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INTRODUCTION 

The capabilities of the human visual system have been studied 

for quite some time. Many psychophysical techniques have been devel-

oped over the years to enable precise and repeatable measurements of 

sensory and perceptual capabilities. These methods generally rely 

on observable outputs which are related in some way to sensory inputs. 

Through the use of such ,techniques, the capabilities of the human 

visual system have been measured accurately ~by many researchers. 

Much is known, for instance, about the ability of the human visual 

system to resolve detail under many environmental conditions (e.g., 

McCormick, 1970). The study of color perception has resulted in many 

published reports concerning, among other things, the efficacy of 

various color coding schemes (Haeusing, 1976). 

As more and more data concerning visual performance became 

available, certain generalizations were formulated relating stimulus 

characteristics to observer performance. Two of the more familiar 

generalizations or "laws" relate stimulus size and perceived bright-

ness (Ricco's and Piper's Laws) and stimulus duration and perceived 

brightness (Block's Law). Such generalizations have found enough 

wi~espread applicability that they can be found in many human engi-

neering handbooks (e.g., Vancott and Kinkade, 1972). While these 

"laws" can be very useful in describing the functioning of the visual 

system for limited ranges of input, they do not explain the underlying 

1 
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mechanism(s) through which the visual stimulus is perceived. 

The attempt to formulate the underlying mechanisms which de-

scribe the function of a system is known as modeling. An ongoing 

research problem in the field of vision is the formulation of a 

viable model of the human visual system. Ideally a visual system 

model should account for known visual phenomena as well as predict 

hitherto unobserved properties which can be experimentally verified. 

Of course, models of the visual system have been postulated by vari-

ous researchers. Most of these models tend to be over-specific. 

That is, the models attempt to account for a relatively narrow range 

of visual phenomena, e.g., Mach bands. Unfortunately, these models 
I 

generaily produce spurious outputs when they attempt to account for 
( 

a more general range of visual. capabilities. Some models have been 

suggested which take a more general approach to the visual system . 

. Specifically, Almagor (1977) has postulated a visual system model 

which accounts for a wide range of phenomena. 

This proliferatiOn of visual models serves to underscore the 

fact· that, despite the numerous stud.ies which have measured the vari-

ous properties of the human visual system, few definitive data exist 

which would support the predictions of one model over others. This 

is particularly true for predictions of observer performance in prac-

tical visual tasks. 

Spatial Frequency Analysis Model 

An extremely large body of research has been devoted to the 
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discovery of the visual system's spatial processing mechanism. That 

is, how does one perceive and differentiate the world around us within 

our field of view? While the real visual world is made up of many 

complex and interacting shapes and details which most persons can 

sort out with very 1 little difficulty, there is precious little expla-

nation of this process. 

One of the most tested and most popular theories of spatial per-

ception is generally referred to as the spatial frequency analysis 

model of the visual system. The term "spatial frequency" is the 

spatial analog to the better known concept of temporal frequency. In 

the time domain, a periodic signal which oscillates ten times each 

second is referred to as a 10 Hz {eye/ sec) signal. In the space do-

main, a pattern of high and low luminance (brightness) which oscil-

' lates between the high and low extremes ten times in a distance of 

one millimeter is ref erred to as a 10 cyc/rrrrn spatial frequency distri-

but ion. 

There are mathematical techniques which transform a visual scene 

(spatial domain) into the discrete spatial frequencies (frequency 

domain) which, when added together in the proper proportions, can be 

combined to reproduce that visual scene. This is known as spatial 

frequency decomposition since the purely spatial information contained 

in the original scene is decomposed into the components which exist 

in the frequency domain. 

The Spatial Frequency Analysis (SFA) model of the human visual 

system assumes that som.e mechanism exists within the visual system 
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which decomposes the external scene into those spatial frequencies 

most prevalent in it. The sensitivity of the. visual system to the 

scene then is postulated to be. dependent upon the relative magnitudes 1 

of those component spatial frequencies. For example, suppose the 

visual system is more sensitive to a particular spatial frequency, 

say 10 eye/mm, than to other spatial frequencies. 
r 

The SFA model of 

the visual system predicts that an observer will be more sensitive 

(have a lower threshold) to scenes in which the magnitude of the 10 

eye/mm spatial frequency is greater. 

The SFA model is sometimes referred to as a multiple-channel 

model. This terminology is the result of the visual mechanism postu-

lated by the model. It is assumed that spatial frequency decomposi-

tion is accomplished in the visual system by the presence of cells 

which are sensitive to very narrow ranges of spatial frequencies. 

The magnitude of cell excitation is proportional to the relative mag-

nitude of the spatial frequency to which that cell is sensitive. All 

the cells which are sensitive· to a particular spatial frequency are 

considered to form a "channel". This concept implies that the infor-

mation in one channel has little or no effect on the performance of 

another channel. The sets of frequency-sensitive cells form multiple 

channels through which spatial frequency decomposition is accomplish-

ed. 

Dot MatPix Displays 

In recent years a qisplay known as the computer-generated dot 
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matrix display has come into widespread use. This display type is 
( 

distinguished from an ordinary stroke display by its use of small 

dots to make up the alphanumeric characters. The form of these 

alphanumerics lends itself to the study of visual spatial perception, 
\ ""in that stationary specific spatial relationships are maintained 

within the dot matrix structure. That is, the dots are generall,y 

consistent in size and shape and are regularly spaced within the 
l 

matrix. 

The regularity of spacing is known as periodicity. It should be 

fairly obvious from the preceeding discussion of spatial frequency 

analysis that the more periodic the intensity distribution then the 

easier it becomes to analyze the distribution in the frequency domain. 

The periodic nature of dot matrix displays makes them very useful in 

the study of spatial frequency mechanisms in the human visual system. 

The rationale for using dot matrix displays in this research is the 

relatively high degree of periodicity exhibited in dot matrix inten-

sity distributions. If the visual system is sensitive to spatial 

frequency information, then the spatial frequency analysis mechanism 

should manifest itself in.the use of dot matrix displays. 

Purpose 

The purpose of. the research is twofold. The basic purpose is to 

ascertain the efficacy of the two-dimens.ional spatial frequency 

analysis model of the human visual system in accounting for observable 

phenomena. This research was done with a dot matrix display. 
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The task utilized was tachistoscopic identification of dot 

matrix alphanumerics written in various fonts. Font is a descriptive 

term used to identify alphamnnerics with certain distinctive charac-

teristics. Most connnon fonts, such as gothic, pica, and elite, are 

generally associated with printed alphanumerics. However, there are 

also fonts designed specifically for dot matrix characters. The util-

ity of any particular font can be determined by presenting single 

characters to observers for very short periods of time. This tech-. 

nique is known as tachistoscopic presentation. 

By using tachistoscopic presentation as the task in this re-

search, the utility of various dot matrix fonts was determined. This 

determination is the s.econdary objective of the research, and is, in· 

itself, an important, worthwhile area of study. 

The primary purpose of the research was fulfilled by analyzing 

the various alphanumerics using two-dimensional spatial frequency 

analysis. The results of these analyses were compared to the observer 

performance data obtained from the tachistoscopic identification task. 

These comparisons determine whether the spatial frequency content of 

displayed informatibn can be reliably related to observer performance~ 

For example, if the letters 'A' and 'P' have very similar spatial 

frequency components, this ·technique will show whether or not this 

similarity is manifested in the confusion of these characters by ob-

servers. 

In addition, an attempt was made to determine whether more simple 

calculational procedures can be utilized to predict the relative 



1 

confusion among various alphanumerics. If a more simple method can 
I be utilized, then much calculational complexity can be circumvented 

in the design process. 



BACKGROUND 

Some basic psychophysical capabilities have been described in 

detail (e.g., Cornsweet, 1970; Graham, 1965), and many models have 

been preferred to account for the phenomena exhibited by, the human 

visual system. F.or instance, fairly early in visual psychophysical 

experimentation a chemical theory was put.forth to explain the ob-

served change in Critical Flicker Frequency (CFF) with stimulus 

intensity (Jahn, 1946). Most models which have been suggested suffer 

a common failing with Jahn's (1946) theory. That is, most visual 

models attempt to account f'or certain isolated phenomena at the ,ex-

pense of the more general functioning of the visual system. 
' . 

. There are theories concerning the functioning of the visual sys-

temwhich attempt to account for a wide range of observable phenomena. 

Of the more general theories, thos.e dealing with spatial frequency 

analysis are currently the most pop,ular and widespread. There are 

two major aspects to most theories which attribute some type of 

. spatial frequency analysis mechnism to the visual system. The first 

.aspect is the analysis mechanism itself. Although some dispute may 

arise as to the exac.t mechanism of analysis and its level of sophis-

. tication, some mechanism is assumed to exist in any SFA model. The 

second aspect of such models is the concept of "channels" in the 

visual system.' SFA models are often referred to as multi-channel 

models, since most of these models' assume that there exists some 

8 
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lnethod of ascertaining the relative magnitude of many different spa-· 

tial frequency bands. This independent assessment requires the pre:... 

senc:e of different channels in the visual system. 

To understand the reasons for the acceptance of such theories it 

is helpful to .look at SOllle of the known visual characteristics which 

would support the logical conclus;i.ons of SFA models. Both components. 
• ... : .. · . . .. ·- .· . : 

of SFA theory, i.e., analysis mechanism and channels, have been the 
,,. . 

subject of many investiga1:ions~ The concept·of individual channels 

· has been demonstrated in several . studies. The general results of 

these.studies will be described in ~he following section. 

Orientation and Frequenay·Sensitivity 

·The first studies of independent channels in the visual system 

were performed with animals,.using the general method of single cell 

r.ecording. This methodology consists of inserting electrodes into 

Single cells in the visual cortex or retinal ganglia of anesthetized 

animals. The :animals were then presented with visual stimuli in 

which, the orieri.tatio~was varied. It was discovered that individual 

cells respond to onlyanarrow range of orientations. The cell exci-

tation is maximum for a specific orientation and drops rapidly to 
. . . 

noise levels outside a 8ma11 hand of orientations centered on that 

sp~cific value. Different cells respond to different orientations so 

that, on a macro level, orientation sensitivity appears to be a con-

tinuous function •. At the cell level, however, defin,i,f;e discrete 

channels have been found to exist. Much of the animal work on this 



10 

subject is summarized by Pantle (1974). 

