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ABSTRACT 

 

 Programmed Cell Death, or Apoptosis, plays a critical role in human embryonic 

development and in adult tissue homeostasis. Recent research efforts in Bioinformatics and 

Computational Biology focus on gaining deep insight into the Apoptosis process. This allows 

researchers to clearly study the relation between the dysregulation of apoptosis and the 

development of cancer. Research in this highly interdisciplinary field of bioinformatics has 

become much more quantitative, using tools from computational sciences to understand the 

behavior of Biological systems.  

Previously, an abstracted model has been developed to study the Apoptosis process 

as a Finite State Discrete Transition Model. This model facilitates the reutilization of the 

digital design verification and testing techniques developed in the Electronic Design 

Automation domain. These verification and testing techniques for hardware have become 

robust over the past few decades. Usually simulation is the cornerstone of the Design 

Verification industry and bulk of states are covered by simulation. Formal verification 

techniques are then used to analyze the remaining corner case states. Techniques like 

Genetic Algorithm guided Logic Simulation (GALS) and SAT-based Induction have already 

been applied to the Apoptosis Discrete Transition Model. However, the Apoptosis model 

presents some unique problems. The simulation techniques have shown to be unable to 
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cover most of the states of the Apoptosis model. When SAT-based Induction is applied to 

the Apoptosis model, in particular to find illegal states, very few illegal states are identified. It 

particularly suffers from the fact that the Apoptosis Model is rather complex and the 

formulation for testing and verification is hard to tackle at larger bounds greater than 20 or 

so. Consequently, the state space of the Apoptosis model largely lies in the unknown region, 

meaning that we are unable to either reach those states or prove that they are illegal. 

Unless we know whether these states are reachable or illegal, it is not feasible to infer 

information about the model such as what protein concentrations can be reached under 

what kind of input stimuli. Questions such as whether certain protein concentrations can be 

reached or not in this model can only be answered if we have a clear picture of the 

reachability of state space. 

In this thesis, we propose techniques based on ATPG and SAT based image 

computation of the Apoptosis finite transition model. Our method leverages the results 

obtained in previous research work. It uses the reachable states obtained from the 

simulation traces of the previous work as initial states for our technique. This enables us to 

identify more illegal states in less number of iterations; in other words, we are able to reach 

the fixed point in image computation faster. Our experimental analysis illustrates that the 

proposed techniques could prove most of the former unknown states as illegal states. We 

are able to extend our analysis to obtain clearer picture of the interaction of any two proteins 

in the system considered together. 
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Chapter 1  
 

Introduction 

 
 

Recent years have seen significant advances in interdisciplinary research, such 

as those involving Computational Biology/Bioinformatics and Computer Science & 

Engineering. Algorithms along with their analytical strengths developed in Computer 

Science & Engineering broaden the scope of investigation for biomedical problems. The 

two seemingly unrelated and disparate disciplines might yield fresh and possibly 

unexpected insights when they are collaborated. Lately, software modeling of cell 

biology and cellular geometry, biochemical reaction pathways, prediction of cell behavior 

by simulation and interpreting the experimental data of subsystems has been broadly 

used in order to study and gain more knowledge about cell biology. 

One such phenomenon that has exploded as an area of research is Apoptosis. 

Usually, when a cell begins to multiply in a dangerously abnormal way, a series of 

biochemical signals trigger it to die. Called Apoptosis, this process plays a vital role in 

keeping the body healthy. However, this process sometimes fails and leads to diseases 

including cancer. A complete insight into the process would help scientists to develop 

drugs to cure cancer by effectively triggering apoptosis in cancer cells. Apoptosis does 

more than ward off disease. Millions of cells in our bodies kill themselves everyday to 

make room for healthier cells in order to keep the body functioning properly. As well as 

Apoptosis’s implications in many diseases, it is an integral part of biological 

development. We refer the readers to [1] [2] [3] for comprehensive details on Apoptosis.  
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1.1    Finite State Transition System modeling of Apoptosis 

The Apoptosis process involves a complex system of pathways of different 

proteins and signals. By constructing the pathways as a finite state transition Model 

(FSM), it provides a unique level of abstraction. Such type of modeling helps us to study 

Apoptosis as a discrete hardware model and analytical algorithms and techniques can 

be applied to study this model in detail.  

One such recent work is the modeling of the mitochondrially mediated Apoptosis 

signaling pathways as a discrete transition system model [1]. The choice of Finite State 

Transition model presents a unique method of analysis of the Apoptosis process. The 

framework can model both, healthy as well as slightly altered, or faulty, signaling 

pathways. A healthy model is useful in studying the reachability information of various 

protein concentrations. The corresponding input stimuli and the state trace can be easily 

determined if the target concentration state is found to be reachable. We draw a simple 

analogy by comparing the input stimuli to all the external factors that can affect the 

Apoptosis model. The state values denote the protein concentrations in the model. 

There might be protein concentrations which cannot be reached. Whether the protein 

concentrations are hard to reach or cannot be reached is interesting information that can 

be obtained from this model. 

Faulty models can be constructed and analyzed using similar techniques. These 

faulty models provide information such as answers to the questions like what kinds of 

changes occur in a healthy model when an external pathogen alters the capacity of 

signaling pathways. Whether unreachable protein concentrations in the healthy model 

have now become reachable? Or whether reachable protein concentrations in the 

healthy model have now become unreachable concentrations? Such type of information 
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is essential to study how external factors affect the Apoptosis process by altering its 

normal functionality. 

The conversion of the protein signaling pathways into an FSM is described in 

detail in [1]. In the rest of this chapter, we mention some of the salient features of [1]. We 

also discuss our contributions in brief.  

1.1.1 Salient features of the Apoptosis Finite State Machine 

The individual elements and the reactions of the mitochondria mediated signaling 

pathway have been taken from the REACTOME database [4]. As an example, one such 

protein “BAD” forms following state network, as depicted in Figure 1-1. There are many 

other such proteins. And for each protein state network, there are interactions with other 

protein state networks. This whole system forms a complex model and makes it 

interesting to study it as a Finite State Transition system.   

Without going into more details regarding the Protein pathway Network, which 

has been discussed in detail in [1], what we have as an outcome of [1] is a hardware 

model which represents certain section of the signaling pathways. Different Protein 

pathways have been implemented as interacting FSM modules representing the 

corresponding finite state transition diagram. The protein diagrams are then combined 

as one interconnected FSM module to represent the whole Apoptosis system. The 

inputs to this FSM consist of all external substrates that assist the reaction. These 

include: Granzyme B, Caspase 8, NMT1, BcL_XL, etc. Mitochondria and Cytoplasm, 

acting as assembly sites for many of the pro- and anti-apoptotic factors have also been 

take into consideration in the build up of this full system FSM. In the rest of this thesis, 

we will refer to the full system FSM as Apoptosis FSM. 
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Figure 1-1: Sample BAD Protein state network. It’s interactions with other protein state 
networks (for example BCL2, tBID, etc) forms a complex overall system. 
 

The state of the Apoptosis FSM is defined as the combination of all protein 

concentrations in this network. The Apoptosis FSM has 8 protein concentrations in it – 

BCL2 (1), BAD_MITO (2), BAD_p14 (3), BAD_cyto (4), BAD_BCL2 (5), tBID_MITO (6), 

tBID_BCL2 (7), tBID_cyto (8). The numbers in brackets serves as an identification 

number for the proteins in the full Apoptosis FSM. Henceforth, for example, we can also 

refer to the protein tBID_MITO as protein 6 for simplicity.  

The concentration of a protein is basically the value stored in registers used to 

denote that particular protein. Registers, simply, are D flip-flops in the hardware circuit. 

The number of bits used to represent the concentration determines its resolution and 
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range. More bits allow for higher resolution, but at an increased cost during analysis. 

Eight bits have been used for each protein in the Apoptosis FSM. Hence, there are 256 

(0 to 255) possible values that can represent the concentration of a protein. The unit of 

concentration is fixed to be 0.1 nano-molar (nM). The resolution is thus 0.1 nM and the 

range is 0 – 25.5 nM which is analogous to the state range from 0 - 255. A total of 8 

proteins in the Apoptosis FSM mean that we have 64 flip-flops in the FSM. Hence, the 

circuit’s state space potentially consists of 264 states. We refer the reader to [1] for more 

information on Apoptosis FSM model for example details on the rate constants values 

and the initial concentrations of the proteins have been described in [1]. 

  

1.2    Previous Results of Apoptosis model analysis 

After modeling the Apoptosis model as a finite state transition system, the next 

step is to analyze the FSM in order to gain a clear insight into the whole system. Genetic 

Algorithm based guided logic simulation (GALS) and Bounded Model Checking (BMC) 

have been used to find out a subset of reachable states in the Apoptosis Model. SAT-

based Induction has also been used to identify a subset of illegal states in the FSM.  

A phased approach is chosen in which initially a standalone, simplified model of 

a single protein is developed. Other proteins affect this standalone model in form of 

inputs which are left unconstrained, meaning that they can assume any value. All the 

data obtained after the analysis of the standalone models is combined together to build 

an FSM denoting the complete protein state network of the section under study. Table 

1-1 presents a brief analysis of the results obtained on state reachability with the 

techniques mentioned above.  

