and Kao et al. [18] to establish a link
between gene expression data and motif information.
The central theme of the model is that gene expression
measurements can be largely determined by the
unknown activities of transcription factors acting on
known binding motifs (TFs). Using log-ratios of gene
expression measurements, a simplified, yet biologically
justified, linear model can be formulated as follows [16]:

xpg =
∑

t
apt · stg or X = AS, (1)

where xpg is defined as the logarithm of the expression
ratio of gene g between data sample p and control sam-
ple, apt the activity level of TF t in sample p and stg the
regulation strength of TF t onto gene g. The log-ratios
of gene expression X Î Rm×N ,(N >> 1) are expressed as
a linear combination of log-ratios of TF activity (A Î
Rm×n ) weighted by their regulation strength (S Î Rn×N).
Note that m is the number of samples, N is the number
of genes, and n is the number of TFs.
In general, the number of TFs is much smaller than

the number of transcribed genes (n <<N) and most
genes are regulated only by a small number of TFs.

Figure 1 A block diagram of the motif-guided sparse decomposition (mSD) approach. The mSD approach consists of the following two
steps: (1) transcription factor activity estimation by motif-guided clustering and (2) regulation strength estimation by sparse decomposition.
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Hence, the matrix S that describes the regulation
strength between the TFs and their regulated genes is
sparse. Further, the number of TFs (n) is usually greater
than the number of samples (m), i.e., n >m , such that
Equation (1) represents an underdetermined linear sys-
tem (ULS). To obtain a sparse solution to this ULS,
we develop a two-stage approach to estimate transcrip-
tion factor activity (A) and regulation strength (S)
sequentially.

Transcription factor activity estimation
A generic approach for transcription factor activity esti-
mation is to use a clustering method to find representa-
tive genes whose expression profiles (columns of X) can
be utilized to estimate A [19]. For a theoretical justifica-
tion of the identifiability of A, please refer to Section 1.1
in the supplementary material. Many clustering techni-
ques have been proposed to cluster gene expression
data, such as k-means clustering [20] and self-organizing
maps [21], which are designed to find gene expression
patterns by grouping genes with similar expression pro-
files. Very recently, an affinity propagation (AP) algo-
rithm has been proposed for data clustering that shows
an improved performance [22]. Based on an ad hoc
pair-wise similarity function between data points, AP
seeks to identify each cluster by one of its elements, the
so-called exemplar. AP takes as input a collection of
real-valued similarities between data points, where the
similarity s(i, k) indicates how well data point k is suited
to be the exemplar for data point i. The goal is to maxi-
mize the similarity s(i, k) or equivalently, to minimize
the Euclidean distance [22], d(i, k) = ||xi - xk||

2, where
xi and xk are two column vectors of gene i and gene k,
respectively, in X.
However, direct application of the AP clustering tech-

nique to gene expression data will only give rise to co-
expressed gene clusters. To identify gene regulatory
modules, we need a clustering technique to integrate
motif information and gene expression data, aiming to
find co-regulated gene clusters with co-expressed pat-
terns. We here propose a motif-guided clustering
method to find a group of genes that not only is of simi-
lar expression pattern but also shares a common set of
binding motifs as much as possible.

Motif-guided gene clustering with a joint similarity
measure
To incorporate motif information, we propose a new
similarity measure, taking into account both expression
similarity and motif binding similarity, for the AP clus-
tering method. The motif information can be repre-
sented by a TF-gene binding strength matrix, W = [w(t,
g)], considering a set of n TFs binding onto a set of N
genes. Each element of W, i.e., w(t, g), denotes the

binding strength of TF t onto gene g. As a common
practice, the binding strength is usually approximated
by a position weight matrix (PWM) that contains log-
odds weights for computing a match score between a
binding site and an input DNA sequence [23]. For a
detailed description of how to generate the binding
strength matrix, please refer to Section S1.2 in the sup-
plementary material of this paper. Given the binding
strength of TF t onto gene i (w(t, i)) and that of TF t
onto gene k (w(t , k)), the joint binding strength of TF t
onto both gene i and gene k is proportional to w(t, i)×w
(t, k), assuming that these two binding events are inde-
pendent. Thus, for all possible TFs (TF t, t = 1,..., n)
binding onto gene i and gene k, it is reasonable to use
the sum of their joint binding strengths to measure the
likelihood of gene i and gene k being co-regulated by
the possible set of TFs (TF t, t = 1,..., n):

sm(i, k) =
n∑

t=1

w(t, i) × w(t, k). (2)

For motif-guided clustering, we propose the following
pair-wise similarity measure to simultaneously consider
the binding motif likelihood and gene expression simi-
larity:

d(i, k) = −(1 − λ)||xi − xk||2 + λsm(i, k), (3)

where l is a trade-off parameter that controls the con-
tribution from two different information sources: motif
information and gene expression data. When incorpo-
rated into an AP clustering method, the first term in Eq.
(3) is used to find a group of genes with similar expres-
sion pattern, while the second term estimates those
genes that should share a common set of TFs.
Ideally, the clustering result will generate a better

representation of the transcription factor activity that
underlies a co-regulated group of genes. However, both
motif information and gene expression data are noisy
because the binding motif is a very short DNA
sequence [24] and there is often a low signal-to-noise
ratio in gene expression measurements [25]. The impact
of the noises can be clearly observed in two extreme
cases: (1) the gene cluster resulting from (noisy) motif
information alone will show a noisy expression pattern;
(2) the cluster resulting from gene expression data
alone will often gain little support in terms of being
regulated by a shared set of motifs. Therefore, it is
important to understand the contribution of each data
source and assign its proper weight. The trade-off para-
meter l in Eq. (3) is used to alleviate the effects of
noise. In the following section, we will design an
entropy-based measure, in conjunction with a non-uni-
formity measure, to help find the optimal value for the
trade-off parameter l.
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Determination of the trade-off parameter
To measure the relative contribution of motif information
to gene clustering, we propose an entropy-based measure
to capture the property that a regulatory module should
be regulated by a unique set of active transcription factors.
For each gene cluster, an enrichment analysis is first per-
formed to identify the significant motifs associated with
the genes in the cluster. Specifically, a hyper-geometric
test is designed to calculate the significance value (p-value)
of a motif (motif t) enriched in the cluster. The testing
procedure can be described as follows. The null distribu-
tion is generated by randomly sampling the entire gene
population (with N genes) as many times as possible
(approximately 10,000 times) to form random gene clus-
ters. Let us assume that the gene cluster j under examina-
tion consists of Nj genes in which Nb genes have the
support of motif t, while in the entire gene population the
total number of genes that contain the motif t in their pro-
moters is NB. For the randomly generated clusters (each
with a size of Nj), we count the number of genes contain-
ing motif t in each cluster, denoted as ir, to finally form
the null distribution. The p-value for motif t enriched in
cluster j can then be calculated as follows:

