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GenoCAD: linguistic approaches to synthetic biology

Yizhi Cai

(ABSTRACT)

Synthetic biology is an emerging interdisciplinary research field, which leverages the mat-
uration of DNA synthesis technologies. By introducing engineering principles to synthetic
biological systems design, synthetic biology shows great potential to shed new lights on biol-
ogy and benefit human beings. Computer assisted design (CAD) tools will play an important
role in the rational design of synthetic genetic systems. This dissertation presents the first
CAD tool for synthetic biology – GenoCAD, a linguistic-based web application. By viewing
DNA sequences as a language, we developed the first syntactic model to design and verify
synthetic genetic constructs. Then we conducted a careful curation of the terminal set in the
grammar - the first comprehensive analysis of the Registry of standard biological parts. The
implementation and major features of GenoCAD are discussed, and in particular we showed
how to develop a domain-specific grammar for BioBrick-based construct design and make
GenoCAD a useful tool for the iGEM students. Finally, we went beyond the syntactic level
to explore the semantics of synthetic DNA sequences: by associating attributes with biologi-
cal parts and coupling semantic actions with grammar rules, we developed the first semantic
models to relate the genotype to the phenotype of synthetic genetic constructs. The theories
and techniques presented in this dissertation, along with the informative results presented,
will serve as a foundation for the future developments of GenoCAD.

This work was jointly supported by a graduate fellowship from the graduate school at Virginia
Tech to Y. Cai, Virginia Bioinformatics Institute and National Science Foundation Award
# EF-0850100 to J. Peccoud, PI.



Dedication

Dedication→ Family

Family → Parents|Wife

Parents→ Dad|Mom

Dad→ JiansheCai

Mom→ Y uzhen Huang

Wife→ Y ijing Zheng

iii



Acknowledgments

I would like to express my sincere gratitude and appreciation to my PhD committee mem-
bers: Drs. Jean Peccoud, David R. Bevan, William T. Baumann and Madhav V. Marathe,
for their mentorship, patience and encouragement during my time at Virginia Tech. This
dissertation would not be in the current form without their insightful input and constructive
criticism.

I was fortunate to be in the Genetics, Bioinformatics and Computational Biology (GBCB)
interdisciplinary doctoral program, where I met a lot of great faculty members and fellow
students. I gratefully thank Drs. Brett M. Tyler and David R. Bevan, and Ms. Dennie
Munson, who helped me a great deal during my 3.5 years in the program and showed me
the integrity of being a great scientist. Both Sarah and I would like to sincerely thank the
vice president of Virginia Tech and the dean of graduate school Dr. Karen P. DePauw, and
the director of VBI Dr. Harold “Skip” Garner, for helping us going through a very difficult
time one month before my defense.

It has been a pleasure for me to work in Virginia Bioinformatics Institute. The interdisci-
plinary nature of this institute has played an important role in my scientific development.
I thank Drs. João C. Setubal and Shrinivasrao P. Mane for teaching me a lot of Bioinfor-
matics knowledge. I thank Ms. Jodi Lewis for providing me great assistance on traveling
to conferences. I thank all the past, and current members in the synthetic biology group.
I thank VBI Core Computational Facility (CCF) for assisting me a lot on computational
matters. I had the privilege to chair the GenBioOrg student organization, and I thank Drs.
Kristy DiVittorio and Ed Smith for providing funding support to GenBioOrg. And I enjoyed
a lot working with my fellow GBCB students in promoting interdisciplinary research to the
Virginia Tech community.

My interests in synthetic biology stemmed from my participation in the international Ge-
netically Engineered Machines (iGEM) competition when I was in Edinburgh. I thank Dr.
Christopher French and all my teammates for the nice summer we spent together in 2006,
when we built an arsenic biosensor together. Through my PhD, I continuously received

iv



advice and encouragement from my master advisor Dr. Gordon Plotkin from the University
of Edinburgh.

I had several opportunities to present my work to different groups of audience at different
universities. I sincerely thank my hosts: Dr. Roger Levy from the University of California
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Chapter 1

Introduction

“What I cannot create, I do not understand.” - Richard Feynman (1918-1988)

1.1 Synthetic biology

In 1970, it took 20 man-years of labor to synthesize a 75 base pair (bp) DNA sequence [2].
Nowadays, one can easily order custom DNA sequences of thousands of base pairs from
commercial gene foundries, with affordable cost and reasonable turnaround time. Owing to
the rapid development of de novo DNA synthesis technology [47, 147, 211], the landscape
of life science is undergoing a revolution. Synthetic biology (aka SynBio) is one of emerging
interdisciplinary research fields, which leverage the power of DNA synthesis. Synthetic bi-
ology aims at designing artificial biological systems or modifying natural biological systems
to carry out novel functionalities, using engineering principles [6, 11, 12, 16, 17, 33, 62, 66,
69, 85, 90, 101, 108, 112, 140, 193, 217, 225]. Synthetic biology distinguishes itself from
traditional genetic engineering in several ways: traditional genetic engineering usually starts
with natural DNA fragments (called “templates”) and creates variant sequences by using
techniques such as site-directed mutagenesis, in contrast synthetic biologists use de novo
DNA synthesis technology to design DNA sequences without a pre-existing template; tra-
ditional genetic engineering is usually (if not always) a laborious “trial and error” process,
while synthetic biology emphasizes the “rational design” approach with the introduction
of engineering principles; finally synthetic biology aims at constructing artificial biological
systems with novel functions, which in turn provides a great venue to re-visit some of the
fundamental questions of traditional genetic engineering.

