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ABSTRACT 

 Peatlands are a diverse type of wetland ecosystem, characterized by high levels of 

soil organic matter, that provide a wide array of ecosystem services including water 

storage and filtration, carbon sequestration, and unique habitats. Draining peatlands 

degrades their resilience to future disturbances, notably including high intensity, soil-

consuming fires. Peat soil fires are unique in that they can smolder vertically through the 

soil column, with consequences ranging from large carbon emissions to altered hydrology 

and dramatic shifts in vegetation communities. In this work we had two complementary 

objectives to understand both the drivers and impacts of smoldering fires at the Great 

Dismal Swamp (VA and NC, USA). First, we developed and verified a new method to 

model peat burn depths with readily available water level and peat hydraulic property 

data. Our findings suggest that drainage weakens both short- and long-term controls on 

peat burn depths by reducing soil moisture and by decreasing peat water holding 

capacity. To address the impacts of smoldering fires, we quantified the abundance of the 

noxious Phragmites australis in a large fire scar and the extent to which altered 

hydrology influenced its occurrence. We did so by leveraging satellite imagery, random 

forest models, LiDAR data, and water table observations. Our results suggest that P. 

australis is aided by a hydrologic regime generated, in part, from the combined effects of 

drainage and deep smoldering fires. Our conclusions from these two studies contribute to 

the scientific understanding of smoldering peat fires and can inform management efforts. 
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GENERAL AUDIENCE ABSTRACT 

 Peatlands are a diverse type of wetland ecosystem that have characteristically 

thick levels of organic-rich soil, known as peat. Peatlands are home to a variety of unique 

plants and animals, store large amounts of carbon, and provide water storage functions. 

Peatlands were historically drained to enable development and conversion to other land 

usages, which had many unintended consequences like increasing their risk to wildfires 

that consume soil organic matter. An intense peat fire can smolder down through the peat, 

with impacts ranging from large releases of carbon to changes in water levels and 

vegetation communities. In this work we had two objectives aimed at understanding the 

drivers and impacts of smoldering peat fires in the Great Dismal Swamp (GDS) (VA and 

NC, USA). First, we developed and verified a new method of modeling how deep peat 

fires burn by using readily available water level and soil property data. Our findings 

suggest that drainage weakens both the short- and long-term controls on peat fire burn 

depths by reducing soil moisture and by limiting the ability of peats to hold water. We 

also studied how water levels in a post-peat consuming fire environment influence the 

amount of the weedy Phragmites australis. We did so by using satellite imagery, 

elevation data, and water table observations. Results from this investigation suggest that 

the combined effects of drainage and deep smoldering fires help to create ideal conditions 

for P. australis invasion and establishment. Our findings from these two studies add to 

the scientific understanding of smoldering peat fires and may inform land management 

decisions. 
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1.0 INTRODUCTION 

1.1 BACKGROUND AND JUSTIFICATION 

 Peatlands are a diverse type of wetland ecosystem that are characterized by deep, 

organic-rich soils. Supplying a host of important ecosystem services, peatlands improve water 

quality, provide water storage functions, produce food and textile materials, and support a 

diverse array of biotic communities (Zedler & Kercher, 2005). The characteristically deep 

deposits of soil organic matter, known as peats, develop as net primary productivity outpaces 

decomposition, which is limited due to anaerobic conditions and enzymatic constraints (Limpens 

et al., 2008; Freeman et al., 2001). This unbalanced relationship between primary production and 

decomposition means that peatlands are major carbon sinks, storing approximately twice the 

amount of carbon as the atmosphere (USGCRP, 2018).  

Despite the numerous benefits, an estimated 14.1% of peatlands in the contiguous United 

States were drained and degraded by the mid-1990s to enable other land uses (Joosten, 2010). 

The long history of drainage has limited the ability of peatlands to provide ecosystem services, 

while in tandem making them increasingly vulnerable to future disturbances like wildfires (Page 

& Baird, 2016; Poulter et al., 2006). Peatland fires differ from fires in other systems as they can 

smolder vertically down through the soil column (Hawbaker et al., 2016; Reardon et al., 2007), 

with high severity fires having been observed consuming up to two meters of peat thickness, 

thereby releasing large amounts of carbon (Drexler et al., 2017). Draining a peatland has obvious 

and immediate implications for fire risk as it lowers water tables, thereby reducing soil moisture 

(Reardon et al., 2007; Schulte et al., 2019). Over the long-term, sustained drainage can alter soil 

hydraulic properties (Schwärzel et al., 2002) in a way that may have persistent influence on the 

water holding capacities of peats (Word et al., 2022). The relative contributions of these two 
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consequences of drainage to current fire risk are not well understood. Further, methods of 

predicting smoldering fire severity are either overly simplified or complex, and having an 

accurate and efficient assessment of risk is desired by land managers and planners (Fire 

Environment Working Group, 2009). 

 An important consequence of high-severity peat fires is that they alter wetland 

bathymetry and thus local water level regimes, thereby changing landscape form and function 

(Watts & Kobziar, 2013; Watts et al., 2015), while also destroying plant regenerative material 

both above and below ground (Matlaga et al., 2010). All of these factors influence the species 

that recolonize post-fire and successional trajectories (Gorham & Rochefort, 2003). Peatland 

ecosystems are highly prone to invasive species generally but are especially vulnerable 

immediately following disturbance events (Zedler & Kercher, 2004). One species that is able to 

take advantage of a post-disturbance environment with high success is Phragmites australis 

(Chimner et al., 2016; Ji et al., 2009; Wilcox et al., 2003). Multiple competitive advantages, such 

as rapid vegetative reproduction (Marks et al., 1994) and numerous windblown seeds (Kettenring 

& Mock, 2012), enable P. australis to aggressively colonize disturbed peatlands with dense, 

near-monospecific stands that limit the abundance of native species (Farnsworth & Meyerson, 

1999). Given the aggressive nature of P. australis, and its capacity to reduce habitat quality 

(Able & Hagan, 2003; Robichaud & Rooney, 2017), it is important that we thoroughly 

understand the controls on its abundance in heavily disturbed systems. This information would 

inform invasion ecology theory and help land managers in prevention and removal strategies.  

  Advancing our understanding of the controls on high severity peat fires would aid in their 

mitigation efforts, which would in-turn limit the susceptibility of these systems to invasive 

species. Averting invasions from species like P. australis, which given its biology may initiate a 
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grass-fire feedback cycle (D’Antonio & Vitousek, 1992) – where fire promotes grass invasions 

and highly flammable grasses provide fuel for fires – would prevent further degradation. To 

develop our understanding of both the drivers and impacts of smoldering peat fires, it would be 

beneficial to work in a peatland system that has experienced drainage, high severity fires, and P. 

australis invasion. To that end, the Great Dismal Swamp National Wildlife Refuge (GDS) is an 

ideal study location for these investigations (Fig. 1). GDS is a 54,000 ha, federally protected 

freshwater peatland that has experienced both high severity peat fires and P. australis invasion. 

Previous research efforts in GDS have collected and analyzed numerous peat samples that were 

co-located with water monitoring wells (Fig.1) (Word et al., 2022) and derived site-specific peat 

moisture-to-ignition thresholds (Schulte et al., 2019). These datasets combined present the 

opportunity to test a new methodology of burn depth predictions as well as an investigation of 

the short- and long-term impacts of drainage on fire risk. Additionally, recent deep, smoldering 

burns in GDS are now invaded with patches of P. australis. By combining high resolution 

satellite imagery, LiDAR-derived elevation data, and water level data, we can investigate the role 

that a disturbance-altered hydrology, among other site factors, may have on P. australis 

abundance in a peatland that has recently experienced high severity wildfire. 

 The aims of the following two chapters are to: i) develop and compare different models 

of peat burn depth potentials to then assess fire vulnerability across GDS and ii) map P. australis 

abundance across a portion of GDS and relate its occurrence to site parameters, namely post-fire 

water level regimes. These two chapters can be read as standalone pieces (holding references to 

Fig. 1) and have been written in the Manuscript ETD format per the Virginia Tech electronic 

theses and dissertations guidelines. 
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Figure 1: Map of the Great Dismal Swamp National Wildlife Refuge, with sample locations from 
Chapter 2 marked. The red outline is the Lateral West burn scar, a 2502 ha marsh whose 
boundaries are defined by the 2011 fire, which is the study site for Chapter 3. 
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2.0 MODELING BURN DEPTH POTENTIAL IN DEGRADED PEAT SOILS 

2.1 INTRODUCTION 

 Peatlands are a diverse set of wetland ecosystems characterized by saturated soils and 

high levels of soil organic matter. Supplying a wide variety of important ecosystem services, 

peatlands improve water quality, provide water storage, and support a diverse array of flora and 

fauna (Zedler & Kercher, 2005). The deep organic soils that characterize peatlands develop as 

net primary productivity outpaces decomposition due to anaerobic conditions and enzymatic 

constraints (Limpens et al., 2008; Freeman et al., 2001). Consequently, peatlands are major 

carbon (C) sinks, with northern circumpolar zones alone storing 1,460 to 1,600 Pg C, or 

approximately twice the amount of C in the atmosphere (USGCRP, 2018). Yet, sizeable peatland 

extent has been drained for expanding development and agriculture since European colonization, 

with an estimated 14.1% of peatlands in the contiguous United States degraded by the mid-1990s 

(Joosten, 2010). Decades of drainage have resulted in increased soil oxidation, altered vegetation 

communities, and, importantly, greater fire risk (Holden et al., 2004; Paal et al., 2016; Page & 

Baird, 2016; Poulter et al., 2006). 

 Fires in peatlands are a natural process that help cycle nutrients and maintain distinct 

plant communities, particularly fire-adapted species (Loveless, 1959). While periodic surface 

fires are normal, threats to peatland resilience arise when fire severity increases. Compared to 

other ecosystems, fires in peatlands are unique in that they can smolder vertically down within 

the soil column, burning considerable quantities of organic matter (Hawbaker et al., 2016; 

Reardon et al., 2007). Particularly severe smoldering fires can consume up to 2 meters of peat 

vertically and can burn for months (Drexler et al., 2017; Sleeter et al., 2017; Turetsky et al., 

2015). The deeper a peat-consuming fire burns, the larger the C emissions (Poulter et al., 2006), 
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meaning that high severity fires can undo centuries of C accumulation (Kuhry, 1994; Sleeter et 

al., 2017; Turetsky et al., 2015), greatly outweighing a system’s potential for long-term 

sequestration (Pindilli, et al., 2018; Rein, 2015). Beyond these global C implications, high 

severity burns also have dramatic local impacts, where deep burns can vastly alter local 

topography and therefore hydrology (Watts et al., 2015). Deep burns also remove vegetation and 

regenerative tissue both above and below ground (Matlaga et al., 2010). As such, land managers 

are increasingly concerned with peatland fire prevention and prediction (Fire Environment 

Working Group, 2009), both of which would benefit from an improved understanding of the 

drivers of peat fire severity. 

 Intuitively, as the moisture content in a peat decreases its flammability increases (Prat-

Guitart et al., 2016; Reardon et al., 2007), meaning that both the threat of ignition and depth of 

peat consumption are directly dependent on dynamic soil moisture regimes. Soil moisture 

profiles in peatlands are controlled by both hydrologic inputs and outputs as well as soil 

hydraulic properties, including pore structures and their influence on hydraulic conductivity and 

water retention. Artificially draining a peatland has clear short-term implications for 

flammability as it lowers water tables and reduces soil moisture (Reardon et al., 2007; Schulte et 

al., 2019). Yet, sustained drainage can also have long-term impacts on soil hydraulic properties 

(Schwärzel et al., 2002) and thus a persistent influence on soil moisture regimes and associated 

fire risk. Soil hydraulic properties differ between peatlands, but may also vary within a site both 

laterally and vertically (Benscoter et al., 2011). This variation in soil properties thus indicates 

that there may be similar variability in soil moisture regimes and associated smoldering fire risk 

among and within sites. Further, peats vary in the soil moisture threshold at which ignition and 
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smoldering can occur, based upon properties such as bulk density and carbon content (Frandsen, 

1997). 

