GenoCAD: linguistic approaches to synthetic biology

Yizhi Cai

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Genetics, Bioinformatics, and Computational Biology

Jean Peccoud, Chair
David R. Bevan
Madhav V. Marathe

William T. Baumann

April 20, 2010
Blacksburg, Virginia

Keywords: Synthetic Biology, Linguistics, Computer Assisted Design, Bioinformatics
Copyright 2010, Yizhi Cai

GenoCAD: linguistic approaches to synthetic biology

Yizhi Cai

(ABSTRACT)

Synthetic biology is an emerging interdisciplinary research field, which leverages the mat-
uration of DNA synthesis technologies. By introducing engineering principles to synthetic
biological systems design, synthetic biology shows great potential to shed new lights on biol-
ogy and benefit human beings. Computer assisted design (CAD) tools will play an important
role in the rational design of synthetic genetic systems. This dissertation presents the first
CAD tool for synthetic biology — GenoCAD, a linguistic-based web application. By viewing
DNA sequences as a language, we developed the first syntactic model to design and verify
synthetic genetic constructs. Then we conducted a careful curation of the terminal set in the
grammar - the first comprehensive analysis of the Registry of standard biological parts. The
implementation and major features of GenoCAD are discussed, and in particular we showed
how to develop a domain-specific grammar for BioBrick-based construct design and make
GenoCAD a useful tool for the iGEM students. Finally, we went beyond the syntactic level
to explore the semantics of synthetic DNA sequences: by associating attributes with biologi-
cal parts and coupling semantic actions with grammar rules, we developed the first semantic
models to relate the genotype to the phenotype of synthetic genetic constructs. The theories
and techniques presented in this dissertation, along with the informative results presented,
will serve as a foundation for the future developments of GenoCAD.

This work was jointly supported by a graduate fellowship from the graduate school at Virginia
Tech to Y. Cai, Virginia Bioinformatics Institute and National Science Foundation Award
EF-0850100 to J. Peccoud, PI.

Dedication

Dedication — Family
Family — Parents|Wife
Parents — Dad|Mom
Dad — Jianshe Cai
Mom — Yuzhen Huang

Wife — Yijing Zheng

1ii

Acknowledgments

I would like to express my sincere gratitude and appreciation to my PhD committee mem-
bers: Drs. Jean Peccoud, David R. Bevan, William T. Baumann and Madhav V. Marathe,
for their mentorship, patience and encouragement during my time at Virginia Tech. This
dissertation would not be in the current form without their insightful input and constructive
criticism.

[was fortunate to be in the Genetics, Bioinformatics and Computational Biology (GBCB)
interdisciplinary doctoral program, where I met a lot of great faculty members and fellow
students. I gratefully thank Drs. Brett M. Tyler and David R. Bevan, and Ms. Dennie
Munson, who helped me a great deal during my 3.5 years in the program and showed me
the integrity of being a great scientist. Both Sarah and I would like to sincerely thank the
vice president of Virginia Tech and the dean of graduate school Dr. Karen P. DePauw, and
the director of VBI Dr. Harold “Skip” Garner, for helping us going through a very difficult
time one month before my defense.

It has been a pleasure for me to work in Virginia Bioinformatics Institute. The interdisci-
plinary nature of this institute has played an important role in my scientific development.
I thank Drs. Joao C. Setubal and Shrinivasrao P. Mane for teaching me a lot of Bioinfor-
matics knowledge. I thank Ms. Jodi Lewis for providing me great assistance on traveling
to conferences. I thank all the past, and current members in the synthetic biology group.
I thank VBI Core Computational Facility (CCF) for assisting me a lot on computational
matters. I had the privilege to chair the GenBioOrg student organization, and I thank Drs.
Kristy DiVittorio and Ed Smith for providing funding support to GenBioOrg. And I enjoyed
a lot working with my fellow GBCB students in promoting interdisciplinary research to the
Virginia Tech community.

My interests in synthetic biology stemmed from my participation in the international Ge-
netically Engineered Machines (iGEM) competition when I was in Edinburgh. I thank Dr.
Christopher French and all my teammates for the nice summer we spent together in 2006,
when we built an arsenic biosensor together. Through my PhD, I continuously received

v

advice and encouragement from my master advisor Dr. Gordon Plotkin from the University
of Edinburgh.

I had several opportunities to present my work to different groups of audience at different
universities. I sincerely thank my hosts: Dr. Roger Levy from the University of California
at San Diego, Dr. Gabor Balazsi from MD Anderson Cancer Research Center and Dr. Jef
Boeke from the Johns Hopkins University.

[am grateful to Dr. Matt Dyer for sharing his IXTEX dissertation template with me, and
also Ms. Janice Austin for the help on ETD format. I thank Dr. David Ball for carefully
proof-reading this dissertation. Without their help, I would not be able to finish this disser-
tation in less than a month, and I am sure it would not be as enjoyable.

I thank my best friends Drs. David Ball and Revonda Pokrzywa, Rebecca Shelton, John
Cumbers, Yisha Luo, Kim Siung, Judith Nicholson, Matthew Lux, Laura Adam, Rong Song,
Tian Hong, Pinyi Lu for their friendship, encouragement and help through out my PhD.

Finally, this dissertation owes a lot to my wife, Yijing “Sarah” Zheng. She turned down
a H-year fellowship from the University of Pittsburg and came to Blacksburg to support
my endeavors of obtaining this PhD. I truly understand it is not easy to be the family of
a “workaholic”. Thank you for your love, faith, patience and understanding. I am also
indebted to my parents, Yuzhen Huang and Jianshe Cai, for their unconditional love and
support.

I would like to note that the research presented in Chapter 2 was published by Cai et al.,
2007 [29], and has been filed for a US patent application [156]; the research presented in
Chapter 3 was published by Peccoud et al., 2008 [155]; the research presented in Chapter 4
was published by Czar et al., 2009 [48]; the research presented in Chapter 5 was published
by Cai et al., 2010 [31]; and the research presented in Chapter 6 was published by Cai et al.,
2009 [30]. It should be noted that all the five articles were distributed under the terms
of the Creative Commons Attribution Non-Commercial License which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original
work is properly cited. I sincerely thank all the co-authors for their valuable contributions
to these publications.

I gratefully acknowledge the financial support provided by the graduate school at Vir-
ginia Tech, Virginia Bioinformatics Institute and National Science Foundation Award #EF-
0850100.

Contents

1 Introduction 1
1.1 Synthetic biology 1
1.2 Formal language 4
1.3 Organization 5

2 A syntactic model to design and verify synthetic genetic constructs derived
from standard biological parts 8
2.1 Introduction 9
2.2 Methods 11

2.2.1 Variables.o 11
2.2.2 Terminal set 12
2.2.3 Productions and construct design 14
2.3 Results 16
2.3.1 Parsing for construct verification L. 16
2.3.2 Validationo 17
2.4 Discussiono 20
2.4.1 Grammar form and limitations 20
2.4.2 Data model for libraries of genetic parts 21
2.4.3 Limitations of syntactic models 22
2.4.4 Beyond the proof-of-concept L. 22
2.5 Acknowledgements 22
2.6 Attributiono 23

vi

3 Targeted Development of Registries of Biological Parts 24

3.1 Imtroduction 25
3.2 Results. 27
3.2.1 Analysis of the database content 27
3.2.2 Analysis of the DNA repository 30

3.3 Discussion 34
3.3.1 A global analysis of the Registry 34
3.3.2 Organizational guidelines 35
3.3.3 Targeted development of registries of parts 36

3.4 Materials and Methodso 37
3.5 Supporting Information 37
3.6 Acknowledgments 38
3.7 Author Contributions 38
3.8 Attribution 38
4 Writing DNA with GenoCAD™ 40
4.1 Introductiono 40
4.2 Flexible Management of Genetic Parts Libraries 41
4.3 Point-And-Click Design of Genetic Constructs 42
4.4 Custom User Workspace 48
4.5 Implementation and Data Model 48
4.6 Summary and Future Work L 51
4.7 Funding 52
4.8 Attributiono 52

5 GenoCAD for iGEM: a grammatical approach to the design of standard-

compliant constructs 53
5.1 Introduction, 54
5.2 Materials and Methods, 5%

vil

5.3 Results, 55

5.4 Discussion Lo 64
5.5 Acknowledgements 66
5.6 Funding 66
5.7 Attribution oL 67

6 Modeling Structure-Function Relationships in Synthetic DN A Sequences

using Attribute Grammars 68
6.1 Introduction L 69
6.2 Model 71
6.3 Results. 73
6.4 Discussion 84
6.5 Supporting Informationo 86
6.6 Acknowledgments 87
6.7 Author Contributions 87
6.8 Attribution 87
7 Outlooks and Perspectives 88
Bibliography 90

viil

List of Figures

2.1

3.1

3.2

(A) The successive applications of productions starting from S provide a
framework to guide the design of genetic constructs. (B) The verification
of an existing DNA sequence requires the use of a lexical analyzer to identify
the parts composing the sequence. The symbolic description of the sequence
provided by the lexical analyzer can be parsed using an LR algorithm

Network of inclusion relationships among the Registry entries. Nodes of this
network correspond to entries in the Registry. Nodes are grouped in color-
coded circles according to the Registry categories. Categories corresponding
to parts are within the blue box on the left side of the figure whereas cate-
gories corresponding to designs are located within the red box on the right
side. The diameter of the nodes corresponds to the node connectivity. The di-
rected edges indicate that the sequence of one entry is included in the sequence
of another entry. Edges are color-coded according to the type of relationship.
If most of the edges correspond to natural relations (parts included in de-
signs, and designs included in other designs), it is somewhat surprising that
parts can include other parts (yellow edges) and it is unclear why some parts
would include design in their sequence (red edges). Detailed analysis of in-
dividual entries can be conducted using a Cytoscape [194] file (Figure S1).
do0i:10.1371 /journal.pone.0002671.g001

Comparison of the Registry published sequences with the size of the PCR
amplification products. This plot is limited to the clones that generated a
single PCR fragment greater than 120 bp. Theoretically, the size of the PCR
fragment is 41 pb longer than the length of the published sequence because
of the presence of the PCR primer sequences in the amplification product
(n = 509). When all data points were used in the linear regression, the
fit led to a coefficient of correlation R? = 0.33. Based on previously reported
experimental error affecting fragment size determination [103], 76 outliers were
eliminated manually (green points) leading to a greatly improved R3 = 0.98.
do0i:10.1371 /journal.pone.0002671.g002

1X

19

4.1

4.2

4.3

The GenoCAD parts library browser (used with permission of J. Peccoud,
2010). Parts are associated with individual libraries, each of which is asso-
ciated with a specific grammar. Users select which parts library they view
through choice of a grammar and specific library in drop down boxes on the
page. The part category ‘Gene’ is displayed in this figure along with the icon
that represents genes in the designs. By clicking on the icon, the list of genes
expands, allowing the user to see the available choices in the library. Selecting
the link to ‘View Sequence’ for any part opens a small window containing the
sequence of the individual part.

The design interface showing the structure of a genetic toggle switch (used
with permission of J. Peccoud, 2010). The interface has drop down boxes
at the top to select the grammar and parts library that will be used in the
design. The history panel allows users to select one of the steps in the design
process and see the structure of the design at that step. Users are permitted
to go back to any step and redesign from that point. The design is presented
in the main panel of the page, and icons for each part and the abbreviated
parts categories are shown at the top of the design. Choices for each part
are shown underneath the part icon. The inset shows the final design for this

construct after specific choices (terminals) are selected for each part category.

A progression through the design of a bistable toggle switch (used with per-
mission of J. Peccoud, 2010). The starting symbol, S, (1) is where each design
begins, and it is transformed into a transcription cassette, CAS, (2). Since
the toggle switch contains two transcription cassettes, the single cassette is
doubled (3). The design we are following has the cassettes oriented in oppo-
site directions, and we achieve this by transforming the left cassette to the
tpe- option, and the right to the tep+ option (4), which contain a promoter,
cistron, and terminator, but in opposite orientations. The right cassette is
meant to express a transcriptional repressor and reporter gene in a bicistronic
manner, so the cistron is doubled by selecting the 2cis+ option (5). Each
cistron is then decomposed to a RBS and gene (6), with the RBS and gene in
the reverse orientation in the left cassette. Selection of the specific promoters,
RBSs, genes, and terminators produces a final construct that is associated
with a DNA sequence (7).

44

45

4.4

4.5

4.6

5.1

Creating a custom parts library. Users who create an account at the website
are able to create their own parts libraries, and are then able to add custom
parts to these libraries (used with permission of J. Peccoud, 2010). Through
the library creation interface, users select the grammar that their library will
belong to, provide a name for their library, and can enter a description. Parts
can be added to a new library from other libraries of the same grammar, which
are loaded in the lower left box on the web page. All parts or a select subset
of parts, from the existing library can be copied into or removed from the new
library using the orange add and ‘remove’ buttons.

Interface to add a new part. Users that have created a custom library are able
to add and save parts that can be used in their designs (used with permission
of J. Peccoud, 2010). The categories of parts permissible in designs are defined
in the grammar, so the grammar must be chosen first through a drop down
menu. A second drop down, then allows users to choose which part category
the new part will belong to; in this case a new terminator is being created.
The sequence and description of the part are entered in text boxes, and the
library(s) to which the part will be added must be checked.

GenoCAD data model. Each grammar encompasses a set of rules by which
constructs can be designed. The grammar also defines the categories of parts
that are available to design the constructs. For each grammar there is a
collection of public parts (solid, blue rectangle), which constitute a publicly
available parts library (dashed, blue rectangle). ‘User Libraries’ can be created
from any subset of the public parts, and this library can be supplemented
with user-created parts (solid, red rectangle). Two user libraries (dashed, red
and dashed, green rectangles) are shown here that contain different subsets
of public and user-created parts. User library 2 contains all user-created
parts. When a design is created, all the parts to complete the design must be
contained within a single library.

Correspondence between parts categories, non-terminals and icons used to
graphically represent construct structures.

x1

5.2 Three different representations of a BBa2.0 design. (A) This design includes
two gene expression cassettes in opposite orientations. The first icon repre-
sents the construct backbone. The icons P1 (second to the left) and S2 (last)
represent the construct prefix and suffix. The brackets | and | indicate the
reverse orientation of the first cassette. Because BBal.0 and BBa2.0 share the
same prefix and scars, the design includes P1, C1 and S2. (B) The sequence
generated by the grammar includes the special characters [and | to indicate
the fragment in reverse orientation in bold characters. (C) The sequence of
the construct is generated by replacing the sequence in bold character by its
reverse complement.o oL L L

5.3 Step-by-step design process of a wintergreen odor system using GenoCAD.
The construct is designed in nine steps. For each step, the rewriting rule
used is indicated in blue in the second column using the same number as in
Table 5.2. The rewriting resulting from the rule selection is indicated in the
graphical representation of the construct. The icon underlined by the base
of the arrow indicates the left term of the rule. The icons enclosed in a blue
rectangle correspond to the right term of the rule. For instance, applying the
rule P8 to Cassl in step 2 transforms this element into Cassl C1 Cassl in
Step 3. . .