Despite its early stage, synthetic biology has already shown great potential to make sig-
nificant scientific breakthroughs, which will improve the living conditions of human beings.
The compelling examples of synthetic biology include, but are not limited to: engineer-
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ing metabolic pathways of yeast to produce the antimalarial drug precursor artemisinic
acid [173]; using engineered microorganisms to convert biomass to biofuel as a replacement
of fossil fuels [113, 125, 160]; utilizing engineered bacteriophage as adjuvants for antibiotic
therapy [134]; and detecting arsenic of drinking water with engineered E.Coli [4].

The genomes of such virus as polio [34] and φX174 virus [200] have been re-synthesized in an
effort to better understand viral mechanisms to aid in the systematic design of new vaccines.
Coleman et al. took a further step to synthesize polio virus capsid protein using underrepre-
sented synonymous codon pairs, and the result showed a significant decrease in the protein
translation rate of polio virus (so called “virus attenuation”) [42]. Due to the evolution-
ary pressure, virus genomes are usually very compact and have many overlapping regions
(a virus can encode two proteins within the same stretch of DNA fragment), which make
it difficult to manipulate the virus genome from an engineering perspective. Chan et al.
re-factored one quarter of the bacteriophage genome by eliminating the overlapping open
reading frames, and demonstrated that the overlapping genetic elements are non-essential
for T7 viability [35]. Lartigue et al. invented a technique called “genome transplantation”
to use the genome from a donor bacterium Mycoplasma mycoides to “boot up” a recipient
bacterium Mycoplasma capricolum [123]. At the moment of this dissertation being written,
Gibson et al. hold the record for synthesizing the largest prokaryotic genome: they com-
pletely chemically synthesized the 582,970-base pair Mycoplasma genitalium genome from
scratch [75]. It is also worthy of mention that at Johns Hopkins University, an interdisci-
plinary class (the Build-a-Genome course) has been set up for undergraduate students to
learn synthetic biology and genetics by building an artificial eukaryotic genome, Saccha-
romyces cerevisiae chromosomes [56].

The above examples all use a top-down approach to the creation of synthetic biological
systems, however there is another camp of synthetic biologists that has adapted a bottom-
up approach to understand the principles of life by incrementally designing small-scale
artificial gene circuits [40, 135, 209, 217, 222]. The pioneering work includes: building
switches [51, 72, 120, 133], oscillators [61, 71, 205, 212], pulse generator [13], light de-
tector [127], counter [70], synchronized clocks via quorum sensing [49], and mathematical
problem solver [89]. Mathematical models play an important role in guiding the construc-
tion of these artificial gene circuits [60]. Although the complexity of these artificial genetic
circuits is close to that of the first integrated circuit built by Kilby of Texas Instruments in
1958 [141], they shed new light on the mechanisms of genetics and molecular biology.

Like the rapid maturation of DNA synthesis technologies, the engineering principles brought
by engineers are also instrumental to the progress of synthetic biology [62]. The first key
principle is to standardize components, which can facilitate the assembly of a system. In
mechanical engineering, imposing the dimensional standard for bolts, nuts and rivets makes
it much easier to quickly build a system [100]. Similarly, the BioBrick Foundation (BBF,
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bbf.openwetware.org) brought the “part” concept to synthetic biology. A “part” is a
DNA fragment that carries definable biological functions, such as a promoter that initiates
transcription, and a ribosome binding site (RBS) that controls translation [216]. A “stan-
dard part” is a part that conforms to a defined structure, such as being flanked by certain
restriction sites. Chapter 5 elaborates the concept and usage of BioBricks. The Registry
of Standard Biological Parts at MIT (the Registry, www.partsregistry.org) is the first
and largest online catalog of BioBrick parts, and it has been widely used in the community
especially by the students enrolled in the international Genetically Engineered Machines
competition (iGEM, www.igem.org). The recent NSF-funded BioFab (www.biofab.org) is
an ambitious project to design, fabricate and calibrate BioBrick parts. Standardizing bio-
logical components makes it possible to re-use parts in a “plug and play” manner, and also
facilitates the fabrication process. After defining the basic biological components as parts,
one can combine some parts to build a “device” (or “module”) which performs a more com-
plicated task, such as a logic NOT gate. Finally, by combining different modules one can
scale up the complexity of the design to build a “system” [161]. The hierarchy of abstrac-
tion based on the complexity of the target problem helps designers to pay more attention
to the detail of their working layer. The third engineering principle is to decouple design
from fabrication, which is borrowed from the VLSI electronics engineering. The decoupling
not only leads to the division of labour to increase the productivity, but also promotes the
rational design of synthetic biology projects. Computer assisted design (CAD) is the use of
computer technology to aid in the design of a product, and it has been widely used in many
areas of engineering such as architectural engineering, mechanical engineering and electronic
and electrical engineering [124]. Computer scientists have been developing CAD tools for
synthetic biology [138, 207], with the hope that one day a synthetic biologist will be able
to design custom DNA sequences in-silico, test their functions by running computer simula-
tions, and finally send the DNA sequences for fabrication.

