
Identification and Analysis of Illegal States in the Apoptotic Discrete

Transition System Model using ATPG and SAT-based Techniques

Anupam Shrivastava

Thesis submitted to the faculty of the

 Virginia Polytechnic Institute and State University

 in partial fulfillment of the requirements for the degree of

Master of Science
In

Bradley Department of Electrical and Computer Engineering

Dr. Michael S. Hsiao, Chair

Dr. Chao Huang

Dr. Leyla Nazhandali

September 25, 2008

Blacksburg, Virginia

Keywords: Apoptosis, SAT, Bounded Model Checking, ATPG, Image Computation

Copyright © 2008, Anupam Shrivastava

Identification and Analysis of Illegal States in the Apoptotic Discrete

Transition System Model using ATPG and SAT-based Techniques

Anupam Shrivastava

ABSTRACT

 Programmed Cell Death, or Apoptosis, plays a critical role in human embryonic

development and in adult tissue homeostasis. Recent research efforts in Bioinformatics and

Computational Biology focus on gaining deep insight into the Apoptosis process. This allows

researchers to clearly study the relation between the dysregulation of apoptosis and the

development of cancer. Research in this highly interdisciplinary field of bioinformatics has

become much more quantitative, using tools from computational sciences to understand the

behavior of Biological systems.

Previously, an abstracted model has been developed to study the Apoptosis process

as a Finite State Discrete Transition Model. This model facilitates the reutilization of the

digital design verification and testing techniques developed in the Electronic Design

Automation domain. These verification and testing techniques for hardware have become

robust over the past few decades. Usually simulation is the cornerstone of the Design

Verification industry and bulk of states are covered by simulation. Formal verification

techniques are then used to analyze the remaining corner case states. Techniques like

Genetic Algorithm guided Logic Simulation (GALS) and SAT-based Induction have already

been applied to the Apoptosis Discrete Transition Model. However, the Apoptosis model

presents some unique problems. The simulation techniques have shown to be unable to

 iii

cover most of the states of the Apoptosis model. When SAT-based Induction is applied to

the Apoptosis model, in particular to find illegal states, very few illegal states are identified. It

particularly suffers from the fact that the Apoptosis Model is rather complex and the

formulation for testing and verification is hard to tackle at larger bounds greater than 20 or

so. Consequently, the state space of the Apoptosis model largely lies in the unknown region,

meaning that we are unable to either reach those states or prove that they are illegal.

Unless we know whether these states are reachable or illegal, it is not feasible to infer

information about the model such as what protein concentrations can be reached under

what kind of input stimuli. Questions such as whether certain protein concentrations can be

reached or not in this model can only be answered if we have a clear picture of the

reachability of state space.

In this thesis, we propose techniques based on ATPG and SAT based image

computation of the Apoptosis finite transition model. Our method leverages the results

obtained in previous research work. It uses the reachable states obtained from the

simulation traces of the previous work as initial states for our technique. This enables us to

identify more illegal states in less number of iterations; in other words, we are able to reach

the fixed point in image computation faster. Our experimental analysis illustrates that the

proposed techniques could prove most of the former unknown states as illegal states. We

are able to extend our analysis to obtain clearer picture of the interaction of any two proteins

in the system considered together.

To my family

 iv

Acknowledgements

I want to express my deepest gratitude to Professor Michael Hsiao for giving me the

opportunity to work with him. His guidance and encouragement at every step of my

graduate student life has been instrumental in the accomplishment of this work.

Without his advices and persistent help, this work would not have been possible. I

also want to thanks Professor Chao Huang and Professor Leyla Nazhandali for

serving in my MS committee.

I want to thank my fellow graduate students and friends Mainak for providing some

useful preliminary data which was used in this work and Ankur for discussing some

important aspects of good coding practices. I want to thank all the Proactive

members for being there with words of encouragement and suggestions especially

Karthik, Shrirang and Mahesh. I am also thankful to all my room-mates and friends

for there support and help during my stay in Blacksburg.

Last but not the least, I owe my deepest appreciation to my whole family for their

constant support and encouragement throughout my life and academic career.

Anupam Shrivastava

Virginia Polytechnic Institute and State University

September 2008

 v

CONTENTS

ABSTRACT ... II

ACKNOWLEDGEMENTS ...V

CONTENTS.. VI

LIST OF FIGURES...VIII

LIST OF TABLES..X

CHAPTER 1 INTRODUCTION.. 1

1.1 FINITE STATE TRANSITION SYSTEM MODELING OF APOPTOSIS... 2
1.1.1 Salient features of the Apoptosis Finite State Machine.. 3

1.2 PREVIOUS RESULTS OF APOPTOSIS MODEL ANALYSIS... 5

1.3 OUR CONTRIBUTIONS.. 7

1.4 ORGANIZATION... 8

CHAPTER 2 BACKGROUND .. 9

2.1 FSM ... 10
2.1.1 ILA ... 11

2.2 SAT (SATISFIABILITY).. 12

2.2.1 CNF Example... 13

2.3 ATPG... 14

2.4 MODEL CHECKING.. 15

2.4.1 Bounded Model Checking .. 16
2.4.2 SAT Based Induction.. 17

2.5 IMAGE AND PREIMAGE COMPUTATION ... 19

2.5.1 Image Computation using SAT... 20

 vii

CHAPTER 3 ATPG BASED TECHNIQUE TO IDENTIFY ILLEGAL STATES........................... 22
3.1 MOTIVATION .. 22

3.2 OVERALL FRAMEWORK .. 22

3.2.1 Specifics of the Combinational ATPG application on ILA... 23
3.2.2 Learning illegal states by elimination.. 24
3.2.3 Details on Maximum Decision Level ... 25
3.2.4 Selection of a set of Primary Inputs in ILA for a particular protein .. 26
3.2.5 Algorithm to identify illegal states ... 27
3.2.6 Distinguishing X’s Simulation.. 29

3.3 COMPLETE INPUT SPACE ENUMERATION AT CUT-SET BOUNDARY ... 29

3.4 RESULTS ... 30

CHAPTER 4 SAT BASED TECHNIQUE TO IDENTIFY ILLEGAL STATES.............................. 32
4.1 MOTIVATION .. 32

4.1.1 Circuit Abstraction... 33
4.1.2 Use of previously generated data on Apoptosis Model .. 35

4.2 GENERAL FRAMEWORK OVERVIEW.. 35

4.2.1 Extraction of Illegal States from Image Computation.. 38
4.2.2 Need to iterate with continuously increasing constraints .. 39
4.2.3 Results and Discussion of individual protein analysis ... 41

4.3 STUDY OF PROTEIN COMBINATIONS ... 44

4.3.1 Initial Approach ... 45
4.3.2 Improvement to the naïve approach... 48

4.4 AN INCREMENTAL APPROACH TO CALCULATE ILLEGAL STATES.. 50

4.4.1 The role of Most Significant Bits in the identification of illegal states 51

4.5 RESULTS ... 53

CHAPTER 5 CONCLUSION... 60

BIBLIOGRAPHY .. 62

List of Figures

Figure 1-1: Sample BAD Protein state network. It’s interactions with other protein state
networks (for example BCL2, tBID, etc) forms a complex overall system. 4

Figure 2-1: The Verification Gap. .. 9

Figure 2-2: Synchronous Sequential Circuit... 11

Figure 2-3: Iterative Logic Array.. 11

Figure 2-4: CNF Formula with output constrained to be logic 1...................................... 13

Figure 2-5: BMC Skeleton for Property Checking ... 17

Figure 2-6: Induction step in Bounded Model Checking.. 18

Figure 2-7: Image computation to reach a target state.. 19

Figure 2-8: One time frame ILA to compute Image. .. 21

Figure 3-1: An overview of the ILA under modified combinational ATPG approach. ... 23

Figure 3-2: Identifying illegal states by enumerating all input space............................... 24

Figure 3-3: After assigning high observability values to all the other PPO, we calculate
the observability values of the primary inputs to choose the best set. 26

Figure 3-4: Observability profile of the inputs for tBID-cyto in a 6 timeframe ILA. 24
inputs (not necessarily in order) have very low observability values as compared to the
other inputs.. 27

Figure 3-5: Inability to distinguish X.. 29

Figure 3-6: Enumeration of Inputs at cut-set Boundary. .. 30

 ix

Figure 4-1: Localization Reduction in Circuit Abstraction .. 33

Figure 4-2: State Space Comparison of Concrete and Abstract Model 34

Figure 4-3: PPI Constraint Example ... 36

Figure 4-4: PPO Constraint Example ... 37

Figure 4-5: A reason why all illegal states are not detected. .. 40

Figure 4-6: Graph showing the progress of learning of illegal states as we iterate. 42

Figure 4-7: Illegal states in the cross product of the legal states of tBID_mito &
tBID_cyto.. 53

Figure 4-8: Illegal states in the cross-product of the legal states of BCL2 & tBID_cyto. 54

Figure 4-9: Illegal states in the cross-product of the legal states of BAD_mito &
BAD_cyto ... 55

Figure 4-10: 4 MSB illegal state learning for BCL2 and tBID_mito showing the less
resolution of the illegal states obtained as indicated by the rectangular boundaries. But the
advantage is that we learn many illegal states in less time. .. 56

Figure 4-11: 5 MSB learning refines and adds to the illegal states obtained from 4 MSB
learning for proteins BCL2 and tBID_mito. No longer there are any rectangular
boundaries (which are indicative of more scope of illegal state learning). 57

Figure 4-12: Complete state space overview of BCL2 and tBID_mito............................ 58

Figure 4-13: Complete state space overview of tBID_mito and tBID_cyto..................... 59

List of Tables

Table 1-1: Previous Results of Apoptosis FSM Analysis... 6

Table 4-1: Comparison of current and previous results.. 43

Table 4-2: Details of the states in the range of 0-255 ... 44

Table 4-3: A table showing the legal state space of cross-product................................... 45

Table 4-4: Table showing illegal states of combinations.. 47

Table 4-5: Table showing comparison of different approaches.. 50

Table 4-6: Table showing illegal states of combinations.. 57

Chapter 1

Introduction

Recent years have seen significant advances in interdisciplinary research, such

as those involving Computational Biology/Bioinformatics and Computer Science &

Engineering. Algorithms along with their analytical strengths developed in Computer

Science & Engineering broaden the scope of investigation for biomedical problems. The

two seemingly unrelated and disparate disciplines might yield fresh and possibly

unexpected insights when they are collaborated. Lately, software modeling of cell

biology and cellular geometry, biochemical reaction pathways, prediction of cell behavior

by simulation and interpreting the experimental data of subsystems has been broadly

used in order to study and gain more knowledge about cell biology.

One such phenomenon that has exploded as an area of research is Apoptosis.

