
CHARTMAKER: A "True Consultant" Expert System for Designing Charts

by

Thomas Aaron Shulok

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fuliillment of the requirements for the degree of _

Master of Science

in

Computer Science and Applications

A
VAPPROVED:/\

‘” Ii
·wiwaOU

lohn W. Roach, Ch ' an _

¢/
ig Q, „·

” AL
1 C2

Sallie M. Henry Har A. Kurstedt

June, 1988

Blacksburg, Virginia

CHARTMAKER: A "True Consultant" Expert System for Designing Charts

by

Thomas Aaron Shulok

John W. Roach, Chairman

Computer Science and Applications

(ABSTRACT)

I
Expert system technology has produced systems that perform heuristic classification. These sys-

tems solve problems of a type determined by the knowledge engineer and the expert at system de-

sign time. A 'true consultant/’ on the contrary, applies domain knowledge to solve a problem not

previously seen. For example, a graphic design consultant must accept the statement of almost any

problem from a client and turn it into a visual design. This thesis reports the successful con-

struction of the first such true consultant for a well~understood domain: the visual design task of
4_

chart construction. The system leads a client in a dialogue to define a problem in the client’s terms

and then maps the problem representation into a knowledge base for constructing charts. Exten-

sions of the technology reported in this thesis may aid the creation of a new class of expert systems.

Acknowledgements

Acknowledgements iii

Table of Contents

1.0 Introduction .. 1

_ 1.1 Simple Example ... 3

2.0 Literature Review ... 11

2.1 Problem Definition in Artificial Intelligence 12

2.1.1 Logical Calculi .. I4

2.2 The Design Domain ... 16

2.2.1 Design Methods ... 17

2.2.2 Design Theory .. 20

2.2.3 Design Theory for Charts .. 22

2.3 Eliciting Information from the Client 25

2.3.1 Natural Language .. 26

2.3.2 Personal Construct Theory ... 27

2.3.3 Content Analysis ... 30

2.3.4 System Dynamics Modelling .. 31

2.4 Survey of Contemporary Expert Systems 32

2.4.1 Diagnostic Systems ... 34

Table of Contents iv

2.4.2 Interpretation Systems ... 35

2.4.3 Design and Configuration Systems 36

2.4.3.1 R1 .. 37

2.4.3.2 VT .. 38

2.4.3.3 Dominic .. 38

2.5 Conclusions ... 39

3.0 Problem Analysis ... 40

3.1 The True Consultant ... 41

3.1.1 The Nature of the True Consultant’s Problems 43

3.2 Technical Problems with a True Consultant 46

3.2.1 The Representation Pipeline .. 46

3.2.2 Situation Definition .. 49

3.2.3 Goal Elicitation ... 50

3.2.4 Application of Domain Knowledge 51

3.3 Conclusions ... 51

4.0 Problem Solution: Problem Definition 54

4.1 Personal Construct Theory .. 55

4.1.1 Problems with Personal Construct Theory 56

4.2 System Dynamics Modelling ... 58

4.2.1 Modifications to the System Dynamics Paradigm 63

4.3 Implementation .. 64

4.3.1 The Situation Model 65

4.4 Conclusions ... 67

5.0 Problem Solution: Goal Elicitation 70

5.1 Background Knowledge~......... 71

Table of Contents v

5.2 Application of Background Knowledge: Focusing the Analysis 71

5.3 Implementation .. 73

5.4 Conclusions ... 80

6.0 Problem Solution: Rendering ... 82

6.1 Application of Background Knowledge: Chart Selection 83

6.2 Integrating Data with the Chart ... 85

6.3 Implementation .. 85

6.4 Conclusions ... 92

7.0 Results ... 93

7.1 Example One: Comparison .. 93

7.2 Example Two: Trend .. 99

7.3 Example Three: Relationship .. 103

7.4 Example Four: Relative Comparison 104

7.5 Conclusions .. 108

8.0 Conclusion ... 1 12

8.1 Ramiiications ... 1 13

8.2 Shortcomings in Other Domains 114

8.3 Future Work ... 115

8.3.1 Alternative Domains ... 116

8.3.1.1 Airline Reservation Agent 116

8.3.1.2 Carrier Air Traffic Control 117

BIBLIOGRAPHY ... 122

Appendix A. User Manual for CHARTMAKER 126

Table of Contents vi

A.l Model Construction .. 126

A.2 Goal Extraction ... 127

A.3 Data Integration ... 128

A.4 Chart Revision .. 128

Appendix B. Code Listings for CHARTMAKER 130

Vita .. 187

Table of Contents vii

List of Illustrations
u

Figure 1. The Problem Model for Sales Example 7

Figure 2. The Goal Model for Sales Example 8

Figure 3. The Rendering Model for Sales Example 9

Figure 4. The Rendered Chart for Sales Example 10

Figure 5. System Dynamics Model of Magazine Publishing 33

Figure 6. Design Methodology and Cl·IARTMAKER’s Architecture_...... 53

Figure 7. System Dynamics Model in Political Science 59

Figure 8. System Dynamics ir1 Inventory Management 60

Figure 9. System Design for CHARTMAKER 66

Figure 10. Problem Model for Radio Data 68

Figure ll. The Generic Problem Model 74

Figure 12. The Problem Model Grouped by Key Concepts 75

Figure 13. The Abstracted Problem Model 76

Figure 14. Goal Model For Radio Data Example (Comparison) 78

Figure 15. Goal Model For Radio Data Example (Relationship of Variables) 79

Figure 16. Rendering Model for the Radio Data Example (Comparison) 88

Figure 17. Rendering Model for the Radio Data Example (Relationship) 89

Figure 18. Rendered Chart for the Radio Data Example (Comparison) 90

Figure 19. Rendered Chart for the Radio Data Example (Relationship) 91

Figure 20. Problem Model for Magazine Publishing Example 94

Figure 21. Goal Model for Magazine Publishing Example (Comparison) 96

List of lllustrations viii

Figure 22. Rendering Model for Magazine Publishing Example (Comparison) 97

Figure 23. Rendered Chart for Magazine Publishing Example (Comparison) 98

Figure 24. Goal Model for Magazine Publishing Example (Trend) 100

Figure 25. Rendering Model for Magazine Publishing Example (Trend) 101

. Figure 26. Rendered Chart for Magazine Publishing Example (Trend) 102

Figure 27. Goal Model for Magazine Publishing Example (Relationship) 105

Figure 28. Rendering Model for Magazine Publishing Example (Relationship) 106

Figure 29. Rendered Chart for Magazine Publishing Example (Relationship) 107

Figure 30. Goal Model for Magazine Publishing Example (Rel. Comparison) 109

Figure 31. Rendering Model for Magazine Publishing Example (Rel. Comparison) 110

Figure 32. Rendered Chart for Magazine Publishing Example (Rel. Comparison) 111

Figure 33. The Indirect Consultation Model 118

Figure 34. The Direct Consultation Model 119

List of Illustration: ix

1 .0 Introduction

A "true consultant," in the sense used in this thesis, allows a client to define the problem of interest

and then uses general knowledge about the problem domain to solve the client’s problem. For

example, when a student brings a problem to a programming consultant to get help with a bug, the

consultant already knows a great deal about programming and the language used by the student

but may never have seen the particular program in question. Before the consultant can provide any

help, the prograrnmer must first explain what the program is supposed to do, how the bug manifests

itself, and perhaps the status of certain variables at the time that the bug appears. The client’s

problem is not completely defined before the actual consultation begins. By contrast, in typical

expert system applications, all the problems that the system can handle are defined during the

knowledge-engineering phase, and the system produces advice by following a decision tree guided

by a user’s answers to a set of pre-defined questions.

Without an adequate problem definition phase which allows the client a reasonable latitude of

expression, it will be impossible to construct a programming consultant or any other consultant that

relies heavily upon the user’s conception and description of a problem. The cause for this failure

centers upon a weakness in a fundamental theoretical aspect of expert system design: knowledge

about problems worth solving (including problem definition) and background knowledge of the

domain itselfhave been combined in the primary representation teclmology of expert systems, rules.

Introduction 1

[Aikins, 1983] suggests that rules combine knowledge and control in a detrimental fashion since

rules contain both the knowledge about the domain as well as the underlying sequence of the

consultation. The discovery that rules (and rule/frame systems, too) combine diäerent forms of an

expert’s knowledge is of much greater interest. Without a solid representation framework upon

which to accurately build a definition of the client’s problem, no expert system will ever attain the

status of a ’true consultant'.

While conventional expert systems rely exclusively on if/then rules, this thesis explores and devel-

ops an alternative approach to building expert systems: building a user-directed problem model and

then mapping that model into background domain knowledge. By creating a problem model and ‘

avoiding reliance on some variation of tree structures typical of current expert systems, more of the

user’s view and intent can be captured, thus expanding the role of expert systems into a much
‘

broader range of application.

More generally, this thesis hypothesizesthat the expert consultation problem will be solvable not

by some unifying theory of representation, but by classifying problems into broad categorizations

such as design problems, diagnosis problems, discovery problems, etc. instead of attempting to fit

all problems into some generic representation, our theory suggests that the model of expertise

should reflect the intrinsic nature of the problem domain. For example, a theory of diagnostic

problems might include a well-known set of problems (bugs) and fixes, or a technique to compare

intended versus actual behavior for problems not part of the problem set (classification scheme).

A natural choice for diagnostic problems is some hierarchical structure traversed to find a solution

and a model·based component for harder problems. Other problem areas require a different theory.

Design problems, for example, are too 'open-ended" to permit codification in a decision tree.

Moreover, design problems are usually more 'human-oriented' in that individual preferences play

an important part in the consultation; the same situation may be perceived and thus deüned dif-

ferently by different people. Any effective model in this domain must possess flexibility sufiicient

to account for these perceptual differences, which -- by their nature ·- prohibit an exhaustive or

reasonably complete codification of knowledge prior to a consultation. To achieve this end, we

Introduction 2

explore the construction of a problem definition framework for a particular design problem area;

in the area of graphic arts we have built a chart·construction system for numerical data called

CHARTMAKER. The charting domain provides useful insight into the design domain and serves

as an adequate vehicle for demonstrating the capabilities of the automated true consultant. More-

over, the charting domain for numerical data is well-understood [Spear, 1969] [Tufte, 1983]]Enrick,

1972] and less subjective than other design areas such as architecture, so it avoids the detailed

complexity which could obscure the basic theoretical issues that are the focus of this thesis.

1. I Simple Example

A brief example will help illustrate the basic principles of the automated design consultant. Con-

sider a user who is making a presentation to the salespeople in his division. He wants to increase

his division’s sales by implementing a new bonus incentive program; however, he is not sure how

to best graphically convey the message that the salespeople can increase their income if they increase

their sales.

The first step in the consultation is to create the problem model. At the outset of a consultation

with CHARTMAKER, the user is presented with a menu that allows him to construct a logical

relationship diagram showing the basic concepts of the problem model and how they relate to one

another:

- ADD a concept to the model

- DROP a concept from the model

- LINK two concepts (causal)

· SNIP (delete) a link

· DISPLAY current problem model

introduction 3

I
I

- FINISH building the model

After some consideration, the user decides his situation consists of four basic issues: profit, bonus,

sales, and sales force. He then ADDs these concepts to the model. After further consideration,

he determines exactly how these concepts affect one another. In his estimation, the sales force has

a direct impact on sales, and sales in turn have a direct impact on company profit. Moreover,

company profit has a direct influence on the amount of the bonus paid to ·· and having an obvious

effect on ·- the salespeople. He adds these causal influences to the model by LINKing the concepts

together. If he wishes to see what the model looks like, he can DISPLAY it. The relationships

are listed by the concepts they affect. For a given concept, both the 'influences' and the 'is influ·

enced by' links are given. The diagram of the situation model is shown in Figure l on page 7.

Once the user is satisfied with the model, he selects the FINISH option, thus completing the first

phase of the consultation. He is then prompted to identify the key concepts of the model. A key

concept is one that the user really wishes to emphasize in the presentation. For the example

problem, the user decides the key issues in the presentation are both the sales and the bonus, and

so chooses these as the key concepts. Once the key concepts are identified, the automated con-

sultant investigates how the key concepts affect one another by analyzing the transitive closure of

influence in the original model and producing a reduced model consisting of the original situation

model with highlighted key concepts and their derived interrelationships (Figure 2 on page 8).

From the reduced model, the system then determines exactly what the user is trying to demonstrate.

Since the concepts have mutual causation links (after transitive reduction of the initial model), the

implied goal is the ’relationship of two variables'. This is intuitively satisfying since a relationship

chart will illustrate the mutual causal effect of two entities. For example, a chart showing the re-

lationship between boiling point and pressure shows the impact a change in one entity has on the

other. If the causation effect transpires in only one direction, a relationship situation is nonetheless

implied. For example, a chart showing the impact of years of education on annual salary is still

Introduction 4

an instance of the relationship of variables, but the causality is unidirectional. In this case, number

of years of education is the independent variable, so it would be automatically labelled on the x axis.

Before rendering a chart, CHARTMAKER needs to elicit the raw data from the user.

CHARTMAKER uses the key concepts of the model to form a data pattern or template, and the

user enters the data one line at a time. For the sales example, the data pattem is:

bonus sales

and the user enters:

100 30000
‘ 150 30500

200 31000

230 31500

250 32000

260 32500

From the goal model and the raw data the automated consultant creates a rendering model. The

rendering model (Figure 3 on page 9) contains chart-specific information, such as axis labels, in-

terval spacing, and even the particular type ofchart to be constructed. In constructing the rendering

model, the system relies on background charting knowledge. For example, even when the system

knows that it is plotting a trend-type chart, it must still decide between a line chart and a column

chart since the nature of the raw data often indicates a particular chart type. In this case, the de·

cision depends on the number of sampling intervals, and if only a few intervals are available, the

automated consultant will select a column chart.

Introduction 5

The primary issue in this thesis is the application of background knowledge to a freely-defined

problem. To accomplish this, the 'true consultant' approach focuses on the separation ofdifferent

types of knowledge and the structure of the expert’s domain. While a conventional expert system

has all its knowledge contained in if/then rules, the true consultant has knowledge about inter-

viewing clients, focusing on the appropriate areas of concern for a given problem, and finding sol-

utions by classifying problems. By enhancing the expert system's knowledge, the client can describe

his problem with greater independence from the preprogrammed approaches that dominate the field

today and communicate with the expert system much as if it were a human expert. The design

domain helps illustrate the necessity of a situation model while the charting domain limits the

complexity of underlying design issues which are not well-understood. By designing the system to

follow supporting domain methodology (as determined by actual experts), the expert system be-

haves more like a human expert since they both share the same type of information about the do-

main. Incorporating this expertise into an expert system requires an understanding of the human

expert’s expertise -- how he approaches a problem situation, how he defines the client’s objectives,

and how he synthesizes a solution. Once these principles are derived, the expert system can be built

based on these domain principles, in effect 'building" a new expert. Success in a simpler facet of

the design domain lays the framework for the entire class of design problems. The approach pre-

sented in this thesis may be expanded to incorporate more complex areas of design based on more

complex situational models and more detailed background knowledge.

Introduction 6

P
P

bonus

sales 4——————— sales force

Figure l. The Problem Model for Sales Example

Introduction 7

l

Efäbl4-——— sales f¤r¤¤==

Figure 2. The Goal Model for Sales Example

introduction 8

relationship of
variables

X · component Y - component

no-fill
conünuous

sales bonus

30000 30500 . . . 32500

Figure 3. The Rendering Model for Sales Example

Introduction 9

2.0 Literatme Review

The foundation of this thesis draws from several diverse areas. The fundamental contribution of

this work is a new approach to computer-based problem definition and solution. The motivation

for this work derives from the ongoing difticulty in defining a human problem or situation in a

manner that a computer can both understand and manipulate, yet retain all the information vital

to the actual problem. Already, a tremendous amount of theoretical and practical work has been

devoted to this particular facet of artificial intelligence (Al), and any new contribution must be

measured against previous work -· both theoretical and practical. Beyond basic Al theory, one

must consider generic design theory. Since the true consultant paradigm discussed in this thesis is

intended for the design domain, it should reflect basic design considerations as well. Finally, the

software implementation of this approach operates in the charting domain, so some consideration

is given to more specific design issues concerning chart types and their suitability for given contexts.

Literature Review ll

2.1 Problem Definition in Artüicial Intelligence

At this juncture, one might wonder why more 'human-like" computer systems are not currently

in use. The primary reason centers on the theoretical basis of knowledge representation -- that is,

if the system is to behave like a human, it must store its knowledge in some analogous manner.

The knowledge representation problem is not easily overcome. By definition, knowledge repre-

sentation involves the codification of information to correspond to some state of the world. The

goal of AI is to have an intelligent machine reason with and draw new conclusions from these

symbolic representations. So far, all current schemes fail to truly fulfill this deceptively simple goal.

The earliest attempts at formalization of knowledge can be traced back to the time of Leibniz who _

used predicate calculus to represent and manipulate ideas. The explicit approach has endured and

is best seen in today’s knowledge·based systems which employ explicit knowledge bases and logcal
i

rules of inference to reach conclusions. The popularity of explicit formulation is best expressed by

Brian Smith’s Knowledge Representation Hypothesis:

Any mechanically ernbodied intelligent process will be comprised of structural ingredients that a)
we as external observers naturally take to represent a propositional (my emphasis) account of the
knowledge that the actual overall process exhibits, and b) independent of such external semantical
attribution, play a formal but causal and essential role in engendering the behaviour that manifests
that knowledge [Smith, 1982].

lf a system is to have an explicit knowledge base, it must have some well-defined language to ex-

press that knowledge as well as meta-statements, or rules of inference, to combine and transform

statements into other statements. Moreover, a successful system should also be able to derive im-

plicit knowledge from the representation ·· automatically drawing inferences from the structure of

the knowledge. An intelligent system’s power rests in its knowledge representation scheme which

details the knowledge of its domain. The representation problem can be reduced to three primary

areas: the representation language, the inference regime, and the domain knowledge. This deline-

ation, however, does not obviate the problem. While the areas may be well defined, the approach

to take in any of them is not. Consider, for example, the role of predicate calculus in knowledge

representation. While predicate calculus may work well in the realm of symbolic logo and math-

Literature Review iz

l

ematics, its application in knowledge representation is not as straightforvvard. The aim of know-

ledge representation is to capture the semantics of knowledge -- natural language concepts and

plausible psychological models expressed in the language. The core of the belief management

problem lies in the derivation of implicit beliefs from explicitly stated knowledge. The question of

how the knowledge should be represented is related to where the knowledge comes from and how

it is acquired. There are three fundamental reasons why these areas are related:

l. because the chosen representation may affect the acquisition process

2. because the acquisition process can suggest useful representations (tools exist that build up

knowledge structures from dialogs with human experts), and

3. because it is possible that someof the knowledge that a system is to use should stay in the form

in which it is available. [Tanimoto, 1987]

Since knowledge acquisition is an integral part of knowledge representation, an effective represen-

tation strategy should exhibit some attention to these concems. While the ability to store and

manipulate knowledge represents a fundamental human ability, it remains a major point of diffi-

culty in knowledge representation, and thus, effective expert system design.

This difficulty manifests itself as several areas of concem. Expressive adequacy focuses on the se-

mantic content conveyed by the representation. Reasoning efliciency deals with the system’s ability

to draw inferences from its explicitly represented knowledge. Typically, thenioregexprejnrigz
language is, the lower its efficiency. Incompleteness involves the system’s ability to cope with

underspeciüed situations. While validation is an important issue in knowledge representation, some

systems employ non—deductive reasoning techniques, and it can be difficult to validate the system’s

reasoning behavior since it cannot be formally verified. Finally, when representing certain agents,

it is also necessary to reconcile non-concrete issues like their beliefs, attitudes, and dispositions.

Literature Review I3

There are, of course, other issues, but these are particularly relevant to this thesis [Levesque,

Brachman 1985].

Since there are many diverse concems surrounding the knowledge representation problem, it is not

surprising to find a variety of proposed solutions which follow Smith’s hypothesis in that the

underlying representational structure defines a problem in propositional terms. Methods that em-

ploy formal logic are obviously propositional in nature, but even problem representation structures

such as semantic nets that appear to be fundamentally diüerent, are still based on a propositional

foundation.

2.1.1 Logical Calculi

Formal logic has formed the cornerstone of knowledge representation in contemporary axtificial

intelligence. The majority of knowledge representation methodologies employ some form oflogical

calculus. The mathematical nature of formal logic permits formal verification of the knowledge

base. Moreover, formal logic has an extensive theoretical framework and has been used for centu-

ries to represent concepts and relationships between them [Tanirnoto, 1987].

Unfortunately, formal logic is no panacea for the knowledge representation problem. Formal logic

is an excellent classification system, but provides no facility for exceptions or defaults. While clas-

sification is vital to knowledge representation, ex/gepuonsand defaults are commonplace in the real

world, and an effective representation scheme must have some facility to express them. Associated

with the problems of exceptions and defaults is the necessity to explicitly express all the system’s

knowledge -— a tedious, often difiicult process. Beyond this, there are also problems in determining

what the system actually knows. The closed-world assumption underscores a major deficiency of

formal logic in knowledge representation: if a concept is not explicitly coded into a system’s

knowledge base, does the system assume the concept is false or does it recognize that it doesn’z know

Literature Review 14

if the concept is true or false? If the system does the latter, then it must have explicit knowledge

of everything it knows to be false, and if it does the former it risks inconsistency since currently

unknown facts may be derived later. Additionally, formal logc can represent only propositions that

are either true or false, so concepts such as 'possibly" or "maybe' that are common in the real world

cannot be expressed as logcal statements. In spite of its shortcomings, formal logo remains the

principal basis for knowledge representation, primarily because no other formal system exists.

Formal logic is the foundation for most contemporary knowledge representation techniques:

predicate calculus, rule bases, frames, semantic nets, and modal logics. Predicate calculus represents

information as variables, quanitifiers, and predicates, and it is an attractive choice because well-

known inference techniques can be applied to the representation to produce formally verifiable re-

sults [Chamiak, 1986] [Nilsson, 1980]. Rule bases are composed of if/then production rules that

are derived from the implication connective in predicate calculus. In general, a rule consists of an

antecedent, a set of conditions that must be satisfied, and a consequent, a set of actions that are

performed when the antecedent is satisfied. 'The knowledge of most conventional expert systems is

contained in rule bases [Tanimoto, 1987]. Frames are a way to group and organize predicate cal-

culus statements. By grouping related statements, a frame actually represents a partial context.

For example, the frame for 'living room' could contain information about the objects in the room,

such as a television and a couch, as well as information about the purpose of the room, its location,

and its size [Charniak, 1986] [Tanimoto, 1987]. Semantic networks were originally developed to

represent the meanings of sentences in terms of objects and their interrelationships. In a semantic

net, the concepts are represented as nodes, and the relationships are represented as links between

the related nodes. Semantic nets are based on logcal formalism, and they share the same repres-

entational deficiencies associated with formal logic [Sowa, 1984] [Chamiak, 1986].U-an

extension ofpredicate calculus that permits concepts such as necessity and possibility. ln modal~
www

logic a concept can be possibly true, necessarily true, true, or false. The rationale for this extension

is to reduce the 'black or white' rigidity of standard formal logic. Modal logc still suffers from the

other limitations of formal logic, as well as a more complex inference regime [McCarthy, 1985].

Literature Review 15

A variety of representational techniques exist for knowledge representation, and these form the

theoretical basis for conventional expert systems. The basic expert system paradigm, if/then rules,

is derived from predicate calculus, so the limitations associated with predicate calculus are limita—

tions of the expert systems. These limitations are manifested as restrictions in potential domains

for expert systems. Systems that rely on predicate calculus require well-defined domains since all

the knowledge they have must be explicitly coded into the lmowledge base. One domain where

predicate calculus-based formulations have not succeeded is the design domain, and the reason for
W

this failure stems from the basic nature of design activity.