BioJADE was one of the earliest examples of CAD software for synthetic biology design [79].
The program adapted ideas from electronic design and implemented abstract representa-
tions of genetic components and designs. As a proof-of-concept program and because the
necessary connection between the Registry was shut off, BioJade has never been publicly
released. Asmparts is a command line based Linux application to perform the assembly of
biological parts [175]. Without a graphical user interface, the use of Asmparts is challenging
for users lacking experience with Linux. To date, Asmparts can only deal with promoter,
RBS, coding sequence and terminator, which limits its design capability. Gene Designer is
a software tool developed by gene synthesis company DNA2.0 to construct synthetic DNA
segments [215]. Gene Designer has a nice user interface which allows users to easily de-
sign a construct by “drag and drop” parts. Gene Designer provides many useful features,
e.g., codon optimization, real-time Tm calculation for oligonucleotides design, and seamless
connection with the gene synthesis pipeline of DNA2.0. GeneDesign is a Perl-based web
platform for large-scale synthetic gene designs [168]. GeneDesign integrates multiple handy
functionalities, including reverse translation, codon juggling, silent restriction site removal,

bbf.openwetware.org
www.partsregistry.org
www.igem.org
www.biofab.org
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oligonucleotide design and sequence analysis modules. ProMoT is another drag-and-drop
tool for designing and simulating synthetic circuits [137]. ProMoT introduced quantifiable
signal carriers to describe the interactions between parts and the concept of pools to collect
free signal carriers. ProMoT requires each part to be in the format of modeling description
language (MDL), which impedes the creation of new parts by the typical user. Designing a
genetic circuit in ProMoT not only requires users to put parts together in the right order,
but also requires users to connect the correct ports of adjacent parts with wires, which in-
creases the possibility of design errors. SynBioSS [92] allows users to run a computational
simulation even on a supercomputer, however it requires extensive user inputs to construct
a system.

1.2 Formal language

A language is a set of (possibly infinite) strings derived from an alphabet Σ, and it encodes
information for communication purpose [208]. There are several kinds of languages, including
natural languages (e.g., English and Chinese), computer languages (e.g., C and Perl), and
mathematical languages (e.g., first-order logic). However not all the strings over the alphabet
belong to a language, only those which follow certain rules are part of a language. A grammar
is a finite set of rules that specifies the syntax (permissible structure) of a language. A
grammar G contains four components:

• A finite set N of non-terminal symbols.

• A finite set Σ of terminal symbols that is disjoint from N .

• A finite set P of rewriting rules, each rule is in the form of α→ β, where α and β are
both strings of symbols, and α contains at least one symbol from N . More formally
put, a rewriting rule can be represented as (Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗, where ∗

is the Kleene star operation and ∪ is the set union operation.

• A distinguish symbol S ∈ N that is the start symbol.

In the 1950s, Chomsky classified grammatical models into four classes based on the forms of
their production rules, which reflect their expressive power [41]. In the following definitions
of these four classes of formal grammars, A, B ∈ N , a, b ∈ Σ, and α, β ∈ (N ∪ Σ)∗.

Regular grammar is the most restricted class. Only rewriting rules of the form A→ a or
A → aB are allowed. The left-hand side only contains a single non-terminal symbol
A, and the right-hand side contains a terminal symbol a followed by an optional non-
terminal symbol B. The equivalent abstract computational device (automaton) is a
finite state automaton. The computational complexity to recognize regular grammars
is linear.
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Context-free grammar allows any production rule of the form A→ α. The left-hand side
only consists of a single non-terminal symbol A, and the right hand side can be any
string α. The corresponding automaton for a context free grammar is a push-down
automaton. The computational complexity to recognize a context free grammar is
polynomial.

Context-sensitive grammar allows rewriting rule of the form α1Aα2 → α1βα2. The
transformation of non-terminal symbol A to a string β depends on its context α1 and
α2. It also requires that the right-hand side contains at least as many symbols as the
left-hand side, i.e., |A| ≤ |β|. The equivalent automaton for context-sensitive grammar
is a linear bounded automaton, and the computational complexity is exponential.

Unrestricted grammar uses unrestricted rules in the form of α → β, where α �= �. Un-
restricted grammars allow any non-empty string to be transformed to any strings.
The corresponding automaton for unrestricted grammars is a Turing machine, and the
complexity of recognition becomes undecidable.

Even though the formal language theory was developed almost at the same time as the dis-
covery of DNA structure in the 1950s [221], it was not until thirty years later that researchers
started to look at the biological sequences as a new kind of languages. Specifically, in 1982,
Doerfler et al. demonstrated the structural similarities between natural languages and the
genetic language [53]. The advantages of treating biological sequences and potentially entire
genomes as languages are multi-fold: it provides a concise generalization about the infor-
mation contained in the biological sequences and it opens the possibility for the analysis of
biological sequences to take advantages of linguistic methods originally developed for com-
puter science and computational linguistics [183, 187, 188, 189].

Linguistic applications to biological sequences include sequence alignments using finite state
automatons [185, 190], pattern recognition and motif finding in biological sequences [23, 95,
170, 176], the representation of various structural features of DNA sequences [39, 77, 126]
and RNA pseudoknots which are difficult due to the crossing dependences in the secondary
structure [26, 28, 57, 106, 142, 162, 171, 172], and the inference of grammars from naturally
existing sequences [148, 177, 178, 179, 180, 181, 202].

1.3 Organization

Chapter 1 sets the stage for the dissertation: we started with an introduction and overview
of synthetic biology, and focus on the existing computer assisted designs for synthetic bi-
ology; then we will introduce the fundamental concepts of computational linguistics and a
brief review of linguistic applications to biological sequences, with the hope to make this
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dissertation more accessible to the readers without much background in linguistics.

We begin in Chapter 2 with a syntactic model to design and verify synthetic constructs.
The syntactic model captures some basic design principles of synthetic genetic constructs
in the form of context-free grammar (CFG). To the best of our knowledge, this is the first
linguistic model for designing synthetic constructs, and it lays the theoretical foundation for
the following chapters.

Chapter 3 focuses on the curation of the terminals in the grammar – the biological parts.
We analyzed the Registry of Standard Biological Parts (Registry) in two steps: first, we
computed inclusion relationships between parts based on theoretical sequences to study the
usage pattern of the parts and the abstraction hierarchy of the Registry; second, we se-
quence verified all the clones that generated a single PCR (Polymerase Chain Reaction)
fragment greater than 120 bp. We conclude this chapter by discussing the organizational
guidelines for developing next generation Registry of parts based on the findings of this study.