Usually, when a cell begins to multiply in a dangerously abnormal way, a series of

biochemical signals trigger it to die. Called Apoptosis, this process plays a vital role in

keeping the body healthy. However, this process sometimes fails and leads to diseases

including cancer. A complete insight into the process would help scientists to develop

drugs to cure cancer by effectively triggering apoptosis in cancer cells. Apoptosis does

more than ward off disease. Millions of cells in our bodies kill themselves everyday to

make room for healthier cells in order to keep the body functioning properly. As well as

Apoptosis’s implications in many diseases, it is an integral part of biological

development. We refer the readers to [1] [2] [3] for comprehensive details on Apoptosis.

 1

1.1 Finite State Transition System modeling of Apoptosis

The Apoptosis process involves a complex system of pathways of different

proteins and signals. By constructing the pathways as a finite state transition Model

(FSM), it provides a unique level of abstraction. Such type of modeling helps us to study

Apoptosis as a discrete hardware model and analytical algorithms and techniques can

be applied to study this model in detail.

One such recent work is the modeling of the mitochondrially mediated Apoptosis

signaling pathways as a discrete transition system model [1]. The choice of Finite State

Transition model presents a unique method of analysis of the Apoptosis process. The

framework can model both, healthy as well as slightly altered, or faulty, signaling

pathways. A healthy model is useful in studying the reachability information of various

protein concentrations. The corresponding input stimuli and the state trace can be easily

determined if the target concentration state is found to be reachable. We draw a simple

analogy by comparing the input stimuli to all the external factors that can affect the

Apoptosis model. The state values denote the protein concentrations in the model.

There might be protein concentrations which cannot be reached. Whether the protein

concentrations are hard to reach or cannot be reached is interesting information that can

be obtained from this model.

Faulty models can be constructed and analyzed using similar techniques. These

faulty models provide information such as answers to the questions like what kinds of

changes occur in a healthy model when an external pathogen alters the capacity of

signaling pathways. Whether unreachable protein concentrations in the healthy model

have now become reachable? Or whether reachable protein concentrations in the

healthy model have now become unreachable concentrations? Such type of information

 2

is essential to study how external factors affect the Apoptosis process by altering its

normal functionality.

The conversion of the protein signaling pathways into an FSM is described in

detail in [1]. In the rest of this chapter, we mention some of the salient features of [1]. We

also discuss our contributions in brief.

1.1.1 Salient features of the Apoptosis Finite State Machine

The individual elements and the reactions of the mitochondria mediated signaling

pathway have been taken from the REACTOME database [4]. As an example, one such

protein “BAD” forms following state network, as depicted in Figure 1-1. There are many

other such proteins. And for each protein state network, there are interactions with other

protein state networks. This whole system forms a complex model and makes it

interesting to study it as a Finite State Transition system.

Without going into more details regarding the Protein pathway Network, which

has been discussed in detail in [1], what we have as an outcome of [1] is a hardware

model which represents certain section of the signaling pathways. Different Protein

pathways have been implemented as interacting FSM modules representing the

corresponding finite state transition diagram. The protein diagrams are then combined

as one interconnected FSM module to represent the whole Apoptosis system. The

inputs to this FSM consist of all external substrates that assist the reaction. These

include: Granzyme B, Caspase 8, NMT1, BcL_XL, etc. Mitochondria and Cytoplasm,

acting as assembly sites for many of the pro- and anti-apoptotic factors have also been

take into consideration in the build up of this full system FSM. In the rest of this thesis,

we will refer to the full system FSM as Apoptosis FSM.

 3

P P

BADBAD

BAD

14-3-3

14-3-3

14-3-3

BAD

BCL-xL

BCL-xL

BAD

BCL2

BCL2

BAD
tBID

BCL2

tBID

Calcineurin B
+Ca

Calcineurin B + Ca

Normal sequestered
state

Active
state

Absorbing
states

Cytoplasm

Mitochondria

*

Figure 1-1: Sample BAD Protein state network. It’s interactions with other protein state
networks (for example BCL2, tBID, etc) forms a complex overall system.

The state of the Apoptosis FSM is defined as the combination of all protein

concentrations in this network. The Apoptosis FSM has 8 protein concentrations in it –

BCL2 (1), BAD_MITO (2), BAD_p14 (3), BAD_cyto (4), BAD_BCL2 (5), tBID_MITO (6),

tBID_BCL2 (7), tBID_cyto (8). The numbers in brackets serves as an identification

number for the proteins in the full Apoptosis FSM. Henceforth, for example, we can also

refer to the protein tBID_MITO as protein 6 for simplicity.

The concentration of a protein is basically the value stored in registers used to

denote that particular protein. Registers, simply, are D flip-flops in the hardware circuit.

The number of bits used to represent the concentration determines its resolution and

 4

range. More bits allow for higher resolution, but at an increased cost during analysis.

Eight bits have been used for each protein in the Apoptosis FSM. Hence, there are 256

(0 to 255) possible values that can represent the concentration of a protein. The unit of

concentration is fixed to be 0.1 nano-molar (nM). The resolution is thus 0.1 nM and the

range is 0 – 25.5 nM which is analogous to the state range from 0 - 255. A total of 8

proteins in the Apoptosis FSM mean that we have 64 flip-flops in the FSM. Hence, the

circuit’s state space potentially consists of 264 states. We refer the reader to [1] for more

information on Apoptosis FSM model for example details on the rate constants values

and the initial concentrations of the proteins have been described in [1].

1.2 Previous Results of Apoptosis model analysis

After modeling the Apoptosis model as a finite state transition system, the next

step is to analyze the FSM in order to gain a clear insight into the whole system. Genetic

Algorithm based guided logic simulation (GALS) and Bounded Model Checking (BMC)

have been used to find out a subset of reachable states in the Apoptosis Model. SAT-

based Induction has also been used to identify a subset of illegal states in the FSM.

A phased approach is chosen in which initially a standalone, simplified model of

a single protein is developed. Other proteins affect this standalone model in form of

inputs which are left unconstrained, meaning that they can assume any value. All the

data obtained after the analysis of the standalone models is combined together to build

an FSM denoting the complete protein state network of the section under study. Table

1-1 presents a brief analysis of the results obtained on state reachability with the

techniques mentioned above.

 5

Table 1-1: Previous Results of Apoptosis FSM Analysis

Protein type # Reachable States # Illegal States # Unknown states

BCL2 125 1 130

BAD_mito 11 0 245

BAD_p14 251 1 4

BAD_cyto 239 1 16

BAD_BCL2 233 0 23

tBID_mito 103 9 144

tBID_BCL2 114 0 142

tBID_cyto 12 224 20

From the results in Table 1-1, for certain proteins like BCL2, BAD_mito, tBID_mito

and tBID_BCL2, a large portion of state space lies in the unknown category. This

means that the techniques could not conclusively determine the reachability of these

states. Here we explain the importance of classifying the unknown states as reachable

or illegal. If we consider each protein state flip-flop group, there are in total 256 states for

a protein because of 8 flip-flops used for specifying the concentration. Even if a single

illegal state is identified among the 256 states of a single protein, we are able to say that

other seven protein’s total 256 combinations will not occur with this particular state. So

we effectively are able to assert a large portion of state space as illegal by working on

individual protein state space. GALS has been able to reach many states in case of

some of the proteins. However, in cases where very few states were reachable, the

number of unknown states is large and number of illegal states proven is few. For

 6

example, BAD_mito has only 11 reachable states. It has 245 unknown states and none

of it is proven as illegal.

1.3 Our contributions

As we wish to have a clearer picture of the protein state space in the Apoptosis

model, the problem we are addressing and the specific contribution are on the

classification of the unknown states in the Apoptosis model to either reachable or illegal

states category. In chip verification, usually a high percentage, say 80%, of the states

are covered by simulation methods and then formal verification methods are used to hit

the remaining corner case states. By looking at the different protein states reached as

shown in Table 1-1, it is true for proteins like BAD_p14, BAD_cyto and BAD_BCL2.

Around 90% of the states are accounted for. But for other proteins such as BAD_mito,

tBID_mito, etc, less than 50% of states have been accounted for. Other states are

neither reachable nor proven to be illegal. In our work, we attempt to gain further insight

into the Apoptosis model by finding out the nature of these unknown states.

The apoptosis model is complex and it is clear from the fact that SAT-based

induction technique applied previously either aborts or is inconclusive [1]. We propose

an image computation based methodology in which we make use of the previous results

shown in Table 1-1. This allows us to reduce the unknown state space size. Our

contributions can be summarized as follows:

1. We are able to categorize close to 93% of unknown states of individual proteins as

illegal states with a new formulation to illegal state identification.

2. We extend our analysis to study the interaction of any two proteins in the Apoptosis

system to investigate correlations between pairs of proteins.

 7

 8

3. We show by another experiment that simulation techniques do not yield desirable

results on this model. Consequently, further analysis of these types of models should

be broadly based on formal verification techniques.

The more information we are able to gain about this Apoptosis discrete transition

model, the better it will aid us in the understanding of the Apoptosis process through the

EDA domain.

1.4 Organization

This thesis is organized in the following sections. Chapter 2 covers the basics of

testing and verification techniques. It also covers some details about the approaches

used in the previous work of analyzing the Apoptosis model and techniques that form the

basis of our developed methodology. Chapter 3 describes our approach of customizing

the ATPG techniques to find illegal states in the Apoptosis Model. We also mention the

results obtained with this approach. Chapter 4 describes our methodology which

involves modified SAT based image computation technique that also utilizes the data

obtained from previous research work. This particular technique provides good results

and we are able to reduce the unknown state space in the Apoptosis model

considerably. With the improved knowledge of the state space of Apoptosis model, we

further enhance our learning of the Apoptosis model by studying the relation of various

protein combinations. In Chapter 5, we conclude by providing a recap of the work done

in this thesis and also future research directions are mentioned.

Chapter 2

Background

Over the past few decades, considerable research efforts have been seen in the

Electronic Design Automation (EDA) industry. This can be partly attributed to the

Moore’s law which states that the relevant parameters of digital chips double every 18

months. Consequently, there is the design productivity gap which means that the

technology matures faster than the design tools. And then there is the verification gap

which denotes the fact that test and verification takes an ever-increasing portion (70-

80%) of total design expenses. It is clear from the following picture taken from Verisity

website [5]. As a result of this phenomenon, considerable improvements have been

made in the digital design testing and verification domain in order to keep up with the

technology.

Figure 2-1: The Verification Gap.

 9

The bulk of verification in the EDA industry today is carried out by advanced

simulation techniques [7] [8] [9]. Formal Verification tools, such as model checkers and

theorem proving tools, use mathematical reasoning to check if a given design adheres to

the design properties specified in the functional specifications of the design.

Unfortunately, often the abilities of the current formal verification tools fall short of

handling the high-complexity designs owing to their computational cost. But lately, hybrid

approaches that combine simulation with formal verification techniques have gained

popularity [10] [11] [12]. Simulation tools, which are the de facto standard in the

verification of industrial designs today, are non-exhaustive in nature and can only

guarantee the correct behavior of scenarios that they investigate. On the other hand,

Formal verification conducts exhaustive exploration of all possible behaviors. If some

behavior is incorrect, a counter-example is provided by formal verification methods.