2.2 The Design Domain ,

In its most general form, the process of design represents a progression from the abstract to the

concrete. For example, a newly constructed house is the concrete embodiment of the preferences

and constraints of the architect, builder, and owner of the home. The design process in this ex-

ample, starts with the owner’s initial concepts as to what the house should look like and what fea-

tures it should have, to the architect's constraints regarding the feasibility and integrity of the

structure, and ünally to the builder’s concems about appropriate building materials and techniques.

Through the design process, what started as some vague ideas and preferences has become an actual

entity which embodies those original ideas as well as the preferences and constraints of others in-

volved in the design process. While there are differing opinions about the details of design theory,

it can be reduced to basic ideas that reilect the transition from the abstract concepts to the concrete

objects.

Literature Review I6

2.2.1 Design Methods

Attempts at the systematization of the desig11 process began in the early 1960s. The Conference

on Design Methods held in 1962 is considered the seminal event in the field, and two fundamental

ideas arose from the conference [Cross, 1977]. The first was a comment made by J. Page [Page,

1963], that "there only seems to be one common point of agreement, and that is that systematic

design is a three stage process, demanding analysis, synthesis and eva1uation." The second contrib-

ution was .lor1es’s "Method of Systematic Design" [Jones, 1963] that was the first attempt at a

unified system of design as a combination of intuition and experience with rigorous logical treat-

ment. The goal of his methodolcgy is to extemalize all the logical activities into charts, lists, and

diagrams to leave the designer’s mind free to produce solutions based on ideas, hunches and

guesswork ·- the creative component of design.
‘ /

The methodolcgy is delineated as:

1. Analysis:

a. Random list of factors,

b. Classification of factors,

c. Sources of information,

d. Interactions between factors,

e. Performance specifications,

f. Obtaining agreement;

2. Synthesis:

Literature Review 17

a. Creative thinking,

b. Partial Solutions,

c. Limits,

d. Combined solutions,

e. Solution plotting;

3. Evaluation:

a. Methods of evaluation

b. Evaluaäon for operation, manufacture, and sales.
i

Jones’s methodology was accompanied by a warning that design is in practice, an 'iterative mud-

dle', and that the systematic approach is best used as a guideline.

About the same time, Asimow published a detailed procedure for engineering design that he re-

ferred to as "the morphology of design" {Asirnow, 1962]. The morphology 'refers to the chrono-

logical structure of design projects/’ and is defmed by the phases and constituent steps of the design

process. The phases of the process are analysis, synthesis and evaluation. The constituent steps

of each phase are far more detailed and complex. Asirnow further delineated the design life~cyc1e

into seven phases:

• Primary Design Phases:

1. feasibility study,

2. preliminary design,

Literature Review 18

3. detailed design.

• Phases related to the production consumption cycle:

l. planning for production,

2. planning for distribution,

3. planning for consumption,

· 4. planning for retirement.

A few years later, a more rigorous method was developed by Archer in a series of articles in Design

magazine. Archer’s method consists of seven basic phases: briefirtg, programming, data collection,
‘

analysis, synthesis, development, and communication. The complete methodology consisted of

over 200 activities which, although they were described irt a sparse logical format, are often quite

ditlicult [Archer, 1965]. At the same time, the organizers of a design conference in Birmingham,

Alabama, made a concerted attempt to establish a common basis of agreement about design

methods. Unfortunately, not only was no consensus reached, but no common view could be found

among the thirty-five papers presented at the conference, in spite of the fact that almost all the pa-

pers focused on engineering design [Gregory, 1966]. The dissent among systematic designers en-

dures today.

The systematizers of desigrt may have met with more success if they had devoted more tinte to

understanding the design process rather than formulating a particular design method. A successful

method of desigrt should be the logical result of the intense study of the actual design process -- the

theory which describes the process of design.

Literature Review l9

2.2.2 Design Theory

Unfortunately, scant research has been done in the field of design theory. Most published work

in this area is author speculation and not reliable research. Perhaps it isn’t that surprising consid-

ering the fact that design is very much a human-oriented process, including viewpoints and expec-

tations that vary with the individual, and not necessarily amenable to the scientific process. The

scientific research that has been done confirms the ill·defmed nature of design problems.

By observing town planners, one researcher decided that the design process is actually a learning

process [Levin, 1966]. The designer leams about the problem through a trial·and-error process, and

each error reveals an aspect of the problem that the designer had not previously considered. Design

is actually more exploration than conventional learning since there is no real predefmed body of

knowledge to aid the designer with the problem he is currently facing. The situation is perhaps best

described by two of the promirnent design methodologists. Jones has stated that design is not nec-

essarily problem solving, but problem Ending [Jones, 1966]. His comment underscores the vague

nature of design while Asimow’s belief that "the designer is presented not with a problem, but with

a problem situation, (and) it is out of this milieu of perplexity that clear definitions of the relevant

problems must be drawn" [Asimow, 1962] exemp1iEes the difiiculty in applying some systematic

approach to the field of design.

Some researchers have deduced a tree-like structure underlying the design process. A major dif-

ference between 'design trees' and 'decision trees" is that the branches of design trees often form

loops with other branches in the tree. This looping is the major stumbling block of design meth-

odology which attempts to serialize the process of design. Under serialization, a designer can get

caught in an ”inEnite loop' of design consideration. For example, an architect may be considering

the placement of a bedroom, dining room, and a bathroom within a blueprint. He may decide to

place the bedroom first because it is the decision with the geatest freedom of choice, and then do

likewise with the dirnirng room, and thus by default, determine the placement of the bathroom. In

Literature Review 20

this situation, it is possible that the default location is not suitable for placement of the bathroom,

and the architect would be forced to reconsider his decisions about the bedroom and the dining

room. The three rooms are connected in a decision loop that the serialized designer can get caught

in since he doesn’t recognize the interrelationships between the concepts. This conclusion is sup-

ported by a study of interdependent decision-making in the architectural design process. The re-

searchers noted that the design team was "attempting to make their decisions sequentially, when in

fact almost every decision was atfected both by those that had gone (before) and those that were

yet to come" [Levin, 1966].

Other researchers perceive a hierarchical structure underlying the design process. Essentially, when

a designer made a decision at a particular level of abstraction, it leads to a well-defined set of options

at the next-lower level [Marples, 1960]. Although design loops are present in this approach, they

are resolved not by analyzing interconnected decisions simultaneously, but by making decisions

within one of the single decision areas that was part of the loop [Gregory, 1964] which likens this

approach to the earlier and generally unsuccessful design methodologies that focused on individual

concepts and not the overall structure of the situation.

Perhaps the most comprehensive treatment of design theory is given by John Wade’s person-object

spectrum in which the transition from initial concept to final result can be described as a chain of

relationships [Wade, 1985]. In the defmition of a design problem, both the abstract and concrete

contexts and the relationships connecting them must be considered to properly understand the

problem. The relationships that form this 'bridge' are purpose, behavior, and function. The

problem description can be interpreted as a ends-means chain in which:

for a person to exist, his purposes must provide for that existence; to accomplish his purposes, his
behavior must serve those purposes; for his behavior to be carried out, certain function capabilities
must often be supplied; for those function capabilities to be provided, some arranged physical object
must exist to provide that function. [Wade, 1985]

For example, consider the relationships between a person and a chair. Typically, the function of

the chair is to provide support, and the behavior of the person is to sit in the chair, to achieve the

purpose of resting his legs. This exhibits a complete chain of relations: the object, the chair, serves

Literature Review 2l

a function of support which permits the behavior of the person to sit down to achieve his purpose

of rest. Another dimension to the spectrum hierarchically arranges the objects relative to an overall

perspective. For example, the chair, can be a component of a room, which is a component of a

house, which is a component of a subdivision, etc, each designed for a set of particular purposes,

beliefs, and functions.

Design is an activity closely anchored to individual human perceptions and attitudes. There may

be 'good' design and "bad' design, but there is no 'ideal" design that can be arrived at by ascribing

to some methodology or theory. This belief is certainly supported by the complete lack of agree-

ment on design methodology and theory, and at best, the bare fundamentals of design ·· analysis,

synthesis, and evaluation -- represent the only universally accepted design theory. Not only are the

basic aspects of design ill-defined, but the underlying theory of design is ill-defined as well. It is

already apparent that explicit forrnulation cannot work effectively in such a non~explicit domain,

but it’s possible that no problem definition method can capture the generic and ill-defined funda-

mentals of design. If a representation methodology is to succeed in this domain, something must

be made more concrete. Once a representational basis is constructed, further enhancements can

be made to the model as the domain becomes more generic.

2.2.3 Design Theory for Charts

Charts convey information in a concise and easily understood manner. Meaningful charts reflect

a real-world situation or a conceptual outline based on the salient features of a given set of data.

Charts can enliven a presentation, but more importantly, they can highlight important issues and

ease the reader’s task. For example, a line chart can quickly relate the overall trend of the data, and

save the reader the added labor of reviewing a column of figures to determine whether or not the

numbers are increasing or decreasing overall. Charting is essentially a method ofdata compressionLiterature Review 22

that converts raw data into visual images and invites the audience to form their own conclusions

about the data [Enrick, 1972].

Although charts may described as a method of data compression, they actually have a multitude

of important aspects. Effective graphical displays should:

•
show the data

• induce the viewer to think more about substance than methodology, graphic design, graphic

production technology, or something else not directly relevant to the emphasis of the presen-

tation

• avoid distorting what the data actually indicates

• present a large amount of data in a small space
_

• make large data sets coherent and understandable at a glauce

• encourage the viewer to make visual comparisons of the information

•
reveal the data at several levels of detail, from a broad overview to the fine details

• serve a distinct purpose such as description, exploration, or comparison

• be closely integrated with the statistical and verbal integrations of the data set

[Tufte, 1983]

Beyond serving these basic functions, charts provide a variety of benefits not found in other tech-

niques ofdata compression. First, the immediate appeal of a good chart invites the attention of the

reader and thus creates interest in the material being portrayed. Second, the visual comparison and

Literature Review 23

contrast of data permits relationships to be more clearly grasped and more easily remembered.

Since they allow relationships to be quickly and easily discerned, charts are also useful in revealing

previously unknown relationships in the data [Enrick, 1972]. Finally, charts can provide an often

unrecognized benefit. Charts allow the viewer to reach a conclusion about the data without ever

being told explicitly what the conclusion is. For example, if the audience is shown a line chart with

an ascending curve, they automatically infer that the data is increasing. The audience is making

conclusions about the data instead of the presenter attempting to convince the audience that his

conclusion is valid. In essence, a viewer will believe his own conclusion with far greater readiness

than he will believe someone elses.

Naturally, since charting possesses a number of facets, there are a number of places to make mis-

takes in charting design. A variety of charting methodologies have been proposed, but they can all

be reduced to three fundamental steps:

l. Analyze the data. .

2. Determine the message that the user wishes to convey.

3. Select the most effective type of chart.

[Spear, 1969] [Schmid, 1952]

The frrst two steps are the determining factors for the third step, chart selection. Data analysis

consists of determining what type of charts can be rendered from the available data. For example,

if the client wants to show a trend in sales for his company, he must have sales data for several

years. Hence, an effective cha.rt is a combination ofboth the c1ient’s objective and the data's ability

to support that objective. Eliciting the client’s objective can be considerably more difficult than

analyzing raw data. Not only may the client not know which type of chart will best convey bis

message, but he may also be unaware of his motive on a functional level. lf he did, there would

be no need for graphical consultants since computer programs could present him with a choice

between "trend,' "comparison," and 'display'. The graphical consultant engages the client in a di-

alogue to learn more about his situation. As noted earlier, charts are much more than just 'pretty

Literature Review 24

pictures'. To create an effective graphical display, the graphic consultant needs to know details

about presentation, the audience, as well as the interrelationships ofthe information to be displayed

to the overall situation.

In the context of generic design theory, charting is certainly not as complex as architecture, but it

does embody the same basic concems endemic to the design domain: the need to construct a con-

crete item from vague, typically ill-defmed specifications. Moreover, it requires a strong interaction

with the client, since his perspective of the situation is of paramount importance. Chart design

provides a reasonable compromise since it still operates on i1l·defined problem descriptions, but has

a much better defined methodology. This domain allows the automated consultant to focus on the

key aspects of problem deünition and analysis (the subject of this this thesis) and not on some

methodology for design. _

2.3 Eliciting Information from the Client

An entire spectrum of possibilities exist for human·computer interaction ranging from assembly

language to natural language. In assembly language, the human makes the greatest concession to

the machine in terms of 'speaking its language', and the reverse is true in natural language where

the human 'ta1ks" to the machine as if he was talking to another human. Not surprisingly, an as-

sembly language interface is relatively easy to implement, and the natural language interface is

prohibitively difiicult to implement. The goal of an effective interface is to allow the human to

communicate his ideas to the machine without entailing excessive development and implementation

cost for the interface. Nowhere is this communication problem more evident than in artificial in-

telligence where the human communicates and the computer attempts to understand complex and

abstract concepts. A variety of approaches have been made to resolve this communication gap

Literature Review 25

between man and machine, and they all focus on extracting the maximum semantic content without

requiring the difficulties and complexities of a complete natural language system.

2.3.1 Natural Language

Natural language is by far the most desirable method ofman~machine communication. Unfortu-

nately, natural language is extremely difficult to implement effectively. On the surface, natural

language processing does not seem to be a major diüiculty. Even small children can grasp the basic

concepts of linguistics and communicate effectively, and sentence parsing is even taught in the

classroom as an algorithrnic task. The source of the problem is that no one understands the com-

plex cognitive processes involved in both linguistic expression and interpretation. Even deceptively

simple sentences require considerable amounts of background knowledge, or common sense, to be

properly interpreted. The meaning of the sentence extends far beyond its pure denotative content

to encompass issues such as situational context, tone, and causality. Interpretation of these issues

relies heavily on common sense, an achilles heel of artificial intelligence. Moreover, natural lan-

guage is fraught with ambiguity: lexical and syntactic. Lexical ambiguity refers to the variety of

meanings or "senses" a given word may have. For example, the word "soft' has over thirty defi-

nitions as an adjective, and it can also be used as a noun and an adverb. Syntactic ambiguity refers

to the ambiguity of phrases and sentences. For example, no one would have difficulty interpreting

'electric pencil sharpener' as a device powered by electricity that sharpens pencils; however, there

are no set rules that dictate this. ln fact, basic English grammar states that modifiers should im-

mediately precede the object they modify. Humans can properly interpret the phrase because they

know that there are no such things as electric pencils. Computers have no such knowledge unless

it is explicitly coded. Beyond these basic issues are problems like referential ambiguity and meta-
_

phor. Referential ambiguity concems the use of pronouns in normal discourse. The listener must

Literature Review 26

consistently be aware of who or what the pronoun represents. Consider the following sentences:

Each child put on a uniform.

They had been donated by a local manufacturing concem.

An individual would have little difliculty understanding that "they’ refened to the unifonns and not

the children because manufacturing concems are not typically in the practice of donating children

[Brittain, 1987]. Again, computers are not aware of this because they lack the wealth of world

knowledge that the individual possesses. Metaphor is even more complicated because it requires

sophistication in addition to basic world knowledge. Metaphor is by no means restricted to poetry

or even stylized expression. In fact, it seems to seep into every form of discourse, including this

sentence [Charniak, 1986]. 'I’he source of these difiiculties resides at as more fundamental level.

Computers and people see the world from radically different perspectives. While people perceive

subtle nuances, absorb information from five unique senses, and integrate these perceptions into a

holistic perspective which is cultivated over an entire lifetime, computers basically know only what P

they are explicitly told. This is bome out by the fact that any conventional natural language sys-

tems actually operate with severely restricted subsets of the English language. Both the words and

sentence structure must correspond to some explicitbe pre-programmed language set [Samad, 1986].

Hence, before any system can understand true natural language, it must first perceive the world,

or situational context, as a real person does. Providing a machine with this perspective remains an

impasse of artificial intelligence [Brittain, 1987].

2.3.2 Personal Construct Theory

Psychologists use a tool known as personal construct theory [Kelly, 1955] to interview patients.

Personal construct theory builds a model of the patient’s world based on similarities and differences

of selected concepts. This approach views a person as a 'personal scientist' who classiües, cate-

gorizes, and theorizes about his world. In essence, an individual uses a system of organization

Literature Review 27

consisting of components and interrelationships between the components. The interaction of

concepts within the structure produces interdependencies. If the client can become aware of the

structure and the organization within the structure, he increases his ability to make adequate pred-

ictions and act according to them. He increases his own understanding of the situation, thus be-

coming a 'personal scientist}

The basic tool of the personal scientist is the repertory grid,_which is a method of extracting the

conceptual system held by the individual. A repertory grid consists of constructs and elements. A

construct is a bipolar dimension, which to some degree is a characteristic of each element. A con-

struct is not the same as a concept in that a construct is a measure of a particular characteristic.

A construct is a way in which some things are seen as being alike and yet different from others. ...The
idea of a relevant contrast and limited range of applicability or convenience is not involved in the
notion of a concept, but is essential in the definition of a construct... Sometimes concepts are also
regarded as as ways in which certain things are naturally alike and really different from all other
things. This use suggests that a concept is being considered as a feature of the nature of things, an
inherent categorization of reality. The idea of a construct does not carry with it any such assumption,
but rather is seen as an interpretation imposed upon events, not carried in the events themselves.
The reality of a construct is in its use by a person as a device for making sense of the world and so
anticipating it more fully. lt must be stressed that all invented dichotomies, however widely agreed
(large~small), specifically annotated (bass·treble), or scientifically approved (acid-alkali) are constructs
-- useful inventions, not facts of nature [Bannister and Mair, 1968].

Elements in the grid are elements of the situation which are personally important to the individual.

In scope, elements can be anything that represent something: events, experiences, objects, or peo-

ple. For example, elements in a baby’s view of the world could be 'mother', 'father', and 'teddy

bear." The mapping of the elements onto the constructs produces a two—dirnensional grid which

indicates relationships between the concepts, based on the client’s constructs.

At the outset of the psychological consultation, the individual lists the elements relevant to the

model. To elicit constructs, the individual is presented with a set of three elements taken from the

total set of elements and is asked to choose two that possess a quality that the third does not. The

common quality is called the emergent pole. The individual provides a name for that quality and

the interview continues until all the concepts in the overall set are adequately defined. The implicit

pole is the characteristic that differentiates the third element from the other two and may also be

elicited directly, though it is not essential to the consultation.

Literature Review 28

Using an example from [Shaw, 1980] to illustrate, consider three school subjects: Mathematics,

Literature, and Art. Now group these into the two which are similar and the one that is different.

Janet says: 'Mathematics and Literature are alike because they are about a body of knowledge, and
Art is about self-expression'.

Philip says: 'Literature and Art are alike because they are about life, and Mathematics is abstract'.

John says: 'Mathematics and Art are alike because they are communication by symbols and forms,
whereas Literature is communication by words'.

Mary "Mathematics and Literature are alike because they are useful in life, but Art is a waste
o e .

Lynn says: 'Mathematics and Art a.re fun and easy, but Literature is about writing essays which I
don’t like'.

Obviously, each person has a different opinion based on a different value system. Each of the di-

mensions are personal constructs since it is expressed in personally meaningful terms such as

abstract/concrete and like/dislike [Shaw, 1980].

‘ /
The principal strength of personal construct theory is that it elicits the constructs without actually

asking the patient what they are. This is valuable since most patients would be unable to even re-

spond to a question like, 'What fundamental measures do you use to distinguish between different

areas of scholastic work?' Moreover, patients have an inclination to jvc the reply they feel is ex-

pected of them rather than the one that reflects what they truly believe (if they even know). Per-

sonal construct theory solves both of these problems as well as produces a substantial amount of

information from a nominal amount of discourse. For example, the reader can easily construct a

rough psycholojcal sketch of the five respondents mentioned above on the basis of only one

question.

The informative value of this type of discourse is not lost on computer scientists. This method-

ology allows a program to build a tailored model of the user’s world. The model is tailored because

it employs the user’s terminology and personal beliefs to build the model. More importantly, the

model can bc constructed without the aid of natural language. lnstead ofhaving the client respond

with an entire sentence, the system can have the user ditferentiate the concepts on the basis of a

one or two-word characteristics. Personal construct theory has proven useful in eliciting knowledge

Literature Review 29

from experts to build expert systems since it constructs a model of the experts view of a situation.

From the extracted repertory grids, knowledge engineers can determine the relationship of concepts

to each other on the basis of characteristic commonalities [Boose, 1985].

2.3.3 Content Analysis

Prospective problem modelling tools, however, are not unique to psychology. Content analysis,

a tool used by communication scientists, seeks to understand data not as a collection of events, but

as symbolic phenomena. In essence, content analysis is a research technique for making replicable

and valid inferences from data to their context [Krippendorff, 1980]. Content analysis consists of

six basic components:

• the data as communicated to the analyst ‘

•
the context of the data

• how the ana1yst’s knowledge partitions his reality

• the target of a content analysis

• infererice as the basic intellectual task

• validity as the ultimate criteria of success

While this may sound like a logical solution to the interviewing problem, it remains prohibitively

difficult to implement for several reasons. First, to be effective, content analysis requires an aecurate

description of a context to map inferences to. Unfortunately, the best way to represent contexts

involves the use of pre-programmed scripts which define the contextual framework of a situation.

Literature Review 30

Scripts exhibit the same lack of flexibility inherent in conventional expert systems since they consist

primarily of a pre-programmed component. Moreover, by the author’s own adrnission, comput-

erized content analysis will not be successful unless vocabulary, syntax, and semantics are restricted

to a particular area of discourse, and the contexts are explicitfy statable. Content analysis shares a

striking similarity to natural language in these respects, and it also shares the basic fundamental

problem: emphasis is placed on the compute/s perspective which is deficient when compared to the

human perspective which it attempts to mimic.

2.3.4 System Dynamics Modelling

Industrial engineering offers a useful design alternative: system dynamics modelling. Businesses,

economies, and social organizations all exhibit dynamic behavior, and this dynamic behavior is
‘

typically the result of causal interactions among the components of the system. For example, a

company holds an inventory of finished goods, which is depleted by sales, and replenished by pro-

duction. Clearly, both sales and production have a definite influence on the inventory. However,

sales and production are also influenced by other areas. Production depends on a labor force,

available equipment, projected orders, etc., and sales depends on factors like the market condition,

advertising, and the sales force. These factors are also influenced by other considerations including

some that have already been mentioned. The primary aim of system dynamics is to find policies

that will control the system in response to shocks from the outside world. Essentially, system dy-

namics is

A method of analysing problems in which time is an important factor, and which involve the study
ofhow a system can be defended against, or made to benefit from from, the shocks that will fall upon
it from the outside world. Altematively, System Dynamics is that branch of control theory which
deals with socio-economic systems, and that branch ofmanagement science that deals with problems
of controllability [Coyle, 1977].

To achieve this end, system dynamics constructs a scientific model of an objective reality through

directed graphs that link relevant concepts in the system by arrows. The arrows in the graph indi-

Literature Review 3l

cate a causal influence from one concept to another, and a link is usually accompanied by a plus

(+) or minus (-) sign indicating direct and inverse influences respectively [Coyle, 1977]. A system

dynamics model is usually implemented on a computer and the simulation shows what happens to

the overall model when certain factors are changed. As the change propagates through the model,

the client gets a better idea of the impact that certain areas have on the entire model which can help

define strategies for controlling the model under certain situations such as responding to fluctuations

in uncontrollable variables.