6.1 Workflow of generating the gene network model encoded in a DNA sequence.
The input for this process is a DNA sequence that is first broken down into
parts by the scanner. The combination of the parts is validated by the parser
according to a syntactic model. After validation by the parser, the sequence is
translated by applying semantic actions attached to the rules to transform the
series of parts into a set of chemical equations. The resulting equations can
then be solved using existing simulation engines. Each step takes the output
of the previous step as input, so the workflow can start from any step if the
appropriate input is provided.o

6.2 Parse tree showing the derivation process of a two-cassette genetic construct.
In the derivation tree, terms in ,. corresponds to the non-terminals in the
grammar, while terms in [| are terminals, and the dashed lines indicate the
transformation to terminals. The subscripts are used to distinguish different
instances of the same category.. Lo

6.3 An example of attribute grammar. L
6.4 Equation generators.o

6.5 Chemical equations translated from a DNA sequence.

x1i

6.6 Mapping the behavior of 384 genetic constructs. Each section A to F indicates
a different selection of repressors within a toggle switch: (A) tetR and lacl,
(B) lacl and tetR, (C) lacl and cI, (D) cI and lacl, (E) cI and tetR, and
(F) tetR and cl. Other networks that cannot give rise to bistability (e.g. a
construct with tetR as both genes) are excluded as are designs that only vary
the GFP RBS (see text). Each pair is explored by varying the RBS (ordered
by translational efficiency from low (RBS H) to high (RBS B) as determined
by a qualitative fit of the results of Gardner et al. [72] with consistent letter-
based labels) and calculating the detectability ratio, defined as the steady state
GFP concentration in the “on” state divided by the concentration in the “off”
state. These ratios are displayed using a color map as indicated by the legend
to the right. Monostable constructs have a ratio of 1 and are indicated by
gray boxes. The ratio gives a measure of how easily the two steady states can
be distinguished, which is important due to high experimental noise. Each
pane also elucidates the traditional two-parameter bifurcation diagram of each
gene pair as the translational rates are varied by changing RBSs. Constructs
near the edge of the cusp operate near saddle-node bifurcations and are more
prone to noise-induced switching. Thus, constructs from the cusp interior are
preferred for robust behavior. o000

xiil

List of Tables

2.1
2.2
2.3

3.1
3.2

5.1

5.2

6.1
6.2
6.3

Variable set. L
Production rules.

Parsing results of selected parts from the Registry.

Joint-distribution of the parts complexity and popularity.
The Registry most popular parts.

Summary of prefix, suffix and scar groups used in different BioBrick assembly
standards L

A CFG describing different BioBrick assembly standards. Terminals are ital-
icized. P, C and S are terminals representing prefix, scar and suffix, respec-
tively. As BBa2.0 uses the same prefix and scar as BBal.0, there is no P2 and
C2in the grammar. Lo

Glossary of specialized terms used throughout this article.
Attributes associated with non-terminals.

Context-dependency of experimentally determined translation rates.

Xiv

31

Chapter 1

Introduction

“What I cannot create, I do not understand.” - Richard Feynman (1918-1988)

1.1 Synthetic biology

In 1970, it took 20 man-years of labor to synthesize a 75 base pair (bp) DNA sequence [2].
Nowadays, one can easily order custom DNA sequences of thousands of base pairs from
commercial gene foundries, with affordable cost and reasonable turnaround time. Owing to
the rapid development of de novo DNA synthesis technology [47, 147, 211], the landscape
of life science is undergoing a revolution. Synthetic biology (aka SynBio) is one of emerging
interdisciplinary research fields, which leverage the power of DNA synthesis. Synthetic bi-
ology aims at designing artificial biological systems or modifying natural biological systems
to carry out novel functionalities, using engineering principles [6, 11, 12, 16, 17, 33, 62, 66,
69, 85, 90, 101, 108, 112, 140, 193, 217, 225]. Synthetic biology distinguishes itself from
traditional genetic engineering in several ways: traditional genetic engineering usually starts
with natural DNA fragments (called “templates”) and creates variant sequences by using
techniques such as site-directed mutagenesis, in contrast synthetic biologists use de nowvo
DNA synthesis technology to design DNA sequences without a pre-existing template; tra-
ditional genetic engineering is usually (if not always) a laborious “trial and error” process,
while synthetic biology emphasizes the “rational design” approach with the introduction
of engineering principles; finally synthetic biology aims at constructing artificial biological
systems with novel functions, which in turn provides a great venue to re-visit some of the
fundamental questions of traditional genetic engineering.

Despite its early stage, synthetic biology has already shown great potential to make sig-
nificant scientific breakthroughs, which will improve the living conditions of human beings.
The compelling examples of synthetic biology include, but are not limited to: engineer-

ing metabolic pathways of yeast to produce the antimalarial drug precursor artemisinic
acid [173]; using engineered microorganisms to convert biomass to biofuel as a replacement
of fossil fuels [113, 125, 160]; utilizing engineered bacteriophage as adjuvants for antibiotic
therapy [134]; and detecting arsenic of drinking water with engineered E.Coli [4].

The genomes of such virus as polio [34] and ¢X 174 virus [200] have been re-synthesized in an
effort to better understand viral mechanisms to aid in the systematic design of new vaccines.
Coleman et al. took a further step to synthesize polio virus capsid protein using underrepre-
sented synonymous codon pairs, and the result showed a significant decrease in the protein
translation rate of polio virus (so called “virus attenuation”) [42]. Due to the evolution-
ary pressure, virus genomes are usually very compact and have many overlapping regions
(a virus can encode two proteins within the same stretch of DNA fragment), which make
it difficult to manipulate the virus genome from an engineering perspective. Chan et al.
re-factored one quarter of the bacteriophage genome by eliminating the overlapping open
reading frames, and demonstrated that the overlapping genetic elements are non-essential
for T7 viability [35]. Lartigue et al. invented a technique called “genome transplantation”
to use the genome from a donor bacterium Mycoplasma mycoides to “boot up” a recipient
bacterium Mycoplasma capricolum [123]. At the moment of this dissertation being written,
Gibson et al. hold the record for synthesizing the largest prokaryotic genome: they com-
pletely chemically synthesized the 582,970-base pair Mycoplasma genitaliuvm genome from
scratch [75]. It is also worthy of mention that at Johns Hopkins University, an interdisci-
plinary class (the Build-a-Genome course) has been set up for undergraduate students to
learn synthetic biology and genetics by building an artificial eukaryotic genome, Saccha-
romyces cerevisiae chromosomes [56].

The above examples all use a top-down approach to the creation of synthetic biological
systems, however there is another camp of synthetic biologists that has adapted a bottom-
up approach to understand the principles of life by incrementally designing small-scale
artificial gene circuits [40, 135, 209, 217, 222]. The pioneering work includes: building
switches [51, 72, 120, 133], oscillators [61, 71, 205, 212], pulse generator [13], light de-
tector [127], counter [70], synchronized clocks via quorum sensing [49], and mathematical
problem solver [89]. Mathematical models play an important role in guiding the construc-
tion of these artificial gene circuits [60]. Although the complexity of these artificial genetic
circuits is close to that of the first integrated circuit built by Kilby of Texas Instruments in
1958 [141], they shed new light on the mechanisms of genetics and molecular biology.

Like the rapid maturation of DNA synthesis technologies, the engineering principles brought
by engineers are also instrumental to the progress of synthetic biology [62]. The first key
principle is to standardize components, which can facilitate the assembly of a system. In
mechanical engineering, imposing the dimensional standard for bolts, nuts and rivets makes
it much easier to quickly build a system [100]. Similarly, the BioBrick Foundation (BBF,

bbf . openwetware.org) brought the “part” concept to synthetic biology. A “part” is a
DNA fragment that carries definable biological functions, such as a promoter that initiates
transcription, and a ribosome binding site (RBS) that controls translation [216]. A “stan-
dard part” is a part that conforms to a defined structure, such as being flanked by certain
restriction sites. Chapter 5 elaborates the concept and usage of BioBricks. The Registry
of Standard Biological Parts at MIT (the Registry, www.partsregistry.org) is the first
and largest online catalog of BioBrick parts, and it has been widely used in the community
especially by the students enrolled in the international Genetically Engineered Machines
competition (IGEM, www.igem.org). The recent NSF-funded BioFab (www.biofab.org) is
an ambitious project to design, fabricate and calibrate BioBrick parts. Standardizing bio-
logical components makes it possible to re-use parts in a “plug and play” manner, and also
facilitates the fabrication process. After defining the basic biological components as parts,
one can combine some parts to build a “device” (or “module”) which performs a more com-
plicated task, such as a logic NOT gate. Finally, by combining different modules one can
scale up the complexity of the design to build a “system” [161]. The hierarchy of abstrac-
tion based on the complexity of the target problem helps designers to pay more attention
to the detail of their working layer. The third engineering principle is to decouple design
from fabrication, which is borrowed from the VLSI electronics engineering. The decoupling
not only leads to the division of labour to increase the productivity, but also promotes the
rational design of synthetic biology projects. Computer assisted design (CAD) is the use of
computer technology to aid in the design of a product, and it has been widely used in many
areas of engineering such as architectural engineering, mechanical engineering and electronic
and electrical engineering [124]. Computer scientists have been developing CAD tools for
synthetic biology [138, 207], with the hope that one day a synthetic biologist will be able
to design custom DNA sequences in-silico, test their functions by running computer simula-
tions, and finally send the DNA sequences for fabrication.

BioJADE was one of the earliest examples of CAD software for synthetic biology design [79].
The program adapted ideas from electronic design and implemented abstract representa-
tions of genetic components and designs. As a proof-of-concept program and because the
necessary connection between the Registry was shut off, BioJade has never been publicly
released. Asmparts is a command line based Linux application to perform the assembly of
biological parts [175]. Without a graphical user interface, the use of Asmparts is challenging
for users lacking experience with Linux. To date, Asmparts can only deal with promoter,
RBS, coding sequence and terminator, which limits its design capability. Gene Designer is
a software tool developed by gene synthesis company DNA2.0 to construct synthetic DNA
segments [215]. Gene Designer has a nice user interface which allows users to easily de-
sign a construct by “drag and drop” parts. Gene Designer provides many useful features,
e.g., codon optimization, real-time Tm calculation for oligonucleotides design, and seamless
connection with the gene synthesis pipeline of DNA2.0. GeneDesign is a Perl-based web
platform for large-scale synthetic gene designs [168]. GeneDesign integrates multiple handy
functionalities, including reverse translation, codon juggling, silent restriction site removal,

bbf.openwetware.org
www.partsregistry.org
www.igem.org
www.biofab.org

oligonucleotide design and sequence analysis modules. ProMoT is another drag-and-drop
tool for designing and simulating synthetic circuits [137]. ProMoT introduced quantifiable
signal carriers to describe the interactions between parts and the concept of pools to collect
free signal carriers. ProMoT requires each part to be in the format of modeling description
language (MDL), which impedes the creation of new parts by the typical user. Designing a
genetic circuit in ProMoT not only requires users to put parts together in the right order,
but also requires users to connect the correct ports of adjacent parts with wires, which in-
creases the possibility of design errors. SynBioSS [92] allows users to run a computational
simulation even on a supercomputer, however it requires extensive user inputs to construct
a system.

1.2 Formal language

A language is a set of (possibly infinite) strings derived from an alphabet X, and it encodes
information for communication purpose [208]|. There are several kinds of languages, including
natural languages (e.g., English and Chinese), computer languages (e.g., C and Perl), and
mathematical languages (e.g., first-order logic). However not all the strings over the alphabet
belong to a language, only those which follow certain rules are part of a language. A grammar
is a finite set of rules that specifies the syntax (permissible structure) of a language. A
grammar G contains four components:

e A finite set NV of non-terminal symbols.
e A finite set X of terminal symbols that is disjoint from N.

e A finite set P of rewriting rules, each rule is in the form of & — (3, where e and (3 are
both strings of symbols, and « contains at least one symbol from N. More formally
put, a rewriting rule can be represented as (X U N)*N(X U N)* — (X U N)*, where *
is the Kleene star operation and U is the set union operation.

e A distinguish symbol S € N that is the start symbol.

In the 1950s, Chomsky classified grammatical models into four classes based on the forms of
their production rules, which reflect their expressive power [41]. In the following definitions
of these four classes of formal grammars, A, B € N, a,b € X, and o, f € (N U X)*.

Regular grammar is the most restricted class. Only rewriting rules of the form A — a or
A — aB are allowed. The left-hand side only contains a single non-terminal symbol
A, and the right-hand side contains a terminal symbol a followed by an optional non-
terminal symbol B. The equivalent abstract computational device (automaton) is a
finite state automaton. The computational complexity to recognize regular grammars
is linear.

Context-free grammar allows any production rule of the form A — «. The left-hand side
only consists of a single non-terminal symbol A, and the right hand side can be any
string . The corresponding automaton for a context free grammar is a push-down
automaton. The computational complexity to recognize a context free grammar is
polynomial.

Context-sensitive grammar allows rewriting rule of the form a;Aas — a38as. The
transformation of non-terminal symbol A to a string 3 depends on its context «; and
as. It also requires that the right-hand side contains at least as many symbols as the
left-hand side, i.e., |[A| < |3]. The equivalent automaton for context-sensitive grammar
is a linear bounded automaton, and the computational complexity is exponential.

Unrestricted grammar uses unrestricted rules in the form of « — 3, where a # €. Un-
restricted grammars allow any non-empty string to be transformed to any strings.
The corresponding automaton for unrestricted grammars is a Turing machine, and the
complexity of recognition becomes undecidable.

Even though the formal language theory was developed almost at the same time as the dis-
covery of DNA structure in the 1950s [221], it was not until thirty years later that researchers
started to look at the biological sequences as a new kind of languages. Specifically, in 1982,
Doerfler et al. demonstrated the structural similarities between natural languages and the
genetic language [53]. The advantages of treating biological sequences and potentially entire
genomes as languages are multi-fold: it provides a concise generalization about the infor-
mation contained in the biological sequences and it opens the possibility for the analysis of
biological sequences to take advantages of linguistic methods originally developed for com-
puter science and computational linguistics [183, 187, 188, 189].

Linguistic applications to biological sequences include sequence alignments using finite state
automatons [185, 190], pattern recognition and motif finding in biological sequences [23, 95,
170, 176], the representation of various structural features of DNA sequences [39, 77, 126]
and RNA pseudoknots which are difficult due to the crossing dependences in the secondary
structure [26, 28, 57, 106, 142, 162, 171, 172], and the inference of grammars from naturally
existing sequences [148, 177, 178, 179, 180, 181, 202].

1.3 Organization

Chapter 1 sets the stage for the dissertation: we started with an introduction and overview
of synthetic biology, and focus on the existing computer assisted designs for synthetic bi-
ology; then we will introduce the fundamental concepts of computational linguistics and a
brief review of linguistic applications to biological sequences, with the hope to make this

dissertation more accessible to the readers without much background in linguistics.

We begin in Chapter 2 with a syntactic model to design and verify synthetic constructs.
The syntactic model captures some basic design principles of synthetic genetic constructs
in the form of context-free grammar (CFG). To the best of our knowledge, this is the first
linguistic model for designing synthetic constructs, and it lays the theoretical foundation for
the following chapters.