Large sequential circuits present tremendous challenge for the verification community. In

this chapter, we discuss some of the concepts regarding verification of sequential

circuits. All these techniques can be applied to the Apoptosis model in order to analyze

it.

2.1 FSM

Finite State machine is typically denoted by M(X, S, ∂, λ, O). There can be a start

state S0 specified as well for the Machine M. Inputs X, Outputs O, States S, Next State

Function ∂(S, X) : S x X → S, and Output Function λ(S, X) : S x X → O completely

specify the FSM. A FSM, when implemented in hardware, is shown in Figure 2-2.

 10

 Figure 2-2: Synchronous Sequential Circuit

2.1.1 ILA

Usually many verification and testing techniques work on a FSM by viewing it as

Iterative Logic Array (ILA) model. ILA of bound K is shown in Figure 2-3.

Figure 2-3: Iterative Logic Array

As clear from the figures above, an ILA is constructed by combining together the

combinations logic block of the sequential circuit. The consecutive combinational logic

blocks are connected together by the state variables. The next state variables of the

current block are same as the present state variables of the next block. The first

timeframe present state variables are fully controllable like primary inputs and form the

Pseudo Primary Inputs (PPI). The last timeframe next state variables are fully

observable like primary outputs and form the Pseudo Primary Outputs (PPO) [13] [14]

PI(1)

PO(1)

PPO(1)

PPI(2)

Pseudo
Primary
Inputs

PI(K-1)

PO(K-1)

PPO(K-1)

PPI(K)

PPO(K-2)

PPI(K-1)

PI(K)

PO(K)

Pseudo
Primary

Outputs

O X
λ(S, X)

∂(S, X)
s s’

FF’s

Primary
Inputs Primary

Outputs

 11

[15]. For a sequential circuit of n PIs, m POs and f flip-flops, a k time frame ILA will have

((n*k) + f) inputs and ((m*k) + f) outputs.

2.2 SAT (Satisfiability)

Boolean Satisfiability problem (SAT) is a decision problem, and has the honor of

being the first known NP-complete problem, proved by Stephen Cook [16]. Advanced

SAT solvers, example Zchaff [17], Berkmin [18] and Minisat [19] have been developed

which use efficient heuristics and algorithms to tackle the SAT problem efficiently. Most

of the modern SAT solving algorithms are based on variants of DPLL algorithm [20] such

as chaff [17], GRASP [21]. A detailed survey of SAT Solving capabilities existing today is

given in [22].

The Boolean formula for the Satisfiability problem is usually presented in the

Conjunctive Normal Form (CNF), other form being the Disjunctive Normal Form (DNF).

A CNF formula Ф on n binary variables x1, …, xn is the conjunction (AND) of m clauses

ω1, …, ωm each of which is the disjunction (OR) of one or more literals, where a literal is

the variable or its complement. A function can be represented by many equivalent CNF

formulas.

Boolean Satisfiability is the problem of determining if there exists a variable

assignment such that the formula evaluates to TRUE. The Boolean formula is termed

satisfiable if such an assignment exists. If the whole Boolean search space of the input

variables is searched and no such variable assignment can be found out, the formula is

always FALSE and termed as unsatisfiable. SAT Solving today is all about finding that

variable assignment efficiently, in less time, using all the advanced heuristics and

computer science techniques and providing detailed debugging information on user’s

 12

fingertips. We provide here an example to understand the basics of SAT as it will be

used extensively in later parts of this work.

2.2.1 CNF Example

Consider the following simple sub-section of any arbitrary circuit and the

corresponding CNF formula as shown in Figure 2-4.

6 1

(6’ + 1).(6’ + 2).(6 + 1’ + 2’). 2

(7 + 3).(7’ + 3’). 7 9

Figure 2-4: CNF Formula with output constrained to be logic 1.

The figure above shows the CNF formula of a subsection of a circuit fragment. In

the clauses, we see that the variables are present in their complemented form as well.

The formula above has 13 clauses. Notice the last clause which is simply (9). This is a

unit clause and in other words we have constrained this particular gate to be at an output

of 1 always. The other clauses simply represent the gate logic functionalities. So, the

SAT Solver, when receives these 13 clauses as input, will try to find an input assignment

that satisfies the formula or in other words will find an input assignment such that all the

clauses are 1 simultaneously. Note that there are 5 inputs and hence there are 5

decision taking variables in this formula. The input space is thus 32.

One such formula-satisfying input assignment is {(1:1), (2:1), (3:0), (4:1), (5:0)}.

Note that such a satisfying input assignment is not unique and in this case another

satisfying input assignment is {(1:1), (2:1), (3:0), (4:0), (5:1)}.

(8’ + 4 + 5).(8 + 4’).(8+5’).

(9’ + 6).(9’ + 7).(9’ + 8).(9 + 6’ + 7’ + 8’).

(9) 5

4

3
1

8

 13

The majority of the SAT-based techniques used in verification of sequential

circuits are done by first unrolling the circuit as shown in ILA and then representing the

ILA as a CNF formula. The necessary constraints in form of constraint clauses are then

placed on the formula and formula is given to the SAT Solver which returns SAT or

UNSAT or some error condition like ABORT/TIMEOUT/MEMOUT. The error conditions

are present because there might be certain limits to the extent of time/memory we are

going to spend for such a task. In case the formula is SAT, we also receive the Variable

Assignment from the SAT Solver. Currently, for academic research, many advanced

SAT Solvers like ZChaff and Berkmin are present. We have used ZChaff extensively in

our research.

2.3 ATPG

Automatic Test Pattern Generation (ATPG), as the name suggests, generate test

vectors for every fault in the circuit according to some fault model. As we saw in the

previous section, the basic aim is the same which is to generate an input assignment

that satisfies a certain objective in the circuit. Some of the well known ATPG algorithms

are PODEM [23], SOCRATES [24], FAN [25], etc.

We utilized a modified PODEM approach in one of our methods to identify illegal

states in the Apoptosis FSM. The main point in PODEM is to explore the 2n possible

input combinations to generate an input test vector, if it exists. Hence, a decision tree is

generated as the algorithm progresses to find the input combination that satisfies the

given objective. We backtrace from the objective to find a value assignment to an input

that the heuristics suggest might meet the objective or take us closer to the objective.

Then, the implications of the new assignment are asserted in the circuit and a check is

performed for the objective. If the objective is met, we obtain a test vector. If the

 14

objective is not met, we backtrace in the decision tree and continue in similar manner. A

number of heuristics are present which accelerate the basic algorithm by improved

decision making and solution space exploration.

The problem formulation of SAT and ATPG are closely related as mentioned in

[26]. We might be forced to think that there are important differences between SAT and

ATPG in spite of all the similarities, simply because SAT Solvers operate on a CNF while

conventional ATPG Algorithms operate on a multi-level Boolean network. However, both

these techniques are complementary since both approach the decision problem by a

backtrack search in the finite Boolean space that is spanned by the variables of the CNF

or the Boolean network, respectively. Hence, in [27], efforts are made to merge the SAT

and ATPG domain to exploit the best of both worlds.

2.4 Model Checking

Modeling, Specification and Verification are the fundamental task for model

checking. However, before anything else, let’s explain what an invariant means. A

property Ф is said to be an invariant if that property is true in all the reachable state

space of the sequential design. In the Apoptosis model, we are primarily interested in

identifying whether a property is reachable in the design. These kinds of properties are

termed as safety properties. So, an illegal state in the given circuit has the property that

it will never occur in the lifetime of the model. Liveness and Fairness are other properties

which may be considered.

In model Checking, Temporal Logic is generally used to specify the properties

[28] [29] and the system is modeled as an FSM. Binary Decision Diagram (BDD) [30] , a

canonical form for Boolean expressions, has traditionally been used as the underlying

representation for symbolic model checkers. But as shown in [28] [29], SAT based

 15

techniques have gained popularity in Model Checking domain. Without explaining further

about BDDs, we focus on the SAT based technique of Model Checking.

2.4.1 Bounded Model Checking

Bounded Model Checking (BMC) coined in terms of Satisfiability problem is one

of the current main techniques that has gained popularity in Model checking domain.

Broadly speaking, there are two main steps in Bounded Model Checking. The first step

is to encode the sequential behavior of a transition system over a finite interval into a

propositional formula. The higher the bound, the more it can inform us about

reachability. In the second step, the formula is given to a Satisfiability solver, to either

obtain a satisfying assignment or to prove there is none. Each satisfying assignment

then can be plugged back into a state sequence which reaches the target state from the

any of the initial states. In BMC, only finite length sequences are explored. The

technique can be used to find counter examples quickly, or it can also be used to verify

safety properties for the entirety of the design by looking at only a bounded length

sequence.

In the BMC framework shown in Figure 2-5, let the initial state be S0. T1, T2, …, Tk

denote each unrolled transition for up to k timeframes. A monitor circuit is present that

monitors for the occurrence of the property in any timeframe. The inputs to this monitor

circuit are the property assertions of every timeframe. The total CNF instance can be

formed by concatenating the CNF formulas for S0, T0, T1, …, Tk, P1, P2, …, Pk and the

assertion on the monitor circuit. As an example, if we are checking for the reachability of

a property in k bounds, then the monitor circuit checks for the reachability of the property

in any of the k steps.

 16

S0

Figure 2-5: BMC Skeleton for Property Checking

2.4.2 SAT Based Induction

Induction is a complete proof technique [31]. Traditionally, Principle of Mathematical

Induction can be used to prove that a property P(n) holds for all nonnegative integers n.

An induction proof consists of proving the following two sub-goals:

a) Prove that P(0) is true.

b) Prove that for all k, P(k) implies P(k+1).

Based on similar lines, Induction is used in verification to prove an invariant P is true for

a transition system by showing that P holds in the initial state set of the system and also

that P is maintained throughout the transition relation of the system. The power of

induction is that one need not unroll the sequential circuit indefinitely to prove a property.

Windowed Induction is a modified induction technique which has been discussed

extensively in [32] for induction proofs in hardware models. To prove that P is an

invariant of system M, we do the following:

Find an N for which the following two proofs are achievable:

a) Base: P holds in all paths of length N starting from an initial state.

S0(X0) Λ T(X0, X1) Λ … Λ T(XN-1, XN) implies P(X0) Λ …. Λ P(XN).

MONITOR

T1 T2 Pk-1 Tk P2 Pk P1

Out (=1?)

 17

b) Step: For an arbitrary path of length N+1, if P holds in the first N+1 states, then it

holds in state N+2 too.

T(X0, X1) Λ … Λ T(XN, XN+1) Λ P(X0) Λ …. Λ P(XN) implies P(XN+1).

This is clearer from Figure 2-6.