p − value = P(ir ≥ Nb) =
min(NB,NJ)∑

ir=Nb

(
NB

ir

)(
N − NB

Nj − ir

)/(
N
Nj

)
(4)

With the p-value for each motif ’s enrichment, we calcu-
late the motif emission frequency [26] for all the motifs in
each cluster. For a particular cluster index j, j = 1,..., J, a
set of motif frequencies can be defined as θj = (θj1, θj2,...,
θjn), where θjt = -log10 pjt, t = 1,..., n and pjt is the p-value
obtained from Eq. (4). We then normalize θj by∑n

t=1 θjt = 1 to ensure that each element in θj falls in the
range of [0, 1]. Treating motif occupancy as a random
variable associated with an appropriate probability space,
we can quantitatively measure the ‘uncertainty’ of motif
occupancy in cluster j, from an information-theoretic per-
spective, by the following entropy definition [27]:

H(θ j) = −
n∑

t=1

θjtlog2(θjt). (5)

The entropy is then normalized to be in the range of
[0, 1] as divided by the maximum entropy (Hmax (θj)),
i.e., H̃(θ j) = H(θ j)/Hmax(θ j); the maximum entropy is
acheived when the motif occupancy is uniformly distrib-
uted. Summing over all the clusters, we can obtain the
mean entropy to measure the overall ‘uncertainty’ of
motif occupancy in the clusters as follows:

H̃ =
1
J

J∑
j=1

H̃(θ j). (6)

Conceptually, when motifs are randomly distributed
(with an assumed uniform distribution) among the clus-
ters, the mean entropy reaches its maximum; conversely,
when motifs are uniquely distributed for each cluster
(cluster-specific), the mean entropy reaches its
minimum.
To measure the relative contribution of gene expres-

sion data to gene clustering, we adopt a non-uniformity
measure [28] to characterize the co-expression nature of
the genes in a cluster. The non-uniformity of expression
pattern is measured as inversely proportional to the var-
iance of gene expression weighted by an appropriate
weighting factor as shown in the following equation:

NonU =
J∑

j=1

wjσ
2
j

σ 2
max

, (7)

Where σ 2
J is the variance of gene expression pattern

for cluster j(j = 1,..., j), σ 2
max the maximum variance for

all clusters, and wj is the weight of cluster j defined as
the proportion of genes to the entire gene population.
By varying the trade-off parameter l in Eq. (3), the AP

clustering method will generate different clustering
results. This outcome is predictable because both the
motif information and gene expression data are noisy
and will affect the clustering results. Particularly, when
l is small, the contribution from gene expression data
dominates, which will give rise to gene clusters with
small non-uniformity of expression pattern but large
entropy of motif occupancy (not cluster-specific). In
contrast, when l is large, the contribution from motif
information dominates, leading to gene clusters with
large non-uniformity but small entropy of motif occu-
pancy (cluster-specific). Therefore, it is important to
find the optimal l value to alleviate the noise impact on
finding regulatory modules. We propose to use the fol-
lowing cost function to combine the measure of motif
occupancy (Eq. (6)) and that of expression pattern (Eq.
(7)) as follows:

C(λ) = H̄(λ) + NonU(λ). (8)

Theoretically, the cost function C(l) is a U-shaped
function; when l reaches its optimal value, the cost
function C(l) reaches its minimum. In other words, by
minimizing C(l) we can find the optimal value of l to
take advantage of both the motif information and gene
expression data, while alleviating the noise impact on
gene clustering.
We can extend this cost function to a weighted form

by using a trade-off parameter μ: C(μ, l) = μH(l)+(1-μ)
NonU(l), where 0 ≤ μ ≤ 1. By controlling μ we can
obtain different sets of gene clusters with different
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degrees of motif occupancy and similarity in expression
pattern. To determine an appropriate parameter l, we
use a simplified version of the cost function C(μ, l):
C(l) = H(l)+NonU(l) (which is equivalent to the case
of μ = 0.5), to help find an appropriate balance between
motif occupancy and expression pattern for regualtory
module identification. A simplified assumption here
is that it is equally important to consider both co-
regulation (measured by the entropy for motif occu-
pancy) and co-expression (measured by non-uniformity
of expression pattern) for regulatory module identifica-
tion. Nevertheless, we use C(μ, l) to examine the
robustness of parameter l for the microarray data ana-
lyzed in this paper, ensuring that the selected parameter
l is not sensitive to a particular choice of parameter μ.

Regulation strength estimation
We use the sparse component analysis (SCA) approach
[19] to exploit a well-known biological constraint that
most genes are likely regulated by a few transcription
factors, and then to estimate the regulation strength
matrix S. Specifically, we have devised a projected
“active subspace” algorithm for regulation strength esti-
mation that can be described as follows:

(1) Initialize source S with a matrix W, which comes
from either Chip-on-chip data or TF-gene binding
strength matrix searched from TRANSFAC [29].