  Predicting fire risk across time and space requires site-specific knowledge of soil 

moisture thresholds for ignition along with soil moisture observations, or predictions thereof 

based on soil hydraulic properties and hydroclimatic forcing. To that end, Schulte et al. (2019) 

quantified site-specific soil-moisture thresholds for peat ignition and developed soil moisture 

release curves (MRCs), which relate tension (i.e., soil water pressure potential) to moisture 

content throughout the soil profile. By combining these two properties, they made temporal 

predictions of smoldering ignition vulnerability from water table time series. Those predictions, 

however, were limited to surface ignitions as they relied upon MRCs developed using surface 

samples. Characterizing the heterogeneity of peat properties at multiple depths would enable 

predictions of the moisture profile throughout the vadose zone, thereby allowing for depth of 

burn predictions.  

 The water table-based models of soil moisture made by Schulte et al. (2019) also 

operated under the unverified assumption that the soil water in their system was rapidly returning 

to a resting state (i.e., hydrostatic equilibrium). If a system is at a state of hydrostatic 

equilibrium, then the negative tension driven by the relative position of the water table is the 

only dynamic factor influencing the above soil moisture profile. That assumption may be 

inappropriate in systems where soil water redistribution is slow, as is the case in soils with low 

hydraulic conductivities (Dingman, 2015). An alternative, albeit more complex, approach to 

predict ignition and smoldering depth risk would be to use process-based models, such as 

HYDRUS-1D (Šimůnek et al., 2006), which utilize known hydraulic properties to model soil 

moisture redistribution and profiles based on hydrologic inputs and outputs. 
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 Our primary objective in this study was to predict smoldering depth potential, both 

spatially and temporally, in a drained, temperate peatland: The Great Dismal Swamp National 

Wildlife Refuge, Virginia and North Carolina, USA (Fig. 1). Our goals were to build upon past 

work focused on surface ignition in this system (Schulte et al., 2019) to: i) compare a water 

table-based approach that assumes hydrostatic equilibrium for predictions of soil moisture 

profiles and smoldering depths to that of the process-based model HYDRUS and ii) predict 

smoldering depth potentials over time (April 2017 to September 2019) and across sites (n = 11) 

using multiple MRCs developed throughout the soil profile. Our second objective was to explore 

the influence that a history of drainage has on contemporary peat fire risk via changes in soil 

hydraulic properties. Earlier work in our study system identified a bimodal stratification of the 

soil profile, where drained upper layers had different pore structures and lower water retention 

(Word et al., 2022). Given that observation and the known site history, the goal of this objective 

was thus to investigate the potential long-term impact of drainage on peat fire risk. 

2.2 METHODS 

2.2.1 Study Area 

 The Great Dismal Swamp (hereafter GDS) is a palustrine, forested peatland in the coastal 

plain ecoregion of southeastern Virginia and northeastern North Carolina, USA (3635’49”N, 

7629’26”W). At approximately 75,000 ha, GDS is managed by a group of federal, state, and 

non-governmental organization partners – the largest being the US Fish and Wildlife Service 

who oversee the National Wildlife Refuge (NWR) of the same name (Fig. 1). Characterized by a 

temperate climate, the summers are hot and humid, and the winters are mild. GDS is largely rain-

fed, with a mean annual precipitation of 116.2 cm and mean annual evapotranspiration of 81.3 

cm (USFWS, 2006). The 144-mile drainage ditch network that bisects GDS was first dug in the 
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late 18th century to lower water tables and facilitate logging operations (Eggleston et al., 2018; 

Hansen, 2010). Once a rich mosaic of forested wetland community types, GDS is now 

dominated by maple-gum forests (Acer rubrum – Nyssa spp.) with a less significant contribution 

from wetland obligates such as bald cypress (Taxodium distichum) and Atlantic white-cedar 

(Chamaecyparis thyoides) (Ludwig et al., 2021). Deeper water tables have also likely increased 

smoldering fire vulnerability, as evidenced by the 2008 South One and 2011 Lateral West 

wildfires, which burned 1,800 ha and 2,500 ha respectively and released a combined 1.83 Tg C 

(Hawbaker et al., 2016), and burned 47 cm deep on average (Reddy et al., 2015). In response, 

GDS NWR currently operates water control structures within the ditch network to manage water 

table positions and dynamics. Those efforts are aimed at supporting increased C sequestration, 

restoring historical forest communities, and reducing vulnerability to deep, smoldering fires 

(Balentine, 2020).  

2.2.2 Study Sites and Peat Properties 

 The organic rich soils of GDS are commonly referred to as a peatland following general 

definitions for peatlands as wetland systems with Histosols greater than 40 cm in depth (Joosten 

& Clarke, 2002). Therefore, we refer to such soils found in GDS hereafter as peats. The peats of 

GDS have two physically distinct stratum with mineral soils underlying the lower layer and 

occasionally occurring at the surface (Natural Resources Conservation Service, 2017). The upper 

layer has lower organic and fiber matter contents, higher bulk densities, and lower water 

retention properties, a difference attributed to a history of drainage (Word et al., 2022). 

 We acquired water table data and previously determined peat properties for 11 sites 

across GDS (site locations indicated in Fig. 1). Water table dynamics were monitored at each site 

with one vented, submersible, pressure transducers (either Campbell Scientific CS 450, 
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Campbell Scientific, Logan, UT, USA; In-Situ Level Troll 500, In-Situ Inc., Fort Collins, CO, 

USA; or KPSI 500; Pressure Systems Inc., Newport News, VA, USA) that collected continuous, 

hourly data from April 2017 through September 2019. Previous work by Word et al. (2022) 

collected peat cores from each site, measuring both total thickness and thickness of each 

individual stratum layer (hereafter Upper and Lower Peat). Samples were analyzed to develop 

MRCs that relate soil moisture (as percent saturation) to matric potential, expressed as positive 

tension. Specific details on laboratory procedures and the development of soil MRCs can be 

found in Word et al. (2022) and are briefly described here. For each of the 11 sites, MRCs were 

developed for individual samples at the 25th, 50th and 75th depth percentiles of each observed 

stratum layer, with a maximum of six samples per site (i.e., Upper-1, Upper-2, Upper-3, Lower-

1, Lower-2, Lower-3). In situations where a stratum layer was < 40 cm thick, a single sample at 

the layer midpoint (50th depth percentile) was collected. For each sample, multiple tensions were 

applied using the tension table approach for low tensions (< 6 kPa) and pressure plate approach 

for higher tensions (> 33 kPa). By relating these applied tensions to their corresponding 

measured soil moisture values, MRCs were developed for each sample using a modified version 

of the Brooks and Corey (1964) model for water retention.  

 We also took advantage of soil moisture content thresholds for 50% smoldering 

probability as previously developed for three GDS locations with organic soils (see Schulte et al. 

2019 for details). These threshold values (reported as gravimetric water content) were converted 

to percentage of total saturation (ssmolder) to constrain the variability among sites. The three values 

for ssmolder were characterized as Low, Medium, and High (L, M, H) risk levels and used in the 

calculations of burn depth potential for both the water table-based and HYDRUS approaches 

described below. The H risk level was used in the comparison between modeling approaches. 
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We applied these three ssmolder values to all sites because we had information for hydraulic 

properties for each of our 11 sites but not 50% smoldering probability thresholds. 

2.2.3 Water Table-Based Method versus HYDRUS for Burn Depth Predictions 

2.2.3.1 HYDRUS 

 HYDRUS models a soil moisture profile by solving the Richards equation for unsaturated 

flow (Richards, 1931) given meteorological and soil property inputs (Šimůnek et al., 2006). To 

ensure that HYDRUS accurately represents soil moisture profiles in our system, we selected a 

single site (Site 9) to calibrate hourly modeled water table positions against corresponding water 

table observations. Site 9 was selected as it has an intermediate soil capillary length (here used as 

a singular value to quantify water retention capacity) within the Upper Peat samples (Fig. 2A). 

Depth-specific hydraulic properties, residual soil water content, saturated soil water content, pore 

size index, and bubbling pressure from Word et al. (2022) and saturated hydraulic conductivity 

(Ksat) rates from Eggleston et al. (2018) were used to model soil profiles. The profile depth 

matched the depth measurements for upper and lower peat at that site. The upper peat layer was 

evenly divided into two sections as two upper peat samples were collected for Site 9. We 

gathered meteorological data from a weather station located at Suffolk Executive Airport, 

approximately 4.5 km west of GDS NWR. In addition to hourly precipitation amounts, 

meteorological data were used to calculate hourly evapotranspiration rates (ET) using the 

Penman-Monteith (1965) equation. 
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Figure 2: A) Comparison of the Upper and Lower Peat soil capillary lengths for the 11 sites. B) 
Comparison of the Upper and Lower Peat tension-to-ignition (htension, cm) values for the 11 sites 
at the H risk level. Specific values for Sites 2, 5 and 9 from Upper-1 and Lower-1 samples 
labeled where present. 
 
 Adjustments to ET were made to account for differences between potential 

evapotranspiration (PET) and ET via the crop coefficient method (Allen et al., 1998) and 

adjustments to precipitation were made to factor in losses due to canopy interception. Our 

calibration approach was to tune these adjustment factors in order to maximize the Spearman's 

rank correlation coefficient between modeled and observed water table elevations at Site 9 for a 

7-week modeling period (16 June 2017 – 02 September 2017). We evaluated the final calibration 

factors against regionally specific measurements for both the ET to PET ratio (Shoemaker et al., 
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2006; Drexler et al., 2004; German, 2000) and interception (Bryant et al., 2005) to ensure their 

appropriateness. These meteorological calibration factors were applied uniformly to all 

subsequent HYDRUS models.  

 Following calibration at Site 9, we generated HYDRUS models for three sites (Sites 2, 5 

and 9) that represented a broad range of Upper Peat soil capillary lengths and therefore water 

retention properties (Fig. 2A). We focused on capturing the range in water retentions because 

hydraulic properties were expected to largely determine the limits of the assumption of 

hydrostatic equilibrium and thus the appropriateness of the water table-based approach 

(described below) or the necessity for the usage of HYDRUS. Additionally, the sensitivity of the 

HYDRUS models to Ksat values was explored as site specific Ksat values were not measured in 

Word et al. (2022) but rather were fitted parameters in the hydrologic models of Eggleston et al. 

(2018). Eggleston et al. broadly applied these values to Upper Peats (1678.9 cm/h) and Lower 

Peats (30.48 cm/h). We generated HYDRUS models for Sites 2, 5 and 9 with both the Ksat 

typical of their stratum position, and with the entire profile having Lower Peat Ksat, which 

allowed us to evaluate the sensitivity of our modeled profiles to variable Ksat rates. 