Unconstrained
initial state

T1 T2 Tk+1 Pk+1P1 P2 Pk

Figure 2-6: Induction step in Bounded Model Checking

For the base case, the MONITOR is an OR gate. We proceed to the induction

step only if the base case yields UNSAT. If the base case is satisfiable, it simply means

that the property is reachable in that bound of k. For the induction step, the initial state is

left unconstrained and for all the timeframes leaving the Pseudo Primary Outputs, the

property is constrained to be holding true. Hence a NOR gate is used. The property is

then checked to hold at the (k+1)th time-frame. If it is UNSAT again, the property is

proved to be an invariant. If the induction step yields SAT (which many times it does), k

has to be increased because SAT in induction step indicates nothing is conclusive at

that bound k.

NOR Gate

UNSAT ?

1

 18

2.5 Image and Preimage Computation

We now discuss image computation, which forms an essential part of formal

verification. In simple terms, the image of a set of states A is the set of states B that can

be reached from A by applying any input vector sequence. Formally, the one-step image

of a state s, with the sequential machine having next state function as ∂ and Input Set as

I can be defined as:

 Image(∂, s) = { s’ | ∃ i ЄI, s’ = ∂(s, i) }

If this operation is performed again and again on the resultant states in the Image

set, we reach a point where no new states can be learned. This indicates a complete

Image set has been reached. In practice, if the circuit is having a start or a reset state,

the image is computed until the Image set is able to reach the target state of interest as

clear from Figure 2-7.

Complete State
Space

Start State Target
State

1-step
image

2-step image
3-step image

Figure 2-7: Image computation to reach a target state

 19

Similarly, the Preimage of a state s’ Є S is defined as the set of states from which

the sequential circuit can transition to state s’ by application of any input sequence. The

one-step preimage of a state s’ is thus all those states s of the circuit from which, by the

application of an input vector, the circuit can transition to state s’. Formally, the one-step

preimage of a state s’ can be defined as:

 Preimage(∂, s’) = {s | ∃ i Є I, s’ = ∂(s, i)}

Again, a fixed point, when reached as in case of Image computation, indicates a

complete Preimage set of state s’.

2.5.1 Image Computation using SAT

As noted earlier [30], the sets of states and sets of transitions are traditionally

represented by BDDs. It is well known that while BDDs represent many state sets

compactly, they unfortunately suffer from size explosion for many circuits. SAT

procedure based image computation and fixed point detection methods have been thus

proposed [33] which displays gradual degradation in performance with increase in size

and is robust. The run time of these methods depends on the size of the input and circuit

diameter as opposed to the added factor of variable ordering in BDDS.

BMC formulates the reachability test as a series of SAT checks for paths of

bounded length. The transition relation is unrolled k times to see if a path to a target set

of states of length [less than / equal to] exists. For finite systems, the process eventually

must terminate as the length of the shortest path between two states cannot exceed the

number of states. Hence, if no path is found with length up to the number of states, the

target state set is proved to be unreachable. This method, however, does not help in

practice because of the large circuits. Diameter of the circuit can provide a good upper

bound for k, but to find the diameter of a circuit is again a hard problem.

 20

Image computation can be used to identify illegal states. The design is simply

viewed in a single frame as shown in Figure 2-8. Let T be the transition relation of the

design, I be the set of Pseudo Primary Input variables, O be the set of Pseudo Primary

Output variables, S’ be the current image set.

S’

PPI

Inputs

Outputs

¬S’ Full Scan

PPO

Figure 2-8: One time frame ILA to compute Image.

A satisfying solution to the following CNF formula is then sought from the SAT Solver:

 (I S’) Λ (T1) Λ (O ≡ ≡ ¬S’)

If the result is SAT, then a new state is yielded which is added to the Image set of the

target state. The term ¬S’ is also called Blocking Clause.

 21

Chapter 3

ATPG Based Technique to Identify
 Illegal States

3.1 Motivation

Guided Simulation experiments in [1] conducted on the Apoptosis model have

shown to reach very few states for some proteins as clear from the data of individual

proteins in Table 1-1. For example, as few as 11 states have been hit and remaining 245

states are still unknown for BAD_mito. For other proteins like BCL2, tBID_mito and

tBID_BCL2, more than 50% of the states are still in the unknown category. So it is an

indicative of the fact that the unknown states might be illegal, or if they are reachable,

they are very hard states to reach.

In an effort to prove that these states are illegal, we investigate an ATPG

technique modified to find illegal states. ATPG has been used earlier to identify illegal

states quickly as shown in [34]. The idea is to employ a low-cost combinational ATPG to

identify unreachable partial-states among groups of related flip-flops.

3.2 Overall Framework

Combinational ATPG algorithms can always be applied on an unrolled sequential

circuit when they are considered as Iterative Logic Arrays. We first look at some of the

fundamentals of identifying illegal states by looking at the combinations of certain group

 22

of flip-flops and then identifying the combinations not appearing in this set. Illegal state

can also be explained in terms of n-Cycle-unreachable states. An n-Cycle-unreachable

state is defined as a state that cannot be reached from any state in n cycles [34]. And if

a state is n-cycle-unreachable then it is also (n+1)-cycle-unreachable. Consider a

framework in which the circuit has been unrolled for k timeframes as shown in Figure 2-3.

Keeping this in mind, we explain our framework below.

3.2.1 Specifics of the Combinational ATPG application on ILA

Figure 3-1 is a picture of what our circuit will look like.

1 x 0 x 1 1 x 0

1st Time-Frame Last Time-Frame

Flip-flops under
observation to

find illegal states
by state

elimination

PPI

x
x
.
.
x

Figure 3-1: An overview of the ILA under modified combinational ATPG approach.

The first thing to note is that the Pseudo Primary Inputs (PPIs) are

unconstrained. This means that any state combination is possible at the PPIs. In case

the sequential circuit has n primary inputs and m flip-flops, a k-frame ILA will have (k*n +

m) primary inputs. Our aim is to keep the PPIs as unspecified throughout our simulation

so that any illegal states at the PPO we learn will be true illegal states and not the illegal

state with respect to the image of certain starting state. Another main attribute of this

approach is that we need to explore the complete input space. If we do not explore the

input space completely, and then learn the illegal states by elimination (a technique

 23

which we explain next), there might be some input combinations ignored which would

have been able to reach some states now falsely considered as illegal.

3.2.2 Learning Illegal States by Elimination

Consider the Figure 3-2.

0

0

0 0

0

0 0

1

1

1
1

1

1
1

i1

i2i2

i3 i3 i3 i3

100x 1x10
1001 110x

x011 1111
x1x1x000

States visited:

0000 – yes
0001 –
0010 –
0011 – yes

0100 –
0101 – yes
0110 –
0111 – yes

1000 – yes
1001 – yes
1010 – yes
1011 – yes

1100 – yes
1101 – yes
1110 – yes
1111 – yes

Figure 3-2: Identifying illegal states by enumerating all input space.

In the Figure 3-2, we have given an example of complete input space exploration

of depth 3 and then analyzing the state values at the leaves of the free BDD built during

input enumeration. Keep in mind that the PPIs are left unconstrained. This means that all

the states are possible at that initial boundary and hence states that are not visited at the

PPOs via this complete input space enumeration are definitely illegal. Another important

point to note is that since we are enumerating the complete input space of a certain

depth, it becomes infeasible to enumerate the input space of all the inputs. Consider the

Apoptosis circuit as an example which has 8 primary inputs. If we perform this

experiment on an ILA of 6 timeframes of Apoptosis model, the number of primary inputs

 24

to enumerate is 48 which provide an input space of 248 which makes it impractical. So

we have to select a proper set of inputs, not too large a number, and enumerate those

inputs. This is the reason we also see some don’t-care values (‘x’) in the states at the

leaves of the Free BDD.

As an example, consider the following scenario where the state we see is x1x1 at

one of the leaves of the BDD. We expand it to mark all the states contained in this cube.

Hence, x1x1 expands to 4 states: 0101, 0111, 1101 and 1111. This approach ensures

that we conservatively mark all states marked as potentially reachable/legal. But indeed,

there can be cases when a state that is illegal might be marked as visited because of the

expansion of ‘x’s in the states.

3.2.3 Details on Maximum Decision Level

Considering the Apoptosis circuit for this kind of experiment, there are 64 PPI in

the ILA of k time frames. And if we fix 24 as the Maximum Decision Level (MDL), then all

the remaining primary inputs of the ILA (k*n – 24) will be having a logic value of ‘x’. We

cannot really increase MDL beyond this point because it causes an exponential increase

in the input space. A MDL value of 24 means there are 16 million input vectors (and 16

million leaves) for logic simulation and that is somewhat manageable.

Now in order to obtain maximum specified state bits at the Free BDD leaves, we

need to heuristically select 24 primary inputs. SCOAP values [35] are a good metric to

pick that set. We perform this experiment for a particular set of flip-flops as the target

state set to consider. Usually, in a circuit where there is no high level information or

where there is no clear partition of the state set, MLP procedure [36] is used to have a

fairly good partition of flip-flops where the state variables in each partition have high

correlation. This procedure computes the input support for flip-flops and clusters the

 25

ones with closer supports. In the case of Apoptosis model, we have a clear picture of the

state partition in the form of proteins. Hence, we target these state partitions in the form

of proteins to analyze.

3.2.4 Selection of a set of primary inputs in ILA for a particular protein

In order to select 24 (MDL) primary inputs for our target proteins, we use the

SCOAP values. To calculate the SCOAP value for a particular protein flip-flops, we

assign very high observability values to all other flip-flops and zero observability is

assigned to the target flip-flops. Note that observability value of zero means that the

signal is completely observable. Since observability values are calculated from outputs

towards the inputs, we proceed in a levelized manner to calculate the observability

values of the inputs.

x x x

Inputs with low observability
values for the target flip-flops

Flip-flops
under

observation
to find illegal

states by
state

elimination

Figure 3-3: After assigning high observability values to all the other PPO, we calculate the

observability values of the primary inputs to choose the best set.

It is desirable to obtain the observability values of inputs in such a way that there is a

group of inputs having low observability values preferably that number of inputs being

near to the MDL and rest of the inputs have high observability values, as shown in Figure

 26

3-4. This simply means that the input set for which we will explore complete input space

will consist of the inputs having low observability values (low observability value means

the signal is very observable) and we need to pick up MDL number of such inputs.

Observability profile of tBID_cyto for a 6 time-frame ILA

0

50000000

100000000

150000000

200000000

250000000

300000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Primary Inputs (not necessairliy in order)

O
bs

er
va

bi
lit

y
Pr

of
ile

Series2

Figure 3-4: Observability profile of the inputs for tBID-cyto in a 6 timeframe ILA. 24 inputs

(not necessarily in order) have very low observability values as compared to the other

inputs.

3.2.5 Algorithm to identify illegal states

Following from the above discussion, we obtain such input sets for different

proteins and try to perform complete input space enumeration of depth 24. Here is the

pseudo code for the algorithm:

 27

2. Select the input set to enumerate for the target protein.

3. Initialize DecisionTree.

4. Decision_level = 0;

5. Get_Illegal_States(decision_level);

6. States not marked are the illegal states.

Get_Illegal_States(decision_level) {

 this_decision_level = decision_level.