Loop
(2) Iterate for every column of S (which is corre-
sponding to each gene)

a. If sparseness constraints on the current col-
umn of S (denote sg) apply, project sg to be
desired sparse by making its L1 norm larger than
a predefined sparseness threshold, while having
the L2 norm unchanged. (For the definition of
sparseness, please refer to [30].)
b. In the projected space, detect approximately
which TFs are “active"; the term “active” is used
to refer to the TFs with “considerably nonzero”
strengths.
c. We assume that the first q TFs, {stg}, t = 1,... q,
have been found to be inactive. Find the new
estimation of sg by minimizing the cost function
�

q
t=1s2

tg subject to xg = Asg.
Until convergence
Notice that a major step in the above algorithm (Step
(2a)) requires a projection operator that enforces sparse-
ness by explicitly setting both L1 and L2 norms. This
operator, fortunately, has been found by Hoyer [30] to
incorporate sparseness constraint in the context of non-
negative matrix factorization (NMF). We use this pro-
jection operator in the SCA approach to find the closest

(in the Euclidean sense) sparse vector sg with a desired
L1 and L2 norm. The cost function in Step (2c) is
designed to minimize the regulation strength of “inac-
tive” TFs, while letting the regulation strength of
“active” TFs to change freely in order to fulfil the
imposed constraint xg = Asg . This can also be viewed
as a form of projection into an active subspace [31],
resulting in an elegant mathematical approach to obtain
the solution to a Karush-Kuhn-Tucker (KKT) system
(for more details, please see Section S2 in the supple-
mentary material).

Results and Discussion
Synthetic and real yeast data
To validate the proposed integrative approach, we
applied mSD to synthetic and real yeast cell cycle data
for regulatory module identification, and then compared
its performance with those of other approaches includ-
ing FastNCA [32] and sparse decomposition [19]. For
the synthetic data set, we used a network generator,
SynTReN [33], to produce a benchmark gene expression
data set based on a synthetic S. cerevisiae transcriptional
regulatory network. SynTReN generated 15 samples of
expression data with a set of 345 genes in different con-
ditions. The genome-wide location data (ChIP-on-chip
data) [7] were then used to provide the binding informa-
tion and these data were integrated with the gene
expression data to extract transcription factor activity
and estimate regulation strength.
To evaluate the performance of the mSD approach, we

compared its performance with those of other similar
methods, including FastNCA [32] and sparse decompo-
sition (SD) [19]. Performances were measured by Recei-
ver Operating Characteristic (ROC) analysis and the
area under the ROC curve (AUC). The ROC curve mea-
sures the sensitivity and specificity of a method by cal-
culating true-positive (TP) rate against false-positive
(FP) rate. To generate a ROC curve, we first ranked the
target genes for each TF according to their connection
strengths in S, and then we calculated the true and false
positive rates by running down the ranked gene list one
at a time. To investigate the impact of noise on the
respective performances of mSD and FastNCA, the
binding information was obtained from the ChIP-on-
chip data with different cut-off p-values (0.01, 0.05 and
0.1); a large cut-off p-value results in a high false posi-
tive rate in binding information (a high noise level).
In this experiment, we selected the following 11 well

known regulatory TFs: ARG80, DAL82, GCN4, GCR2,
HAP1, MIG1, RGT1, RTG1, RTG3, STE12 and XBP1,
to calculate the averaged TP rates and FP rates for ROC
analysis. Additional file 1, Figure S1 shows the ROC
curves of three different approaches and Table 1 sum-
marizes the AUCs of the ROC curves. For more analysis
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results, please refer to Additional file 1, Figure S2, Addi-
tional file 1, Figure S3 and Additional file 1, Table S1 in
the supplementary material, which show detailed perfor-
mance information on gene module identification for
several transcription factors. As can be seen from the
figures and tables, the mSD approach outperforms the
other two methods in identifying co-regulated genes in
all three cut-off p-values. Surprisingly, the performance
of FastNCA is worse than that of SD even though no
binding information is used in the SD approach. How-
ever, FastNCA largely depends on correct network
topology, assuming noiseless binding information. When
the noise level in binding information is relatively large,
the performance of FastNCA degrades to an unaccepta-
ble degree. In contrast, the mSD approach finds a subset
of target genes to reinforce the consistency between
binding information and gene expression data, limiting
the noise impact from both binding information and
gene expression data.
To further evaluate our algorithm, we applied the mSD
approach to a cell cycle data set obtained under the
condition of arrest of a cdc15 temperature-sensitive
mutant [34]. As a pre-processing step, we employed
KNNimpute [35] to fill in missing values and then iden-
tified 800 cell cycle-related genes as the gene subpopula-
tion to test the mSD approach. For the mSD approach,
we set the trade-off parameter l in Eq. (3) as 0.08 for
this experiment, since the cost function, C(l) (Eq. (8)),
reached its minimum at l = 0.08 (see Additional file 1,
Figure S4 in the supplementary material for the C(l)
curve). The modified cost function C(μ, l) can also be
found in Additional file 1, Figure S5 in the supplemen-
tary material, which supports the robustness of the
selected parameter l with respect to parameter μ. Since
there is no ground truth of target genes available for
this experiment, we used the functional enrichment of
regulatory modules to compare the performance of
mSD with that of another method, COGRIM [36].
COGRIM is derived from a Bayesian hierarchical model
and implemented using the Gibbs sampling technique.
COGRIM can help infer the activation or inhibition of
TFs acting on their target genes, with an integration of
microarray gene expression data, ChIP-on-chip data,
and motif information. The top GO enrichment p-values
were transformed to negative logarithm values and aver-
aged over all identified modules. The averaged

enrichment score for the mSD method is 3.900, which is
slightly better than the score for COGRIM (3.894),
demonstrating that the mSD method can help identify
functionally coherent gene clusters associated with spe-
cific TFs.