 

 

 5



Table 1-1: Previous Results of Apoptosis FSM Analysis 
 

Protein type # Reachable States # Illegal States # Unknown states

BCL2 125 1 130 

BAD_mito 11 0 245 

BAD_p14 251 1 4 

BAD_cyto 239 1 16 

BAD_BCL2 233 0 23 

tBID_mito 103 9 144 

tBID_BCL2 114 0 142 

tBID_cyto 12 224 20 

 

From the results in Table 1-1, for certain proteins like BCL2, BAD_mito, tBID_mito 

and tBID_BCL2, a large portion of state space lies in the unknown category.  This 

means that the techniques could not conclusively determine the reachability of these 

states. Here we explain the importance of classifying the unknown states as reachable 

or illegal. If we consider each protein state flip-flop group, there are in total 256 states for 

a protein because of 8 flip-flops used for specifying the concentration. Even if a single 

illegal state is identified among the 256 states of a single protein, we are able to say that 

other seven protein’s total 256 combinations will not occur with this particular state. So 

we effectively are able to assert a large portion of state space as illegal by working on 

individual protein state space. GALS has been able to reach many states in case of 

some of the proteins. However, in cases where very few states were reachable, the 

number of unknown states is large and number of illegal states proven is few. For 
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example, BAD_mito has only 11 reachable states. It has 245 unknown states and none 

of it is proven as illegal.  

 

1.3    Our contributions 

As we wish to have a clearer picture of the protein state space in the Apoptosis 

model, the problem we are addressing and the specific contribution are on the 

classification of the unknown states in the Apoptosis model to either reachable or illegal 

states category. In chip verification, usually a high percentage, say 80%, of the states 

are covered by simulation methods and then formal verification methods are used to hit 

the remaining corner case states. By looking at the different protein states reached as 

shown in Table 1-1, it is true for proteins like BAD_p14, BAD_cyto and BAD_BCL2. 

Around 90% of the states are accounted for. But for other proteins such as BAD_mito, 

tBID_mito, etc, less than 50% of states have been accounted for. Other states are 

neither reachable nor proven to be illegal. In our work, we attempt to gain further insight 

into the Apoptosis model by finding out the nature of these unknown states. 

The apoptosis model is complex and it is clear from the fact that SAT-based 

induction technique applied previously either aborts or is inconclusive [1]. We propose 

an image computation based methodology in which we make use of the previous results 

shown in Table 1-1. This allows us to reduce the unknown state space size. Our 

contributions can be summarized as follows: 

1. We are able to categorize close to 93% of unknown states of individual proteins as 

illegal states with a new formulation to illegal state identification. 

2. We extend our analysis to study the interaction of any two proteins in the Apoptosis 

system to investigate correlations between pairs of proteins. 

 7
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3. We show by another experiment that simulation techniques do not yield desirable 

results on this model. Consequently, further analysis of these types of models should 

be broadly based on formal verification techniques. 

The more information we are able to gain about this Apoptosis discrete transition 

model, the better it will aid us in the understanding of the Apoptosis process through the 

EDA domain. 

 

1.4    Organization 

This thesis is organized in the following sections. Chapter 2 covers the basics of 

testing and verification techniques. It also covers some details about the approaches 

used in the previous work of analyzing the Apoptosis model and techniques that form the 

basis of our developed methodology. Chapter 3 describes our approach of customizing 

the ATPG techniques to find illegal states in the Apoptosis Model. We also mention the 

results obtained with this approach. Chapter 4 describes our methodology which 

involves modified SAT based image computation technique that also utilizes the data 

obtained from previous research work. This particular technique provides good results 

and we are able to reduce the unknown state space in the Apoptosis model 

considerably. With the improved knowledge of the state space of Apoptosis model, we 

further enhance our learning of the Apoptosis model by studying the relation of various 

protein combinations. In Chapter 5, we conclude by providing a recap of the work done 

in this thesis and also future research directions are mentioned.  



Chapter 2  
 

Background 

 

Over the past few decades, considerable research efforts have been seen in the 

Electronic Design Automation (EDA) industry. This can be partly attributed to the 

Moore’s law which states that the relevant parameters of digital chips double every 18 

months. Consequently, there is the design productivity gap which means that the 

technology matures faster than the design tools. And then there is the verification gap 

which denotes the fact that test and verification takes an ever-increasing portion (70-

80%) of total design expenses. It is clear from the following picture taken from Verisity 

website [5]. As a result of this phenomenon, considerable improvements have been 

made in the digital design testing and verification domain in order to keep up with the 

technology. 

 
 

Figure 2-1: The Verification Gap.  
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The bulk of verification in the EDA industry today is carried out by advanced 

simulation techniques [7] [8] [9]. Formal Verification tools, such as model checkers and 

theorem proving tools, use mathematical reasoning to check if a given design adheres to 

the design properties specified in the functional specifications of the design. 

Unfortunately, often the abilities of the current formal verification tools fall short of 

handling the high-complexity designs owing to their computational cost. But lately, hybrid 

approaches that combine simulation with formal verification techniques have gained 

popularity [10] [11] [12]. Simulation tools, which are the de facto standard in the 

verification of industrial designs today, are non-exhaustive in nature and can only 

guarantee the correct behavior of scenarios that they investigate. On the other hand, 

Formal verification conducts exhaustive exploration of all possible behaviors. If some 

behavior is incorrect, a counter-example is provided by formal verification methods. 

Large sequential circuits present tremendous challenge for the verification community. In 

this chapter, we discuss some of the concepts regarding verification of sequential 

circuits. All these techniques can be applied to the Apoptosis model in order to analyze 

it. 

 

2.1  FSM   

Finite State machine is typically denoted by M(X, S, ∂, λ, O). There can be a start 

state S0 specified as well for the Machine M. Inputs X, Outputs O, States S, Next State 

Function ∂(S, X) :  S x X →  S, and Output Function  λ(S, X) :  S x X  →  O  completely 

specify the FSM. A FSM, when implemented in hardware, is shown in Figure 2-2. 
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        Figure 2-2: Synchronous Sequential Circuit 
 

2.1.1    ILA 

Usually many verification and testing techniques work on a FSM by viewing it as 

Iterative Logic Array (ILA) model. ILA of bound K is shown in Figure 2-3. 

 

Figure 2-3: Iterative Logic Array 

 
As clear from the figures above, an ILA is constructed by combining together the 

combinations logic block of the sequential circuit. The consecutive combinational logic 

blocks are connected together by the state variables. The next state variables of the 

current block are same as the present state variables of the next block. The first 

timeframe present state variables are fully controllable like primary inputs and form the 

Pseudo Primary Inputs (PPI). The last timeframe next state variables are fully 

observable like primary outputs and form the Pseudo Primary Outputs (PPO) [13] [14] 
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[15]. For a sequential circuit of n PIs, m POs and f flip-flops, a k time frame ILA will have 

((n*k) + f) inputs and ((m*k) + f) outputs.  

 

2.2    SAT (Satisfiability) 

Boolean Satisfiability problem (SAT) is a decision problem, and has the honor of 

being the first known NP-complete problem, proved by Stephen Cook [16]. Advanced 

SAT solvers, example Zchaff [17], Berkmin [18] and Minisat [19] have been developed 

which use efficient heuristics and algorithms to tackle the SAT problem efficiently. Most 

of the modern SAT solving algorithms are based on variants of DPLL algorithm [20] such 

as chaff [17], GRASP [21]. A detailed survey of SAT Solving capabilities existing today is 

given in [22].  

The Boolean formula for the Satisfiability problem is usually presented in the 

Conjunctive Normal Form (CNF), other form being the Disjunctive Normal Form (DNF). 

A CNF formula Ф on n binary variables x1, …, xn is the conjunction (AND) of m clauses 

ω1, …, ωm each of which is the disjunction (OR) of one or more literals, where a literal is 

the variable or its complement. A function can be represented by many equivalent CNF 

formulas. 

Boolean Satisfiability is the problem of determining if there exists a variable 

assignment such that the formula evaluates to TRUE. The Boolean formula is termed 

satisfiable if such an assignment exists. If the whole Boolean search space of the input 

variables is searched and no such variable assignment can be found out, the formula is 

always FALSE and termed as unsatisfiable. SAT Solving today is all about finding that 

variable assignment efficiently, in less time, using all the advanced heuristics and 

computer science techniques and providing detailed debugging information on user’s 
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fingertips. We provide here an example to understand the basics of SAT as it will be 

used extensively in later parts of this work. 

2.2.1    CNF Example 

Consider the following simple sub-section of any arbitrary circuit and the 

corresponding CNF formula as shown in Figure 2-4. 

6 1 

(6’ + 1).(6’ + 2).(6 + 1’ + 2’). 2 

(7 + 3).(7’ + 3’). 7 9 

 

Figure 2-4: CNF Formula with output constrained to be logic 1. 

 
The figure above shows the CNF formula of a subsection of a circuit fragment. In 

the clauses, we see that the variables are present in their complemented form as well. 

