CHAPTER 9 Fallureinitiation in FRP
compogites

9.1 Srength of a composite ply

The strength of alaminated composite wall is assessed on a ply-by-ply basis. The main failure modes of unidi-
rectional plies of fiber-reinforced polymer (FRP) composites are
® matrix compression failure,

® matrix tension failure,

@ fiber compression failure,
® fiber tension failure,

® delamination.

The fiber modes and the matrix modes are intralaminar failure modes, meaning these failures occur within aply.
Intralaminar modes include fractures of the fiber and/or matrix, and fiber kinking or buckling in compression.
Delamination is an interlaminar failure mode, and it refers to the formation of an interfacial crack, or a debond-
ing, occurring between adjacent laminawith different fiber orientations. Delamination has been modeled with the
concepts of fracture mechanics, where the displacements are discontinuous across the interfacial crack faces. An
initial delamination crack is postulated and fracture mechanics principles are used to determine if the crack will
propagate in aself-similar manner. Analysis of delamination by fracture mechanicsis presented in article 13.7 on
page 392.

Simple tests are conducted on unidirectional plies of FRP composites to determine its intralaminar failure
strengths. There are five independent strengths of a unidirectional ply. Denote Xt as the longitudinal tensile
strength along the fiber direction, X the longitudinal compression strength along the fiber direction, Yt the trans-
verse tensile strength perpendicular to the fibers, Y the transverse compression strength perpendicular to the
fibers, and §_the longitudinal shear strength in the x;-X, plane. Typical values of the five basic strengths of
selected composite materials are listed in table 9.1.

Aerospace Structures (C) Eric Raymond Johnson. CC BY NC SA https://doi.org/10.21061/AerospaceStructures 271




Article 9.1

Table 9.1 Strengths of selected composite materialsin MPa from Tsai (1992 p. 8-2)

Test and strength data Composite ply

T300/ AY E-glassy  Kevlar IM6/
Loading Specimen Strength M Pa 5208 3501 epoxy 49/epoxy  epoxy
Uniaxial [Q] Longit tension X, 1,500 1,447 1,062 1,400 3,500
Uniaxial [Q] Longitcompr  x C 1,500 1447 610 235 1,540
Uniaxia [90] Transtension Y, 40 52 31 12 56
Uniaxial [90] Trans compr Yo 246 206 118 53 150
Shear [0] or [90] Longit shear S, 68 93 72 34 98

Failure criteriafor unidirectional FRP composites based on general states of stress 611, 09y, and o4, are
reviewed in Tsai (1992, Section 8) and in Herakovich (1998, Section 9.3). Several of these criteriaarein theform
of dimensionless quadratic equationsin the stress components with the five basic strengths appearing as parame-
ters. The reader isreferred to these references and the other references cited therein to see the details of these cri-
teria. In the next subsection we review arecent criterion based on observed damage states.

9.1.1 Puck’'sfailurecriterion

Intralaminar criteriafor failure initiation have recently been assessed for FRP composites in the World-Wide
Failure Exercise (WWFE) as summarized by Soden, et a. (2004). Nineteen theoretical approachesfor predicting
the deformation and failure response of FRP composite laminates were compared to test results. At the conclu-
sion of the WWFE five leading theories were selected to create recommendations and guidelines for designers.
The theory proposed by Puck, et al. (2002) was cited as one of the five producing the highest number of accurate
predictions and capturing more general features of the experimental results. Puck’s methodology assumes brittle
fracture of polymer matrix composites, and distinguishes between fiber failure and inter-fiber failure (IFF) by
separate criteria. Inter-fiber failure refers to cracks running parallel to the fibers through the thickness of a ply,
with the plane of crack determined by three matrix-mode criteria denoted by A, B, and C.

With respect to the material principal directionsx;-X,-Xs, the fracture planeis parallel to the x;-axis as shown
infigure. 9.1. Coordinates with respect to the fracture plane are denoted by x;-x,-X; with the x,-axis normal to the
plane. The x,-axis islocated by a counterclockwise rotation through the angle o about the x;-axis. The relation
between coordinate directions shown in figure. 9.1 is given by the direction cosines of the angle o.:

1 1 0o o [|M X X
Xp| = |0 coso —sina| |x,| O |x,| = [}J x,| 9.1)
x5 0 sina cosa X, X3 X,

where m isthe direction cosine matrix. The transformation from the stress components in the material princi-

pal directions to the stress components in the x;-X,-X; axis system is given eq. (A.96) in the appendix. With due
regard to the notation in this article this matrix transformation is
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O11 O1s O1¢ O11 012 O13