Breast cancer cell line data
We then applied the mSD approach to breast cancer cell
line data to help understand estrogen signaling and
action in breast cancer cells. Greater than 70% of inva-
sive breast cancers diagnosed each year in the U.S.
express detectable levels of estrogen receptor alpha (ER,
ER+) [37]. The most potent natural ligand for ER is
17b-estradiol, which can regulate the proliferation of
breast cancer cells and alter their cytoarchitectural and
phenotypic properties [37,38]. Antiestrogens, such as
Tamoxifen and Fulvestrant, are widely used in the treat-
ment of these breast cancers and they produce a signifi-
cant survival benefit for some patients. However, half of
these cancers will recur, and recurrent metastatic breast
cancer remains an incurable disease. It is, therefore,
clinically and biologically important to understand what
transcriptional programs regulate these recurrence
events [39,40].
To gain insights into the transcriptional programs that

drive tumor recurrence, we have collected and acquired
breast cancer cell line data in estrogen-induced and
estrogen-deprived conditions, respectively. The estrogen
induced data set is a time course microarray data set
obtained from the ER+, estrogen-dependent breast can-
cer cell line MCF-7, treated with 17b-estradiol (E2) [41].
The estrogen-deprived data set consists of a series of
breast cancer variants that closely reflect clinical pheno-
types of endocrine sensitive tumors [39]. The breast
cancer variants are also derived from the MCF-7 cell
line, including MIII cells and LCC1 cells. MIII cells
were derived directly from MCF-7 and became estrogen
independent and proliferate aggressively after six
months of selection in vivo in ovariectomized athymic
mice. LCC1 cells were derived from MIII following
further selection in vivo. Both cell lines remain ER+ and
exhibit an estrogen-independent but antiestrogen sensi-
tive phenotype [39,40].
We focused on twenty six breast cancer and estrogen

receptor (ER) related transcription factors, which are
listed in Table 2. This set of key transcription factors
were previously identified and known to be involved in
the estrogen receptor signaling (AP-1, CREB, ERa,
NF�B, STATs [42]); authentic cis binding sites in breast
cancer cell lines (C/EBP, Forkhead [43]); or overex-
pressed in estrogen receptor (ER)-positive breast tumors
(EGR-1 [44,45], ETF [46], MYB [47], p53 [48]). Mean-
while, we also included some motifs involved in cell
cycle or apoptosis (MYC/MAX [49], NFY [50], PBX1

Table 1 AUCs of mSD, SD and FastNCA methods,
respectively, under different cut-off p-values

mSD SD Fast NCA

cut-off p-value = 0.1 0.7160 0.6912 0.5707

cut-off p-value = 0.05 0.7799 0.6881 0.5891

cut-off p-value = 0.01 0.8024 0.6801 0.5547
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[51]). For each identified TF, a position weight matrix
(PWM) was chosen from the vertebrate non-redundant
profiles within the TRANSFAC database [29]. Further
motif information was obtained from published ChIP-
on-chip experiments [43], and we generated a final list
of twenty six transcription factors (Table 2).
The motif information was obtained from the

TRANSFAC database [29] and ChIP-on-chip experi-
ments [43]. All human promoter DNA sequences were
obtained from the UCSC Genome database [52]; we
searched 5,000 bp upstream from the transcription start
site (TSS). With all vertebrate position weight matrices
(PWMs) provided by the TRANSFAC 11.1 Professional
Database [29], the Match™ [53] algorithm was used to
generate a gene-motif binding strength matrix with cut
offs that minimize the false-positive rate.
For the mSD approach, we optimized the trade-off

parameter l in Eq. (3) by examining the cost function C
(l) (Eq. (8)) (see Additional file 1, Figure S6 in the sup-
plementary material for the detailed C(l) curves). As
shown in Additional file 1, Figure S7 in the supplemen-
tary material, the selected parameter l is robust against
the parameter μ in the modified cost function C(μ, l).
With the mSD approach to integrate motif information
and gene expression data, we identified several key regu-
latory networks associated with estrogen signaling.
Figure 2 shows the activities of five transcription factors
(AP1, ETF, ER, STAT, NF�B) in estrogen-induced and
estrogen-deprived conditions, respectively, that exhibit
distinctive patterns of regulation. Transcription factor
activities clearly show different actions in response to
estrogen induction (Figure 2(a)). V$AP1_Q4_01 was
activated within 1 hour after estrogen treatment; V
$ETF_Q6 and V$ER_Q6 were also activated early, but
showed a subsequent decrease in activity followed by a
second activation event by 24 hours; V$STAT_Q6
exhibited a response to estrogen induction within 2
hours. This STAT activity estimation correlates well
with previous findings that STATs are activated via the
tyrosine phosphorylation cascade after ligand binding
and stimulation of the cytokine receptor-kinase complex
[54]. One of the mechanisms by which ER signaling
occurs involves protein-protein interactions; activated
estrogen receptors interact directly with transcription
factors such as nuclear factor �B (NF�B), activator

protein-1 (AP-1), and specificity protein-1 (SP1), to acti-
vate gene transcription [55]. As shown in Figure 2(a), an
extended period of NF�B activation can be observed
from 4 hours to 12 hours, which could be explained, at
least in part, by such a mechanism.
Figure 2(b) shows the activities of these five transcrip-

tion factors in the estrogen-deprived condition. Activa-
tion of ER can be clearly observed in LCC1 cells, along
with activation of both ETF (V$ETF_Q6) and STAT (V
$STAT_Q6), suggesting that the additional in vivo selec-
tion has led to further adaptations in ER signaling in
these cells. To understand the mechanisms behind this,
we examined both transcript factor activity (A) and reg-
ulation strength (S) to gain some insights into condi-
tion-specific regulation programs, particularly, the
program in the estrogen-deprived condition for ETF and
STAT. For example, we examined the target genes of
EGFR-regulating transcription factor ETF (HUGO gene
symbol: TEAD2, V$ETF_Q6) to understand its regula-
tory role in estrogen-deprived condition; ETF is known
to stimulate EGFR transcription and might play a role
in the overexpression of this growth factor receptor
[46]. As expected, there is a large overlap between the
identified ETF target gene sets in the two conditions,
which are listed in Table 3 (see the supplementary
material, Additional file 2, for the target genes of the
other four TFs (AP1, ER, STAT, NF�B)). These genes
are enriched in the following Gene Ontology terms: ‘cell
adhesion’, ‘cell cycle process’, ‘negative regulation of
progression through cell cycle’, ‘regulation of kinase
activity’ and ‘regulation of transferase activity and
apoptosis’.
Notably, EGFR is among the overlapped genes, and

the expression of EGFR is upregulated in LCC1 cells.
We then searched the String Database to find direct
neighbors of EGFR in the protein-protein interaction
(PPI) network [56]. Figure 3(a) shows some of the puta-
tive ETF target genes and their PPI networks from the
String Database, which notably includes EGFR and sev-
eral direct neighbors of EGFR: CBL, RASA1, PTPN1,
SHC1, HBEGF, SRC, ERBB2, GREB2, PLCC1. Other
ETF target genes and their PPI networks can be found
in the supplementary material (Fig. S8).
Figure 3(b) shows the gene expression pattern of