 To expand beyond our study system, we also generated HYDRUS models using reported 

hydraulic properties from three different peat types, which included a moderately decomposed 

woody peat (MDWP) and an undecomposed moss peat (UMP) from Verry et al. (2011) and a fen 

peat (FP) from Simhayov et al. (2018). All HYDRUS models were run at a 0.25 cm depth 

resolution (evenly discretized to reflect a site's number and depth of samples) and during the 

same 7-week window of meteorological data. Hourly burn depth potentials in the HYDRUS 

models were calculated as the shallowest point greater than the ssmolder threshold at the H risk 

level.  
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2.2.3.2 Water Table-Based Method 

 For each sample at the six sites modeled in HYDRUS (Sites 2, 5, 9, MDWP, UMP, and 

FP), the tension (i.e., absolute value of the pressure head) required to reach the H risk level 

ssmolder (htension, cm) was derived from their MRCs (Fig. 2B). Assuming hydrostatic equilibrium, 

we determined burn depth potentials as the closest height above the water table under htension. The 

soil profiles for the water table-based method models were evenly discretized to reflect the 

number of samples and their depths collected at each site. Burn depth potentials could not skip 

across sample depths (i.e. if a modeled burn did not move through the entirety of Upper-1, it 

could not reignite in Upper-2, even if a position in Upper-2 had a moisture content less than 

ssmolder).  

2.2.3.3 Comparison Between Water Table-Based and HYDRUS Methods 

 To enable a direct comparison between the two methods, we applied the water table-

based approach using the HYDRUS-simulated water tables. We used the HYDRUS-simulated 

water tables because Sites (2 and 5) had water table observations above ground surface for the 

duration of the 7-week modeling period. For this reason, initial HYDRUS-modeled water table 

depths had to be preset to enable depth of burn comparisons. To ensure that simulations would 

be under a threat of burning, we set initial water table depths equal to the initial observation 

depth for Site 9 or htension for each site's Upper-1 sample, whichever was deeper. By taking this 

approach, we were able to systematically generate initial conditions for our sites and the three 

peats from the literature, for which we had no water table data. Hourly modeled burn depth 

potentials over the 7-week period from the two different approaches were compared using a 

Spearman's correlation analysis. We also compared the frequency of burn events between 

methods. Difference in hourly burn depth predictions (Δburn) were calculated to separately assess 
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periods when HYDRUS predicted greater (+ Δburn) or shallower burn depths (- Δburn) (see 

example in Fig. 4C). Results from this analysis allowed us to identify situations in which peat 

properties or climatic events (e.g., precipitation or periods of high evapotranspiration rates) 

rebuke the necessary assumption of hydrostatic equilibration for the water table-based method, 

thus indicating that the HYDRUS approach may be more appropriate. 

2.2.4 Simulating Burn Depth Potentials Across Sites  

In comparing burn depth simulations from the two approaches, we found that the 

hydrostatic approach is reasonable for our Upper Peats, which are characterized by low capillary 

potential, and therefore water retention (Fig. 2A). Thus, we applied the simpler water table-based 

approach across all 11 sites and three risk levels (L, M, H) to compare burn depth potentials for 

the entire water table record (April 2017 to September 2019). We calculated the htension values for 

the M and L risk levels in the same way as the H risk level. Differences between risk levels at 

each site were evaluated to assess the impact variable ssmolder values had on burn depth potentials. 

Differences among sites and risk levels at sites were assessed using non-parametric Kruskal-

Wallis tests and pair-wise, post-hoc Wilcoxon rank sum tests (= 0.05). 

 To better understand the factors that influence burn risk, we conducted correlation 

analyses (either Spearman’s rank correlation and simple linear regression depending on the shape 

of the relationship) between site-mean burn depths and site variables. We identified surrogate 

variables for short- and long-term controls, specifically mean water table position for short-term 

and soil capillary length as an indicator for long-term. Additionally, a Spearman’s rank 

correlation analysis was used to test for collinearity between these site variables as hydrology 

explained much of the variation between the hydraulic properties of peats samples in Word et al. 

(2022). All statistical tests and comparisons were done in R 4.0.2 (R Core Team, 2020). 
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2.3 RESULTS 

2.3.1 Water Table-Based Method versus HYDRUS for Burn Depth Predictions 

 The correlation coefficient between HYDRUS-modeled and observed water tables at Site 

9 for a 7-week period was maximized by setting the ratio of ET to PET set at 80% and 

interception loss set at 0.11 cm, (Fig. 3B, ρ = 0.93). This strong correlation provided confidence 

that HYDRUS applications would accurately represent the soil moisture profiles at other GDS 

sites. The minor disagreement between the observed and modeled values is likely due to the 

heterogeneity of precipitation events over such a large area, as evidenced by the mismatch of 

initial water table increases around the 1000 h mark and the magnitude around the 600 h mark 

(Fig 3A). 

 

Figure 3: A) Modeled and observed hourly water tables relative to ground surface for Site 9. B) 
Modeled versus observed water tables for Site 9, dashed black line is a line of best fit (ρ = 0.93). 
 



20 
 

 The six peats chosen for model comparison varied in their hydraulic properties – namely 

htension and Ksat – with noticeable influences on the degree of divergence between water table-

based and HYDRUS predictions (Δburn) and the frequency at which they were under threat of 

burning (Table 1, Fig. 4). When modeled with the Ksat rates that corresponded with their stratum 

layers, Sites 2, 5 and 9 all had a close agreement between methods (median +/- Δburn values < 1 

cm, ρ values ≥ 0.94). The strong degree of correlation is predictable for Site 2 given its low 

water retention, but less expected for Sites 5 and 9, which had higher capillary lengths and thus 

greater water retention (Fig. 2A). Site 2 had near complete agreement between the two methods 

(Fig. 4A), as compared to some minor divergence at Site 5 (when applying Upper Ksat), which 

was driven by diurnal ET and precipitation events (Fig. 4B). When modeled with the Ksat rate 

reported for Lower Peat (30.48 cm/h), however, Sites 5 and 9 had much larger Δburn values than 

Site 2, demonstrating the varying level of influence Ksat had across samples that differed in water 

retention. This divergence is evident during drying events when HYDRUS predicts a deeper burn 

depth (+ Δburn), reflecting greater and sustained ET-induced soil moisture declines. It is also 

apparent during precipitation-induced wetting fronts where HYDRUS burn depth predictions are 

shallower than the water table-based approach (– Δburn) (Table 1, Fig. 4C). The influence of Ksat 

on peats with higher water retention can also be seen in MDWP, which has a low Ksat rate and 

high htension value and similarly demonstrated a large degree of divergence from hydrostatic 

equilibrium. Despite their divergence, the separation between model predictions never exceeded 

15 cm for any of the peats. 
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Table 1: Comparisons between modeled burn depth potentials from HYDRUS and water table-
based methods. Reported htension is only for the Upper-1 samples, and Upper Peat Ksat is listed for 
sites with multiple stratum layers. Spearman’s ρ from the correlation between burn depth 
predictions are noted. Δburn is the difference in burn depth predictions between methods, where + 
Δburn denotes HYDRUS burning deeper than the water table-based method. Medians and 
standard deviations, in parenthesis, provided for both. Only % time at burn risk is shown for 
HYDRUS simulations because modeled water tables remained at depths greater than htension for 
all sites, resulting in 100% time at burn risk for water table-based predictions. MDWP is 
moderately decomposed woody peat, UMP is undecomposed moss peat both from Verry et al. 
(2011) and FP is fen peat from Simhayov et al. (2018). 
 

Peat htension 
(cm) 

Ksat 
(cm/h) Burn Depth ρ + Δburn (cm) – Δburn (cm) % Time at Burn 

Risk via HYDRUS 

Site 2 1.00 1678.9 1.00 0.3 (0) 0 (0) 100 

Site 2 1.00 30.48 1.00 0.3 (0) 0 (0.7) 99.7 

Site 9 16.15 1678.9 0.99 0.2 (0.1) 0.1 (0.7) 99.8 

Site 9 16.15 30.48 0.88 1.4 (0.5) 0.9 (4.2) 96.0 

Site 5 65.66 1678.9 0.94 0.7 (0.8) 0.1 (3.1) 98.3 

Site 5 65.66 30.48 0.38 13.4 (3.2) 8.3 (5.0) 90.7 

MDWP 60.34 17.86 0.75 4.1 (1.6) 3.2 (6.3) 95.7 

UMP 1.71 137.16 0.99 0.2 (0) 0 (0) 100 

FP 84.85 106 0.92 0.6 (0.6) 0.8 (3.8) 98.1 
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Figure 4: Modeled water tables from HYDRUS and corresponding modeled burn depths from 
both HYDRUS and water table-based approaches (upper panels). No burn events from the 
HYDRUS approach shown in black. Difference in hourly burn depth predictions between 
methods (Δburn) (lower panels). Site 2 Upper Ksat (A), Site 5 with layer appropriate Ksat (B) and 
for Site 5 with Lower Ksat (C). 
 
2.3.2 Simulating Burn Depth Potentials Across Sites 

 Given that the comparison of modeled burn depth potentials from our subset of sites 

indicated that the water table-based approach is reasonable for our Upper Peats, we applied it 

across all 11 sites and three risk levels (L, M, H). This approach was done to compare burn depth 

potentials between sites and risk levels for the entire water table record (April 2017 to September 

2019). Water table depths, while exhibiting similar temporal patterns, differed among sites (e.g., 

3 & 9) as did their hourly burn depth potentials (shown for the H risk level in Fig. 5). Relatedly, 

the duration of burning risk varied among sites, with some under constant risk (e.g., Site 4) and 
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others never at risk (e.g., Site 5). Further, differences in htension values between samples within a 

site created some situations where fires would burn up to a sample limit regularly (see horizontal 

line for Site 4 in Fig. 5), and others routinely vacillating across sample boundaries (e.g., Site 6). 

The mean depth of burn was also highly varied, with some sites burning incredibly shallow on 

average (e.g., Site 1, mean = 1.6 cm) and others deeply (e.g., Site 2, mean = 59.6 cm) (Fig. 6). 

Similarly, some sites exhibited a large range in burn depth potentials (e.g., Site 6, interquartile 

range = 44.7 cm) whereas others had a much smaller range (e.g., Site 4, interquartile range = 2.7 

cm). When comparing sites for each risk level, only one pairing of sites, Sites 1 and 3 at the 

medium risk level, were not significantly different from one another (excluding sites that had no 

burning events). Notably, Sites 1 and 8 had no burning potential at the L risk level but did at the 

M and H risk levels (Fig. 7), highlighting the importance of ssmolder values.  
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Figure 5: Burn depth potentials modeled by the water table-based method at the H risk level and 
observed water tables relative to ground surface across the 11 sites from April 2017 – September 
2019. Total depth of Upper stratum layers shown. Lower stratum layers, where present, are 
truncated to 1.25 m below ground surface; Sites 1, 2 ,4, 5, & 11 had no Lower Peat present. In 
Site 2, the water table periodically dropped into the mineral layer. The discretization of sampled 
hydraulic properties is noted with horizontal lines.  
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Figure 6: Burn depth potentials across the 11 sites from April 2017 – September 2019 at the H 
risk level, with percentage of time at risk of burning noted above each site. 
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Figure 7: Burn depth potential at the three risk levels compared across the 11 sites for April 2017 
– September 2019. 
 
 The relationship between mean burn depth and mean water table position was, positive 

and significant for all risk levels (Fig. 8A, at risk level H; R2 = 0.92, p-value < 0.001). Mean 

burn depth also had a positive, significant relationship with the site-specific Upper-1 soil 

capillary length (Fig. 8B, at risk level H; Spearman’s ρ = 0.809, p-value = 0.003). Notably, there 

was a significant correlation between these two controlling variables (Spearman’s ρ = 0.81, p-

value = 0.003). 
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Figure 8: A) Relationship between the mean burn depth potential modeled by the water table 
based-approach for the highest risk level from April 2017 – September 2019 against mean water 
table position (R2 = 0.92, p-value < 0.001) and B) against soil capillary length for the Upper-1 
sample (Spearman’s ρ = 0.809, p-value = 0.003). 
 