_ T
Ou1 onn Ont - D‘J O12 022 023 D\J ' (9'2)
O11 Om Ou O13 023 O33

Complete the matrix multiplication in the previous equation to find the stress components oy, oy, and oy act-
ing on the fracture plane in terms of the stress components in the principal material directions. The results are

O,, = %(022 +04)+ %(022 —043)c0820 + 0,y8in2a

. (9.3)

1 .
P 5(022 —033)8in2a + 0,;c0s20

O, = O, cosa + Oy sina

nl

Note that the stress component o4, does not appear in a criterion formulated from the stress components on the
fracture plane.

Fig.9.1 Inter-fiber fracture planeislocated by rotation through angle a. about the x;-axis.

Puck’s criteria are expressed in terms of adimensionless failure index denoted by FI for either a matrix
mode Fly, or afiber mode Flg. Therange of the failureindicesare 0 < F7 < 1 for no failure, and FI = 1 at fail-
ureinitiation.

Matrix modeA. Intheuniaxia transverse tension test and the in-plane shear test, the plane of fracture is nor-
mal to the x,-direction so o = 0. From eg. (9.3) the stresses on the fracture plane are oy, = 099, Ot = O3, ad o1

= 0y,. Inthe transverse tension test o5, = Y at failure, and all other stresses in the x;-system vanish. For the in-
plane shear test all stresses in the x;-system vanish except that 0,1 = § at failure. The proposed criterion includ-
ing these test resultsis quadratic and of the form

(l—cl)(GT"T">2+cl(GT”T")+(§—”T’>2+(OS—”;>2 =1 0,,z0. (9.4)
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The shear strength transverse to the fibers in the fracture plane is denoted
by Syineq. (9.4)%. In the Cartesian coordinates with axes oy, Ont and oy
the surface given by eg. (9.4) isan ellipsoid if the constant ¢, < 1. In the
shear stress plane o, -0,,; Where o, is equal to zero, the cross section of

the ellipsoid is an ellipse shown in figure. 9.2. The equation for the ellipse
in the plane o, equal to zerois

Fig.9.2 op,=0plane.

The resultant of the shear stress componentsis denoted by ¢, , and the

angle between the line of action of the resultant and o,-axis is denoted by
Y. The stress components are related to the resultant by

O, = O, COSY O, = Oy siny . (9.6)

nt

Substitute eg. (9.6) for the stress componentsin eg. (9.5) to get

o2 (M.FM):] o =0. 9.7)
ny S% S% nn

Onthefalureellipse o,,, = S,, ineq. (9.7). Hence, strength S,, isrelated to strengths Sy and §_ by

2 112
S@(%ﬁ+%ﬁ> =1 o, =0. 9.8)
T L

To interpret constant ¢, we take the differential of (9.4) with respect to o, followed by setting ,,, = 0 to get

ﬁ+20ntd0nt+20nld0nl —

= =0. 9.9
YT S% dOnn S% dGnn Onn ( )

Along the curve on the ellipsoid defined by angle equal to a constant, substitute the relations (9.6) with
O,, = S, intoeg. (9.9) to get

N e ! (9.10)
2y, "\ s2 s? /do,, "
Use theresult in eg. (9.8) to write eq. (9.10) as
d
S L8 o,, = 0. (9.11)
2Yy S,do,,

Along the curve on the ellipsoid defined by angle y equal to aconstant, |et the negative of the slope of the o,
with respect to oy, @ op, = 0 be denoted by p(7) . That is,

1. Thereisno simple test to determine Sy for FRP composites. In Puck’s criterion Sy is determined from the pure transverse
compression test. Refer to eq. (9.49) on page 280.
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do
(1) = ——= 9.12
pnlp donn ( )
077’7 = 0
Puck defines p 5,@) as an inclination parameter. Therefore, the constant ¢, is determined from
(+)
i = (9.13)
2Y, S,
Substitute the constant ¢, determined from eg. (9.13) into eg. (9.4) to get the failure criterion for mode A as
2 2 2
(1 _2_.._YTp’(Jp)) (%) + %._YTpgﬁ))(%) + (0_’”> + (%) =1 0,,20. (9.14)
Sy Y, Sy Y, Sy S,
The following failure index for mode A is given by Puck:
2 2 2 2
Fl, = J[l —&pgﬂ (°—> +<°—"’) +<%) +p;;p>(%> o, =0. (9.15)
Sy Y, Sy S, Sy

. . Y .
To show egs. (9.14) and (9.15) are equivalent: Set 7,, = 1 in (9.15) and subtract S—ﬂv,@ﬁ)(%) from each side.
¥ T

Then square the result to arrive at eg. (9.14) after some algebraic manipulations.