EGFR and its direct neighbors under estrogen-deprived

Table 2 Twenty six breast cancer and ER-related transcription factors

V$AP1_Q2_01 V$AP1_Q4_01 V$CREBP1CJUN_01 V$CEBP_Q3 V$CEBPA_01

V$CEBPGAMMA_Q6 V$CREB_02 V$CREB_Q3 V$CREB_Q2 V$NFKB_Q6_01

V$SP1_Q6 V$ER_Q6 V$ETF_Q6 V$MYCMAX_03 V$STAT_Q6

V$STAT_01 V$EGR1_01 V$FOXJ2_02 V$FOXP1_01 V$MYB_Q3

V$P53_02 V$PBX_Q3 V$PBX1_03 V$NFY_Q6_01 V$NFY_01

V$CEBPDELTA_Q6

Gong et al. BMC Bioinformatics 2011, 12:82
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conditions. As we can see from the figure, the expres-
sion level of CBL was largely suppressed in the estro-
gen-deprived condition. Since CBL can promote the
ubiquitination and degradation of activated EGFR [57],
we hypothesize that EGFR expression is increased in
LCC1 cells due to both the activation of ETF and the
downregulation of CBL. Studies to explore these predic-
tions are currently in progress.
Overexpression and/or activation of the ErbB recep-

tors (ErbB1 = EGFR) may also promote proliferation,
motility, adhesion, and differentiation [58]. Recent evi-
dence has shown that increased growth factor (GF) sig-
naling augments the ligand (estrogen)-independent
activity of ER [59], which may partially explain the activ-
ity of ER (V$ER_Q6) in LCC1 cells as seen in Figure 2
(b). In addition, the PLC-Gamma (PLCG1) and the JAK-
STAT pathways are known to enhance the transcription
of genes that regulate cell proliferation. This could con-
tribute to the induced activity of STAT (V$STAT_Q6)
(see Figure 2(b)), since one of the important signaling
events activated by EGFR involves tyrosine phosphoryla-
tion of STAT. Stimulation of EGFR may induce tyrosine

phosphorylation of STAT1, STAT3 and STAT5, initiat-
ing complex formation of these STATs with JAK1 and
JAK2. JAKs are essential mediators of the interaction
between EGFR and the STATs, which then translocate
to the nucleus to stimulate gene transcription [60,61].
Importantly, we have recently shown that EGFR signal-
ing through p130Cas and the tyrosine kinase c-Src leads
to phosphorylation of STAT5B, and that this signal
transduction pathway induces Tamoxifen resistance in
MCF-7 breast cancer cells [62].
It is also important to validate the identified target

genes by biological experiments such as other breast
cancer cell line data and ChIP-on-chip experiments.
While many estrogen target genes have been identified
through expression microarray studies [63], the results
from ChIP-on-chip experiments are not currently com-
plete. Nonetheless, our list of ER target genes includes
the following known direct targets: TFF1, GREB1
[64,65]; VAMP3 [65,66]; PRKCSH, PLEC1, NT5C2,
C19ORF2, TMOD3, and FLJ11286 [65]. Furthermore,
Cicatiello et al. have recently performed a comprehen-
sive genome-wide analysis to investigate ERa target

Figure 2 Transcription factor activity estimated by the mSD approach. (a) Estimated activities of the five transcription factors (AP1, ETF, ER,
STAT and NF�B) in estrogen-induced condition. (b) Estimated activities of the five transcription factor bind sites in estrogen-deprived condition.

Gong et al. BMC Bioinformatics 2011, 12:82
http://www.biomedcentral.com/1471-2105/12/82

Page 9 of 16



Table 3 Target genes of ETF (V$ETF_Q6) in both E2-
induced and ER-deprived conditions

Probe Set
ID

GENE_
SYMBOL

Gene Name

200646_S_AT NUCB1 NUCLEOBINDIN 1

200690_AT HSPA9 HEAT SHOCK 70 KDA PROTEIN 9B
(MORTALIN-2)

201373_AT PLEC1 PLECTIN 1, INTERMEDIATE FILAMENT
BINDING PROTEIN 500 KDA

201573_S_AT ETF1 EUKARYOTIC TRANSLATION TERMINATION
FACTOR 1

201601_X_AT IFITM1 INTERFERON INDUCED TRANSMEMBRANE
PROTEIN 1 (9-27)

201753_S_AT ADD3 ADDUCIN 3 (GAMMA)

201842_S_AT EFEMP1 EGF-CONTAINING FIBULIN-LIKE
EXTRACELLULAR MATRIX PROTEIN 1

201910_AT FARP1 FERM, RHOGEF (ARHGEF) AND PLECKSTRIN
DOMAIN PROTEIN 1 (CHONDROCYTE-
DERIVED)

201984_S_AT EGFR EPIDERMAL GROWTH FACTOR RECEPTOR
(ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-B)
ONCOGENE HOMOLOG, AVIAN)

202088_AT SLC39A6 SOLUTE CARRIER FAMILY 39 (ZINC
TRANSPORTER), MEMBER 6

202235_AT SLC16A1 SOLUTE CARRIER FAMILY 16
(MONOCARBOXYLIC ACID TRANSPORTERS),
MEMBER 1

202295_S_AT CTSH CATHEPSIN H

202304_AT FNDC3A FIBRONECTIN TYPE III DOMAIN
CONTAINING 3A

202429_S_AT PPP3CA PROTEIN PHOSPHATASE 3 (FORMERLY 2B),
CATALYTIC SUBUNIT, ALPHA ISOFORM
(CALCINEURIN A ALPHA)