In system dynamics, the client speciües both the concepts of the model and their interrelationships I

which allows an individual to create not only a description of his situational context, but also a

way to show how the context can change over a period of time. System dynamics provides a strong

generic basis for representation, and this is evidenced by its range of actual applications: from

modelling situational political influenoes to modelling a magazine publisher’s business concerns

(Figure 5 on page 33) [Eden, Jones, Sims, 1983]. Since system dynamics is a modelling tool, it is

also a representational tool. The causal model used for simulation is a model of a particular situ-

ation, a.nd the causal model car1 be effectively interpreted as a cognitive map of a situation. This

forms an intriguing basis for problem definition, and the "concepts and influences' basis of system

dynarnics differs considerably from the "facts and rules" basis of propositional formulations.

2.4 Survey of Contemporary Expert Systems

Expert systems are currently the most marketable product of artificial intelligence research. The

goal of Al scientists has always been to develop programs that could in some sense, think like

people do, or at least solve problems in a way that would be considered intelligent if done by a

human. While the initial hope was to develop a system that could solve general problems, it has

proven far too difiicult and has never produced any substantial results. In general, the more prob-

Literature Review 32

lem classes a system was designed to handle, the more poorly it handled them. From this maxim

arose the expert system. As the name implies, expert systems are highly specialized systems

[Waterman, 1985]. While expert systems operate in areas like diesel engine failure diagnosis or

molybdenum prospecting, they can be categorized into broad areas which characterize the systems

fundamental activity such as diagnosis, interpretation or design [Chandrasekaran, 1986].

2.4.1 Diagnostic Systems

The diagnostic system is by far the most common type of expert system. The reason for this

popularity stems from the basic nature of diagnostic problems. Diagnosis problems are easily ex-

pressed as tree structures. In general, each branching point in the tree structure corresponds to a

particular question, and the leaves of the tree correspond to the final diagnosis. The diagnosis is

effectively a combination of observable symptoms elicited from the user [Merritt, 1987]. A diag-

nostic expert system already has knowledge about all possible results of a consultation and arrives

at a solution by following a particular path in the tree guided by user responses to pre-programmed

questions. The basic diagnosis paradigm of query and search is well~suited to a cornputerized im-

plementation.

Not surprisingly, expert systems in this domain have met with a signiiicant measure of success.

CADUCEUS, a system developed at Camegie Mellon, relates symptoms to diseases in internal

medicine. Although, CADUCEUS doesn’t use a pure decision tree for knowledge representation,

it does use a large sernantic network. The inference principle is the sarne, except that a semantic

network is traversed (instead of a tree) to reach a conclusion. CADUCEUS is one of the larger

expert systems, containing profiles of over 500 diseases and 3500 manifestations of diseases.

MYCIN is another diagnosis system that determines the nature and treatment of infectious blood

diseases. MYCIN employs about 400 rules in its knowledge base and tries to draw inferences from

the rules and available knowledge. Again, a tree structure is not explicitly used, but the davor of

Literature Review 34

MYCIN and other diagnostic systems involves deduction based on information from the patient.

Diagnosis is by no means restricted to the medical domain. MES is an expert system used by the

air force to diagnosis problems with aircraft engines. MES’s knowledge consists of information

taken from repair manuals such as component weight and dimensions, troubleshooting procedures,

_ and repair methods coupled with experiential knowledge or 'rules of thumb' taken from expert

_ mechanics [Waterman, 1985].

There are a number of other diagnostic expert systems in diverse areas ranging from network fault

diagnosis to fault identification in large chemical plants. Although the diagnosis paradigm is easily

implemented on a computer and a wide variety of systems have been developed, the overwhelrning

majority of systems have never gone beyond the stage of a research prototype.

2.4.2 Interpretation Systems
’

Interpretation is essentially a task that maps one context into another. The most obvious example

is that of language interpretation which maps between linguistic contexts. Unfortunately, linguistic

contexts are rife with issues from the human domain, which cause so many problems with natural

language processing; and, because of this, the typical interpretation system operates in a far more

restricted domain. Moreover, interpretation systems a.re somewhat more difficult to implement

than diagnostic systems. Interpretation is not as concrete as diagnosis because interpretation re·

quires a more humanistic perspective. Interpretation is an investigation of a particular fact or event

in accordance with some context, and the investigation is usually concemed with the ramifications

of the event under particular circumstances. For example, the interpretation ofkilling someone can

be quite different when viewed in different contexts. If someone is killed because they are threat-

ening someone else’s life, it is perceived differently than if they are killed in a car accident. The

event is the same, but it is perceived in a particular context which actually determines the meaning

of the event.

Literature Review 35

One such interpretation system, SPE, distinguishes between various inflammatory conditions of a

patient by interpreting waveforms from a scanning densitometer [Waterman, 1985]. The expert

system interprets the waveforms in relation to a context derived from patient data to related disease

categories. SPE has actually achieved commercial success, but it should be noted that it operates

in a highly-restricted domain.

Another interpretation system is META-DENDRAL. META·DENDRAL helps chemists de-

termine the dependence of mass spectrometric fragmentation on substructural features. It interprets

the spectrometric information on the basis of known chemical substructures to predict fragmenta-

tion. META-DENDRAL accomplishes this by first generating a set of highly specific rules from

the known substructures and then generalizes these on training examples [Waterman, 1985]. The 4
generalized rules represent the interpretation relative to the particular context. Although the pro-

gram has achieved some success, it remains a research prototype.

At this point, it is apparent that there is no clear delineation between the areas of diagnosis and

interpretation. The areas are not necessarily independent, and may actually share some basic

characteristics. As one progresses from diagnosis domain to the interpretation domain, however,

the problem definition and resolution becomes less concrete and more subjective, and hence, more

difficult to program. The progression from interpretation to design represents a greater movement

along this continuum as well as entailing far greater programming difliculty.

2.4.3 Design and Configuration Systems

The design/configuration domain is not as easily addressed as the diagnostic domain. Part of the

difficulty is caused by the nature of design problems: design problems are less structured and thus

more difficult to adequately define in advance. Most systems in this domain are more

configuration-oriented since configuration problems are better defined in advance and the final

Literature Review 36

solutions (configurations) are limited as well. Configuration is somewhat different from design since

both the number and type of items as well as the number of possible arrangements of these items

is severely restricted. Configuration systems are included in this section because configuration is

generally considered a design activity and helps explain why true design expert systems do not

exist.

2.4.3.1 R1

Perhaps the best-known configuration system is R1. R1 is an expert system developed and used

by Digital Equipment Corporation to determine system configurations for the VAX ll/780 com-

puter system. A successful system configurer (human or machine) must have two basic types of

knowledge: knowledge about each of the individual system components including knowledge about

voltages, ports, frequencies, etc. and knowledge about partial configurations that include these

components within the context of a complete system. Typically, a configurer needs to know ap-

proximately eight pieces of information about a component and there are 420 components sup-

ported by the VAX system. Hence, a configurer must have knowledge of over 3300 pieces of

information. Beyond this, the configurer must have rules for the relationships between the com-

ponents. The initial expert system had 480 rules to represent these interrelationships, and to further

restrict the domain and thus simplify the problem, additional configuring constraints were added

to the system. Market considerations which limit the number of possible configurations and engi-

neering considerations which eliminate sub-optimal designs are two examples of ways the config-

uration set is limited [Waterman, 1985]. Although the system is currently used by DEC to service

customer requests, it is not a true design system. A true design system is less restricted, and the set

of design components are varied and less-defined in the context of a larger system.

Literature Review 37

2.4.3.2 VT

Another design system, VT, designs elevators by interpreting a customer’s functional description

to produce an equipment and parts configuration that satisfies the customer’s specifications as well

as safety, installation and maintenance requirements. Although VT and R1 use domain-specific

strategies to produce solutions, the basic paradigm that VT ernploys differs from that of R1 in that

VT’s problem solving strategy consists primarily of constructing an approximate solution and suc-

cessively refining it [Marcus, 1987]. Again, VT is not really a true design expert system in that the

domain of possible results and method of consultation is so severely restricted that VT is config-

uring, and not really designing. What is notable about VT is that it goes through design iterations.

Iteration is a standard part of design methodology, and a system that can refine its design based on

user input is closer to the 'true consultant" paradigm.

2.4.3.3 Dominic

A more flexible design expert system is Dominic, a system which employs a domain~independent

structure for solving mechanical engineering design problems. When the system is given a problem,

it posits an initial design and iteratively improves on it by using knowledge about the relationship

between design goals and design variables. The input to Dominic consists of a set of parameters

indicating physical constraints on the design, performance goals, and an design. Dominic

then evaluates the initial design to find its weaknesses and then proposes a change in one of the

design variables. If the overall effect of the change is positive, the change is implemented. This

process is repeated until the overall design is deemed acceptable. In general, Dominic utilizes a

hill-climbing algorithrn to solve design problems which are described as a combination of problem

parameters, design variables, and goals. While dominic applies a general strategy to its domain, it

still requires the problem to be stated in explicit, predefined terminology. Moreover, Dominic’s

prob1em·solving methodology requires the client to explicitly state an initial design as well as ex-

Literature Review 38

plicit goals. While this methodology may be acceptable in mechanical design, it is of little utility

in domains such as architecture where the client may not know how to formally state his ’goals"

or provide an initial design to the consultant [Howe, 1986]. Although Dominic suH”ers from serious

limitations, it also possesses some interesting improvements over the basic configuration systems

such as R1. Again, Dominic performs iterative design, but it also uses an experimental design

paradigm. A design is rendered by determining how certain changes in the design affect the overall

model. This can be considered another technique available to the human designer, albeit not the

only one.

2.5 Conclusions -

The literature review illustrates some of the fundamental problems encountered in this research.

The conventional problem definition approaches, though well-suited for some domains, are not

effective in the design domain, primarily becuase of the generic, non-explicit nature of design

problems. The problems in automating a design consultant are exempliiied by the basic lack of

design expert systems. The expert systems that have been implemented, still use conventional re-

presentational technology and therefore operate in severely restricted domains. Moreover, these

systems are directly concemed with the problem in that the user still specifies issues about the

problem (or even posits a basic design) instead of information about the situation. Finally, it is

diüicult for an automated consultant to extract and understand such a situational description

J without restricting the client’s method of explanation. A viable solution must not only allow the

client to adequately specify his situation, but create a problem model that the automated consultant

can understand.

Literature Review 39

3.0 Problem Analysis

Expert systems purport to be the computer equivalent of a human expert. Through an interro-

gation process, the system determines the nature of the client’s problem, analyzes it, and proposes

what it believes to be the solution. In a broad sense, this is the same approach that a human

consultant uses; however, the human cousultant’s actual methods of interrogation and analysis differ

considerably from the contemporary expert system approach. A 'true consultant' applies domain

knowledge to solve a problem not previously seen. For example, a graphic design consultant must

accept the statement of almost any problem and turn it into a visual design. By contrast, in typical

expert systems applications, all the problems that the system can handle are defmed during the

knowledge-engineering phase, and the system produces advice by following a decision tree guided

by the client’s answers to a set of pre-defined questions. Without an adequate problem definition

phase that allows the client a reasonable latitude of expression, current expert systems techniques

cannot allow construction ofa programming consultant, nor any other consultant that relies heavily

on the client’s conception and description of the problem.

Problem Analysis 40

3.1 The True Consultant

What exactly constitutes a 'true consultant' and how does he differ from the usual expert system

consultant? A true consultant embodies qualities that are uniquely human, and at present, there

are substantial differences in human-human interaction and human-computer interaction. Some

of the primary differences can be characterized by personifying the expert system consultant. In

many ways, the conventional expert system can be likened to a lawyer who is cross-examining a

witness in a trial. The classic (in drama, at least) lawyer’s ploy is to allow only yes and no answers

to often complicated questions. The answer the witness gives may serve the lawyer’s purpose of

making a point, but it does not really answer the given question because there are usually exten-

uating circumstances that should be explored. The lawyer behaves in this manner to build the type

of situation that best suits his purposes. While expert systems are not attempting to prove a point /

in a trial, they do require restricted replies to what are often complex questions, and while this be-

havior may be acceptable in constructing a legal defense, it is completely unacceptable behavior for

a successful consultant. Any human consultant who behaved like a contemptuous lawyer would

have a difficult time frnding employment; and yet, all conventional expert systems have, to a sig-

nificant degree, an interrogation style analogous to the 'contemptuous lawyer'. In their problem

definition phases, expert systems are seeking answers to the questions that best suit their own pur-

poses. While true consultants will, at times, behave this way, they have an entire repertoire of

techniques for problem definition, while the expert system uses this as its only method of eliciting

information from the client. ln fairness, this type of behavior is useful and even necessary in some

domains. For example, an emergency management consultant needs precise and tirnely answers to

particular questions to provide advice in an emergency situation. As these examples illustrate, dif-

ferent information acquisition methods are required in different domains, and the basic paradigm

for acquisition in the design domain is quite different from that in the diagnosis domain because

of the basic differences in the information and objectives in the domains. This helps explain the

limited success of diagnostic expert systems. In the diagnosis domain, the consultant often needs

Problem Analysis 4l

answers to particular questions about the system in question. Consider a computer repair techni-

cian on a service call. Typically, before he even looks at the faulty machine, he will ask questions

about the symptoms of the machine in an effort to class;/jw the nature of the failure. Diagnosis,

however, is only one of a variety of possible domains. The incisive question and answer approach

will not work nearly as well in the interpretation domain (explained in the literature review), and

not at all in the design domain. Both interpretation and design depend heavily on the clienfr per-

spective, and there is currently no way to effectively incorporate his perspective into an automated

consultation. This, in turn, helps to explain the general failure of design and interpretation expert

systems.

If a computer could understand natural language, it would likely perform as a viable consultant

since it wo}11d have an effective supporting representational structure for knowledge (if it can talk

like a human, it must think like a human). Unfortunately, natural language remains a distant and

possibly unrealizable goal. Natural language may not be necessary, because the way a consultant

direct: a consultation is actually more important than unlimited free expression of ideas. The sol-

ution lies somewhere between the two extremes of the contemptuous lawyer and the 'rambling

conversationalist". This is not meant to under-emphasize the role of a client in the consultation.

The client must be allowed to express his beliefs and ideas freely, but one of the consultant’s jobs

is to provide some direction to the consultation based on his background knowledge of the domain

which provides an intuition about what is 'important". The primary difference between this ap-

proach and the contemptuous lawyer is that, in the former, the consultant fashions his mental

model in terms of the client’s description rather than forcing the client’s situation into some pre-

defined classification scheme. Experience indicates that an effective consultant should allow the

client to talk as directly as he can about his concerns. Typically, things that are seen as objective,

hard facts about a problem are often fairly trivial when compared with subjective feelings and beliefs

that the client feels are central to the problem under consideration [Eden, Jones, Sims, 1983].

Problem Analysis 42

3.1.1 The Nature of the True Consultant’s Problems

To clearly understand how a true consultant performs, one must first understand what problems

are. Problems are what consultants are supposed to solve, but what constitutes a problem? Em-

pirically, a problem is a situation or question raised for inquiry, consideration, or solution. A more

useful deünition can be found in Messing About in Problems: "problems are psychological entities

which are often unclear and expressed as anxiety and concern about a situation as well as being

expressed as a positive wish for the situation to be different in a particular way". The authors

continue by suggesting "a process of assisting the definition and formulation of a problem is crucial

and often neglected precursor to any attempts to solve it," and that "understanding a problem as

someone else sees it needs consideration and original methods for recording what you hear when

you listen -- to both verbal and non-verbal elements of a problem description" [Eden, Jones, Sims,

1983]. Therein lies one of the abilities of a true consultant: the ability not only to effectively define

the problem as the client sees it, but also to define it in a manner that it is useful to the consultant.

For example, many clients would be happy to define their problem through seemingly endless

ramblings which, although yielding some valuable information, also yield tremendous amounts of

useless information which may serve to obscure the real problem as well as waste the consultant’s

time. The consultant oüers "help' to keep the problem definition focused on the relevant aspects

of the problem, and the style of help can vary from coercive to empathetic. A consultant may be

coercive in that effectively he tells the client what his problem is, perhaps using a simple problem

interpretation to force a more complex (and complete) problem interpretation from the client.

Unfortunately, a client may allow the consultant to completely define a problem which the client

may not actually have. The empathetic approach is the diametric opposite of the coercive ap-

proach. The empathetic consultant attempts to fblly understand the c1ient’s problem in the client’s

terminology while staying within the client’s methods ofunderstanding concepts and taking actions.

One problem with this approach is that no one can completely understand another’s problem

without actually becoming that person, and then they would not only understand the problem, but

Problem Analysis 43

they would also have it. A third strategy, the negotiative approach, is a hybrid of the coercive and

empathetic methods. As the name implies, the client and the consultant negotiate a problem which

may not be the exact problem that the client perceives nor one that the consultant considers helpful

to analyze, but one that falls somewhere between the two —- a compromise between two perceptions

that embody different attitudes towards the situation under consideration.

One might wonder why the consultant does not simply ask, "What’s the problem?' In general, the

client’s answer to that question does not really contain information that adequately or even accu—

rately describe the actual situation. Moreover, the step between feeling some discomfort or dissat·

isfaction, feeling that a problem exists somewhere, and being able to say "The problem is such-and

such' is a very big step [Eden, Jones, Sims, 1983]. Consider taking an automobile to a mechanic.

The mechanic’s first question typically is 'What's the problem?' In response, the customer will give

symptoms of the problem and not state the actual problem. Instead of saying, 'The distributor cap

is cracked', he iwill say 'The car stalls frequently'. The mechanic may pursue the issue by asking

if the car stalls all the time, or in particular instances, such as rainy days or after car washes. The

mechanic attempts to construct a situation relevant to the suspected problem, but in terminology

that the car owner understands. The mechanic can then deduce the nature of the malfunction by

applying his background knowledge in auto mechanics to the situation model that was defined by

the customer under the mechanic’s guidance. If the diagnosis domain often requires a model of the

situation as a problem definition, more complex domains like design will almost certainly require

a model of the situation to define the client's problem effectively.

ln a broad sense, a primary function of a consultant is the elicitation of a goal from the client.

While in some situations this may be as easy as asking the client 'What are you trying to achieve?',

in many other situations the goal is buried in a morass of situational complexity that requires an

expert to discern what the actual goal is. For example, the programming consultant mentioned in

the introduction could be faced with two different types of problems: heuristic classification and

observed vs. intended behavior. Heuristic classification problems are problems that can be classified

based on immediately observable symptoms. Errors such as incorrect syntax, infinite loops, and

Problem Analysis 44

uninitialized variables are possibilities for heuristic classification. The presence of an infinite loop,

for example, can be detected almost instantly. The observed versus intended behavior type of di-

agnostic problem is far more diliicult to identify and resolve. The intent of this type of diagnosis

is to determine if the program is really doing what the specifications indicate. A programming

consultant compares the actual program against a mental model (based on the program specifica·

tion) to determine the validity of the student's program. While this approach could be applied to

something as simple as an infinite loop, it would bc overkill and certainly not mirror the approach

a human consultant would take.

The design expert approaches a consultation somewhat differently than the diagnostic expert. The

client may have a particular objective in mind, but the objective must be interpreted within its

situational context. The consultant deriver the goal(s) from the client’s description of the situation

and professed objective. To do this, the consultant must first build, from scratch, an effective

model of the client’s problem. From this model, he then extracts the relevant and vital ideas to

determine what really must be done to resolve the problem. Part of the consultant’s expertise lies

in his ability to identify the important issues in the client’s problem as well as knowing what types

of problems are in the domain of expertise. If the client already knows the course of action, he

really does not need a consultant. For example, when a client consults a human factors and graphic

design specialist to design a computer screen display, the specialist does not ask the client 'What

type of screen layout do you want?' because such a question eliminates the usefulness of the spe-

cialist. The consultant typically asks questions like, 'What information do you need to see most

often?" or 'What information do you look for first?" The consultant uses these questions to con-

struct a mental model of the client’s situation. From this mental model, the consultant applies his

background knowledge in graphic arts and human factors to the basic structure of the problem to

create a screen design. In essence, the client cannot explicitly describe the type of screen he wants,

but he can describe the situation that dictates the design, and the consultant uses this situational

description to determine the client’s 'goal'. This underscores the belief that human problems are

usually ill-structured and not easily classified. Furthermore, the more freedom of expression that

Problem Analysis 45

the client is allowed, the more difficult it becomes to classify his problem and discem his objectives.

This is one of the major problems associated with implementing a true consultant as an expert

system using conventional expert system technology.

As the above comparison of design and diagnosis domains suggests, the underlying theory of di-

agnosis (heuristic classification) is different from that for design. For the true consultant concept

to work, the consultation theory for the domain of expertise must be used by the automated con-

sultant. The theory should motivate the representation structures as well as the information

elicitation methods. If the automated consultant is to behave like a human consultant, it must

"think' like the human consultant which means it has some foundation in the theory of the domain

in which it operates.

3.2 Technical Problems with a True Consultant

Since conventional expert system technology does not provide a viable foundation for a true con-

sultant, and since the aim of any expert system is to emulate what an expert actually does, it is

worthwhile to investigate how an expert approaches a consultation. The impetus for this investi-

gation is not to find the optimal user interface, but, more importantly, to find a mechanism capable

of capturing and utilizing knowledge in the same manner as the human consultant.

3.2.1 The Representation Pipeline

One of the most critical issues in expert system design centers on the structure used to store

knowledge about the consultation and the domain. The structure should reflect the basic nature

Problem Analysis 46

of the information it represents. While the structure may be more concrete and more readily de-

fined in the diagnosis domain, it becomes increasingly complicated as the problem domain becomes

less concrete. For example, the design process starts with some vague concepts and ends with a

concrete object. This transition in the basic nature of the information can be illustrated by several

. examples. Consider first, an architect consulting with another architect to design a house. In this

case, the architect knows exactly what he wants. He describes the house to the other architect in

the utmost detail. The client is actually describing the concrete object. One may wonder what the

purpose of such a consultation would be, given that the architect already has a complete idea of

what he wants. Although the architect may wish to verify his own ideas with another professional,

the purpose of this example is not to consider the plausibility of such a consultation, but to explore

the basic nature of the information communicated from the client to the consultant. For the second

example, let’s assurne the client is not an architect, but someone who has considerable practical

· experience with architecture. This client’s knowledge is not so extensive he can give a detailed de-

scription of the house, but he can give the consultant some concrete information about the struc-

ture. For example, he may tell the consultant he wants the southern face of the house to be mostly

glass, and the northern face to be partially underground. While these are somewhat broad specifi-

cations, they do represent concrete descriptions. The client knows what his basic objectives are,

but does not know the exact way to achieve them. ln the third example, the client knows virtually

nothing about architecture. He has some ideas about what he would like his house to be like, but

has no idea how these ideas translate into design objectives. Drawing from the previous example,

this client may know he would like an energy efficient home that still provides a considerable

amount of natural lighting, but be totally unaware that his objectives translate into the derign ob-

jectives of the previous example. The last example is representative of a typical design consultation

in that the client has little or no knowledge of the design domain, and the consultant must trans-

form a situational description into an object that satisfies the client’s objectives by satisfying the

desigi objectives identified by the consultant. The basic diüerences in the data make it diiiicult to

find a single appropriate representation for the client’s objectives, the design objectives, and the

designed object.

Problem Analysis 47

As noted above, a consultation can involve diüerent types of information, and a point of con-

tention in AI is how such knowledge should be combined into an internal representation. In con-

ventional expert systems, knowledge about problems worth solving (including problem definition)

and background knowledge of the domain itself have been combined into the primary represen-

tation technology of expert systems, rules. [Aikins, 1983] suggests that rules combine knowledge

and control in a detrimental fashion in that the knowledge about the domain as well as the sequence

of applying that knowledge are both contained in the same structure, rules. This observation offers

an insight into another problem with automating the true consultant: separation and combination

of knowledge. While rule-based approaches combine all knowledge into rules, a more complex

representation paradigm may foster more robust systems with a far greater range of application.