Chapter 4 presents GenoCAD™, a web-based computer assisted design for design and ver-
ification of synthetic constructs. GenoCAD is built upon the linguistic model described in
Chapter 2. In this chapter, we focus on the major features, implementation and data model
of GenoCAD.

Chapter 5 connects previous chapters: we formalized various BioBrick assembly schemes
in the form of context-free grammar, categorized BioBrick parts based on the inclusion re-
lationships of restriction sites, and finally implemented the grammar in GenoCAD. This
chapter shows a concrete example how to transform domain-specific knowledge into a lin-
guistic model. The implementation of this linguistic model in GenoCAD helps the iGEM
students to quickly design synthetic genetic systems from a rich library of parts compliant
with six popular BioBrick standards.

As previous chapters all focus on the syntactic level of synthetic DNA sequences, Chapter 6
takes a further step to explore the semantics of synthetic DNA sequences. Attribute gram-
mars have been widely used in building compilers to translate human-friendly source codes
to object codes that can be executed by microprocessors. By associating attributes to parts
and coupling semantic actions with context-free rules, we managed to use attribute gram-
mars as a means to relate genotype to the phenotypes encoded by the DNA sequences. After
introducing the development of an attribute grammar for synthetic DNA sequences and the
workflow of compiling the mathematical models from DNA sequences, we demonstrated one
application of this semantic framework, that is to systematically explore the design space of
genetic toggle switches.
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Finally, we conclude with an outlook and some perspectives on the future work in this
research area in Chapter 7.



Chapter 2

A syntactic model to design and
verify synthetic genetic constructs
derived from standard biological parts

Published at: Y. Cai, B. Hartnett, C. Gustafsson, and J. Peccoud. A syntactic model to
design and verify synthetic genetic constructs derived from standard biological parts. Bioin-
formatics, 23(20):27607, Oct 2007.

Authors: Yizhi Cai, Brian Hartnett, Claes Gustafsson and Jean Peccoud
ABSTRACT
Motivation: The sequence of artificial genetic constructs is composed of multiple functional
fragments, or genetic parts, involved in different molecular steps of gene expression mecha-
nisms. Biologists have deciphered structural rules that the design of genetic constructs needs
to follow in order to ensure a successful completion of the gene expression process, but these
rules have not been formalized, making it challenging for non-specialists to benefit from the
recent progress in gene synthesis.
Results: We show that context-free grammars (CFG) can formalize these design principles.
This approach provides a path to organizing libraries of genetic parts according to their bi-
ological functions, which correspond to the syntactic categories of the CFG. It also provides
a framework for the systematic design of new genetic constructs consistent with the design
principles expressed in the CFG. Using parsing algorithms, this syntactic model enables the
verification of existing constructs. We illustrate these possibilities by describing a CFG that
generates the most common architectures of genetic constructs in Escherichia coli.
Availability: A web site allows readers to experiment with the algorithms presented in this
article: www.genocad.org
Contact: peccoud@vt.edu
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Supplementary information: Sequences and models are available at Bioinformatics on-
line.

2.1 Introduction

Gene synthesis technology now enables molecular biologists to assemble long DNA molecules
that may include multiple genes and their regulatory sequences. We will refer to these
molecules as ‘genetic constructs’ or just ‘constructs’. As the throughput of construct manu-
facturing increases, the design of complex genetic constructs becomes the bottleneck of the
process. It becomes easier to assemble complex DNA molecules than to design them. A
natural way of designing complex constructs involves combining basic building blocks also
known as ‘biological parts’ or ‘genetic parts’ [17, 90, 216]. These parts are small DNA frag-
ments implementing specific biological functions. The mechanisms of gene expression require
that certain structural constraints are met in order for a construct to be functional. Parts
of different types need to be placed in a particular order and next to each other in order
to ensure that coding sequences are properly transcribed and translated. Certain parts are
functional only in a specific context whereas other parts have proved functional in organisms
other than the one from which they originate. For instance, promoters are often restricted
to specific organisms or even cell types [149, 159, 226] whereas genes coding for proteins can
often be expressed in multiple species [78]. The design of complex genetic constructs such as
artificial gene networks [40, 61, 72, 86, 87, 90, 118, 140] therefore requires an intimate knowl-
edge of gene expression mechanisms. It is interesting to observe that more than 6 years after
the description of the first artificial gene networks [61, 72], this technology has yet to find
biomedical applications. It is likely that most biologists who could use sophisticated genetic
constructs to control the expression of their gene of interest do not have the expertise to
design the construct they need. One way to lower the barrier to entry into synthetic biology
is to formalize the structural constraints associated with the use of standardized biological
parts in a construct. Such formalism can be used to build software wizards to guide users in
the design of their constructs. It can also provide a foundation to the development of parsers
capable of verifying the structural validity of a synthetic DNA sequence.

Several prominent synthetic biologists have advocated an engineering approach to the design
of genetic constructs [62, 85] well illustrated by the Registry of Standard Biological Parts,
a service provided by MIT to promote the development and dissemination of well-specified,
standardized and interchangeable biological parts. The records in this database are organized
in different categories corresponding to different levels of abstraction [62]. At the bottom of
this hierarchy lay the basic parts. Parts can be combined in functional modules called de-
vices. Devices and parts can ultimately be combined in self-contained systems. The ‘Parts’
category is itself divided into subcategories (Regulatory, Terminators, RNA, DNA, Protein
Coding,Ribosome Binding Sites and Conjugation) corresponding to biological functions. The
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database enables users to create new records by combining existing records corresponding
to basic parts, devices or construction intermediates. Standardized graphical representation
of complex records makes it easy to visualize their structure. After examining a number of
records, it is possible to identify common features shared by many entries. However, the
record editing process is unconstrained; no structural rule is imposed on new records nor are
the records automatically verified upon submission.