The formula above has 13 clauses. Notice the last clause which is simply (9). This is a 

unit clause and in other words we have constrained this particular gate to be at an output 

of 1 always. The other clauses simply represent the gate logic functionalities. So, the 

SAT Solver, when receives these 13 clauses as input, will try to find an input assignment 

that satisfies the formula or in other words will find an input assignment such that all the 

clauses are 1 simultaneously. Note that there are 5 inputs and hence there are 5 

decision taking variables in this formula. The input space is thus 32.  

One such formula-satisfying input assignment is {(1:1), (2:1), (3:0), (4:1), (5:0)}. 

Note that such a satisfying input assignment is not unique and in this case another 

satisfying input assignment is {(1:1), (2:1), (3:0), (4:0), (5:1)}. 

(8’ + 4 + 5).(8 + 4’).(8+5’). 

(9’ + 6).(9’ + 7).(9’ + 8).(9 + 6’ + 7’ + 8’). 

(9) 5 

4 

3 
1

8 
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The majority of the SAT-based techniques used in verification of sequential 

circuits are done by first unrolling the circuit as shown in ILA and then representing the 

ILA as a CNF formula. The necessary constraints in form of constraint clauses are then 

placed on the formula and formula is given to the SAT Solver which returns SAT or 

UNSAT or some error condition like ABORT/TIMEOUT/MEMOUT. The error conditions 

are present because there might be certain limits to the extent of time/memory we are 

going to spend for such a task. In case the formula is SAT, we also receive the Variable 

Assignment from the SAT Solver. Currently, for academic research, many advanced 

SAT Solvers like ZChaff and Berkmin are present. We have used ZChaff extensively in 

our research. 

 

2.3    ATPG 

Automatic Test Pattern Generation (ATPG), as the name suggests, generate test 

vectors for every fault in the circuit according to some fault model. As we saw in the 

previous section, the basic aim is the same which is to generate an input assignment 

that satisfies a certain objective in the circuit. Some of the well known ATPG algorithms 

are PODEM [23], SOCRATES [24], FAN [25], etc.  

We utilized a modified PODEM approach in one of our methods to identify illegal 

states in the Apoptosis FSM. The main point in PODEM is to explore the 2n possible 

input combinations to generate an input test vector, if it exists. Hence, a decision tree is 

generated as the algorithm progresses to find the input combination that satisfies the 

given objective. We backtrace from the objective to find a value assignment to an input 

that the heuristics suggest might meet the objective or take us closer to the objective. 

Then, the implications of the new assignment are asserted in the circuit and a check is 

performed for the objective. If the objective is met, we obtain a test vector. If the 
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objective is not met, we backtrace in the decision tree and continue in similar manner. A 

number of heuristics are present which accelerate the basic algorithm by improved 

decision making and solution space exploration. 

The problem formulation of SAT and ATPG are closely related as mentioned in 

[26]. We might be forced to think that there are important differences between SAT and 

ATPG in spite of all the similarities, simply because SAT Solvers operate on a CNF while 

conventional ATPG Algorithms operate on a multi-level Boolean network. However, both 

these techniques are complementary since both approach the decision problem by a 

backtrack search in the finite Boolean space that is spanned by the variables of the CNF 

or the Boolean network, respectively. Hence, in [27], efforts are made to merge the SAT 

and ATPG domain to exploit the best of both worlds. 

 

2.4    Model Checking 

Modeling, Specification and Verification are the fundamental task for model 

checking. However, before anything else, let’s explain what an invariant means. A 

property Ф is said to be an invariant if that property is true in all the reachable state 

space of the sequential design. In the Apoptosis model, we are primarily interested in 

identifying whether a property is reachable in the design. These kinds of properties are 

termed as safety properties. So, an illegal state in the given circuit has the property that 

it will never occur in the lifetime of the model. Liveness and Fairness are other properties 

which may be considered.  

In model Checking, Temporal Logic is generally used to specify the properties 

[28] [29] and the system is modeled as an FSM. Binary Decision Diagram (BDD) [30] , a 

canonical form for Boolean expressions, has traditionally been used as the underlying 

representation for symbolic model checkers. But as shown in [28] [29], SAT based 
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techniques have gained popularity in Model Checking domain. Without explaining further 

about BDDs, we focus on the SAT based technique of Model Checking. 

2.4.1    Bounded Model Checking 

Bounded Model Checking (BMC) coined in terms of Satisfiability problem is one 

of the current main techniques that has gained popularity in Model checking domain. 

Broadly speaking, there are two main steps in Bounded Model Checking. The first step 

is to encode the sequential behavior of a transition system over a finite interval into a 

propositional formula. The higher the bound, the more it can inform us about 

reachability. In the second step, the formula is given to a Satisfiability solver, to either 

obtain a satisfying assignment or to prove there is none. Each satisfying assignment 

then can be plugged back into a state sequence which reaches the target state from the 

any of the initial states. In BMC, only finite length sequences are explored. The 

technique can be used to find counter examples quickly, or it can also be used to verify 

safety properties for the entirety of the design by looking at only a bounded length 

sequence.  

In the BMC framework shown in Figure 2-5, let the initial state be S0. T1, T2, …, Tk 

denote each unrolled transition for up to k timeframes. A monitor circuit is present that 

monitors for the occurrence of the property in any timeframe. The inputs to this monitor 

circuit are the property assertions of every timeframe. The total CNF instance can be 

formed by concatenating the CNF formulas for S0, T0, T1, …, Tk, P1, P2, …, Pk and the 

assertion on the monitor circuit. As an example, if we are checking for the reachability of 

a property in k bounds, then the monitor circuit checks for the reachability of the property 

in any of the k steps. 
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S0 

 

Figure 2-5: BMC Skeleton for Property Checking 
 
 

2.4.2    SAT Based Induction 

Induction is a complete proof technique [31]. Traditionally, Principle of Mathematical 

Induction can be used to prove that a property P(n) holds for all nonnegative integers n. 

An induction proof consists of proving the following two sub-goals: 

a) Prove that P(0) is true.  

b) Prove that for all k, P(k) implies P(k+1). 

Based on similar lines, Induction is used in verification to prove an invariant P is true for 

a transition system by showing that P holds in the initial state set of the system and also 

that P is maintained throughout the transition relation of the system.  The power of 

induction is that one need not unroll the sequential circuit indefinitely to prove a property. 

Windowed Induction is a modified induction technique which has been discussed 

extensively in [32] for induction proofs in hardware models. To prove that P is an 

invariant of system M, we do the following: 

Find an N for which the following two proofs are achievable: 

a) Base: P holds in all paths of length N starting from an initial state.  

S0(X0) Λ T(X0, X1) Λ … Λ T(XN-1, XN)   implies    P(X0) Λ …. Λ P(XN). 

MONITOR 

T1 T2 Pk-1 Tk P2 Pk P1 

Out (=1?) 
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b) Step: For an arbitrary path of length N+1, if P holds in the first N+1 states, then it 

holds in state N+2 too. 

T(X0, X1) Λ … Λ T(XN, XN+1) Λ P(X0) Λ …. Λ P(XN)    implies   P(XN+1). 

 

This is clearer from Figure 2-6. 

Unconstrained 
initial state 

T1 T2 Tk+1 Pk+1P1 P2 Pk

 

Figure 2-6: Induction step in Bounded Model Checking 

 

For the base case, the MONITOR is an OR gate. We proceed to the induction 

step only if the base case yields UNSAT. If the base case is satisfiable, it simply means 

that the property is reachable in that bound of k. For the induction step, the initial state is 

left unconstrained and for all the timeframes leaving the Pseudo Primary Outputs, the 

property is constrained to be holding true. Hence a NOR gate is used. The property is 

then checked to hold at the (k+1)th time-frame. If it is UNSAT again, the property is 

proved to be an invariant. If the induction step yields SAT (which many times it does), k 

has to be increased because SAT in induction step indicates nothing is conclusive at 

that bound k. 

 

NOR Gate 

UNSAT ? 

1 
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2.5    Image and Preimage Computation 

We now discuss image computation, which forms an essential part of formal 

verification. In simple terms, the image of a set of states A is the set of states B that can 

be reached from A by applying any input vector sequence. Formally, the one-step image 

of a state s, with the sequential machine having next state function as ∂ and Input Set as 

I can be defined as: 

   Image(∂, s) = { s’ | ∃ i ЄI, s’ = ∂(s, i) } 

 

If this operation is performed again and again on the resultant states in the Image 

set, we reach a point where no new states can be learned. This indicates a complete 

Image set has been reached. In practice, if the circuit is having a start or a reset state, 

the image is computed until the Image set is able to reach the target state of interest as 

clear from Figure 2-7. 

 

 

 

Complete State 
Space 

Start State Target 
State 

1-step 
image 

2-step image 
3-step image 

Figure 2-7: Image computation to reach a target state 
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Similarly, the Preimage of a state s’ Є S is defined as the set of states from which 

the sequential circuit can transition to state s’ by application of any input sequence. The 

one-step preimage of a state s’ is thus all those states s of the circuit from which, by the 

application of an input vector, the circuit can transition to state s’. Formally, the one-step 

preimage of a state s’ can be defined as: 

   Preimage(∂, s’) = {s | ∃ i Є I, s’ = ∂(s, i)} 

Again, a fixed point, when reached as in case of Image computation, indicates a 

complete Preimage set of state s’. 