Theinclination parameter p,g;) isrelated to the inclination parameters defined for they =0and ¢ = /2
failureloci on the ellipsoid. Thelocus of failureinitiation for ¢y = 0 isacurvein the o,,-0, plane. At the point
on this curve where (o, 0,,;) = (0, 0) falureinitiateswhen o,, = S; = S,,. The gradient condition at this

point from eg. (9.9) is

nn’

c +id0nt _

9.16
2Y, Spdo,, ©16)

Thelocus of failureinitiation for ¢ = xt/2 isacurvein the o,,-0,1 plane. At the point on this curve where

(Ouw 0,0) = (0,0) failureinititeswhen o, = S, = §,,. Thegradient condition at this point from eq. (9.9) is
d
i.q.iﬂ =0. (9.17)
2Y, S§;do,,
: o dc
Define the inclination parameter onthey = 0 curveas p(f) = —%,and onthey = m/2 curveas
O

nn

pL) = —%. Combine egs. (9.13), (9.16), and (9.17) to find

nl
nn

p_’g{z:‘lﬁ andp_’(“l) :p_’(ﬁ_)

, . (9.18)
Sw Sr Sw S,

Multiply the first expression in eq. (9.18) by cos?y , and add it to the second expression in eg. (9.18) multiplied
by sin?v , to get relationship between the inclination parameters on the tension side of the ellipsein figure. 9.2 as
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(+) (+) (+)
Py p”—’cos21p + £l sinZqp . (9.19)

Matrix modes B and C. These modes are defined for a compressive normal stress, o,,, < 0, acting on the frac-

ture plane. The motivation of Puck’s criterion for modes B and C is the Coulomb-Mohr (C-M) criterion (Dowl-
ing, 1993, pp. 255-261) for failure of brittle materials. In the C-M criterion a compressive normal stress resists
fracture caused by the shear stresses o, and o,,;. The C-M criterion can be considered to be a shear stress crite-

rion in which the limiting shear stress increases for larger amounts of compression. Consider the case where o 1
=0, so on the fracture plane o, < 0 and o,, = 0 . Then the C-M criterion can be written in the form
lo,| +uo,, = S, where u isafriction coefficient and Sy is the shear strength transverse to the fibersin the

fracture plane. Thefriction effect, uo,, , can be used to increase the strength or to decrease the applied shear
stressin aC-M criterion. Puck and Schurmann (1998) proposed the following criterion

0~nt 2 0-nl 2

( ) +< > =1  o,s<0, (9.20)
ST _pr(t-t)onn SL _pr(l?onn

in which the strengths in the denominators are increased by the compressive normal stress, and (p(), p}) arethe

inclination parametersin compression. Set o,y = 0ineg. (9.20) to get o,, = S;—p$)o,, . ad from this expres-

sion the inclination parameter is interpreted as the negative slope of o,; with respect to oy, or

Py = —(dG"’)

do,,

(9.21)

0, =0

Set oy = 0ineg. (9.20) toget 0,,; = S, —p)o,,, and from this expression the inclination parameter isinter-
preted as the negative slope of o, with respect to o, or

(9.22)

Citing better agreement with experimental results, the denominators of the shear stressesin eg. (9.20) are
expanded and the quadratic termsin the normal stress o,,, are neglected with respect to the linear termsin o, SO

the criterion reduces to

2 2
Tt + a1 =1 0,,<0. (9.23)
S%_zp}g—t)STo-nn S% _zp}(z_fSLonn

For mathematical simplification Puck and Shiirmann assume that the inclination parameters are related in asim-
ilar way to eqg. (9.18) by

= Pal _p 9.2
R (9.24)

With this assumption eg. (9.23) reduces to the simpler form
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(2974 (%) +2()0,, =1 o,,=0. (0.25)
T L

In the Cartesian coordinates with axes o, o, and oy, the surface given by eq. (9.25) is an elliptic paraboloid.
Note that the failure surface does not intersect the negative o,,,-axis according to the hypothesis that a compres-
sive normal stress impedes a shear fracture (i.e., the shear resistance to fracture means the contour linesin the
failure surface increase with increasing compression). In the shear stress plane o -0, Where oy, is equal to ze-
ro, the cross section of the ellipsoid is an ellipse shown in figure. 9.2. Substitute the relations given by eg. (9.6)
into eg. (9.25) to get