The development of Gene Designer [215], a software application to quickly design synthetic
DNA molecules from a library of basic parts, has been inspired by a similar vision. The
user interface includes a standard library of parts called the Design Toolbox. Its hierarchical
organization is multilayered to accommodate sequences specific to multiple biological species
and a broader spectrum of biological functions than in the MIT Registry. Gene Designer
makes it very easy to drag elements of the toolbox into new DNA sequences. The structure of
complex sequences combining multiple parts is represented by an icon view. Gene Designer
does not provide a wizard to guide the user in the design of a construct nor does it have a
feature to verify the structural validity of constructs.

In mathematics, logic and computer science, a formal language is a language that is defined
by precise mathematical or machine processable formulas. Like natural languages, these
formal languages generally have two aspects. The syntax of a language is what the language
looks like (more formally: the set of possible expressions that are valid utterances in the
language). The semantics of a language are what the utterances of the language mean. The
syntax or grammar of the language can be formally defined by the specification of a set of
non-terminal symbols or variables, a set of terminal symbols and a set of production rules
also called transformation rules. The variables represent categories of words such a nouns
and verbs; they are often referred to as syntactic categories. The terminals represent actual
words such as ‘dog’ or ‘sing’. The production rules map one string of symbols to another,
where the first string contains at least one non-terminal symbol. The recursive application
of production rules, beginning from the start variable often denoted S, generates the set of
strings containing only terminal symbols, which is the language generated by the grammar in
which every production rule is of the form V → w, where V is a single non-terminal symbol
and w a string of terminals and/or non-terminals (possibly empty). The term “context-free”
expresses the fact that non-terminals are rewritten without regard to the context in which
they occur.

We have developed a context-free grammar that formalizes the structure of a library of
previously published artificial genetic constructs, which are derived by combining standard
genetic parts. We show how this syntactic model provides a rigorous foundation for the
organization of a parts library in syntactic categories defined according to the structural
constraints affecting the position of parts in genetic constructs. In addition, we show how
this model enables a systematic approach to the design of genetic constructs that can be
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implemented in software. Last, this model can be used to build parsers capable of accepting
constructs consistent with the design principles captured by the CFG production rules.

Early applications of linguistic models in the analysis of biological sequences have been re-
viewed in an article that also provides a short introduction to these types of models [188].
Most of these early works were attempting to analyze naturally occurring sequences. Gram-
mars were developed with the goal of understanding genome structures [24, 25] and associat-
ing genes with their regulatory sequences [43]. Another body of work focused on predicting
the secondary structures of RNA molecules [114, 115, 139, 172, 180]. The discovery of
grammatical models from sets of curated biological sequences remains a very active field of
research in the machine-learning community [178]. Linguistic models have also been used to
analyze proteins with different purposes. Most of the work in this field attempts to under-
stand the rules of protein organization in modular domains [76], but recently grammatical
models have been developed with the goal of designing new antimicrobial peptides [132].
This work proceeded in two steps. In order to decipher the design principles of natural
antimicrobial peptides, a set of grammars was inferred from natural sequences using a pat-
tern discovery algorithm [169]. In a second step, 42 peptides consistent with the discovered
grammars but not homologous to natural peptides were synthesized and tested. Approxi-
mately half of the new peptides exhibited an anti-microbial activity, which demonstrates the
power of this approach. In the context of this article, we have also used formal grammars to
support the design of new DNA sequences, which is a very different goal from the analysis
of natural genomic sequences. Instead of inferring the production rules from a training data
set, our production rules utilize pre-existing biological knowledge relative to the structure of
functional genetic constructs.

2.2 Methods

2.2.1 Variables

The first step in the construction of the grammar is to recognize syntactic categories in
categories used to organize genetic parts. These syntactic categories are represented by the
CFG variables listed in Table 2.1. The specific CFG presented in this article has only 26
syntactic categories each represented by a single capital letter. The orientation of constructs
can be left to right or right to left depending on which DNA strand is transcribed. If left
to right is the direct orientation and right to left the reverse orientation, each category of
genetic parts needs to be broken down into two syntactic categories corresponding to the
direct and reverse orientations as different structural rules apply to each.

Variables have been organized in four hierarchical categories. The first category contains
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only S, the start variable from which all derivations are initiated. The second category
corresponds to complex fragments of DNA composed of multiple functional parts. This
category includes the variables M and N which correspond to transcripts in the forward
and reverse orientation, respectively. In the context of this article, a transcript is a DNA
fragment located between a promoter and a transcription terminator. Also in this category
are the variables E and F used to represent genes defined as DNA fragments composed
of a “start” codon followed by one or more protein domains and terminated by a “stop”
codon. The third category of variables includes parts that can be duplicated in a construct.
For instance, it is common practice to put two transcription terminators G at the end of
a transcript to ensure a tight termination of the transcript. The fourth category contains
all the variables that represent basic genetic parts that cannot be decomposed into smaller
functional blocks and are not used in series in genetic constructs such as A (promoter), C
(ribosome binding site) or P (T7 promoter). Variables representing less frequently used parts
such as I and J (riboregulators) are also included in this category. The boundaries between
the four categories used in Table 2.1 are arbitrary and have no consequence on the rest of
the development. Listing variables in alphabetical order would have been equally acceptable.