In the human visual system, single cell recording has certain 

ethical and practical limitations. However, the use of threshold 

reporting techniques has been widely used in human experimentation. 

While discrete channels .for orientation cannot be proved to exist in 

humans, much work exists which confirms that the human visual system 

is more sensitive to vertical and horizontal patterns than to oblique 

figures (e.g., Campbell, Kulikowski, and Levinson, 1966). This orien-

tation selectivity has implications which will be pointed out in the 

discussion of two..;.dimensional frequency analysis. 

In addition to orientation sensitivity, it has been shown that 

certain animal visual systems contain cells which are sensitive to a 
I 

very narrow range of spatial frequencies. The method generally used 

in these studies is single cell recording, as in the orientation 

studies. The stimuli in the frequency studies, however, are inten~ity 

distributions of different spatial frequencies. As in the orienta.tion 

studies, the cell excitation is maximum at some specific spatial 

frequency and drops off on either side of this frequency. In addi-

tion, it has been found that this frequency sensitivity becomes more 

and more pronounced as cells are selected from higher and higher in 

the visual system (Maffei and Fiorentini, 1973). 

The sensitivity of the human visual system to various spatial 

frequencies has been studied using a variety of psychophysical tech-· 

niques. One such technique is known as simultaneous masking. Simul...., 

taneous·masking refers to the increased contrast threshold (decreased 
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sensitivity) of one spatial frequency due to the presence of other 

spatial frequencies in the visual field. A very exhaustive simtilta-
< 

neous masking study was done by Pantle (1974) in an a,ttempt to demon-
1 

strate the existence of .multiple channels in the human visual system. 

In essence, this method consists.of simultaneously presenting two 

spatial frequencies (target and background, respectively). This par-

ticular study showed that the masking effects are very dependent upon 

the relationship between the target and background frequencies. The 

masking is most pronounced when both target and background have the 

same spatial frequency and becomes less so on either side of the tar-

get frequency. 

When all . the information from these studies is considered toge th-

er, there emerges a fairly persuasive argument for the existence of 

multiple channels in the human visual system. These channels behave 

as· though they are sensitive to relatively narrow ranges of orienta-

tion and spatialfrequeficy. 

Existence of Frequency Analysis Mechanism 

The existence of multiple channels in the human visual system is 

a necessary but not sufficient condition for the acceptance of SFA 

models. The most compelling support for these theories has come from 

studies which have demonstrated that the htllllan visual system does 

indeed behave as though some form of spatial frequency snalysis mecha-

nism does exist. One of the most quoted studies which demonstrated 

the analysis effect is the experiment of Campbell and Robson (1968). 
' 
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In this study, the visual stimuli were one dimensional grating pat....; 

terns. These patterns appear as a series of alternatfng light and 

dark stripes. The intensity distributions perpendicular to the 

stripes were either square wave, rectangular wave, or sawtooth. 

Examples of some connn.only used gratings are shown in Figure 1. 

The names of the intensity distributions refer to the sharpness 

of the transition from dark to light. For instance, a square wave 

distribution is characterized by a saturated black area of a specific 

width followed by a sharp transition to a white area of the save 

width. This pattern is repeated for a mnnber of cycles. A sawtooth 

distribution, on the other hand, is characterized by a saturated 

black region which is gradually desaturated until a white region'is 
r 

reached. This gives the appearance of a relatively smooth transition 

from dark to light. 

The researchers showed that the sensitivity of observers was 

proportional to the amplitude of the fundamental spatial frequency 

component of the wave form. In addition, the threshold was shown to 

be dependent on the sum of the magnitudes of all spatial frequency 

components within the observer's range of sep.sitivity. This phenome-

non is known as threshold summation. The relative values of observer 

thresholds were very close' to the relative magnitudes predicted by 

spatial frequency analysis (Fourier analysis). 

Work done by others, also sunnnarized by Pantle (1974), has shown 

that under certain conditions the sensitivity of observers to complex 

gratings (gratings of more than one frequency) is a function of the 
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Figure 1. Sine-wave, Square-wave, and Sawtooth Gratings 
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sensitivity to each sep~xate frequency component. The agreement be...;. 

tween the measured observer thresholds and predictions from spatial 

frequency analysis has provided strong support for the existence of 
_) 

some mechanism within the visual system whereby some form of spatial 

frequency analysis is performed. 

ExperimentaZ Tests of the ·SPA ModeZ 

Given a theoretical structure of the hum.an visual system, it 

remains to be shown that any practical significance can be attributed 

to the postulated model. Several studies exist in which the under-

lying assumptions of the SFA model have ·been put to some degree of 

testing. The basis for one series of experiments is the concept of 

the Modulation Transfer Function (MTF), which has had increasing popu-. 

larity in the field of optics. Optical systems, that is, systems of 

lenses, are quantitatively described in terms of their MTF. Basically, 

given the MTF of a system and a description of some spatial frequency 

distribution to be input to that system, the output spatial frequency 

distribution of the system can be completely specified. The attrac-

tive feature of the MTF is that the output can be determined without 

actually performing separate measurements for each input frequency. 

The derivation of the MTF for a physical system is not usually a 

complicated matter. Attempts to derive a valid MTF for the hum.an 

visual system have met wit;h rather limited success. This is thought 

to be due to the nature of the performance measures used in these 

situations (Lowry and DePalma, 1961) and to the nonlinearities in the 
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visual system (Cornsweet, 1970). 

The Modulation Transfer Function is the ratio of output to input 

modulation plotted versus spatial frequency. Modulation is a term 

which describes the luminance contrast of a display at a certain spa-

tial frequency and is usually given by 

L - L . M = max min (1) ------L + L . max min 

where L = maximum display luminance, and L . max min minimum display 

luminance (Cornsweet, 1970). 

As described previously, the spatial frequency of an object or 

a displayed pattern is analogous to its detail and is the inverse of 

its size. For any periodic pattern, such as a sine or square wave, 

the spatial frequency can be given in terms of lines/mm, cycles/mm, 

or cycles/degree of subtended angle at the system input or output. 

To be completely accurate, the term MTF should only be used when the 

system under study is presented with sinusoidal intensity distribu-

tions as input. A function describing the throughput characteristics 

of a system for other than sine-wave distributions is simply called 

a "describing function". 

The MTF forms the basis of a variety of tests of the SFA model. 

By itself, the MTF is inadequate to explain the performance of observ-

ers on display-oriented tasks. One reason for this shortcoming is 

the fact that the MTF is concerned solely with the operating charac-

teristics of the display while not accounting for the characteristics 

of the observer. To account for the effects of the human visual 
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s:ystem it is necessary to understand not only how well the display 

can reproduce a range of spatial frequencies, but also how sensitive 

an observer is to this spatial frequency range. 

The modulation versus spatial frequency (MTF) curve is empirical-

ly determined for any given display. There ar~ data available, how-

ever, which define the threshold detectability curve of human observ~ 

ers to nearly flat-field sine~ and square-wave intensity distribu-

tions for various ranges of spatial frequencies (Campbell and Robson, 

1967; DePalma and Lowry, 1962; Keesee, 1976). These data take the 

form of sets of measurements of how much modu~ation is required by 

observers so that gratings of certain spatial frequencies are barely 

visible. 

One very well known performance predictor which includes the 

effects o~ the human visual system's spatial frequency sensitivity 

is. the Modulation Transfer Function Area (MTFA). The MTFA was <level-
{ 

oped by Charman and Olin (1965~ for photographic systems and has since 

been refined and expanded for human performance prediction in CRT 

display situations (Snyder, 1973). The MTFA is a measure of the dif-

ference between the display's ability to modulate signais of various 

spatial frequencies and the observer's threshold modulation require-

ments at those frequencies. 

Specifically, the MTFA is the integrated difference between the 

display MTF. (or describing function) and the observer's detectability 

threshold from zero to some limiting (crossover) spatial frequency. 

This limiting spatial frequency is the point beyond which an observer 



17 

requires greater modulation than the system is capable of producing. 

The concepts of MTF and MTFA are illustrated in Figure 2. 

The utility of the MTFA as a measure of dot matrix display qual-

ity was demonstrated by Albert (1975). In this study, observers were 

required to read anagrams using 7 X 9 dot matrix characters. A spa.,-

tial frequency analysis was then performed on these characters. The 

MTFA for the characters was then computed using the threshold data of 

Campbell and Robson (1967). Th'ese MTFA calculations were then corre-

lated with the performance data of the observers. The resultant 

prediction equation actually used a weighted log-log MTFA measure, 

j 

but the correlation between predicted and observed performance was 

quite high (r = 0 .82). This study demonstrated that observer perform-

ance on a practical task can be adequately predicted on the basis of 

the spatial frequency content of the simulated dot matrix display. 

Other studies have attempted to derive empirical metrics based 

on the spatial frequency content of the displayed information and 

then to·relate those equations to obse~ver performance on visual tasks. 

One such study by Maddox (1977) used multiple regression techniques to 

correlate spatial frequency terms with performance on several tasks. 

In this study, 5 X 7 dot matrix characters were displayed using a 

variety of intracharacter parameters such as dot shape, dot size, and 

dot spacing. In addition, two levels of ambient illuminance were also 

used. Observ.er performance .was measured on. one reading task and two 

search tasks. The characters were then subjected to spatial frequency 

analysis in both horizontal and vertical directions. A variety of 
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terms based on spatial frequency content was calculated. These terms 

includedMTFA, spatial frequency range, fundamental spatial frequency, 

etc. 

When the measured performance data and the spatial frequency 

terms were subjected to multiple regression analysis, the resulting 

equations accounted for a significantly large proportion of observed 

variance. A separate equation was derived re:lating performance to 

spatial frequency terms for each task. One,interesting outcome of 

this study was the observation that the type of spatial frequency in-

formation included in the prediction equations changed fI;"om task to 

. task. As in the Albert (1975) study, this experiment clearly demon"-

strated the utility of using spatial frequency information to predict 

observer performance on visual tasks. 