202602_S_AT HTATSF1 HIV-1 TAT SPECIFIC FACTOR 1

202730_S_AT PDCD4 PROGRAMMED CELL DEATH 4 (NEOPLASTIC
TRANSFORMATION INHIBITOR)

202826_AT SPINT1 SERINE PEPTIDASE INHIBITOR, KUNITZ TYPE 1

202979_S_AT CREBZF HCF-BINDING TRANSCRIPTION FACTOR
ZHANGFEI

203079_S_AT CUL2 CULLIN 2

203278_S_AT PHF21A PHD FINGER PROTEIN 21A

203358_S_AT EZH2 ENHANCER OF ZESTE HOMOLOG 2
(DROSOPHILA)

203456_AT PRAF2 PRA1 DOMAIN FAMILY, MEMBER 2

203493_S_AT CEP57 CENTROSOMAL PROTEIN 57 KDA

203607_AT INPP5F INOSITOL POLYPHOSPHATE-5-
PHOSPHATASE F

203855_AT WDR47 WD REPEAT DOMAIN 47

203869_AT USP46 UBIQUITIN SPECIFIC PEPTIDASE 46

204129_AT BCL9 B-CELL CLL/LYMPHOMA 9

204527_AT MYO5A MYOSIN VA (HEAVY POLYPEPTIDE 12,
MYOXIN)

204629_AT PARVB PARVIN, BETA

204710_S_AT WIPI2 WD REPEAT DOMAIN, PHOSPHOINOSITIDE
INTERACTING 2

204989_S_AT ITGB4 INTEGRIN, BETA 4

204995_AT CDK5R1 CYCLIN-DEPENDENT KINASE 5, REGULATORY
SUBUNIT 1 (P35)

Table 3 Target genes of ETF (V$ETF_Q6) in both E2-
induced and ER-deprived conditions (Continued)

205222_AT EHHADH ENOYL-COENZYME A, HYDRATASE/3-
HYDROXYACYL COENZYME A
DEHYDROGENASE

205258_AT INHBB INHIBIN, BETA B (ACTIVIN AB BETA
POLYPEPTIDE)

206231_AT KCNN1 POTASSIUM INTERMEDIATE/SMALL
CONDUCTANCE CALCIUM- ACTIVATED
CHANNEL, SUBFAMILY N, MEMBER 1

206574_S_AT PTP4A3 PROTEIN TYROSINE PHOSPHATASE TYPE IVA,
MEMBER 3

206604_AT OVOL1 OVO-LIKE 1(DROSOPHILA)

207038_AT SLC16A6 SOLUTE CARRIER FAMILY 16
(MONOCARBOXYLIC ACID TRANSPORTERS),
MEMBER 6

207844_AT IL13 INTERLEUKIN 13

208296_X_AT TNFAIP8 TUMOR NECROSIS FACTOR, ALPHA-INDUCED
PROTEIN 8

208754_S_AT NAP1L1 NUCLEOSOME ASSEMBLY PROTEIN 1-LIKE 1

208876_S_AT PAK2 P21 (CDKN1A)-ACTIVATED KINASE 2

209135_AT ASPH ASPARTATE BETA-HYDROXYLASE

209241_X_AT MINK1 MISSHAPEN-LIKE KINASE 1 (ZEBRAFISH)

209288_S_AT CDC42EP3 CDC42 EFFECTOR PROTEIN (RHO GTPASE
BINDING) 3

209354_AT TNFRSF14 TUMOR NECROSIS FACTOR RECEPTOR
SUPERFAMILY, MEMBER 14 (HERPESVIRUS
ENTRY MEDIATOR)

209736_AT SOX13 SRY (SEX DETERMINING REGION Y)-BOX 13

209872_S_AT PKP3 PLAKOPHILIN 3

209900_S_AT SLC16A1 SOLUTE CARRIER FAMILY 16
(MONOCARBOXYLIC ACID TRANSPORTERS),
MEMBER 1

209988_S_AT ASCL1 ACHAETE-SCUTE COMPLEX-LIKE 1
(DROSOPHILA)

210184_AT ITGAX INTEGRIN, ALPHA X (COMPLEMENT
COMPONENT 3 RECEPTOR 4 SUBUNIT)

210513_S_AT VEGFA VASCULAR ENDOTHELIAL GROWTH FACTOR

210854_X_AT SLC6A8 SOLUTE CARRIER FAMILY 6
(NEUROTRANSMITTER TRANSPORTER,
CREATINE), MEMBER 8

211097_S_AT PBX2 PRE-B-CELL LEUKEMIA TRANSCRIPTION
FACTOR 2

211527_X_AT VEGFA VASCULAR ENDOTHELIAL GROWTH FACTOR

212375_AT EP400 TRINUCLEOTIDE REPEAT CONTAINING 12

212467_AT DNAJC13 DNAJ (HSP40) HOMOLOG, SUBFAMILY C,
MEMBER 13

212594_AT PDCD4 PROGRAMMED CELL DEATH 4 (NEOPLASTIC
TRANSFORMATION INHIBITOR)