First, one must determine what knowledge should be separated. A simple approach would be to

separate the problem defmition knowledge from the background, or domain, knowledge. Even this

_ simple approach introduces an important complication. At some point in the consultation, the

information from the interview must be combined with the background knowledge to arrive at a

solution. Not only is the basic nature of the information different, but it will probably be repres-

ented with different structures, and the information will have to be translated from one structure

to another.

To further illustrate, a situation description tool such as system dynamics modelling (see literature

review) may be an excellent choice for representing the problem situation; it is not well-suited for

representing a concrete object since the basic structure of an object consists of parts and attributes

for that part and not concepts and their respective influences. Conversely, a tree structure may be

useful to represent the object, but possess insuflicient flexibility to provide a generic model of a

problem situation. lt may be possible to use one structure for both representations, but it will be

inefiicient and probably not retlect the way the true expert considers and solves a problem. For

example, when an architect begins a consultation, he is more concemed with the client's thoughts

and preferences. As the consultation progresses and the architect gets a better idea about the desired

building, he shifts his mental model from one of interdependent and often conflicting client prefer-

Problem Analysis 48

ences to a concrete model of what the building will look like. While the second model is certainly

derived from the first, it is indeed different in that the architect is now thinking in terms of a par-

ticular structure with particular attributes that meets the client's demands.

Granted, it is possible to use personal construct theory to represent an object or a tree structure to

represent a problem, but such a move is tantamount to using a screwdriver to pound nails into a

board. That is, the tool may actually ’work' but it is not really suited to the task, and at best will

produce marginal results. lnstead of compromising reasoning efiiciency in an expert system by

forcing information into inappropriate representations, it may be worthwhile to transform a given

representation into one that is more appropriate for that stage of the consultation. The transfor-

mation must preserve the basic nature of the knowledge, yet convert it to a form whereby it best

suits the information that it represents.

3.2.2 Situation Definition

The basic tool of interviewing is, of course, questioning. Clearly, one must ask questions to gain

information, and this is what both experts and conventional expert systems do. The fundamental

difference lies in the type of questions asked. As stated before, the human consultant allows more

freedom than do the standard 'yes/no" or "select one from the following' questions. The human

expert seeks richer content by requiring more detailed answers in an effort to build a mental model

of the problem. While a complex situation model may not be necessary for a heuristic classification

system, the model is vital to a system in the design domain because the expert needs a solid

understanding of the client's viewpoint in order to design what the client wants. If the expert is to

accomplish this, he must permit the client to describe the situation in his own terrninology. To

be successful in the design domain, the consultant must be able to 'step into the client's shoes' and

to see the problem from the client's perspective. Because conventional expert systems have avoided

the design domain and have focused on domains that are well-defined prior to any consultation,

Problem Analysis 49

they require less information and construct a less complex model, typically a decision tree. The

automated design consultant needs to build a basic influence model as a cognitive map of the user’s

beliefs. The model should contain the basic aspects of the situation and the interrelationships be-

tween these concepts. The system and the user should build a useful and informative model of the

problem by incorporating both the user's terminology and perspective, just as a human expert does.

3.2.3 Goal Elicitatiou .

Conventional expert systems reach their conclusions through pattern matching and data driven

rules. They elicit information from the user until a clear choice exists. While this paradigm may

be suitable for the some problems, it is not amenable to basic design methodology. For effective

design, a consultant must view the structure of the relationships simultaneousb: to avoid getting

caught in constraint satisfaction loops. This poses a difficult problem if the client is free to devise

whatever problem model he wants. Using a cognitive map consisting of arrows and concepts (like

System Dynamics Modelling), a map with five concepts has over 100 possible configurations which

requires the system to have knowledge of over 100 different influence models and their meaning for

this scenario alone. A more intelligent and perhaps more human-like way to resolve this 'repres-

entational explosion" is to focus only on those concepts that the client perceives as vital to the sit-

uation. The logic behind this approach derives from top-down design methodology that starts with

the highest level of interpretation and resolves the relational issues at this level before proceeding

down to a more detailed level.

Problem Analysis $0

3.2.4 Application of Domain Knowledge

The final stage of a design consultation represents a more detailed level of analysis. ln this stage

the consultant applies his background knowledge about the domain to produce the problem sol-

ution. The problem solution is a fusion of the consultant's domain knowledge and the aspects of

the problem that dictate the nature of the solution. The consultant applies his domain knowledge

to his own model of the situation which is composed of design objectives and constraints derived

from the client’s situational description. Only at this advanced stage of the consultation does the

expert apply a classification system to the problem. To the consultant, the design objectives and

constraints suggest a particular course of action that indicates the actual design ·- the result of the

consultation.
A

3.3 Conclusions

Without defining a new knowledge acquisition and representation method, expert systems will not

extend beyond their current, limited range of applications. While the methodology must signif-

icantly increase the client’s role in the consultation, it must also retain some structural, and thus

semantic, consistency so the expert system can properly interpret the client’s description. More

specifically, indirect goal elicitation is vital in the design domain since the client’s objectives are

.. usually different from the design objectives which map directly into the designed object. The more

flexible the problem model is, the 'farther" away the problem model is from the model of the ren-

dered object. A situation model, and all the benefit it provides, is not possible without a repres-

entational pipeline and representational transformation. The transforrnational component permits

a given representation to be tailored to the information it is meant to represent without loss of

reasoning efficiency and allows the application of background knowledge to a generic situation

Problem Analysis Sl

model. Background knowledge, however, is more than just rules about the domain. The method

used by the automated consultant should mirror that of the human consultant. As shown in

Figure 6 on page 53, CHARTMAKER’s architecture is directly related to design methodology.

Each of the basic aspects in a design consultation have a corresponding component in

CHARTMAKER. The first phase of design methodology, definition, is often considered implicit,

so it is enclosed in a dashed box. CHARTMAKER’s background knowledge of the design domain

consists of rules, a specific sequence of representations, the individual representations, and the

transformations that map f1·om one representation to another. The tailoring of models to the in-

formation they represent, the separation of different types of knowledge, and the transformation of

problem models according to certain contexts has the intuitive feel of what a human consultant

actually does, and a successful automated consultant could benefit from a similar approach to

problem definition and solution. . '

Problem Analysis 52

I O C C C C

·
I •
I •

c I.2 · 5 :
.2 ' E : •

3
"""‘—"‘—’! S g :6SI Z ¤: E g

I •
I n
I
-

• • • •

¤>.9
E

C
I

0 g

2
“

5
" E.5 <2 ä0

C
9
*6

* R:8 L2
_ 0 LIJ

f' "7
I: 2 : 3 2I I:}

·

__ •—’
E •...._...........;» -@ S¢ E S 2 8• Q ,

I •
I •

L.....•

Figure 6. Design Methodology and Cl-lARTMAKER’s Architecture

Problem Analysis 53

4.0 Problem Solution: Problem Definition

A human consultant interviews a client using unrestricted natural language. We cannot rely on

such a procedure and therefore must seek powerful yet well-defmed tools for building problem

models. Using an interviewing tool, the client must be able to adequately describe his situation as

he sees it, preferably in his own terminology, and the automated consultant must then be able to

interpret the client’s situational model and render an effective design based on that model and its

background knowledge about the domain. As noted before, it is difficult to achieve this balance

between the client and the expert system, primarily because the human and the computer view the

world from two radically different perspectives. This chapter focuses on the problem definition

phase: the initial phase of the consultation where the client and the consultant work together to

defme the client’s problem situation. From this situation model, the consultant determines the

underlying goal (Chapter 5) and suggests an appropriate design (Chapter 6). Of the information

acquisition strategies discussed in the literature review, two show promise for satisfying require-

ments of both the man and the machine: personal construct theory and system dynamics modelling.

Both acquisition methods possess a high degree of flexibility as well as a methodology that can be

readily programmed.

Problem Solution: Problem Definition 54

4. 1 Personal Construct Theory

Personal construct theory (PCT) has been successfully implemented on a computer for the purpose

of extracting and grouping the constructs of a client’s belief system. As noted in the literature re-

view, personal construct theory is useful for eliciting an individual’s model of a situation, and if the

interview is performed with respect to a particular problem, such a model could be construed as a

problem model. Originally, personal construct theory arose from the concem about how a person

categorizes and classifies his environment, and all the theories surrounding how a person actually

does this suggest that the individual uses a system of organization together with intexrelationships

between the components of the system that interact with the structure to produce interdependen-

cies. Kelly, the originator of PCT theory, states that each person constructs his own version of

reality using a hierarchical system or lattice of personal constructs [Shaw, 19/80]; and, if the client’s

'version of reality' can be extracted and understood by an automated consultant, PCT would be a

useful problem definition tool.

The prospect of creating a psychological model of the client’s world is, at first, appealing. For

example, a computer model of an expert’s view of the world (or at least, his domain of expertise)

would be a useful knowledge acquisition tool. Not surprisingly, researchers at Boeing Laboratories

have created a system based on PCT to interview experts about their domain of expertise [Boose,

1985]. An example knowledge acquisition session with an expert in computer languages will help

illustrate how PCT can be used as an interviewing tool.

The automated knowledge acquisition system would first elicit from the expert the basic concepts

of the domain, which for this example could be FORTRAN, PROLOG, COBOL, and assembly.

The system would then present the expert with a 'txiad' of concepts and ask how any two of them

are alike (and thus different from the third). If the system displayed FORTRAN, COBOL, and

assembly, the expert might respond with 'fast execution speed' for FORTRAN and assembly. This

Problem Solution: Problem Definition ss

associates 'speed” with FORTRAN and assembly while implicitly disassociating speed with

COBOL. Triads are presented and concepts elicitecl until all the concepts are adequately defined.

If some concepts are too similar in their constituent constructs, they will be presented as part of a

triad in an effort to enhance the differences between them. Once automated knowledge acquisition

is complete, a consultation with a client could be carried out by effectively reversing the process and

eliciting constructs from the client. The constructs could be characteristics or requirements of the

problem. For example, a client may have a problem that requires mathematical formulation and

high execution speed. The expert system could then match the characterlstics of the problem to

the characteristics of the languages that it knows about. As the example illustrates, PCT shows

promise for heuristic classification problems, but it may not be as we1l·suited to defining a situation

from which a problem can be derived.

/ .

4.1.1 Problems with Personal Construct Theory

The greatest strength of personal construct theory is, unfortunately, its greatest weakness in the

context of this thesis. Personal construct theory constructs personal models of the world. The

model is tailored to the client’s perspective since it consists of both his concepts and his constructs.

Since the entire structure of the model is in the client’s format, there is no effective way for an au-

tomated consultant to apply background knowledge to it. While freedom of expression is vitally

important in the design domain, the use of PCT in this context is tantamount to allowing the client

to ramble freely, and perhaps incessantly, without any help or direction from the consultant. The

use of PCT is analogous to the empathetic approach to consulting, and aside from the inherent

disadvantages of the empathetic approach with a human consultant, there are far greater difliculties

when the consultant is a computer. For an expert system to operate effectively with a problem

model, there must be some facets of the model are generally assumed to be constant. With a human

consultant, certain assumptions are made, such as the client will speak in English, may use certain

mathematical tools, etc. With an expert system, the restrictions are necessarily greater. Some basic

Problem Solution: Problem Definition 56

assumptions about the problem model must be made, or the system will be unable to operate on

the model since it will not know what to expect, even in a generic sense. With PCT, the model is

defined in the client’s words: the concepts are input by the client, and they are classified on the basis

of constructs which are input by the client as well. The constructs supply the underlying structure

of PCT, and unless the system has a natural language facility, it has no way to extract any semantic

content from either the concepts or the manner in which they are grouped. The 'empathetic" na-

ture of PCT makes it quite useful in building a model of the client’s world, but the model is so

tailored to the client’s perspective it is of little utility to the automated consultant. Beyond this

fundamental flaw, PCT lacks other facilities usefill in building a situational model. PCT is not a

direct modelling technique. It does not allow the client to explicitly build a "nuts·and-bolts" model

of the situation, consisting of parts and relationships between those parts. Because the model is

indirectly constructed from the triads of concepts presented to the client, PCT·lacks an intuitive

"feel' since the client is not entirely sure how the model is being constructed or if it is really what

he intended. Furtherrnore, a client cannot easily specify causality in a PCT model, and causality

and interrelationship are primary issues in the design domain. Finally, PCT is a classification

methodology, and while all consultations use some form of classification, most consultations in the

design domain are not as amenable to the application of raw classification techniques. The pro-

grarnming language example using PCT is effective but operates as heuristic classification. That

example is much more like a diagnosis problem in that it could be implemented with a decision tree.

PCT theory is a viable altemative in the diagnosis domain for well-studied problems such as med-

ical diagnosis, but it suffers from serious limitations when applied to the design domain because it

lacks a generic but standard structural quality that an automated consultant can understand.

Problem Solution: Problem Definition 57

[

4.2 System Dynamics Modelling

To understand how the client perceives his problem or situation, a 'cognitive map' of his beliefs

may prove useful. Cognitive mapping is a technique that portrays beliefs, attitudes, ideas, and their

relationship to one another in a form that is amenable to study and analysis. Cognitive maps differ

from repertory grids in PCT in that they are directb: constructed by the client and not by indirectly

elicited constructs. The map consists of concepts and links that represent relationships between

those concepts. As with PCT, the concepts are provided by the client, in his own terminology, but

in System Dynamics Modelling (SDM) the relationships between these concepts are explicitly

provided by the client as well. A relationship in the model is represented by an arrow that indicates

the direction of the causation. Usually, if the concept at the point (head) of the arrow varies in the
A

same direction as the concept at the base (tail) of the arrow, then a "+ ' sign is aflixed to the link.

If the head concept varies in the opposite direction, a '·' is used. From this basic structure, highly

complex situational descriptions can be created. System dynamics modelling is a field of research

devoted to the creation and study of cognitive maps and their application to dynamic systems.

SDM provides a strong scientific basis for cognitive mapping, as evidenced by its wide variety of

applications: modelling situational political influences (Figure 7 on page 59) [Richardson and Pugh,

1981], inventory tracking and control (Figure 8 on page 60) [Coyle, 1977], and a magazine pub-

lisher’s business concems [Eden, Jones, Sims, 1983] (Figure 5 on page 33).

The construction of an influence diagram involves making statements about how the system ac-

tually works. Hence, a link such as A = = > B is a diagrammatic representation of the statement

that factor A causes factor B, or, more generally, factor A influences factor B, and variations in A

will manifest themselves as variations in B. While 'A influences B' is the most basic example of

influence in a SDM model, relationships are often more complex, involving multiple influencing

factors for a given factor, which in tum, impact on other factors in the model. Since the links are

Problem Solution: Problem Definition 58

one of the most important features in the model, there needs to be some justification for linking two

factors together. In standard SDM theory, there are are six methods of link justiücation:

1. Conservation considerations

2. Direct observation
I

3. Instructions to that effect

4. Accepted theory

5. Statistical evidence

6. Hypothesis or assumption

Conservation considerations are commonsense observations of 'what goes in must come out

somewhere'. Tangible items like people, cash, and merchandise do not usually disappear from the

system unless the analyst determines that they are no longer relevant to the model. Conservation

considerations can best be described as tangible flows of physical entities. Direct observation, as

the name implies, is usually practiced by the model builder from his own personal experiences with

the system. The third method, justification by instruction, entails validating links by making the

system operate in accordance with them. In effect, the system is made to operate in a stipulated

way, rather than described as functioning in an observed way. The fourth method, accepted theory,

is justification on the basis of known laws or theories. An economic theory, for example, could

be employed in an economic model to enhance the relational structure beyond what would be

created with the other methods of justification. In some cases, statistical evidence can be used to

infer causality between factors in the model. A major distinction between this technique and the

others, is that statistical methods are used to determine the parameter: for a given link and not the

actual existence of a causal link. The final and quickest way to build an SDM model is through

hypothesis, assumption, and belief. This approach enables the builder to tailor the model precisely

Problem Solution: Problem Definition 61

to his purposes as well as easily replace alternatives that may be challenged by other relationships

in the model. Naturally, this approach has some disadvantages. The hypothesis approach is un-

scientific and may lead to unproductive controversy since the information (and thus the model)

will vary from person to person. More importantly, the results of the model depend on the infor-

mation in the model, and any conclusions drawn from the model are valid only with respect to the

underlying hypotheses [Coyle, 1977]. The importance of the links in the SDM model is under-

scored by the variety of possible methods for justifying them. The links of the model create the

actual influence structure which contains a wealth of information about the problem.

In system dynamics an influence model must pass a fundamental test to be considered a dynamic

model. The model must meet a closure property such that it has at least one feedback loop, so that:

starting from any point in the influence diagram it must be possible to retum to that point by fol-
lowing the influence lines, in the direction of causation, in such a way as to not cross one’s track.
[Coyle, 1977]

One possible exception to this rule are links from parameters that are input to the model from the

outside world. The purpose in requiring closure in the dynamic model is that the model's dynamic

behavior derives from the operation of feedback loops in a closed system. If a model has no feed-

back loops, it is a static influence model since further iteration will not change the model.

While both system dynamics modelling and personal construct theory create models of the client’s

reality, SDM is a more direct approach to model building. In both SDM and PCT the user enters

his concepts into the model, but in SDM the relationships are directly added to the model by the

client, instead of indirectly by the client’s elicited classification scheme. The bcriefit of SDM lies in

the user's ability to directly indicate causal influences between the concepts, as well as indicate ifthe

influence is positive or negative. Although the client has more direct control over the model con-

struction, he is required to use the SDM structural paradigm. The 'A influences B' building-block

is flexible enough to permit accurate system forrnulation by the client, but restricted enough to

provide the consultant with a known structural format. The flavor of SDM is more like a

negotiative approach to consulting in that both the client and consultant compromise to facilitate

a better understanding of the situation by both parties. The compromise is vital to an expert system

Problem Solution: Problem Definition 62

implementation since it gives the system a basic semantic framework to operate from while allowing

the client sufficient freedom to define his problem adequately.

The basic definition of a system in the context of SDM is 'a collection of parts organized for a

purpose'. While the parts of the system are important, the organization of the components is the

key to the representational strength of system dynamics. Since system dynamics is actually a dy-

namics modelling paradigm, this use of this structural feature as a representation method is over-

looked. In the design domain, the actual concepts are not as important as the relationship: between

the concepts since a change in one concept usually aäects the other concepts in the model.

The domain of chart design provides an added motivation for SDM. Time is a prevalent issue in

charting. The most common classes of charts usually involve time as a key aspect, and even if time

is not directly involved in a chart, there is usually some dynamic element against which the other

quantities are plotted. The quantity plotted along the x-axis is typically an independent variable,

and the quantities on the y-axis are affected by changes in the independent quantity. This

'dynamism' in charting is a form of dependency, and one of the strongest representational com-

ponents of SDM. Even the simplest influence structure in SDM, "A = = > B', implies a re-

lationship between the 'variables" A and B. Relationship of variables is a basic chart type, and this

intuitive link between chart types and certain system dynamics models provided the initial impetus

for exploring SDM as a problem model for the design domain.

4.2.1 Modifications to the System Dynamics Paradigm

Since system dynamics is a dynamic modelling paradigm, there are aspects that are not requisite

for a static problem model. For example, delays are often used in SDM models to indicate a

non-immediate causal influence between two concepts. A delay is not necessary for a static model,

but the ability to express different types of causal effects between concepts may prove useful and

Problem Solution: Problem Definition
I

63

even necessary in more complex domains. System dynamics also uses positive and negative signs

on the links to indicate the basic nature of the influence. While these are vital to the dynamic

model, and perhaps a more generic problem model, they are not necessary for this domain primarily

because charts typically display positive and negative influences between concepts. For more

complex domains that require a more complex problem model, different types of causality may be

incorporated into the model and interpreted by the background knowledge. SDM offers significant

expressive capability along this dimension. In CHARTMAKER, the justification of links is left to

the client's discretion. Since the problem model seeks to represent the situation as the client per-

ceives it, the client will most likely express the relationships on the basis of hypothesis, belief, and

assumption. The client must be aware, however, that an incorrect model will probably produce

incorrect results. As noted earlier, system dynamics also places validity constraints on a model.

The most important is that of closure. A model must have at least one "loop' to be considered

valid. This makes sense since it's the only way change can propagate through the entire model;

however, such a requirement is not necessary for a problem model. To create the basic paradigm

for problem definition, the basic nature of system dynamics ·- generic modelling based on user-

defined concepts and relationships ·· is preserved, and the unnecessary aspects such as delays and

validation rules, have been eliminated.

4.3 Implementation

The design problem framework for a true consultant requires more than a single representa-

tional structure. The basic design procedure is analysis, synthesis, and evaluation, and the auto-

mated consultant requires the additional step of problem definition. These four steps represent four

distinct phases of a design consultation, and the processes involved in each of these steps is quite

different. The system dynamics model forms only one of a series of internal representations that

eventually lead to a rendered chart. The theory of a design consultant presented here requires a

Problem Solution: Problem Derrmriorr 64

series of three intemal representations, each associated with a distinct phase of problem interpreta-

tion: a situation model, an intent model, and a rendering model. This "pipeline' of representations

is a major departure from traditional representations. Instead offorcing all aspects ofa consultation

into a single structure, the structure is designed to suit the nature of each particular aspect of a given

problem. For the design domain, the entire consultation can be broken down into three basic areas:

the c1ient’s conception of the situation, the c1ient’s primary interest (goal), and the model for the

rendered chart (Figure 9 on page 66). Through the pipeline, each ensuing model is constructed

using information derived from the previous model and from background information already

known about the design domain.

An extended example will help to illustrate the theoretical principles of the automated design

consultant. Consider a user whois making a presentation based on a set of data regarding radio

sales. He has data for a wide variety of radios ranging from Walkmans to console stereos, and he

isn’t quite s11re how this should be presented to the audience, either in terms of which charts he

should use, or what those charts should contain.

4.3.1 The Situation Model

At the outset of a consultation with CHARTMAKER, the client is presented with a menu that

allows him to construct a logical relationship diagram showing the basic concepts of the problem

model and how they relate to one another:

- ADD a concept to the model

- DROP a concept from the model

- LINK two concepts (causal or attribute link)

- SNIP a link

- DISPLAY current problem model

Problem Solution: Problem Definition 65

Problem Definition Phase
Build Problem Model

Basic Concepts

lnfluence links

Goal Elicitation l
Key Concept Elictiation

Transitive Reduction of Problem
Model

Rendering
Application of Background
Knowledge to Problem Structure
Application of Background
Knowledge to Raw Data

Rendered Chart

Figure 9. System Design for CHARTMAKER

Problem Solution: Problem Definition 66

1

- FINISH building the model

The client ürst ADDs the basic concepts of the model, which for this example would be walkmans,

discmans, portables, console stereos, and total radios. He then adds the causal influences (if any)

to the model by LINKing the concepts together. The primary concept in the model is 'total radios'

since all the different types of radios directly influence the number of total radios. Using this in-

terpretation of the situation, all the supporting concepts such as walkmans, discmans, and port-

ables, can be linked to the "total radios' concept. For example, using the A = = > B basis, a part

of the model would be walkmans = = > total radios. If the client wishes to see what the model

looks like, he can DISPLAY it. CHARTMAKER lists the relationships by the concepts that they

affect. For a given concept, both the '°mfluences’ and the 'is influenced by' links are given. The

user-defined situation model is shown in Figure 10 on page 68.
· /

4.4 Corzclusions

SDM offers a useful compromise between the client’s and consultant’s perspectives. While the

client is free to use his own terminology and express the relationships between the concepts in the

model, he must use the 'A influences B' architecture of SDM. This standardized portion of the

model allows the automated consultant to apply its background knowledge to a known structural

component while the user still retains a reasonable degree of free expression. Alternatively, PCT

is too empathetic in that everything about the problem is defined by the client, and the automated

consultant has no way to interpret the situation model effectively beyond the context of heuristic

classification. While SDM is a viable tool for problem definition, it does not resolve the entire

entire representational problem either. CHARTMAKER needs to be able to understand the

problem model. From the generic problem description, the expert system must determine what the

Problem Solution: Problem Definition 67

TOTAL RADIOS

WALKIVIANS DISCMANS PORTABLES OONSOLE SETS

Figure 10. Problem Model for Radio Data

underlying problem is and map the problem into its background knowledge to produce a solution.