Chapter 3 focuses on the curation of the terminals in the grammar — the biological parts.
We analyzed the Registry of Standard Biological Parts (Registry) in two steps: first, we
computed inclusion relationships between parts based on theoretical sequences to study the
usage pattern of the parts and the abstraction hierarchy of the Registry; second, we se-
quence verified all the clones that generated a single PCR (Polymerase Chain Reaction)
fragment greater than 120 bp. We conclude this chapter by discussing the organizational
guidelines for developing next generation Registry of parts based on the findings of this study.

Chapter 4 presents GenoCAD™, a web-based computer assisted design for design and ver-
ification of synthetic constructs. GenoCAD is built upon the linguistic model described in
Chapter 2. In this chapter, we focus on the major features, implementation and data model

of GenoCAD.

Chapter 5 connects previous chapters: we formalized various BioBrick assembly schemes
in the form of context-free grammar, categorized BioBrick parts based on the inclusion re-
lationships of restriction sites, and finally implemented the grammar in GenoCAD. This
chapter shows a concrete example how to transform domain-specific knowledge into a lin-
guistic model. The implementation of this linguistic model in GenoCAD helps the iGEM
students to quickly design synthetic genetic systems from a rich library of parts compliant
with six popular BioBrick standards.

As previous chapters all focus on the syntactic level of synthetic DNA sequences, Chapter 6
takes a further step to explore the semantics of synthetic DNA sequences. Attribute gram-
mars have been widely used in building compilers to translate human-friendly source codes
to object codes that can be executed by microprocessors. By associating attributes to parts
and coupling semantic actions with context-free rules, we managed to use attribute gram-
mars as a means to relate genotype to the phenotypes encoded by the DNA sequences. After
introducing the development of an attribute grammar for synthetic DNA sequences and the
workflow of compiling the mathematical models from DNA sequences, we demonstrated one
application of this semantic framework, that is to systematically explore the design space of
genetic toggle switches.

Finally, we conclude with an outlook and some perspectives on the future work in this
research area in Chapter 7.

Chapter 2

A syntactic model to design and
verify synthetic genetic constructs
derived from standard biological parts

Published at: Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud. A syntactic model to
design and verify synthetic genetic constructs derived from standard biological parts. Bioin-
formatics, 23(20):27607, Oct 2007.

Authors: Yizhi Cai, Brian Hartnett, Claes Gustafsson and Jean Peccoud

ABSTRACT

Motivation: The sequence of artificial genetic constructs is composed of multiple functional
fragments, or genetic parts, involved in different molecular steps of gene expression mecha-
nisms. Biologists have deciphered structural rules that the design of genetic constructs needs
to follow in order to ensure a successful completion of the gene expression process, but these
rules have not been formalized, making it challenging for non-specialists to benefit from the
recent progress in gene synthesis.

Results: We show that context-free grammars (CFG) can formalize these design principles.
This approach provides a path to organizing libraries of genetic parts according to their bi-
ological functions, which correspond to the syntactic categories of the CFG. It also provides
a framework for the systematic design of new genetic constructs consistent with the design
principles expressed in the CFG. Using parsing algorithms, this syntactic model enables the
verification of existing constructs. We illustrate these possibilities by describing a CFG that
generates the most common architectures of genetic constructs in Escherichia coli.
Availability: A web site allows readers to experiment with the algorithms presented in this
article: www.genocad.org

Contact: peccoud@vt.edu

www.genocad.org

Supplementary information: Sequences and models are available at Bioinformatics on-
line.

2.1 Introduction

Gene synthesis technology now enables molecular biologists to assemble long DNA molecules
that may include multiple genes and their regulatory sequences. We will refer to these
molecules as ‘genetic constructs’ or just ‘constructs’. As the throughput of construct manu-
facturing increases, the design of complex genetic constructs becomes the bottleneck of the
process. It becomes easier to assemble complex DNA molecules than to design them. A
natural way of designing complex constructs involves combining basic building blocks also
known as ‘biological parts’ or ‘genetic parts’ [17, 90, 216]. These parts are small DNA frag-
ments implementing specific biological functions. The mechanisms of gene expression require
that certain structural constraints are met in order for a construct to be functional. Parts
of different types need to be placed in a particular order and next to each other in order
to ensure that coding sequences are properly transcribed and translated. Certain parts are
functional only in a specific context whereas other parts have proved functional in organisms
other than the one from which they originate. For instance, promoters are often restricted
to specific organisms or even cell types [149, 159, 226] whereas genes coding for proteins can
often be expressed in multiple species [78]. The design of complex genetic constructs such as
artificial gene networks [40, 61, 72, 86, 87, 90, 118, 140] therefore requires an intimate knowl-
edge of gene expression mechanisms. It is interesting to observe that more than 6 years after
the description of the first artificial gene networks [61, 72|, this technology has yet to find
biomedical applications. It is likely that most biologists who could use sophisticated genetic
constructs to control the expression of their gene of interest do not have the expertise to
design the construct they need. One way to lower the barrier to entry into synthetic biology
is to formalize the structural constraints associated with the use of standardized biological
parts in a construct. Such formalism can be used to build software wizards to guide users in
the design of their constructs. It can also provide a foundation to the development of parsers
capable of verifying the structural validity of a synthetic DNA sequence.

Several prominent synthetic biologists have advocated an engineering approach to the design
of genetic constructs [62, 85] well illustrated by the Registry of Standard Biological Parts,
a service provided by MIT to promote the development and dissemination of well-specified,
standardized and interchangeable biological parts. The records in this database are organized
in different categories corresponding to different levels of abstraction [62]. At the bottom of
this hierarchy lay the basic parts. Parts can be combined in functional modules called de-
vices. Devices and parts can ultimately be combined in self-contained systems. The ‘Parts’
category is itself divided into subcategories (Regulatory, Terminators, RNA, DNA, Protein
Coding,Ribosome Binding Sites and Conjugation) corresponding to biological functions. The

10

database enables users to create new records by combining existing records corresponding
to basic parts, devices or construction intermediates. Standardized graphical representation
of complex records makes it easy to visualize their structure. After examining a number of
records, it is possible to identify common features shared by many entries. However, the
record editing process is unconstrained; no structural rule is imposed on new records nor are
the records automatically verified upon submission.

The development of Gene Designer [215], a software application to quickly design synthetic
DNA molecules from a library of basic parts, has been inspired by a similar vision. The
user interface includes a standard library of parts called the Design Toolbox. Its hierarchical
organization is multilayered to accommodate sequences specific to multiple biological species
and a broader spectrum of biological functions than in the MIT Registry. Gene Designer
makes it very easy to drag elements of the toolbox into new DNA sequences. The structure of
complex sequences combining multiple parts is represented by an icon view. Gene Designer
does not provide a wizard to guide the user in the design of a construct nor does it have a
feature to verify the structural validity of constructs.

In mathematics, logic and computer science, a formal language is a language that is defined
by precise mathematical or machine processable formulas. Like natural languages, these
formal languages generally have two aspects. The syntax of a language is what the language
looks like (more formally: the set of possible expressions that are valid utterances in the
language). The semantics of a language are what the utterances of the language mean. The
syntax or grammar of the language can be formally defined by the specification of a set of
non-terminal symbols or variables, a set of terminal symbols and a set of production rules
also called transformation rules. The variables represent categories of words such a nouns
and verbs; they are often referred to as syntactic categories. The terminals represent actual
words such as ‘dog’ or ‘sing’. The production rules map one string of symbols to another,
where the first string contains at least one non-terminal symbol. The recursive application
of production rules, beginning from the start variable often denoted S, generates the set of
strings containing only terminal symbols, which is the language generated by the grammar in
which every production rule is of the form V' — w, where V' is a single non-terminal symbol
and w a string of terminals and/or non-terminals (possibly empty). The term “context-free”
expresses the fact that non-terminals are rewritten without regard to the context in which
they occur.

We have developed a context-free grammar that formalizes the structure of a library of
previously published artificial genetic constructs, which are derived by combining standard
genetic parts. We show how this syntactic model provides a rigorous foundation for the
organization of a parts library in syntactic categories defined according to the structural
constraints affecting the position of parts in genetic constructs. In addition, we show how
this model enables a systematic approach to the design of genetic constructs that can be

11

implemented in software. Last, this model can be used to build parsers capable of accepting
constructs consistent with the design principles captured by the CFG production rules.

Early applications of linguistic models in the analysis of biological sequences have been re-
viewed in an article that also provides a short introduction to these types of models [188].
Most of these early works were attempting to analyze naturally occurring sequences. Gram-
mars were developed with the goal of understanding genome structures [24, 25] and associat-
ing genes with their regulatory sequences [43]. Another body of work focused on predicting
the secondary structures of RNA molecules [114, 115, 139, 172, 180]. The discovery of
grammatical models from sets of curated biological sequences remains a very active field of
research in the machine-learning community [178]. Linguistic models have also been used to
analyze proteins with different purposes. Most of the work in this field attempts to under-
stand the rules of protein organization in modular domains [76], but recently grammatical
models have been developed with the goal of designing new antimicrobial peptides [132].
This work proceeded in two steps. In order to decipher the design principles of natural
antimicrobial peptides, a set of grammars was inferred from natural sequences using a pat-
tern discovery algorithm [169]. In a second step, 42 peptides consistent with the discovered
grammars but not homologous to natural peptides were synthesized and tested. Approxi-
mately half of the new peptides exhibited an anti-microbial activity, which demonstrates the
power of this approach. In the context of this article, we have also used formal grammars to
support the design of new DNA sequences, which is a very different goal from the analysis
of natural genomic sequences. Instead of inferring the production rules from a training data
set, our production rules utilize pre-existing biological knowledge relative to the structure of
functional genetic constructs.

2.2 Methods

2.2.1 Variables

The first step in the construction of the grammar is to recognize syntactic categories in
categories used to organize genetic parts. These syntactic categories are represented by the
CFG variables listed in Table 2.1. The specific CFG presented in this article has only 26
syntactic categories each represented by a single capital letter. The orientation of constructs
can be left to right or right to left depending on which DNA strand is transcribed. If left
to right is the direct orientation and right to left the reverse orientation, each category of
genetic parts needs to be broken down into two syntactic categories corresponding to the
direct and reverse orientations as different structural rules apply to each.

Variables have been organized in four hierarchical categories. The first category contains

12

only S, the start variable from which all derivations are initiated. The second category
corresponds to complex fragments of DNA composed of multiple functional parts. This
category includes the variables M and N which correspond to transcripts in the forward
and reverse orientation, respectively. In the context of this article, a transcript is a DNA
fragment located between a promoter and a transcription terminator. Also in this category
are the variables F and F used to represent genes defined as DNA fragments composed
of a “start” codon followed by one or more protein domains and terminated by a “stop”
codon. The third category of variables includes parts that can be duplicated in a construct.
For instance, it is common practice to put two transcription terminators G at the end of
a transcript to ensure a tight termination of the transcript. The fourth category contains
all the variables that represent basic genetic parts that cannot be decomposed into smaller
functional blocks and are not used in series in genetic constructs such as A (promoter), C
(ribosome binding site) or P (T7 promoter). Variables representing less frequently used parts
such as [and J (riboregulators) are also included in this category. The boundaries between
the four categories used in Table 2.1 are arbitrary and have no consequence on the rest of
the development. Listing variables in alphabetical order would have been equally acceptable.

Instead of using single capital letters that are difficult to interpret, we initially used more
descriptive variables such as “promoters”, “RBS”, “coding”, etc. Using descriptive notations
hindered the visual display of complex sequences on the GenoCAD web site. By using single
letters as variables, it was possible to generate a more compact graphical representation of
the sequence and production rules. The lack of information in the single letter variables
was compensated for by creating icons associated with each variable and by displaying in
a mouse-over tooltip the description of each variable as it appears in the center column of
Table 2.1.

2.2.2 Terminal set

The terminal set is composed of the genetic parts themselves. A library of more than 100
parts has been organized according to the syntactic categories used in this article. Parts have
been indexed by a unique identifier composed of a prefix corresponding to the part syntactic
category and a numerical suffix indexing the parts within each category. For instance, the
terminals a0l to a09 point to the promoters of the library, whereas genes are represented by
the terminals e01 to el4, etc. This library is distributed in two computer-readable formats
in the Supplementary Material. In addition to the unique identifiers used as terminals in
the CFG, the library files include a part name. In addition, the DNA sequence of each part
is included in the library as a proof of concept. These sequences have not been validated
experimentally and it is sometimes difficult to extract precise sequence information from the
sequences of previously published genetic constructs as the delimitation of parts within the
construct is often sketchy in the literature. The development of an experimentally validated

Table 2.1: Variable set.

13

Name

Description

Category

Start

|

Gene coding region

Gene coding region reverse
Transcript

Transcript reverse

IT

Terminator
Terminator reverse
Linker

T7 terminator

T7 terminator reverse
Protein domain
Protein domain reverse
Stop codon

Stop codon reverse

I1I

XTOUVUESTODQWENNTCSHIOZ Q=22 mE©»

Promoter

Promoter reverse

Ribosome binding site
Ribosome binding site reverse
Riboregulator

Riboregulator reverse
Hammerhead ribozyme
Hammerhead ribozyme reverse
T7 promoter

T7 promoter reverse

Start codon

Start codon reverse

1Y

14

parts library is beyond the scope of this article.

2.2.3 Productions and construct design

Table 2.2 includes a list of production rules grouped according to the successive steps fol-
lowed when designing a genetic construct. The process starts at S, the transcript. P01 can
be applied to S several times to fix the construct total number of transcripts. Step 2 of the
design process will specify each transcript by choosing a type of promoter and an orientation.
Applying P02 to S will ensure that the transcript uses the endogenous RNA polymerase by
selecting promoters and transcription terminators compatible with this enzyme. Alterna-
tively, the transcript could rely on the bacteriophage T7 RNA polymerase in which case P04
will be applied to S. Using P02 or P04 will result in transcripts in the direct orientation.
Alternatively, P03 or P05 can be used to generate transcripts in the reverse orientation. In
Step 3, it is possible to specify if the transcript is polycistronic by applying P06 or P07 in
the direct or reverse orientation, respectively. In Step 4, the architecture of transcripts is
specified. P08 specifies that M is regular mRNA by decomposing it into a Ribosome Binding
Site (RBS) C and a coding sequence E whereas P09 can be used when M is composed of
a riboregulator I placed between two ribozymes K [14]. The coding sequence E can itself
be broken down by P12 into a start codon W, a protein domain U and a stop codon Y.
Productions P10, P11 and P13 are the counterparts of P08, P09 and P12 for sequences in
the reverse orientation. It is not unusual to place more than one part of a particular type in
a specific location. Step 5 can be used to specify the number of repetitions for each part of
the construct that can be repeated. For instance, multiple linkers corresponding to different
restriction sites can be placed between transcripts by applying P16 several times. Similarly,
it is common to place two successive transcription terminator sequences (P14, P15) or two
stop codons (P17, P18) to ensure a tight termination of transcription and translation, respec-
tively. P19 and P20 can be used to place additional protein domains to the coding sequence
of a gene. In Step 6, it is possible to add linkers, DNA elements having a structural role
but not involved in the gene expression mechanisms, next to some parts in the constructs.
Typical linkers include restriction sites that could be used to extract parts in a construct
and replace them by ligation of a DNA fragment extracted from a different construct.