212739_S_AT NME4 NON-METASTATIC CELLS 4, PROTEIN
EXPRESSED IN

212837_AT KIAA0157 KIAA0157

212878_S_AT KLC1 KINESIN 2

213051_AT ZC3HAV1 ZINC FINGER CCCH-TYPE, ANTIVIRAL 1

213187_X_AT FTLL1 FERRITIN, LIGHT POLYPEPTIDE

213271_S_AT DOPEY1 DOPEY FAMILY MEMBER 1

213451_X_AT TNXB TENASCIN XB

Gong et al. BMC Bioinformatics 2011, 12:82
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genes by chromatin immunoprecipitation coupled to
massively parallel sequencing and expression data [67].
Comparing our gene list with their ChIP-seq and
expression data showed that we find family members or
isoforms of CLIC3, ELF3, RAB31, FKBP4, IGFBP4, and
SLC25A19 within their ChIP-seq data. Several genes
(CDT1, IGFBP5, YARS, IPO4, EPS8L1, GPR137) appear
in both our target gene list and their list of genes
responsive to 17b-estradiol. Currently, we are investigat-
ing several other transcription factors with biological
experiments including ChIP-on-chip experiments.
To provide further statistical evidence in support of

the identified ER target genes, we conducted several
additional analyses including statistical significance ana-
lysis, false discovery rate (FDR) calculation, gene set
enrichment analysis, and motif enrichment analysis. For

these statistical analyses, we selected two recently pub-
lished genomic analyses of transcription factor binding
of estrogen-regulated promoters as a benchmark [63,67];
we acknowledge the incompleteness of ChIP-on-chip
data for ER target genes across multiple cellualr con-
texts. Firstly, a statistically significant enrichment of ER
target genes can be observed in our ER target gene list,
as supported by the statistical significance (p-value =
3.59×10-06) calulated based on the assumption of a
hyper-geometric distribution in a comparison with the
ChIP-on-chip benchmark target genes. A low false posi-
tive rate is evident (FDR = 9.72×10-09) for the ER target
gene list identified by mSD.
To calculate the FDR, we first ranked all the genes

according to their computed binding strength in matrix S
to $ER_Q6 binding site; we then selected a ‘negative’ set
of genes with no binding connection with $ER_Q6 in
position weight matrix (PWM) to form a null distribution
of the binding strength. As in the mSD approach, we
assumed that the binding strength of target genes regu-
lated by a transcription factor roughly follows a Gamma
distribution, since most transcription factors likely regu-
late relatively few target genes. Thus, we calculated the p-
value for each gene by selecting the strongest binding
strength when compared with those obtained from the
null distribution. To properly determine a cut-off thresh-
old of the binding strength, we also controlled the FDR
for multiple tests based on the total number of genes in
the experiments [68]. We used the Benjamini-Hochberg
procedure [69] to compute the false discovery rate as fol-
lows. Letting pk represent the corrected p-value com-
puted for gene k, rk the rank of gene k sorted by the
p-values, and G the total number of genes in the experi-
ment, we calculated the false discovery rate for gene k as
FDRk =Gpk/rk. For our identified ER taget gene list, we
obtaned a low FDR (FDR = 9.72×10-09) corresponding to
a binding strength cutoff of 0.7.
We also used a Kolmogorov-Smirnov (KS) test to

evaluate the enrichment of ER target genes [70]. We
first ordered all the genes in our experiments according
to their computed binding strength in matrix S. We
then formed the distribution of the target gene set
within this ordered list by the KS nonparametric rank
statistic as described below [70]. First, we denote n the
total number of genes in the ordered ER target list, x
the number of overlapped genes between our inferred
target genes and the ChIP-on-chip benchmark data, and
y the number of non-ovarlepped genes. Second, we let
V(i) = y, if gene i is included in the overlapped genes;

V(i) = -x, if not; note that we have
n∑

i=1
V (i) = 0 from this

configuration. Finally, we define the KS rank statistic as

follows: KS−score = max
n∑

i=1
V(i) to conduct this

Table 3 Target genes of ETF (V$ETF_Q6) in both E2-
induced and ER-deprived conditions (Continued)

213505_S_AT SFRS14 SPLICING FACTOR, ARGININE/SERINE-RICH 14

213756_S_AT HSF1 HEAT SHOCK TRANSCRIPTION FACTOR 1

213757_AT EIF5A EUKARYOTIC TRANSLATION INITIATION
FACTOR 5A

213856_AT CD47 CD47 ANTIGEN (RH-RELATED ANTIGEN,
INTEGRIN-ASSOCIATED SIGNAL
TRANSDUCER)

214095_AT SHMT2 SERINE HYDROXYMETHYLTRANSFERASE 2
(MITOCHONDRIAL)

214437_S_AT SHMT2 SERINE HYDROXYMETHYLTRANSFERASE 2
(MITOCHONDRIAL)

214697_S_AT ROD1 ROD1 REGULATOR OF DIFFERENTIATION 1
(S. POMBE)

215735_S_AT TSC2 TUBEROUS SCLEROSIS 2

216017_S_AT NAB2 NGFI-A BINDING PROTEIN 2 (EGR1 BINDING
PROTEIN 2)

216080_S_AT FADS3 FATTY ACID DESATURASE 3

216237_S_AT MCM5 MCM5 MINICHROMOSOME MAINTENANCE
DEFICIENT 5, CELL DIVISION CYCLE 46 (S.
CEREVISIAE)

217693_X_AT LOC388335 SIMILAR TO RIKEN CDNA A730055C05 GENE

217928_S_AT SAPS3 CHROMOSOME 11 OPEN READING
FRAME 23

218807_AT VAV3 VAV 3 ONCOGENE

218887_AT MRPL2 MITOCHONDRIAL RIBOSOMAL PROTEIN L2

218889_AT NOC3L NUCLEOLAR COMPLEX ASSOCIATED 3
HOMOLOG (S. CEREVISIAE)

219829_AT ITGB1BP2 INTEGRIN BETA 1 BINDING PROTEIN
(MELUSIN) 2

220116_AT KCNN2 POTASSIUM INTERMEDIATE/SMALL
CONDUCTANCE CALCIUM- ACTIVATED
CHANNEL, SUBFAMILY N, MEMBER 2

221014_S_AT RAB33B RAB33B, MEMBER RAS ONCOGENE FAMILY

221926_S_AT IL17RC INTERLEUKIN 17 RECEPTOR C

222071_S_AT SLCO4C1 HYPOTHETICAL PROTEIN PRO2176

46947_AT GNL3L GUANINE NUCLEOTIDE BINDING PROTEIN-
LIKE 3 (NUCLEOLAR)-LIKE
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Figure 3 Identified target genes of EGFR-specific transcription factor (ETF) in estrogen-induced and estrogen-deprived conditions. (a)
Yellow diamond: target genes of ETF; purple circle: direct neighbors of the target genes from protein-protein interaction (PPI) data. (b) Gene
expression pattern of EGFR and its direct PPI in estrogen-deprived condition.
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statistical test based on a permutation test [71]. For our
ER target gene list, the KS score (KS_score = 208) is sig-
nificantly higher than the scores in the null distribution
based on 10,000 randomly selected gene sets of the
same size as the inferred ER target genes (with a statisti-
cal significance of p-value = 0.0099; see Fig. S9 in the
supplementary material).
We evaluated the enrichment of ER binding sites in