 Take Decicion 0 on the input at the current decision level.

 if (decision_level = = MDL)

 Logic_Simulate();

 Mark the target state value observed at the PPO;

 else

 Get_Illegal_States(decision_level++).

 decision_level = this_decision_level.

 Take Decision 1 on the input at the current decision level.

 if (decision_level = = MDL)

 Logic_Simulate();

 Mark the target state value observed at the PPO;

 else

 Get_Illegal_States(decision_level++).

}

1. Calculate Observability values for the target protein.

Algorithm to enumerate the input space and check for illegal states

The main hurdle from this approach was the elimination of as many ‘x’s in the target

observed states as possible. All the states were marked as observed due to the

 28

expansion of ‘x’s and consequently no illegal states were obtained even though there

are many illegal states present in the circuit.

3.2.6 Distinguishing X’s Simulation

The Logic Simulation used in the previous section could not distinguish X arriving

at the inputs of a gate. This becomes clearer from Figure 3-5.

X
X

Figure 3-5: Inability to distinguish X

The figure shows that even though the output of the AND gate should be 0 but the logic

simulation used previously is not able to judge that and assigns the output as X. To

tackle this, we incorporate the Distinguishing X’s feature in logic simulation which takes

more time on an average as compared to the normal Logic simulation, but removes

some Xs from the simulation trace. It does so by keeping track of which X and ¬X are

merging. Each new X has a unique id. But this also proved to be insufficient to find any

new illegal states.

3.3 Complete input space enumeration at cut-set boundary

This approach is similar to the approach in Section 3.2, but this time we don’t

take decisions on the primary inputs. Instead, decisions are made on the inputs at a cut-

set boundary of the fanin cone of the target flip-flops. It becomes clearer from the Figure

3-6. The rest of the approach is same in the sense that we explore the complete input

 29

space of depth MDL according to their observability values. We also applied

Distinguishing X’s simulation with this setup.

Primary Inputs (1 to 8)

Protein 1

Protein 2

Protein 7

Protein 8

Primary Outputs

Protein 1

Protein 2

Protein 7

Protein 8

Reset Pin

1 time frame ILA

Cut-set
boundar

PPI

Figure 3-6: Enumeration of Inputs at cut-set Boundary.

3.4 Results

Unfortunately, the results obtained with the approaches discussed in Sections

3.2 and 3.3 were not very satisfactory. In fact, conventional BMC would have provided

better results as compared to these approaches. There were cases where lots of ‘x’

occurred at the leaves of the enumerated decision tree and consequently all the states

were marked as visited. In the case of cut-set enumeration, there were cases when

some ‘x’s were eliminated. However, since we are exploring all the input combinations at

the cut-set boundary, there are many input combinations which are not possible if the

 30

 31

circuit is considered as a whole. Lots of illegal states are thus falsely visited and

consequently no good results are obtained as compared to the previous results.

This chapter thus confirms the difficulty of this research problem. Determining

the legality of states is extremely difficult. Next, we describe an image computation

based methodology which achieves very good results and enables us to dig deeper into

the Apoptosis circuit.

Chapter 4

SAT Based Technique to Identify
Illegal States

4.1 Motivation

As clear from the approaches discussed thus far, logic simulation (random as

well as guided) is only able to reach a subset of reachable states and has proven to be

ineffective in identifying any illegal states. Also BMC has not proven to be useful for this

Apoptosis circuit, as larger bounds cause the SAT solver to time out [1]. In addition,

SAT-based induction, when applied to this circuit to find out illegal states, faces similar

kind of problems as lower bounds give inconclusive results and large bounds lead to

timing out of the SAT Solver [1]. In Chapter 3, we discussed ATPG techniques for the

Apoptosis model. However, it only showed us the tremendous difficulty of this problem.

So far, a large portion of the individual state space of the proteins (concentration

values from 0 to 255 in terms of state variable values) has thus been left unknown. For

example, referring back to Table 1-1, protein 2 (BAD_mito) has as many as 245 states

out of total 256 states left as unknown, with only 11 states found to be reachable. We

tackle the problem of proving those unknown states as illegal by proposing a new

methodology based on SAT based image computation of abstract circuit. This

methodology benefits from the results that have been obtained till now through previous

experiments and avoids logic simulation during its runtime. We start here by explaining

some basics of circuit abstractions.

 32

4.1.1 Circuit Abstraction

Circuit Abstraction has shown to be a promising approach for Model Checking

[38]. Circuit Abstraction attempts to reduce the space complexity of the circuit in order to

enable us to draw certain conclusions about the circuit in less time as compared to doing

the same analysis in the concrete circuit. As discussed in [38], a commonly used

abstraction technique is the localization reduction as shown in Figure 4-1.

Abstract Circuit

Flip-flops
made fully
controllable

Visible
Flip-flops

Figure 4-1: Localization Reduction in Circuit Abstraction

The abstract model is computed from the concrete circuit by making some flip-

flops fully controllable in the circuit. The flip-flops made fully controllable are called

invisible and the remaining flip-flops are termed visible. Localization Reduction leads to

an abstract circuit which is an over-approximation of the original circuit in terms of

reachable states and hence an under-approximation in terms of illegal states. This is

because the constraints present due to flip-flops in the concrete circuit are now absent in

the abstract model. Hence, the reachable state space is increased and some states that

are illegal in concrete model may now be reachable in the abstract model due to the

invisible flip-flops. However, the illegal states of abstract circuit are definitely illegal in the

 33

concrete model as well. The state space comparison of the abstract and concrete

models is illustrated in Figure 4-2.

A counterexample on an abstract system hence may not correspond to any

realizable path in the concrete system, in which case this counterexample would be

called spurious. To get rid of spurious counter-examples, the abstraction needs to be

made more precise via refinement.

Some Illegal
states of
Concrete Circuit
are now legal in
Abstract Circuit.

Illegal states of
Abstract circuit are

always illegal in
Concrete circuit.

Abstract
Legal State
Space

 Original

Legal
State
Space

Complete State Space

Figure 4-2: State Space Comparison of Concrete and Abstract Model

Abstraction-refinement is a general strategy for automatic abstraction. Abstraction-

refinement usually involves the following process:

1) Generation of an initial abstraction

2) Model check the abstract system

3) If a counter-example is produced, check whether the counter example holds on

the concrete system. If no counter-example exists in the abstract model, the

property holds also in the concrete models.

If a counterexample is obtained in the abstract system, we try to simulate it on the

concrete system symbolically using a SAT solver. The refinement is performed by

restoring a small set of invisible variables in the abstract model. Research has already

 34

been done [38] to identify such variables, called the refinement variables, through the

analysis of Boolean Constraint Propagation and Conflicts during the SAT checking run of

counterexample simulation.

4.1.2 Use of previously generated results on the Apoptosis Model

In our work, we are assisted by the fact that we have a very clear picture of the

state space partition by the distinct proteins. Hence, we are able to focus our efforts on a

very specific problem: that of identifying as many illegal states as possible of individual

proteins. Once illegal states of individual proteins are identified, we can continue to study

the correlation of combination of proteins. We try to build up a good starting point for our

methodology by extracting relevant information from the simulation traces we already

have from the application of GALS. This helps us in reducing the time taken to find out

the illegal states. We describe in detail our methodology in the next few sections.

4.2 General Framework Overview

In order to expand our learning of the Apoptosis model, we propose a new

framework, for which the pseudo-code is as shown in Algorithm 4.1. The target of this

framework is to extract illegal states of a particular target protein. We refer to the core

procedure of our framework as extract_illegal(). As clear from Algorithm 4.1, we

methodically constrain the one time-frame ILA as follows:

1. Constrain the target protein at the Pseudo Primary Inputs (PPI) to be in the

current set of reachable states as obtained from the simulation trace of the

concrete model. The simulation trace should be obtained from the concrete

model because the simulation trace of the abstract model will contain many

 35

illegal states of the concrete model and this will inhibit our purpose. Details are

shown in Figure 4-3.

Figure 4-3: PPI Constraint Example

2. Constrain the target protein at the Pseudo Primary Output (PPO) to be not in the

current reachable state set. This ensures that if the SAT Solver returns a

satisfying solution, we will obtain a new reachable state in the abstract circuit and

consequently add it to the current reachable state set and constrain it properly

again in the next iteration. This is formulated by a NOR gate as shown in Figure

4-4.

1

1st State in the
current

reachable state
set

Nth State in the
current

reachable state
set

Output of the NOR gate
constrained to 1.
This ensures that the PPOs
of the target protein do not
take a value in the current
reachable state set. Target protein PPO

Output of the OR gate
constrained to 1.
This ensures that the PPIs of
the target protein take a
value in the current
reachable state set.

1st State in the
current

reachable state
set

Nth State in the
current

reachable state
set

Target protein PPI

1

 36

Figure 4-4: PPO Constraint Example

8 -Extract the protein flip-flop assignment at PPO.

9 -Add this newly learned state to the constraints of protein flip-flops at PPI

 Continue;

 } end switch

 } end while

 }

 circuit.

6 while (TRUE) {

 switch (ila.sat_solve()) {

 case UNSAT:

7 -Extract the illegal states by taking a difference of the reachable set obtained

 till now from the complete state space of target protein.

 Exit;

 case SAT:

5 -Leave the other PPIs (other than the target protein) unconstrained resulting in an abstracted

4 -Constrain the illegal states learned till now (by any method) on the PPIs and PPOs.

3 -Constrain the target protein at PPO to be not in the current reachable state space.

2 -Constrain the target protein at PPI to be in the current reachable state space

1 -Extract the reachable states of the target protein from the simulation trace

0 -Unroll the circuit for only one timeframe.

 extract_illegal (target_protein) {

Algorithm 4.1: Framework to extract illegal states

 37

3. Use the illegal states learned till now to constrain both the PPI and PPO. This is

a very important step as this can significantly constrain the abstract circuit state

space and aid the SAT Solver to reach conclusions quickly. It is done in a

manner similar to step 2. The state bits to be constrained can belong to any

protein group in this case. The learned illegal states are mostly in the form of

state cubes; for example, an illegal partial state of the form 1X0X engulfs 4 illegal

states in total, namely 1000, 1001, 1100 and 1101. This is one of the advantages

of working on abstract circuits because any illegal states that we learn are state

cubes which are compact in representation.

4.2.1 Extraction of Illegal States from Image Computation

As noted from the above Algorithm, the non-target protein PPIs are left

unconstrained. When the SAT solver is called to solve this constrained model, it gives

either SAT or UNSAT as the result. If the result is SAT, the target PPO variable

assignment is extracted from the SAT Solver and this represents an additional

potentially reachable state. This state is added to the constraints at the PPI (through the

OR gate) and PPO (through the NOR gate). This assignment is actually part of the

image of the target protein in the abstract circuit. The process continues until the SAT

solver returns ‘UNSAT’. At this point, we have gathered all the states that are potentially

reachable in this abstract circuit.