Instead of using single capital letters that are difficult to interpret, we initially used more
descriptive variables such as “promoters”, “RBS”, “coding”, etc. Using descriptive notations
hindered the visual display of complex sequences on the GenoCAD web site. By using single
letters as variables, it was possible to generate a more compact graphical representation of
the sequence and production rules. The lack of information in the single letter variables
was compensated for by creating icons associated with each variable and by displaying in
a mouse-over tooltip the description of each variable as it appears in the center column of
Table 2.1.

2.2.2 Terminal set

The terminal set is composed of the genetic parts themselves. A library of more than 100
parts has been organized according to the syntactic categories used in this article. Parts have
been indexed by a unique identifier composed of a prefix corresponding to the part syntactic
category and a numerical suffix indexing the parts within each category. For instance, the
terminals a01 to a09 point to the promoters of the library, whereas genes are represented by
the terminals e01 to e14, etc. This library is distributed in two computer-readable formats
in the Supplementary Material. In addition to the unique identifiers used as terminals in
the CFG, the library files include a part name. In addition, the DNA sequence of each part
is included in the library as a proof of concept. These sequences have not been validated
experimentally and it is sometimes difficult to extract precise sequence information from the
sequences of previously published genetic constructs as the delimitation of parts within the
construct is often sketchy in the literature. The development of an experimentally validated
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Table 2.1: Variable set.

Name Description Category
S Start I
E Gene coding region II
F Gene coding region reverse
M Transcript
N Transcript reverse
G Terminator III
H Terminator reverse
O Linker
R T7 terminator
T T7 terminator reverse
U Protein domain
V Protein domain reverse
Y Stop codon
Z Stop codon reverse
A Promoter IV
B Promoter reverse
C Ribosome binding site
D Ribosome binding site reverse
I Riboregulator
J Riboregulator reverse
K Hammerhead ribozyme
L Hammerhead ribozyme reverse
P T7 promoter
Q T7 promoter reverse
W Start codon
X Start codon reverse



14

parts library is beyond the scope of this article.

2.2.3 Productions and construct design

Table 2.2 includes a list of production rules grouped according to the successive steps fol-
lowed when designing a genetic construct. The process starts at S, the transcript. P01 can
be applied to S several times to fix the construct total number of transcripts. Step 2 of the
design process will specify each transcript by choosing a type of promoter and an orientation.
Applying P02 to S will ensure that the transcript uses the endogenous RNA polymerase by
selecting promoters and transcription terminators compatible with this enzyme. Alterna-
tively, the transcript could rely on the bacteriophage T7 RNA polymerase in which case P04
will be applied to S. Using P02 or P04 will result in transcripts in the direct orientation.
Alternatively, P03 or P05 can be used to generate transcripts in the reverse orientation. In
Step 3, it is possible to specify if the transcript is polycistronic by applying P06 or P07 in
the direct or reverse orientation, respectively. In Step 4, the architecture of transcripts is
specified. P08 specifies that M is regular mRNA by decomposing it into a Ribosome Binding
Site (RBS) C and a coding sequence E whereas P09 can be used when M is composed of
a riboregulator I placed between two ribozymes K [14]. The coding sequence E can itself
be broken down by P12 into a start codon W , a protein domain U and a stop codon Y .
Productions P10, P11 and P13 are the counterparts of P08, P09 and P12 for sequences in
the reverse orientation. It is not unusual to place more than one part of a particular type in
a specific location. Step 5 can be used to specify the number of repetitions for each part of
the construct that can be repeated. For instance, multiple linkers corresponding to different
restriction sites can be placed between transcripts by applying P16 several times. Similarly,
it is common to place two successive transcription terminator sequences (P14, P15) or two
stop codons (P17, P18) to ensure a tight termination of transcription and translation, respec-
tively. P19 and P20 can be used to place additional protein domains to the coding sequence
of a gene. In Step 6, it is possible to add linkers, DNA elements having a structural role
but not involved in the gene expression mechanisms, next to some parts in the constructs.
Typical linkers include restriction sites that could be used to extract parts in a construct
and replace them by ligation of a DNA fragment extracted from a different construct.

At this stage of the design process, the general architecture of the construct is completely
specified as a series of parts belonging to specific functional categories. However, the specific
parts used to build the construct are yet to be specified. For instance, the construct could be
described by a string such as ACWUUY (promoter, RBS, start codon, 2 protein domains,
stop codon) but the particular promoter, RBS, start and stop codons, or the protein domains
used to assemble a specific construct have not yet been specified. Therefore, this string does
not describe a specific construct but a family of constructs expressing a protein. This family
includes a wide range of transcription and transcription levels and any protein composed of
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Table 2.2: Production rules.

P01 S → SOS Start symbol (S), linker (O), start symbol (S) Step 1
P02 S → AMG Promoter (A), transcript (M), terminator (G) Step 2
P03 S → HNB Terminator rev (H), transcript rev (N), promoter

rev (B)
P04 S → PMR T7 promoter (P ), transcript (M), T7 terminator

(R)
P05 S → TNQ T7 terminator rev (T ), transcript rev (N), T7 pro-

moter rev (Q)
P06 M →MM Transcript (M), transcript (M) Step 3
P07 N → NN Transcript rev (N), transcript rev (N)
P08 M → CE Ribosome binding site(C), gene (E) Step 4
P09 M → KIK Hammerhead (K), riboregulator (I), hammer-

head (K)
P10 N → FD Gene rev (F ), ribosome binding site rev (D)
P11 N → LJL Hammerhead rev (L), riboregulator rev (J), ham-