2.5.1    Image Computation using SAT 

As noted earlier [30], the sets of states and sets of transitions are traditionally 

represented by BDDs. It is well known that while BDDs represent many state sets 

compactly, they unfortunately suffer from size explosion for many circuits. SAT 

procedure based image computation and fixed point detection methods have been thus 

proposed [33] which displays gradual degradation in performance with increase in size 

and is robust. The run time of these methods depends on the size of the input and circuit 

diameter as opposed to the added factor of variable ordering in BDDS. 

BMC formulates the reachability test as a series of SAT checks for paths of 

bounded length. The transition relation is unrolled k times to see if a path to a target set 

of states of length [less than / equal to] exists. For finite systems, the process eventually 

must terminate as the length of the shortest path between two states cannot exceed the 

number of states. Hence, if no path is found with length up to the number of states, the 

target state set is proved to be unreachable. This method, however, does not help in 

practice because of the large circuits. Diameter of the circuit can provide a good upper 

bound for k, but to find the diameter of a circuit is again a hard problem.  
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Image computation can be used to identify illegal states. The design is simply 

viewed in a single frame as shown in Figure 2-8. Let T be the transition relation of the 

design, I be the set of Pseudo Primary Input variables, O be the set of Pseudo Primary 

Output variables, S’ be the current image set. 

S’ 

PPI 

Inputs 

Outputs 

¬S’ Full Scan 

PPO 

 

Figure 2-8: One time frame ILA to compute Image. 

 
A satisfying solution to the following CNF formula is then sought from the SAT Solver: 

   ( I S’ )  Λ  ( T1 )  Λ  ( O ≡ ≡  ¬S’ ) 

If the result is SAT, then a new state is yielded which is added to the Image set of the 

target state. The term ¬S’ is also called Blocking Clause. 
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Chapter 3  
 

ATPG Based Technique to Identify 
 Illegal States 

 

3.1    Motivation 

Guided Simulation experiments in [1] conducted on the Apoptosis model have 

shown to reach very few states for some proteins as clear from the data of individual 

proteins in Table 1-1. For example, as few as 11 states have been hit and remaining 245 

states are still unknown for BAD_mito. For other proteins like BCL2, tBID_mito and 

tBID_BCL2, more than 50% of the states are still in the unknown category. So it is an 

indicative of the fact that the unknown states might be illegal, or if they are reachable, 

they are very hard states to reach. 

In an effort to prove that these states are illegal, we investigate an ATPG 

technique modified to find illegal states. ATPG has been used earlier to identify illegal 

states quickly as shown in [34]. The idea is to employ a low-cost combinational ATPG to 

identify unreachable partial-states among groups of related flip-flops. 

 

3.2    Overall Framework 

Combinational ATPG algorithms can always be applied on an unrolled sequential 

circuit when they are considered as Iterative Logic Arrays. We first look at some of the 

fundamentals of identifying illegal states by looking at the combinations of certain group 
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of flip-flops and then identifying the combinations not appearing in this set. Illegal state 

can also be explained in terms of n-Cycle-unreachable states. An n-Cycle-unreachable 

state is defined as a state that cannot be reached from any state in n cycles [34]. And if 

a state is n-cycle-unreachable then it is also (n+1)-cycle-unreachable. Consider a 

framework in which the circuit has been unrolled for k timeframes as shown in Figure 2-3. 

Keeping this in mind, we explain our framework below. 

3.2.1    Specifics of the Combinational ATPG application on ILA 

Figure 3-1 is a picture of what our circuit will look like. 

1 x 0 x 1 1 x 0

1st Time-Frame Last Time-Frame 

Flip-flops under 
observation to 

find illegal states 
by state 

elimination 

PPI 

x
x
.
.
x 

 

Figure 3-1: An overview of the ILA under modified combinational ATPG approach. 

 
The first thing to note is that the Pseudo Primary Inputs (PPIs) are 

unconstrained. This means that any state combination is possible at the PPIs. In case 

the sequential circuit has n primary inputs and m flip-flops, a k-frame ILA will have (k*n + 

m) primary inputs. Our aim is to keep the PPIs as unspecified throughout our simulation 

so that any illegal states at the PPO we learn will be true illegal states and not the illegal 

state with respect to the image of certain starting state. Another main attribute of this 

approach is that we need to explore the complete input space. If we do not explore the 

input space completely, and then learn the illegal states by elimination (a technique 
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which we explain next), there might be some input combinations ignored which would 

have been able to reach some states now falsely considered as illegal.  

3.2.2    Learning Illegal States by Elimination 

Consider the Figure 3-2. 

0 

0 

0 0 

0

0 0 

1

1 

1
1

1 

1
1 

i1

i2i2 

i3 i3 i3 i3 

100x 1x10 
1001 110x 

x011 1111
x1x1x000 

States visited:  
 
0000 – yes 
0001 –  
0010 –  
0011 –  yes 

 
 
0100 –  
0101 – yes 
0110 –  
0111 – yes 

 
 
1000 – yes 
1001 – yes 
1010 – yes 
1011 – yes 
 

 
 
1100 – yes 
1101 – yes 
1110 – yes 
1111 – yes 

 

Figure 3-2: Identifying illegal states by enumerating all input space. 

 
In the Figure 3-2, we have given an example of complete input space exploration 

of depth 3 and then analyzing the state values at the leaves of the free BDD built during 

input enumeration. Keep in mind that the PPIs are left unconstrained. This means that all 

the states are possible at that initial boundary and hence states that are not visited at the 

PPOs via this complete input space enumeration are definitely illegal. Another important 

point to note is that since we are enumerating the complete input space of a certain 

depth, it becomes infeasible to enumerate the input space of all the inputs. Consider the 

Apoptosis circuit as an example which has 8 primary inputs. If we perform this 

experiment on an ILA of 6 timeframes of Apoptosis model, the number of primary inputs 
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to enumerate is 48 which provide an input space of 248 which makes it impractical. So 

we have to select a proper set of inputs, not too large a number, and enumerate those 

inputs. This is the reason we also see some don’t-care values (‘x’) in the states at the 

leaves of the Free BDD.  

As an example, consider the following scenario where the state we see is x1x1 at 

one of the leaves of the BDD. We expand it to mark all the states contained in this cube. 

Hence, x1x1 expands to 4 states: 0101, 0111, 1101 and 1111. This approach ensures 

that we conservatively mark all states marked as potentially reachable/legal. But indeed, 

there can be cases when a state that is illegal might be marked as visited because of the 

expansion of ‘x’s in the states. 

 

3.2.3    Details on Maximum Decision Level 

Considering the Apoptosis circuit for this kind of experiment, there are 64 PPI in 

the ILA of k time frames. And if we fix 24 as the Maximum Decision Level (MDL), then all 

the remaining primary inputs of the ILA (k*n – 24) will be having a logic value of ‘x’. We 

cannot really increase MDL beyond this point because it causes an exponential increase 

in the input space. A MDL value of 24 means there are 16 million input vectors (and 16 

million leaves) for logic simulation and that is somewhat manageable.  

Now in order to obtain maximum specified state bits at the Free BDD leaves, we 

need to heuristically select 24 primary inputs. SCOAP values [35] are a good metric to 

pick that set. We perform this experiment for a particular set of flip-flops as the target 

state set to consider. Usually, in a circuit where there is no high level information or 

where there is no clear partition of the state set, MLP procedure [36] is used to have a 

fairly good partition of flip-flops where the state variables in each partition have high 

correlation. This procedure computes the input support for flip-flops and clusters the 
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ones with closer supports. In the case of Apoptosis model, we have a clear picture of the 

state partition in the form of proteins. Hence, we target these state partitions in the form 

of proteins to analyze. 

3.2.4    Selection of a set of primary inputs in ILA for a particular protein 

In order to select 24 (MDL) primary inputs for our target proteins, we use the 

SCOAP values. To calculate the SCOAP value for a particular protein flip-flops, we 

assign very high observability values to all other flip-flops and zero observability is 

assigned to the target flip-flops.  Note that observability value of zero means that the 

signal is completely observable. Since observability values are calculated from outputs 

towards the inputs, we proceed in a levelized manner to calculate the observability 

values of the inputs. 

 

 

x x x

Inputs with low observability 
values for the target flip-flops 

Flip-flops 
under 

observation 
to find illegal 

states by 
state 

elimination

Figure 3-3: After assigning high observability values to all the other PPO, we calculate the 

observability values of the primary inputs to choose the best set. 

 
 

It is desirable to obtain the observability values of inputs in such a way that there is a 

group of inputs having low observability values preferably that number of inputs being 

near to the MDL and rest of the inputs have high observability values, as shown in Figure 
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3-4. This simply means that the input set for which we will explore complete input space 

will consist of the inputs having low observability values (low observability value means 

the signal is very observable) and we need to pick up MDL number of such inputs. 

 

Observability profile of tBID_cyto for a 6 time-frame ILA
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Figure 3-4: Observability profile of the inputs for tBID-cyto in a 6 timeframe ILA. 24 inputs 

(not necessarily in order) have very low observability values as compared to the other 

inputs.  
 