As an example, let us take a particular set of states in which 8 flip-flops are

involved. We extract the state combinations corresponding to these flip-flops from the

concrete model simulation traces. Let that set consisting of different state combination

values be S. There are in total 256 different state combinations possible ranging from

00000000 to 11111111. As the algorithm progresses and it keeps on adding newly

learned reached states of the abstract model to this set, the set grows and finally comes

 38

to a halt when the SAT Solver returns ‘UNSAT’. At this point, let’s say that the set S

consists of n states. Hence, out of total 256 states, the remaining (256-n) states are

illegal in the abstract model and are thus also definitely illegal in the concrete model. We

cannot say anything about the reachability of all of the n states of set S. The reason is

that many of these states (those states not in the initial starting set S) have been

reached in the abstract model and hence they might be illegal in the concrete model. But

we gather the difference, 256-n states in this case, as the illegal states.

4.2.2 Need to iterate with continuously increasing constraints

After a call to extract_illegal(), we obtain some illegal states of a particular target

protein. This function is repeated for each different target protein. However, there is a

possibility that we still have not obtained all of the illegal states of a given target protein.

This is possible due to the following two reasons:

a) The incompleteness of the illegal state set may render some illegal states to be

reachable in our abstraction. In other words, if a state s2 (which is illegal in the

concrete model) is found to be reachable in the abstract circuit, s2 might further

make another illegal concrete state s1 reachable in the abstract circuit.

b) An illegal state s1 of target protein p1 might be reachable from another illegal

state s2 of some other protein p2. Initially, protein p2 is not constrained in the

abstract model of the target protein p1. So, effectively all the 256 states are

possible at the PPI corresponding to p2. Once we constrain illegal states of p2,

we reduce the possible state combinations of p2 at the PPI from 256 to some

lower value. However, we haven’t yet learnt enough illegal states of protein p2 to

add to the constraints at PPI. It then becomes possible to reach state s1 of target

protein p1 in p1’s abstract model when illegal states of protein p2 are not yet

constrained. An example of this is shown Figure 4-5.

 39

Protein 2 when targeted yields 10001001 to 11111111 as illegal states {137 to 255}
Protein 4 when targeted yields 11101110 to 11111010 as illegal states {239 to 250}

Other proteins yield no such illegal states. Why?

Unconstrained

Reset Pin

Protein 4
~(illegal states)

Full Apoptosis Circuit

+00000000
00000000

Potential
illegal State
is reached

 11101111

Protein 1 Added to
current

reachable
state space

Not yet
found

Unconstrained

Consider Protein 1

Unconstrained

Figure 4-5: A reason why all illegal states are not detected.

Figure 4-5 shows the setup of the algorithm extract_illegal() for protein 1 (BCL2). In

this setup, we did not find any illegal states of protein 1 in the first pass, even though we

were able to learn new illegal states for other proteins such as protein 2 (BAD_mito) and

protein 4 (BAD_cyto) when they are targeted. A possible reason for not being able to

identify any illegal state for protein 1 is that some illegal states of protein 4 are necessary

to constrain the search when targeting protein 1. However, during the first pass, illegal

states for protein 4 have not yet been learned. One such illegal state is 11101111 which

is not yet constrained at the PPIs for protein 4. Without the knowledge of this illegal

state, we might have computed state 00000000 of protein 1 as a potentially reachable

state. But we have no way to avoid this until and unless we constrain illegal states of

 40

protein 4 at PPI. Furthermore, the lack of knowledge of illegal states in other protein may

result in marking many illegal states as potentially reachable.

Hence in order to avoid such incomplete illegal state sets, we have to keep on learning

and adding any proved illegal states to the constraints at PPI. We need to thus create a

feedback loop in order to keep on learning new illegal states as depicted in the pseudo-

code, iterate_proteins():

function iterate_proteins() {

 list global_illegal_states;

 for_each (protein p)

 -extract_illegal(p, global_illegal_states);

 -store the newly learned illegal states in the global_illegal_states;

 end for_each

}

Iteration of extract_illegal()

It has to be noted that this function has to be called until we are unable to find

any more new illegal states. Hence, there are several iterations of the function

iterate_proteins() as well.

4.2.3 Results and Discussion of individual protein analysis

Figure 4-6 shows the progress of learning illegal states of different proteins with

iterative calls to iterate_proteins(). We follow an order from protein1 to protein8

regarding the calls to this function. As evidenced from Figure 4-6, for protein2

 41

(BAD_mito), the illegal states learning increases with the increase in learning illegal

states of protein 4 (BAD_cyto) and protein 7 (tBID_BCL2) in the first few iterations. The

fixed point, that is when we are able to learn no new illegal states, is reached after the

11th iteration.

The graph also shows the interdependency of the proteins in terms of defining

their illegal states. We were not able to learn any new illegal states of protein8

(tBID_cyto) during the first 5 iterations. During the 4th iteration, new illegal states of

protein6 (tBID_mito) are learned (even though the number of illegal states of other

proteins remain constant in the 4th iteration). Due to all the learned illegal states in the

first 5 iterations for other proteins, we finally learn a few new illegal states of protein8 in

the very next iteration. Just before the last iteration, all proteins except protein8

(tBID_cyto) have achieved maximum possible illegal states. We learn more illegal states

of tBID_cyto in the last iteration due to all the learned illegal states of other proteins.

Progress of Learning Illegal States

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

Iteration #

%
 o

f I
lle

ga
l s

ta
te

s
le

ar
ne

d

BCL2 (1)
BAD_mito (2)
BAD_cyto (4)
tBID_mito (6)
tBID_BCL2 (7)
tBID_cyto (8)

Figure 4-6: Graph showing the progress of learning of illegal states as we iterate.

 42

Protein 5 (BAD_BCL2) did not give any new illegal states out of the remaining 20

unknown states. This might be due to the fact that it is quite independent of other flip-

flops in the circuit, or perhaps it also depends a lot on the other unknown states of other

proteins (20 states of protein 6 / 11 states of protein 7). Further analysis will show us that

some state variables are quite independent of each other in this circuit. From the

iteration graph, we see that protein6 and protein8 are greatly interdependent as we are

able to find more illegal states of protein8 whenever we find more illegal states of

protein6. The combined protein analysis that we conduct later will show that protein6

and protein8 are definitely interrelated and generate more illegal states when analyzed

together.

 Table 4-1 is a summary of results in the learning of new illegal states in Apoptosis

model. And Table 4-2 below shows the different ranges in the protein state space that

we were able to identify as illegal.

Table 4-1: Comparison of current and previous results

Illegal states Unknown States Proteins

Old
Approach

Abstraction
based new
approach

Old Approach Abstraction
based new
approach

BCL2 (1) 1 131 130 0

BAD_mito (2) 0 239 245 6

BAD_p14 (3) 1 5 4 0

BAD_cyto (4) 1 17 16 0

tBID_mito (6) 9 133 144 20

tBID_BCL2 (7) 0 131 142 11

tBID_cyto (8) 224 244 20 0

 43

Table 4-2: Details of the states in the range 0-255

Proteins

Reachable States

Range

Illegal States

Range

Unknown States

Range

BCL2 (1) 1 to 125 0, 126 to 255 NA

BAD_mito (2) 0 to 10 17 to 255 11 to 16

BAD_p14 (3) 0 to 250 251 to 255 NA

BAD_cyto (4) 0 to 238 239 to 255 NA

BAD_BCL2 (5) 0 to 235 ? 236 to 255

tBID_mito (6) 1 to 103 0, 124 to 255 104 to 123

tBID_BCL2 (7) 139 to 252 0 to 127,
253 to 255

128 to 138

tBID_cyto (8) 0 to 11 12 to 255 NA

As evidenced from the tables, our approach based on image computation of the

abstract circuit was able to reduce the number of unknown states significantly. This

further helps us to analyze protein combinations as discussed in the next section.

4.3 Study of protein combinations

Till this point we have been studying the protein states individually and we had no

idea about how any two or more proteins may interact with each other. An attempt was

made in [1] using simulation as well as SAT-based Induction to study state space

partition where two proteins are involved but the results were unsuccessful for many

state combinations due to the following reasons:

 44

a) With a lot of state space of individual proteins lying in the “unknown” region, there

was little opportunity to obtain good results when two protein interactions are

studied, even with symbolic simulation techniques.

b) A study of protein interactions through reachable state space analysis via

simulation was conducted, but it did not give good results. As we know from all

the experiments done till now, random and guided logic simulation based

techniques have shown to work poorly on Apoptosis model.

c) The many unknown states simply present a very large unknown state space.

Consequently, we cannot sufficiently constrain the state space and the target

state space blows up which hampers the analysis.

We try to analyze two-protein interactions now that we have a more complete knowledge

of the illegal state space. From the results, there were several proteins for which there is

no unknown state remaining (e.g., tBID_cyto, BAD_p14, etc…). This provides a good

starting point for analyzing protein pairs.

4.3.1 Initial Approach

We need to analyze only the cross product of legal state space of any 2 proteins.

Table 4-3 depicts the magnitude of cross-products of legal state spaces that we will have

to deal with.

Table 4-3: Reachability spaces of individual proteins

Protein type Reachable Unknown Illegal

BCL2 (1) 125 0 131

BAD_mito (2) 11 6 239

BAD_p14 (3) 251 0 5

 45

Protein type Reachable Unknown Illegal

BAD_cyto (4) 238 0 18

BAD_BCL2 236 20 0

tBID_mito (6) 103 20 133

tBID_BCL2 (7) 114 11 131

tBID_cyto (8) 12 0 244

For example, proteins 1 and 2 have potentially 125*11 = 1375 legal state combinations.

Proteins 3, 4 and 5 have many more individual legal states and in particular there cross

product leads to many states, close to 65000 state combinations. The cross-product of

proteins 1 and 6 involves 125*103=12875 states. We start our initial approach and then

try to improve our method of illegal state computation. Our initial method is as follows:

}

}

 switch (ila.sat_solve()) {

 case (SAT):

 // state is reachable in the abstract circuit, hence no conclusion

 case (UNSAT):

 - add the state combo to the illegal constraints at the PPI

 }

 -constrain the PPOs to the target state combination

-for_each (legal combination of the two protein state space) {

-while (no new illegal states can be learned) {

-constrain all the illegal states of individual proteins learned till now at PPI and PPO

Method to calculate illegal states in protein combinations

 46

This method has to be run till it yields no new illegal state combinations for the target

protein pair. Although it gives good results for cases where the number of legal states to

consider is less than 2000, for cases where number of states to be considered is greater

than that, it simply takes too long to go through the possible value combinations. In other

words, this algorithm becomes less practical for cases where the number of states is

large, especially for those involving 65000 state combinations. Nevertheless, the initial

results are encouraging for some of the combinations as shown in Table 4-4.