2.4 DISCUSSION 

 In this study, we developed and verified a method of predicting burn depth potentials in 

organic soils. By combining depth-varying MRCs and hourly water table data with known 

moisture-to-ignition thresholds, we were able to model soil moisture in the vadose zone and 

predict depth of burn potentials across 11 sites in GDS. A subset of the results from this water 

table-based approach were compared against those from a more complex, process-based soil 

moisture model, HYDRUS- 1D. Our findings demonstrate that the former has similar 
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performance as the later, particularly for lower water retention soils with high Ksat rates. This 

study also highlights how inter-site variance in hydrologic regime and peat hydraulic properties 

can lead to differing burn depth potentials and overall fire risk within peatlands. The significant 

relationship between the short-term controls (water table position) and long-term controls (water 

retention) on burn depth potentials further emphasizes the impact drainage, and hydrologic 

restoration, may have on peatland fire risk and severity. Our study adds to the understanding of 

peat fire drivers and provides land managers and planners with a potential approach for assessing 

wildfire risk and prioritizing hydrologic restoration efforts. 

2.4.1 Approaches to Model Burn Depth Potential 

Past work in GDS peat soils focused on surface ignition predictions (Schulte et al., 2019), 

but here we used depth-varying MRCs to develop and test models for smoldering burn depth 

potentials. Peat fires can vary in severity and the amount of soil they consume, with clear 

implications for the global carbon balance (Kuhry, 1994; Parthum et al., 2017; Poulter et al., 

2016; Turetsky et al., 2015) and local ecosystem structure (Watts et al., 2015). For example, a 

large fire at GDS (the 2011 Lateral West Fire) resulted in smoldering depths varying between 0 

and 125 cm (mean = 47 cm) across a 25 km2 area (Reddy et al., 2015) with large C losses (1.2 Tg 

C) (Hawbaker et al., 2016). In contrast, an Alaskan peat fire that burned an area over forty times 

in size (1039 km2) but with shallower smoldering depths (range = 3 - 23 cm, mean = 6.1 cm) 

resulted in C emissions that were less than twice the amount from the Lateral West Fire (2.1 Tg 

C) (Mack et al., 2011). Noting both the burn depth ranges within sites and the differences 

between sites, it is clear that burn depths and C emissions can vary substantially both within and 

among peat fires. As such, the accuracy of burn depth predictions rests upon location-specific 

data, which requires intensive field and laboratory efforts to capture peat heterogeneity at depth 
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and across a site. Despite these difficulties, the importance of having such data and accurate and 

efficient soil moisture models extends beyond burn depth predictions and would be valuable for 

a range of objectives related to moisture dynamics in organic soils. Changes in peatland moisture 

regimes are known to impact decomposition rates and community composition (Leifeld et al., 

2011; Paal et al., 2016), meaning that the methods assessed here could be used to inform a 

variety of management decisions. 

Given the need for accurate yet feasible soil moisture models, we sought to compare the 

simpler water table-based approach to HYDRUS, a process-based model of soil water 

redistribution. HYDRUS requires known soil hydraulic properties, meteorological data, and a 

degree of calibration. While peat property data for HYDRUS has been fitted in previous studies 

for a variety of peat types and may be available (Kettridge et al., 2015; Mccarter & Price, 2014; 

Price & Whittington, 2010), we reemphasize the large variability in hydraulic properties both 

among and within peatlands (Table 1, Benscoter et al, 2011). HYDRUS simulations should be 

calibrated with measured water level or soil moisture data for accurate applications (Dettmann et 

al., 2014). Similarly, publicly available meteorological data may suffice, but model error may 

arise during spatially variable precipitation events (Fig. 3A). Adjustments to hydrologic input 

and output rates (e.g., ET:PET ratios and interception) may also be necessary depending on study 

region and vegetation cover. An additional issue to modeling soil moisture in peatlands with 

HYDRUS is that it has been shown to have trouble describing preferential and non-equilibrium 

flows during wetting periods as it does not account for very large macropores (Dettmann et al., 

2014). Nonetheless, HYDRUS has been shown to provide a good model of soil moisture in peats 

(Price & Whittington, 2010), which made it useful for comparison in our study. In situations 
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where water table data are not available but meteorological data are, HYDRUS may be the best 

method to model moisture regimes in organic soils. 

 Compared to HYDRUS, coupling known MRCs to water table data offers a simpler 

approach and one easier to implement across sites and time. Employing this method still requires 

known hydraulic properties as HYDRUS does, but then solely relies on water table dynamics 

without the need for meteorological data, calibration, and more complex modeling software and 

skill. However, the water table-based method is only appropriate where hydrostatic equilibrium 

occurs rather rapidly, as was the case with our Upper Peats. In situations where rapid hydrostatic 

equilibration is likely not occurring (i.e., in peats that have high water retention and low Ksat 

rates), HYDRUS, or other process-based models may still be needed, depending on modeling 

objectives (e.g., accuracy needs, temporal resolution). Our comparison of methods suggests this 

may be the case for some of our Lower Peats (Fig. 4C) and the MDWP (Table 1). The water 

table-based approach may be valuable to assess soil moisture in drained peatlands for a variety of 

reasons as noted above, and future work should investigate the limits of the assumption of 

hydrostatic equilibrium across a variety of other organic soils.  

 Last, we acknowledge the uncertainty in several key parameters, namely Ksat and ssmolder 

values. We had to rely on previous Ksat estimates for the HYDRUS simulations, which were 

different for our Upper (1678.9 cm/h) and Lower (30.48 cm/h) Peats. When adjusting Ksat, 

however, it is apparent that the extent of its influence is inherently linked to water retention. That 

is, sites with lower retention (e.g., Site 2) are substantially less impacted by adjustments to Ksat 

than high water retention peats (e.g., Site 5, MDWP) (Table 1). Other studies using HYDRUS to 

model peat moisture have similarly found that Ksat is a key control in high water retention peats 

(Kettridge et al., 2015). Our results also demonstrate that the three risk levels assessed (via three 
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different ssmolder values) had subtle influences on burn depth potential, serving to adjust severity 

by only centimeters in either direction (Fig. 7). However, there can be substantial variation in 

ssmolder values among peat types (Frandsen, 1997) and lack of precision therein, as evidenced by 

the large uncertainty around values applied here from Schulte et al. (2019) (e.g., H risk level 

ssmolder was 71.2% with a standard deviation of 77.0%). Additional uncertainty exists around this 

term as the moisture content required for extinction can be much higher than the limit for 

ignition (Huang & Rein, 2015). Regardless of modeling approach used, the soil moisture 

threshold is a necessary parameter for any smoldering predictions, so we stress the importance of 

having a site-specific value that is as precise and accurate as possible. 

2.4.2 Predictions of Burn Depth Potentials Across Sites 

 By applying the water table-based approach to all 11 sites, we were able to model burn 

depth potentials for multiple locations over a large area (Fig. 1) for a 2.5-year period of water 

table data (April 2017 – September 2019). Across our sites, both the site means and variances of 

the burn depth potentials differed (Fig. 6). During the observation window, some sites were 

under a constant burn threat (e.g., Site 4) whereas others never were (e.g., Site 5). The variation 

exhibited by our 11 sites serves to reemphasize that risk assessments should be local rather than 

system-wide, with implications for a range of management efforts in GDS and other peatland 

systems. The standard procedure to assess peat fire risk in the field is to use point-specific soil 

moisture data gathered by handheld sensors (Prior et al., 2020; Robichaud et al., 2004), which is 

applicable only for the time of measurement and not linked to potentially site-varying moisture-

to-ignition thresholds. A stronger understanding of soil moisture dynamics and their specific 

ignition thresholds would help land managers plan prescribed burns or adjust wildfire 

suppression priorities around easily accessible data (e.g., water table depth), which has been of 
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interest in wetlands similar to GDS (Fire Environment Working Group, 2009). Further, 

knowledge on how the degree of risk varies spatially would help land managers prioritize sites 

for hydrologic restoration. Thus, future work, spanning a multitude of different peatland types, 

should compare modeled burn depth predictions with laboratory or in situ burns to further 

evaluate the utility of models. 

The second goal of this objective was to explain the drivers of burn depth potential. The 

variation in water table depths across sites (Fig. 5) ultimately drove their variable burn depth 

predictions, clearly implicating contemporary water level regimes as the primary control of 

smoldering fire risk (R2 = 0.91 Fig. 8A). However, the impact of site-varying peat hydraulic 

properties, specifically water retention, is also significant (ρ = 0.81, Fig. 8B), as not all sites that 

experienced large drawdown events were subject to deep burning (Fig. 5, e.g., Site 8 vs. Site 2). 

Acknowledging the strong influence that individual peat properties play on burn depth potentials, 

both among sites and at multiple depths within sites, further underscores the importance of site-

specific soil data for accurate burn depth and fire risk predictions.  

 The collinearity between the two main controls on peat fire risk, water retention 

properties and mean water table position, demonstrates the multifaceted consequence of 

drainage. In the short term, a deeper water table means drier, and therefore more flammable peat. 

In the long term, drainage can alter peat pore structure and associated water retention properties 

(Peng & Horn, 2007; Peng et al., 2007; Schwärzel et al., 2002). At GDS, previous work 

suggested that drainage resulted in lower water retention and higher macroporosity in Upper Peat 

layers (Word et al., 2022). Consequently, we found that some of our sites had such poor water 

retention capacities that the htension values in their Upper-1 samples were < 1cm (Fig. 2B). A 

logical extension of the combined impact of these drainage effects would be that fires in 
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degraded peats at GDS can regularly be expected to burn down to the water table, as was 

historically the assumption made by land managers at similar peatlands but refuted by other 

studies (Reardon et al., 2007). That extension (that drained peats may always be under threat of 

burning to the water table) may be a convenient shorthand assessment for risk at GDS, and is 

bolstered by the findings that ssmolder values for extinction are often greater than that for ignition 

(Huang & Rein, 2015). However, that conclusion may not be universal as studies in drained 

northern bogs and fens have observed lower macroporosities (and therefore higher water 

retention) as compared to undisturbed peats (Kennedy & Price, 2005; Price & Schlotzhauer, 

1999). These contrasting results once again emphasize the importance of site-specific 

assessments, particularly where past land-use has altered peats. 

 Considering the observed relationship between water table position and water retention 

properties in the reverse, our results suggest that restored peats at GDS may have fire risks more 

similar to undisturbed conditions. If true, this means that hydrologic restoration efforts at GDS, 

and potentially other peatland systems, could be an effective strategy to decrease fire 

vulnerability by enhancing both the short-term controls (available soil moisture) and long-term 

controls (water retention properties). As an example, Site 5 underwent hydrologic restoration 

(Balentine, 2020), has a soil capillary length within the range of the Lower Peats (Fig. 2A), and 

was never under risk of burning in our observation window (Fig. 6). Moreover, work comparing 

the properties of Upper and Lower Peats in GDS found that Upper Peats that experienced 

consistent saturation had hydraulic properties more comparable to undisturbed Lower Peats 

(Word et al., 2022). As further evidence, given that there is a relationship between pore size 

distribution and Ksat (Bouma & Anderson, 1973), Ksat for a peat like Site 5 may more closely 

align with the Lower Peat value used here (30.48 cm/h), further reducing fire risk (Table 1). 
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Given this, we echo the call from Rochefort & Andersen (2017) that future studies should focus 

on the response of peat soils to rewetting efforts. Those investigations should pay particular 

attention to the multiple properties (i.e., water retention, soil moisture-ignition thresholds) that 

drive peat flammability and if their responses to rewetting are consistent across different 

peatland types. Such coupled restoration and research efforts are vital to peatland revitalization 

(Rochefort & Andersen, 2017) and would have numerous positive benefits beyond reducing fire 

risk (Zedler & Kercher, 2005). 
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3.0 INFLUENCE OF FIRE AND DISTURBANCE-ALTERED HYDROLOGY 
ON THE ABUNDANCE OF Phragmites australis 

3.1 INTRODUCTION 

 High severity wildfires are a disturbance of growing concern in peatlands from the artic 

to the tropics (Page & Baird, 2016; Page et al., 2009; Poulter et al., 2006; Turetsky et al., 2015; 

Usup et al., 2004). The effects of drainage, climate change, and increased burning in adjacent 

uplands will all likely increase the frequency of peatland fires in the coming decades (Flannigan 

et al., 2009; Poulter et al., 2006; Turetsky et al., 2015; Watts & Kobziar, 2013). While 

disturbances, including fires, are natural peatland community regulators (Loveless, 1959; Watts 

& Kobziar, 2013), higher fire frequency and severity increase their impact (Rein, 2015). For 

example, peat fires that smolder deeply through the soil profile alter topography and thus water 

level regimes, affecting ecosystem structure and function (Watts et al., 2015). The projected 

changes to fire regimes may weaken peatland resiliency to future perturbations and result in 

dramatic vegetation shifts (Kettridge et al., 2015). 