At this stage of the design process, the general architecture of the construct is completely
specified as a series of parts belonging to specific functional categories. However, the specific
parts used to build the construct are yet to be specified. For instance, the construct could be
described by a string such as ACWUUY (promoter, RBS, start codon, 2 protein domains,
stop codon) but the particular promoter, RBS, start and stop codons, or the protein domains
used to assemble a specific construct have not yet been specified. Therefore, this string does
not describe a specific construct but a family of constructs expressing a protein. This family
includes a wide range of transcription and transcription levels and any protein composed of

Table 2.2: Production rules.

Po1 S — SOS Start symbol (5), linker (O), start symbol (5) Step 1
P02 S — AMG Promoter (A), transcript (M), terminator (G) Step 2
P03 S — HNB Terminator rev (H), transcript rev (), promoter
rev (B)
P04 S — PMR T7 promoter (P), transcript (M), T7 terminator
(R)
P05 S — TN T7 terminator rev (T'), transcript rev (N), T7 pro-
moter rev (Q)
P06 M — MM Transcript (M), transcript (M) Step 3
PO7 N — NN Transcript rev (N), transcript rev (N)
P08 M — CE Ribosome binding site(C), gene (F) Step 4
P09 M — KIK Hammerhead (K), riboregulator (/), hammer-
head (K)
P10 N — FD Gene rev (F), ribosome binding site rev (D)
P11 N — LJL Hammerhead rev (L), riboregulator rev (J), ham-
merhead rev (L)
P12 E — WUY Start codon (W), protein domain (U), stop codon
)
P13 F — ZV X Stop codon rev (Z), protein domain rev (1), start
codon rev (X)
P14 G — GG Terminator (G), terminator (G) Step 5
P15 H — HH Terminator rev (H), terminator rev (H)
P16 O — 00 Linker (O), linker (O)
P17 Y =YY Stop codon (Y'), stop codon (V)
P18 Z— 77 Stop codon rev (Z), stop codon rev (Z)
P19 U—UU Protein domain (U), protein domain (U)
P20 V—-VV Protein domain rev (V'), protein domain rev (V)
P21 A— OA Linkers can be added next to some parts Step 6
P22 B — OB
P0100--- A — al|--- All variables can be transformed into terminals ~ Step 7
P0200--- B —bl|---
P2400- -+ Z — 21| --

15

16
three domains.

The last phase of the design process (Step 7) involves transforming variables into terminal
symbols pointing toward specific DNA sequences. Productions corresponding to this step are
the most numerous because there is one production for every part available to the designer.
Table 2.2 provides only the general architecture of this last group of productions. Produc-
tions starting from the same variable have been grouped on a single line using the standard
notation Variable — Terminal 1|Terminal 2| ... indicating that a variable can be trans-
formed into any of the terminals separated by |. All the grammar variables can potentially
be transformed into a terminal or this type of transformation can be restricted to a category
of variables corresponding to the most basic genetic parts. For instance, a variable like F
(gene) can be transformed into terminals corresponding to a self-contained coding sequence
or it can be transformed into a coding sequence composed of multiple domains between a
start and stop codon. The most extreme case would be to include productions allowing the
transformation of the start symbol S into a terminal. Allowing this type of production in
the grammar maximizes flexibility since any DNA fragment can be made valid. However,
this option makes it possible to completely bypass the design process enforced by the gram-
mar, which may not be desirable. The design process is completed when all non- terminal
variables have been transformed into terminals. At this stage the construct is represented
by a series of terminal part identifiers. This high-level description of the construct can be
converted into a DNA sequence suitable for gene synthesis using the sequence data of each
of the parts in the part library.

2.3 Results

2.3.1 Parsing for construct verification

The construct design process applies a series of productions starting from S to generate a
construct with a structure consistent with the grammar rules. The design process there-
fore “derives” the construct from S. A computationally more complex problem is evaluating
whether or not a specific construct can be generated by a given grammar. In order to answer
this question it is necessary to construct the DNA sequence into S through the application
of the grammar productions. This operation is called parsing. By parsing a construct, it
is possible to verify its design, which is useful if the construct was not generated by the
systematic process outlined in the previous section.

Prior to parsing the construct, it is necessary to perform a lexical analysis of the construct
DNA sequence to transform it into a series of parts [7]. As a proof of concept, we have
developed a basic lexical analyzer that scans the parts list and compares the sequence of

17

each part with the start (leftmost) sequence of the construct. If the part does not match
the start of the construct sequence, the next part in the library is evaluated. At the end
of the scan, it is possible that no part matches the beginning of the construct sequence, in
which case, the construct is rejected. If only one match is found, then the part matching
the construct sequence is recorded and the rest of the construct DNA sequence is analyzed
in the same way. It is also possible that several matches will be found if the parts library
includes complex parts composed of more basic parts. In this case, all the matches are
recorded possibly leading to multiple lexical interpretations of the construct sequence. The
presence of multiple interpretations of a construct DNA sequence is an indication that the
parts list is redundant in the sense that it includes complex parts that can be obtained by
concatenation of more basic parts. It would be preferable to ensure that the CFG defined in
the parts library includes rules allowing the derivation of complex parts from the basic parts.

The development of efficient parsing algorithms is an important problem in computer science
since its solutions directly affect the performance of interpreters and compilers of program-
ming languages. An introduction to parsing methods can be found in computer science
textbooks [129]. JFLAP is a very nice tool allowing the non-specialist to experiment with
formal languages with a strong emphasis on automata theory [174]. JFLAP, however, is not
suitable for the development of complex grammars or the analysis of large strings. YACC
and Bison are production grade tools that can be used to develop compilers that rely on the
LALR parsing algorithm. It is possible to code the grammar defined in Table 2.2 into Bison
to build a custom parser capable of analyzing genetic constructs (data not shown). However,
this requires proficiency in the C programming language and each time the grammar or the
parts list is edited, the parser needs to be recompiled.

We have therefore developed a custom parser relying on the LR(0) algorithm and a specific
precedence of the productions. After the lexical analysis step, the input string is converted
into a series of non-terminal variables through the productions listed in Step 7 in Table 2.2.
In a second step, the parser eliminates possible shift-reduce conflicts by eliminating series of
identical variables that recursive productions can create in the construct (Steps 3 and 5 in
Table 2.2). Finally, the resulting string is processed using the precedence set by the order of
the productions. The Supplementary Material includes an animation that may help readers
unfamiliar with parsing algorithms to visualize the process.

2.3.2 Validation

In order to validate the grammar in Table 2.2 and the parsing algorithm, a series of complex
constructs described in the MIT Registry and in various publications [61, 72, 86] is reported
in Table 2.3. Each construct is recognized by the identifier used in the source reference.
Constructs are described by a series of lexical tokens corresponding to basic genetic parts.

18

Table 2.3: Parsing results of selected parts from the Registry.

ID Source Symbolic representation Result Comment

BBa_J04450 Registry a03c01e01g03 Pass

BBa_I13520 Registry a01c01e01g01g02 Pass

pMKNT7a [72] a08c08e14g01g02 Pass

BBa_J13004 Registry a02c01e03c01e04g01g02 Pass

BBa_I13513 Registry a01c01e01002c¢01e09g01g02 Pass

pTAK102 [72] h02h01f01d04b02a08c07e14g01g02 Pass

pTAK117 [72] h02h01f01d04b02a08c08e15c05e14g01g02 Pass

BBa_J23022 Registry 101g01g02 Fail No promoter
BBa_J36335 Registry a03c01e05a03c01e06 Fail Lack of terminator
BBa_J44003 Registry 001a04001c02e07 Fail Lack of terminator
BBa_J45119 Registry ¢03e02g01g02 Fail No promoter
BBa_J52038 Registry Registry Fail No RBS, no terminator
BBa_E0241 Registry ¢03e09g04 Fail No promoter
BBa_J5516 Registry a0lc0lel2g01g02a06 Fail Orphan promoter in 3’

Most constructs were selected to illustrate different types of construct architectures gener-
ated by the grammar. However, some constructs outside of the language generated by the
grammar have also been introduced in this validation set to illustrate structures outside the
language generated by the grammar. The outcomes of the construct parsing are reported
along with some comments explaining why some constructs failed the verification. A larger
set of test cases than can be reported in Table 2.3 is available in the Supplementary Material.

In order to validate the lexical analyzer, we analyzed the sequences of several bistable genetic
switches (US Patent 6841376). Tables 35 of this publication indicate the location of the
promoters, RBS and genes used to implement the switches. In addition, the sequence list
provides the sequence data for the promoter and RBS in addition to the complete sequences of
the plasmids. The sequence of the transcription terminators labeled T1T2 in Figure 3 of [72]
does not appear to be documented. The sequence of part g01 (also BioBrick BBa_B0010) was
identified in the location of T1, but the sequence of the second terminator T2 could not be
identified. We also noticed that the sequence of the GFP-mut3 and Lacl genes found in the
published plasmid sequences is not exactly the same as the sequence published in the MIT
Registry. We therefore created new parts (el7, f03, f04) corresponding to variants of these
genes. We also observed that RBS sequences overlapped the sequence of the genes placed
in 3’ since all the RBS sequences included the start codon ATG. We have edited the RBS
sequence to remove the ATG codon responsible for the overlap between the RBS and gene
sequence. The sequences of the promoters used to build the switches included the AGGA

A
Step Production String
1 PO1 SS
5 P03 HNBS
Po2 HNBAMG
3 P06 HNBAMMG
P10 HFDBAMMG
4 Po8 HFDBACEMG
P08 HFDBACECEG
5 P15 HHFDBACECEG
P14 HHFDBACECEGG
6 P21 HHFDBOACECEGG
7 h02h01f01d04b02001a08c08e15c05e14g01g02
L= L= < gcgtttata
B

[tataaacgcagaaaggcccacccgaaggtgagecagtgtga] [gagagegttcaccgacaaacaacaga
taaaacgaaaggcccagtctttogactgagectttogttttatttgatgectag] [EEaage.-cacea] [
catcgaaccggtttoct] [Ecctttgocataccctgotgatgtgotcattataaccgeccagtggtatttat
gtcaacaccgccagagataatttatcaccgecagatggttatctgtgeatge] [ttatcaaaaaccatggt
ttttgataa) [ccatcgaatggotgaaatgagetgttgacaattaatcatccggetogtataatgtgtgg
aattgtgageggataacaatttcacacagga) [aggaaaccggttatg] [atgagea-ttacaa) [agga
atttaaatg] [atgcgt..aaataa] [ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggoec
EEtcgtEttatctgtEgEttgEcggtgaacgetete] [tcacactggctcaccttocgggtgggoctttct

gcgtttatal

19

Figure 2.1: (A) The successive applications of productions starting from S provide a frame-
work to guide the design of genetic constructs. (B) The verification of an existing DNA
sequence requires the use of a lexical analyzer to identify the parts composing the sequence.
The symbolic description of the sequence provided by the lexical analyzer can be parsed

using an LR algorithm

20

motif of the Shine-Delgarno sequence which was also part of the RBS sequences. By removing
AGGA from the promoter sequences, we resolved the overlap between the promoter and RBS
sequences. We also observed a discrepancy between the sequence of the PL-slcon promoter
(Sequence 2 in the patent and part a09 and b02 for the reverse orientation) and the sequence
used in the plasmids that led to the introduction of part b04. Finally, we observed sequence
variations in the Lacl gene in the different plasmids, which we addressed by creating parts
f03 and f04. The regions of the plasmids outside of the switches were treated as linkers in
the context of this verification. The annotated sequence of the six switches is provided in the
Supplementary Material. We introduced variants of the different parts found in the plasmid
sequences into the parts list. The DNA sequences of the six switches could be analyzed by
the lexical analyzer and their structure verified by the parser. All the plasmids could be
parsed.

2.4 Discussion

2.4.1 Grammar form and limitations

Even though a single grammar has been presented in this article, it is important to stress
that this grammar is a somewhat arbitrary set of design of principles. It certainly does not
encompass all natural DNA sequences. Even designers of some synthetic constructs have
used unusual architectures that are not included in the language generated by our grammar.
For instance, multiple promoters have been used to control the expression of a gene [67].
By adding the production A — AA to the grammar in Table 2.2, it would be possible to
authorize the use of multiple promoters in constructs. This example shows that the grammar
is nothing more than a set of accepted rules selected by the user of GenoCAD to design new
constructs or analyze pre-existing ones. These rules come from the current understanding of
the molecular mechanisms controlled by the different genetic parts used in genetic constructs.

The set of production rules listed in Table 2.2 was structured with the goal of minimizing the
number of variables to ensure a biological interpretation of these variables. In addition, the
rules have been organized in a way that mimics the way biologists design genetic constructs.
The priority was to illustrate the approach by a grammar that could be interpreted in bi-
ological terms. As a result, most of the rules recurse by simply duplicating non-terminals,
which leads to needless non-determinism and greater complexity in parsing. The grammar
could be transformed into an equivalent grammar in a normal form such as the Greibach
Normal Form. This transformation would make parsing more natural but would be difficult
to read for biologists. Ultimately, it is possible that equivalent grammars in different forms
will be used for design and parsing purposes.

21

Even though it is presented in CFG form, the grammar in Table 2.2 could probably be
represented by a simpler regular language. In addition, the grammar does not take advantage
of more advanced features of CFG that could be used, for instance, to express long distance
interactions between an enhancer and a promoter, a transcription factor and its operator
sequences, etc. Natural sequences include complex features such as overlapping genes [144,
154], introns and splicing sites [122, 144] or alternative splicing [122] that are not readily
expressed by a CFG but could be expressed by richer Definite Clause Grammars (DCG) or
String Variable Grammars [54, 183, 184]. The readily available Prolog programming language
is able to parse DCG and this environment has been extensively used to build complex gene
grammar and parsers [186, 191]. Future efforts will attempt to use this approach for the
verification of the DNA sequences of genetic constructs.

2.4.2 Data model for libraries of genetic parts

Software applications can use syntactic models of genetic constructs to increase the produc-
tivity of individual users. Syntactic models could also be used to improve infrastructures
serving the entire community. Syntactic categories provide a rigorous foundation to the or-
ganization of genetic parts in different categories. The “Transcriptional regulator” category
of the Registry contains a large collection of prokaryotic promoters. However, some complex
constructs composed of multiple parts (BBa_113005 or BBa_J24669) are also found in this
category even though they would probably fit in a category corresponding to a higher level
of abstraction. Similarly, a number of eukaryotic promoters are listed in the Transcriptional
regulator category. It might be preferable to have Eukaryotic transcription activators listed
in their own category as they are not compatible with other prokaryotic genetic parts. By
using syntactic models to develop community infrastructures, it would be possible to verify
user submissions and existing content. As artificial gene networks become more complex
by combining parts coming from distant organisms [38, 67], a broader syntactic model than
the one presented in this paper will help articulate rules of compatibility between parts. Of
particular importance is the inclusion of existing knowledge relating to the use of prokaryotic
transcription factors in eukaryotes [81, 143, 152].