The previously cited studies tend to support the general SFA 

model. However, some methodological simplifications tend to limit 

the generality of the conclusions drawn. These limitations will be 

discussed in the following section. 

One-Diinensional vs. Two-Dimensional Analysis 

Most visual information.exists in at least two dimensions. On 

flat displays the information is presented in both horizontal and 

vertical dimensions. Since both dimensions are present simultaneously 

in the visual field, there exists the possibility of some type of in-

teraction between vertical and horizontal intensity gradients. The 

studies cited thus far have employed spatial frequency analysis 
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procedures which proceed in one dimension at a time. That is, a hori-

zontal scan of a row of dots (for dot matrix characters) is done and 

then analyzed. Likewise, a vertical scan is then taken and analyzed. 

These scans are done independently, thus precluding any interaction 

effects in the analysis. 

It is known, however, that certain display parameters affect 

observer performance measurably while having no effect on the one-

dimensional spatial frequency content of the display. One example of 

such an effect is the 'change in performance due to differences in font. 

The font of a set of alphanumerics is simply the style of the letters 

and numerals or all the characteristics which make one set of alpha-

numerics distinguishable from other sets. It has been demonstrated 

that chara~ter legibility can differ widely among different fonts. 

A study by Maddox, Burnett, and Gutmann (1977) demonstrated that 

identification errors among characters is highly dependent on the font 

of these characters. The three fonts that were used in this study are 

shown :i.n Figure 3 and the associated errors are depicted graphically 

in Figure 4. Despite these statistically significant differences, 

the one-dimensional spatial frequency distributions remain identical 

for the different fonts. This is due to the microscopic nature of the 
( 

single dimensional scans which require only ~ few dots in a row (or 
I 

column) to be analyzed. 

There is no compelling reason to believe that the human visual 

system functions in one dimension only or in one dimension at a time. 
L--

Much theoretical development concerning SFA models of the visual system 
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assumes a two-,.dimensional analysis within the visual system, even 

three dimensions if time-varying intensity distributions are consider-

ed (Schnitzler, 1976a; 1976b). The primary difference between a one-

dimensional and a two-dimensional transform is the allowance in the 
I 

two-dimensional case for interactions among the horizontal and verti;... 

cal frequency components. 

Several researcher.s have demonstrated that the effects of two-

dimensional spatial frequency interaction are manifested in observer 

performance (Burton, 1976; Kelly, 1976; Kelly and Ma.gnuski, 1975). 

One of the more vivid examples of such interaction is the observer 

task employed ''by Kelly (1976). In this task, observers' thresholds 

to two-dimensional gratings were measured. The intensity distribu-

tions of the gratings were manipulated so that the spatial frequency 

components, as calculated by two-dimensional analysis, exhibited 

higher magnitudes along different axes. For example, some gratings 

were designed so that the highest magnitude frequency components were 

oriented vertically and horizontally. In other gratings, the frequen;... 

cycomponents were oriented at acute angles to the coordinate axes. 
I 

I 

The results of this study showed that observers were more sensi.,... 

tive to gratings which exhibited a horizontal and vertical orientation 

of frequency components. The observers were less sensitive to gratings 

which contained more oblique components. This result is in agreement 

with work cited earlier in which observers. were more sensitive to hor-

izontal and vertical patterns than to oblique figures. The important 

point of Kelly's (1976) research is that this orientation difference 
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becomes explicit only when the gratings are subjected to two-dimen-

sional spatial frequency analysis. There is no such difference when 

one-dimensional analyses a:re used. 

This particular study illu.strates quite well that certain per-

formance data can only be explained in terms of two-dimensional spa-

tial frequency analysis. Such analyses include the interaction of 

multi-dimensional spatial frequency information by allowing all points 

in the visual scene to contribute to the frequency spectrum of the 

scene. By contrast, the single dimensional analysis allows only 

limited portions of the visual stimulus to·be included in the spectrum. 

Most studies have not used two-dimensional transforms due to the com-

plexity of the calculations involved. In the last 15 years, however, 

algorithms have been formulated which greatly facilitate the computa-

tion of two-dimensional frequency spectra of visual stimuli (Brigham, 

1974; Cooley and Tukey, 1965), thus making such analyses feasible in 

the typical laboratory environment. 

Shortcomin,gs of Pas_t Research 

The extent to which two-dimensional spatial frequency analysis 

by the human visual system contributes to observer performance has 

yet to be established. This is due to a pragmatic tradeoff between 

task complexity and computational difficulty. Experiments which have 

employed relatively realistic (complex) stimuli have generally used 

only single-dimensional spatial frequency analysis. The resulting 

one-dimensional transformation cannot account for certain aspects of 
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visual performance. On the other hand, experiments which have em--

ployed more complicated two-dimensional computations have been con-

strained to use extremely simple visual stimuli (checkerboards, 

· Bessel's functions, etc.). These simple patterns can be analyzed 

rather easily, since they can be expressed in closed functional form 

and evaluated analytically. Thus, iittle practical design utility 

has come from this two-dimensional research. 

The analytical evaluation of intensity distributions bypasses a 

rather important procedural aspect of visual display research. In 

order to simpl'ify the computation of two-d.imensional sp.ectra, very 

few studies have photometrically sampled the visual stimuli used in 

the experimentation. In fact, it is much easier to perform frequency 

transformations upon functional representations of visual stimuli than 

to transform sampled data arrays containing actual photometric data. 

That is, if an intensity distribution can be represented as a mathe-

matical function, then a transformation can be computed analytically, 

without having td scan the.distribution photometrically. Of course, 
. . . 

the possibility exists th,at the results of these simplified experi-

ments are quite valid. However, the elementary stimuli employed in 

the experiments plus the simplified and abstracted computational pro-

cedures limit the generality of the results. 

A relatively simple but realistic task which lends itself to 

spatial frequency analysis could provide some indication of the use 

of spatial frequency interactions by the visual system. This research 

employed just such a task and various forms of analysis to relate the 
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two;-dimensional frequency spectra of visual stimuli to obs.erver per-

formance with such stimuli. This research was the next logical link 

in the experimental.attempts .to ascertain the utility of the spatial 

frequency atialy::?is model of the human .visual system •. 

c. 

. \. 



METHOD 

This research was done in two distinct phases. A general over-

view of the experimental methodology is shown schematically in Figure 

5. This overview shows that the research is divided into Phase I, 

which required that experimental performanc.e data be gathered using 

htnnan observers. and Phase II, which required the digitization and 

analysis of the visual s timtili used in Phase I. 

The Phase I research required that human subjects .view a dot 

matrix display and make certain decisions based on the displayed in-

formation. In Phase II, the displayed information :was scanned, digi,-

tized, decomposed into component spatial frequencies, and subjected 

to' analyses designed to measure similarity of spatial frequency con-

tent. The findings from each phase were then analyzed together to 

determine how well the performance data could be accounted for on the 

basis of the analyses performed. Each phase of the research will be 

described separately. 

Phase I 

The first phase of the research used human observers to obtain 

performance data. The subjects viewed single characters on a dot 

matrix display. The characters were chosen from each of four differ-

ent fonts. Three of these fonts (Maximum Dot, Maximum Angle, and 

Lincoln/Mitre) are described in the introduction and have been used 

in research cited in that section. The fourth font is known as the 
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Huddleston font and has been designed for high visibility in exterme-

ly high ambient light environments (Huddleston, 1971). The Lincoln/ 

Mitre and Huddleston fonts have been studied by several researchers. 

The Maximum Dot and Maxim.um, Angle ·fonts were designed by Haddox, et aZ. 

(1977) using the most and least dots, respecti:vely, to construct indi-

vidual characters. 

In addition to the font, two other character variables were used 

in Phase I. These variables are matrix size and character size (sub;... 

tended visual angle). Matrix size refers to the number of dots avail-

able with which to construct the dot matrix characters. A 5 X. 7 ma-

trix, for example, is a matrix with a maximum of 5 horizontal and 7 

vertical (35 total) dots. The three standard dot matrix sizes were 

used in the first phase of this research. These three sizes are 5 X 7, 

T X 9; and 9 X 11. If the dot size and interdot spacing remain con-

Stant, the dot matrix character will become larger and larger as more 

dots are used to construct each character. If left unaccounted for, 

this character size effect will confound any result due to the matrix 

size used. 

To remove much of this confounding, the relative character size 

was also varied in Phase I. This was done by making each character 

the same absolute size, no matter what matrix size was used. The same 

ch~iacter height is maintairied by keeping constant the dot size to dot 
r 

·spacing ratio for each matrix size. However, as the number of dots is 

increased, the absolute size of the.dots is reduced. The various 

matrix size/character size combinations which were used are shown 
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conceptually in Figure 6. Th~ use of all five sizes ailowed any ef-

fect due to matrix size to b .. e statistically separated .from effects 

due to character size {:for the 5 X 7 character· size). 

For sizes one through three, the Same dot size and dot spacing 

are maintained for all tnatrfx sizes (5 X. 7, 7 X 9, and 9 X 11). For 

sizes four and five, the dot size and spacing are manipulated so that 

the dot-to-dot spacing ratio is held constant and equal to that of the 

5 X 7 matrix (size one). The overall character height is fixed for 

sizes four and five so that the TX 9 and 9 X 11 matrices occupy 

approx::j_mately the same area as the 5 X 7 matrix. 

It should be noted, that this ·is an incomplete factorial design, 

in that all character sizes (visual subtense) are not completely 

crossed with all matrix sizes (number of dots). The selection of the 

5 X 7 matrix size as the one within which the expanded (7 X 9 and 

9 X 11) matrix sizes are confined is a purely pragmatic decision. The 

goal of most display design is to pack as many characters as possible 

on the display while minimizing the number of electrical connections 

to the device. Toward this end, the designer would undoubtedly opt to 

. retain the smallest overall character size and limit the number of 

available dots within tl).e character matrix. With this constraint, a 

comp.lete ,factorial was deemed unnecessary. The results must also be 

viewed in this light, since all character size/matrix size combinations 

were not tested. 
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Subjects. Forty subjects, 20 male and 20 female, were used in 

this study. All subjects were screened for normal acuity, at least 

20/25 corrected, and absence of gross visual defects using a Bausch 

and Lomb Orthorater. Each subject served a total of approximately 

four hours and was paid for his/her participation. 