Table 4-4: Illegal state combinations

Protein Combination Illegal states found out of total legal states possible

1_2 3 out of 1375

1_8 96 out of 1500

2_4 25 out of 2618

2_5 1 out of 2596

2_6 1 out of 1133

6_8 305 out of 1236

This basic method was tried for protein pair 3 & 4 which have 59738 potential legal

states and it yielded only 1 illegal state out of 59738 states, and that took a long time

because there were so many SAT instances to be solved. So an alternate method had to

be developed to tackle this problem. In addition, as discussed in Section 4.2.2, the same

reasons apply here also. It is possible that many illegal states were in fact never learned

and falsely being reached due to abstraction. Surely, protein combinations 1_8, 2_4, 6_8

have shown some good results with this naïve initial approach which encourages us to

improve it even further.

 47

4.3.2 Improving the naïve approach

There are several opportunities for improvements to the previous approach. One

such approach is the application of Algorithm 4.1 to the protein combinations instead of

individual proteins. We have a database of around 5300 different states (all 64 flip-flops

considered) from the simulation trace. The size of the initial reachable state set for a

single protein is typically less; for example, for tBID_cyto, only 11 states out of 256

states are extracted from the simulation trace. As we started with the reachable state set

from the simulation trace of the concrete circuit in order to learn illegal states of

individual proteins, we can also have the same kind of approach for protein

combinations as well. The size of the initial reachable state set for two protein

combinations is found to be around 150 to 200 states as obtained from the simulation

traces. The pseudo-code is as shown in Algorithm 4.2.

 48

 }

 } end while

 } end switch

 Continue;

9 -Add this newly learned state to the constraints of 2 protein flip-flops at PPI

8 -Extract the 2 protein flip-flop assignment at PPO.

 case SAT:

 Exit;

till now from the complete legal state space (cross product) of target 2

proteins.

7 -Extract the illegal states by taking a difference of the reachable set obtained

 case UNSAT:

 switch (ila.sat_solve()) {

6 while (TRUE) {

 circuit.

5 -Leave the other PPIs (other than the target protein) unconstrained resulting in an abstracted

4 -Constrain the illegal states learned till now (by any method) on the PPIs and PPOs.

3 -Constrain the target 2 proteins at PPO to be not in the current reachable state space.

2 -Constrain the target 2 proteins at PPI to be in the current reachable state space

1 -Extract the unique reachable states of the target 2-proteins from the simulation trace

0 -Unroll the circuit for only one timeframe.

 extract_illegal (target_combination) {

Algorithm 4.2: Framework to extract illegal state combinations

 49

This approach leads to better results for those protein combinations which also gave

some illegal states with the approach in Section 4.3.1. The results are displayed in Table

4-5.

Table 4-5: Comparison of different approaches.

Protein
Combination

Illegal states
from Section

4.3.1

Improved
approach of
Section 4.3.2

1_8 96 out of 1500 606 out of
1500

6_8 305 out of 1236 627 out of
1236

As shown in Table 4-5, the revised method has given good results in the cases

mentioned. We will present the detailed graphs, depicting the illegal state space more

clearly later. Results for other protein combination were not that encouraging and were

similar to the results as obtained in Section 4.3.1. Also for cases where the number of

states of two proteins combination is greater than 3000, it takes a long time to finish this

procedure. We need to thus tackle this problem of large number of states and reduce the

runtime in order to make it more scalable.

4.4 An incremental approach to calculate illegal states

We now propose an incremental technique to learn the illegal states for those

protein combinations which have very large potentially legal state spaces. When the

cross product of legal state space of two proteins becomes more than 10000, it is

impractical to compute the illegal states as we suggested in Section 4.3.2. It will simply

take too long because of large number of SAT solver calls involved. Our aim is to avoid

the large number of SAT solver calls and still be able to learn maximum illegal states.

 50

4.4.1 The Role of Most Significant Bits in Identification of Illegal States

We now discuss a technique which helps us tackle the problem discussed in

previous section. We explain the technique with the help of following example. Consider

the state 1101XXXX. This state specifies the states ranging from 11010000 to 11011111

i.e., from 208 to 223 in terms of integer values. Now consider the state bits of 2 proteins

taken together. Let us consider a state 1101XXXX1100XXXX. The first 8 bits belong to

protein A and last 8 bits belong to protein B. Only the 4 Most Significant Bits (MSB) are

specified for both the proteins. When we enumerate the MSB only, there would be a total

of 256 different combinations possible ranging from 0000XXXX0000XXXX to

1111XXXX1111XXXX. Hence, we only explore the MSBs under observation and leave

the other bits as unknown. Suppose we obtain the state 1101XXXX1100XXXX as an

illegal state. This specifies that any state between 208 to 223 of protein A together with

any state between 192 to 207 of protein B would form an illegal state combination.

Hence, in order to study two protein combinations, if we consider the MSBs of

the two proteins together and then we find illegal states comprising of those MSBs (other

bits being don’t cares), we discover a large number of illegal state combinations more

quickly. We learn illegal state combinations quickly because of the following simple

reason: if all the 8 bits of both the proteins are specified, there are 16 bits to expand and

therefore 216 different state combinations are possible which will take a long time to

analyze. However, when only 4 MSBs of each protein are specified, there are only 28

different state combinations possible and we are able to reach a fixed point in the

algorithm quickly. It is easy to extract the initial reachable state set of the MSB bits from

the simulation traces. The rest of the process is then quite similar to Algorithm 4.2. We

extract illegal states by taking a difference of the states reached so far from all possible

combinations (256 total state combinations in case of 4 MSB learning).

 51

We are able to learn more illegal states with 5 MSB learning as compared to 4

MSB learning, due to the reason explained here. Consider state cube 1100XXXX. This

state cube denotes states with value ranging from 192 to 192+15. If the states 192 to

192+7 constitute legal state combinations with the other protein and states 192+8 to

192+15 form the illegal state combination with other protein, then 4 MSB learning will not

yield conclusive results. However, when we consider 5 MSB learning, 11000XXX (192 to

192+7) will denote legal state space with other protein and 11001XXX (200 to 200+7)

will denote illegal state space.

Hence, apparently, 5 MSB yields better results due to its higher resolution but the

penalty lies in the number of SAT iterations because of large number of different states

possible. The number of states to consider are obviously more in case of 5 MSB learning

(1024 states) as compared to 4 MSB learning (256 states). We adopt the procedure of

first learning the illegal states with 4 MSB learning. This presents us with only 256

different combinations to search and illegal states are learned quickly. However, illegal

states learned are not complete because of less resolution of 4 MSB learning. The illegal

states learned from 4 MSB learning are then used as constraints for 5 MSB learning and

so on. 5 MSB learning will consist of 1024 different state combinations to target for (in

total, 10 bits of two different proteins are specified). Similarly, 6 MSB learning will consist

of 4096 different state combinations to target for (in total, 12 bits of two different proteins

are specified). Since the state space is constrained at each step due the illegal states

learned in previous steps, new illegal states are learned more quickly.

 52

4.5 Results

Individual protein analysis results have already been discussed in Table 4-1 and

Table 4-2. Now we discuss some of the results obtained for the two protein analysis.

Although we obtain lot of illegal states during our analysis, here we show some of the

significant results and discuss them in detail.

The first graph in Figure 4-7 shows the illegal state space in the cross product of

legal states of protein 6 (tBID_mito) and protein 8 (tBID_cyto). After several iterations of

learning illegal states and constraining them repeatedly at the PPIs, we were able to

prove 728 illegal states (out of 1236 total states) in the cross product of legal state space

of protein tBID_cyto and tBID_mito.

Figure 4-7: Illegal states in the cross product of the legal states of tBID_mito & tBID_cyto

 53

Similarly, in the cross product of legal state space of BCL2 and tBID_cyto, we proved

658 states (out of 1500) states as illegal. Figure 4-8 shows a clear graph for this

analysis.

Figure 4-8: Illegal states in the cross-product of the legal states of BCL2 & tBID_cyto

As clear from the previous two figures, one can picture how the two proteins behave in

conjunction with each other.

 54

In Figure 4-9, we specify the relationship between the proteins BAD_cyto and BAD_mito,

although the large space denoted as not illegal is unknown (could be either illegal or

reachable). All we say is that the space marked in dark color is definitely illegal.

Figure 4-9: Illegal states in the cross-product of the legal states of BAD_mito & BAD_cyto

 55

Next, we give an example which specifies the importance of the MSB learning

approach (Section 4.4.1) that we adopted with regards to the study of illegal states in

those cases where legal state cross products is very large. BCL2 and tBID_mito have

12876 states as possibly legal. When we first perform the 4 MSB learning, we get the

following graph as shown in Figure 4-10.

Figure 4-10: 4 MSB illegal state learning for BCL2 and tBID_mito showing the less

resolution of the illegal states obtained as indicated by the rectangular boundaries. But the

advantage is that we learn many illegal states in less time.

One notable point is that tBID_mito still has 20 unknown states. These 20 states

(ranging from 104 to 123) could not be proven either legal or illegal in the individual

protein analysis. But as apparent from Figure 4-10, we were able to see that states 104 to

123 of tBID_mito also present some illegal states in conjunction with BCL2.

As clear from the argument that we gave in Section 4.4.1, since the resolution is

less in case of 4 MSB learning, we get crude blocks of illegal states as clear from the

rectangular boundaries in the above graph. More illegal states are learned with 5 MSB

learning as shown in Figure 4-11.

 56

Figure 4-11: 5 MSB learning refines and adds to the illegal states obtained from 4 MSB

learning for proteins BCL2 and tBID_mito. No longer there are any rectangular boundaries

which are indicative of possibility of more illegal state learning.

Here is a summary of learned states for two protein combinations.

Table 4-6: Illegal state combinations

Protein Combination Illegal states found out of total legal
states (cross product) possible

1_2 3 out of 1375

1_8 658 out of 1500

1_6 9233 out of 12876

2_4 524 out of 2618

2_5 2 out of 2596

2_6 4 out of 1133

6_8 728 out of 1236

3_4 1920 out of 59738

 57

To have an overall view of the amount of illegal states learned when two protein

interactions are considered, take a look at Figure 4-12 and Figure 4-13.

 Figure 4-12 shows the interaction of BCL2 with tBID_mito. Since Biological

systems are continuous transition systems, we can safely assume that the non-illegal

space surrounded by a rectangle (1 to 125 (x-axis) with 104 to 123 (y-axis)) is also illegal

in Figure 4-12.

Figure 4-12: Complete state space overview of BCL2 and tBID_mito

Figure 4-13 shows how tBID_cyto and tBID_mito interact with each other. It is

quite clear that the two proteins can only be in the narrow zone shown in the graph.

Apart from that narrow zone, the rest of the state space is illegal.

 58

Figure 4-13: Complete state space overview of tBID_mito and tBID_cyto

Just a fact to be noted again is that the non-illegal state space is unknown (either

reachable or illegal). We are unable to assert anything about that. More information can

be obtained about those regions through simulation of the system. From the discussed

results, it is evident that the amount of learning we have been able to achieve, using

techniques discussed in this thesis, is quite significant for the Apoptosis Model.