merhead rev (L)
P12 E → WUY Start codon (W ), protein domain (U), stop codon

(Y )
P13 F → ZV X Stop codon rev (Z), protein domain rev (V ), start

codon rev (X)
P14 G→ GG Terminator (G), terminator (G) Step 5
P15 H → HH Terminator rev (H), terminator rev (H)
P16 O → OO Linker (O), linker (O)
P17 Y → Y Y Stop codon (Y ), stop codon (Y )
P18 Z → ZZ Stop codon rev (Z), stop codon rev (Z)
P19 U → UU Protein domain (U), protein domain (U)
P20 V → V V Protein domain rev (V ), protein domain rev (V )
P21 A→ OA Linkers can be added next to some parts Step 6
P22 B → OB
· · · · · ·
P0100· · · A→ a1| · · · All variables can be transformed into terminals Step 7
P0200· · · B → b1| · · ·
· · · · · ·
P2400· · · Z → z1| · · ·
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three domains.

The last phase of the design process (Step 7) involves transforming variables into terminal
symbols pointing toward specific DNA sequences. Productions corresponding to this step are
the most numerous because there is one production for every part available to the designer.
Table 2.2 provides only the general architecture of this last group of productions. Produc-
tions starting from the same variable have been grouped on a single line using the standard
notation V ariable → Terminal 1|Terminal 2| . . . indicating that a variable can be trans-
formed into any of the terminals separated by |. All the grammar variables can potentially
be transformed into a terminal or this type of transformation can be restricted to a category
of variables corresponding to the most basic genetic parts. For instance, a variable like E
(gene) can be transformed into terminals corresponding to a self-contained coding sequence
or it can be transformed into a coding sequence composed of multiple domains between a
start and stop codon. The most extreme case would be to include productions allowing the
transformation of the start symbol S into a terminal. Allowing this type of production in
the grammar maximizes flexibility since any DNA fragment can be made valid. However,
this option makes it possible to completely bypass the design process enforced by the gram-
mar, which may not be desirable. The design process is completed when all non- terminal
variables have been transformed into terminals. At this stage the construct is represented
by a series of terminal part identifiers. This high-level description of the construct can be
converted into a DNA sequence suitable for gene synthesis using the sequence data of each
of the parts in the part library.

2.3 Results

2.3.1 Parsing for construct verification

The construct design process applies a series of productions starting from S to generate a
construct with a structure consistent with the grammar rules. The design process there-
fore “derives” the construct from S. A computationally more complex problem is evaluating
whether or not a specific construct can be generated by a given grammar. In order to answer
this question it is necessary to construct the DNA sequence into S through the application
of the grammar productions. This operation is called parsing. By parsing a construct, it
is possible to verify its design, which is useful if the construct was not generated by the
systematic process outlined in the previous section.

Prior to parsing the construct, it is necessary to perform a lexical analysis of the construct
DNA sequence to transform it into a series of parts [7]. As a proof of concept, we have
developed a basic lexical analyzer that scans the parts list and compares the sequence of
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each part with the start (leftmost) sequence of the construct. If the part does not match
the start of the construct sequence, the next part in the library is evaluated. At the end
of the scan, it is possible that no part matches the beginning of the construct sequence, in
which case, the construct is rejected. If only one match is found, then the part matching
the construct sequence is recorded and the rest of the construct DNA sequence is analyzed
in the same way. It is also possible that several matches will be found if the parts library
includes complex parts composed of more basic parts. In this case, all the matches are
recorded possibly leading to multiple lexical interpretations of the construct sequence. The
presence of multiple interpretations of a construct DNA sequence is an indication that the
parts list is redundant in the sense that it includes complex parts that can be obtained by
concatenation of more basic parts. It would be preferable to ensure that the CFG defined in
the parts library includes rules allowing the derivation of complex parts from the basic parts.

The development of efficient parsing algorithms is an important problem in computer science
since its solutions directly affect the performance of interpreters and compilers of program-
ming languages. An introduction to parsing methods can be found in computer science
textbooks [129]. JFLAP is a very nice tool allowing the non-specialist to experiment with
formal languages with a strong emphasis on automata theory [174]. JFLAP, however, is not
suitable for the development of complex grammars or the analysis of large strings. YACC
and Bison are production grade tools that can be used to develop compilers that rely on the
LALR parsing algorithm. It is possible to code the grammar defined in Table 2.2 into Bison
to build a custom parser capable of analyzing genetic constructs (data not shown). However,
this requires proficiency in the C programming language and each time the grammar or the
parts list is edited, the parser needs to be recompiled.

We have therefore developed a custom parser relying on the LR(0) algorithm and a specific
precedence of the productions. After the lexical analysis step, the input string is converted
into a series of non-terminal variables through the productions listed in Step 7 in Table 2.2.
In a second step, the parser eliminates possible shift-reduce conflicts by eliminating series of
identical variables that recursive productions can create in the construct (Steps 3 and 5 in
Table 2.2). Finally, the resulting string is processed using the precedence set by the order of
the productions. The Supplementary Material includes an animation that may help readers
unfamiliar with parsing algorithms to visualize the process.

2.3.2 Validation

In order to validate the grammar in Table 2.2 and the parsing algorithm, a series of complex
constructs described in the MIT Registry and in various publications [61, 72, 86] is reported
in Table 2.3. Each construct is recognized by the identifier used in the source reference.
Constructs are described by a series of lexical tokens corresponding to basic genetic parts.
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Table 2.3: Parsing results of selected parts from the Registry.