Chapter 5 explains in depth how this is accomplished

Problem Solution: Problem Definition 69

5.0 Problem Solution: Goal Elicitation

While the problem model provides a useful way for the client to express himself, the automated

consultant needs a somewhat less arbitrary structure to analyze and interpret. To provide a more
U

suitable model for CHARTMAKER, the system transforms the client’s 'cognitive map" of the

situation into a more manageable and useful representation. The objective of the reduction process

is to discem the nature of the underlying problem in the client’s situation. In a consultation, the

client often provides more information than is necessary since the client has his own ideas con-

ceming what is important about the problem. For example, in the auto mechanic example from

the previous chapter, the customer may offer the information that the car has been overheating re-

cently. While this information may be indicative of another problem, it is not particularly relevant

to a cracked distributor cap, and the mechanic needs to 'screen out" such irrelevant information

when searching for a solution. The mechanic must not be overly critical in screening out infor-

mation, however, since knowledge that 'the car stalls after car washes" may not be ofvital interest,

but it can provide a basis for further inquiry which can provide usefi.11 information such as 'the car

only stalls when it is wet'. The automated consultant must find a way to focus attention on the

relevant concepts of the situation and ignore the ones that have marginal or no impact on the sol-

ution without accidentally ignoring the impact of seemingly relevant concepts.

Problem Solution: Goal Elicitation 70

l

5.1 Background Knowledge

A key component ofan expert system is its background knowledge. Background knowledge is what

the system knows about its domain of expertise. For example, Rl, the VAX system configuration

expert system, has background knowledge about VAX components as well as knowledge about

how these components can be combined to form a functional system. In conventional expert sys-

tems, the domain knowledge is represented with rules. While rules form an integral part ofdomain

knowledge, they are not the sole source of a human consu1tant’s expertise. A supporting hypothesis

of this work is that the underlying representational structure is a vital facet of background know-

ledge. Although it is impossible to conclusively determine what mental models a human expert

uses, it is reasonable to assume his representations derive from the domain theory or methodology.

The representational pipeline used by CHARTMAKER follows basic design methodology and uses

three different representations for the different facets of a consultation. Moreover,

CHARTMAKER employs transformations that create the next representation in the pipeline from

the preceding model and background knowledge (rules) about the models. Contrary to the standard

expert system paradigrn, CHARTMAKER’s background knowledge consists not only of rules, but

also of representations and representation transformations.

5.2 Application ofBackground Knowledge: Focusing the

Analysis

In CHARTMAKER, the cognitive map of the client’s situation is still lacking in one critical re-

spect. The map must in some way provide an indication of those concepts most relevant or most

important to the actual problem. That is, the actual problem is derived from the situational de-

Problem Solution: Goal Elicitation 71

scxiption (just as the mechanic deduces the real problem from a situational description about the

car), and either the client or the consultant (or both) must identify the salient features of the con-

sultation since these will have the greatest impact on the problem defmition and thus problem sol-

ution. The process of key concept selection can follow any of the three paradigrns discussed earlier:

coercive, empathetic, or negotiative. With the coercive approach, the consultant determines what

the key facets of the problem are, as in the auto mechanic example. A consultation in the design

domain, however, is really an exarnination ofwhat the client feels is important. For effective design,

either the client should decide what the key facets are (empathetic), or the client and the consultant

should collaborate (negotiative) in deciding what aspects of the problem merit the most concem.
7

In any case, the actual situation must be transformed into a more manageable model that the

consultant can more easily understand and interpret. A complexity reduction is necessary since the l
client can compose an arbitrarily complex problem model, and the number of possible structures,

even for reasonable models, numbers in the thousands. One solution to this problem is to ex-

haustively code background knowledge to interpret all the possible problem models. This approach

is neither realistic nor a reasonable interpretation ofhow a human consultant formulates a solution

for a complex problem model. A more intelligent approach exploits structural sirnilarity and ef-

fectively "reduces" the problem model to a structure indicative of an entire class of problems.

CHARTMAKER, like a human consultant, uses background knowledge to convert situational

descriptions into problem classes as well as map classes of problems into design solutions. The

process of eliminating unnecessary detail and focusing on the high-level relational structure of the

problem is known as clustering since the concepts are grouped based on their similarities and the

relational analysis transacts between groups of concepts instead of individual concepts. This

grouping or "clustering’ of concepts effectively reduces the number of concepts and relationships

while preserving the underlying relational structure of the problem.

Clustering reduces a cognitive map to a more manageable structure based on hierarchical relational

dependencies. Using clustering, the consultant first identifies key concepts within the model based

on his background knowledge of the domain. A key concept is selected on the basis of its appro-

Problem Solution: Goal Elieitation 72

l

priateness for a particular area of concem. All concepts that have consequences for a given key

concept (on the tail of an arrow or sequence of arrows that leads to a key concept in the cognitive

map) are considered part of the group for that concept. The cognitive map is then reduced by re-

placing groups of concepts with symbols and then adding the directed influence links between the

groups. To illustrate, the concepts in the the generic problem model in Figure ll on page 74 can

be grouped based on the key concepts in the model (Figure 12 on page 75) [Eden, Jones, Sims,

1983]. A concept is a member of a particular group if it influences, directly or indirectly, the key

concept of that group, and since a concept can influence more than one other concept, a given

concept may be a member ofmore than one group. The key concept of a group linked to a concept

in another group is not considered part of that group. Instead, the key concept influences the entire

group. The key concepts and their constituent influences form the abstracted problem model in

Figure l3 on page 76 [Eden, Jones, Sims, 1983]. This 'intent model" is the second in the pipeline

oflrepresentations.

5.3 Implementation

One of the problems with automating the process of clustering lies in key concept selection. Key

concepts are selected for their appropriateness as descriptions of an area of concem, and if the au-

tomated consultant independently determines what the key concepts are, it must have some idea

what the concepts actually mean. Since the client described the problem in his own terminology,

the automated consultant would need a natural language facility to understand the concepts used

in the client’s description. Instead of adding this complication to the system, it actually makes more

sense to follow the underlying paradigm of the design domain. Unlike the diagnosis domain where

the consultant is primarily concemed with the observable symptoms of the problem, the design

consultant is primarily concemed with the client’s interests and preferences. The ultimate design

should meet the client’s described purposes, and the client has a far better idea what his purposes

Problem Solution: Goal Elicitation 73

D ——————— C

Figure 13. The Abstracted Problem Model: [Eden, Jones, and Sims, 1983]

Problem Solution: Goal Elicitation 76

are than does the consultant. Since CHARTMAKER operates in the design domain (albeit in a

restricted sub·area), it is reasonable to allow the client to specify the key concepts of the model.

Once the key issues are determined, the automated consultant performs a transitive reduction be-

tween the key aspects of the model. While CHARTMAKER does not actually ”cluster" the con-

cepts together, it does produce the same result. In transitive reduction, a key concept is selected

and all its influence links are traced. If an influence link terminates at a non-key concept, all the

influence links from that concept are traced. lf the link terminates at another key concept, then an

abstracted influence link is established between the two key concepts and added to the abstracted

problem model. This process is repeated until all abstracted links have been found. The resultant

abstracted problem model which consists of the key concepts and their abstracted links is identical

to the one produced by clustering.

In CHARTMAKER, once the user is satisiied with the situation model, he selects the FINISH

option, thus completing the first phase of the consultation. CHARTMAKER then displays all the

concepts in the model and asks the user to identify the key concepts. In the charting domain a key

concept reflects a basic issue that the presenter wishes to convey through use of the chart. In the

example problem, the user may decide that the key issues in the presentation are both the

"Walkrnans" and the 'portables/' and choose these as the key concepts. Once the client identifies

the key concepts, the automated consultant investigates how the key concepts affect one another

by analyzing the transitive closure of influence in the original model and producing a reduced model

consisting only of the key concepts and their interrelationships (Figure 14 on page 78). In this

model, clustering did not produce any virtual links. The lack of influence links in the reduced

model is by no means a pathological situation since the isolation of the key concepts of the model

provides useful structural information about the problem. Altematively, the client may decide that

^'total radios' and "console sets" are the focus of this facet of his presentation and select these as the

key concepts of the problem model. After transitive reduction, a different simplified problem model

is produced (Figure 15 on page 79).

Problem Solution: Goal Eticimion 77

TOTAL FIADIOS

WAl.KMAN
‘

DISCMANS PORTABLES CONSOLE SETS

Figure I4. Goal Model For Radio Data Example (Comparison)

TOTAL HADIOS

WALKMANS DISOMANS POFITABLES CONSOLE SET

Figure 15. Goal Model For Radio Data Example (Relationship of Variables)

Problem Solution: Goal Elicitation 79

Since the concepts have a unidirectional virtual link, the implied goal is the 'relationship of two

variables'. This is intuitively satisfying since a relationship chart will illustrate the causal effect of

one entity on another. For example, a chart showing the relationship between boiling point and

pressure shows the impact a change in one entity has on the other. In this case, the number of

console sets is the independent variable, so it would be automatically labelled on the x axis. From

the reduced model, the system then determines exactly what the user is trying to demonstrate.

Once the underlying problem has been deduced, CHARTMAKER applies its background know-

ledge in charting to produce a suitable chart for the data and the situation (for a more explicit

treatment of CHARTMAKER’s knowledge, see the code listings in appendix B).

CHARTMAKER interprets problem structures to indicate the type of chart needed, and then ex-

amines the supporting data which dictates the exact type of chart (Chapter 6).

5.4 Conclusions

The reduction phase represents a new approach to goal elicitation. instead of asking the user di-

rectly what type of chart he wants, the system derives this information from the user’s problem

description. lndirect goal elicitation is vital in the design domain. Returning to the human factors

example, when a client requests a huma.n factors specialist to design a computer screen display, the

specialist typically asks questions like, "What information do you need to see most often?' or "What

information do you look for frrst?'. The consultant uses these questions to construct a mental

model of the client’s situation. From this mental model, the consultant focuses on the primary is-

sues while disregarding irrelevant information and applies his background knowledge in graphic arts

and human factors to the basic structure of the problem to create a screen design. In essence, the

client cannot explicitly describe the type of screen he wants, but he can describe the situation that

dictates the design, and the consultant uses this situational description in deterrnining the client’s

Problem Solution: Goal Elieirariorr 80

'goal/’ CHARTMAKER follows the same paradigm by analyzing the relationships between the

key concepts and focusing on the underlying problem structure. This abstraction of the original

situation model acts as a bridge between the client and the consultant. The goal model retains the

basic information of the client’s situation, but it focuses the consultant’s analysis on those issues

most important to the problem. From this analysis, the consultant can produce a rendered design

(Chapter 6).

Problem Solution: Goal Elicitation 8l

6.0 Problem Solution: Rendering

Once CHARTMAKER has obtained the goal model, it can make a decision about rendering,

which constitutes the third and final phase of the consultation. From the abstracted problem rep-

resentation, the automated consultant will match the problem structure to a particular type ofchart

and use the input data in conjunction with the data pattern to render the chart. Although the target

chart class is determined by the goal model, the rendering phase determines exactly what style of

chart is to be rendered. For example, a trend chart can be rendered as either a column chart or a

line chart. One of the selection criteria in this case is the number of available time periods. From

its basic charting knowledge, the system knows that if only a few time periods of data are available,

a column chart will be more legible and is therefore preferable to a line chart. While these 'rules

of thumb" are only a part of CHARTMAKER’s background knowledge, they are the primary

component of most conventional expert systems and are usually implemented with the If/Then

productions discussed in the literature review. The rendering model contains more specific infor-

mation than does the goal model, such as discrete or continuous plotting, the ranges of the axes,

and labelling, and makes these decisions on the basis of its background charting knowledge. This

model relies more heavily on specific background knowledge since it is most closely associated with

the actual domain; the rendering model is ultimately used to create the actual image.

Problem Solution: Rendering 82

6.1 Application ofBackground Knowledge: Chart

Selection

From the goal model, the system determines exactly how to display what the user is trying to

demonstrate. CHARTMAKER accomplishes this by mapping the goal model into its background

knowledge of charting, and interprets the relational structure of the goal model as indicative of a

particular class, or style of charts. This interpretation is actually a form of heuristic classification.

Since there is no established method for mapping situational descriptions into specific charts, a

reasonable guideline would dictate that the chosen taxonomic criteria reflect a basic intuition about

the original situation. For example, if two concepts have mutual causation links (after transitive

reduction of the situation model), the implied goal is the 'relationship of two variables'. This is

intuitively satisfying since a relationship chart will illustrate the mutual causal effect of two entities.

For example, a chart showing the relationship between boiling point and pressure shows the impact

that a change in one entity has on the other. If the causation eifect transpires in only one direction,

a relationship situation is still implied. For example, a chart showing the impact of years of edu-

cation on yearly salary is still an instance of the relationship of variables, but the causality is

unidirectional. In this case, CHARTMAKER’s background knowledge would dictate that since

'number of years of education' is the independent variable (since it is on the tail of' the influence

arrow), it would be automatically labelled on the x axis, whereas in the previous example, the sys-

tem would either display two different charts (one with temperature as the independent variable, the

other with pressure) or ask the user which concept has the "predominant influenoe'.

lf the goal model has a structure that does not imply a relationship between variables, it can be

classified into other basic areas. For example, if only one concept is selected, no relationships can

be explorecl since there are no other key concepts to establish links with. This indicates the user

is interested in emphasizing a trend in the data. Generally, trend charts show the behavior of a

Problem Solution: Rendering 83

single entity over a period of time, and since time is a ubiquitous issue in the charting domain, it

need not appear explicitly in the situation model. Altematively, if there are two (or more) key

concepts in the goal model with no direct causal link but with a common parent, or head concept,

the desire for a comparison between the two is likely, although this instance could represent a need

to see each concept in the context of a 'part of the whole' situation. The distinction can be made

by whether or not the parent concept is also selected as a key concept. Ifit is, the user has indicated

he is interested in the impact the child concepts have on the parent concept, or on how the parts

affect the whole. Again, the situation model has the intuitive tlavor of the chart it represents.

The preservation of this basic intuition is both a function of the model and the system’s back-

ground knowledge. If the intuition captured by the structure of the intent model is not utilized by

the background knowledge, then the representational strength of the structure is limited by the

background knowledge applied to it. Other relationship possibilities exist and can arise through the

use of the system but may not be recognized by the background knowledge. Reduced structures

that are not instances of the three categories mentioned above can represent either combinations

of the three fundamental categories or non-chartable situations. For example, the problem model

may reduce to three primary concepts with mutual causation links. This is really an instance of

multiple relationships between variables, and should be rendered as two or three distinct charts.

Altematively, the reduced structure could consist of a single concept with a self-referent causal link.

This structure does not currently represent a chartable situation, but the background knowledge of

relational structure could be enhanced to interpret this structure as a certain type of chart, if one

exists.

Of course, since a user may improperly specify the problem, the system needs to be capable of

detecting and resolving inconsistent or incomplete problem models. For example, if there is some

ambiguity as to which chart should be rendered, or if no chart matches the problem structure, the

system allows the user to augrnent or alter the original problem model and respecify the key con-

cepts in an attempt to resolve the inconsistency. If the problem still cannot be resolved, the system

Problem Solution: Rendering 84

permits the user to choose whatever type of chart he feels is appropriate and then renders it if the

required supporting data is available.

6.2 Integrating Data with the Chart

At some point in the consultation, an association must be made between the concepts that the

client uses in the problem model and the actual data. If the client speciiies "Wa1kmans' as a key

concept in the model, there should be some data (e.g. number ofWalkmans sold) that corresponds

to theconcept. Actually, an entire class of values may correspond to a particular concept (e.g.

number of Walkmarrs sold over a certain period of time) since the concept may be affected by the

presence of a time component in the chartingsituation. This conceptual mappirrg can be achieved

a variety of ways. The simplest way is to present the user with a 'data pattem' and instruct him

to input the data values corresponding to the displayed concept. A more advanced implementation

could employ some rudimerrtary natural language to determine how the available data relates to the

concepts in the goal model.

6.3 Implementation

Before rendering the chart, the system elicits the raw data from the user. To construct a data

pattern, the system displays the key concepts of the model and asks the user to enter a data value,

in the preseribed order, for each concept. The user enters his data, line by line, and after he is tin-

ished, the system analyzes the nature of the data to determine the exact chart type. Once

CHARTMAKER determines the appropriate chart type, it produces the rendered chart.

Problem Solution: Rendering 85 4

Retuming to the example using radio data (Chapter 5), the client may have a dataset consisting

of the following entries:

walkmans 1981 30000

discmans 1981 2000

auto sets 1981 250
l

portables 1981 250

home sets 1982 40000

portables 1987 7000

home sets 1987 300

For the first example where the client indicated that "Wa.1kmans’ and ’Portab1es’ were the key is-

sues, the system would display the data pattern:

Walkmans Portables Time

and request the client to use that format to enter the data values. Note that 'Time' appears in the

data pattern, but does not appear anywhere in the data model. CHARTMAKER, through its

background knowledge, knows that since a trend chart is going to be displayed, a time component

must be part of the data pattern. The user may then enter the data:

Problem Solution: Rendering 86

700 100 1984

750 150 1985

688 300 1986

521 487 1987

372 698 1988

The rendering model for this example is shown in Figure 16 on page 88 and the rendered chart is

shown in Figure 18 on page 90. ln the second example, the system presents the data pattern:

Total radios Console sets

A
and the user responds with:

4900 220

5300 300

5700 410

7000 440

and produce the rendering model shown in Figure 17 on page 89 and the rendered chart in

Figure 19 on page 91.

Once the image has been rendered, the user has the option of retuming to the original problem

model (to make modifications), returning to the problem definition stage to create a new model,

or rendering a different chart based on the input data. The ability to return to the previous problem

model allows the user to chart diüerent aspects of a larger problem by changing his emphasis

through the key concepts.

Problem Solution: Rendering 87

Direct Comparison

X · component Y · component

fill
·discrete

_ Walkmans Discmans
time

1984 1985 1986 1987 1988

Figure I6. Rendering Model for the Radio Data Example (Comparison)

Problem Solution: Rendering 88

Relationship of
Variables

X · C¤mP¤¤8¤l Y · component

no-fill
conünuous

pgnamgg total l'8dlOS

220 260 300 340

Figure 17. Rendering Model for the Radio Data Example (Relationship)

Problem Solution: Rendering 89

6.4 Corzclusions

The rendering model is the final stage in the representation pipeline in Figure 9 on page 66. The

use of a pipeline of representations mirrors basic design methodology (Figure 6 on page 53) as

well as underscores the differing nature of the basic aspects of a design consultation. The rendering

model is created from both the goal model (second stage in the pipeline) and the background

knowledge in charting which is applied to the goal model. While the preceding models in the

pipeline focused on the less concrete and more client-oriented aspects of the consultation, the ren-

dering model represents the specifics of the rendered chart, the final result of the consultation. A

primary theme of this thesis is that an expert system’s expertise does not derive solely from its col-

lection of lf/Then heuristics, but also from the underlying representational structures and consul~

tation methodologies. Only when all these facets of expertise are implemented and integrated

effectively can the 'true consultant^' be realized.

Problem Solution: Rendering 92

7.0 Results

Perhaps the best way to illustrate the utility of CHARTMAKER is to return to one of the first

examples of SDM in this thesis:. the magazine publishing model in Figure 5 on page 33. Using

this system dynamics model as the basis of a problem model, a variety of charts can be constructed

from different presentation goals. To simplify the example, the entire model need not be consid-

ered, but the entire model could be entered in a consultation and the client could, through a series

of key concept specifications, focus on different parts of the model. With this approach, an entire

presentation could by built by CHARTMAKER, based on the client’s differing areas of concem.

For the following examples, a fragment (Figure 20 on page 94) of the original SDM model that

considers the magazine’s attractiveness to its readers will be used.

7.1 Example One: Comparison

In the first example, the client is interested in two aspects of the model. After constructing the

original problem model, the client selects Editorial Quality and Ad-Ed Ratio (number of adver-

tisement pages vs. the number of editorial pages) as his two basic concems. CHARTMAKER,

Results 93

AD·ED
NUMBER 0I= R^T'O
EDITORIALPAGES‘

FEATURES |SSUE

‘ ATTRACTIVENESS
TO READERS

EDITORIAL PRICE

AIM AT LOWER
END OF MARKET

COVERING VERY<
GLQSSY MAGAZINEBEST IN FIELD FORMAT

Figure 20. Problem Model for Magazine Publishing Example

Results . 94

then produces the goal model shown in Figure 21 on page 96. In the model, no transitive influence

links are shown since no influence path exists between two key concepts. The key concepts in the

model are effectively isolated from one another. The background knowledge of CHARTMAKER

interprets this as a direct comparison between the two key concepts: Editorial Quality and the

Ad-Ed Ratio. Moreover, CHARTMAKER, through its background knowledge recognizes that a

direct comparison requires a time component. Therefore, the data pattem is presented as:

Editorial Quality Ad-Ed Ratio Time

The client then responds with the data (assume some imaginary publishing metric for editorial

quality):

22 4 1984

31 5 1985

44 55 1986

75 61 1987

Once the data is entered, CHARTMAKER combines the raw data with the goal model to create

the rendering model (Figure 22 on page 97) and the final rendered chart (Figure 23 on page 98).

One problem with rendering this type of chart is scaling different quantitative measures. For ex-

ample, the sales figures for two companies are both quantified in dollars so the y-axis of the chart

can be labelled 'dollars', but editorial quality and the ad-ed ratio are not like quantities so the y-axis

cannot be uniquely labelled. There are two possible solutions when comparing unlike quantities.

The quantities can be normalized to fall within a specified range that will be labelled on the y-axis

and include the measure for that item in the chart’s legend, or the y-axis can have multiple labels.

The latter tends to be confusing, especially when more than two items are being compared. Nor-

malizing the quantities produces a more readable graph, and it is the approach used by

CHARTMAKER.