3.2.5    Algorithm to identify illegal states 

Following from the above discussion, we obtain such input sets for different 

proteins and try to perform complete input space enumeration of depth 24. Here is the 

pseudo code for the algorithm: 
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2. Select the input set to enumerate for the target protein. 

3. Initialize DecisionTree. 

4. Decision_level = 0; 

5. Get_Illegal_States( decision_level); 

6. States not marked are the illegal states. 

 

Get_Illegal_States(decision_level ) { 

    this_decision_level = decision_level. 

    Take Decicion 0 on the input at the current decision level. 

    if (decision_level = = MDL)  

 Logic_Simulate( ); 

 Mark the target state value observed at the PPO; 

    else 

 Get_Illegal_States(decision_level++). 

 

    decision_level = this_decision_level. 

    Take Decision 1 on the input at the current decision level. 

    if (decision_level = = MDL)  

 Logic_Simulate( ); 

 Mark the target state value observed at the PPO; 

    else 

 Get_Illegal_States(decision_level++). 

} 

1. Calculate Observability values for the target protein. 

Algorithm to enumerate the input space and check for illegal states 

 

The main hurdle from this approach was the elimination of as many ‘x’s in the target 

observed states as possible. All the states were marked as observed due to the 
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expansion of ‘x’s and consequently no illegal states were obtained even though there 

are many illegal states present in the circuit. 

3.2.6    Distinguishing X’s Simulation 

The Logic Simulation used in the previous section could not distinguish X arriving 

at the inputs of a gate. This becomes clearer from Figure 3-5. 

X
X 

 

Figure 3-5: Inability to distinguish X 

 
The figure shows that even though the output of the AND gate should be 0 but the logic 

simulation used previously is not able to judge that and assigns the output as X. To 

tackle this, we incorporate the Distinguishing X’s feature in logic simulation which takes 

more time on an average as compared to the normal Logic simulation, but removes 

some Xs from the simulation trace. It does so by keeping track of which X and ¬X are 

merging. Each new X has a unique id. But this also proved to be insufficient to find any 

new illegal states. 

 

3.3    Complete input space enumeration at cut-set boundary 

This approach is similar to the approach in Section 3.2, but this time we don’t 

take decisions on the primary inputs. Instead, decisions are made on the inputs at a cut-

set boundary of the fanin cone of the target flip-flops. It becomes clearer from the Figure 

3-6. The rest of the approach is same in the sense that we explore the complete input 
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space of depth MDL according to their observability values. We also applied 

Distinguishing X’s simulation with this setup. 

Primary Inputs ( 1 to 8 ) 

Protein 1 

Protein 2 

Protein 7 

Protein 8 

Primary Outputs 

Protein 1 

Protein 2 

Protein 7 

Protein 8 

Reset Pin 

1 time frame ILA 

Cut-set 
boundar

PPI 

 

Figure 3-6: Enumeration of Inputs at cut-set Boundary. 

 

3.4    Results 

Unfortunately, the results obtained with the approaches discussed in Sections 

3.2 and 3.3 were not very satisfactory. In fact, conventional BMC would have provided 

better results as compared to these approaches. There were cases where lots of ‘x’ 

occurred at the leaves of the enumerated decision tree and consequently all the states 

were marked as visited. In the case of cut-set enumeration, there were cases when 

some ‘x’s were eliminated. However, since we are exploring all the input combinations at 

the cut-set boundary, there are many input combinations which are not possible if the 
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circuit is considered as a whole. Lots of illegal states are thus falsely visited and 

consequently no good results are obtained as compared to the previous results.  

This chapter thus confirms the difficulty of this research problem.  Determining 

the legality of states is extremely difficult.  Next, we describe an image computation 

based methodology which achieves very good results and enables us to dig deeper into 

the Apoptosis circuit. 



Chapter 4  
 

SAT Based Technique to Identify  
Illegal States 

 

4.1    Motivation 

As clear from the approaches discussed thus far, logic simulation (random as 

well as guided) is only able to reach a subset of reachable states and has proven to be 

ineffective in identifying any illegal states. Also BMC has not proven to be useful for this 

Apoptosis circuit, as larger bounds cause the SAT solver to time out [1]. In addition, 

SAT-based induction, when applied to this circuit to find out illegal states, faces similar 

kind of problems as lower bounds give inconclusive results and large bounds lead to 

timing out of the SAT Solver [1]. In Chapter 3, we discussed ATPG techniques for the 

Apoptosis model. However, it only showed us the tremendous difficulty of this problem.  

So far, a large portion of the individual state space of the proteins (concentration 

values from 0 to 255 in terms of state variable values) has thus been left unknown. For 

example, referring back to Table 1-1, protein 2 (BAD_mito) has as many as 245 states 

out of total 256 states left as unknown, with only 11 states found to be reachable. We 

tackle the problem of proving those unknown states as illegal by proposing a new 

methodology based on SAT based image computation of abstract circuit. This 

methodology benefits from the results that have been obtained till now through previous 

experiments and avoids logic simulation during its runtime. We start here by explaining 

some basics of circuit abstractions.  
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4.1.1    Circuit Abstraction 

Circuit Abstraction has shown to be a promising approach for Model Checking 

[38]. Circuit Abstraction attempts to reduce the space complexity of the circuit in order to 

enable us to draw certain conclusions about the circuit in less time as compared to doing 

the same analysis in the concrete circuit. As discussed in [38], a commonly used 

abstraction technique is the localization reduction as shown in Figure 4-1. 

 

Abstract Circuit

Flip-flops 
made fully 
controllable 

Visible 
Flip-flops 

 

Figure 4-1: Localization Reduction in Circuit Abstraction 

 
The abstract model is computed from the concrete circuit by making some flip-

flops fully controllable in the circuit. The flip-flops made fully controllable are called 

invisible and the remaining flip-flops are termed visible. Localization Reduction leads to 

an abstract circuit which is an over-approximation of the original circuit in terms of 

reachable states and hence an under-approximation in terms of illegal states. This is 

because the constraints present due to flip-flops in the concrete circuit are now absent in 

the abstract model. Hence, the reachable state space is increased and some states that 

are illegal in concrete model may now be reachable in the abstract model due to the 

invisible flip-flops. However, the illegal states of abstract circuit are definitely illegal in the 
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concrete model as well. The state space comparison of the abstract and concrete 

models is illustrated in Figure 4-2. 

A counterexample on an abstract system hence may not correspond to any 

realizable path in the concrete system, in which case this counterexample would be 

called spurious. To get rid of spurious counter-examples, the abstraction needs to be 

made more precise via refinement. 

 

Some Illegal 
states of 
Concrete Circuit 
are now legal in 
Abstract Circuit. 

Illegal states of 
Abstract circuit are 

always illegal in 
Concrete circuit. 

Abstract 
Legal State 
Space 

 
 Original 

Legal 
State 
Space 

Complete State Space 

 

Figure 4-2: State Space Comparison of Concrete and Abstract Model 

 
Abstraction-refinement is a general strategy for automatic abstraction. Abstraction-

refinement usually involves the following process: 

1) Generation of an initial abstraction 

2) Model check the abstract system 

3) If a counter-example is produced, check whether the counter example holds on 

the concrete system.  If no counter-example exists in the abstract model, the 

property holds also in the concrete models. 

If a counterexample is obtained in the abstract system, we try to simulate it on the 

concrete system symbolically using a SAT solver. The refinement is performed by 

restoring a small set of invisible variables in the abstract model. Research has already 
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been done [38] to identify such variables, called the refinement variables, through the 

analysis of Boolean Constraint Propagation and Conflicts during the SAT checking run of 

counterexample simulation. 

4.1.2    Use of previously generated results on the Apoptosis Model 

In our work, we are assisted by the fact that we have a very clear picture of the 

state space partition by the distinct proteins. Hence, we are able to focus our efforts on a 

very specific problem: that of identifying as many illegal states as possible of individual 

proteins. Once illegal states of individual proteins are identified, we can continue to study 

the correlation of combination of proteins. We try to build up a good starting point for our 

methodology by extracting relevant information from the simulation traces we already 

have from the application of GALS. This helps us in reducing the time taken to find out 

the illegal states. We describe in detail our methodology in the next few sections. 

 

4.2    General Framework Overview 

In order to expand our learning of the Apoptosis model, we propose a new 

framework, for which the pseudo-code is as shown in Algorithm 4.1. The target of this 

framework is to extract illegal states of a particular target protein. We refer to the core 

procedure of our framework as extract_illegal( ). As clear from Algorithm 4.1, we 

methodically constrain the one time-frame ILA as follows: 

1. Constrain the target protein at the Pseudo Primary Inputs (PPI) to be in the 

current set of reachable states as obtained from the simulation trace of the 

concrete model. The simulation trace should be obtained from the concrete 

model because the simulation trace of the abstract model will contain many 
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illegal states of the concrete model and this will inhibit our purpose. Details are 

shown in Figure 4-3. 

 

 

Figure 4-3: PPI Constraint Example 

 
 

2. Constrain the target protein at the Pseudo Primary Output (PPO) to be not in the 

current reachable state set. This ensures that if the SAT Solver returns a 

satisfying solution, we will obtain a new reachable state in the abstract circuit and 

consequently add it to the current reachable state set and constrain it properly 

again in the next iteration. This is formulated by a NOR gate as shown in Figure 

4-4. 