the promoters of target genes identified by the mSD
approach using TRANSFAC [29]. A motif enrichment
analysis procedure was used based on a permutation
test [72], which can be summarized as follows. Given a
gene set S extracted by any computational method such
as the mSD approach, a statistic to measure the enrich-

ment of a specific motif f is defined as ef =
∑
g∈S

mgf ,

where m is the motif binding score as defined by both
matrix similarity score and core similarity score [29,72].
To calculate the statistical significance (p-value), we
need to form a null distribution. The null hypothesis is
that the gene set is randomly generated from the gene
population and there is no significant enrichment of the
motif f. We randomly select gene sets with same size of

S from the baseline gene population, and repeat B times
to generate the corresponding null statistic enrichment

score e0b
f , for b = 1,..., B. The null hypothesis distribution

is assumed to be symmetric in this study. The p-value
can be obtained for each gene set by calculating the
probability that a null gene set has a larger statistic than
the observed statistic. Mathematically, the p-value can
be calculated by

pS =
numberofmembersin{b : e0b

f > ef , b = 1, . . . , B}
B

. By

comparing our identified ER target gene list to a ran-
domly selected gene list (repeated 10,000 times), we
clearly demonstrated a statistically significant enrich-
ment of ER binding site in the identified ER target
genes (p-value < 10-04). The distribution of $ER_Q6
binding site among the identified ER target genes is
shown in Figure 4, along with the gene expression pat-
tern of these ER target genes in MCF-7 cell line data.

Conclusions
Traditional clustering methods have been widely used
for gene module identification by searching for similar

Figure 4 Expression pattern and $ER_Q6 binding distribution of ER target genes in estrogen-induced condition (MCF-7 cell line). (a)
The identified ER target genes show a consistent gene expression pattern of either being early-induced (≤ 4 hours) or late-induced (4 - 24
hours) by estrogen. (b) 52 out of 68 ER target genes have at least one $ER_Q6 binding site.
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patterns in gene expression data. Clustering methods on
gene expression data alone can only provide co-
expressed gene modules. The expression pattern of
genes in the same cluster may be correlated for reasons
other than co-regulation. To identify gene regulatory
modules, it is important to incorporate transcription fac-
tor binding information based either on ChIP-on-chip
data or on motif information. The proposed method,
namely, motif-guided sparse decomposition (mSD), is an
integrated approach to combine gene expression data
and binding information for regulatory module
identification.
The main challenge is that the level of noise is high in

both of the data types to be integrated. If a simple inte-
gration strategy is used, the method will result in many
false positive target genes due to noise. Two strategies
were developed in our mSD approach to mitigate the
effects of noise impact on target gene identification.
Firstly, an affinity propagation (AP) clustering method
[22] is used to estimate transcription factor activity by
clustering gene expression data in conjunction with
binding information. Secondly, a sparse component ana-
lysis (SCA) method [19] is applied to estimate regulation
strength by exploiting the constraint that most genes are
regulated by only a few transcription factors. Since a
gene cluster formed using an AP method reflects a simi-
lar pattern (from the gene expression data) and a shared
regulator (from the binding information), the transcrip-
tion factor activity (TFA) estimated from the cluster is a
better starting point for regulatory module identification.
Using a SCA method and the improved TFA estimates
further refines the gene cluster by estimating the regula-
tion strength of a particular transcription factor.
The mSD approach has been developed and imple-

mented as follows. Binding motif information is initially
used to define potential target genes, providing prior
knowledge of the regulatory network topology. A sparse
latent variable model is then used to integrate gene
expression data and identify which of the potential tar-
get genes are actually activated by transcription factors.
The mSD approach was implemented as a two-step
algorithm to perform (1) transcription factor activity
estimation, and (2) regulation strength estimation. In
the first step, we start to integrate binding motif infor-
mation and gene expression data to identify co-regulated
gene clusters. A motif-guided gene cluster method was
developed and used to find the gene clusters, based on a
joint similarity measure from both gene expression data
and motif information. To limit the impact of noise on
gene clustering performance, the contribution of each
data type to clustering is quantified. The optimal trade-
off between data sources can then be determined by
minimizing a cost function taking into account the fre-
quency of motif occupancy and non-uniformity of

expression pattern. Subsequently, we use a sparse
decomposition method for regulation strength
estimation.
Unlike the NCA method [16] that assumes the net-

work topology derived from ChIP-on-chip data or motif
information is known without error, we consider both
network configuration and connection strength estima-
tion as integrative components of the decomposition
method. The use of prior knowledge of binding motif-
information provides a solid starting point. As in Sabat-
ti’s work [17], we also incorporate a sparse constraint to
achieve a biologically meaningful representation of regu-
latory networks. The experimental results on synthetic
and real yeast data have demonstrated that our method
can effectively identify the target genes of transcription
factors. The application of mSD to breast cancer cell
line data further revealed condition-specific regulatory
modules associated with estrogen signaling and action
in breast cancer, which are consistent with known gene
functions in this cellular context.
The current work represents an important step toward

integrating available biological information for recon-
structing complex biological networks. This goal will be
better accomplished by incorporating an analysis of the
synergistic effect of regulators into the proposed
method. Combinatorial analysis may help discover the
complex interplay between different regulators in order
to assemble a complete map of regulatory networks for
complex biological systems.

Additional material

Additional file 1: Supplementary material. Supplementary material
includes supplementary method, tables and figures.

Additional file 2: Target genes of four transcript ion factors (i.e.,
AP-1, ER, STAT and NF�B), respectively. The target gene lists can be
found in ‘Target_Genes_TFs.xls’.
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