Results 95

A0-ED
NUMBER o¤= mmc
EDITORIAL PAGES

· FEATURES issues¤zE

ATmAcT1vENEss
TO READERS

EDITORIAL PRKPE
QUALITY

AIM AT LOWER
END OF MARKET

COVERING
VERY

\
msBEST IN FIELD Eägääg MAGAZ

Figure 21. Goal Model for Magazine Publishing Example (Comparison)

Results 96

· Direct Comparison

· X · component Y · component

discrete „
- ad'°d editorialITratio1984

1985 1986 1987

Figure 22. Rendering Model for Magazine Publishing Example (Comparison)

Results 97

7.2 Example Two: Trend

The second example represents the most common type of chart. Using the original problem model,

the client selects only Ad-Linked Features as a key concept. CHARTMAKER recognizes this as

a trend situation since there is only one concept to display in the chart, and creates the trend goal

model in Figure 24 on page 100. No transitive influence links are explored since there are no other

key concepts to influence. Again, CHARTMAKER recognizes he presence of time in this charting

situation and puts that in the data pattern as well:

Ad-Linked Features Time

to which the client responds with his data: '

55 1984
53 1985
42 1986
35 1987
29 1988
25 1989

The data is combined with the goal model to create the rendering model in Figure 25 on page 101

and the rendered chart in Figure 26 on page 102.Results 99

AD-ED
NUMBER OF

“^T‘°
EDITORIAL PAGES

\
. FEATURES 453UE

ATTRACTIVENESS
TO READERS

EDITORIAL PRICE
QUALITY <\

AIM AT LOWER
END OF MARKET

§§g’$TQ,",§§E{$,“‘& GLOSSY MAGAZNE
FORMAT

Figure 24. Goal Model for Magazine Publishing Example (Trend)

Results mo

Trend

X - component_ Y - component

no·fiII
conünuous

_ ad-linked
t'm° features

1984 1985 · · · 1989

Figure 25. Rendering Model for Magazine Publishing Example (Trend)

Results l0l

7.3 Example Three: Relationship

A chart that shows a relationship between two or more variables is really showing the causal effect

that one entity (the independent variable) has on the other entities (the dependent variables). For

CHARTMAKER to display a relationship of variables chart, the causal influence must exist in the

problem model. In the first example in this chapter, the client selected two concepts and they were

rendered as a direct comparison. The reason they were not rendered as a relationship of variables

is that there is no causal influence between them in the problem model. lf in some other problem

model there is a causal link between the ad-ed ratio and the editorial quality, the derived goal model

would indicate relationship of variables. For this example, the client selects Number of Editorial

Pages and Attractiveness to Readers as his key areas of interest. A causal link does exist between

the two concepts via a transitive reduction on Issue Size (Figure 2*7 on page 105). Since Number

of Editorial Pages is on the tail of the influence arrow, it is the independent variable. Since

CHARTMAKER knows the independent quantity is labelled on the x-axis, it also knows that

Time is not a part of this charting situation, and the resultant data pattern:

number of editorial pages attractiveness to readers

and the data input by the user:

5 2

10 28

15 35

20 Ä 4
25 43

30 45

35 46

Results W3

1

produces the rendering model in Figure 28 on page 106 and the rendered chart in Figure 29 on

page 107

7.4 Example Four: Relative Comparison

In the final example, the client expands his scope of interest to include five key concepts: Ad-

Linked Features, Issue Size, Editorial Quality, Price, and Attractiveness to Readers. The influence

links play a key roles in this situation as the derived goal structure (Figure 30 on page 109) shows

four of the concepts having a partial influence on the fifth concept, Attractiveness to Readers. Not

surprisinßll', this indicates a parts-of-a-whole or pie chart situation whereby the four influencing

concepts are rendered in the chart, and the influenced concept is should actually appear in the title

of the chart. While it is possible to plot a sequence of pie charts, CHARTMAKER currently

supports only one pie chart per screen; therefore, in response to the data pattern:

Ad-linked Issue Price Editorial Total

Features Size Quality

the client enters:

23 17 44 33 120

(only one line of data). The concept Total is added to the data pattem by CHARTMAKER.

CHARTMAKER allows other factors (whether specified in the problem model or not) to influence

the main concept, and it requires the client to specify a total influence factor which is simply the

Results IM

‘‘

AD·ED
NUMBER o¤=

“^T‘°
EDITORIAL

PAGESAD·LlNKED”
FEATURES |SSUE

ATTRACTIVENESS .
‘

TO READERS

EDITORIAL PRICEQUALITY *\
AIM AT LOWER
END OF MARKET

COVERING VERY EBEST IN

EIELBFigure27. Goal Model for Magazine Publishing Example (Relationship)

Results 105

Relationship of
Variables

X - component Y - component

no-till
conünuous

¤¤mb9l’ 9* attractiveness
99**9*lä* PaQ@$ to readers

5 10 - ·· 35

Figure 28. Rendering Model for Magazine Publishing Example (Relationship)

Results 106

sum of the influencing factors in the goal model plus any other unspecilied influence.

CHARTMAKER will render any difference between the sum of the specified factors and the total

as "other^' in the pie chart. From the data and the goal model, CHARTMAKER constructs the

rendering model in Figure 30 on page 109 and the rendered pie chart in Figure 32 on page 111.

7.5 Corzclusions

From the examples given in this chapter, one can see that CHARTMAKER’s basic approach

differs from that of conventional 'question and answer" expert systems. The client builds his own

model of the problem, and the validity of the charts produced from a client’s model are explicitly

dependent on the model. This question ofvalidity is actually the realization of CHARTMAKER’s

goal: to interpret the world as the client sees it, and not as the knowledge engineer or programmer

sees it. In more complex areas of the design domain, validity of the problem model becomes far

less important, since the problem model is actually a representation of the client’s preferences and

personal beliefs which are too subjective to be 'validated". This shift in emphasis from the know-

ledge engineer’s viewpoint in conventional expert systems to the client’s viewpoint in

CHARTMAKER is the key issue in building a true comultant.

_ Results ms

AD-ED

NUMBER OF
R^T‘°

EDITORIALPAGES_

AD·L|NKEDFEATURES

ATTRACTIVENESS
TO READERS

EDITORIA PRICE
QUALITY *\

AIM AT LOWER
END OF MARKET

GLOSSY MAGAZINE
FORMAT

Figure 30. Goal Model for Magazine Publishing Example (Rel. Comparison)

Results 109

Relative
Comparison

null Y - component

tm
totat ad-|;nkgd editorial price issue

features ¤lUal'W $129

Figure 31. Rendering Model for Magazine Publishing Example (Rel. Comparison)

Results 110

8.0 Conclusion

In constructing a system dynamics model, the goal is to define a user’s problem as thoroughly as
‘

possible before attempting to render a design. During the planning process, or problem definition

phase, the problem is first defined by the user in terms ofthe necessary concepts and their associated

influences. Instead of requiring the user to specify 'pie" or "bar" as in Lotus-123 or Microsoft

Chart, or even to select a functional description like "trend" or "comparison ofvariables/’ the system

attempts to discern the appropriate chart from the nature of the data and the user’s actual objective

in the presentation. This is achieved by drawing inferences from the situation model. The user’s

implied objective may not necessarily be as sirnplistic as 'to show a pie chart", but may be some-

Ihlllg more abstract and less declarative, such as "to show the importance of increased sales on

employee bonuses.' From this high-level description and the user’s indication of key concepts, the

automated consultant detexmines the actual purpose of the presentation without actually asking the

user to state his goal. In essence, the user may not always be able to do this succinctly, but he can

always describe his situation -- as he would to a human graphic design consultant. We were sur-

prised to learn that the effect of much of the intentionality and subtlety of natural language can be

captured and utilized without entailing the prohibitive cost of a natural language system.

ConelusionII2

8.1 Ramüications

The aim of this thesis is to advance the state-of-the-art in expert systems by illustrating the utility

of user-oriented problem representations. Our system draws on the considerable research and field

use already supporting system dynamics modelling to help create a model of the client’s problem.

CHARTMAKER captures the user’s intent and beliefs to model the problem instead of using

pre-programmed questions as do conventional expert systems. Moreover, the method of repre-

sentation described here exhibits greater tolerance ofimproperly specified models as well as allowing

for greater semantic content, since the model is built by the user with the user’s own terminology.

Most importantly, we have shown how generic problem models can be mapped into the back-

ground knowledge of an expert by applying background knowledge about the actual domain to

build an appropriate sequence of representations.

In summary, the contributions of this work are:

• The true consultant concept

• Problem definition without predefined questions

• Defining the client’s problem in his own terms

• Mapping a generic problem into background knowledge

• Indirect goal elicitation

•
Separation of knowledge sources (e.g. interviewing, goal elicitation, problem classification)

Conelusion{{3

• SDM structure as a static problem model

• Pipeline of representations

¤ representations tailored to particular facets of the consultation

¤ structural transformations to map from one representation to another

Finally, the utility of this method is not limited to the charting domain. The same principles can

be employed in other domains where a 'true consultant" is needed. CHARTMAKER opens the

way for construction of a whole new class of expert systems.

8.2 Shortcomings in Other Domains

The CHARTMAKER system we have built uses a design theory to map from a user-described

problem into a set of chart types (i.e. a classification system for charts) which forms only a small

part of an expert’s knowledge about charts. The freely described problem model, the goal model,

the pipeline of descriptions, and the knowledge needed to map from one description to the next

create a new model of expertise, the 'true consultant'. In this model, we have separated many

different areas of an expert’s knowledge that were either combined together or neglected in the

rule-based paradigm of expertise. Application of this new model of expertise to other domains will

require that the underlying theory be adjusted. In diagnostic systems, for example, a 'theory of

diagnosis" that compares the model of actual to ideal behavior will replace the 'theory of design'

used here. Each problem domain requires its own theoretical framework to make the true con-

sultant idea work.

ConclusionlI4

8.3 Future Work

As with any new approach to a problem, there are many ways to expand this representational

paradigm. The strength of the technique can be increased by increasing both the complexity of the

situational model and the background knowledge. For example, adding different types of causal

relationships to the model such as the direct (+) and inverse (-) influences of the original system

dynamics model greatly expands the representational flexibility of the situation model. The back-

ground knowledge must be enhanced to interpret more complex models. For example, + and -

signs could be incorporated into CHARTMAKER to perform data and model validation by de-
V

termining if the input data corresponds to the model: if the model indicates that concept A has an

inverse influence on concept B, and the data shows A is increaéing, then the data for B must be

decreasing. As the types of causality becomes more varied, the actual concepts in the model will

become more important which will probably require the background knowledge to employ a rudi-

mentary natural language system.

One of the 'design" expert systems mentioned in the literature review, Dominic, ixnproved existing

design by changing certain parameters of the existing design and then determining how that change

impacted on the overall design. If the change produced an improved design, the system would in-

corporate that change in the new design. This type of iterative refinement is perfectly suited to

system dynamics modeling. If the problem model is actually a system dynamics model, the iterative

approach could be added to the true consultant and truly fulfill the last phase in the design process,

refinement.

Conclusion115

8.3.1 Altemative Domains

For the principles developed in this thesis to be useful, they must have application in other do-

mains. To illustrate possible extensions of the true consultant approach, two problem domains are

investigated: automating an airline reservation agent and designing a screen for an air traffic con-

troller. Since these domains differ significantly from chart making, they help illustrate the potential

of the discoveries in this thesis.

8.3.1.1 Airline Reservation Agent

A domain that shares some surprising similarities with CHARTMAKER is the expert airline

reservation agent. The purpose of an airline reservation agent is to determine the client’s flight re-

quirements and then locate an appropriate flight (or set of flights) from a vast amount of flight in-

formation that might meet his requirements. In a general sense, the flight information is the raw

data and the preferences of the traveler represent a situation. The situation model dictates what

data is displayed. In most situations, the departure and arrival points of a flight are the most im-

portant issues, but other factors such as departure time, number of intermediate stops, and type of

aircraft are dependent on the traveler’s personal preferences. Once these preferences are specified,

the system can retrieve the flight data that best matches the traveler’s needs and display them on

the screen by analyzing the structure of the client’s situation model. Essentially, the display screen

is an interface between the client and the raw data, much like a chart is an interface between the

audience and the raw data.

A major difference in this domain is that the interface is dynamic. Through the consultation

process, it responds to the client’s changing demands. For a dynamic interface to work eüectively,

it must have some understanding of how it relates to the consultation process. For example, the

reservation expert could interface with a travel agent or directly with the traveler. The target user

Conclusion**6

has a signiücant impact on the design of the system since the system that interfaces directly with the

traveler needs to incorporate the knowledge of the travel agent as well. To clarify, in the indirect

case the travel agent and the expert system act as an interface between the traveler and the flight

data (Figure 33 on page 118) while in the direct case, the system is the only interface between the

traveler and the data (Figure 34 on page 119).

Beyond the consultation model, the system needs an interaction model that specifies the infor-

mation flow through the system. C1·lARTMAKER’s interaction model can be seen as the top

portion of Figure 6 on page 53, and as illustrated by the figure, the interaction model derives from

the underlying domain theory. The flow of information originates with the client and his situation

model that, through interaction with the system, leads to a preference (goal) model which in tum

leads to a set of recommendations, the result of the consultation. For CHARTMAKER, the

interaction model was built-in to the supporting code. While CHARTMAKER’s interaction

model supports feedback on a coarse level, the airline reservation agent requires a finer level of

feedback. The reservation process where a trip is constructed by scgmexxts, and previous segments

may need to be revised before a final itinerary is created. On the interaction level, information flows

from the different portions of the screen. A key flow is from the traveler’s preference model to the

displayed flight information (from the flight data base). The preference model determines what data

is to be displayed, while the displayed flight information can lead to a revised preference model.

Understanding flow of data between the components of the system is another important facet of

the expert’s knowledge, and it will vary for different domains.

8.3.1.2 Carrier Air Traffic Control

Designing screens for air traüic controllers is another potential application of the true consultant

principles. Specifically, controllers on aircraff carriers need to view a wide variety of information

about the incoming aircraft to make intelligent decisions about clearances for takeoüs and landings.

There are three phases ofair traffic control for carrier landings: the marshalling phase, the approach

Conclusionl17

DATA
BASE

Figure 33. The lndirect Consultation Model

Conclusionll8

DATA
BASE

Figure 34. The Direct Consultation Model

Conclusion||9

l

phase, and the final phase. In the marshalling phase planes are stacked at intervals of 1000 feet

beginning 50 miles from the cauier and circle in their assigned position until they are cleared to

land. The controller must know details about the incoming aircraft such as amount of fuel and

physical condition of the aircraft and pilot to determine their landing priority. In the approach

phase the controHer guides the altitude and position of the aircrafi from the exit of the marshalling

phase to the entry of the final phase. The final phase encompasses the last 15 miles of the flight.

The final phase begins at 1200 feet and terminates on the deck of the carrier. Currently, there is

an individual controller for each phase of the landing, and all three controllers use the same display

which is based on World War II technology. ·

There are five basic components to the contro1lcr’s display: plan view, stack, glide path, marshall

status board, and message area. Using the approach designed for CHARTMAKER, each of these

components can be regarded as concepts in the situation model. An extension to the

CIrIARTMAKER approach could allow the addition of attribute links to the concepts since they

are more complicated in this example and often require greater specification than those in the

charting domain. Another modification to CHARTMAKER methodology is in key concept

elicitation. The primary issue in rendering a screen of this kind is the priority of the screen com·

ponents. The most important, or highest priority component should occupy the dominant position

on the display screen. CHARTMAKER currently has no way to specify priority among key con-

cepts, so a useful extension views the key concept elicitation process as a prioritization process as

well. The order in which the key concepts are specified indicates the priority the client assigns to

the concepts. The implementation of priorities in the Äsystem alters the interaction model. The

interaction model needs to specify that hierarchical preferences in the situation model translate into

specific placement objectives on the rendered screen. The components (key concepts) of the display

can then be rendered appropriately. Using this method, the three individual controllers who are

responsible for different phases of the landing can design their screens based on what they feel is

important to their particular phase of the landing. This information is an irnplicit part of the con-

Conclusion *20

sultation model, since the type of client and his objectives in the consultation can vary -- as does

the client of the true consultant.

In CHARTMAKER, the consultation model and the interaction model are built-in to the sup-

porting code, but as the domains become more dynamic and more complex, the consultation model

should be made an explicit, declarative, and thus more easily modified, expression. For the true

consultant approach to work as a general approach to expert system design, both the consultation

and interaction models need to be expressed as declarative representations. This affords far greater

flexibility and is vital to the extension of the true consultant concept so that more domains can be

explored (as above), without building them from the ground up. Instead, the declarative knowledge

is integrated with a generic true consultant shell, thus aiding rapid expansion of the true consultant

concept into other domains.
i

concuusson 121

Aikins, J., "Prototypical Knowledge for Expert Systems," Artäicial Intelligence Journal, Vol. 20,
No. 20, 1983, 163-210. ·

Archer, L., Systematic Methodsfor Designers, London: The Design Council, 1965.

Asimow, M., Introduction to Design,_New Jersey: Prentice-Hall Inc., 1962.

Bannister, D. and Mair, J., The Evaluation ofPersonal Constructs, London: Academic Press, 1968.

Boose, J., Expertise Transferfor Expert System Design, New York: Elsevier, 1986.

Brittain, S., "Understanding Natural 1..anguages," AI Expert, May 1987, 31-38.

Building Expert Systems, Hayes-Roth, F., Waterman, D., and Lenat, D., editors, London:
Adisson-Wesley Publishing Company, 1983.

Caudill, M., "Neura1 Networks Primer," AI Expert, December 1987, 46-52.

Chandrasekaran, B., "Generic Tasks in Knowledge-Based Reasoning: I-Iigh-Level Building Blocks
for Expert System Design," IEEE Expert, Vol 1, No. 3, 1986.

Chamiak, E., McDermott, D., Introduction to Artüicial Intelligence, Massachusetts: Addison
Wesley Publishing Company, 1985.

BIBLIOGRAPHY 122

Cox, C. and Caldeway, D., "Soflware Reviews," Computer Language, California: Miller Freeman
Communications, October 1987, 93-121.

Coyle, R., Management System Dynamics, New York: Wiley, 1977.

Cross, N., The Automated Architect, London: Pion Limited, 1977.

Eden, C., Jones S., and Sims, D., Messing About in Problem: An Informa! Approach to Their
Identüication and Management, New York: Pergamon Press, 1983.

Enrick, F., Effective Graphic Communication, New Jersey: Auerbach, 1972.

Gregory, S., "The Development of an Automatic Adsorption Drier", The Chemical Engineer, De-
cember 1964, 293-302.

Gregory, S., Ed., The Design Method, London: Buttervvorth, 1966.

Howe, A., Cohen, P. and Dixon, J., "Dominic: A Domain Independent Program for Mechanical
Engineering Design," Applications of Artificial Intelligence in Engineering Problem, Vol. 1,
Berlin: Springer-Verlag, 1986, 289-300.

Jones, J., "A Method of Systematic Design," Conference on Design Methods, Jones, J. and
Thornley, D., eds., Oxford: Pergamon Press, 1963, 53-73.

Kelly, G., "A Brief Introduction to Personal Construct Theory," Perspectives in Persona! Construct
Theory, Bannister, D., Ed., London: Academic Press, 1966.

Krippendorü', K., Content Analvsis: An Introduction to Its Method, California: Sage Publications,
1980.

Levesque, H. and Brachman, R., "A Fundamental Tradeolf in Knowledge Representation,"
Reading: in Knowledge Representation, Brachman, R. and Levesque, H., eds., Califomia:
Morgan Kaufmann Publishers, 1985, 41-67.

Levin, P., Decision Making in Urban Design, Building Research Station Note 51/66, Building Re-
search Station, Garston, Herts, England, 1966.

Marcus, S., Stout, J. and McDermott, J., "VT: An Expert Elevator Designer," AI Magazine, Vol.
8, No. 4, Winter 1987, 41-57.

Marples, D., The Decision: of Engineering Design, London: Institute of Engineering Desginers,
1960

BIBLIOGRAPHY 123

McCarthy, J., "First Order Theories of Individual Concepts and Propositions," Readings in
Knowledge Representation, Brachman, R. and Levesque, H., eds., Califomia: Morgan
Kaufmann Publishers, 1985, 523-533.

McKim, R., Thinking Visualhw, Califomia: Lifetime Learning Publications, 1980.

Meng, B.,"Get to the Point," Macworld, April 1988, 137-143.

Merrit, B., "Anatomy of a Diaguostic System," AI Expert, September 1987, 52-62.

Nilsson, N., Principles ofArtUicial Intelligence, Califomia: Tioga Publishing Company, 1980.

Page, J., "A review of the papers presented at the conference," Conference on Design Methods,
Jones, J. and Thomley, D., eds., Oxford: Pergamon Press, 1963, 205-215.

Puccia, C., Levins, R., Qualitative Modeling of Complex Systems, Massachussets: Harvard Univer-
sity Press, 1985. .

Reed, S., "The Graphics Challenge," Personal Computing, New Jersey: Hayden Publishing Co.,
January 1988, 155-167.

Richardson G. and Pugh III, A., Introduction to System Dynamics with DYNAMO, Cambridge,
Massachusetts: MIT Press, 1981.

Robertshaw, J., Mecca, S., and Rerick, M., Problem Solving: A Systems Approach, New York:
Petrocelli Books Inc., 1978.

Sarnad, T., A Natural Language Interfacefor Computer-Aided Design, Massachusetts: Kluwer Ac-
ademic Publishers, 1986.

Schmid, C., Handbook ofGraphic Presentation, New York: John Wiley and Sons, 1954.

Shaw, M., On Becoming a Personal Scientist, London: Academic Press, 1980.

Smith, B., "Rei1ections and Semantics in a Procedural Language," Ph.D. thesis and Tech. Report
MIT/LCS/TR·272, M.I.T., Cambridge MA, 1982.

Sowa, J., Conceptual Structures: Information Processing in Mind and Machine, Massachusetts:
Addison-Wesley Publishing Company, 1984.

BIBLIOGRAPHY 124

Spear, M., Practical Charting Techniques, New York: McGraw-Hill, 1969.

Tanimoto, S., The Elements ofArtüicial Intelligence, Maryland: Computer Science Press, 1987.

Tufte, E., Visual Display ofQuantitative Information, Chesire, Connecticut: Graphics Press, 1983.

Wade, J., Architecture, Problems, and Purposes, New York: John Wiley and Sons, 1977.

Waterman, F., A Guide to Expert Systems, Massachusetts: Addison·Wes1ey Publishing Company,
1985.

Winograd, T., "Na.tura1 Language: The Continuing Chal1enge," AI Expert, May 1987, 7-8.

Bmuocnxruv 125

Appendix A. User Manual for CHARTMAKER

CHARTMAKER is relatively simple to operate since it is primarily menu driven. Before running

CHARTMAKER, however, you must gain access to the CHARTMAKER and the HC PROLOG

disks. The CHARTMAKER system resides on the VAX3/5 system under dua4:[shulokta] and the

PROLOG system is under dua4:[roachjw]. To invoke the system (after establishing the disk links]

CHARTMAKER (the name of an exec file in [shuloktal). Once the system loads, the user may

begin a consultation. A consultation with CHARTMAKER can be delineated into four phases:

model construction, goal extraction, data integration, and chart revision.

A. 1 Model Construction

In the first phase of the consultation, the user is presented with a menu that allows him to con-

struct the problem model:

- ADD a concept to the model

- DROP a concept from the model

Appendix A. User Manual for CHARTMAKER l26

- LINK two concepts (causal)

· SNIP a link

- DISPLAY current problem model

- FINISH building the model

The ADD option allows the user to add concepts to the model. He can add as many concepts as

he wants, and terrninates this segment by entering a null line. DROP is the reverse of add. DROP

removes a concept from the model. This option is useful if the client makes a mistake in building

the model or changes his mind. LINK associates a causal link with two concepts. When the user

selects this option, CHARTMAKER prompts him for the "tai1' concept (the one that does the

iniluencing) first and then for the "head' concept (the one that is influenced). Again, the user can

enter as many pairs of concepts as he likes and terrninate this segment with a null response. SNIP

deletes a link between two concepts in a rnanner analogous to DROP. At any time the user can

display the model by selecting DISPLAY. This displays the model by its concepts. For each

concept, CHARTMAKER displays the set of concepts influenced by the given concept as well as

the ones that influence the given concept. Once the user is satisfied with the problem model, he

texminates this phase of the consultation by selecting FINISH, and CHARTMAKER automat~

ically proceeds to the next phase: goal extraction.

A.2 Goal Extraction

In the second phase, the system determines the key features of the problem model.

CHARTMAKER presents all the concepts that were entered in the problem definition phase and

asks the user to identify a key concept. CHARTMAKER removes this concept from the concept

list and presents the revised list to the client and elicits another key concept. This process repeats

Appendix A. User Manual for CHARTMAKER 127

until the user identifies all the key concepts. From the key concepts CHARTMAKER produces

the goal model which is combined with the raw data to create the chart.