As syntactic models of genetic constructs become broader, it might become necessary to
specify the context in which the construct will be used. The tetracycline repressor has been
shown to work in multiple organisms including mammalian cells and some plants [19, 83, 152,
219] but not all plants. In this context, the distinction between prokaryotes and eukaryotes
may be not sufficient. The distinction between mammalian cells and plant cells may not
be sufficient either as it may be desirable to specify the species in which this transcription
factor can be used. Similarly, a number of eukaryotic promoters are tissue-specific whereas
the activity of other promoters is not affected by the type of cells in which they are used.
Each context will require the development of separate sets of production rules, but some
parts should be useable in multiple contexts.

22

2.4.3 Limitations of syntactic models

The models and tools presented in this article rely on a higher level of abstraction than the
DNA sequence. When using a syntactic model to guide the design of a new construct, it
is straightforward to translate the description of the construct into a sequence since each
genetic part corresponds to a unique sequence. However, verifying the sequence of genetic
constructs is more complicated. The very basic lexical analyzer used in the context of this
work is too rigid for practical use. The development of a more flexible analyzer capable of
handling constructs with legacy sequences interspersed between functional parts will require
dedicated efforts. Another limitation of this syntactic model is its purely structural nature.
There is no reference to the function of the parts used in the construct. To capture structure-
function relationships, it will be necessary to develop a semantic model of genetic constructs
that would complement the syntactic model presented here.

2.4.4 Beyond the proof-of-concept

It will take some time after the publication of this proof-of-concept paper to gain a bet-
ter perspective on the advantages and limitations of this approach. Previously published
artificial gene networks appear to have been designed by a labor-intensive and error-prone
process. To the best of our knowl-edge, no other framework has been proposed at this time
to streamline and formalize this process. We are investing significant efforts in the develop-
ment of a user-friendly web site allowing biologists to design new constructs from previously
defined grammars and parts libraries. Users will also be provided with tools to customize
their grammars and parts libraries. Will users having no previous experience with formal
languages be comfortable using this approach? Will they use it preferably to design new
sequences or to verify sequences designed using other approaches? The analysis of patterns
of activity on the Genocad.org web site will, over time, provide the best evaluation of the
approach.

2.5 Acknowledgements

We thank two anonymous reviewers for insightful comments on an earlier version of this
work and suggestions of future research directions. We are indebted to Otto Folkerts and
Rebecca Shelton for their thorough reading of the manuscript. This work was supported
with a startup fund from the Virginia Bioinformatics Institute and a fellowship from the
Genetics, Bioinformatics, and Computational Biology Program at Virginia Tech.

Conflict of Interest: CG holds an interest in DNA2.0, a gene synthesis company.

23

2.6 Attribution

Yizhi Cai — Graduate student (Genetics, Bioinformatics and Computational Biology inter-
disciplinary doctoral program, Virginia Tech), performed the experiments, and wrote part
of the paper.

Brian Hartnett — was a lab manager at the synthetic biology group in Virginia Bioinfor-
matics Institute, and contributed in performing the experiments.

Claes Gustafsson — Ph.D. (Department of Molecular Biology, University of Umea, Swe-
den) currently is the vice president for sales and marketing at DNA 2.0 Corporation, was
a collaborator of the synthetic biology group at Virginia Bioinformatics Institute and con-
tributed to this chapter with intensive discussions.

Jean Peccoud — Ph.D (Department of Molecular Biology and Bioinformatics, Universit
Joseph Fourier (Grenoble 1)) currently an associate professor of Virginia Bioinformatics In-
stitute at Virginia Tech. JP conceived the idea of the paper, performed part of the experiment
and wrote the paper.

Chapter 3

Targeted Development of Registries of
Biological Parts

Published at: J. Peccoud, M. F. Blauvelt, Y. Cai, K. L. Cooper, O. Crasta, E. C. DeLalla, C.
Evans, O. Folkerts, B. M. Lyons, S. P. Mane, R. Shelton, M. A. Sweede, and S. A. Waldon.
Targeted development of registries of biological parts. PLoS ONE, 3(7):e2671, Jan 2008.

Authors: Jean Peccoud, Megan F. Blauvelt, Yizhi Cai, Kristal L. Cooper, Oswald Crasta,
Emily C. DeLalla, Clive Evans, Otto Folkerts, Blair M. Lyons, Shrinivasrao P. Mane, Re-
becca Shelton, Matthew A. Sweede, Sally A. Waldon

Abstract

Background: The design and construction of novel biological systems by combining basic
building blocks represents a dominant paradigm in synthetic biology. Creating and main-
taining a database of these building blocks is a way to streamline the fabrication of complex
constructs. The Registry of Standard Biological Parts (Registry) is the most advanced im-
plementation of this idea.

Methods/Principal Findings: By analyzing inclusion relationships between the sequences
of the Registry entries, we build a network that can be related to the Registry abstraction
hierarchy. The distribution of entry reuse and complexity was extracted from this network.
The collection of clones associated with the database entries was also analyzed. The plas-
mid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed
experimentally but unexpected discrepancies have also been identified.

24

25

Conclusions/Significance: Organizational guidelines are proposed to help design and
manage this new type of scientific resources. In particular, it appears necessary to compare
the cost of ensuring the integrity of database entries and associated biological samples with
their value to the users. The initial strategy that permits including any combination of parts
irrespective of its potential value leads to an exponential and economically unsustainable
growth that may be detrimental to the quality and long-term value of the resource to its
users.

3.1 Introduction

De novo gene synthesis [119, 211, 224] is catalyzing a transition from the ad-hoc methods of
traditional genetic engineering to the development of industrial-scale fabrication processes
enabling users to quickly obtain from commercial vendors genetic constructs that would
have been assembled through a custom cloning strategy just a few years ago. Designing
a construct for gene synthesis often consists in combining a number of previously defined
DNA sequences [215]. The design of an expression cassette in Escherichia coli typically in-
cludes a promoter, a Ribosome Binding Site (RBS), a coding sequence, and a transcription
terminator. These functional blocks are commonly referred to as biological parts or genetic
parts. Catalogues of biological parts that are sufficiently well characterized to be used in
the design of new genetic constructs can be described in review articles [216], embedded into
software applications to design new DNA sequences [215], or made available through a web
site [29, 62]. With four years of existence and 4,856 entries in July 2007, the Registry is
the largest publicly available library of genetic parts. The Registry goes beyond just cata-
loguing parts. The parts in the Registry must meet the BioBrick standard, which requires
the part sequence to be framed by standard cloning sites called the prefix and suffix. If the
part sequences do not contain any of the restriction sequences used by the prefix and suffix,
this standardization ensures that it is possible to use a generic cloning process to combine
two BioBrick-compliant parts. The process is generic because the restriction enzymes and
ligation steps it includes are independent of the sequences of the two parts being combined.
This standardized assembly of new genetic constructs derived from standardized parts is
therefore complementary to de movo gene synthesis since both approaches can be used to
fabricate designer DNA sequences. Another benefit from standardizing parts is the physical
composition of BioBrick parts. The restriction sites used by the BioBrick standard ensure
that the combination of two BioBrick parts results in a new BioBrick part that can be added
to the list of parts available for future design projects. The composition of parts leads to
distinguishing two categories of parts. Composite parts are parts resulting from the composi-
tion of two parts whereas basic parts are parts that cannot be decomposed into smaller parts.

In addition to developing a large catalogue of parts, the Registry has developed a repos-
itory of 995 bacterial clones (as of July 2007) corresponding to physical implementations

26

of entries in the Registry database. The Registry database content and clone collection
have been primarily developed by students enrolled in the in the International Genetically
Engineered Machine (iGEM) competition [82, 157]. Each year, the iGEM organizers send
the entire clone collection to all the teams enrolled in the competition. The teams use this
toolkit to implement the designs required for their project. At the end of the summer, the
teams contribute back to the Registry new basic parts and new composite parts they have
made during the course of their project. This new material is included in the Registry and
becomes available to the teams enrolled in the competition the following year. If students
enrolled in iGEM still represent the largest group of Registry users, recent publications have
demonstrated that this resource can enable the development of more mainstream research
projects [3, 35, 89, 127, 195].

We have analyzed the Registry to identify usage patterns that could help design the next
generation of infrastructures to host libraries of genetic parts. The analysis consists of two
parts. First, the structure of the database itself is considered in terms of the relationships
between database entries by examining their published sequences and categorization. The
Registry uses two levels of categories to organize its content. Entries of different functional
types (promoters, coding sequences, etc.) are regrouped into three classes according to their
level of complexity. The simplest entries are found at the bottom of the hierarchy in a
class labeled “Parts”. Combinations of parts implementing specific functions like inversion
of a signal, gene expression cassettes, or reporter genes are found in “Devices”. Finally
self-contained combinations of devices designed for a particular application are placed un-
der “Systems” [62]. This categorization implements an abstraction hierarchy, an approach
commonly used in engineering to manage complex engineering projects by allowing different
groups of specialists to work at different levels. Ultimately, engineers with a domain expertise
should be able to develop application-specific systems by combining previously characterized
devices without having to know more about these devices than their operational character-
istics. The second part of our analysis is a comparative analysis of the published sequences
of database entries and the experimental sequences of the corresponding clones, which we
obtained by sequencing the clones in one distribution of the DNA repository.

While a library of parts as a single centralized community resource has clear benefits, there
are still many reasons for organizations or individual investigators to structure their own
libraries of parts [91, 164]. These reasons may include the physical or legal availability
of a limited set of parts, previous experience with a specific parts list, the use of specific
organisms not included in community resources, the inclusion of proprietary parts in the
design, and possibly others. Hence, our results have implications beyond the analysis of a
specific resource at a particular point in time.

27

3.2 Results

3.2.1 Analysis of the database content

Since most Registry entries correspond to constructs that have not yet been fabricated, it
appeared more interesting to limit the analysis of the database to the 995 entries for which
a clone was available. Among these 995 entries, 279 were in the “Parts” layer of the Reg-
istry abstraction hierarchy. The remaining 716 entries were categorized in the “devices” and
“systems” layers of the hierarchy. In this paper we use parts to refer to entries in the “parts”
layer and design for entries categorized in the device or systems layers of the hierarchy.

We derived a network of relationships between entries in the Registry from their published
sequence. First, inclusion relation- ships between entries were identified by pair wise com-
parison of the sequences in the database. Entry A is connected to entry B if the sequence of
A includes the sequence of B. In a second step, this directed graph was pruned to eliminate
transitive relationships. For instance, if A includes B and B includes C, then a relation-
ship between A and C can be derived from the previous relationships. In this example the
inclusion of C within A is pruned from the graph. This operation allowed us to draw a
network of 1383 relationships among the 995 entries considered in this analysis (Figure 3.1
and Figure S1). We identified 496 relationships in which the sequences of designs included
part sequences. We also found 826 inclusion relationships between design sequences. Since
parts correspond to the bottom layer of the abstraction hierarchy, it was expected that there
would be few if any connections among entries in this group. However, 49 relationships
between parts have also been identified. Even more surprising, 12 relationships indicated
that entries in the design group were present in the sequences of parts. These observations
appear to be inconsistent with the Registry abstraction hierarchy.

Table 3.1: Joint-distribution of the parts complexity and

popularity.

Popularity? Complexity?
0 1 2 3 4 5 6 Sum

0 154 64 236 39 5 4 - 502
1 65 24 150 12 1 1 2 255
2 30 9 62 10 3 - - 114
3 217 9 1 - - - 48
4 8 3 7 - - - - 18
5 6 4 5 - - - - 15
6 3 - 7 - - - - 10
7 3 - 3 1 - - -7

Continued on next page. . .

28

Table 3.1 (Continued)
3 4 5 6 Sum

0 1 2
8 - - 1 - - - 1
9 2 - 3 - - - - 5
10 1 - 1 - - - -2
11 2 - 1 - - - - 3
12 1 - A
13)
14 -1 1 - - T2
15)
16 - - 3 - - - - 3
17 -1 - - - - 1
18)
19 e |
20 1T - - - - 1
21)
22 T - - - - - 1
)
31 - -1 - - - 1
)
36 e |
)
39 T |
)
52 T - - - - - 1
)
70 T |
Sum 299 113 504 63 9 5 2 995

After having identified inclusion relationships within the Registry, we summarized this
pruned connection matrix by computing for each entry, the number of other entries directly
included in its sequence (a measure of its design complexity) and the number of entries in
which its sequence is found (a measure of its popularity). The joint distribution of entry
complexity and popularity provides a global perspective on the dynamics of design reuse to
build more complex designs (Table 3.1). Entries in the first column (299 entries) are true
basic parts while the entries that have never been reused are in the first line (502 entries).
If some entries have been used in as many as 70 designs (Table 3.2), 80% have been used
less than 3 times. Because indirect relationships have been removed from the pruned inter-
action network, the complexity axis on Table 3.1 does not refer to the total number of parts

'Number of times Registry entries are used in other entries
2Number of entries included in an entry sequence

29

1.DNA
2.RNA
3.RBS
4. Coding
5. Regulatory
6. Terminator

basic-basic
basic-design
e design-basic

Designs

design-design

Figure 3.1: Network of inclusion relationships among the Registry entries. Nodes of this
network correspond to entries in the Registry. Nodes are grouped in color-coded circles
according to the Registry categories. Categories corresponding to parts are within the blue
box on the left side of the figure whereas categories corresponding to designs are located
within the red box on the right side. The diameter of the nodes corresponds to the node
connectivity. The directed edges indicate that the sequence of one entry is included in the
sequence of another entry. Edges are color-coded according to the type of relationship. If
most of the edges correspond to natural relations (parts included in designs, and designs
included in other designs), it is somewhat surprising that parts can include other parts
(yellow edges) and it is unclear why some parts would include design in their sequence (red
edges). Detailed analysis of individual entries can be conducted using a Cytoscape [194] file
(Figure S1). doi:10.1371 /journal.pone.0002671.g001

30

included in the design but it indicates the number of subcomponents an entry is composed
of. Approximately 50% of the entries can be broken down into two other entries, which
is consistent with a pair wise assembly process. It also indicates that users have recorded
most of the construction intermediates. The ideal shape of this joint distribution is not clear
except that few entries should be located near the origin. The value of having a lot of parts
used very infrequently is questionable, so the weight of the popularity distribution should
shift away from 0.

3.2.2 Analysis of the DNA repository

The analysis of the Registry database reveals some of the challenges in implementing the
abstraction hierarchy upon which this community resource has been built. However, making
the parts physically available adds another level of complexity. We have therefore systemat-
ically analyzed the library of plasmids shipped in May 2007 to teams enrolled in the iGEM
competition.

The plasmids were distributed lyophilized in four 384-well plates. After suspending the DNA
into water, the solutions were quantified using a spectrophotometer and only two wells did
not appear to contain any DNA. In order to obtain enough material for DNA sequencing,
the inserts were amplified using primers complementary to the standardized prefix and suffix
used to clone them into the vector. The products of amplification were analyzed by elec-
trophoresis to select clones suitable for sequencing. In particular, we eliminated 216 clones
that did not amplify and 190 clones that resulted in multiple peaks of size greater than 120
bp. The lack of amplification product can either result from a problem with the amplifi-
cation reaction or indicate the absence of sequences complementary to the primers. The
presence of multiple peaks may be caused by primer dimers, non-specific amplification, or
the presence of different plasmids in the well. Since parts with sequences shorter than 120
bp can easily be obtained as oligonucleotides, only the 789 clones that generated a single
PCR fragment larger than 120 bp were sequenced. Of these 789 sequenced clones, 509 have
published sequences that were used for subsequent analyses.