 Even in a pristine state, peatland ecosystems are prone to non-native plant invasions 

(Zedler & Kercher, 2004). Peatlands are especially vulnerable following disturbance, particularly 

changes in hydrologic regime (e.g., via drainage) (Kercher et al., 2004). Critically, as drained 

systems are more susceptible to deep peat consuming burns, there can be a synergistic effect 

where the combination of drainage and fire accelerates ecosystem degradation, further reducing 

resilience to invasions (Page et al., 2009). In addition to altering topography and hydrology, 

severe peat-consuming fires destroy regenerative material both above and below ground 

(Matlaga et al., 2010), all of which influences the species that recolonize post-fire (Gorham & 

Rochefort, 2003). Generally, invasive species are able to take advantage of degraded ecosystems 

(MacDougall & Turkington, 2005), but effective management of invasives requires species-
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specific information about their interactions with disturbances and is therefore a primary research 

objective of land managers (Dix et al., 2010). 

 One invasive species that does exceedingly well in a post-disturbance environment and is 

of major management interest is the grass Phragmites australis (hereafter referred to as common 

reed) (Chimner, et al., 2016; Ji et al., 2009; Wilcox et al., 2003). Common reed is an aggressive, 

emergent wetland grass with annual, cane-like stems that can reach up to 6 m tall (Mal & Narine, 

2003). Growing in low lying areas, common reed is most commonly found in intermittently or 

permanently flooded sites with still, shallow water (Haslam, 1972). Through a combination of 

competitive advantages, including rapid vegetative reproduction and growth (Marks et al., 1994) 

and abundant windblown seeds (Kettenring & Mock, 2012), common reed can quickly colonize 

wetlands with dense, near-monospecific stands at the detriment of native species (Farnsworth & 

Meyerson, 1999). Patches of common reed are comprised of the current year’s growth and dead 

shoots from prior seasons, which hinder the establishment of other plants (Mal & Narine, 2003) 

and is poor habitat for many species of fish and wildlife (Able & Hagan, 2003; Robichaud & 

Rooney, 2017). 

 Given the aggressive nature of common reed, the impact it has on habitat quality, and 

how difficult it can be to eradicate (Farnsworth & Meyerson, 1999), it is important to identify the 

controls on its abundance, including the effects of fire whether direct or indirect (i.e., altered 

hydrology). Further, common reed patches represent a sizeable fine-fuel load on the landscape 

and exhibit quick recovery post-burn (Thompson & Shay, 1985), suggesting there may be a self-

reinforcing grass-fire feedback cycle present (D’Antonio & Vitousek, 1992). Multiple 

observations have noted that regular burns facilitate common reed invasions and also maintain 

common reed stands by controlling less adapted competitors (Libby et al., 2002; Ward, 1968). 
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However, others have shown that prescribed fire can be an effective management tool for 

common reed in some ecosystems (Kimura & Tsuyuzaki, 2011; Marks et al., 1994; Páramo 

Pérez et al., 2018). The role of direct fire effects on common reed coverage aside, no studies to 

our knowledge have investigated the effect that fire-altered hydrology may have on its 

abundance. It is well understood that wetland community zonation is driven by hydrology 

(Hutchinson, 1967), and that common reed can be effectively managed by increasing water 

levels (Bart & Hartman, 2003; Hellings & Gallagher, 1992; Hudon et al., 2005; Rea, 1996; Rohal 

et al., 2019; Rolletschek et al., 1999; van der Valk, 1994; Weisner et al., 1993), but we do not 

know how an altered hydrologic regime, caused by drainage and subsequent deep smoldering 

peat fires, impacts its distribution.  

 The objective of this study was to investigate the controls on common reed occurrence 

and coverage, with special attention to disturbance-altered hydrology. Recent fires in a 

historically drained peatland in the eastern USA coastal plain (The Great Dismal Swamp) present 

an opportunity to observe vegetation recovery following high severity peat-consuming fires. 

Exploring the relationship between common reed coverage and post-fire water level regimes will 

enable the assessment of the impacts that drainage and deep-smoldering peat fires have had on 

system resiliency. We hypothesized that: H1) common reed will be more prevalent where 

shallow water is regularly above the ground surface; H2) greater coverage will be related to 

narrower hydrologic windows; and H3) the specific hydrologic conditions conducive to common 

reed occurrence and dominance will have been generated by a history of drainage and deep peat-

consuming fires. Given the increased range of common reed in North American wetlands, the 

results of this investigation could have far-reaching implications for management and the 

understanding of grass-fire interactions. 
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3.2 METHODS 

3.2.1 Study Area 

 The Great Dismal Swamp National Wildlife Refuge (GDS) is a 54,000 ha mosaic of 

wetland community types administered by the US Fish and Wildlife Service (USFWS) (Fig. 1). 

Located in southeastern Virginia and northeastern North Carolina, USA (3635’49”N, 

7629’26”W), GDS has a temperate climate with hot and humid summers and mild winters. The 

main hydrologic input to GDS is precipitation, averaging 116.2 cm annually, and the main output 

is evapotranspiration, averaging 81.3 cm y-1 (USFWS, 2006). Owing to a history of intended 

land-use change, a series of drainage ditches segment GDS into hydrologically distinct 

management units. The altered hydrology of GDS has reduced species diversity across the 

swamp and facilitated Acer rubrum (red maple) into becoming the overwhelming overstory 

dominant (Ludwig et al., 2021). Our study site is a portion of an early seral marsh, whose 

boundaries were defined by a 2011 wildfire, the 2502 ha Lateral West Fire (Fig. 1). 

 Heavy machinery sparked the South One Fire on 09 June 2008, burning through 1,877 ha 

of forested peatland in GDS. Less than three years later, on 04 August 2011, a lightning strike in 

the South One burn scar ignited the Lateral West Fire, which burned 2,502 ha over 126 days. The 

conditions that led to the Lateral West Fire are postulated to be a combination of drainage, recent 

dry weather, and, importantly, the early successional, herbaceous community and fuel structure 

that returned after the South One Fire (NASA, 2022). The Lateral West Fire expanded the 

boundaries of the South One Fire scar and reburned much of the 1,877 ha, with the deepest 

smoldering occurring in the original burn scar (Parthum et al., 2017; Reddy et al., 2015). Both 

wildfires spread across drainage ditches and throughout the peat profile, with the 2011 wildfire 
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alone accounting for an average elevation loss of 47 cm and burning up to 125 cm in some 

locations (Reddy et al., 2015). 

 The vegetation community in the Lateral West burn scar is comprised primarily of 

herbaceous species such as Typha latifolia (broadleaf cattail) and Scirpus cyperinus (wool grass), 

vines of Smilax spp. (greenbriers) and Rubus spp. (brambles), and ferns, most commonly 

Woodwardia virginica (Virginia chain-fern). There is a lesser contribution from shrub species 

like Morella cerifera (wax myrtle) and Clethra alnifolia (sweet pepperbush), along with 

seedlings and saplings of tree species such as red maple and Liquidambar styraciflua 

(sweetgum). Additionally, sizeable patches of common reed exist throughout the burn scar. 

Herbicide treatments have been undertaken to remove common reed in some areas, but records 

of exact application boundaries are unclear (Fig. A-2). We are confident, however, that the 

management unit north of Interior Ditch (Fig. 9) did not receive any herbicide treatment prior to, 

or during, data collection. For this reason, we constrained our analysis of the controls on 

common reed occurrence to that management unit to remove the influence of herbicide 

treatment. However, we collected ground-truthing land cover class data points across the entire 

Lateral West burn scar in order to gather higher quality data to train machine learning algorithms 

(Fig. 9). 
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Figure 9: The Lateral West burn scar with ground-truthing data point locations and classes noted. 
Ditches within the burn scar are shown, and Interior Ditch is labeled. 
 
3.2.2 Common Reed and Other Cover Class Identification 

 We identified multiple land cover classes, including common reed, across the study area 

by conducting a supervised classification of high-resolution satellite imagery. To do so, we first 

procured 8-band imagery of the area of interest, taken on 18 June 2021, by the WorldView-2 

satellite (2.54 m resolution). This image was then preprocessed (i.e., radiometric calibration, 

atmospheric corrections, and scaling) by a GIS specialist from the USFWS, which enabled the 
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development of multiple spectral indices. The forty-four spectral indices chosen for this study 

(Table A-1) are ones commonly used by the USFWS (Nathan Bush, personal communication) 

and are the most regularly used in vegetation community delineation (L3Harris Geospatial, 

2022). 

 To relate the values from the spectral indices to land cover classes, ground-truthing data 

points were collected across the Lateral West burn scar (Fig. 9). Fifty ground-truthing data points 

for each of three dominant cover species (common reed, cattail, and wool grass) were collected 

in a variety of locations and topographic settings between 15-18 June 2021. We marked the 

center of near monotypic patches for each class using a GPS device (Bad Elf 2200 GPS Pro, Bad 

Elf, West Hartford, CT, USA). An additional 50 data points for each of three broader cover types 

(forest, road, and open water) were manually digitized as is commonly done (e.g., Davis et al., 

1995). The ground-truthing data points (n = 300) were brought into ArcGIS Pro where they were 

paired with the values from the forty-four spectral indices at their locations. We then split the 

ground-truthing data points from each of the six classes randomly into training (70%) and testing 

(30%) subsets so that random forest modeling, via the hold-out validation method, could be used 

to upscale our field observations to the remaining study area. 

 A nonparametric, machine learning approach, random forest modeling consists of 

multiple, randomly constructed decision trees that, in our application, each vote for a cover class 

at every pixel (Breiman, 2001). The trees are constructed utilizing a bootstrap resampling of the 

training subset. At each node in every tree, a random selection of spectral indices was used to 

find the best split (Breiman, 2001). Random forest modeling is widely used in ecology research 

(Cutler et al., 2007) as it is highly accurate with small sample sizes (Qi, 2012). Other studies 

have demonstrated that supervised classification techniques work well at identifying wetland 
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community types from satellite imagery, with numerous examples on common reed specifically 

(Lane et al., 2014; Long et al., 2017). All random forest models in this study were developed in 

the randomForest package in R 4.0.2 (Liaw & Wiener, 2002). Two types of output rasters were 

produced from the 70:30 hold-out method: a maximum likelihood raster and a probability raster. 