A.3 Data Integration

CHARTMAKER uses the key concepts to elicit the raw data from the user. On one line,

CHARTMAKER displays the key concepts as well as any required supporting concepts such as

'time' or 'total'. The user then enters the data, line by line, matching the data format shown by

CHARTMAKER. The user completes data entry by entering a null line. At this point,

CHARTMKAER has all the necessary information to render a chart.

A.4 Chart Revision

The client, however, may not be satisfied with the rendered chart. Therefore, after the chart is

displayed, the user is presented with another menu that allows him to revise the chart:

1. Another consultation with the old model

2. Another consultation with a new model

3. Plot another chart type from this problem model

4. Quit

The first option returns the user to the key concept selection phase 1 and allows him to alter the

original problem model and proceed with another consultation. The second option takes the user

Appendix A. User Manual for CHARTMAKER 128

back to phase l to construct a new problem model (the old model is deleted). 'The third option

pexmits the user to explicitly specify a particular type of chart. Before rendering the chart,

CHARTMAKER determines if it has all the necessary data to plot that type of chart. If it doesn’t,

it will prompt the user for additional information. The fourth option, QUIT, terminates the con-

sultation. -

Appendix A. User Manual for CHARTMAKER U9

Appendix B. Code Listings for CHARTMAKER

***4-*

; This module builds the problem model, elicits key concepts, and ·

; produces the goal model.
n

r (assert

; This routine initiates the first three phases of the consultation

; l . Build the situation model

; 2. Identify the key concepts

; 3. Construct the reduced situation model

((s<>) if

; Build the problem model

(Prim Ni')
(s¤1)

Appendix B. Code Listings for CHARTMAKER 130

; Identify the key concepts

(mim ”\t‘)

(choose)

; Identify the reduced model and display it

(Prim '\f')

(display_reduced)

)

; Handle the menu selections and route them to the proper routine.

if V

(print 'Probl Model construction menu:')

(tester *choice)

(or (not (*choice)) (gol))

)

; Determine virtual links in the model by traversing the concrete links.

; A virtual link can be a concrete link,

((v_link *to *from) if

Appendix B. Code Listings for CHARTMAKER I3!

(c_link *to *from)

)

; or a sequence of concrete links.

((v_link *to *from) if

(c_link *step *from)

(v_link "to *step)

) P

;••nn•·••·n•·•-•«••nn••·•-um-•·•·•«·-•·••·•·•·••·••«-••••••••••••·•·•·•••••••••-•••••

; Pause after displaying the situation model and wait for the user’s

; response.

((display) if

(or (displayl) ((print "\n\nPress enter to continue...") (get1ine)))

)

;•-•+·•·•·•-•-•••••·•·+•••-•·••··•-•-•·••••••++••••-•••••••-•-•-••·•••+•¢•••••••••·•+-••·•·•••

; Display the current situation model by concept and its associated

; causal links.

((displayl) if

(Prim '\f')

; Print the header.

Appendix B. Code Listings for CHARTMAKER l32

(print 'The current state of the problem model:")

; Select a concept

(model *concept)

(Prim ' ')
(Prim " ")
(write *concept ”:")

(Prim ' ')

; Display the "rntluenced by' links

(or ((c_link *concept *from)

(write *concept ' < ·-·
’

*from " ') (print))

; Display the 'iniluences" links

((c_link *to *concept)

(write *concept ' -~- > ' *to ' ") (print)))

; Go back and get another concept

(fail)
)

;•••••••••n••••nu•-•-•••·••nn•••4-••n¢••••••••-•-••••••••••••¢••••••••

; Display the reduced model of the situation

((display_reduced) if

; Print the header

(print ’\¤')

Appendix B. Code Listings for CHARTMAKER 133

(print 'The reduced state of the problem model:')

(Prim ' ')

(Prim ’ ')

; Get a list of the key concepts

(or (bagof *keys (key *keys) *ans) (true))

; Display the virtual links for the key concepts

(display_k_r *ans)

)

This routine displays the key relationships for a set of attributes.

((display_k_r nil))

((diSP1¤y.k.r (¤i1)))

((display_k_r (*nextkey . *morekeys)) if

; Get the set of concepts that a given concept may be linked to.

(or (bagof *b ((key *b) (not (= = *nextkey *b))) *a.ns) (true))

; Print the name of the current concept.

(write *nextkey ":')

(Prim " ')

; Display all the key concepts that it relates to.

(display_rl *nextkey *ans)

Appendix B. Code Listings for CHARTMAKER 134

(print '\n')

(1>ri¤t '\¤')

; Repeat for the rest of the concepts.

(display_k__r *morekeys)

)

;••••-•··•-·••-•-•nn--n-•--•-•••nene-•••-•••••--•••·•·••••·••••·••-•-•·•-••·-•·••••»•·•--•-·•-·•-•-••••·•

; This function displays all the derived links for a concept.

((disp1ay_rl *concept ni1))

((display_rl *concept (nil)))
A /

((display_rl *concept (*tofrom . *rest)) if

; Display the derived 'influenced by' links

(or ((v_link "concept "'tofrom)

(write *concept " < --- ' "'tofrom ' ')

; Add the derived link to the knowledge base

(assert ((k_link *concept *tofrom)))

(1>ri¤*))
(true))

; Display the 'ini1uences" links

(or ((v_link *tofrom "'concept)

(write *concept
’

--- > " *tofrom " ')

Appendix B. Code Listings for CHARTMAKER l3$

; Add the derived link to the knowledge base

(assert ((k_link *tofrom *concept)))

(pri¤t))
<tw=))

; Explore the remaining possible links

(display_rl *concept °rest)

)

;¢¤I¢lithit**lt!¢Q¢llQtl*¢O¢¢¢***-*¢***¢¢¢t**#***¢¢¢¢¢¤|·¢¢*¢*****I¤¢*#¢¢¢·I¤|¤#¢¢

; Write out a list of elements, one at a time.

; Output a blank when finished.

((writeach nil) if

(print '\¤')
)

((writeach (*x . *y)) if

(write *x)

; Seperate the elements by a comma

(or (null *y) (write ', '))

(writeach *y)

)

Appendix B. Code Listings for CHARTMAKER136

; Query the user for the key concepts

((choose) if

(print ”\¤’)

(or ((bagof *m ((and (model *m) (not (key *m)))) *a.ns)

(write 'Available concepts: ")

(writeach *ans)

(print 'Please identify a key concept (enter null to iinish):")
A

(: = *k (getline))

(¤r <= = *k ">
((0r (not (model *k)) (assert ((key *k))))

(choose))))

((print "No more available concepts.') (true))

)

)

; Link two concepts together

((link) if

(linkl)

)

Appendix B. Code Listings for CHARTMAKER I37

((1ink1) if

(pdm '\¤')
(print "Tail concept?')

; Get the tail concept of the relationship

(:= *tail (getline))

; If there is a tail concept, get the head concept.

(or (= = " *tai1)

((print 'Head concept?') (: = *head (getline)))

)

; Add the link to the knowledge base, get next link.

(or (= =
'”'

*tail)

((assert ((c_1ink *head *tail))) (1inkl))

)

)

;•••»••-•-•••4-+•·•••n•«•••-•··•-«•«••••••·••·••••·•••••••·••++•·•+-•·•••••••••••+•••

; Add a concept to the situation model

((add) if

(addl)

)

((add1) if

Appendix B. Code Listings for CHARTMAKER 138

(print 'Name of new concept (null to terminate)?')

(: = *m (getline))

(or (= = "" *m) ((assert ((mode1 *m))) (addl)))

)

; Delete a concept from the current prohlem model

<<dr¤p> if

; Get the name of the concept to delete

(print 'Enter name of concept to delete ')

(: = *dd (getline))

; Delete the concept

(retract ((model *dd)))

; Delete the "iniluenced by' links for this concept

(or ((bagof *ee (c_link *dd *ee) *ans)

(delete_head *dd *ans))

(tr¤¤))

; Delete the 'intluences" links for this concept

(or ((bagof *e (c_link *e *dd) *ansl)

(delete_tail *dd *ansl))

Appendix B. Code Listings for CHARTMAKER 139

(tr¤¤)) .
)

;•--•--•·•-·•·•-••·••--•-•--••+•-•4-ne--•-••••••·•+•·•-•-·•--•-•+•••••••+•+••·•--••-•-•»-•--•••·•·•-•-•·•--•-·•••·••

; Delete all the 'mfluenced by' links for the given concept

((delete_head *x (nil)))

((delete_head *x (*y . *2)) if
l

(retract ((c_1ink *x *y))) _

(delete_head *x *2)

)

;•·•-·•-•••••••••·•-••••·•-·••·•·•••••«·••••••••••••-••••«·•«•••••••••••••••--•·•-•-••·•••

; Delete all the ’influences" links for the given concept

((delete_ta.i1 *x (nil)))

((de1ete_tail *x (*y . *2)) if

(retract ((c_link *y *x)))

(delete_tail *x *2)

)

;••••·•··••••••«•-••••••••••·•-•••••••·•·•••-•·••-••«·••nn-••••-••••••••••••·•-+••••••

; Delete a link from the current model

Appendix B. Code Listings for CHARTMAKER H0

((=nip) if

; Get the tail concept of the link to be deleted

(print 'Tail concept?')

(:= *b (getline))

; Get the head concept of the link to be deleted

(print 'Head concept?')

(:= *a (getline))

; Delete the link

(retract ((c_1ink *a *b))) · *

)

((store) if

(write 'Enter filename to store representation = = > ')

(:= *fi1e (getline))

(print '\n”)

(save "*file')

)

((restore) if

Appendix B. Code Listings for CHARTMAKER 141

(or

((write 'Enter filename to restore representation = = > ')

(: = *file (get1ine))

(Prim '\¤'>
; (load '*frle')

)

((print 'File not found...cu.rrent model still active.') (true))

)
)

((create) if

(print 'create routine')

)

((tcstcr *choice) if

(Prim \rr)
(print 'Please select a menu option:' \n)

(print 'ADD a concept to the model')

(print 'DROP a concept from the model ')

(print 'LINK two concepts')

Appendix B. Code Listings for CHARTMAKER l42

(print 'SNIP a link")

(print 'DISPLAY current problem model")

(print 'STORE current problem model')

(print ’RESTORE a previous problem model')

(print 'CREATE a data pattem')

(print "FINISH' \n)

(= = *¤¤>'r¤x> (2<=tü¤¤>)

(or (menval *myrep *choice)

((print \n 'Please type one of the displayed options!')

(tester *choice)) .

A)

(¤¤t))

; Validate the input command

((menval ADD add))

((menval LINK link))

((menval DROP drop))

((menval DISPLAY display))

((menval STORE store))

((menval RESTORE restore))

((menval CREATE create))

((menval FINISH iinish))

Appendix B. Code Listings for CHARTMAKER l43

((menval SNIP snip))

)

; END

(print 'Finished loading basic module')
;•••••
ncwchmhc;

This module elicts the data and invokes the appropriate charting routine.

(assert

; Top level function that invokes a consultation with CHARTMAKER.

((consu1t) if

; Perform the consultation

(chartmaker)

; Present the final menu options,

(redo)

) ..

;••••••-•••••••-••·•-•••·•••••-•••·••••••-•••••·•-·••·•-••••••••-•·••-••-••«•••••+••«+••••••

; Run the consultation: build the problem model, elicit the goal, and render

; the chart.

Appendix B. Code Listings for CHARTMAKER 144

((chartmaker) if

; Delete the old graphics driver data file

(sys "delete chart.dat.*')

; Build the problem model

(go)

; Determine the client’s goal

(purpose *objective)

; Render the chart

(render "objective)

Get the necessary raw data for chart rendering

((render "'objective) if

; Get the title for the chart

(get_subject *subject_lst)

; Get the field names for the data

(get_tield_names *fld_lst *objective)

;XX

(get_categories *fld_lst *cat_lst)

;XX

Appendix B. Code Listings for CHARTMAKER l4S

; Get the data from the user

(get_data *cat_lst *data_lst)

; Build the data file for the graphics drivers

(output_data *objective *subject_lst *cat_lst *data_lst)

; Invoke the appropriate graphics driver

(run_chart_prog *0bjective)

)

;••••·+••-••·•••••·-••-n·•·•-n•••g••••••••+•+••••••+•n••••••••••-••••-••••••••·•u·••·•

; lnvoke the trend chart driver

((rur1_chart_prog trend) if

; (sys 'run linechrt')

) n
;••••+••-••••«•••••·•-••+•••-•••·••••+••«•«-••••••••••·•••••-••-·•·•«•••«-+•••-•·•«•••••••

; Invoke the line chart driver

((r1m_chart_prog relationship) if

; (sys 'run linechrt")

)

;·•-•··••••mn•·•·•·nn-•-•-•·•-·•-••-•·•·•-•·•-4--•--•+ne-•••·•-••·••¢-•n••-••·»-••-•·+•-•-•·••--•-•••·•-·•••-••-•«·•••

; Invoke the bar chart driver

Appendix B. Code Listings for CHARTMAKER 146

((run_chart_prog comparison) if

; (sys 'run barchrt')

)

; Invoke the pie chart driver

((run_chart_prog comparison_tot) if

; (sys 'run piechrt')

)

;*******#¢****¢¢*Ü*¤|•I¤¢**¢**¢**¢¢**#***¢¢¢¢Of*¢¢*¢*¢¥****4¤P*¢*•I***#*¢¢¢¤|•#¢¢*

((write_cat_lst nil))

((write_cat_lst ((*name *cat) . °rest)) if

(write *na.me \t *cat \n)

(write_cat_lst *rest)

(cut)

)

;O¢*¢¢¢rI¢*¢**0t¢*#¢¢¢*##¢¢**Obi!illtill!türtOtt!It¤I¢#ilül**¢¢¢¤l¢¢¢I•I¤#*¢•I¢¢¢*¤I¤I

; Get the title of the chart from the client.

((get_subject (*ürst_line *secor1d_line)) if

(print '\n')
(print ’PLEASE ENTER THE SUBJECT OF YOUR CHART AS YOU WISH IT TO')

Appendix B. Code Listings for CHARTMAKER I47

(print ’APPEAR ON THE CHART ITSELF (LIMIT TWO LINES). \I1')

(print 'ENTER NULL LINE TO TERMINATE QUERY. \r1")

(write
’=

= > ')

(:= *f'rrst_1ine (get1ine))

(or ((= = *first_lir1e ")

(= = •SCCOI1d_i.iI1C ")

)
((write '= = > ")

(:= *second_1ine (get1ine))

)
) . ‘

(cut)
) ; end get_subject

; Get the field names for the data (key concepts).

((get_fie1d_names *iId_1st *objective) if

(cat_set *objective)

(bagof *ks (key *ks) *fId__1st)

)

; If the desired chart is a trend chart, add TIME as a data üeld.

Appendix B. Code Listings for CHARTMAKER I48

((cat_set trend) if

(assert ((key TIME)))

)

;••••·••••••••••••••••·••••«••-ne••-•••-•••·••••••••••••••••••-•-«••••••••••·•+-•«•••

; If it’s a relationship chart, determine the independent variable.

((cat_set relationship) if

(k_link *hd *indep)

(retract ((key *indep)))

(assert ((key *indep))) _

)

;-•·•n-•··•••·••••·•«•--•·•-nn-•••••••-•••·•-«··••••••••-ne-4--••-••••••••••-•-••••u••••¢¢«-••+••

; lf the chart is a direct comparison, add TIME as a data field.

((cat_set comparison) if

(assert ((key TIME)))

)

;-•--•--n+-•-•-·•·-ne-••+•-•-+·•-·•-•··••-•••-•-•-•-••-•--•·••·-•••-•·••-••-••+-•--•-•·•·•·•·•-•-•-•·»•-·•-«-•·-•··•••+•••••-n--•-•-•-•·

; If the chart is a relative comparison, extract the parent concept.

((cat_set comparison_tot) if

(headc *dad)

(retract ((key "'dad)))

Appendix B. Code Listings for CHARTMAKER I49

(asscrt

((key((get_catcgorics *tld_lst *cat_1st) if

(print "\n')

(gct_cat_1ist *f1d_lst *cat_lst)

(wr)

((gct_cat_list nu ni1))

((gct_cat_list (*iirst_iId . *rest_fIds) ((*ürst_f1d "dcsig) . *rest_cats)) if

(:= *dcs_string TIME)

(val.id_dcs *des_string *desig)

(get_cat_1ist *rest_iIds *rcst_cats)

(cut)

((pad_it *namc) if

(:= *1cn (strlen *namc))

(:= *pads (- 20 *lcn))

(writc_pads *pads)

)

Appendix B. Code Listings for CHARTMAKER lS0

((write_pads °pads) if

(< *p¤<1¤ 1)
(cut)

)
((write_pads *pa.ds) if

(write ' ')
i

(:= *upads (- *pads 1))

(write_pads *x1pads)

((va1id_des
”

other))

((va.lid_des TIME TIME))

((va1id_des "TIME" TIME))

((va1id_des quantity quantity))

((va1id_des "QUANTITY' qua.utity))

((va1id_des other other))

((va1id_des 'OTHER' other))

((va.1id_des * *desig) if

(write "\n!INVALID DESIGNATION: PLEASE TRY AGAIN!\n")

(write " DESIGNATION : ')

Appendix B. Code Listings for CHARTMAKER 151

(: = *des_string (get1ine))

(va1id_des *des__string *desig)

)

;·•-Ht-N·•-·•··•·•••·•··•··••••·••·•··•··•··•··•··•··•·n·•··•··•·••··••··•·in·•·•·•·••·•·•··•·•·•·•·•··•··•·•·•··•·•·•••••-•-•·•••••••n•••-nit;

((get_data *cat_lst *data_lst) if

(print '\n”)
(print "\n')

l

(print "DATA INPUT SELECTION MENU")

(print "·-----------·--·--—-·---— \n") p
(print "Options: 1 . Input data from keyboard \n")

(print " 2. Input data from frle \n')

(query_user_for_input_choice *choice)

(or ((= = *choice 1)

(get_terminal_data *cat_1st *data_lst)

)
((= = *choice 2)

(get_fr1e_data *cat_lst *data_1st)

)

(print "En·0r: bad processing in get_data rule ")

)

(ppt)
)

((query_user_for_input_choice *choice) if

Appendix B. Code Listings rn: CHARTMAKER 152

(write 'PLEASE ENTER OPTION NUMBER OF INPUT CHOICE = = > ')

(= = *r¤p1y(¤=¤d))
(or (va1id_input_choice *rep1y *choice)

((print \n 'Answer not 1 or 2, please try again")

(query_user_for_input_choice *choice)

)

)
(cut)

((valid_input_choice 1 1)) _

((va1id_input_choice 2 2))

; Read the data values from the keyboard

((get_termina1_data *cat_1st *data_lst) if

(numbe1·_of_items *cat_1st *n_items)

(print '\n”)
(print 'PLEASE ENTER YOUR DATA BY SPECIFYING VALUES FOR EACH OF')

(print "THE CATEGORIES IN THE FOLLOWING FORMAT, ONE SET PER LINE:\n\n')

(write
’

")

(write_1st *cat_lst)

(print ‘\n')
(print "ENTER A NULL LINE TO TERMINATE DATA ENTRY.\n')

(print 'ENTER DATA HERE:\n')

Appendix B. Code Listings rm- CHARTMAKER |53

(get_data_lines *r1__items *data_1st)

(cut)

((get_data_lines *n_items *data_1ist) if

(write
’=

= > ')

(:= *1ine(getline))(or

((= = *1inc "')

(= = *data_1ist uil)
L

(cut) _

)

((va1id_1ix1e *x1_items *1ine)

(gct_data_1ines *n_items *rcst)

(= = *data_1ist (*1ine . *rest))

)

)
(cut)

)

((va.1id__line

*x((number_of_items nil 0))

((number_of_items ((* TIME) . *rest) *¤_items) if

Appendix B. Code Listings for CHARTMAKER IS4

(¤umber_of_items *rest *11um)

(: = *u_items (+ 1 *11um))

)

((11\1I11bC1'_0f_itC111S ((* quautity) . *rest) *¤_items) if

(11umber_of_items *rest *num)

(: = *x1_items (+ 1 *r1um))

)

((number_of_items ((* *) . *rest) *11_items) if

(¤umber_of_items *rest *11_items)

)

;·••-•··•••••••·-•·•-•·•··•··•·•Ä••·n·••·•·•·•·•·•··•·g••·n··•••1-••••·•·•·••••«•·•·•••·••••·•••·•·••·•••••••·•••·•·••·•

((write_1st

61))((w:i:e_1s:((*11ead quamity) . *tai1)) ifl
(write *head)

(: = *1en (strleu *head))

(: = *pads (· 15 "'le¤))

(write_pads *pads)

(write_lst *ta.il)

(cut)

)

((write_1st ((*head TIME) . *tai1)) if

(write *head)

(: = *1en (strlen *head))

(: = *pads (- 15 *1en))

(write_pads *pads)

Appeodax B. Code Listings ro; cHA1mwA1u·;B ISS

(wr—i1e_1sr *1aü)

(wr)
)

((wri1e_1sr (* . *tail)) if

(w1ite_lst *tail)

(wr)

Output the charting data: data values and concept labels.

((0utput_data *0bjective *subject_lst *cat_lst *data_lst) if

_ (open "char·t.dat" fdl w)

(write fdl *0bjective "\n")

(write_subj_lst *subject_lst)

(: = *llen (length (quote *cat_lst)))

(write fd 1 *11en "\n")

(write_valid_cats *cat_lst)

(write_data *data_lst)

(close fd1)

(wr)

) _.

((wxite_subj_lst nil))

((write_subj_lst ("')))

Appendix B. Code Listings for CHARTMAKER 156

((writc_subj_1st

("((w1ite_subj_lst(*1ine . *rest)) if

(write fd1 'subject ' *III1¢ \x1)

(write_subj_lst *rest)

)

;*•***************‘*****•****•******************Ü**********************#*#**

((write_va1id_cats ¤il))

((write_valid_cats ((*fIdTname TIME) . *rest)) if

(write fd1 "üe1d_desc
’

*iId_name "\n")

(write_va1id_cats *rest)

)

((write_va1id_cats ((*IId_I13.IIIC quantity) . *rest)) if
I

(write fd1 "iie1d_desc " *tId_¤ame '\11")

(write_va1id_cats *rest)

)

((write__va1id__cats ((* *) . *rest)) if

(write_va.lid_cats *rest)

)

((write_data ni1))

((write_data (*first . *rest)) if

(write fdl *first '\11")

Appendix B. Code Listings for CI-IARTMAKERIS7

1

(write_data *rest)

)
); end assert

;
••+••

c1asS·hc
••••·•

; This module maps the reduced problem model into the background

; knowledge to determine the chart type.

(assert

;••-•-•-••·•«-•••••-•-•••«--•-•-•--••-••-·•·-••··•«··•·»-•·-•·•-•·••·•·•-•••·••••+••••••·•-•-•+•«•+•••••••-in-•··•·•••

; Determine if the problem structure indicates relationship of variables.

((purpose relationship) if _

; More than one key concept?

(bagof *keys (key *keys) *ans)

(:= *11 (length (quote *a.ns)))

(> *11 1)

; A influences B structure?

(kw *k)

(parent *k *ans)

)

;••••••••••••••••••••••-•·•••••••••••••·••¢•••••••••«--•·••••·••••••••••••••••••••••·

; This function determines if a given node is a parent node (at the

; head of the relationship arrow), for any of a list of nodes.

Appendix B. Code Listings for CHARTMAKER 158

; Empty list of candidate children (base case)

((pa.rent *dad nil))

((1>¤r=¤t *d¤d (¤i1)))

((parent *dad (*kid . *rest)) if

; Does a link exist between the two nodes?