To get a global measure of the match between published and physical sequences, we plotted
the length of the published sequence against the size of the PCR fragment for the 509 se-
quenced plasmids having a documented sequence. On Figure 3.2, 76 outliers were visually
identified. The rest of the lengths remained close to the expected lengths. Yet, only 285
data points had less than a 10% difference between the two sequence lengths. The differ-
ences in size distribution between measured and expected lengths appears wider than 5%,
the previously reported experimental error affecting the determination of fragment size by
the microfluidic system used for this project [103]. We have not investigated all discrepan-
cies, amplification failures, or multiplicity of amplification products. This would require a

Table 3.2: The Registry most popular parts.

31

ID Category N Description Parts included
BBa_B0015 Terminator 70 Double terminator consisting of BBa_B0010,
BBa_B0010 and BBa_B0012 BBa_B0012
BBa_B0034 RBS 52 RBS based on Elowitz repressilator -
BBa_E0430 Reporter 39 Standard YFP Output Device -LVA tag BBa_E0130,
BBa_S01014
BBa_E0432 Reporter 36 EYFP (RBS+ LVA+ TERM) BBa_19045,
(B0034.E0032.B0015) BBa_S01638
BBa_J13002 Regulatory 31 TetR repressed POPS/RIPS generator BBa_B0034,
BBa_R0040
BBa_R0040 Regulatory = 22 TetR repressible promoter -
BBa_R0011 Regulatory 20 Promoter (lacl regulated, lambda pL hy- -
brid)
BBa_10500 Regulatory 19 Inducible pBad/araC BBa_I13458,
BBa_R0080
BBa_B0030 RBS 17 Strong RBS based on Ron Weiss thesis BBa_B0034
BBa_I13507 Composite 16 Screening plasmid intermediate BBa_113501,
BBa_ 113502
BBa_113504 Reporter 16 Screening plasmid intermediate BBa_113401,
BBa_113500
BBa_S03155 Intermediate 16 Terminators B0010+B0012+promoter BBa_B0015,
R0040 BBa_R0040
BBa_J04500 Intermediate 14 IPTG inducible promoter with RBS BBa_B0034,
BBa_R0010
BBa_Q04121 Inverter 14 Lacl QPI with strong RBS, hybrid pro- BBa_P0412
moter
BBa_R0062 Regulatory 12 Promoter activated by LuxR in concert -
with HSL
BBa_E0420 Reporter 11 Standard CFP output device w/o LVA tag BBa_B0015,
BBa_S01022
BBa_R0051 Regulatory 11 promoter (lambda cl regulated) -
BBa_B0032 RBS 11 Weakl RBS based on Ron Weiss thesis -
BBa_Q04400 Inverter 10 TetR QPI with strong RBS BBa_P0440,
BBa_S03155
BBa_B0031 RBS 10 RBS.2 (weak) derivative of BBa_0030 -

32

8000 T T T T T T T T
8000
6000 -
7000 - .
& 4000 .
b
6000 L 3 2000 4
’g 0 (ctrfmpur el W 303 ¢ P oo 5
< 5000 -2000 ' ' : : ' : : '
5 500 1000 1500 2000 2500 3000 3500 4000
9 ; PCR Peak Size (bp)
3 .
2 4000
[
>
o
(]
w
S 3000 |-
g .
]
§ Sequence = peak size - 41 pb
20003 Ri?=0.33104
R,2=0.97711
1000 4 ¢ i
|

o s - ' al 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
PCR Peak Size (bp)

Figure 3.2: Comparison of the Registry published sequences with the size of the PCR am-
plification products. This plot is limited to the clones that generated a single PCR fragment
greater than 120 bp. Theoretically, the size of the PCR fragment is 41 pb longer than the
length of the published sequence because of the presence of the PCR primer sequences in the
amplification product (n = 509). When all data points were used in the linear regression, the
fit led to a coefficient of correlation R? = 0.33. Based on previously reported experimental
error affecting fragment size determination [103], 76 outliers were eliminated manually (green
points) leading to a greatly improved R3 = 0.98. doi:10.1371/journal.pone.0002671.g002

33

systematic curation of the published sequences, as well as individual PCR troubleshooting
for each clone, which were beyond the scope of this project.

The next step of our analysis was to look at sequences individually. Of the 789 clones se-
quenced, 591 could be assembled in contigs. The length of assembled sequences ranges from
166 bp to 1897 bp. Some of the inserts that could not be assembled may be too long to
achieve a significant overlap between the two sequence files starting from both extremities
of the insert. Assembling these clones would require additional sequencing runs utilizing
clone-specific primers. Out of the 591 clones assembled, only 354 could be associated with
a Registry entry as the other clones were undocumented in the particular distribution of
the Registry used in this project. The assembled sequences were aligned with the published
sequence using BLAST [5]. Out of 354 assembled sequences for which published sequences
were available, 334 produced alignments with their published sequence and the complete
results of this alignment analysis are reported in Table S1. This spreadsheet was used to
identify clones for which the assembled sequence confirms the published sequence. Since the
assembled sequence can include the primer sequences, the assembled sequence should not be
longer than the published sequence plus the combined length of the two primers (41 bp).
Since the primers used in this project are adjacent to the sequence being verified, the first
and last 10 to 25 bases of the insert can be difficult to read. As a result, the assembled
sequence may be up to 50 bp shorter than the published sequence. These two criteria led
to the selection of 221 clones for which -41<length (published sequence) - length(assembled
sequence)<50. In the second step of sequence analysis, we want to ensure that the alignment
of the assembled and published sequences covers most of the shorter of the two sequences.
In this second step, from the 221 clones meeting the assembled sequence length criteria, we
selected 177 clones for which the alignment length is at least 99% of the length of the smaller
of the two sequences being compared. After these two rounds of selections, the percentage
of identity of the assembled and published sequence was always superior or equal to 97%
and greater or equal to 99% for 162 of the 177 clones. It is obvious that different choices
of parameters would lead to larger or smaller number of clones with a confirmed published
sequence.

Just like in the case of PCR results, a systematic control of the published sequences could
improve the clone confirmation statistics. It is quite possible that for a number of these
clones the biological material is correct but their published sequence may be inaccurate.
Additional sequencing runs starting from within the insert sequences would also increase the
number of clones with long inserts that could be confirmed.

34
3.3 Discussion

3.3.1 A global analysis of the Registry

This analysis of the DNA library provides no more than a snapshot of one distribution of the
Registry clone collection. Amplification and sequencing problems could result from technical
problems during the experiments described in this paper just as they could indicate problems
with the biological samples themselves. For instance, samples that lead to multiple ampli-
fication products could have been delivered contaminated, could have been contaminated
during one of the steps described in this report, or could simply result from mispriming. In
order to control the experiments, it would be necessary to repeat all the operations start-
ing from a new series of samples. Unfortunately the lack of unique clone identifier makes
such control problematic. The different distributions of the DNA repository do not share a
common key necessary to relate one distribution to another. The data set described in this
article is specific to the 2007 distribution of the DNA repository. Our results are valuable to
understand global issues associated with the design, development, and management of a reg-
istry of biological parts but they would need data describing how different distributions relate
to each other to be used for controlling the quality of specific clones in the Registry collection.

The high-level analysis of the Registry database led to the identification of several non-trivial
issues that need to be addressed. The implementation of a workable abstraction hierarchy
remains problematic. A single category of parts (DNA) appears to be exclusively composed
of basic building blocks. However, our sequence analysis has revealed elements categorized as
parts within the Registry that include other parts, indicating that not all clones categorized
as parts have an atomic nature. Some part sequences even include designs, a higher level
in the abstraction hierarchy. These observations result from the lack of consensus in the
community on how biological parts should be defined. Nothing illustrates this confusion
better than the complex architecture of promoters [46, 150]. On the one hand, promoters
are generally considered as parts but on the other hand they have well characterized domains
that can be associated with specific functions. When developing an abstraction hierarchy,
should promoters lie at its bottom and be considered as atomic parts or should they be
considered as composite parts composed of multiple functional domains? The case of genes
is not simpler as proteins are also composed of multiple functional domains[76]. A complete
access to the Registry database would have made it possible to investigate questions that
could not be addressed using the partial dump of the database content used in this analysis.
For instance, parts have a usefulness attribute used to report if a part works, works with
issues, or does not work as anticipated. It would be interesting to relate the parts popularity
to the usefulness status of a part as one would imagine that the most popular parts are
reported as working. The structure of composite parts is also described as the series of basic
parts they are composed of. Comparing the sequence and structure of composite parts could
help investigate a number of interesting questions. Figure 3.1 reflects the laborious efforts of

35

the synthetic biology community to develop and implement the new theoretical framework
it needs to support its scientific vision.

3.3.2 Organizational guidelines

Results presented in this report lead to a number of organizational guidelines that could help
design or manage registries of biological parts.

The published DNA sequence of entries should be carefully curated. Lack of published se-
quences or incorrect ones hamper the quality control of the associated clones. It is important
to clearly identify basic parts of a registry as they generate the rest of the database. Basic
parts should be linked and compared to entries in other sequence databases and peer-reviewed
publications [216]. Basic parts that have not been completely annotated should be flagged
so that people considering using them may proceed with caution. The sequence redundancy
of the basic part set is a difficult problem. Theoretically, a set of basic parts could be atomic
in the sense that it generates all other entries in a registry. However, this approach may not
always be practical. If certain projects need to identify several parts in a promoter sequence,
this level of granularity may be excessive for other projects. The same argument can apply
at higher levels of organization. For the same reasons, nothing prevents the definition of
complete gene expression cassettes and other devices such as switches, inverters, etc. as
basic parts. However, this option does not seem desirable as it would be inconsistent with
the engineering vision of building complex systems from a limited numbers of building blocks.

The integrity of the sequence of composite parts is even more difficult to ensure. There
could either be a static or dynamic link between the sequence of a composite part and the
sequences of the basic parts it is composed of. In the first case, the sequence of a composite
part is automatically derived from the sequence of its components when the composite part is
created but future changes to the sequences of its basic components do not propagate to the
composite part sequence. If such a policy is enforced, discrepancies between the composite
part sequence and the sequences of its basic components can develop over time. It is desir-
able that such discrepancies be identified. In the case of a dynamic link, any change in the
sequence of a basic part propagates to all composite parts using this basic part. The integrity
of the composite part sequence is then always preserved but different versions of the compos-
ite parts that are automatically generated by this process may be very confusing to the users.

Clones in the DNA repository associated to a parts registry need to be uniquely identified
independently of the parts in the registry. Parts numbers are not good identifiers of clones as
many clones correspond to the same part in different plasmids or different bacterial strains.
A clone key is necessary to compare data collected on different distributions of the same
clone and therefore implement quality control procedures. A standardized quality control

36

process should be specified to ensure the integrity of the clone collection.

3.3.3 Targeted development of registries of parts

The idea of developing collections of standardized parts is a transformative idea in biol-
ogy [193]. After a few years of a large scale experiment, it becomes apparent that developing
and managing this new type of resource for synthetic biology raises a number of original
questions. Specialized registries built on compatible standards are being developed by vari-
ous groups that will experiment with different user interfaces, workflows, and modes of user
interaction. These initiatives along with future developments of the original Registry will
provide elements of solutions to these new questions.

It will be particularly interesting to see if different registries will adopt different editorial
policies. The cost of maintaining a parts registry depends on its size as each entry needs to
be properly documented and each clone needs to be verified. Parts registries are different
from traditional collections used in biological research as any combination of parts in the
registry can also be integrated in the registry. A small number of basic parts can therefore
generate a potentially infinite collection of clones. Initially, it may be attractive to record
any combination of parts without any consideration of its potential value, but this approach
now appears unsustainable [91]. At some point, users and managers of a parts registry will
need to analyze the allocation of their resources. Table 3.2 and similar analysis on other
registries can help identify entries that are the most valuable to the users and least expen-
sive to maintain. For instance, basic parts deserve special attention because they enable
the development of new designs and errors affecting basic parts can propagate to the entire
resource. This contrasts with the case of a large and specialized construct including mul-
tiple genes that would be expensive to control and might have a low probability of reuse.
Even though it would be desirable to also include such construct in the database and clone
collection, if finite resources require choosing between recording a few new basic parts with
a broad reuse potential and a specialized and expensive part, it is likely that resources will
be preferably allocated to adding basic parts. Similarly, including a switch that could be
used in developing a number of applications will probably be deemed more valuable than
the construction intermediates that were generated during its assembly. Managers of parts
registries need to articulate editorial policies to set criteria for including new entries in their
database so that resources can be targeted to developing content maximizing the benefits to
their users.

Recognizing that repositories of biological parts are an essential component of the upcoming
integrated development environments for synthetic biology [6, 8, 29] may help target the
development of their content. In order to support this integration it is necessary to specify
a minimal data model allowing programmatic access to the registry databases from multiple

37

client applications. A draft of such a data model is described in Text S1. Structured methods
for designing synthetic genetic systems will provide a theoretical framework that will guide
the development of user interfaces helping users combine basic parts into complex designs.
Alternative solutions to the organization of parts in categories or the mechanism to define
composite parts will probably be proposed. In this context, recent initiatives to organize
forums aiming at defining technical standards for biological parts appear very timely and
laudable.

3.4 Materials and Methods

The plasmids were resuspended in 30 pl of nuclease free water (Ambion) at 4°C overnight.
They were quantified using the Nanodrop spectrophotometer. 20ng of Plasmid DNA was
used in the PCR amplification of the plasmid inserts, using Qiagen’s Taq PCR master mix
kit, and 2 uM primers forward and reverse primers at 100 pl reaction volume. The forward
primer was homologous to the BioBrick prefix (5" - GAA TTC GCG GCC GCT TCT AG
- 3’) whereas the reverse primer was complementary to the suffix sequence (5 - CTG CAG
CGG CCG CTA CTA GTA - 3%). PCR conditions: 94°C 45 sec, (94°C 30 sec, 55°C 45 sec,
72°C 45 sec) for 24 cycles, 72°C 5 minutes, 4°C hold.

The PCR product was purified using Qiagen’s QIAquick PCR purification kit, resuspended
in 25 ul of nuclease free water, and quality controlled using the Agilent Bioanalyser DNA
7500 assay. The amplified products were quantified and diluted to 10ng per ml. The PCR
product and corresponding primers were submitted to the VBI Core Laboratory for Sanger
sequencing using the primers used in the amplification step. Sequencing conditions: 400 ng
template DNA, 3.2 pmol primer, 2.5 ul BigDye Terminator mix v3.1, water to a total volume
15 pul.

Base calling and quality control of sequence chromatograms was done by PHRED [63, 64].
The sequences were assembled using CAP3 [96] with default options except for minimum
overlap size of 21 bp. The assembled sequences were aligned with their respective published
sequences using BLAST [5] with default parameters.