1
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Nth State  in the 
current 
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Output of the NOR gate 
constrained to 1. 
This ensures that the PPOs 
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Output of the OR gate 
constrained to 1. 
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the target protein take a 
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reachable state set. 
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Target protein PPI 

1
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Figure 4-4: PPO Constraint Example 

 

8          -Extract the protein flip-flop assignment at PPO.  

9          -Add this newly learned state to the constraints of protein flip-flops at PPI  

        Continue; 

  } end switch 

 } end while 

    } 

         

  circuit. 

6 while (TRUE) { 

  switch (ila.sat_solve( )) { 

      case UNSAT: 

7          -Extract the illegal states by taking a difference of the reachable set obtained 

          till now from the complete state space of target protein. 

          Exit; 

      case SAT: 

5 -Leave the other PPIs (other than the target protein) unconstrained resulting in an abstracted  

4 -Constrain the illegal states learned till now (by any method) on the PPIs and PPOs. 

3 -Constrain the target protein at PPO to be not in the current reachable state space. 

2 -Constrain the target protein at PPI to be in the current reachable state space 

1 -Extract the reachable states of the target protein from the simulation trace  

0 -Unroll the circuit for only one timeframe. 

    extract_illegal (target_protein) { 

Algorithm 4.1: Framework to extract illegal states 
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3. Use the illegal states learned till now to constrain both the PPI and PPO. This is 

a very important step as this can significantly constrain the abstract circuit state 

space and aid the SAT Solver to reach conclusions quickly. It is done in a 

manner similar to step 2. The state bits to be constrained can belong to any 

protein group in this case. The learned illegal states are mostly in the form of 

state cubes; for example, an illegal partial state of the form 1X0X engulfs 4 illegal 

states in total, namely 1000, 1001, 1100 and 1101. This is one of the advantages 

of working on abstract circuits because any illegal states that we learn are state 

cubes which are compact in representation. 

4.2.1    Extraction of Illegal States from Image Computation 

As noted from the above Algorithm, the non-target protein PPIs are left 

unconstrained. When the SAT solver is called to solve this constrained model, it gives 

either SAT or UNSAT as the result. If the result is SAT, the target PPO variable 

assignment is extracted from the SAT Solver and this represents an additional 

potentially reachable state.  This state is added to the constraints at the PPI (through the 

OR gate) and PPO (through the NOR gate).  This assignment is actually part of the 

image of the target protein in the abstract circuit. The process continues until the SAT 

solver returns ‘UNSAT’. At this point, we have gathered all the states that are potentially 

reachable in this abstract circuit.  

As an example, let us take a particular set of states in which 8 flip-flops are 

involved. We extract the state combinations corresponding to these flip-flops from the 

concrete model simulation traces. Let that set consisting of different state combination 

values be S. There are in total 256 different state combinations possible ranging from 

00000000 to 11111111. As the algorithm progresses and it keeps on adding newly 

learned reached states of the abstract model to this set, the set grows  and finally comes 
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to a halt when the SAT Solver returns ‘UNSAT’. At this point, let’s say that the set S 

consists of n states. Hence, out of total 256 states, the remaining (256-n) states are 

illegal in the abstract model and are thus also definitely illegal in the concrete model. We 

cannot say anything about the reachability of all of the n states of set S. The reason is 

that many of these states (those states not in the initial starting set S) have been 

reached in the abstract model and hence they might be illegal in the concrete model. But 

we gather the difference, 256-n states in this case, as the illegal states. 

4.2.2    Need to iterate with continuously increasing constraints 

After a call to extract_illegal( ), we obtain some illegal states of a particular target 

protein. This function is repeated for each different target protein. However, there is a 

possibility that we still have not obtained all of the illegal states of a given target protein. 

This is possible due to the following two reasons: 

a) The incompleteness of the illegal state set may render some illegal states to be 

reachable in our abstraction.  In other words, if a state s2 (which is illegal in the 

concrete model) is found to be reachable in the abstract circuit, s2 might further 

make another illegal concrete state s1 reachable in the abstract circuit.  

b) An illegal state s1 of target protein p1 might be reachable from another illegal 

state s2 of some other protein p2. Initially, protein p2 is not constrained in the 

abstract model of the target protein p1. So, effectively all the 256 states are 

possible at the PPI corresponding to p2. Once we constrain illegal states of p2, 

we reduce the possible state combinations of p2 at the PPI from 256 to some 

lower value. However, we haven’t yet learnt enough illegal states of protein p2 to 

add to the constraints at PPI. It then becomes possible to reach state s1 of target 

protein p1 in p1’s abstract model when illegal states of protein p2 are not yet 

constrained. An example of this is shown Figure 4-5. 
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Protein 2 when targeted yields 10001001 to 11111111 as illegal states {137 to 255} 
Protein 4 when targeted yields 11101110 to 11111010 as illegal states {239 to 250} 

Other proteins yield no such illegal states. Why?  

Unconstrained 

Reset Pin 

Protein 4 
~(illegal states) 

Full Apoptosis Circuit 

+00000000 
00000000 

Potential 
illegal State 
is reached 

 11101111 

Protein 1 Added to 
current 

reachable 
state space 

Not yet 
found 

Unconstrained 

Consider Protein 1 

Unconstrained  

Figure 4-5: A reason why all illegal states are not detected. 

 
Figure 4-5 shows the setup of the algorithm extract_illegal( ) for protein 1 (BCL2). In 

this setup, we did not find any illegal states of protein 1 in the first pass, even though we 

were able to learn new illegal states for other proteins such as protein 2 (BAD_mito) and 

protein 4 (BAD_cyto) when they are targeted.  A possible reason for not being able to 

identify any illegal state for protein 1 is that some illegal states of protein 4 are necessary 

to constrain the search when targeting protein 1.  However, during the first pass, illegal 

states for protein 4 have not yet been learned.  One such illegal state is 11101111 which 

is not yet constrained at the PPIs for protein 4. Without the knowledge of this illegal 

state, we might have computed state 00000000 of protein 1 as a potentially reachable 

state. But we have no way to avoid this until and unless we constrain illegal states of 
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protein 4 at PPI. Furthermore, the lack of knowledge of illegal states in other protein may 

result in marking many illegal states as potentially reachable. 

 

Hence in order to avoid such incomplete illegal state sets, we have to keep on learning 

and adding any proved illegal states to the constraints at PPI. We need to thus create a 

feedback loop in order to keep on learning new illegal states as depicted in the pseudo-

code, iterate_proteins( ): 

function iterate_proteins( ) { 

    list global_illegal_states; 

    for_each (protein p)  

 -extract_illegal(p, global_illegal_states); 

 -store the newly learned illegal states in the global_illegal_states; 

    end for_each 

} 

Iteration of extract_illegal( ) 

 

It has to be noted that this function has to be called until we are unable to find 

any more new illegal states. Hence, there are several iterations of the function 

iterate_proteins( ) as well. 

 

4.2.3    Results and Discussion of individual protein analysis 

Figure 4-6 shows the progress of learning illegal states of different proteins with 

iterative calls to iterate_proteins( ). We follow an order from protein1 to protein8 

regarding the calls to this function. As evidenced from Figure 4-6, for protein2 
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(BAD_mito), the illegal states learning increases with the increase in learning illegal 

states of protein 4 (BAD_cyto) and protein 7 (tBID_BCL2) in the first few iterations. The 

fixed point, that is when we are able to learn no new illegal states, is reached after the 

11th iteration. 

The graph also shows the interdependency of the proteins in terms of defining 

their illegal states. We were not able to learn any new illegal states of protein8 

(tBID_cyto) during the first 5 iterations. During the 4th iteration, new illegal states of 

protein6 (tBID_mito) are learned (even though the number of illegal states of other 

proteins remain constant in the 4th iteration). Due to all the learned illegal states in the 

first 5 iterations for other proteins, we finally learn a few new illegal states of protein8 in 

the very next iteration. Just before the last iteration, all proteins except protein8 

(tBID_cyto) have achieved maximum possible illegal states. We learn more illegal states 

of tBID_cyto in the last iteration due to all the learned illegal states of other proteins.  
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Figure 4-6: Graph showing the progress of learning of illegal states as we iterate. 
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Protein 5 (BAD_BCL2) did not give any new illegal states out of the remaining 20 

unknown states. This might be due to the fact that it is quite independent of other flip-

flops in the circuit, or perhaps it also depends a lot on the other unknown states of other 

proteins (20 states of protein 6 / 11 states of protein 7). Further analysis will show us that 

some state variables are quite independent of each other in this circuit. From the 

iteration graph, we see that protein6 and protein8 are greatly interdependent as we are 

able to find more illegal states of protein8 whenever we find more illegal states of 

protein6. The combined protein analysis that we conduct later will show that protein6 

and protein8 are definitely interrelated and generate more illegal states when analyzed 

together.  

  Table 4-1 is a summary of results in the learning of new illegal states in Apoptosis 

model.  And Table 4-2 below shows the different ranges in the protein state space that 

we were able to identify as illegal.  