(or

(v_link *ldd *dad)

_ (= = ·•dad •·kid)

)
‘ /

; Check the next node in the list

(parent *dad *rest)

)

;••••·••••·•·••••-•••••••••·•-•·••••-•-•·••••¢•••••••+•••••••••n••••••«-+•••-••-•••••••••

; Is the model indicative of a relative comparison?

((purpose eomparison_tot) if

; Is there a parent concept with many children?

(key *ma.in)

(bagof *kids (k_1ink *main *kids) *ans)
_

(: = *totkids (length (quote *ans)))

(> *totkids 1)

Appendix B. Code Listings for CHARTMAKER 159

(assert ((headc "'main)))

)

; Is the model indicative of a direct comparison?

((purpose comparison) if

; Isolated key concepts?

(not (k_link *a *b))

(bagof *kys (key *kys)‘*ans2)

(: = *tl (length (quote *ans2)))

<> *tl 1)

)

; Is the model indicative of a trend?

((purpose trend) if

(key *thiskey)

(not (bagof *otherkey ((key *otherkey) (not (= = *thiskey *otherkey))) *ans))

)

Appendix B. Code Listings for CHARTMAKER mo

;••·••••••-••·••·•••••••••·•-·•·•·••••••-••-•·•¢••••ne•nu•nu••·••-••••·•••••••»•••-•-•••••

)

; Pathological (under or overspecified) goal model?

I
;••-•••••·•·••+••••·•·-•·•••••-•-•••-+•••••••nn-••••••••·•-•••••-•--•·•••»•••·••••••••••++••••

((purpose unknown) if

(print 'No purpose could be derived from the model, it may be underspecified')

)

;•-•--•·-n••••••-•-n·•¢•·•-·•»•·-•·-•-•-•-•··•·•·•··••·••·-•·-•-•--•-•·•-•··••·••-••·•·-•·-•·-um-•••n¢•••-•··•-•-•••••¢••·••·-••-•

(print "Finished loading classification subsystem")

; This module presents the final model and sets up the necessary

; environment for the desired option.

(assert

;••+·•-«-•·-•-·•-•-•-•·•-·•+-•·•·•-•·•-·•-•~-•··•·•--•»•••••-•·-•-•»•·•-••-+·•·•••••••+-••+••-•+•·••-•••++»•·••+•-••++«·«»•-

; After the chart has been displayed, display the fmal option menu and get

; the user’s response.

((final *rep1y) if

; Display the menu

(tinal_options)

; Get the c1ient’s response

Appendix B. Code Listings for CHARTMAKER löl

(get_choice *rep1y)

)

; Display the final option menu:

; 1. Retum to the old problem model

; 2. Return to problem definition phase to create a new model

; 3. Plot ofparticular type of chart using the input data

; 4. End the consultation

((ünal_options) if

(print '\n')
‘

(print 'Final options:')

(print '··-·-··--—----')
(print " 1 . Another consultation with old model')

(print ' 2. Another consultation with new model')

(print ' 3. Plot another chart type from this model')

(print ' 4. Quit')

(print '\n")

(print 'Enter number of desired option.')

)

; Get the c1ient’s menu choice

((get_choice "reply) if

(= = *r¤p1y (r¤¤d>)
)

Appendix B. Code Listings for CHARTMAKER162

; Take the appropriate action for the client’s selection.

((redo) if

(final *ans)

(or

; Return to the situation definition phase with the same situation model

; to modify or re-use the existing model.

((= = *ans 1) (delete ((key . *)))

(delete ((k_link . *)))

(consult)

)

; Retum to the situation definition phase to create a new problem model

((= = *ar1s 2) (delete ((key . *)))

(delete ((k_link . *)))

(delete ((model . *)))

(delete ((c_link .*)))

(consult)

)

; Plot a particular type of chart, as chosen by the user

((= = *ans 3) (print ’Select from the following chart types:')

(print 'l. line chart')

(print '2. bar chart') _

Appendix B. Code Listings for CHARTMAKER l63

(

(print "3. pie chart')

(Prim ’\¤")

(print 'Enter number of desired chart')

(: = "chart (read))

(obj *chart *style)

(render *style)

(redo)

)

; End the consultation

(quit) _
)

) · _

; Set up the rendering model for a bar chart (user-selected).

((0bj 2 comparison) if

(delete ((key tota1)))

(delete ((key TIME)))

)

; Set up the rendexing model for a pie chart (user-selected).

((0bj 3 comparison_tot) if

(delete ((key TlME)))

)

Appendix B. Code Listings for CHARTMAKER I64

;••••••+•••••-••••••••••••+•••••••••••»••••••••-••••••-•·•••••••«••••«•••+••••••

; Set up the rendering model for a line chart (user-selected). ,

((obj 1 relationship) if
l

_

(delete ((key TIME)))

_ (delete ((key total)))

; Determine the quantity to be labeled n the x axis.

· (or ((not (k_1ink *h *t))

(print 'What is the name of the independent quantity?')

(:= *ind (get1ine)) °

(print 'What concept is affected by the independent concept?")

(:= *dep (getline))

(smartASSERT key *dep)

(smartASSERT key *ind)

(smartASSERT k_link *dep *ind))

(tr¤=))
)

; If a one-place predicate of this form exists, don’t re-assert it, otherwise

; assert it.

((smartASSERT *p *cl) if

(or (*p *c1) (ASSERT ((*p *c1))))

)

Appendix B. Code Listings for CHARTMAKER 165

; If a. two-place predicate of this form exists, don’t re·assert it, otherwise

; assert it.

((smartASSERT *p *cl *c2) if

(or (*p *cl *c2) (ASSERT ((*p "cl *c2))))

)

)
l

_
(print 'tinal loaded')
Ce--•-•••·•-•••·•-•·+·n••·••--•·••••·•·•·•·•·u•-••••••+••·••••••••••-•••·•·••-•·••··••••·•••·-•··•

C This routine creates a piechart from the data in the file

C CHART.DAT
C••·•·•••·•··••••••••••·••·•·•·•••••••••••·•·••·••·••·••••·•••·•-¢·••«-•-••·•-•·•·•·••·•••••••

C

INTEGER dat(50,7), total, other

integer*2 cstr(10)

INTEGER time(50), tj

INTEGER ITEMS,I,J,LEN,X,Y,LASTX,LASTY(7),INCX,yearS,MAXQ

INTEGER WIDTH,xx,yy

INTEGER*2 ITM_NM(20)

REAL YSCALE

c Set up the radius of the pie

iradi = 150

Appendix B. Code Listings for CHARTMAKER l66

c Initialize the rastertech display

CALL INITIL

c Get the number of items in the comparison

READ (9,*) ITEMS

ITEMS = ITEMS

c get the name 0 the first item

READ (9,60) lTM_NM

c render it in the legend portion of the chart

CALL MO)/ABS(·l5,-170)

CALL TEXTl(6,’LEGEND’)

X = (((l - ITEMS) * 200) / (ITEMS)) - 25
l

INCX = (2 * IABS(X)) / (ITEMS)

items = items · 1

c get the remainder of the item names annd render them in the legend

DO l0,I= 1,ITEMS
U

CALL SETCOLOR(I)

LEN = LENTH (ITEM_NM)

CALL MOVABS (X,-200)

CALL TEXTI (15, ITM_NM)

CALL MOVABS (X, -225)

CALL RECREL (20,8)

CALL MOVABS (X + 3, ·222)

CALL AREA1

Appendix B. Code Listings for CHARTMAKER 167

X = X + INCX

READ (9,60) ITM_NM

10 CONTINUE

I = 1

MAXQ = 0

c read in the data for the categories

20 READ (9,*,END=30) (dat(I,tj), tj = l,items), total

DO 25,.1 = l,ITEMS

IF (dat(I,J).GT.MAXQ) THEN _

MAXQ = dat(I,J)

ENDIF

25 CONTINUE

I = I + 1

GO TO 20

30 CLOSE(9)

C KEEP TRACK OF THE TOTAL AMOUNT TO CALCULATE "OTHER'

sum = 0.

C SUM THE DATA

do 77 j= l,itcms

sum = sum + dat(l,j)

77 continue

Appendix B. Code Listings for CHARTMAKER 168

C CALCULATE "OTHER" IF ANY

other = total - sum

C IF THERE IS AN 'OTI·IER" RENDER IT IN THE LEGEND

if (other .gt. 0) then _

CALL SETCOLOR(Items + 1)

CALL MOVABS (X,-200)

CALL TEXTI (6, ’OTHER’)

CALL MOVABS (X, -225)

CALL RECREL (20,8)

CALL MOVABS (X + 3, -222)

CALL AREA1

endif

C DETERMINE THE SPACING IN THE CHART

yearS = I · 1

INCX = 330 / ((yearS * ITEMS) + yearS)

WIDTH = 2 * INCX / 3

PRINT *,'INCX =
’,

INCX

X = ~INT(REAL(INCX * ITEMS + 1) * (REAL(yearS) / 2.0)) - 20

PRINT *, ’INCX =
’,

INCX,
’

LASTX =
’,

LASTX

YSCALE = 240.0/ REAL(MAXQ)

35 CONTINUE

41 continue

C DRAW THE OUTLINE OF THE PIE

call movabs(0,0)

Appendix B. Code Listings for CHARTMAKER 169

call drwabs(0,iradi)

call movabs(0,0)

call setco1or(8)

call circle(iradi)

call movabs(0,0)

pang = .25

C ADD THE DATA FOR THE "OTHER' CATEGORY

dat(l,items+ 1) = other

C RENDER THE CATEGORIES AS PIE WEDGES 4
DO 45,J = 1,ITEMS + 1

CALL SETCOLOR(J)

C FIRST LINE OF THE WEDGE

angr = {1oat(dat(l,j))/iIoat(totaI)

xx = ir1t(iradi*cos(2*3.141592*(ar1g1·+pang)))

yy = ir1t(iradi*sir1(2*3.l4l592*(ar1gr+pang)))

call drwabs(xx,yy)

C SECOND LINE OF THE WEDGE

xx = i11t(iradi/2*cos(2*3.141592*(((a.ugr)/2) + pa11g)))

yy = int(iradi/2*six1(2*3.141592*(((a¤gr)/2) + pa.ng)))

call movabs(xx,yy)

C FILL IN THE WEDGE

call setcolor(j)

call arcal

Appendix B. Code Listings for CHARTMAKER V70

C LOCATE THE PERCENTAGE FIELD

xx = im((iradi*2.5)/2*cos(2*3.14l592*

& (((ansr)/2) +vans)))

yy = i¤t((iradi*2.5)/2*si¤(2*3.141592*

& (((a¤sr)/2) + vans))>

C LABEL THE PERCENTAGE FOR THAT CATEGORY

call sctcolor(8)

call drwabs(xx,yy)

ax = isigu(l0,xx)

call d1’WI'Cl(I1X,Ü)
A / -

call movrc1(11x/2-1, -1*nx/2)

call 1'1ChI‘(100.*(3.!1g!),CStf,i.lCH)

call val8(20)

call tcxt1(ilc¤, cstr)

call movrcl(l3,0)

cstr(1) =
’%%’

ca.11 tcxt1(l,cstr)

C RESET FOR THE NEXT CATEGORY

call movabs(0,0)

vans = vans + ansr

45 CONTINUE

Appendix B. Code Listings ro: cHARTMAxER l7l

CALL QUIT

STOP

50 FORMAT (7X,I1)

60 FORMAT(12X,20A2)

110 FORMAT(8(I10))

END

C

SUBROUTINE SETCOLOR(I)

INTEGER I

C MAP INTO THE COLOR TABLE BASED ON I

IF (I.EQ.1) THEN

CALL VALUE (230,0,0)

ELSE IF (I.EQ.2) THEN

CALL VALUE (0,230,0)

ELSE IF (I.EQ.3) THEN

CALL VALUE (0,0,230)

ELSE IF (I.EQ.4) THEN

CALL VALUE (230,230,0)

ELSE IF (I.EQ.5) THEN

CALL VALUE (230,0,230)

ELSE IF (I.EQ.6) THEN

CALL VALUE (0,230,230)

ELSE IF (I.EQ.7) THEN

CALL VALUE (230,230,230)

Appcndix B. Code Listings for CHARTMAKER 172

else if (i.cq.8) then

ca.11 va1ue(0,0,0)

ENDIF

RETURN

END

C

C INITIALIZE THE RASTERTECH SCREEN (CALLS TO RASTERTECH ROUTINES)

SUBROUTINE INITIL

INTEGER LEN,X

INTEGER*2 SUBJl(40), SUBJ2(40)

C THROW AWAY LINE WHICH SAYS TREND

OPEN(UNIT = 9,FILE = ’CHART.dat’,STATUS = ’OLD’)

READ (9,*)

READ (9,100) SUBJ 1

READ (9,100) SUB.12

CALL RTINIT(’DEV’,3)

CALL ENTGRA

CALL COLD

CALL RTINIT(’DEV’,3)

CALL ENTGRA

CALL VAL8(245)

CALL CLEAR

CALL VAL8(20)

c

C LABEL THE SUBJECT OF THE CHART

Appendix B. Code Listings for CHARTMAKER 173

LEN = LENTH(SUB.I1)

X = ·LEN * 5

CALL MOVABS(X,220)

CALL TEXTl(2 * LEN,SUBJ1)

LEN = LENTH(SUBJ2)

X = ·LEN * 5

CALL MOVABS(X,190)

CALL TEXTl(2 * LEN,SUBJ2)

RETURN

100 FORMAT(8X,40A2)

END
‘

c

C RETURN THE LENGTH OF THE GIVEN STRING

INTEGER FUNCTION LENTH(STR)

C

1NTEGER*2 STR(40)

INTEGER I

C

I = 40

DOWHILE ((STR(I).EQ.’ ’).AND.(I.GT.0))

I = I - 1

END DO

LENTH = I

Appendix B. Code Listings for CHARTMAKER 174

RETURN

END
C••••••••n••·•-•+-•-••••••••••••+•••••-••••••••·•·•-••••-••••»••••••-•••·•••••

C This routine creates a bar chart from the input data.
C••••••••-•••-•-•-+•••••-•--•-•••••+•••¢••+••••••••••••+•-•••+••••·•-•••••¢••••

INTEGER DAT(50,7)

integer*2 cstr(10)

INTEGER TIME(50), tj

INTEGER ITEMS,I,.I,LEN,X,Y,LASTX,LASTY(7),INCX,yearS,MAXQ

INTEGER WIDTH

INTEGER*2 ITM_NM(20)

REAL YSCALE

C

C Initialize the Rastertech graphic display

CALL INITIL

C

C Get the number of items to be displayed (categories)

READ (9,*) ITEMS

C

C Discount the independent quantity (lt represents the x—axis)

ITEMS = ITEMS - l

C

C Read in an item name and place the name with its associated color

C in the legend.

READ (9,60) lTM_NM

CALL MOVABS(-15,-170)

CALL TEXT1(6,’LEGEND’)

X = (((1 - ITEMS) " 200) / (ITEMS)) · 25

Appendix B. Code Listings for CI-IARTMAKER 175

INCX = (2 * IABS(X)) / (ITEMS)

c do it for the remaindcr of the items

DO l0,I= l,ITEMS

CALL SETCOLOR(I)

LEN = LENTH (ITEM_NM)

CALL MOVABS (X,-200)

CALL TEXTI (15, ITM_NM)
l

CALL MOVABS (X, -225)

CALL RECREL (20,8) _

CALL MOVABS (X + 3, -222)

CALL AREAI ’
_

X = X + INCX

c get the next item

READ (9,60) ITM_NM

c

10 CONTINUE

C

C

I = 1

MAXQ = 0

C READ IN THE DATA FOR THE OBSERVATION PERIODS

20 READ (9,*,END= 30) (DAT(I,tj), tj = l,items), time(i)

C FIND THE MAX FOR SCALING PURPOSES

Appendix B. Codc Listings for CI-IARTMAKER I76

DO 25,] = 1,ITEMS

IF (DAT(I,J).GT.MAXQ) TI—IEx1

MAXQ = DAT(I,J)

ENDIF

25 CONTINUE -

I = I + 1

l
GO TO 20

30 CLOSE(9)

C COMPUTE THE SCALING FACTORS A
ycarS = I- 1

INCX = 330 / ((yea.rS * ITEMS) + yearS)

WIDTH = 2 * INCX / 3

PRINT *,’INCX =
’,

INCX

X = -INT(REAL(INCX * ITEMS + 1) * (REAL(ycarS) / 2.0)) - 20

PRINT *, ’INCX =
’,

INCX,
’

LASTX =
’,

LASTX

YSCALE = 240.0/ REAL(MAXQ)

35 CONTINUE

C LABEL THE AXES

tinc = fIoat(maxq)/5.

ylbl = 0.

CALL VAL8(20)

Appendix B. Code Listings for CHARTMAKER 177

call movabs(·205,-128)

do 41 jj = 1,6

print*,y1b1, ’y1b1',ma.xq,tinc,’tinc’

ca.11 nch1*(y1b1, cstr, ilen)

call text1(i1e11,cstr)

ylbl = ylbl + tinc

call movre1(0,50)

41 continue

C DRAW A SET OF BARS FOR EACH YEAR
l

DO 40,I= 1,yearS „

CALL)/AL8(20) g

ca.11 movabs(x + items*incx/2,- 130)

call drwre1(0,-5)

call nchr(t1oat(time(i)), cstr,i1en)

ca.11 movre1(-5, -8)

ca.11 text1(ilen,cstr)

C DRAW THE BARS FOR THAT YEAR

DO 45,] = l,ITEMS

CALL SETCOLOR(J)

Y = INT((REAL(DAT(lJ)) ° YSCALE)) - 125

CALL MOVABS(X,·125)

CALL RECTAN(X + WIDTH„Y)

Appendix B. Code Listings for CHARTMAKER 178

CALL MOVABS (X + 2, Y - 2)

CALL AREA1

X = X + INCX

45 CONTINUE

C GOTO THE NEXT YEAR

X = X + INCX

40 CONTINUE

CALL QUIT

. STOP
I

50 FORMAT (7X,Il)

60 FORMAT(l2X,20A2)

ll0 FORMAT(8(Il0))

END

C

C

C

C This routine sets the current color for the graphics DRAW commands.

SUBROUTINE SETCOLOR(I)

INTEGER I

C

IF (I.EQ.1) THEN

Appcndix B. Code Listings for CHARTMAKER 179

CALL VALUE (230,0,0)

C

ELSE IF (I.EQ.2) THEN

CALL VALUE (0,230,0)

C

ELSE IF (I.EQ.3) THEN

CALL VALUE (0,0,230)

c

ELSE IF (LEQ.4) THEN _

CALL VALUE (230,230,0)

c .

ELSE IF (I.EQ.5) THEN

CALL VALUE (230,0,230)
l

c

ELSE IF (I.EQ.6) THEN

CALL VALUE (0,230,230)

c

ELSE IF (I.EQ.7) THEN

CALL VALUE (230,230,230)

ENDIF

RETURN

ENDC

THIS PROGRAM READS THE FILE ’CHART.DAT’ AND

C PRODUCES A LINE CHART FROM IT

C

Appendix B. Code Listings for CHARTMAKER l80

INTEGER DAT(50,7)

INTEGER TIME(50), tj

INTEGER ITEMS,I,J,LEN,X,Y,LASTX,LASTY(7),INCX,YEARS,MAXQ

INTEGER*2 PASLEN

INTEGER*2 ITM_NM(16), cstr(l0)

REAL YSCALE

C

c the rastertech display

CALL INITIL

c get the number of different categories to display

READ (9,*) ITEMS

ITEMS = ITEMS · l
l

C GET THE NAME OF THE FIRST CATEGORY

READ (9,60) ITM__NM

X = (((1 · ITEMS) * 200) / (ITEMS)) - 25

INCX = (2 * IABS(X)) / (ITEMS)

C GET THE NAMES OF THE OTHER CATEGORIES AND RENDER THEM IN THE LEGEND

DO 10,I= l,ITEMS

C RENDER THE NAME OF THE CURRENT CATEGORY

CALL SETCOLOR(I)

LEN = LENTH (ITEM_NM,l6)

CALL MOVABS (X,-200)

PASLEN = (LEN + 1)/ 2

CALL TEXT1 (PASLEN, ITM_NM)

Appendix B. Code Listings for CHARTMAKER 181

CALL MOVABS (X, -225)

CALL DRWREL (20,0)

C GET THE NEXT CATEGORY

READ (9,60) ITM_NM

X = X + INCX

10 CONTINUE

C RENDER THE LAST CATEGORY NAME

CALL MOVABS(·l5,-170)

CALL VAL8(20)
l

CALL TEXT1(l5,ITM_NM)

I = 1

MAXQ = 0

C READ IN THE DATA FOR THE OBSERVATION PERIODS

20 READ (9,*,END=30) (DAT(I,tj), tj = l,itcms), timc(i)

C FIND THE MAX DATA VALUE FOR VERTICAL SCALING

DO 25,} = l,ITEMS

IF (DAT(I,J).GT.MAXQ) THEN

MAXQ = DAT(I,J)

ENDIF

25 CONTINUE

I = I + 1

Appendix B. Code Listings for CHARTMAKER I82

C GET THE DATA FOR THE NEXT OBSERVATION PERIOD

GO TO 20

30 CLOSE(9)

C DETERMINE THE SCALING FACTORS

YEARS = I- 1

INCX = 330/ YEARS

LASTX = -INT(REAL(INCX) * (REAL(YEARS) / 2.0))

YSCALE = 240.0 / REAL(MAXQ)

DO 35,.1 = 1,ITEMS

LASTY(J) = INT((REAL(DAT(l.-1)) * YSCALE)) - 125

35 CONTINUE

tinc = f1oat(maxq)/5.

ylbl = 0.

call movabs(-205, -128)

CALL VAL8(20)

C SET UP THE AXIS LABELS

do 41 jj = 1,6

print *,y1b1, ’y1bl’

call NC1-IR(y1bl, cstr, ilcn)

call text1(i1cn, cstr)

Appendix B. Code Listings for CHARTMAKER 183 4

ylbl = ylbl + tinc

call movre1(0,50)

41 continue

DO 40,1 = 2,YEARS

CALL VAL8(20)

X = LASTX + INCX

call movabs(x, -130)

call d.rwre1(0,-5)

call NCHR(t1oat(time(i)), cstr, ilen)

call mov1·e1(-5,-8)

call text1(ilen, cstr)

C PLOT THE LINE

DO 45,J = 1,ITEMS

CALL SETCOLOR(.I)

Y = INT((REAL(DAT(IJ)) * YSCALE)) - 125

CALL MOVABS(LASTX,LASTY(J))

CALL DRWABS(X,Y)

C REMEMBER WHERE THE LINE LEFT OFF

LASTY(J) = Y

C PLOT THE NEXT SEGMENT

45 CONTINUE

LASTX = X

Appendix B. Code Listings for CHARTMAKER 184

C START THE NEXT LINE

40 CONTINUE

CALL QUIT

STOP

S0 FORMAT (7X,I1)

60 FORMAT(12X,20A2)

110 FORMAT(8(I10))

END

C

C MAP INTO THE COLOR TABLE USING THE INDEX I
I

SUBROUTINE SETCOLOR(1)

INTEGER I

IF (I.EQ.1) THEN

CALL VALUE (210,0,0)

ELSE IF (I.EQ.2) THEN

CALL VALUE (0,210,0)

ELSE IF (I.EQ.3) THEN

CALL VALUE (0,0,210)

ELSE IF (I.EQ.4) THEN

CALL VALUE (210,210,0)

ELSE IF (I.EQ.5) THEN

Appendix B. Code Listings for CHARTMAKER l8$

CALL VALUE (210,0,210)

ELSE IF (I.EQ.6) THEN

CALL VALUE (0,210,210)

ELSE IF (I.EQ.7) THEN

CALL VALUE (210,210,210)

ENDIF

RETURN

END

Appendix B. Code Listings for CHARTMAKER 186

4