Apparatus. The display used in this study was a Tektronix 4014-1 

computer graphics terminal. This terminal is equipped with an Enhanced 

Graphics Module which allows 3072 X 4096 separate points to be dis-

played on the face of the CRT. These points are slightly irregular 

due to phosphor blooming. Their size, determined by microphotometric 

measurement, is .508 mm high by .394 mm wide with center-to-center 

spacing of .091 mm in either direction. Thus, adjacent points (or 

minipoints) have substantial overlap. The maximum luminance of these 

minipoints is approximately 21 cd/m2 • Larger illuminated areas are 

obtained by simply illuminating many of these small minipoints. In 

this research, the illuminated dots had a luminance of 21 cd/m2 , 

against a background of approximately 3 cd/m2 • 

In order to increase the data transmission capabilities of the 

display, a major modification to the character generation circuitry 

was made. Two special progrannnable read-only memories (PROMs) were 

implemented as the alternate character set feature of the 4014-1. By 

programming the PROMs and selecting the alternate character set from 

software, individual dots in dot matrix characters were designed to 

be'any shape and size, and then written using only a single character 
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write command. This proved to be much faster than an earlier method 

of drawing each dot of the dot matrix character by illuminating a 

certain sequence of minipoints on the face of the display from soft-

ware. The older method required much more complicated software and 

necessitated sending up to 100 bytes per dot for each dot in a charac.,.. 

ter. The new method required only 6 bytes per dot. 
0 

The computer system used in this study was a Digital Equipment 

Corporation (DEC) PDP 11/ 55 with a dual disk operating system and 

dual magnetic tape transports. A DEC Laboratory Peripheral System 

(LPS-11) was employed to supply the external time basE used to 

accomplish all timing delays for generating the dot matrix characters. 

In addition, an ASCII keyboard was connected to the computer system 

through the intra-l~b connection system. This keyboard served as the 

subjects' response apparatus sl,lch that all data were entered into the 

computer via the keyboard. 

The only other major piece of equipment was a combination fore-

head rest and keyboard table which was located within a curtained 

cubicle inside the experimentation room. The Tektronix display was 

also located within this cubicle. The forehead rest was used to keep 

the plane of.the subjects' eyes approximately 102 cm from the surface 

of the display. 

r 

Experimental design. The basic experimental design for this 

study is shown in Figl,lre 7. Four character fonts were used in this 

study and have been desc:dbed previously. The five character size/ 

matrix size combinations included the standard matrix sizes (5 X 7, 
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7 X 9, and 9 X 11), allowing the character size to expand as more dots 

are added to the matrix. The 5 X 7, 7 X 9, and 9 X 11 matrices were 

14.4, 18.7, and 22.9 mm high, respectively. At the 102 cm viewing 

distance, they subtended vertical angles of 48.5, 63.0, and 77.2 arc-

minutes. The remaining two levels were obtained by designing a 7 X 9 
'1 

and 9 X 11 matrix size character set which remained the same size as 

the 5 X 7 characters. The various levels of font and matrix/character 

size are shown in Figures 8 thru 27. 

A learning effect has been found to exist in this type of study, 

i.e., tachistoscopic presentation of single alphanumerics (Maddox, 

et al., 1977). To make certain that a plateau was reached before 

experimental trials were begun, each subject was given a series of 

practice trials on his/her first day of participation. From previous 

experimentation it had been shown that this response plateau occurred 

after 10-20 passes through the set of alphanumerics. A pass consists 

of all 36 characters being presented once. Therefore, subjects were 

run through the practice alphanumerics 12 complete passes. Since each 

subject saw only one font, the size for practice was completely coun-

terbalanced across subjects within each font/sex cell. 

The order of size presentations was randomized. Once the order-

ings were obtained, one male and one;' female subject was run under each 

ordering. The runs were conducted over two days to minimize fatigue, 

and the orderings were constrained so that the first size seen on the 

second day was the same as the practice size seen on the first day. 

All of these precautions served to make any significant ordering, 
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learning, or fatigue effects highly improbable. 

PY.oaedu:L'e. Subjects were seated comfortably behind the forehead 

rest in front of the Tektronix,display. The subject was then informed 

that the entire set of alphanumerics which would b!= seen on the exper-

imental trials would be displayed simultaneously and would remain 

visible until the subject was familiar with them. It was emphasized 

that any similarities or differences among the characters should be 

noted. 

The experimenter then explained the presentation and response 

entry procedure and answered any questions posed by the' subject. The 

subject was also told of the intercom link between the computer room 

and the experimental room. For the first day of trials, the subject 

was told that the first few trials were practice trials. After this, 

the experimenter retired to the computer room, initiated the program, 

and asked the subject, via the intercom, if he/she was prepared to 

begin. 

The program for Day One included a brief review of instructions 
I and a series of graphic instruction pages reviewing the method of 

presentation and response. The actual study contained one practice 

and two experimental sizes on Day One and three experimental sizes on 

Day Two. Thus, three sizes were shown on each day. The procedure 

for each size was nearly identical, as follows. 

For each size, the entire set of 36 characters was displayed on 

the CRT. This included the letters A through Zand the numerals 0 

through 9. The subject had as long as he/she desired to study this 
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character set.. :r:n practice, no subject took longer than three or four 
I 

minutes for this phase. After the familiarization phase, a shore re-

view of instructions was given if the subject was on Day One of the 

trials. 

The experimental trials always consisted of the same sequence of 

events. First, a fixation box was drawn in the middle of the screen. 

,A_ short time later, a single character was place¥ in themiddle of the 

box. Each character was constrained so that. the average time to'write. 

an entire character of any size from any font was 35 ms (± 0.5 ms). 

After the character was fully written, the program d.elayed 10 ms and 

then overl_aid the cbaract·er with .a full matrix of dots. The full 

matrix remained on the screen until the subject responded with the 

keyboard. 

After the character was overlaid, a prompt;ing message appeared in 

the lower left~hand corner of the display. Following this message, 

the subject typed in the character which he/she saw, or thought he/she 

saw, , on the preceding trial. When this response was entered, the 

screen was erased and the next trial was begun. The subject was 

forced to make a response, by guessing if necessary, on each trial. 

The experimental trials were blocked. Each block contained two 

presentations of the 36 characters in the set, .or 72 total trials per 

block. Characters were chosen randomly from two complete sets of 

alphanumerics to fill the 72 trials for each block. ·An. experimenter-

controlled rest breiik was initiated after eyery two blocks, or 144 

trials. A total of 4 bfocks (288 trials) was given for e·ach experi..;. 

( 
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mental size. The practice size was given for a total of six blocks 

(432 trials) on the first day to assure that the subjects reached a 

performance plateau. On the second day, the same size as thesubject 

was shown in practice was presented for four blocks of experimental 

trials. 

Day One and Day Two procedures were essentially the same. On 

Day Two, no extensive instruction period was required and all sizes 

were run for four blocks of trials. 

AnaZysis of the data. All character presentations and subject 

responses were stored on disk. An analysis program compared responses 

with presentations, tagged errors, tabulated statistics, and formatted 

the output for each subject. From these data sheets, confusion ma-

trices were constructed and an analysis of variance (ANOVA) was per-

formed on the numbers of errors. 

Phase II 

The overall procedural purpose of this phase of the research was 

to digitize the visual stimuli which were presented to observers in 

Phase I. The digitization of a continuous intensity distribution re-

quires some form of sampling mechanism which allows the luminance of 

the display to be measured at certain discrete locations. The usual 

method of measuring luminance is to use a photometer to convert the 

luminous flux of the displ~y into a scaled voltage. This voltage is 

proportional to the radiant flux weighted by the spectral sensitivity 

of the human visual system. 
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Apparatus. The character digitization process required both a 

photometer system and a mechanism with which to move the photometer 

sampling head over the display surface: All photometric measurements 

in this research were made with a Gamma Scientific Model 2400 Digital 

Photometer. In this particular research, the output of the photomul-

tiplier tube was fed directly through an amplifier into the laboratory 

computer system. The reasons for this are explained in the subsequent 

procedures section. 

Movement of the photometer sampling head was required in both 

horizontal and vertical directions. To accomplish this, an Aerotech 

260D X-Y stage was used to sample the required area of the display. 

The X-Y stage was co'ittrolled by the laboratory computer system through 

a special interface designed and built in the Human Factors Laboratory. 

The X-Y stage is capable of moving in increments as small as 2.54 X 

10-3 cm (.001 in.) in either axis with a maximum travel of 15.24 cm 

(6 in.). 

Procedure. The digitization of a continuous image requires some 

basic tradeoffs between resolution and size of the digital array con-

taining the image. The analysis program used in this research has a 

maximum limit of 512 X 512 points which it can analyze. It was decid-

ed to scan the visual stimuli at this density to retain the resolution 

available on the Tektronix display. It should be recalled that the 

smallest character size resulted in a vertical character height of 

more than 13 nnn. (This is the linear dimension of a 512 X 512 scan at 
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.025 mm resolution.) The largest character had a height of 22.9 mm. 

Therefore, all scans were taken at .051 nnn resolution. Physically 

this is accomplished by scanning an area 26.01 by 26.01 mm and taking 

digital samples at"every other step. Thus, all displayed characters 

were totally contained within the 512 X 512 matrix scan, which cover-

ed an area of 26.01 nnn squared on the display. 

The photometer eyepi~ce used for these scans was a circular spot 

which was 450 microns in diameter. The microscope objective was 2.5 

to 1 magnification. Since the sampling aperture was located in the 

image plane, the 450 micron spot actually sampled a 180 micron diame-

ter circle in the object (display) plane. This can be compared to the 

step size of the X-Y stage by noting that the step size was approxi-

mately 51 microns. 