2 2
ng(m + M) + 2(2) o, =1 0,,=<0. (9.26)
S% S? R
Differentiate eq. (9.26) with respect to o,,, to get
o, ’<c0521p . sin2w> Aoy . p _ (9.27)
W3 sp Jdo, R

Consider the op-0py plane at oy, = 0. On the failure ellipse o,,,, = S, and (9.26) is

2 n2
S@(—MS + SO ) = 1. (9.28)
St St

Evaluate eq. (9.27) & o,,, = S,,, followed by the substitution of eq. (9.28). Theresult is

d
Lm0 - o,, = 0. (9.29)
Sydo,, R

. S d
Define the inclination parameter for the curvey equal to a constant by p,({u), = _diw' Hence,
(e}

nn

(-)

2 = Luwp (9.30)
R S,
Substitute the result (9.30) into the condition of failureinitiation (9.25) to find
2 2 (-)
<0—"’) + (E) + 2(—’“‘1> o,, =1 0,,<0. (9.31)
Sy S, Sy
Thefollowing failure index for o, < 0 is given by Puck.
Gnt 2 0—nl 2 p;l 2 pr(l-)
Fl,, = <—> +(—) +<—“~’o,m) +<_1£)0M 0,,<0. (9.32)
S S, Sy Sy
One can show eq. (9.32) isequivalent to eq. (9.31) if weset F7,, = 1 in(9.32).
Combining egs. (9.24) and (9.30) we get
Ii"—ll)’.:li_t),andp_ﬁ';& :Iﬁ_ (9.33)
Sy T Sy S,
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Similar to the manipulations to get eg. (9.19), the expressionsin eqg. (9.33) lead to the relationship between the
inclination parameters on the compression side of the ellipse of figure. 9.2 as

(-) (-) (-)
Dy — Pit os24p +p—”1—sin2w. (9.34)

For given values of the stress components o,,, 033, O3, 021, and o3y for which o, < 0, thefailureindex is
afunction of the angle a of the fracture plane. The condition to find a. is to make the failure index a maximum.
- . . dFI , - - .
The necessary condition for amaximum is a—M = 0.Tofind o that satisfies the necessary condition requires a
(03
numerical search.

The section of the failure surface in the o,,-opy plane where o,,; = 0 is shown in figure. 9.3(a), and the sec-
tion of the failure surface in the 0,,,-0,1 plane where o, = 0 is shown in figure. 9.3(b). In addition to the five

atanp|(;) ? Ot atanp(y I? Inl

Fig. 9.3 (a) Sectionsof thefailure surfacein the o,,-0 plane, and (b) in the 6,,,-0p,1 plane.

basic strength data for an FRP composite ply listed in table 9.1, Puck’s criterion introduces four new dimension-
less parameters: p(Y, p(P, p(), and p{ . Theinclination parameters p{;) and p(? are the slopes of the failure

nl 1 Fnt

locus at the o-axisin figure. 9.3(8). Inclination parameters p() and p}) arethe slopesof thefailurelocusat the
opp-axis shown in figure. 9.3(b). Puck, et al. (2002) recommend that p{;) = p(+), which makes the slope of the

Opn~Op CUrve continuous at the o-axis. The inclination parameters p) = 0.25 and p{) = 0.30 with p{)

computed from eq. (9.24) were used in the WWFE. Recommended ranges of inclination parameters are listed
table 9.2.

Table 9.2 Recommended range for inclination parameter p,,
from Puck et al. (2002)

p ﬁl_t) p;(z+t)
Glass-fiber/epoxy 0.20t0 0.25 0.20t0 0.25
Carbon-fiber/epoxy 0.25t00.30 0.25t00.30

Fiber modes. A simple fiber mode criterion that does not interact with the longitudinal shear stresses o, and
031 IS the maximum stress criterion along the fibers. The fiber failureindex FI, isdefined by
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o, <0
, (9.35)
0,,>0

FI, =

where 0 < FI, < 1 for nofailure of thefiber, and FI, = 1 at failure.