Table 4-1: Comparison of current and previous results 

Illegal states Unknown States Proteins 

Old 
Approach 

Abstraction 
based new 
approach 

Old Approach Abstraction 
based new 
approach 

BCL2 (1) 1 131 130 0 

BAD_mito (2) 0 239 245 6 

BAD_p14 (3) 1 5 4 0 

BAD_cyto (4) 1 17 16 0 

tBID_mito (6) 9 133 144 20 

tBID_BCL2 (7) 0 131 142 11 

tBID_cyto (8) 224 244 20 0 
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Table 4-2: Details of the states in the range 0-255 
 

 
Proteins 

 

 
Reachable States 

Range 

 
Illegal States 

Range 

 
Unknown States 

Range 

BCL2 (1) 1 to 125 0, 126 to 255 NA 

BAD_mito (2) 0 to 10 17 to 255 11 to 16 

BAD_p14 (3) 0 to 250 251 to 255 NA 

BAD_cyto (4) 0 to 238 239 to 255 NA 

BAD_BCL2 (5) 0 to 235 ? 236 to 255 

tBID_mito (6) 1 to 103  0, 124 to 255 104 to 123 

tBID_BCL2 (7) 139 to 252 0 to 127,  
253 to 255  

128 to 138 

tBID_cyto (8) 0 to 11 12 to 255 NA 

 

 

As evidenced from the tables, our approach based on image computation of the 

abstract circuit was able to reduce the number of unknown states significantly. This 

further helps us to analyze protein combinations as discussed in the next section. 

 

4.3    Study of protein combinations 

Till this point we have been studying the protein states individually and we had no 

idea about how any two or more proteins may interact with each other. An attempt was 

made in [1] using simulation as well as SAT-based Induction to study state space 

partition where two proteins are involved but the results were unsuccessful for many 

state combinations due to the following reasons: 
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a) With a lot of state space of individual proteins lying in the “unknown” region, there 

was little opportunity to obtain good results when two protein interactions are 

studied, even with symbolic simulation techniques.  

b) A study of protein interactions through reachable state space analysis via 

simulation was conducted, but it did not give good results. As we know from all 

the experiments done till now, random and guided logic simulation based 

techniques have shown to work poorly on Apoptosis model. 

c) The many unknown states simply present a very large unknown state space. 

Consequently, we cannot sufficiently constrain the state space and the target 

state space blows up which hampers the analysis. 

 

We try to analyze two-protein interactions now that we have a more complete knowledge 

of the illegal state space. From the results, there were several proteins for which there is 

no unknown state remaining (e.g., tBID_cyto, BAD_p14, etc…).  This provides a good 

starting point for analyzing protein pairs. 

4.3.1    Initial Approach 

We need to analyze only the cross product of legal state space of any 2 proteins. 

Table 4-3 depicts the magnitude of cross-products of legal state spaces that we will have 

to deal with. 

Table 4-3: Reachability spaces of individual proteins 

Protein type Reachable Unknown Illegal 

BCL2 (1) 125 0 131 

BAD_mito (2) 11 6 239 

BAD_p14 (3) 251 0 5 
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Protein type Reachable Unknown Illegal 

BAD_cyto (4) 238 0 18 

BAD_BCL2 236 20 0 

tBID_mito (6) 103 20 133 

tBID_BCL2 (7) 114 11 131 

tBID_cyto (8) 12 0 244 

 
For example, proteins 1 and 2 have potentially 125*11 = 1375 legal state combinations. 

Proteins 3, 4 and 5 have many more individual legal states and in particular there cross 

product leads to many states, close to 65000 state combinations. The cross-product of 

proteins 1 and 6 involves 125*103=12875 states. We start our initial approach and then 

try to improve our method of illegal state computation. Our initial method is as follows:  

 

 

} 

} 

 switch (ila.sat_solve( )) { 

     case (SAT): 

          // state is reachable in the abstract circuit, hence no conclusion 

     case (UNSAT): 

         - add the state combo to the illegal constraints at the PPI 

   } 

 -constrain the PPOs to the target state combination 

-for_each (legal combination of the two protein state space) { 

-while (no new illegal states can be learned) { 

-constrain all the illegal states of individual proteins learned till now at PPI and PPO 

Method to calculate illegal states in protein combinations 
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This method has to be run till it yields no new illegal state combinations for the target 

protein pair. Although it gives good results for cases where the number of legal states to 

consider is less than 2000, for cases where number of states to be considered is greater 

than that, it simply takes too long to go through the possible value combinations. In other 

words, this algorithm becomes less practical for cases where the number of states is 

large, especially for those involving 65000 state combinations. Nevertheless, the initial 

results are encouraging for some of the combinations as shown in Table 4-4. 

 

Table 4-4: Illegal state combinations 

Protein Combination Illegal states found out of total legal states possible

1_2 3 out of 1375 

1_8 96 out of 1500 

2_4 25 out of 2618 

2_5 1 out of 2596 

2_6 1 out of 1133 

6_8 305 out of 1236 

 
 
This basic method was tried for protein pair 3 & 4 which have 59738 potential legal 

states and it yielded only 1 illegal state out of 59738 states, and that took a long time 

because there were so many SAT instances to be solved. So an alternate method had to 

be developed to tackle this problem. In addition, as discussed in Section 4.2.2, the same 

reasons apply here also. It is possible that many illegal states were in fact never learned 

and falsely being reached due to abstraction. Surely, protein combinations 1_8, 2_4, 6_8 

have shown some good results with this naïve initial approach which encourages us to 

improve it even further. 
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4.3.2    Improving the naïve approach 

There are several opportunities for improvements to the previous approach. One 

such approach is the application of Algorithm 4.1 to the protein combinations instead of 

individual proteins. We have a database of around 5300 different states (all 64 flip-flops 

considered) from the simulation trace. The size of the initial reachable state set for a 

single protein is typically less; for example, for tBID_cyto, only 11 states out of 256 

states are extracted from the simulation trace. As we started with the reachable state set 

from the simulation trace of the concrete circuit in order to learn illegal states of 

individual proteins, we can also have the same kind of approach for protein 

combinations as well. The size of the initial reachable state set for two protein 

combinations is found to be around 150 to 200 states as obtained from the simulation 

traces. The pseudo-code is as shown in Algorithm 4.2. 
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    } 

 } end while 

  } end switch 

        Continue; 

9          -Add this newly learned state to the constraints of 2 protein flip-flops at PPI  

8          -Extract the 2 protein flip-flop assignment at PPO.  

      case SAT: 

          Exit; 

till now from the complete legal state space (cross product) of target 2 

proteins. 

7          -Extract the illegal states by taking a difference of the reachable set obtained 

      case UNSAT: 

  switch (ila.sat_solve( )) { 

6 while (TRUE) { 

  circuit. 

5 -Leave the other PPIs (other than the target protein) unconstrained resulting in an abstracted  

4 -Constrain the illegal states learned till now (by any method) on the PPIs and PPOs. 

3 -Constrain the target 2 proteins at PPO to be not in the current reachable state space. 

2 -Constrain the target 2 proteins at PPI to be in the current reachable state space 

1 -Extract the unique reachable states of the target 2-proteins from the simulation trace  

0 -Unroll the circuit for only one timeframe. 

    extract_illegal (target_combination) { 

Algorithm 4.2: Framework to extract illegal state combinations 
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This approach leads to better results for those protein combinations which also gave 

some illegal states with the approach in Section 4.3.1. The results are displayed in Table 

4-5. 

Table 4-5: Comparison of different approaches. 

Protein 
Combination 

Illegal states  
from Section 

4.3.1 

Improved 
approach of 
Section 4.3.2 

1_8 96 out of 1500 606 out of 
1500 

6_8 305 out of 1236 627 out of 
1236 

 
 
As shown in Table 4-5, the revised method has given good results in the cases 

mentioned. We will present the detailed graphs, depicting the illegal state space more 

clearly later. Results for other protein combination were not that encouraging and were 

similar to the results as obtained in Section 4.3.1. Also for cases where the number of 

states of two proteins combination is greater than 3000, it takes a long time to finish this 

procedure. We need to thus tackle this problem of large number of states and reduce the 

runtime in order to make it more scalable. 

 

4.4    An incremental approach to calculate illegal states 

We now propose an incremental technique to learn the illegal states for those 

protein combinations which have very large potentially legal state spaces. When the 

cross product of legal state space of two proteins becomes more than 10000, it is 

impractical to compute the illegal states as we suggested in Section 4.3.2. It will simply 

take too long because of large number of SAT solver calls involved. Our aim is to avoid 

the large number of SAT solver calls and still be able to learn maximum illegal states.  
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4.4.1    The Role of Most Significant Bits in Identification of Illegal States 

We now discuss a technique which helps us tackle the problem discussed in 

previous section. We explain the technique with the help of following example. Consider 

the state 1101XXXX. This state specifies the states ranging from 11010000 to 11011111 

i.e., from 208 to 223 in terms of integer values. Now consider the state bits of 2 proteins 

taken together. Let us consider a state 1101XXXX1100XXXX. The first 8 bits belong to 

protein A and last 8 bits belong to protein B. Only the 4 Most Significant Bits (MSB) are 

specified for both the proteins. When we enumerate the MSB only, there would be a total 

of 256 different combinations possible ranging from 0000XXXX0000XXXX to 

1111XXXX1111XXXX. Hence, we only explore the MSBs under observation and leave 

the other bits as unknown. Suppose we obtain the state 1101XXXX1100XXXX as an 

illegal state. This specifies that any state between 208 to 223 of protein A together with 

any state between 192 to 207 of protein B would form an illegal state combination.  