Scans of every character from every font at all niatrix sizes 

would have required 720 total scans (36 characters X 4 fonts X 5i 

sizes). Each scan stores approximately 260,000 words on magnetic; 

tape. Thus, if all stimulus combinations were scanned, a total of 

four weeks (40 hours/week) and 40 magnetic tapes for data would have 

been required. Instead, it was decided that both pragmatic and exper-
' 

imental requirements could be satisfied by scanning all characters and 
I 

sizes from two of the four total fonts. The fonts chosen were the 

Huddleston and the Maximum Angle, ~~th the choices based on the errors 

recorded during Phase I in which the Huddleston font produced the 

fewest errors and the Maximum Angle font produced the most errors. In 

all, a total of 360 scans (512 X 512 points each) were made and the 
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digitized points stored on 20 magnetic tapes. 

The procedure for scanning each character was the same for all 

characters. Basically, a single character at a given matrix/character 

size from a given font was displayed in the center of the Tektronix 

display. The X-Y stage was moved so that the photometer scanning. 

head sampling aperture was located at the lower left corner of the 

area to be scanned. This required positioning the sampling head so 

that the character to be digitized was located in the center of a 

26.01 X 26.01 mm field. 

After the x~Y stage was positioned to its starting point, the 

data acquisition program was started. This program is unique in that 

it operates synchronously with the X~Y stage. This is accomplished 

by starting the stage in motion with a specific number of steps to 

travel, 1024 in this case. The X-Y stage stepper motor output is used 

as an external input to the LPS-11 Schmitt trigger. The program then 

samples and digitizes the output from the photomultiplier tube every 

second pulse of the stepper motor. Thus the program operates as 

quickly or as slowly as necessary to keep up with the X-Y stage step-

ping motor. When the required number of steps have been completed in 

one direction (Y), the X position is incremented two steps, and the 

program directs the stage to reverse direction and start again. This 

process continues until all 512 columns have been scanned. 

It was noted earlier that the photometer was not calibrated to a 

standard light source for these scans. The reason for this is that 
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the digital photometer is actually a series of amplifiers which inte-

grate the output from the photomultiplier (PM) tube. The PM tube is 

the device in which the light energy is actually converted to elec-

trical energy. Urifortunately, the integrating amplifiers introduce a 

time delay due to the capacitors used to integrate the voltage from 

the PM tube. As the samplinghe~d is moved rapidly over the surface 

of the display, the effect of the integrating capacitance is to smooth 

the edges of the intensity distributions on the display. For example, 

a sharp transition from very bright to very dark.on the display ap-

pears to be a sloping transition due to the time constant of the capa..., 

citor. Therefore, a small DC amplifier with a gain of approximately 

lObO was built in the Human Factors Laboratory. ·This amplifier was 

used to take 1the signal directly from the PM tube and feed it into 

the input of the LPS-lL The resulting voltage is, thus, in relative 

luminance values, having been corrected for the photopic visual sensi-

tivity function by the photopic filter matched to the PM tube. Be-

cause the same high voltage was applied to the PM tube for all scans, 

the PM tube output per unit display luminance is linear and constant, 

but not directly known. This is irrelevant because subsequent analy-

ses disregard the DC component of the luminance signal. 

Analysis of the d.ata. There are many calculational techniques 

available to quantify the siinilarity between functions. In essence, 

the array of ltmli:nance values associated with the dot matrix charac-

ters repre,sents a discrete two-dimensional function. If the spatial 
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~requency analysis model of the visual system has observable conse-

quences in the task used in this research, then the s.imilari ty of 

spatial frequency content between characters should correlate with 

observed behavior. To determine the spatial frequency content: of the 

displayed characters, a two-dimensional Fourier transform was perform-

ed on the luminance arrays obtained by the x...;y scans. 

The multi-dimensional Fourier transform is described in detail 

elsewhere (Bracewell, 1965). The two-dimensional trans.form decomposes 

a two-dimensional spatial intensity distribution into the correspond-

ing spatial frequency distribution in two-dimensional frequency space. 

The advantage of a direct transform is the explicit representation of 

spatial frequencies present in the original scene. The disadvanti:l-ges 
' of the transform are (1) the computational complexity of actually cal-

culating the transform and (2) the necessity of calculating some simi-

larity measure between the transforms in addition to calculating the 
I 

transforms themselves. The computational difficulty was overcome by 

utilizing a pre-existing 2-D transform program obtained from the 

University of Arizona. This program is designed for use with a 512 X 

512-point luminance array and can be used with smaller arrays down to 

32 X 32 points. The main advantage of using the University of Arizona 

program was its compatability with the present computer operating sys-

tem. The program is based upon the procedures described by Cooley and 

Tukey (1965). 

Each digitized file on magnetic tape was artalyzed with the 2-D 

Fourier transform program. The procedure for doing this analysis was 
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identical for each file (character). · The file was read from tape, 

formatted to be compatible with the fast Fourier transform (FFT) pro-

gram, and written to disk. The FFT program then performed the re-

quired transform and returned the coefficients to disk by overwriting 
I 

the locations where the data had resided. A computer program then 

calculated the magnitude of the real and imaginary parts of each coef-

ficient and added both plus and minus frequency components together 

for each frequency. The file was truncated to 64 X 64 frequencies 

so that a manageable statistical procedure could be used to correlate 

frequency spectra. This truncation did not alter the final results, 

since the modulations for frequencies above this highest spatial fre-

quency (about 45 eye/deg) value were well below observer thresholds. 

The information contained in this array of 64 X 64 two-dimension-

al coefficients differs fundamentally from the information contained 

in two one-dimensional scans. To understand this difference, it is 

necessary to look at the sources of specific sections of the two-di-

mensional coefficient array. This array is square with 64 rows of 64 

columns (coefficients) per row. The top row of coefficients contains 

information of the power contributed by the presence of vertical col-

umns of dots in the dot-matrix character. This information is analo-

gous to that contained in a one-dimensional horizontal scan across 

the character. Likewise, the left hand column of the 2-D array re pre-

sents the power contributed by the presence of horizontal rows of dots 

in the dot-matrix character. Such information is also contained in a 

one-dimensional vertical scan of the character. 
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The top row and left-most column of the 2-D array contain only 

128 of the 4096 coefficients. The remainder of the coefficients con-

tain information unique to the 2-D scan and resultant transform. All 
~ other coefficients in the 2-D array represent the power in the spatial 

frequency domain contributed by the presence of particular vertical 

and horizontal spatial components. Such information is simply not 

available from a one-dime~sional scan. Probably the most instructive 

analog is that of a one- vs. two-way analysis of variance. The inter-

·action effect which can be extracted from the two-way analysis is not 

available in either on~-way analysis. In much the same manner, the 

interaction terms present in a two-dimensional transform are not pre-

sent in the one-dimensional transform. (Such interaction terms are, 

of course, critical to the visual system (Kelly, 1976), as indicated 

previously.) 

After truncation, the files were eventually written out to anoth-~ 

er magnetic tape for transportation to the IBM 370. Th~s tape con-

tained the analyzed and truncated coefficients for all 360 digitized 

characters. This amounted to all characters in all sizes for both 

Huddleston and Maximum Angle fonts. 

Similarity of spatial frequency spectra among all 36 characters 

within a given size and font was calculated using a simple product-

moment correlation between corresponding Fourier coefficients. Thus, 

each such correlation was of the 4096 coefficients for each character 

with the corresponding 4096 coefficients for all other characters, for 

a total of 630 correlations/size, font combination, or 6300 correla-
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tions in all. The correlations were calculated with the Statistical 

Analysis System (SAS) implemented on the University IBM 370 computer 

system (Barr, Goodnight, Sall, and Helwig, 1976). 

In addition to the spatial frequency spectra similarity between 

characters, another type of similarity measure was calculated. This 

measure, known as the Phi coefficient, is a well known nonparametric 

technique which determines the degree of correlation between two 
.. , 

dichotomous variables (Ghise;lli, 1964). 

The basis for using the Phi coefficient is the observation that 

only a limited number of dots is available for character formation in 

any given matrix size. For instance, in a 5 X 7 matrix only 35 possi-

ble locations exist in which to place dots. If the presence of a dot 

is denoted by a "l" and the absence of a dot by a "O", then each 
\ 

character can be represented by a two-dimensional array of binary val-

ues. The functional form of the Phi coefficient is given by 

The 

Phi 

where p = a 

Pb = 
p = c 

Qa = 

Qb = 

p .... pp = c a b 
!-,:; 

(Pa QaPb Qb) 2 

proportion of 

proportion of 

proportion of 

1.0 - p a' and 

1.0 - Pb. 

similarity between any two 

dots "on" in symbol ?- ' 
dots "on" in symbol b, 

dots "on" in common, 

characters can be evaluated by 

(2) 

compu-

ting the Phi correlation coefficient between the two binary arrays 
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corresponding to the dot distributions in the characters. A total of 

6300 Phi coefficients was thus calculated. 

Therefore, after these calculations, two measures of similarity 

between every possible pair of characters within a given font and 

matrix/character size existed. These were (1) the product-moment 

correlation coefficient between the 2-D Fourier coefficients and (2) 

the nonparametric Phi coefficient. The final step in the data analy-
' 

sis was to relate these objective measures of similarity to the per-

formance data gathered in Phase I. From the confusion matrices gen-

erated in Phase I, the confusions between each pair of characters was 

calcl.,llated and punched onto IBM cards. Also on each card was the 

value for each of the two similarity measures described above. For a 

given font and character/matrix size, these values were intercorre-

lated using the SAS calculational package. Both the Pearson product-

moment and Spearman rank-order coefficients were calculated. The re-

sults of all data analyses are presented in the next section. 



RESULTS 

PJzase I 

NUJ71ber of\errors. The mean numbers of identification errors per 

subject per experimental condition were evaluated by an analysis of 

variance, which is summarized in Table 1. Individual comparisons were 

made by the Newman-Keuls technique for all meaningful significant ef-

fects. From Table 1, it can be seen that the.Font and Character/Matrix 

Size main effects and their interaction were all statistically signifi-

cant (p < .05). 