In the maximum likelihood raster, each pixel is assigned the class that received the most votes 

from the trees in the random forest model. In the probability raster, each pixel reports the 

probability of it being in each class (i.e., the number of trees that voted for each class out of the 

total number of trees). 

 We assessed the 70:30 hold-out method model by comparing the classes assigned in the 

maximum likelihood raster to known observations from the testing subset of ground-truthing 

data (following Liaw & Wiener, 2002). We generated a confusion matrix to then calculate 

standard classification accuracy metrics such as overall model accuracy, class-specific 

producer’s accuracy (number of correctly classified testing data points divided by the total 

number of ground-truthing data points), and class-specific user’s accuracy (number of correctly 

classified testing data points divided by the total number of points determined to be that class). 

These metrics were compared to the same metrics from a tenfold cross validation approach to 

further evaluate the accuracy of the 70:30 hold-out method. For the tenfold cross validation 

approach, the ground-truthing data were split into ten unique 90:10 training to testing sets 

(Refaeilzadeh et al., 2016). With these, ten unique random forest models were developed, and 

their confusion matrices were merged. This method is more conservative and utilizes all data for 

training across the ten models. However, the tenfold method was only used to evaluate the 70:30 

hold-out method as the former does not produce a probability raster, which was needed to create 

the final, presence-or-absence output raster. 
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 We transformed the probability raster into binary, presence-or-absence observations for 

each class as is standard for species distribution models. This transformation was done using 

class-specific probability thresholds defined by another accuracy metric of the 70:30 hold-out 

method, the True Skill Statistic (TSS). TSS is calculated by summing Sensitivity (the probability 

that the model will correctly predict presences for that class (0-1)) and Specificity (the 

probability that the model will correctly predict absences for that class (0-1)) and subtracting one 

(Allouche et al., 2006). For each pixel in the probability raster, any class probability greater than 

or equal to its TSS was deemed a present observation for that class. TSS has been shown to be a 

reliable probability cut-off for use in species distribution models (Allouche et al., 2006) and has 

been used in other studies as a threshold for presence or absence of common reed specifically 

(Long et al., 2017). This approach allowed us to upscale our observations in a way that was 

rooted in the confidence we had in the accuracy of our supervised classification. 

 We assessed the degree of spatial autocorrelation among common reed observations to 

evaluate if systematic spatial variation explained common reed distribution, if that influence was 

scale dependent, and thus if analysis of common reed occurrence and its controls warranted a 

multi-scale approach. Moran’s I, a correlation coefficient specifically developed as a measure of 

spatial autocorrelation (Moran, 1950), was calculated at ten neighborhood sizes (2.54 m to 25.4 

m in one pixel increments) to elucidate how the degree of dispersion changes as the search area 

increases. Moran’s I is on a +1 to -1 scale, where +1 indicates perfect clustering and -1 indicates 

perfect dispersion. The results from the Moran’s I sensitivity analysis clearly demonstrated that 

common reed observations exhibited a high degree of clustering at a fine resolution, but that this 

phenomenon was scale dependent (Fig. 10). At the one-pixel neighborhood scale (2.54 m 
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resolution), the Moran’s I value was 0.65 as compared to the ten-pixel neighborhood scale, 

where I was 0.32. 

 

Figure 10: Moran’s I sensitivity analysis, demonstrating the scale dependence of spatial 
autocorrelation from one- to ten-pixel neighborhood scales. 

 Given the scale dependency of spatial autocorrelation, we chose to assess common reed 

occurrence and coverage, and its potential controls, at three different spatial resolutions. The 

binary, presence-or-absence rasters, at the resolution of our original satellite imagery (2.54 m 

resolution), were the basis for our pixel-level analysis. We then up-sampled at a three-pixel 

resolution to generate kernels (7.62 m). The kernel values were pseudo coverages, with the 

summation of all positive observations (0-9) divided by the total number of observations (9). We 

repeated this process at a nine-pixel resolution to generate an even larger spatial resolution 

(22.86 m), called super kernels (0-81 out of 81) (Fig. 11). 
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Figure 11: Schematic of a binary, pixel raster cell (2.54 m resolution), and a kernel (7.62 m 
resolution) and super kernel (22.86 m resolution) up-sampled from the pixel. Green and 1 denote 
presence, red and 0 denote absence. Kernel example is 55.5% coverage, super kernel example is 
35.8% coverage. 

3.2.3 Relationships Between Common Reed Coverage and Environmental Variables 

 To understand the controls on common reed abundance, we gathered data for multiple 

environmental variables across our study site (Fig. 12). Hydrology was characterized by 

combining a series of hourly water table observations with a digital elevation model (DEM). The 

DEM, provided by the USFWS, was developed from LiDAR data collected in August 2012, 

immediately after the Lateral West Fire was extinguished. Captured during a dry period and 

before much of the vegetation returned, the data are considered true to ground surface. The 

LiDAR data (2 m resolution) has a 7 cm root mean square vertical error compared to known 

control points. The water table was monitored with two wells, each fitted with submersible, 

vented, pressure transducers (HOBO U20L-04 data logger, Onset Computer Corporation, 

Bourne, MA, USA), that were installed in August 2020 and collected continuous hourly data 

until November 2021 (Fig. 12). We chose the well locations to confirm that the water table is 

flat. To do so, the hourly water table observations were converted to water table elevations (via 
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the DEM values at the well locations) and the relationship between synchronous well 

observations was assessed using a simple linear regression. Results from that analysis confirm 

that the water table is flat (y = 1.02x – 0.53 and R2 = 0.97) (Fig. 13). The 2 m resolution of the 

DEM simplifies microtopographic heterogeneity which likely explains why the intercept shows 

an offset between observations. Additionally, as the slope is near 1 we are confident that the 

water table is flat. Thus, we generated a 2 m raster of mean water table position relative to 

ground surface (hereafter water level) across our study site by combining the mean water table 

elevation at well 1 with the DEM. 

 

Figure 12: Study site north of Interior Ditch along with well locations and the LiDAR-derived 
digital elevation model. 
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Figure 13: Linear regression between synchronous water table elevations at Wells 1 and 2. 

 To evaluate the influence of environmental variables on common reed occurrence at the 

pixel, kernel, and super kernel resolutions, rasters of the same size and resolution were 

developed. The water level raster (2 m resolution) was resampled via bilinear interpolation to 

match the resolution of the binary, presence-or-absence rasters (2.54 m resolution). The water 

level raster was then up-sampled to match the kernel and super kernel resolutions, and their 

values were the average of their pixel components. A burn raster was generated from shapefiles 

that delineated the boundaries of both the 2008 and 2011 burn scars. The burn boundary 

shapefiles were previously created from a combination of aerial surveys and satellite imagery by 

the USFWS staff at GDS. In areas where both shapefiles were present, the raster value noted two 

burns and in areas where only one was present the raster value noted a single burn. As roadways 

and open water are known to be vectors of transport for common reed (Maheu-Giroux & De 

Blois, 2007), the shortest distance to each was calculated for each pixel. Those values were up-
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sampled at the two larger spatial resolutions by selecting the median pixel value for each kernel 

or super kernel.  

 The relationship between common reed distribution and hydrology was tested at the three 

different spatial resolutions (pixel, kernel, and super kernel). At the pixel resolution, water levels 

were compared between presences and absences with a Wilcoxon rank sum test (α = 0.05 for this 

and all following tests). For kernels and super kernels, water levels were compared between the 

coverage values (i.e., 0-9 for kernels and 0-81 for super kernels) with Kruskal-Wallis H tests and 

post-hoc, pairwise Wilcoxon rank sum tests. In addition, we calculated the mean water level for 

each coverage value and assessed the relationship between water level and coverage using 

Spearman’s correlation analyses at both the kernel and super kernel resolutions. 

As an investigation of the potential impact that multiple fires have on common reed occurrence, 

we compared the proportion of presence to absence observations between the once and twice 

burned areas at the pixel resolution with a Pearson’s Chi-squared test. Additionally, the water 

levels were compared between burn levels to investigate a potentially confounding factor (i.e., 

altered hydrology caused by deep, peat-consuming fires) on the relationship between times 

burned and common reed presence using a Wilcoxon rank sum test.  

 To evaluate how multiple environmental factors, along with the effects of spatial 

autocorrelation, influence common reed occurrence and coverage, we ran auto-logistic 

regressions at all three resolutions. An auto-logistic regression is a spatially lagged binomial 

logistic regression that includes a lagged auto-covariance term that accounts for the effects of 

spatial autocorrelation (Evans & Murphy, 2021). Our models included water level, distance to 

nearest road, and distance to nearest open water as independent factors along with the lagged 

auto-covariate term as a nuisance variable. To relate the relative importance of each independent 
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factor on common reed occurrence and coverage, we converted the regression coefficients from 

log-odds to odds. To assess the explanatory power of the models, we calculated pseudo 

coefficients of determination, Nagelkerke’s R2, for all three auto-logistic regressions. All auto-

logistic regression models were constructed in the spatialEco package (Evans & Murphy, 2021). 

All statistical tests and comparisons were conducted in R 4.0.2 (R Core Team, 2020).  

3.3 RESULTS 

3.3.1 Common Reed and Other Cover Class Identification 

 The supervised classification via the 70:30 hold-out method had an overall accuracy of 

85.2%. Class-specific accuracy terms from the 70:30 hold-out method (Table 2) further imply 

success with this approach, and they are greater than values reported in literature that utilized a 

similar method to identify wetland cover classes, including common reed (Long et al., 2017). 

Table 2: Classification accuracy terms from the random forest models for both the 70:30 hold-
out and the tenfold cross validation methods for each cover class. All values are percentages. 
Producer’s accuracy is the number of correctly classified testing points divided by the total 
number of testing points. User’s accuracy is the number of correctly classified testing points 
divided by the total number of points determined to be that class. TSS is the summation of the 
probabilities that the model correctly identifies presences and absences minus one. 

Cover Class Producer’s Accuracy User’s Accuracy True Skill Statistic (TSS) 

 70:30 Tenfold 70:30 Tenfold 70:30 Tenfold 

Common Reed 82.4 90.0 87.5 88.2 80.0 88.8 

Cattail 75.0 74.0 65.2 71.2 65.1 68.8 

Wool Grass 64.7 76.0 68.8 80.9 58.8 71.3 

Forest 100 98.0 100 94.2 100 97.6 

Open Water 91.7 94.0 100 97.9 91.7 92.8 

Road 100 100 100 100 100 100 
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 The class specific accuracy metrics from the tenfold cross validation approach are higher 

in some cases than the same metrics from the 70:30 hold-out approach (Table 2). Notably, the 

classes that saw the largest differences were the species-specific classes (common reed, cattail, 

and wool grass). It is understandable that the tenfold cross validation approach would have 

stronger accuracy metrics considering the size of our ground-truthing dataset, but the close 

agreement between the two methods further indicates good performance by the 70:30 hold-out 

approach. Again, we note that probability rasters are not a possible output via the tenfold 

method. Given this, we used the probability raster generated from the 70:30 hold-out method to 

make the binary, presence-or-absence class rasters with the TSS thresholds. The final presence-

or-absence map (Fig. 14) demonstrates the colony structure and shape of common reed that we 

expected given the biology of the species (Mal & Narine, 2003). Additionally, the locations 

where common reed was modeled closely align with observations made by the USFWS in an 

aerial survey conducted in 2020 (Fig. A-1). The other five cover classes were regularly modeled 

in locations as expected from cursory field observations, further bolstering confidence in our 

model performance. 
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Figure 14: Map of the modeled land cover classes as produced by the supervised classification of 
high-resolution satellite imagery (2.54 m). White space denotes areas where no one class was 
confidently predicted by the models. 