9.1.2 Matrix failurecriteriafor aplane stress state

The assumption of plane stressis that out-of-plane stresses og3, 053, and o3, are negligible in comparison to the
in-plane stress components o,, and o,1. Hence, the out-of-plane stresses can be neglected in the stress transfor-
mation equations (9.3). The stress transformation equations reduce to

— 2 - _ : —
0,, = 0,,C08%0 0, = —O,,sinacosa O, = O, cosO.. (9.36)

InmodeA o =0, and stresses 6, = 09y, Ot = 0, and oy, = O9q. For o, = 0 the locus of failureinitiation is

(+) (+)
acurveinthe o,,-opq planeand ¢y = /2. From eg. (9.19) we find p?’“*’- = Lull Therefore, the mode A failure
P L
index. (9.15) in plane stress reduces to
Y12 2 2 ()
FIy, = [1 —Pffl)“q <9—22> " (0_4) + R 05,20. (9.37)
SL YT SL SL

Modes B and C for aplane stressstate. Substitute the stress transformation equations (9.36) into eg. (9.25) to
get

O\ 2 051\ 2
FI, = (—22> sinocos?a + (—21> cos’a + 2(3) 0,,cos’a 0,,<0. (9.38)
S, S, R

The angle of the fracture plane is determined when index Fl, is amaximum value with respect to o. Substitute

sinfa = 1 —cos?a in (9.38) to expressindex F1,, asafunction of cos?a . Then the necessary condition for a
maximum can be written as

dFI dFI
M= M_(2cosasina) = 0. (9.39)
do d(cos?a)
One solution of eg. (9.39) isa = 0, which is the mode B fracture where the fracture plane is normal to the x,-di-

rection.

O\ 2 O
1 = (=) +2pH(= 0 de B 9.40

<SL> M(SL) G2 < mode ©:49)
Now take the derivative of the failure index (9.38) with respect to cos?o. and set it equal to zero. Solve the re-
sulting expression for cos?a. to find

cos?a = %[1 +<S—T>2

Sl 2} 40 31
—_— —_—. 9.41
5 () |*ps (9.41)

O O
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Equation (9.41) is used to eliminate the trigonometric functions in the failure index (9.38) to get

2
_ [1/8\[(%2\? , (Ou 2} 2
FI,, = J=(—=)|(=) +(=) |+p{ . 9.42
m {2(02)[(5}) (SL) Pyl ©:42)
Notethat —1 < ,/FI,, < 1, so that the square root of eq. (9.42) is
1/Sr\[/922\% | (921\? O
1=i(2n)[(S2) 4 (Su +2<—>_J 1. 9.43
2(022)[(&) (S) p"’<5T> = ©49
Take the left-hand inequality of eqg. (9.43) and multiply by —1 to get the form
1/ Sr 0x\2  (O21\?
lz=(—=)[(==) +(=) |-pY). 9.
2(—02)[(&) (SLH Pt ©49
Finaly, add p{;) to each side of eq. (9.44) followed by divisionby 1 +p{) to get
1 0222+ Oy 2} Sty _
ewmuennrerd [ Eaveend —== —\ = FI 0 de C, 9.45
2(1+p,<1-))[( ST> (SL> <—022) M On= mode ©49)
where Fly, = 1 at failure in mode C. Equation (9.41) iswritten in the equivalent form as
2 :lﬁz[%2+9&l2+2(-g@J 9.46
o 2(022> (ST) (SL> p”2<ST> ' (5:40)

At failure eg. (9.45) is solved in the form

(‘;_2;)2 + (‘;_il)z = 2(1+pf) )(%2) . (9.47)

Substitute eg. (9.47) into eq. (9.46) and perform some algebrato get final result for the angle of fracture plane for
mode C:

S
cos?a = —L 0y, < —S; mode C . (9.48)

—O2
Transverse shear strength. The shear strength transverse to the fibersin the fracture plane Sy cannot be deter-
mined from simple tests. Instead Sy is derived from the uniaxial transverse compression test in which o5, = Y
at failure and all other stresses in the x;-system vanish. In eg. (9.45) set Fl, = 1, 051 = 0, and 05, = Y to evalu-
ate the transverse shear strength Sy at the pure transverse compression condition. Theresult is

Yc

S; = ———, 9.49
RETIEY S o

To find the transition values of stresses 0,1 and oo, between modes B and C, solve the eqg. (9.40) for 0,4 and
substitute this result for o, in €g. (9.45) with Fly, = 1. Theresults are

0y = =S; Oy = S J1+2p0). (9.50)

Thus, for plane stress the matrix failure indices are
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Y. 2 2 2
FI,, = [1 _Pr(fl)_q (22) + <9—21> +IZE-G—22 0, =0 mode A (9.51)
S\ Yy Sy Ay}
_ (921\? (%22 )
FI,, = (-5—> +2Pnf<‘§"> —S;<0,<0 S; < |0y =S,J1+2p) mode B (9.52)
L L
2 2, 8
FI,, = ;[(O—ﬂ + (cﬂ) }(—7) Yo =0,=-S; mode C. (9.53)
2(1+p))L\ Sy Sy —Op

The matrix failurelocusis plotted in (o,,,, ©,,, 0,,) Stressspacein figure. 9.4 for the lamina subject to plane
stress, The stress components at selected points are listed in table 9.3.