The Font main effect is illustrated in Figure 28, which indicates 

that there is no overall significant difference between the Huddleston 

and Lincoln/Mitre fonts (p > .OS), and that each of these was superior 

to .both the Maximum Angle and Maximum Dot fonts (p < .01). Further, 

the Maximum Dot font was found to be superior to the Maximum Angle 

font (p < .05). 

The Character/Matrix Size main effect is illustrated in Figure 

29, which shows several interesting results. First, the 5 X 7 matrix 

size produced more errors than any of the other sizes (p < .01). The 

7 X 9 matrix size yielded the next largest error total, and was in 

turn inferior to all three remaining matrix/character sizes (p < .01). 

The next poorest size was the 7 X 9 matrix size reduced in char-

acter size to be equal to the 5 X 7; it, in turn, was inferior to both 

the 9 X 11 and tqe reduced 9 X 11 size. The next poorest was the 

68 
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Table 1. Sunnnary of Analysis of Variance for Correct Responses 

Sourae df MS F p 

Font (F) 3 5473.58 2.97 0.046 

Character/Matrix 
Size (C) 4 3087.61 21.50 0.0001 

Sex (S) 1 1866.60 1.01 0.32 

F X C 12 308.26 2.15 0.018 

FX s 3 577 .10 0.31 0.82 

c x s 4 116.37 0.81 0.52 

F X C X S 12 43.98 0.31 0.99 

Subjects within 
Font, Sex (Ss/F, S) 32 1843.06 

C X Ss/F,S 128 143.60 
-

Total 199 
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9 X 11 size, which was inferior to the reduced 9 X 11 (p < • 01). In 

summary, the larger the matrix size within the character size.of the 

5 X 7 matrix, the fewer the recognition errors. 

The Font X Character/Matrix Size interaction is shown in Figure 

30. For the 5 X 7 size, the Huddleston font is superior to the other 

three (p < .01), while the Lincoln/Mitre and Maximum Dot fonts are 

essentially equivalent (p > .05). In this matrix size, the Maximum 

Angle font produced more errors than any of the other three fonts 

(p < • 01). 

For the 7 X 9 font, the Lincoln/Mitre font was superior to the 

other three (p < .05 for Huddleston; p < .01 for other comparisons). 

All comparisons among the Huddleston, Maximum Angle, and Maximum Dot 

' error rates are statistically significant (p < • 01). 

Similarly, all comparisons among fonts for the 9 X 11 matrix 

size are statistically significant (Huddleston vs. Lincoln/Mitre, 

p < .05; Maximum Angle vs. Maximum Dot, p < .05; all remaining c9m-

parisons, p < .01). For this matrix size, the Lincoln/Mitre is best 

and the Huddleston next best. 

The Lincoln/Mitre and Huddleston fonts are essentially equivalent 

(p > • 05) for the reduced 7 X 9 size, while all other comparisons are 

significant (p < .01), with the Maximum Angle the poorest. 

Similarly, for the reduced 9 X 11 size, the Lincoln/Mitre and 

Huddleston fonts are nondifferent (p > . 05), with the Maximum Angle 

font again the poorest (p < .01) and the Maximum Dot font next poor 

(p < • 01). 
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These interaction effects are not all possible such effects. As 
! 

noted previously, character size and matri~ size were not completely 

crossed. Therefore, these results must be interpreted within the 

scope of the conditions which were included in the design. As pointed 

out earlier, it is doubtful that the treatment levels which were not 

included would be of any interest to the display designer. 

Confusion matrices. The confusion matrices constructed from the 

Phase I performance data are illustrated in Figures 31-50. Much can 

be learned from such matrices about the nature of the confusions among 

certain characters within a given font. For example, in the Maximum 

Dot font, major confusions were between 5 and S, 2 and 7, and Y and V. 

The Y-V confusion also existed with considerable frequency for the 

Huddleston and Lincoln/Mitre fonts, while 4-1 confusions were frequent 

for the Huddleston and Z-2 for the Lincoln/Mitre. Of interest is the 

fact that there were no predominant confusions for the Maximum Angle 

font; rather, the errors were distributed thr_oughout the confusion 

matrices. 

Phase II 

The correlation between objective similarity a~d performance was 

calculated in several steps. First, the average values for both simi-

larity measures for every matrix size and font combination analyzed is 

shown in Table 2. As indicated in the Phase II Procedure section, 

each of these mean values is based upon 630 correlations, or all pos-

sible intercorrelations among the 36 characters per font/size 
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Table 2. Mean Values of Similarity Measures 

Font/Size 

Maximum Angle 

5 x 7 

7 x 9 

9 x 11 

7 x 9 (=5X7) 

9 x 11 (=5X7) 

Huddleston 

5 x 7 

7 x 9 

9 x 11 

7 x 9 (=5X7) 

9 x 11 (=5X7) 

2-D PY'oduct-Moment 
correlation 

.814 

. 775 

.751 

.764 

.682 

.820 

.812 

.801 

.807 

.751 

Phi Coefficient 

.060 

.077 

.106 

.077 

.106 

.089 

.144 

.184 

.144 

.184 
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combination. 

Two general trends can be seen in these data. As the number of 

dots per character increases, the correlation between the 2-D Fourier 

coefficients generally decreases. These correlations, of course, in-

dicate the extent to which luminous power is contained iii the same 

spatial frequencies for all 36 characters in the font/size combination. 

This is to be expected because the characters can be made more and 

more distinct as more dots become available from which to construct 

each character. Next, note that the average Phi coefficients remain 

very close to zero no matter what matrix size is used. Additionally, 
I 

the Phi coefficients for the last two matrix sizes in each font are 

equal to their counterparts higher in the list. For example, in either 

font the Phi coefficient for the 7 X 9 matrix size is equal to the 

coefficient for the compressed 7 X 9 (=5X7) matrix size. This is 

necessarily so because the compressed size is still a 7 X 9 matrix 

with the dot size and spacing altered. All dot locations remain un-

changed between the two sizes and, therefore, the Phi coefficient is 

also the same. 

Secondly, intercorrelations between the number of confusions 

among all pairs of characters and the 2-D Fourier coefficient corre-

lations for those same pairs of characters were calculated, as were 

the intercorrelations between the confusions and Phi coefficients. 

These calculations are based upon the entire data set, i.e., the per-

formance and similarity measures were correlated for all 630 character 

pairs for each font/size combination. The results are shown in Table 3. 
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Table 3. Correlations Between Variables for Full Data Set 

Font/Size Confusions/2-D 
Pear' son Spearman 

Maximum Angle 

5 x 7 

7 x 9 

9 x 11 

7 x 9 (=51{7) 

9 x 11 (=5X7) 

Huddleston 

5 x 7 

7 x 9 

9 x 11 

7 x 

9 x 
9 (=5X7) 

11 (=5X7) 

* p < .05 
** p < .005 
*** p < .005 

*** * 0.173 0.097 
* 0.096 0.040 

* 0.078 0.003 

0.048 0.012 

0.029 -0.038 

*** *** 0.142 0.145 

* 0.078 0.052 

0.107 0.098 

0.111 0.132 

0.056 0.043 

Confusions/Phi 
Pearson Spearman 

*** *** 0.328 0.197 

*** *** 0.247 0.149 

*** 0.192 0.064 

*** * 0.176 0.086 

*** 0.164 0.062 

. *** *** 0.239 0.213 

*** *** . 0.184 0.227 

0.187 0.175 

0.151 0.161 

0.165 0.124 
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Both Pearson and Spearman coefficients are included in this table 

along with the significance levels attained. While most of these 

correlations are fairly low, a general trend should be noted for both 

the Pearson and Spearman correlations between confusions and Phi val-

ues. As the characters become more and more distinct (i.e., as the 

matrix size increases), the correlation between objective similarity 

and performance decreases. This effect is evident regardless of the 

character size. That is, whether the character is restrained to be 

the same size or allowed to grow as more dots are available, the cor-

relations decrease. The high significance levels are the result of 

the large number of data points (N = 630) contained in each full data 

set. 

An examination of the confusion matrices will reveal that only 

certain character pairs were confused very'much. By far, most entries 

in the matrices are very low or zero. Attempts to correlate such 

performance with objective similarity measures could mask any real 

relationship. Therefore, three more correlations were calculated with 

selected data points. 

First, the data were sorted so that only those character pairs 

which subjects confused eight or more times were retained. This num.-

ber is arbitrary and represents 10 percent of the total number of 

confusions possible for any given character pair. These correlations 

are shown in Table 4. Note that while some of these correlations ap-

pear to be quite high, none are, in fact, significantly different from 

zero (p > • 05) . 
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' Table 4. Correlations Between Variables for Confusions ..:'.:_ 8 

Font/Size Confusions/2-D. Confusions/Phi # CeUs 
PeaT'Son Spearman PeaT'son Spearman IneZuded 

Maximum Angle 

5 x 7 0.403 0.282 0.271 0.278 18 

7 x 9 0.299 0.111 0.067 -0.068 10 

9 x 11 0.078 0~003 0.192 0.064 11 

7 x 9 (=5X7) -0.027 -0.023 -0 .108. -0~060 12 

9 x 11 (=5X7) 0.443 0.018 0.427 0.036 7 

Huddleston 

5 x 7 0.033 0.208 -0.288 0.117 10 

7 x 9 -0. 712 -0.738 -0.814 -0.527 5 

9 x 11 -0.547 -0.500 -0.814 -0.500 3 

7 x 9 (=5X7) -0.740 -0.718 -0.782 -0.564 5 

9 x 11 (=5X7) 0.219 0.500 0.097 0.500 3 

All correlations p > • 05 
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The next data sort was done to retain only those pairs of charac-

ters with very high correlations between 2-D Fourier coefficients 

(r > • 90). This number is also arbitrary and is intended to be an 

indication of very high similarity in the 2-D spatial frequency do-

main. The rationale behind this sort is that high similarity 2-D 

Fourier coefficients should lead, a priori, to large numbers of con-

fusions. Thus, this is another means of selecting a data subset which 

has a large number of possible confusions and therefore permits great-

er opportunity to uncover the relationship between confusions and spa-

tial frequency information. Thes'e correlations are listed in Table 5. 