3.5 Supporting Information

Figure S1 Cytoscape file used to generate Figure 3.1. Can be used to interactively explore
the network of relationships within the Registry
Found at: doi:10.1371/journal.pone.0002671.s001 (0.10 MB ZIP)

38

Table S1 Blast analysis of the clones assembled sequences against the published sequence.
Found at: doi:10.1371/journal.pone.0002671.s002 (0.14 MB XLS)

Text S1 Describes the supporting database and its data model. Also describes the other files
included in the supplement.
Found at: doi:10.1371/journal.pone.0002671.s003 (0.12 MB PDF)

3.6 Acknowledgments

We are indebted to Randy Rettberg, Tom Knight, Mackenzie Cowell, and Meagan Lizarazo
for providing the collection of clones and a text version of the Registry database used in this
report. Michael Czar’s careful reading of the manuscript and valuable suggestions helped
improve this article.

3.7 Author Contributions

Conceived and designed the experiments: CE OF JP. Performed the experiments: CE MFB
KLC ECD BML MAS. Analyzed the data: OC SPM JP YC RS SAW. Wrote the paper: OC
CE OF SPM JP YC RS SAW.

3.8 Attribution

Jean Peccoud — Ph.D (Department of Molecular Biology and Bioinformatics, Universit
Joseph Fourier (Grenoble I)) currently an associate professor of Virginia Bioinformatics
Institute at Virginia Tech. JP conceived and designed the experiments, and wrote part of
the paper.

Megan F. Blauvelt - was a research associate in the core lab of Virginia Bioinformatics
Institute and currently and senior laboratory technologist at RedPath Integrated Pathology
Corporation, and contributed to this chapter in terms of performing the experiments.

Yizhi Cai - Graduate student (Genetics, Bioinformatics and Computational Biology in-
terdisciplinary doctoral program, Virginia Tech), analyzed the data, and wrote part of the

paper.

Kristal L. Cooper — Genomics Specialist at Virginia Bioinformatics Institute at Virginia
Tech, performed the experiments.

Oswald Crasta — Ph.D. (Department of Molecular Genetics, Texas Tech University) cur-

39

rently Associate Director at Chromatin, Inc was a project director at Virginia Bioinformatics
Institute at Virginia Tech and contributed to this chapter in terms of conceiving and design-
ing the experiments, and writing part of the paper.

Emily C. DeLalla — was an undergraduate student (Department of Biology, Virginia Tech),
performed the experiments.

Clive Evans — is the director of the core lab at Virginia Bioinformatics at Virginia Tech,
contributed to the chapter in terms of conceiving and designing the experiments, performing
the experiments and writing part of the paper.

Otto Folkerts — Ph.D. (Department of Plant molecular biology, Cornell University) cur-
rently the director of Transgenic Programs at Chromatin, Inc, was associate director tech-
nology development at Virginia Bioinformatics Institute at Virginia Tech, conceived and
designed the experiments and wrote part of the paper.

Blair M. Lyons — was an undergraduate (Department of Biochemistry, Virginia Tech)
currently a master student (Department of Biomedical Visualization, University of Illinois
at Chicago), performed the experiments.

Shrinivasrao P. Mane — Ph.D. (Department of Plant Physiology, Virginia Tech) currently
a computational biologist at Virginia Bioinformatics Institute at Virginia Tech, analyzed the
data and wrote part of the paper.

Rebecca Shelton — was a graduate student (Department of Electrical Engineering, Virginia
Tech), analyzed the data and wrote part of the paper.

Matthew A. Sweede — was an undergraduate student (Department of Biochemistry, Vir-
ginia Tech) currently a graduate student (Department of Molecular Cancer Biology, Duke
University), performed the experiments.

Sally A. Waldon - was a database specialist at Virginia Bioinformatics Institute at Virginia
Tech, analyzed the data and wrote part of the paper.

Chapter 4

Writing DNA with GenoCAD™

Published at: M. J. Czar, Y. Cai, and J. Peccoud. Writing DNA with genocad. Nucleic
Acids Res, 37(Web Server issue):W407, Jul 2009.

Authors: Michael J. Czar, Yizhi Cai and Jean Peccoud

Abstract Chemical synthesis of custom DNA made to order calls for software streamlining
the design of synthetic DNA sequences. GenoCAD™(www.genocad.org) is a free web-based
application to design protein expression vectors, artificial gene networks and other genetic
constructs composed of multiple functional blocks called genetic parts. By capturing design
strategies in grammatical models of DNA sequences, GenoCAD guides the user through the
design process. By successively clicking on icons representing structural features or actual
genetic parts, complex constructs composed of dozens of functional blocks can be designed
in a matter of minutes. GenoCAD automatically derives the construct sequence from its
comprehensive libraries of genetic parts. Upon completion of the design process, users can
down- load the sequence for synthesis or further analysis. Users who elect to create a personal
account on the system can customize their workspace by creating their own parts libraries,
adding new parts to the libraries, or reusing designs to quickly generate sets of related con-
structs.

4.1 Introduction

In order to fully reap the potential benefits of de novo chemical gene synthesis [47] it has be-
come necessary to develop tools and methodologies to streamline the design of custom DNA
sequences [80]. Protein expression for structural studies [44], functional genomics [74, 99],
metabolic engineering [108, 125], or gene expression studies [27, 46, 87, 150] are only some

40

41

of the numerous possible applications of this emerging technology. Beyond small scale ge-
netic constructs encompassing no more than a few interacting genes, it becomes possible to
reengineer viral [34, 35, 42, 213], bacterial [75], and even eukaryotic [56] genomes. While the
number of users of this technology increases, so does the need to streamline the design of syn-
thetic DNA sequences. GenoCAD is a web-based application filling this need by providing
users with an integrated graphical development environment that no other software provides.

GenoCAD'’s design philosophy derives from the notion of genetic parts, which was first artic-
ulated to analyze genomics data [10]. Thinking of genetic systems as composed of parts, each
with its own function and characteristics, is akin to the way parts are described and used in
various engineering fields. Designing complex systems through a bottom up integration of
components is a dominant paradigm in engineering. It was therefore natural that engineers
approaching DNA as an engineering substrate, rather than a natural macromolecule, used
the notion of biological parts as building blocks [62, 85]. For instance, promoters, ribosome-
binding sites (RBS), genes and terminators are all categories of parts that are needed for
designing complex prokaryotic genetic constructs such as switches [9, 72, 102] and oscilla-
tors [9, 61, 205]. One could argue that systematic efforts to decompose biological sequences
into functional modules that can be recombined to meet user-defined specifications is one
of the most distinctive features of synthetic biology compared to more traditional uses of
recombinant DNA technologies [12, 55, 80, 137].

GenoCAD facilitates the design of artificial DNA sequences in three ways. First, Geno-
CAD includes a flexible system to manage libraries of public and user-defined genetic parts.
Second, GenoCAD relies on formal design strategies to guide both novice and experienced
users in the design of structurally valid constructs for various bio- logical applications. Fi-
nally, GenoCAD'’s sophisticated data model enables individual users and research groups to
customize their workspace to their specific needs.

4.2 Flexible Management of Genetic Parts Libraries

Nothing better attests the benefits of a parts-based approach to the design of genetic con-
structs than the success of the Registry of Standard Biological Parts (www.partsregistry.org).
By defining the BioBrickTM standard allowing the composition of parts and implementing
mechanisms to share parts, the Registry has been critical in fostering the development of
a vibrant synthetic biology community [47, 62, 85, 155]. We recently analyzed the content
of the Registry database and the associated collection of clones to better understand how
the successes and limitations of this pioneering experiment could guide the development of
a second generation of registries of biological parts [155]. GenoCAD attempts to refine some
of the concepts upon which the Registry was developed.

42

By assuming that genetic designs can be synthesized, GenoCAD eliminates the need for
standardizing the means by which parts are connected. It also eliminates the need to de-
velop a collection of bacterial clones to manage the physical implementation of the parts.
Our analysis also stressed the importance of basic parts used to generate new combinations
of parts with specific functions. Ensuring the accuracy of the sequence and annotation of
the basic parts is essential since inaccuracies at this level may affect numerous designs. As a
result of this observation, GenoCAD parts libraries are exclusively composed of basic parts
while sequences composed of multiple parts are called designs. The libraries of parts avail-
able to all GenoCAD users are limited to sequences used in peer-reviewed publications or
commercial vectors. Parts are curated by a small number of experts according to a process
that will be described in a future publication.

Categorizing parts into functional groups has also proved challenging as the number and
diversity of parts increases. It would be, for instance, questionable to record bacterial and
eukaryotic promoters in the same group. Developing a more granular categorization system
may lead to an exponential growth of categories that would prove cumbersome to navigate.
GenoCAD overcomes this challenge by relying on the notion of grammar [29]. A grammar
is composed of rules describing the structure of DNA sequences. One of the rules of the
Escherichia coli Expression Grammar is CAS — PRO ,C1S,TER which reads: an expres-
sion cassette is composed of a promoter, a cistron and a terminator. Another rule of the
same grammar is CIS — RBS ,GEN (a cistron is composed of a RBS and a gene). The
two rules can be used successively to create a basic expression cassette PRO, RBS, GEN,
TER. Different grammars can be developed for different applications and each grammar
has its own parts categorization hierarchy. This approach ensures, for instance, that parts
suitable for designing constructs for specific organisms like F. coli or yeast can easily be
identified. It also enables the development of grammars for specific applications like protein
production, homologous recombination in yeast, etc. Instead of attempting to develop a
universal parts categorization system, GenoCAD provides a generic framework for the de-
velopment of smaller more manage- able application-specific parts-libraries. The ‘Parts’ tab
of the GenoCAD user interface provides a parts library browser (Figure 4.1).

4.3 Point-And-Click Design of Genetic Constructs

In addition to providing a hierarchy of categories, gram- mars include sets of rewriting rules
that formalize design strategies for various types of genetic constructs [29, 80]. The design
feature of GenoCAD embeds the grammars in a graphical user interface that leads users
through the design workflow formalized in the grammar. Grammars usually prompt users
to begin by choosing high-level structures of their system and systematically decomposing
them into individual part categories. The last step of the design process consists in selecting
actual parts corresponding to specific DNA sequences (Figure 4.2). When starting from one

43

of the public design templates, users can quickly design constructs by simply selecting parts
in a parts library instead of going through the entire design process described below.

Here, we use the design of a bistable genetic switch to illustrate GenoCAD’s workflow [72].
Selection of a gram- mar and an associated parts library (Figure 4.2) is the first step of this
process. By selecting the grammar the user defines the type of construct that is possible,
and by selecting the library they define the set of parts available to complete the design.
Determining the high level structure of a functional genetic system de novo could potentially
be confusing to users that do not have an intimate knowledge of the role of each part in the
regulation of gene expression. However, each grammar behind GenoCAD provides the design
strategy for specific types of constructs. GenoCAD’s default grammar, ‘E.coli Expression
Grammar’, is suitable for the design of prokaryotic expression constructs. Additional gram-
mars will be added for other applications.

The toggle switch construct was designed in nine steps as shown in Figure 4.2. The his-
tory pane (left side) allows users to review their work at any stage of the design process
by clicking on that step. Users may click in reverse or in forward steps, and they are able
to redesign from any point if they wish. Figure 4.3 shows a slightly condensed version of
the design process of the toggle switch construct. Displayed below each part of a design
are the options available to the user to transform the design. Choices in gray correspond
to transformations that affect the design structure while options in white correspond to the
selection of a specific part. Structural trans- formations are either part categories for which
a specific part selection can be made or a higher level feature that must be decomposed to
features lower in the abstraction hierarchy before the design can be finalized. An example of
a high level part is the cistron (CIS in Figure 4.3), which is transformed into a RBS and gene
(GEN). For each part category users have a choice of one or more specific sequences such
as a specific RBS or gene. A mouse-over feature in the interface provides more information
about the available choices. For example, the name of choice 04 for the promoter (PRO)
category is displayed through this mechanism.

A design is complete when specific sequences have been selected for each of its structural
features. It is then possible to click on the ‘Download Sequence’ button to export the
construct sequence as a text file that can be imported into software to design oligos for gene
synthesis [94, 104, 168, 215]. Alternatively the sequence synthesis can be ordered from a fast
growing number of vendors providing contract gene synthesis services [47].

GenoCAD™

Design Validate About

Log Out

My Designs My Libraties My Parts Update Profile
Library

Filter by grammar. E. coli Expression Grammar E}
Filter by library. | Public Parts Library (E. coli expression grammar) :}

Glossary

Il

GEN: Gene

gen01:E1010 - View sequence
gen02.J45004 - View sequence
gen03.E0020 - View sequence
gen04:E0030 - View sequence
gen05.J36801 - View sequence
gen06.J36804 - View sequence
gen07.J31007 - View sequence
gen08.J52008 - View sequence
gen09 E0040 - View sequence
gen10:E0032 - View sequence
gen11:E0022 - View sequence
gen12:J06501 - View sequence
gen13:Lacl - View sequence
gen14.GFPmut3 - View sequence
geni5:cits - View seguence
gen16:TetR - View sequence
gen171gGFPmut3 - View sequence

I

GEN-: Gene reverse

44

Figure 4.1: The GenoCAD parts library browser (used with permission of J. Peccoud, 2010).
Parts are associated with individual libraries, each of which is associated with a specific
grammar. Users select which parts library they view through choice of a grammar and
specific library in drop down boxes on the page. The part category ‘Gene’ is displayed in

this figure along with the icon that represents genes in the designs.

By clicking on the

icon, the list of genes expands, allowing the user to see the available choices in the library.
Selecting the link to ‘View Sequence’ for any part opens a small window containing the

sequence of the individual part.

45

GenoCAD™

Design Validate About

History Seq uence Builder [E coli Expression Grammar V] Public Parts Library (E. coli expression grammar) ‘V] Glick here for
desian templates
Step 1
Step 2 TER- GEN- RBS- PRO- PRO RBS GEN RBS GEN TER
Step 3
< RN et | e [., |
— L 1.r 1
Step s i 1 1 1 1]] | 1
Step 6 0.0 0.01 O ©.01 O ORES2 001 ORBS2 ©01 O 2ter
Step 7
s::' 0.0z ©.02 ©.02 ©.02 002 gp ©02 ggg ©02 @
Step 9 LBl o 0. ©.03 Q03 0 0¢ L1} O ¢ © o
0. 4] 0. ©.04 004 O 0 004 O 0F 004 o 04
.05 O 005 gg7 ©05 g OO
0. 006 o 0 © 0 0 0¢ 0 06

TER- GEN- RBS- PRO- PRO RBS GEN RBS GEN TER

= o [—

©1e1.08 ©gon.0 B1bs.05 ©pro.03 Oprods ©1bsié B gents Bibso7 © gent? Grerdd

Figure 4.2: The design interface showing the structure of a genetic toggle switch (used with
permission of J. Peccoud, 2010). The interface has drop down boxes at the top to select the
grammar and parts library that will be used in the design. The history panel allows users
to select one of the steps in the design process and see the structure of the design at that
step. Users are permitted to go back to any step and redesign from that point. The design
is presented in the main panel of the page, and icons for each part and the abbreviated parts
categories are shown at the top of the design. Choices for each part are shown underneath the
part icon. The inset shows the final design for this construct after specific choices (terminals)
are selected for each part category.