Fig.9.4 Matrix failurelocusinthe o, , and

0, Stressspacefor a unidirectional ply subject to
plane stress. Thefailure locusis symmetric with
respect tothe o,,,—o,, planeandtheo,,—o,,
plane.

o

nt?

Table 9.3 Stress components at selected pointslabeled in figure. 9.4

Point Oun Oy On1 02 Oy

a Y, 0 0 Yy 0

b 0 0 S, 0 S,

: 5 0 N e B (ST
d -Sy ~Yccosaysina,® 0 —Yc 0

a cosoy = [2(1 +p,(l‘t))]_”2
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The matrix failure locus shown in figure. 9.4 is plotted in the o,5-05; stress plane in figure. 9.5.

Mode B a = 0 O3

Mode C |a] =0 l A

-S—>M0deA0L =0
L

Mode C |a| =0
ModeB a = 0

Fig. 9.5 Matrix failuremodesfor Puck’scriterionin the o,, - 0,, stressplanefor
aunidirectional ply.

In multidirectional laminates the intralaminar failure predictions are made by the analysis of strains and/or
stresses in each lamina, with failure criteria evaluated in each lamina. A failure initiated in one lamina predicts
the onset of damage, or first ply failure (FPF), that is usually not the ultimate failure of the laminate. It is insuffi-
cient to predict ultimate failure with the failure initiation criteria alone if the composite structure can accumulate
damage before ultimate failure.

9.2 Sressesinthe principal material directions

The stressesinthek-thply, £ = 1, 2, ..., Np, of thelaminated wall are required to assess the strength of the ply.
Starting from eq. (8.27) on page 229 we have for the k-th ply

(k) (k)
Oy €y
oy, T [Olley,| (9.54)
O3 Y12

where the reduced stiffness matrix is

E/(1=vyv)  (VRE)/(1=vyvyy) O
[Q] = (Vo E5) /(1 =vyyvip)  Ey/(1=vyvyy) 01- (9-55)
0 0 G,

The strainsin the principal material directions are related to the strains in the beam coordinate directions by eg.
(8.29), which is repeated bel ow.
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(k)

€1 €5 n?  m? mn Egs
€2 = [Tsz(q’kﬂ . = | m* n? —mn €| (9.56)
Yo Y. —=2mn 2mn (—m? + n?)| |y,

where m = cosg, and n = sing, . Substitute eq. (9.56) for the strainsin eq. (9.54) to get

(k)

O €y
on =0 [Tez(cpkﬂ €..| - (9.57)
0’12 st

Theaxia normal strain ¢, and the shear strain v, are determined from the material law, eg. (8.45) on page 237;
i.e,

e, = é(nz —bq) Yoo = ll;(aq —bn.). (9.58)
Thenormal strain ¢ is determined from the assumption », = 0 in eg. (8.35) on page 233, which yields

€5 = _(AIZ/AII)EZZ_(Alﬁ/All)st . (9.59)

Withthestrainse_., y.,, and g, determined from eqg. (9.58) and eqg. (9.59), the stresses in the material principal
directionsin the k-th ply are obtained from eqg. (9.57)

Example9.1 First ply failure envelope for the circular tubein example 8.3

The graphite-epoxy tube is subject to a prescribed axial force N and torque M, at its free end, and no other exter-
nal loads. Thus, the only internal actions at each cross section are an axial force N and a torque M,. The shear
flow g from eg. (8.74), and the normal stress resultant n from eqg. (8.77), a each cross section reduce to

q = M./(24,) n, = (B/S)N. (a)
From eq. (f) in example 8.3 on page 245 the function ®(6) = 0, 0 < 6 < 27, so the torque does not contribute
to the expression for the normal stress resultant. From example 8.3 we have the following data:
S = 4.99669 MN b = —1.22899 B = 39.1363 MN/m a = 3.9495 A4, = 0.00129717 m2,