Note that the correlations between Phi coefficients and performance 

are generally greater and more often significant than are the correla-

tions between 2-D coefficients and performance. 

The third and final data sort retained only those pairs of char-

, acters with high positive Phi coefficients (Phi 2_ .60). This number 

is also arbitrary and represents a relatively high value of obtained 

Phi coefficients. The rationale is the same as that used in the pre-

vious data sort. These correlations are listed in Table 6. Note that 

the product-moment correlations between Phi coefficients and perform-

ance are generally high and statistically significant. There appears 

to be no trend in the magnitude of correlations either between fonts 

or among sizes within a given font. 
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Table 5. Correlat,ions :Setween Variables for 2-D R ~ • 90 

Font/Size Confusions/2-D 
Pearson Speaman 

Maximum Angle 

5 x 7 0.273 

7 x 9 0.276 

9 x 11 0.278 

7 x 9 ('=5X7) 0.086 

9 X 11 {=5X7) -0.554 

Huddleston 

5 x 7 0.092 

7 x 9 0.171 

9 x 11 0.191 

7 x 9 (=5X7) 0.275 

9 x 11 (=5X7) -0.070 

* p < .05 
** p < .005 
*** p < . 0005 

* ** 0.357 

* ** 0.364 

* 0.313 

0.212 

-0.800 

0.222 

0.105 

* 0.224 

* 0.170 

-0.042 

Confusions/Phi # CeUs 
Pearson Spearman Included 

*** *** 0.488 0.557 70 

*** *** 0.446 0.490 61 

* 0.391 0.283 41 

* * 0.451 0.470 29 

0.545 0.800 4 

*** *** 0.520 0.603 55 

*** *** 0.439 0.463 84 

** * 0.361 0.245 77 

*** *** 0.458 0.468 66 

** 0.443 0.665 18 
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Table 6. Correlations Between Variables for Phi > .60 

Font/Size Confusions/2-D 
Pearson Spearman 

Maximum Angle 

5 x 7 -0.154 

7 x 9 0.122 

9 x 11 0.080 

7 x 9 (=5X7) 0.007 

9 x 11 (=5X7) 0.129 

Huddleston 

5 x 7 0.232 

7 x 9 0.224 

9 x 11 0.296 

7 x 9 (=5X7) 0.273 

9 x 11 (=5X7) 0.219 

* p < .05 
** p < .005 
*** p < .0005 

-0.153 

0.202 

0.034 

-.0.129 

-0.017 

0.212 

0.076 

0.237 

0.156 

0.302 

Confusions/Phi # CeZZs 
Pearson Speanrtan 1nc:Zuded · 

*** * 0.795 0.541 24 

* * 0 .. 423 0.389 26 

** * 0.559 0.394 25 
** * 0.629 0.387 26 

** 0.604 0.367 25 

0.308 0.184· 21 

** 0.655 0.295 18 

** 0.557 0.262 26 

** 0.671 0.431 18 

** * 0.606 o.456 26 



DISCUSSION 
' 

Phase I 

Number of errors. It would certainly be gratifying to be able 

to point to one particular font as the "best" font regardless of char-

acter/matrix size. It is evident from Figure 30 that the Lincoln/Mitre 

font is slightly superior to the Huddleston font for the 7 X 9 and 

9 X 11 character sizes. The two fonts are roughly equal for the re-

duced 7 X 9 and 9 X 11 sizes. However, for the 5 X 7 dot matrix, the 

Huddleston is markedly superior to all other fonts. 

An earlier study by Maddox, et al. {1977) showed the Maximum Dot 

font to be superior to the Lincoln/Mitre font at the 5 X 7 matrix size. 

This early study, however, did not control for the time required to 

write each character vis-a-vis the number of dots in the character. 

That is, characters writt.en in the Maximum Dot font have, on the aver-

age,c more dots than the same characters written in the Lincoln/Mitre 

font. In the earlier study, the time taken to write each character 

was proportional to the number of dots in the character. Thus, more 

time was required to write characters from the Maximum Dot font than 

those from the Lincoln/Mitre. This extra time meant more viewing time 

for the subjects and a possible confound in the data. 

In the present study, delays were built in so that the average 

time required to write any character from any font was constant. With 

this refinement, the Maximum Dot and Lincoln/Mitre fonts are found to 

103 
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be essentially the same as far as performance at the 5 X 7 matrix size 

is concerned. While the superiority of the Maximum Dot font is no 

longer found, neither is the claimed superiority of the Lincoln/Mitre 

font manifested. The loci of the confusions in the Lincoln/Mitre font 

are nearly identical in both studies. 

What of the character/matrix size? It is evident from Figure 29 '· 

that as the number of dots available for character construction in-

creases, the number of identification errors decreases when overall 

character size is' held to the size occupied by the 5 X 7 matrix. This 

is a wholly expected result. Previous experimentation (Snyder and 

Maddox, 1978) has suggested that·. performance improvements can be ex-

pected as dot matrix characters more and more closely approximate 

stroke characters. This concept has great face validity in that the 
\ 

'characters can be made more and more distinct as more dot locations 

are made available. 

A result which was not entirely anticipated is the performance 

improvement which resulted from the addition of points within a com-

pressed character size. Upon reflection, however, this effect is pre-

cisely the same as that described above. That is, the compressed 

character size contributes even more to the similarity between dot 

matrix and stroke characters than does the addition of dots at the 

same density. A look at the series of figures showing the different 

character/matrix sizes for any given font provides a strong subjective 

impression of the stroke.effect with the high density character/matrix 

size. 
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Confusion matriaes. .While the average numbers of errors can 

give an overall view of the confusions inhere.nt in certain fonts, the 

matrices generated in this study can pinpoint the loci of these con-

fusions. Although these matrices lack the conciseness of a statisti-

cal table and are, in fact, rather tedious to st'u.d¥, they provide a 

great deal of information. Generally, confusion matrices are used to 
v 

learn which characters in a given font should be modified to reduce 

the number of confusions ;i.n that font. Another use of the matrices 

might be to design a composite font for certain applications. A com-

posite font is one made up of characters from several different fonts. 

If the least confused characters from each font are used in the com-

posite, then, presumably, the composite font will have fewer overall 

confusions than the fonts from which the characters are drawn. 

It must be noted, however, that these confusion matr;i.ces apply 

only to the specific task of ta~histoscopic identification of.single 

alphanumerics. The relation between performance on this task and per-

formance on other common tasks (e.g.~, reading) is not 'known. This 

task was used in the present research for s:i,mplic.~ty.and ease of' com-

parison with results from past studies. Such a task does not provide 

the subject with the benefit of context which might be. available in 

some other tasks. Despite these shortcomings, .tachistoscopic identi~ 

fication is a traditional method of evaluating the goodness of font · 

designs. In any case, composite font designs generated from. such re-

search should, in turn, be evaluated to determine what, if a'ny, new 

confusions are introduced by the combination of several font styles. 
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Pha.s~ II 

In the second phase of this research an attempt was made to re-

late observer performance on a tachistoscopic recognition task with 

(1) the 2-D Fourier'spatial frequency spectra of the characters, and 

(2) a nonparametrid similarity measure, the Phi coefficient. On a 

relative basis, the 2-D Fourier correlation between characters was 

not, in general, a very good predictor of subject pe,rformance. By 
r 

the same token, the digital Phi coefficient provided moderate correla-

tions with confusions. It seems intuitive that the 2-D Fourier spec-

trum of a character would be a fairly good measure of subjective simi-

larity between it and o''ther characters~ Why, then, did this method 

not predict any better than it did? 

First, it should be remembered that the stimuli whiehwere used 
' 

in this study were dot matrix characters. The dots that make up such 

characters ate arranged in preset locations wit~inthe matrix lattice. 

Thus, the 2-D Fourier spectrum of each character contains substantial 

power in components which correspond to the basic matrix size. For 

example, in a 5 X, 7 dot matrix character, the frequency spectrum shows 

considerable power corresponding to 5 cycles horizontally and 7 cycles 

vertically. This happens rega:t'dZess of the d~tails of ttie character 

within these limits. The similarity this produces among characters 

can be seen indirectly in the average 2-D correlations listed in Table 

2. These correlations are much higher than one would expect to see on 

the basis of character similarity alone. They reflect the similarity 

of the basic matrix size and undoubtedly overshadow any more subtle 
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character differences. 

In attempting to correlate performance with either of the two 

similarity measures, we are basically looking for some monotonic re-

lationship which would allow the number of confusions to be related 
\ 

to the magnitude of the similarity. This assumes that confusion is 

a more or less continuous phenomena~. However, previous studies have 

led researchers to postulate a threshold type phenomenon to be aper-

ating for this type of task. Models proposed by Townsend (1971) to 

account for performance in tachistoscopic recognition tasks assume a 

threshold for confusion. The only real differences among these models 

relate to what happens when the. subject is unsure as to. which charac-

ter was seen. Common to the models is a mechanism whereby the subject 

is positive which character was seen or is thrown into some state of 

uncertainty as the the character shown. The point at which the sub-

ject is no longer positive can be considered to be a threshold of 

confusion. 

In terms of the present research, a threshold phenomenon would 

manifest itself by subjects making very few confusions until fhe simi-

larity between characters reached some threshold value. After this 

value was attained, the character would be confused very often with 
) 

similar characters. This effect has been noted in similar studies. 

Dahljelm (1976) attempted to design a low confusion font for stroke 

characters on the basis of a truncated 2-D spatial frequency spectra 

comparison. In taking data with which to construct confusion matrices, 

he found that only 2-5 character pairs per font had 10 or more errors, 
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even though the total errors per font ranged from approximately 250 

to over 400. This is consistent with the present study in which a 

total of 630 character pairs were used in the analysis of each font-

size combination. A total of80 confusions could have occured for 

any pair. Thus, 8 or more confusions represent 10 percent of the 

possible number of errors. The Maximum Dot font .exhibited a low of 

7 pairs (9 X 11 reduced size) and a high of 18 pairs (5 X 7 size) of 

characters which were confused more than 10 percent of the time. The 

Huddleston font had a low of 1 pairs (9 X 11 reduced size) and a high 

of 10 pairs (5 X 7 size). 