3.3.2 Relationship Between Common Reed Coverage and Environmental Variables 

 At the binary, pixel resolution, there were significant differences between water levels for 

presences and absences (p-value < 0.0001) (Fig. 15A). The median water level for presences was 

0.18 m above ground and the median for absences was 0.09 m, which implies a smaller degree of 

divergence than indicated by their strong statistical difference. At the kernel level, the highest 

(100%) and lowest (0%) common reed coverages had water levels that were significantly 

different from each other and from the intermediate coverages (p-values < 0.0001), but many of 

the internal coverages were not significantly different from one another (Fig. 15B). At the super 
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kernel level, a similar general pattern held where many internal coverages did not significantly 

differ in their water levels from other internal coverages, and the extremes (0% and 100%) were 

significantly different from each other and many of the internal coverages (Fig. 15D). Notable at 

all resolutions, the range of water levels tended to be narrower as coverage increased (or 

presence as compared to absence at the pixel resolution) (Fig. 15A, B, & D). 

 Results from the Spearman’s correlation analyses indicate strong, significant positive 

relationships between the coverages and their mean water levels at both the kernel and super 

kernel levels (ρ = 0.95, p-value < 0.0001 and ρ = 0.81, p-value < 0.0001 respectively) (Fig. 15C 

& E). These relationships are simplifications of the overlapping water levels demonstrated by the 

Kruskal-Wallis H tests but serve to better illustrate the relationship trend that exists between 

increasing water level and common reed coverage. 
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Figure 15: A) Water level distribution of presence and absence observations at the pixel 
resolution. B) Water level distributions for each of the kernel coverages. C) Kernel coverages vs. 
their mean water levels (ρ = 0.95). D) Water level distributions for each of the super kernel 
coverages. E) Super kernel coverages vs. their mean water levels (ρ = 0.81). 
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 There was a significant difference between the proportion of presence to absence 

observations in the two burn levels (p-value < 0.0001). In the area that burned once, only 3.30% 

of observations had common reed present, whereas in the area that burned twice 29.92% of 

observations had reed present (Fig. 16). 

 

Figure 16: Number of presence and absence observations for the areas that burned once and 
twice. Areas that burned once had 3.30% present observations; areas that burned twice had 
29.92% present observations. 

 Water levels in areas that had burned twice were significantly higher than the areas that 

burned once (p-value < 0.0001). Areas that burned once had a median water level of 0.02 m 

whereas the area that had burned twice had a median water level of 0.14 m. Additionally, the 

distribution of water levels in areas that burned twice was more left skewed, indicating further 

separation in the hydrology of the two burn levels (Fig. 17). 
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Figure 17: Density plots of water levels for both burn levels. Notably, the areas that have burned 
twice are wetter on average (0.02 m compared to 0.14 m) and are more left skewed. 

 Results from the auto-logistic regression at the pixel resolution highlighted the 

importance of spatial autocorrelation on common reed presence at that scale (Table 3). As the 

resolution increased, the impact that spatial autocorrelation had on common reed coverage 

decreased and was supplanted by the increasing importance in water level. These results align 

with our findings from the Moran’s I sensitivity analysis. All models demonstrate that the 

distances to nearest road and nearest open water were non-important.  

Table 3: Regression coefficients from the three auto-logistic regression models reported as odds. 
Nagelkerke’s R2 values reported. 

Resolution Water Level Distance to 
Nearest Road 

Distance to Nearest 
Open Water 

Spatial 
Autocorrelation R2 

Pixel 1.59 1.00 1.00 1102.16 0.71 

Kernel 1.77 1.00 1.00 1.11 0.66 

Super Kernel 2.65 1.00 1.00 1.16 0.65 
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3.4 DISCUSSION 

 In this study we sought to understand the patterns and controls of common reed 

occurrence in a large peat fire scar at GDS, with special attention towards the unique, 

disturbance-generated hydrologic conditions present. To do so, we identified common reed 

occurrence via a supervised classification of high-resolution satellite imagery and gathered data 

on a series of site-specific factors. By pairing the common reed observations with water level 

data, we observed increased common reed abundance in areas with generally higher water levels 

at multiple spatial resolutions. We also found paired phenomena: areas that had burned twice had 

more common reed and were wetter on average. While the effect of spatial autocorrelation 

played a large role on common reed occurrence, its relative influence was diminished at larger 

spatial resolutions where the role of hydrology was again a key explanatory variable. The 

findings from this study add to our understanding of the influence that fire and disturbance-

altered hydrology have on common reed invasions and may aid land managers in removal 

efforts. 

3.4.1 Influence of Hydrology on Common Reed 

 The influence of water level regimes on common reed occurrence at GDS was evident at 

all spatial resolutions. At the binary, pixel resolution, common reed observations occurred in 

significantly wetter locations on average and occupied a smaller hydrologic window than 

locations where it was absent (Fig. 15A). At both the kernel and super kernel resolutions, greater 

reed coverages were related to higher water levels (Fig. 15C & E), demonstrating that higher 

density common reed patches, which are likely patch or colony centers, are in wetter locations. 

These patch centers also have small ranges of variability in their water levels (Fig. 15B & D), 

which further implies that these locations are ideal hydrologic settings for common reed. 
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Numerous other studies have shown that flooding can control common reed (Bart & Hartman, 

2003; Hellings & Gallagher, 1992; Hudon et al., 2005; Rea, 1996; Rohal et al., 2019; 

Rolletschek et al., 1999; van der Valk, 1994; Weisner et al., 1993), which seemingly contrasts 

our findings of higher density common reed in wetter areas. However, the ‘wetter’ sites in our 

study are only wetter in a relative sense as the 100% coverage sites in the super kernel analysis 

had a mean water level of only 0.29 m. Hudon et al. (2005) found that a site needed to be 

regularly inundated with water levels up to 0.5 m to be inhospitable to common reed, and 

Weisner et al. (1993) found that water levels at or above 0.8 m significantly limited common 

reed growth. Additionally, the range of our absence observations extended into wetter sites than 

the presence observations, suggesting that there are locations too wet for common reed to 

establish or succeed in our study site. 

 Our findings imply that high density common reed patches are found where the 

hydrologic setting is ideal. The smaller coverages in our study site exhibited a wider range of 

water level conditions and likely represent patch edges, small patches, or first year growth far 

from the colony interior. Vigorous colonies have the capacity to expand into less suitable habitat 

space through vegetative reproduction and clonal expansion (Amsberry et al., 2000), potentially 

explaining the wider hydrologic conditions observed for lower coverages. While traditional 

horizontal growth is only around 1 m annually, long stolons called legehalme can extend up to 

15 m horizontally, greatly expanding the reach of a colony and allowing it to test the viability of 

locations far from the patch interior (Mal & Narine, 2003). Both living and dead shoots act as 

aerenchyma tissue that can transport oxygen to shoots experiencing anoxic stress in wetter 

locations, thereby supporting colony growth into less preferred conditions (Mal & Narine, 2003).  
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 The importance of vegetative expansion and the colony structure of common reed was 

also supported by the Moran’s I sensitivity and regression analyses, both of which demonstrated 

the scale dependency of spatial autocorrelation (Fig. 10, Table 3). This result is unsurprising 

given the fine resolution of the pixel scale (2.54 m), which is likely smaller than many reed 

patches. It then follows that being near other common reed observations would be a strong 

predictor variable. Additionally, vegetative reproduction allows common reed colonies to expand 

outward seasonally at a steady rate, and likely into more unsuitable hydrologic conditions, 

further explaining why we found a high degree of spatial autocorrelation, and smaller influence 

of hydrology, at our smallest resolution. At larger resolutions (7.62 m and 22.86 m), high reed 

coverages may have been representing patches in their entirety, therefore reducing the 

importance of spatial relationships. However, proximity to a viable seed source is still an 

important factor in determining common reed occurrence and may explain why we observed 

odds greater than 1 for spatial autocorrelation at the larger resolutions. Those regression 

coefficients were lower – and coefficients for water level influences higher – at the kernel and 

super kernel resolutions likely because hydrology plays a larger role in the success of sexual 

reproduction compared to vegetative expansion, as reed seeds struggle to germinate outside of 

preferred hydrologic conditions (Hudon et al., 2005). The contributions of distance to nearest 

ditch and open water were less significant in explaining common reed occurrence, as propagule 

dissemination, while a viable reproductive pathway, is less common than clonal expansion 

(Amsberry et al., 2000). Given this, the degree of spatial autocorrelation was more important in 

explaining where common reed was found compared to the closest distance to invasion vectors, 

which aligns with findings in other ditched wetlands (Maheu-Giroux & De Blois, 2007). 
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3.4.2 Phragmites-Fire Feedbacks 

 Our findings support the notion that there may be positive feedbacks between common 

reed and fire in disturbed peatlands. The comparison of proportions of common reed presences-

to-absences in the once and twice burned areas demonstrates that there was significantly more 

common reed in the areas that burned multiple times (3.30% positive to 29.92% positive 

respectively) (Fig. 16). Additionally, the comparison of water levels shows that the twice burned 

areas were wetter on average (Fig. 17). These two results indicate that high severity, peat-

consuming fires may have indirect, positive effects on common reed invasion through alterations 

to topography and thus hydrology and give credence to the idea that high-severity fires in 

peatlands help fuel common reed invasions. 

 As further support for this hypothesis, regular fires remove vegetation and support fire 

tolerant species (Loveless, 1959; Ward, 1968), including common reed, which in a post-burn 

environment can rapidly establish dense, monospecific stands (Ji et al., 2009; Wilcox et al., 

2003). It has been demonstrated experimentally that burning common reed promotes bud 

development and increases stem density (Cowie et al., 1992; Ostendorp, 1999), which in turn 

improves stand mechanical stability and productivity (Ostendorp, 1999) while doing nothing to 

decrease competitive abilities (Mook & van der Toorn, 1982). The rapid invasion of common 

reed post-fire inhibits the recolonization of the pre-disturbance vegetation communities and, 

critically, increases vulnerability to future and repeated fires as it is highly flammable 

(Thompson & Shay, 1985). In contrast, a study in a Japanese marsh found that high-severity 

burns in common reed stands allowed for greater regeneration of other species from the 

seedbank, thereby limiting the return of common reed (Kimura & Tsuyuzaki, 2011). However, 

the fires in that study were non-peat consuming. Root burns have been shown to reduce the 
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growing ability of common reed where they occur but may not limit recolonization post-fire 

(Marks et al. 1994). Still, we believe that findings from the literature and those from this study 

provide credence to the hypothesis that common reed may be akin to other invasive grass species 

that can initiate and perpetuate positive grass-fire feedbacks (sensu D’Antonio & Vitousek, 

1992), with impacts to carbon emissions and wetland habitat (Fig. 18). 

 

Figure 18: Proposed Phragmites-fire feedback. High-severity, peat-consuming fires, driven by a 
history of drainage, alter topography and therefore hydrology. The post-disturbance environment 
is primed for common reed invasion with wetter conditions and the aggressive nature of common 
reed allows it to outcompete other species. Other studies have shown that fires increase reed bud 
development and shoot density (Cowie et al., 1992; Ostendorp, 1999), and that stands are highly 
flammable (Thompson & Shay, 1985), so they may serve as future ignition points, thereby 
initiating a perpetual Phragmites-fire feedback cycle. 

3.4.3 Limitations and Future Work 

 A major limitation to this study was the herbicide prescription applied to the management 

units south of Interior Ditch. The aerial application of herbicide is assumed to be responsible for 

the smaller proportion of common reed observations in those management units (18.30% of 

observations were common reed in our study management unit compared to 1.99% in all other 

management units). The exact boundaries of the herbicide treatment are unclear due to both the 

application method and the metadata associated with the prescription (Fig. A-2), which 

prevented us from including herbicide effects as another independent factor influencing common 
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reed occurrence. Thus, it limited our direct assessment of herbicide effectiveness and removed a 

sizeable amount of potential study area within the Lateral West burn scar. 