Consider proportional loading and take

q/n, = tanB = [S/(24,B)|(M./N). (b)

For N = hcosf , thetorque M, = (24,B/S)Asinf = (0.02032 m)Asinp . A radia ray that runs from the ori-
gin to the point of failure initiation in the plane of the axial force and torque is shown in figure. 9.6. Use Puck’s
criterion, egs. (9.51) to (9.53), to determine which of the two unidrectional layers with angles ¢, = —20° and
¢, = 70° fail first. That is, we find the minimum value of A > 0 for specified valuesof §, 0 < < 2m to assess
first ply failure. The strengths of T300/5208 graphite/epoxy are listed in table 9.4.
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- initiation of failure

Fig.9.6 Aloadrayin
the plane of the axial
forceand torque

Table 9.4 Strength parametersfor Puck’scriterion: egs. (9.51) to (9.53)

X2 1,454.72 MPa (211. ksi) | p{» 0.25
Xc 1,454.72 MPa (211. ksi) | p¢) 0.25
Y2 42.0559 MPa (6.1 ksi) P 0.25
Yl 246 MPa P C 0.241725
s,2 95.1429 MPa (13.8ksi) | S, 98.4 MPa

a Nixon (1987).
b. Tsa (1992).
c. Equation (9.24).

The strains from the compliance law (9.58) are

e. = N/S—[b/(2AB)IM.  v,. = [a/(24,B)IM.—(b/S)N, ©

Thenormal strain €, ineq. (9.59) is evaluated from in-plane stiffness matrix is given by eq. (a) of example 8.3.
The results for the laminate strains are

£, 1.99988x107" 12.0956x10°°
€| T |-1.08262x10" ~12.0956x10°| |,/ |° @
Vs 2.45783x10° 38.8707x10°

The reduced stiffness matrix is determined from the material property datalisted in example 8.3 which yields the
result

148.461 4.2377 O
0] = 423777 11152 0 |GPa. ()
0 0 64118
The stressesin the principal directions of aply are determined from eqg. (9.57). For the ¢, = —20° ply,
m = 0.939693 and n = —0.342020 in eq. (9.56). The stresses in the principal material directions are
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o s 12,6386 ~9,457.22 o

— — COS
on| = [0][T.a(=207)] |e..| = *| 435650 453301 Linﬁ] )
o1y - ~2,477.65 —5,905.5

For the ¢, = 70° ply, m = 0.342020 and n = 0.939693 in eq. (9.56). The stresses in the principal material
directions are

(2)

on s 1,367.92 9,347.22/ 1 o

= = cos
ou| 7 [0][702(70)] |e..| = %] 975989 453301 Linﬁ] @
Oz Yz 2,477.65 5,905.5

To illustrate the failure methodology we detail the first ply failure analysisfor § = 30° and p = 150°.
The stress components in the material directionsin each ply arelisted in table 9.5.

Table 9.5 Stressesin the principal material directionsin the —20° ply and the 70° ply for two different load
rays

B = 30° B = 150°
Stress -20° ply 70° ply -20° ply 70° ply
oy, 6,216.74\ 5,913.26\ —15,674.\ 3, 543.95\
0y 603.987A 618.536\ —150.597A -1, 071.93A
Oy =5, 098.46\ 5, 098.46A —807.041A 807.041\

Computationsfor § = 30°. The stresscomponent in thefiber direction o,, > 0 for both pliesindicates afiber

tension mode of failurefor A > 0. Since o,, islarger inthe —20° ply it leadsto asmaller value of A. From
(9.35)

(6,216.74 1/m2)\

1 = 1
(1, 454.72x10° N/m2)

(h)

whichissolvedtofind A = 234,001 N . Inthe —20° ply the stress components o,, > 0 and o,, < 0 which cor-

responds to the quadrant IV of the stress plane of figure. 9.5. Evaluation of the mode A failure criterion (9.51) for
the —20° ply leadsto

1.58705x10 A + 55.08999x10°° /A2 = 1. Q)

The positive root of eq. (i) isA = 17, 644.1 N . Inthe 70° ply the stresses o,, > 0 and o,, > 0, which corre-
spondsto quadrant | of the stress plane. Evaluation of the mode A failure criterion (9.51) for the 70° ply leadsto

1.62528x10 A +55.1611x10°. /A2 = 1. 0
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The positiveroot of eq. (j) isA = 17, 609.8 N . Theresults of first ply failureanalysisfor f = 30° isamatrix
modeA failureinthe 70° plyat A = 17, 609.8 N..