Hence, in order to study two protein combinations, if we consider the MSBs of 

the two proteins together and then we find illegal states comprising of those MSBs (other 

bits being don’t cares), we discover a large number of illegal state combinations more 

quickly. We learn illegal state combinations quickly because of the following simple 

reason: if all the 8 bits of both the proteins are specified, there are 16 bits to expand and 

therefore 216 different state combinations are possible which will take a long time to 

analyze. However, when only 4 MSBs of each protein are specified, there are only 28 

different state combinations possible and we are able to reach a fixed point in the 

algorithm quickly. It is easy to extract the initial reachable state set of the MSB bits from 

the simulation traces. The rest of the process is then quite similar to Algorithm 4.2. We 

extract illegal states by taking a difference of the states reached so far from all possible 

combinations (256 total state combinations in case of 4 MSB learning).  
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We are able to learn more illegal states with 5 MSB learning as compared to 4 

MSB learning, due to the reason explained here. Consider state cube 1100XXXX. This 

state cube denotes states with value ranging from 192 to 192+15. If the states 192 to 

192+7 constitute legal state combinations with the other protein and states 192+8 to 

192+15 form the illegal state combination with other protein, then 4 MSB learning will not 

yield conclusive results. However, when we consider 5 MSB learning, 11000XXX (192 to 

192+7) will denote legal state space with other protein and 11001XXX (200 to 200+7) 

will denote illegal state space.  

Hence, apparently, 5 MSB yields better results due to its higher resolution but the 

penalty lies in the number of SAT iterations because of large number of different states 

possible. The number of states to consider are obviously more in case of 5 MSB learning 

(1024 states) as compared to 4 MSB learning (256 states). We adopt the procedure of 

first learning the illegal states with 4 MSB learning. This presents us with only 256 

different combinations to search and illegal states are learned quickly. However, illegal 

states learned are not complete because of less resolution of 4 MSB learning. The illegal 

states learned from 4 MSB learning are then used as constraints for 5 MSB learning and 

so on. 5 MSB learning will consist of 1024 different state combinations to target for (in 

total, 10 bits of two different proteins are specified). Similarly, 6 MSB learning will consist 

of 4096 different state combinations to target for (in total, 12 bits of two different proteins 

are specified). Since the state space is constrained at each step due the illegal states 

learned in previous steps, new illegal states are learned more quickly. 
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4.5    Results 

Individual protein analysis results have already been discussed in Table 4-1 and 

Table 4-2. Now we discuss some of the results obtained for the two protein analysis. 

Although we obtain lot of illegal states during our analysis, here we show some of the 

significant results and discuss them in detail.  

The first graph in Figure 4-7 shows the illegal state space in the cross product of 

legal states of protein 6 (tBID_mito) and protein 8 (tBID_cyto). After several iterations of 

learning illegal states and constraining them repeatedly at the PPIs, we were able to 

prove 728 illegal states (out of 1236 total states) in the cross product of legal state space 

of protein tBID_cyto and tBID_mito. 

 

 

Figure 4-7: Illegal states in the cross product of the legal states of tBID_mito & tBID_cyto 
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Similarly, in the cross product of legal state space of BCL2 and tBID_cyto, we proved 

658 states (out of 1500) states as illegal. Figure 4-8 shows a clear graph for this 

analysis. 

 
Figure 4-8: Illegal states in the cross-product of the legal states of BCL2 & tBID_cyto 

 

As clear from the previous two figures, one can picture how the two proteins behave in 

conjunction with each other. 
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In Figure 4-9, we specify the relationship between the proteins BAD_cyto and BAD_mito, 

although the large space denoted as not illegal is unknown (could be either illegal or 

reachable). All we say is that the space marked in dark color is definitely illegal. 

 

 
Figure 4-9: Illegal states in the cross-product of the legal states of BAD_mito & BAD_cyto 
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Next, we give an example which specifies the importance of the MSB learning 

approach (Section 4.4.1) that we adopted with regards to the study of illegal states in 

those cases where legal state cross products is very large. BCL2 and tBID_mito have 

12876 states as possibly legal. When we first perform the 4 MSB learning, we get the 

following graph as shown in Figure 4-10.  

 

Figure 4-10: 4 MSB illegal state learning for BCL2 and tBID_mito showing the less 

resolution of the illegal states obtained as indicated by the rectangular boundaries. But the 

advantage is that we learn many illegal states in less time. 

 
One notable point is that tBID_mito still has 20 unknown states. These 20 states 

(ranging from 104 to 123) could not be proven either legal or illegal in the individual 

protein analysis. But as apparent from Figure 4-10, we were able to see that states 104 to 

123 of tBID_mito also present some illegal states in conjunction with BCL2.  

As clear from the argument that we gave in Section 4.4.1, since the resolution is 

less in case of 4 MSB learning, we get crude blocks of illegal states as clear from the 

rectangular boundaries in the above graph. More illegal states are learned with 5 MSB 

learning as shown in Figure 4-11. 
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Figure 4-11: 5 MSB learning refines and adds to the illegal states obtained from 4 MSB 

learning for proteins BCL2 and tBID_mito. No longer there are any rectangular boundaries 

which are indicative of possibility of more illegal state learning. 

 
 
Here is a summary of learned states for two protein combinations. 

Table 4-6: Illegal state combinations 

Protein Combination Illegal states found out of total legal 
states (cross product) possible 

1_2 3 out of 1375 

1_8 658 out of 1500 

1_6 9233 out of 12876 

2_4 524 out of 2618 

2_5 2 out of 2596 

2_6 4 out of 1133 

6_8 728 out of 1236 

3_4 1920 out of 59738 
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To have an overall view of the amount of illegal states learned when two protein 

interactions are considered, take a look at Figure 4-12 and Figure 4-13. 

 Figure 4-12 shows the interaction of BCL2 with tBID_mito. Since Biological 

systems are continuous transition systems, we can safely assume that the non-illegal 

space surrounded by a rectangle (1 to 125 (x-axis) with 104 to 123 (y-axis)) is also illegal 

in Figure 4-12. 

 

 

Figure 4-12: Complete state space overview of BCL2 and tBID_mito 

 
 
 

Figure 4-13 shows how tBID_cyto and tBID_mito interact with each other. It is 

quite clear that the two proteins can only be in the narrow zone shown in the graph. 

Apart from that narrow zone, the rest of the state space is illegal. 
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Figure 4-13: Complete state space overview of tBID_mito and tBID_cyto 

 
 

Just a fact to be noted again is that the non-illegal state space is unknown (either 

reachable or illegal). We are unable to assert anything about that. More information can 

be obtained about those regions through simulation of the system. From the discussed 

results, it is evident that the amount of learning we have been able to achieve, using 

techniques discussed in this thesis, is quite significant for the Apoptosis Model. 
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Chapter 5  
 

Conclusion 

 

We have been able to obtain a clear picture of the Apoptosis model state space. 

With the application of GALS, BMC and SAT-based Induction in earlier research, we 

were able to analyze the Apoptosis model to a large extent.  On the other hand, the 

limitations of the previous method render us an incomplete picture of the reachability 

space of the Apoptosis model. From the results presented in the earlier work, the 

majority of the state space of different proteins was lying in the unknown region.  

In this thesis, we tried to further analyze the states in the Apoptosis model and 

reduce that unknown region. Since the state space partition information is available to us 

in the form of different proteins, we are able to focus our efforts for the in-depth analysis 

of different proteins. We first tried to use ATPG and simulation based methods to identify 

illegal states and even tried Distinguishing X’s logic simulation to get better results. But 

no improvements were obtained, reassuring us of the fact that in the Apoptosis model, a 

drastically different approach is needed.  

Next, we presented a methodology to identify illegal states using image 

computation of the abstract Apoptosis circuit. Using various kinds of abstractions for 

different proteins, we were able to extract many illegal states in the Apoptosis model. 

These newly learned illegal states further constrained the Apoptosis model and we were 

able to converge to a fixed point where no more illegal states could be identified using 

this method. The unknown state space was thus reduced by a large margin. 
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 61

Once we had a clearer picture of the individual proteins, we were able to study 

the state space of the protein combinations using a similar method and once again much 

information was obtained on how proteins might behave in combination with each other. 

We presented a MSB based approach to quickly identify illegal states for those protein 

combinations where simple iterative procedure might have taken a long time to compute 

illegal states.  

As a result of our work, the number of states that were previously in the unknown 

region is greatly reduced. We have developed an improved methodology to identify 

illegal states in the Apoptosis model. Fault analysis can now be efficiently conducted 

because we have a more complete knowledge of the state space. The illegal states can 

be added as constraints in all kinds of analysis such as SAT-based Induction, analysis 

involving implication graphs.  More pathways can be added to the model and we will be 

able to study more complex models as well because of the scalability of our abstraction 

based methodology. 
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