46

s CAS CAS CAS TER- CIsS- PRO- PRO cis TER TER- CIS- PRO- PRO cis cis TER
J— —lir H ke L |
] (-] [+] ©-01 © 2cis- ©-01 oo o2 O 2 e.0 0 2 0.0 on O 2tis+ © o 2
o o1 O1pe 0.02 O ©.02 ©02 ©mgn+ o 0.0z O 002 © Orbgn+ Orbgn+ gy
-] ot [+] .03 ©.03 003 © 02 . ©.0 [+] 002
0.04 004 ©04 o004 0.0 0.0 004 ©0s
0 0 © 05
© 0F 0k
TER- GEN- RBS- PRO- PRO RBS GEN RES GEN TER TER- GEN- RBS- PRO- PRO RBS GEN RBS GEN TER
= Bl i e [e, NP
L | | 1[I "
o.M Q.01 [0.0 o0 ORBS2 001 ORBS2 © O 2ter G@ter04 9 gen04 @ibs.05 @ pro.03 @piod8 Dibs06 @ gen1s Dibs07 O gen1? Gterdd
0.2 ©.02 © .02 ©02 g@gq ©02 g@g4 ©02 g
0.03 O ° 0.03 00 0oz © 005 Of 002
0.04 O ©.04 ©.04 OO0 g 00 ggs ©04 o
005 © 005 g@g7 ©05 @g7 ©O0
© .06 O 06 o O 0¢ o 08 O 06
© L1 009] o0 o0
© © 0t o1 0 08 o1t ©

Figure 4.3: A progression through the design of a bistable toggle switch (used with permission
of J. Peccoud, 2010). The starting symbol, S, (1) is where each design begins, and it is
transformed into a transcription cassette, CAS, (2). Since the toggle switch contains two
transcription cassettes, the single cassette is doubled (3). The design we are following has
the cassettes oriented in opposite directions, and we achieve this by transforming the left
cassette to the tpe- option, and the right to the tep+ option (4), which contain a promoter,
cistron, and terminator, but in opposite orientations. The right cassette is meant to express a
transcriptional repressor and reporter gene in a bicistronic manner, so the cistron is doubled
by selecting the 2cis+ option (5). Each cistron is then decomposed to a RBS and gene (6),
with the RBS and gene in the reverse orientation in the left cassette. Selection of the specific
promoters, RBSs, genes, and terminators produces a final construct that is associated with
a DNA sequence (7).

GenoCAD™ ...

Validate

My Designs My Libraries My Parts Update Profile

Which grammar will this library use?

E. coli Expression Grammar v/
Description: This is a generic grammar for gene expression cassettes

Preload a library below: o
Public Parts Library (E. coli expression grammar) v
Ayauablg parts: .
| gen0d (E0040) [~]
'genl0 (E0032) [
\gen11 (E0022) |
gen12 (JO6501) i
gen17 (tgGFPmut3) [
'gen-01 (Lackrc) ‘
' gen-02 (GFPmut3-rc)
gen-03 (tgLacirc) [
gen-04 (tgLaclc2(117)) |
' gen-05 (igLaclrc3(132)) [
ter01 (B0010) '
ter02 (B0012)
'ter04 (B0D16)
ter-03 (B0015rc)
\ter-04 (B0016rc)

</

U Add Al »

About Log Out

Describe Your Library:
Well characterized parts for
system construction.|

Your Library Name:
GenoCAD validation library

gen13 (Lacl)
genl14 (GFPmut3)
gen15 (clts)
genlb (TetR)
pro08 (Ptrc-2)
pro09 (Pl-s1con)
pro10 (Pitet0-1)
ths04 (A)

rhs05 (B)

rhs06 (C)

ter-01 (B0010rc)
ter-02 (B0012rc) ‘

|

47

Figure 4.4: Creating a custom parts library. Users who create an account at the website
are able to create their own parts libraries, and are then able to add custom parts to these
libraries (used with permission of J. Peccoud, 2010). Through the library creation interface,
users select the grammar that their library will belong to, provide a name for their library,
and can enter a description. Parts can be added to a new library from other libraries of the
same grammar, which are loaded in the lower left box on the web page. All parts or a select
subset of parts, from the existing library can be copied into or removed from the new library
using the orange add and ‘remove’ buttons.

48

4.4 Custom User Workspace

Parts available to all users in the public parts library have been derived from peer-reviewed
publications and the documentation of commercial vectors. Registered users are able to
create both their own parts library and their own parts. To create a new parts library, the
user selects the ‘My Libraries’ link on the ‘Design’ or ‘Parts’ tab. When the user selects
the link to create a new library they are presented with a user-friendly interface to do so
(Figure 4.4). Since parts libraries are associated with specific grammars, the user must select
the grammar to which the new library will be linked. Parts can then be copied from other
libraries linked to the same grammar by first pre- loading that library at the lower left of
the interface. Parts can be copied into and removed from the new library with the ‘add” and
‘remove’ buttons. Once a user has created their own library, they are then able to create
new parts and associate them with that library. In Figure 4.5, the part creation page allows
the user to specify a grammar, select which part category it belongs to, and enter the part
name, sequence and description. One or more user libraries associated with the grammar
must be selected at the bottom of the page before the part can be saved into specific libraries.

Users can also save their designs in their workspace. Designs can be saved and named at any
stage of the design process. The ‘My Designs’ page provides links to delete and clone (i.e.
copy) previously saved designs. By saving a design prior to selecting parts, users can quickly
clone a design template into multiple variants without having to go through the entire design
process for each of them.

4.5 Implementation and Data Model

The GenoCAD website is written in a combination of PHP and JavaScript and runs on an
Apache server. The MySQL database is on a different server, and both servers use the Linux
operating system. The validation page relies on a custom parser developed in C++.

The data model for GenoCAD is summarized on Figure 4.6. Each design is associated with
a specific parts library which, in turn, is linked to a specific grammar. Multiple public and
user-defined libraries can be associated with each grammar and multiple designs can be as-
sociated with a specific library. Parts defined by users need to be associated with one of the
user’s parts libraries.

This simple data model has several limitations. Since many parts such as coding sequences
can be used in different organisms, it would be desirable to replace the current hierarchical
data model with a more refined model allowing the same part to be used in multiple libraries
and grammars. It would also be desirable to define parts corresponding to coding regions

49

GenoCAD™

Design Validate About Log Out

MyDesigns My Libraries Update Profile
Add/Edit Parts

Grammar E. coli Expression Grammar ||
Part Category | Terminator v
Name Double Terminator

ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggectttogtte”

Sequence
177 PR —— >
Jprisseane®
Double terminator from BioBrick Registry (B0015)
Description
Libraries Czar (E.coli expression grammar)

e

Figure 4.5: Interface to add a new part. Users that have created a custom library are able
to add and save parts that can be used in their designs (used with permission of J. Peccoud,
2010). The categories of parts permissible in designs are defined in the grammar, so the
grammar must be chosen first through a drop down menu. A second drop down, then allows
users to choose which part category the new part will belong to; in this case a new terminator
is being created. The sequence and description of the part are entered in text boxes, and
the library(s) to which the part will be added must be checked.

50

| C

. D,
T -
Gammar | T (| Public Parts 2)
rule1
rule 2 T, et M
: | G
nlen [—! 1 :
| User EEI’ilrts] E C Design 4)

User Library 1 User Library 2
& i | I oA /

Figure 4.6: GenoCAD data model. Each grammar encompasses a set of rules by which
constructs can be designed. The grammar also defines the categories of parts that are
available to design the constructs. For each grammar there is a collection of public parts
(solid, blue rectangle), which constitute a publicly available parts library (dashed, blue
rectangle). ‘User Libraries’ can be created from any subset of the public parts, and this
library can be supplemented with user-created parts (solid, red rectangle). Two user libraries
(dashed, red and dashed, green rectangles) are shown here that contain different subsets of
public and user-created parts. User library 2 contains all user-created parts. When a design
is created, all the parts to complete the design must be contained within a single library.

ol

by their amino-acid sequences instead of being limited to a DNA sequence with codons that
are optimal for expression in a specific organism.

Additional grammars will be defined for the use of specific applications or for applications
relevant to specific organisms in collaboration with organism or domain experts. Defining
parts categories and design strategies suitable for a particular application will require a dia-
logue between biologists and computer scientists having experience in grammar development.
Once agreed upon, grammars can easily be recorded in the MySQL database. Even though
it would be attractive to guide the user in the definition of new grammars, the complexity of
this process makes it unlikely that it will be possible to develop a grammar-building wizard
in the foreseeable future.

4.6 Summary and Future Work

Like the stand-alone Gene Designer [215] or the web-based Registry of Standard Biologi-
cal Parts, GenoCAD allows users to quickly design new genetic constructs by combining
sequences corresponding to various functional elements known as parts. Unlike its pre-
decessors though, GenoCAD guides the user through a design workflow corresponding to
previously agreed upon design principles captured in grammars. Since it relies on linguistic
models of DNA sequences [188], GenoCAD is a tool to help users write in the language of
DNA sequences.

GenoCAD is a work in progress. The sequence validation tool makes it possible to test
whether a sequence developed outside of GenoCAD is consistent with a specific grammar
and parts library. This tool is still rudimentary since it simply provides pass/fail information.
Eventually, more sophisticated error messages will be generated to help user troubleshoot
their sequence. As the GenoCAD user base grows, GenoCAD will support workgroups by
allowing them to share parts, libraries and grammars.

The next major improvement to GenoCAD will include tools to predict the design behavior.
By augmenting GenoCAD data model it is possible to compile a design DNA sequence into
a SBML file [97] that can be simulated by one of the numerous applications that supports
this standard [93]. GenoCAD will then join a growing number of applications experimenting
with mechanisms to derive the gene network model encoded in genetic con- structs com-
posed of standard biological parts [80, 92, 137, 175]. GenoCAD will also integrate tools to
track the synthesis and assembly of designs generated in GenoCAD. Optimizing the DNA
fabrication process based on the strategies used to design a series of constructs would be
extremely valuable.

52

While the GenoCAD web site is stable and has been in operation since 2007, the exper-
imental validation of the concepts upon which it has been developed is still ongoing. As
a reminder of the necessity to test designs in the lab, we will consider GenoCAD in beta
test until extensive characterization of GenoCAD-designed systems has been described in
peer-reviewed publications.

4.7 Funding

Virginia Commonwealth Research Initiative; fellowship from the Virginia Tech Genetics,
Bioinformatics and Computational Biology graduate program awarded to YC. Funding for
open access charge: Virginia Bioinformatics Institute.

4.8 Attribution

Michael Czar — Ph.D. (Department of Pharmacology, University of Michigan), was a senior
project associate at Virginia Bioinformatics Institute at Virginia Tech, wrote the paper.

Yizhi Cai — Graduate student (Genetics, Bioinformatics and Computational Biology in-
terdisciplinary doctoral program, Virginia Tech), performed the experiments and wrote the

paper.

Jean Peccoud — Ph.D (Department of Molecular Biology and Bioinformatics, Universit
Joseph Fourier (Grenoble I)) currently an associate professor of Virginia Bioinformatics
Institute at Virginia Tech. JP conceived and designed the experiments, and wrote part of
the paper.

Chapter 5

GenoCAD for iGEM: a grammatical
approach to the design of
standard-compliant constructs

Published at: Y. Cai, M. Wilson, and J. Peccoud. Genocad for iGEM: a grammatical ap-
proach to the design of standard-compliant constructs. Nucleic Acids Res, page gkq086v1,
Feb 2010.

Authors: Yizhi Cai, Mandy L. Wilson and Jean Peccoud

Abstract: One of the foundations of synthetic biology is the project to develop libraries of
standardized genetic parts that could be assembled quickly and cheaply into large systems.
The limitations of the initial BioBrick standard have prompted the development of multi-
ple new standards proposing different avenues to overcome these shortcomings. The lack of
compatibility between standards, the compliance of parts with only some of the standards or
even the type of constructs that each standard supports have significantly increased the com-
plexity of assembling constructs from standardized parts. Here, we describe computer tools
to facilitate the rigorous description of part compositions in the context of a rapidly chang-
ing landscape of physical construction methods and standards. A context-free grammar has
been developed to model the structure of constructs compliant with six popular assembly
standards. Its implementation in GenoCAD makes it possible for users to quickly assemble
from a rich library of genetic parts, con- structs compliant with any of six existing standards.

93

54

5.1 Introduction

The compelling vision of libraries of biological components with standardized interfaces en-
abling a fast and cheap assembly of large biological systems is one of the foundations of
synthetic biology [62, 85]. The BioBrick Foundation (BBF) has been instrumental in pro-
moting the BioBrick standard. A BioBrick compliant part is a DNA fragment flanked by a
prefix and a suffix sequence having specific restriction sites [8, 32]. Two BioBrick parts can
be assembled by using a specific series of restriction digestions and ligations independent
of the parts sequences. The different restriction sites used by the prefix and suffix result
in complementary overhangs that can be ligated without recreating any of the prefix and
suffix restriction sites. The legacy sequence between two adjoining parts is called the scar.
BioBrick parts are physically composable in the sense that the assembly of two BioBricks re-
sults in a new part compliant with the same standard. The first BioBrick assembly standard,
BBal.0, was proposed by Knight in a BBF Request For Comments (BBF RFC 10). It uses
EcoRI, Notl and Xbal in the prefix, and Spel, Notl and Pstl in the suffix. Later on, it has
been proposed to replace Pstl with Sbfl, an enzyme with a longer restriction site less likely to
be found in parts sequences (BBF RFC 11). Both standards have been well received by the
community and widely used by teams enrolled in the international Genetically Engineered
Machine (iGEM) competition [82, 201]. However, both BBal.0 and BBa2.0 create an eight-
base scar (TACTAG AG), which results in a frame shift when assembling two protein-coding
sequences. To address this problem, several new standards have been proposed (BBF RFCs
12, 21, 23 and 25) to allow protein fusion by introducing six-base scars. These standards are
summarized in Table 5.1.

‘The best thing about standards is that there are so many to choose from!” summarizes well
the difficulty of navigating this increasingly complicated technical land- scape. The multi-
plication of assembly standards creates a number of new difficulties. Most parts are only
compliant with some of the assembly standards due to the presence of reserved restriction
sites in their sequence. A design framework that could automatically manage the constraints
associated with the different standards could help the community better leverage ongoing
standardization efforts. Here, we introduce a context-free grammar (CFG) [29] to model the
structure of genetic con- structs compliant with any of the existing assembly standards. A
CFG is a set of rewriting rules, which defines the set of all designs that can be derived by
the grammar. A context-free rule can be written as y — -y, where Yy is a single non-terminal
and ~ is any string of terminals and/or non-terminals (possibly empty). In the case of
the BioBrick grammar presented in this article, non-terminals include parts categories (e.g.
promoter) and categories of composite parts (e.g. cistron), while terminals are specific Bio-
Bricks (e.g. BBa_R0040) and standard-specific prefixes, suffixes and scars. For instance, a
rule “Cassl — Prom1 C1Cistl C1Terml” is interpreted as an expression cassette (Cassl)
can be transformed into a DNA sequence comprising a promoter (Proml), a BioBrick scar
(C1), a cistron (Cistl), a BioBrick scar (C1) and a terminator (Term1).

95

The grammar was implemented in GenoCAD (www.genocad.org), a web-based application
to design synthetic genetic constructs [48]. GenoCAD is built upon a solid computational
linguistic foundation. Yet, its point-and-click graphical user interface enables users to design
complex constructs in a matter of minutes. GenoCAD captures design strategies of synthetic
gene