 We also chose not to include two other potential controls, nutrient gradients and distance 

to competitors, in our auto-logistic regression models. While nutrient patterns have been shown 

to impact common reed distributions (Long et al., 2017), they likely do not exist in our system as 

the area of interest is not neighboring agricultural runoff, the management units are 

hydrologically isolated, and GDS is largely a precipitation-fed system. We did not include 

distance to competitors because of the lower accuracy scores for both cattail and wool grass from 

our supervised classification (Table 2). Many of the ground-truthing points for these two classes 

were as pure as we could find but were less monotypic and smaller than the common reed 

observations, likely explaining their lower accuracy scores. Competitive interactions have been 

shown to be important in other ecosystems (Páramo Pérez et al., 2018; Shay et al., 1999) and 

may have exerted additional influence on common reed occurrence in our study area. 

Nonetheless, we note that hydrology has been shown to be the key factor controlling common 

reed distributions (Rohal et al., 2019) and that this study was primarily focused on the influence 

of disturbance-altered hydrology. 

 An interesting direction for future work would be to track common reed expansion over 

time following deep-smoldering fires. Using imagery of a single site across multiple seasons, a 

study of this nature could investigate the roles that disturbance-altered hydrology and other site 

factors play in governing the rate and direction of common reed colony expansion. Such work in 

our study management unit, however, would have to also consider the role of herbicide in 

common reed expansion (or contraction) as the area was treated soon after our satellite imagery 

was collected. An additional interesting avenue for future studies would be to intentionally test 
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the proposed Phragmites-fire feedback (Fig. 18). If common reed locations are identified both 

before and after a high severity fire, the change in common reed coverage could be easily 

assessed and compared between periods. This may require multiple rounds of ground-truthing 

data points to be collected as spectral properties may differ soon after fire (Pereira et al., 1999). 

Additionally, this analysis would rely on the occurrence of high-severity peat burns ,which are 

rare and intentionally prevented. Regardless, rigorous evaluation of the proposed Phragmites-fire 

feedback cycle in multiple systems and under multiple fire conditions is warranted and would 

inform both disturbance ecology and on-the-ground management efforts. 
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4.0 CONCLUSIONS 

 The overall objective of this work was to investigate the drivers and impacts of 

smoldering peat fires in a drained temperate peatland, the Great Dismal Swamp (GDS) (Fig.1). 

We first sought to develop a new method for modeling smoldering depths in organic soils 

(Chapter 2) and then studied the impact of such fires on the distribution of an invasive grass 

(Chapter 3). These two complimentary goals were built upon prior studies and in-field 

observations and were aimed to answer important questions posed by land managers. Employing 

a variety of research techniques and data types, we were able to speak to both causes and 

consequences of high severity peat fires. Our results, therefore, may be used to inform peatland 

management strategies for prioritizing wildfire prevention and post-burn restoration. 

 In the first study (Chapter 2), we developed and verified a simple approach to model 

potential burn depths in organic soils. Assuming a state of hydrostatic equilibrium, our method 

worked by combining peat hydraulic property data and water table observations with moisture-

to-ignition thresholds. We compared modeled moisture regimes and modeled burn depths from 

the process-based model HYDRUS against those from this simpler, water table-based approach 

to evaluate its outputs and test its necessary assumptions. The results from this comparison 

demonstrated that the water table-based method made similar burn depth predictions, especially 

in low water retention peats (Table 1). As many of the upper layer peats in GDS have poor water 

retention properties (Fig. 2), we applied this approach to 11 spatially distributed sites across our 

study area (Fig. 1) for a 2.5-year period of water table record (Fig. 5). The comparison of burn 

depth predictions between sites indicated that contemporaneous water levels primarily govern 

fire risk, but that peat water retention properties also exert a degree of influence (Fig. 8). 

However, there was a strong, significant relationship between these two factors which indicates 
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that drainage may weaken both short- and long-term controls of smoldering burn depths and risk. 

Our results imply that drained peats may be constantly under threat of burning up to the water 

table, but also suggest that rewetting efforts may be an effective strategy to mitigate peatland 

wildfire risk.  

 In the second study (Chapter 3), we mapped the distribution of Phragmites australis 

(common reed) in a portion of the 2,500 ha burn scar in GDS (Fig. 14). We aimed to relate its 

occurrence and coverage to site factors, with special focus on hydrology – which was shaped by 

two recent, deep smoldering wildfires. We hypothesized that common reed would be found in 

sites that are often shallowly flooded and that higher levels of common reed coverage would be 

related to more specific hydrologic windows. Further, we explored the potential connection 

between ideal hydrologic setting for common reed and the site history of drainage and 

bathymetry-altering peat fires. Through the use of high-resolution satellite imagery, machine 

learning algorithms, LiDAR data, and water table observations, we were able to conduct a 

number of analyses to investigate our hypotheses. Our results confirmed the notion that there 

was a relationship between common reed coverage and hydrology (Fig. 15), and found that the 

influence of spatial autocorrelation, while important at fine resolutions, was supplanted by 

hydrology at larger spatial scales (Table 3). Interestingly, we found that sites that had been 

burned twice, once in 2008 and again in 2011, were wetter on average than sites that had burnt 

once (Fig. 17). These sites, likely because of the increased burning, had a hydrology more suited 

to high common reed coverage and we found more common reed observations in them (Fig. 16). 

While these correlations do not explain the causal pathway on their own, we do point to the 

grass-fire feedback cycle that has been well demonstrated in other ecosystems. The competitive 

advantages of common reed, its life history, and its flammability further support this hypothesis. 
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We emphasize here that while this observational study merely draws a correlation between 

common reed coverage and a disturbance-altered hydrology, we feel that rigorous 

experimentation is warranted to test the potential for Phragmites-fire feedbacks (Fig. 18). 

 Our results from these two studies implicate the history of drainage at GDS for causing 

multiple, connected ecological issues. Drainage reduced both the short- and long-term controls 

on deep smoldering fires (Fig. 8), which degraded the ecosystem’s resilience and generated a 

hydrology ideal for the invasion of common reed. There is reasonable concern that common reed 

colonies may perpetuate grass-fire feedbacks, thereby amplifying the increased fire risk and 

subsequent susceptibility to invasives (Fig 18). Our findings add to the general body of literature 

on disturbances and invasive species in peatlands. Further, our results may help land managers at 

GDS and other similar peatlands reduce their risk to wildfires and species invasions. In short, 

these studies underscore the overarching influence that water levels have in peatlands on 

everything from community makeup to disturbance regimes. Said another way, and to loosely 

borrow from prominent wetland ecologist Paul A. Keddy: it’s the hydrology, stupid. 
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5.0 APPENDIX 

 

Figure A-1: Phragmites australis observations from a 2020 aerial survey, conducted by the US 
Fish and Wildlife Service. Figure courtesy of the Great Dismal Swamp National Wildlife Refuge 
staff of the US Fish and Wildlife Service. 
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Figure A-2: Great Dismal Swamp National Wildlife Refuge Phragmites australis treatment areas 
2012-2013. Lateral West burn scar perimeter noted in red. Figure courtesy of the Great Dismal 
Swamp National Wildlife Refuge staff of the US Fish and Wildlife Service. 
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Table A-1: List of the forty-four spectral indices calculated from the 8-band WorldView-2 
satellite image. These index values were used in the random forest modeling for land cover 
identification. B1 = Coastal Blue, B2 = Blue, B3 = Green, B4 = Yellow, B5 = Red, B6 = Red 
Edge, B7 = NIR, B8 = NIR2. 

Spectral Index Description 

ARVI 
Atmospherically Resistant Vegetation Index  

(B7-(2*B5)+B3)/(B7+(2*B5)+B3) 

CCCI 
Canopy Chlorophyll Content Index 

[(B8-B6)/(B8+B6)]/[(B8-B5)/(B8+B5)] 

EVI 
Enhanced Vegetation Index 

2.5 * (B7-B5)/(B7+6*B5-7.5*B2+1) 

GNDVI 
Green Normalized Difference Vegetation Index 

(B7-B3)/(B7+B3) 

MCARI 
Modified Chlorophyll Absorption Ratio Index 

[(B6-B5)-0.2(B6-B3)]*(B6/B5) 

MRESRI 
Modified Red Edge Simple Ratio Index 

(B6/B5)-1/(SQRT(B6/B5))+1 

MSAVI2 
Modified Soil Adjusted Vegetation Index 2 

2*B7+1-SQRT((2*B7+1)^2-8(B7-B5))/2 

MSRI1 
Modified simple Ratio Index 1 

(B7/B5)-1/(SQRT(B7/B5))+1 

MSRI2 
Modified simple Ratio Index 2 

(B8/B5)-1/(SQRT(B8/B5))+1 

MTCI 
MERIS Terrestrial Chlorophyll Index 

(B7-B6)/(B6-B5) 

NDMI 
Normalized Difference Moisture Index 

B7-B8/B7+B8 

NDVI75 
Normalized Difference Vegetation Index 75 

B7-B5/B7+B5 

NDVI85 
Normalized Difference Vegetation Index 85 

B8-B5/B8+B5 
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OSAVI 
Optimized Soil Adjusted Vegetation Index 

(B7-B5)/(B7+B5+1.6) 

RDVI 
Renormalized Difference Vegetation Index 

(B7-B5)/SQRT(B7+B5) 

RECI 
Red Edge Chlorophyll Index 

(B7/B6)-1 

RENDVI 
Red Edge Normalized Difference Vegetation Index 

B6-B5/B6+B5 

RESRI 
Red Edge Simple Ratio Index 

B6/B5 

SAVI 
Soil Adjusted Vegetation Index 

1.5*(B7-B5)/(B7+B5+0.5) 

SIPI 
Structure Insensitive Pigment Index 

B7-B1/B7-B5 

SR1 
Simple Ratio 1 

B7/B5 

SR2 
Simple Ratio 2 

B8/B5 

TCARI 
Transformed Chlorophyll Absorption Reflectance Index 

3[(B6-B5)-0.2(B6-B3)(B6/B5)] 

TVI 
Triangular Vegetation Index 

120(B6-B3)-200(B6-B3)/2 

WDRVI 
Wide Dynamic Range Vegetation Index 

(0.2*B7-B5)/(0.2*B7+B5) 

WVSI 
WorldView Soil Index 

B3-B4/B3+B4 

WVWI 
WorldView Water Index 

B1-B8/B1+B8 

NIRV756 
Near Infrared Vegetation Index  

NDVI75*B6 
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NIRV757 
Near Infrared Vegetation Index 

NDVI75*B7 

NIRV758 
Near Infrared Vegetation Index  

NDVI75*B8 

NIRV856 
Near Infrared Vegetation Index  

NDVI85*B6 

NIRV857 
Near Infrared Vegetation Index  

NDVI85*B7 

NIRV858 
Near Infrared Vegetation Index  

NDVI85*B8 

REVI6 RENDVI*B6 

REVI7 RENDVI*B7 

REVI8 RENDVI*B8 

PCA_1 Principal Component Analysis Band 1 

PCA_2 Principal Component Analysis Band 2 

PCA_3 Principal Component Analysis Band 3 

PCA_4 Principal Component Analysis Band 4 

PCA_5 Principal Component Analysis Band 5 

PCA_6 Principal Component Analysis Band 6 

PCA_7 Principal Component Analysis Band 7 

PCA_8 Principal Component Analysis Band 8 

 