Computationsfor § = 150°. Thestress o,, <0 inthe —20° ply, and o,, > 0 inthe 70° ply for A>0.The

magnitude of o, inthe —20° -ply exceeds the magnitude of o, inthe 70° -ply, so for fiber failure the —20° -
ply leadsto asmaller value of A. Equating the fiber failure index in compression to equal one leads to

—(—15, 674.1/m2)\

1 = :
(1454.72x10° N/m?2)

(k)
whichissolvedtofind A = 92,8114 N .

In the —20° -ply stresses ¢,, < 0, and o,, < 0, which means the matrix failure index is evaluated in quad-
rant 11 of the stress plane shown in figure. 9.5. To determine if the failure index is evaluated in the mode B or
mode C sub-domain of quadrant |11, we calcul ate the slope of the line representing the stressratio o,,/0,, and

compareit to the slope of the line dividing the mode B and mode C sub-domains. Let m denote the slope of the
line determined by the stressratio, and let m,, ,, denote the slope of the line dividing sub-domainsin quadrant I11.

Refer to figure. 9.5 to see that the stress coordinates 0,, = =S, ./1 +2p§) and 0,, = —S; define apoint on the

line subdividing mode B and mode C. The strength dataislisted in table 9.4. Numerical evaluation of the slopes
yields

_ =S, J1+2p")
= =807.041A _ 5359 my,,, = (_A_S@ = 1.184. 0}
T

% 7 (=150.5971)

Since m,,, < ms < %, the matrix failure index is evaluated in the mode B sub-domain of quadrant I11. Set the
faillure index in mode B (9.52) equal to one to get the quadratic equation

(=7.65227x107" +7.19512x10 " "A)n = 1. m)

The positiveroot of eq. (m) is A = 123,329. N.

In the 70° -ply the matrix stresses ,, <0 and o,, > 0, so the matrix failureindex is computed in quadrant
Il of the stress plane. To determineif the failureis amode B or mode C, we again determine the slopes m and

my,,. inquadrant 1. The numerical results for the slopes are

S; A1 +2pt
807.0417  _ _ 759 m,,, = @ = —1.184. (n)
T

Mo = T 071930
Since m,,, < m, < 0, thefailureindex is compute for mode C in quadrant I1. Set the failure index in mode C

(9.53) equal to oneto get

6.9994x10°°) = 1. ©)
Hence, for the matrix mode Cinthe 70° ply A = 142,869 N.For § = 150° the minimum value of A is
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92, 811.4 N, which corresponds to a fiber compression mode in the —20° ply.

The following table listsfirst ply failure results for selected values of 3 .

Table 9.6 First ply failure data for selected load rays

p,degrees A, N

Axial force N, kN

Torque M_, N-m

Mode of failure

0
30
35
90
135
140
145
150
155
160
165
170
180
210
215
245
250
270
335
355

27,936.9
17,609.8
16,658.1
15,625.6
39,199.9
50,399.

71,295.8
92,8114
94,149.1
96,269.3
99,260.1
71.408.

40,067.3
19,203.1
17,992.2
14,868.6
14,814.

15,625.6
38,849.7
30,944.9

27.94
15.25
13.65
0
—27.72
-38.61
-58.40
—80.38
—85.33
—90.46
—95.88
-101.7
-51.14
-17.91
-15.73
—6.352
—5.085
0
33.53
34.02

0
178.9
194.2
317.5
563.2
658.2
831.0
943.0
808.5
669.1
522.0
364.3
0
-210.1
—223.8
—276.8
—283.9
-310.1
-317.8
—60.49

70° ply matrix mode A

70° ply matrix mode A
—20° ply matrix mode A
—20° ply matrix mode A
—20° ply matrix mode A
—20° ply matrix mode B
—20° ply matrix mode B
—20° ply fiber compression
—20° ply fiber compression
—20° ply fiber compression
—20° ply fiber compression
—20° ply matrix mode B
—20° ply matrix mode B
—20° ply matrix mode B
—70° ply matrix mode B
—70° ply matrix mode B
—70° ply matrix mode A
—70° ply matrix mode A
—70° ply matrix mode A
70° ply matrix mode A

Note that the mgjority of first ply failures are matrix modes A and B. For 150° < 8 = 165° the mode of fail-
ureisfiber compressioninthe —20° ply. Thefirst ply failure locusis plotted in figure. 9.7.
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Fig.9.7 First ply failurelocusfor the graphite epoxy circular tube subject to an axial force
and atorque.
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