 59

Chapter 5

Conclusion

We have been able to obtain a clear picture of the Apoptosis model state space.

With the application of GALS, BMC and SAT-based Induction in earlier research, we

were able to analyze the Apoptosis model to a large extent. On the other hand, the

limitations of the previous method render us an incomplete picture of the reachability

space of the Apoptosis model. From the results presented in the earlier work, the

majority of the state space of different proteins was lying in the unknown region.

In this thesis, we tried to further analyze the states in the Apoptosis model and

reduce that unknown region. Since the state space partition information is available to us

in the form of different proteins, we are able to focus our efforts for the in-depth analysis

of different proteins. We first tried to use ATPG and simulation based methods to identify

illegal states and even tried Distinguishing X’s logic simulation to get better results. But

no improvements were obtained, reassuring us of the fact that in the Apoptosis model, a

drastically different approach is needed.

Next, we presented a methodology to identify illegal states using image

computation of the abstract Apoptosis circuit. Using various kinds of abstractions for

different proteins, we were able to extract many illegal states in the Apoptosis model.

These newly learned illegal states further constrained the Apoptosis model and we were

able to converge to a fixed point where no more illegal states could be identified using

this method. The unknown state space was thus reduced by a large margin.

 60

 61

Once we had a clearer picture of the individual proteins, we were able to study

the state space of the protein combinations using a similar method and once again much

information was obtained on how proteins might behave in combination with each other.

We presented a MSB based approach to quickly identify illegal states for those protein

combinations where simple iterative procedure might have taken a long time to compute

illegal states.

As a result of our work, the number of states that were previously in the unknown

region is greatly reduced. We have developed an improved methodology to identify

illegal states in the Apoptosis model. Fault analysis can now be efficiently conducted

because we have a more complete knowledge of the state space. The illegal states can

be added as constraints in all kinds of analysis such as SAT-based Induction, analysis

involving implication graphs. More pathways can be added to the model and we will be

able to study more complex models as well because of the scalability of our abstraction

based methodology.

Bibliography

[1] “Discrete Transition System Model and Verification for Mitochondrially Mediated

Apoptosis Signaling Pathways”. Huy Lam, M.S. Thesis, Bradley Department of Electrical

and Computer Engineering, Virginia Tech, June 2007.

[2] Apoptosis. Linda J. Miller and Jean Marx. Science, 281(5381): 1301-, 1998.

[3] Cell death in us and others. Pierre Golstein. Science, 281(5381): 1283-, 1998.

[4] Reactome: a knowledge base of biological pathways, G. Joshi-Tope, M. Gillespie,

I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono, B. Jassal, G.R. Gopinath, G. R. Wu,

L. Matthews, S. Lewis, E. Birney, and L. Stein. Nucleic Acids Research, 33:D428-D432,

2005.

[5] http://www.verisity.com/resources/whitepaper/soc_nec.htm

[6] Enhancing signal controllability in functional test-benches through automatic

constraint extraction. Guzey, O., Wang, Li.-C., Bhadra, J. Test Conference, 2007, ITC

2007, IEEE International.

[7] Leveraging Design Insight for Intelligent Verification Methodologies, EDA

DesignLine, Chris Wilson, Nusym Technologies, Inc.

[8] Verification Flow Optimization using an Automatic Coverage Driven Testing

Policy, Y. Lahbib, O. Missaoui, Hechkel, D Lahbib, Badreddine M, R Tourki, 2006

International conference on DTIS in Nanoscale technology.

[9] A Verification Synergy: Constraint-Based Verification. Carl Pixley, John

Havlicek, Electronic Design Process 2003 symposium.

 62

http://www.verisity.com/resources/whitepaper/soc_nec.htm

[10] Abstraction Guided Semi-formal Verification. Ankur Parikh. M.S. Thesis, Bradley

Department of Electrical and Computer Engineering. Virginia Tech. June 2007.

[11] Distance Guided hybrid verification with GUIDO. Smitha Shyam, Valeria

Bertacco. Design, Automation and Test in Europe. 2006.

[12] Validation with Guided Search of the State Space. C. Han Yang and David Dill.

35th Design Automation Conference, June 1998.

[13] Combinational ATPG theorems for identifying untestable in sequential circuits,

V.D. Agrawal, S.T. Chakradhar, ETS, 1993

[14] On identifying undetectable and redundant faults in synchronous sequential

circuits, I. Pomeranz, Sudhakar Reddy, VLSI Test Symposium, 1994

[15] Improving the performance of automatic sequential test generation by targeting

Hard-to-Test Faults. L Lingappan, Niraj Jha, Proceedings of 19th International

Conference on VLSI Design (VLSID’ 06), 2006.

[16] The Complexity of Theorem Proving Procedures. S. A. Cook. Proc. Of 3rd Annual

ACM symposium on theory of computing, 1971.

[17] Chaff: Engineering an efficient SAT Solver. M. Moskewicz, C. Madigan, Y. Zhao,

L. Zhang, S. Malik, 39th Design Automation Conference (DAC 2001), Las Vegas, June

2001.

[18] BerkMin: a fast and robust SAT-solver (2002). E. Goldberg, Yakov Novikov. In

Design, Automation and Test in Europe (DATE’ 02).

 63

[19] Minisat: A SAT Solver with conflict-clause minimization. N. Een, N. Sorensson.

International Conference on Theory and Applications of Satisfiability testing, Poster,

2005.

[20] A Machine program for theorem-proving. M. Davis, G. Logemann, D. Loveland.

Communications of the ACM, vol. 5, no. 7, pp. 394-397, 1962.

[21] GRASP: A search algorithm for Propositional Satisfiability. J. M. Silva, K.

Sakallah. ICCAD 1996 IEEE.

[22] The quest for efficient Boolean Satisfiability Solvers. L.Zhang, S. Malik. Proc. of

Computer Aided Verification, 2002.

[23] An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic

Circuit. P. Goel. IEEE Transactions on Computers, vol. C-30 pp. 215-222, March 1981.

[24] SOCRATES: A Highly Efficient Automatic Test Pattern Generation. M. Schulz, E.

Trischler, T. Sarfert. IEEE Transactions on Computer Aided Design. Vol. 7, No. 1, pp.

126-137, 1988.

[25] On the Acceleration of Test Generation Algorithms. H. Fujiwara, T. Shimono.

IEEE Transactions on computers Vol. C-32, pp. 1137-1144, December 1983.

[26] SAT and ATPG: Boolean engines for formal hardware verification. Wolfgang

Kunz, Armin Biere. 2002 International Conference on Computer-Aided Design. ICCAD’

02.

[27] Combining strengths of circuit-based and CNF-based algorithms for high

performance SAT-solver. M. K. Ganai, L. Zhang, P. Ashar, A. Gupta and S. Malik. In

Proc. of Design Automation Conference (DAC) 2002.

 64

[28] Bounded Model Checking using Satisfiability Solving. E. Clarke, Armin Biere, R.

Raimi, Y. Zhu.

[29] Symbolic Model Checking without BDDs. Armin Biere, A Cimatti, E. Clarke,

Yunshan Zhu. TACAS’99.

[30] Graph-Based Algorithms for Boolean Function Manipulation. Randal Bryant.

IEEE transactions on computers C-35-8, pp. 677-691, August, 1986.

[31] SAT-based Induction for Temporal Safety Properties. R. Armoni, L. Fix, R. Fraer,

S. Huddleston, N. Piterman, M. Vardi. Electronic notes in Theoretical Computer Science.

[32] Check Safety Properties using Induction and a SAT Solver. M. Sheeran, S. Singh

and G. Stalmarck. In Proc. 3rd conference on Formal methods in Computer Aided Design.

Lecture notes in Computer Science 2000 pp. 108-125.

[33] Using SAT based image computation for reachability analysis. P. Chauhan, E.

Clarke, D. Kroening. CMU-CS-03-151 2003.

[34] Fast illegal state identification for improving SAT-based induction. Vishnu

Vimjam & Michael Hsiao. Annual ACM IEEE Design Automation Conference. Proc. of

the 43rd annual conference on Design Automation.

[35] SCOAP: Sandia Controllability/Observability analysis program. H. Goldstein and

E.L. Thigpen. Proceedings of Design Automation Conference, 1980.

[36] Border-block Triangular Form and Conjunction Schedule in Image Computation.

In-Ho Moon, G. Hatchel and F. Somenzi. Proc. of Conference on FMCAD, Nov 2000.

[37] Explicit Safety Property Strengthening in SAT-based Induction. V. Vimjam, M.

Hsiao. 20th International Conference on VLSI Design, VLSID’ 07.

 65

 66

[38] Automated abstraction refinement for model checking large state spaces using sat

based conflict analysis. Pankaj Chauhan, Edmund Clarke, James Kukula, Samir Sapra,

Helmut Veith, Dong Wang. In FMCAD’ 02: Proceedings of the 4th international

conference on Formal Methods in Computer-Aided Design. Pages 33-51, London UK

2002 Springer-Verlag.

	Abstract

	Acknowledgements
	Contents

	List of Figures

	List of Tables
	1 Introduction

	1.1 Finite State Transition System modeling of Apoptosis
	1.1.1 Salient features of the Apoptosis Finite State Machine

	1.2 Previous Results of Apoptosis model analysis
	1.3 Our contributions
	1.4 Organization

	2 Background

	2.1 FSM
	2.1.1 ILA

	2.2 SAT (Satisfiability)
	2.2.1 CNF Example

	2.3 ATPG
	2.4 Model Checking
	2.4.1 Bounded Model Checking
	2.4.2 SAT Based Induction

	2.5 Image and Preimage Computation
	2.5.1 Image Computation using SAT

	3 ATPG Based Technique to Identify Illegal States

	3.1 Motivation
	3.2 Overall Framework
	3.2.1 Specifics of the Combinational ATPG application on ILA
	3.2.2 Learning Illegal States by Elimination
	3.2.3 Details on Maximum Decision Level
	3.2.4 Selection of a set of primary inputs in ILA for a particular protein
	3.2.5 Algorithm to identify illegal states
	3.2.6 Distinguishing X’s Simulation

	3.3 Complete input space enumeration at cut-set boundary
	3.4 Results

	4 SAT Based Technique to Identify Illegal States

	4.1 Motivation
	4.1.1 Circuit Abstraction
	4.1.2 Use of previously generated results on the Apoptosis Model

	4.2 General Framework Overview
	4.2.1 Extraction of Illegal States from Image Computation
	4.2.2 Need to iterate with continuously increasing constraints
	4.2.3 Results and Discussion of individual protein analysis

	4.3 Study of protein combinations
	4.3.1 Initial Approach
	4.3.2 Improving the naïve approach

	4.4 An incremental approach to calculate illegal states
	4.4.1 The Role of Most Significant Bits in Identification of Illegal States

	4.5 Results

	5 Conclusion
	Bibliography