If a threshold type phenomenon is actually occurring for the 

tachistoscopic recognition task, then linear correlation could be mis-

leading. In effect, the similarity·between characters could increase 

with no effect on confusion. Once the similarity reached a certain 

(threshold) value, confusions would proliferate but, further increases 

would again have no effect on additional confusion. The increases in 

correlation coefficients with selective data sorting are evidence of 

this type of phenomena. Generally, it can be said that if the simi-

larity measure between two characters reached a certain value, then 

those characters are likely to Be confused. If the value is below a 

certain value, then those characters are not likely to be confused. 

Both the 2-D correlations and the Phi coefficients show evidence 

of the thresholding phenomenon. However, the Phi coefficient is 

unaffected by the basic matrix size. Unlike the 2-D spatial frequency 

spectrum, the Phi coefficient does not attribute similarity to two 
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characters simply because they both happen.to .be 7 X 9 dot matrix 

characters. This allows more subtle character differences to beman,... 

ifested in the Phi coefficient while they remain hidden in the z,....D 

spectrum correlations. 

Something must be said for cases of character pairs which are 

confused but are not objectively similar as well as pairs which exhi-

bit high objective similarity but are rarely confused. Both cases are 

highly visible in the data and tehd to depress correlations (not to 

mention researchers). In attempting to account for such apparently 

paradoxical, results, the task must be kept in mind. Subjects are pre-

sented with single characters for very short periods of time and 

forced to name the character which was shown. This is an alien task 

to most subjects in that they have probably not performed it before. 
' 

However, the kernel of the task is very familiar to subjects and has 

been practiced for many years. 

For example, very few subjects, when presented with the letter 

"O" would say that they saw the letter "Q". Even though the 2-D spec-

tra of the two characters are highly correlated and the Phi coeffi-

cient is quite high, the two charact.ers may be rarely confused. Al-

though this appears to be inconsistent, it should be noted that sub-

jects have been practicing the discrimination between "O" and "Q" 

since they learned the English alphabet. On the other ha11d, subjects 

will sometimes confuse characters which have very low values of objec-

tive similarity. Particularly in dot matrix presentations, which are 

generally unfamiliar to subjects, certain pair discriminations might 
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be required much more frequently than in normal activities. In an 

experimental setting, all discriminations are required to be made the 

same number of times. Thus, subjects can be expected to make apparent-

ly anomalous confusions as a result of the task and experimental de-

sign, not only as a result of physical similarities. 

Any method of measuring intercharacter similarity must eventually 

be evaluated in relation to the other methods available. Methods for 

measuring stroke character similarity have been reported for many 

years. These methods range from feature lists or critical features 

(Geyer and DeWald, 1973; Holbrook, 1975; Townsend, 1971) to character-

istics of th~ spatial frequency spectra of alphanumerics (Dahljelm, 

1976; Kabler, 1975). 

Examination of these techniques reveals that nearly all of them 

are tedious, time consuming, and calculationally complex. In addition, 
I 

the feature list methods require the characters to be systematically 

analyzed for the presence or absence of certain features. This is 

done on the assumption that subjective confusion is the result of 

overloaded or aliased pattern recognizers in the visual system. 

Fourier techniques are more complex mathematically, but are predicated 

on the existence of some spatial frequency.analysis mechanism within 

the visual system. 

The Phi coefficient assumes nothing about the visual system di-

rectly. It is simply a measure of the proportion of dots that two 

dot matrix characters have in common. It should be obvious that the 

more dots two characters have in common, the more highly correlated 
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their 2-D frequency spectra will be. This is indeed the case. The 

Phi coefficient and the 2-D coefficient correlations are very highly 

correlated with each other. The Phi coefficient has the advantage of 

not being artificially elevated by the basic dot lattice of each char-
\ 

acter. This advantage is manifested in the rather strong relationship 

between the Phi coefficient and subject performance. 



SUMMARY AND CONCLUSIONS 
' 

Font Selection 

Of the four dot matrix fonts used in this research, two, Lincoln/ 

Mitre and Huddleston, produced consistently better recognition and 

identification performance than either the Maximum Dot or Maximum 

Angle fonts. ·Except at the 5 X 7 matrix size, the choice of either 

Lincoln/Mitre or Huddleston is more or less a matter of preference. 

At the 5 X 7 matrix size, the Huddleston font is recommended over all 

others tested. 

The possibility of selecting characters from each font to be 

used in a composite font is not to be overlooked. However, caution 

must be exercised so that new confusions are not introduced in the 

process. Any composite font should be tested before widespread use is 

initiated. A test similar to the experimental task used in this re-

search is reconnnended, although a more practical task (e.g., reading) 

might certainly be.desirable. 

Interahct:r'acter Similarity 

Two intercharacter similarity measures were related to perform-

ance in the present research. The spatial frequency spectra corre-

lations required the characters to be digitized, Fourier analyzed, and 

correlated. The time consuming nature of the digitization and the 

complex and computer-intensive analyses would seem not to be justified 

by the strength of the relationship to performance. What began as a 

112 
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simple test of a perceptual model turned into a test.of mathematical 

techniques. Whether or not the human v:i.sual system functions as a 

spatial frequency analyzer remains a disputed question. At least for 

this particular task and stimulus type, the methods of 2-D Fourier 

analysis introduce more questions than they resolve. 

One quite useful tool to emerge from this re.search is.the Phi 

coefficient. This nonparametric correlation ~oefficient has been 

shown to be a very good rough index of confusion among dot matrix 

characters. It has much to recommend it: the Phi coefficient is math-

ematically simple, requires minimal character analysis, and has high 

face validity. Such a measure makes an excellent "rule.:..of-thumb" de-

sign tool for intercharacter confusion prediction. 

General 

This r~search has answered some of the more pressing questions 

pertaining to dot matrix symbology. In the performance measurement 

phase of the study, four fonts and five matrix/character sizes were 

combined factorially. This is the most comprehensive study of its 

type ever performed for dot matrix characters .. The results relate 

observer performance to font and c.haracter /matrix size in a logical 

and empirical manner. 

The methodology.developed for. the two-dimensional photometric 

scanning and subsequent analysis extends far beyond the immediate re-

search problem. These techniques will find use in image processing 

applications where the intensity distributions are much more complex 
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than the simple dot matrix patterns encountered here. 

There are certainly many questions yet to be resolved in dot ma-

trix display design. Among these research areas are the effects of 

upper and lower case dot matrix characters on observer performance 

and the relationship of tachistoscopic character recognition to other 

perceptual tasks. 



APPLICATIONS 

Although this research was not intended to b~ primarily applica-

tions oriented, several of the results and much of the methodology can 

be put to practi~al use. As design tools, <the results of the tachis-

toscopic font.studies are of immediate use. Considering the paucity 

of hard data with which to design dot"."'rnatrix character sets, the font-

size interaction results as well as the confusion matrices generated 

for each font and size should be very useful. 

As a more abstract design aid, the digital Phi coefficient will 

provide at least a coarse selector of candidate alphanumerics for 

minimum confusion. This coefficient is easy to compute, has high 

face validity, is fairly simple to understand~ and correlates fairly 

well with performance. 
/ 

In addition to the results of this research, the methodology de-

veloped during the course of the research should also find wides1preaq 

applicability. Specifically, the hardware and software needed for 

repeatable and accurate two-dimensional scans of intensity distribu-

tions have the potential for more general use. Such two-dimensional 

digitizations are required in fields as disparate as x~ray crystallog-

raphy and aerial vegetation surveys. The use of such techniques in 

display evaluation should become relatively commonplace. 

Finally, the two-dimensional transform algorithm used in this 

research is a versatile tool which should find expanded use. This 
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routine, originally from the University of Arizona, allows small com-

puter users to decompose very large arrays (up to 512X 512) into.the 

two-dimensional frequency domain. Until recently this was possible 

only with large scale computer systems or array processors. 
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TWO-DIMENSIONAL SPATIAL FREQUENCY CONTENT AND 
CONFUSIONS AMONG DOT MATRIX CHARACTERS 

by 

Michael Edward Maddox 

(ABSTRACT) 

A two-phase study was co~ducted which related the confusions 
I 

among dot matrix characters to the two-dimensional spatial frequency 

similarity of these characters. 

During the first phase of the study, subjects were shown single 

alphanumeric characters from four different dot matrix fonts. In ad-

dition tb the font variable, the size of the character was varied. 

All common matrix sizes, 5 X 7, 7 X 9, and 9 X 11, were used. The 

design of the study allowed the effects of matrix size (number of dots) 

and character size (angular subtense) to be separated in the analysis. 

Data from this phase of the research were analyzed in terms of both 

correctness and character confusion frequencies. The ANOVA of the 

number of correct character recognitions provide~ interesting interac-

tion effects among font and matrix/character size. These results are 

discussed in terms of display design considerations. 

The second phase of the study consisted of digitizing and analyz-

ing all characters from two of the fonts used in the first phase. The 

fonts chosen represent the most and least confusable of the four, 



based on the performance data obtained. These characters were scanned 

photometrically using a computer-controlled X-Y stage. The resultant 

digitized arrays were subjected to a 512 X 512 point fast Fourier 

transform (FFT). The Fourier coefficients were correlated for all 

possible character pairs within each font-matrix/character size cell. 

These correlations provided an objective similarity measure among 

characters based upon their 2-D spatial frequency spectra. 

In addition to the spatial frequency similarity measure, a simple 

digital Phi coefficient was calculated for each character pair. This 

coefficient is simply a nonparametric correlation coefficient between 

two digital arrays. 

The final analysis performed in this study was the correlation 

of observed performance (confusions) with objective similarity meas-

ures (2-D spectra and Phi coefficients). A strong relationship be-

tween objective and subjective confusability would be a very useful 

design aid for display manufacturers.. The obtained correlational 

relationships are discussed in terms of their utility for design and 

their implications for visual system models based on spatial frequency 

analysis. 
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