ID Source Symbolic representation Result Comment
BBa J04450 Registry a03c01e01g03 Pass
BBa I13520 Registry a01c01e01g01g02 Pass
pMKN7a [72] a08c08e14g01g02 Pass
BBa J13004 Registry a02c01e03c01e04g01g02 Pass
BBa I13513 Registry a01c01e01o02c01e09g01g02 Pass
pTAK102 [72] h02h01f01d04b02a08c07e14g01g02 Pass
pTAK117 [72] h02h01f01d04b02a08c08e15c05e14g01g02 Pass
BBa J23022 Registry I01g01g02 Fail No promoter
BBa J36335 Registry a03c01e05a03c01e06 Fail Lack of terminator
BBa J44003 Registry o01a04o01c02e07 Fail Lack of terminator
BBa J45119 Registry c03e02g01g02 Fail No promoter
BBa J52038 Registry Registry Fail No RBS, no terminator
BBa E0241 Registry c03e09g04 Fail No promoter
BBa J5516 Registry a01c01e12g01g02a06 Fail Orphan promoter in 3’

Most constructs were selected to illustrate different types of construct architectures gener-
ated by the grammar. However, some constructs outside of the language generated by the
grammar have also been introduced in this validation set to illustrate structures outside the
language generated by the grammar. The outcomes of the construct parsing are reported
along with some comments explaining why some constructs failed the verification. A larger
set of test cases than can be reported in Table 2.3 is available in the Supplementary Material.

In order to validate the lexical analyzer, we analyzed the sequences of several bistable genetic
switches (US Patent 6841376). Tables 35 of this publication indicate the location of the
promoters, RBS and genes used to implement the switches. In addition, the sequence list
provides the sequence data for the promoter and RBS in addition to the complete sequences of
the plasmids. The sequence of the transcription terminators labeled T1T2 in Figure 3 of [72]
does not appear to be documented. The sequence of part g01 (also BioBrick BBa B0010) was
identified in the location of T1, but the sequence of the second terminator T2 could not be
identified. We also noticed that the sequence of the GFP-mut3 and LacI genes found in the
published plasmid sequences is not exactly the same as the sequence published in the MIT
Registry. We therefore created new parts (e17, f03, f04) corresponding to variants of these
genes. We also observed that RBS sequences overlapped the sequence of the genes placed
in 3’ since all the RBS sequences included the start codon ATG. We have edited the RBS
sequence to remove the ATG codon responsible for the overlap between the RBS and gene
sequence. The sequences of the promoters used to build the switches included the AGGA
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Figure 2.1: (A) The successive applications of productions starting from S provide a frame-
work to guide the design of genetic constructs. (B) The verification of an existing DNA
sequence requires the use of a lexical analyzer to identify the parts composing the sequence.
The symbolic description of the sequence provided by the lexical analyzer can be parsed
using an LR algorithm
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motif of the Shine-Delgarno sequence which was also part of the RBS sequences. By removing
AGGA from the promoter sequences, we resolved the overlap between the promoter and RBS
sequences. We also observed a discrepancy between the sequence of the PL-s1con promoter
(Sequence 2 in the patent and part a09 and b02 for the reverse orientation) and the sequence
used in the plasmids that led to the introduction of part b04. Finally, we observed sequence
variations in the LacI gene in the different plasmids, which we addressed by creating parts
f03 and f04. The regions of the plasmids outside of the switches were treated as linkers in
the context of this verification. The annotated sequence of the six switches is provided in the
Supplementary Material. We introduced variants of the different parts found in the plasmid
sequences into the parts list. The DNA sequences of the six switches could be analyzed by
the lexical analyzer and their structure verified by the parser. All the plasmids could be
parsed.

2.4 Discussion

2.4.1 Grammar form and limitations

Even though a single grammar has been presented in this article, it is important to stress
that this grammar is a somewhat arbitrary set of design of principles. It certainly does not
encompass all natural DNA sequences. Even designers of some synthetic constructs have
used unusual architectures that are not included in the language generated by our grammar.
For instance, multiple promoters have been used to control the expression of a gene [67].
By adding the production A → AA to the grammar in Table 2.2, it would be possible to
authorize the use of multiple promoters in constructs. This example shows that the grammar
is nothing more than a set of accepted rules selected by the user of GenoCAD to design new
constructs or analyze pre-existing ones. These rules come from the current understanding of
the molecular mechanisms controlled by the different genetic parts used in genetic constructs.

The set of production rules listed in Table 2.2 was structured with the goal of minimizing the
number of variables to ensure a biological interpretation of these variables. In addition, the
rules have been organized in a way that mimics the way biologists design genetic constructs.
The priority was to illustrate the approach by a grammar that could be interpreted in bi-
ological terms. As a result, most of the rules recurse by simply duplicating non-terminals,
which leads to needless non-determinism and greater complexity in parsing. The grammar
could be transformed into an equivalent grammar in a normal form such as the Greibach
Normal Form. This transformation would make parsing more natural but would be difficult
to read for biologists. Ultimately, it is possible that equivalent grammars in different forms
will be used for design and parsing purposes.
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Even though it is presented in CFG form, the grammar in Table 2.2 could probably be
represented by a simpler regular language. In addition, the grammar does not take advantage
of more advanced features of CFG that could be used, for instance, to express long distance
interactions between an enhancer and a promoter, a transcription factor and its operator
sequences, etc. Natural sequences include complex features such as overlapping genes [144,
154], introns and splicing sites [122, 144] or alternative splicing [122] that are not readily
expressed by a CFG but could be expressed by richer Definite Clause Grammars (DCG) or
String Variable Grammars [54, 183, 184]. The readily available Prolog programming language
is able to parse DCG and this environment has been extensively used to build complex gene
grammar and parsers [186, 191]. Future efforts will attempt to use this approach for the
verification of the DNA sequences of genetic constructs.

2.4.2 Data model for libraries of genetic parts

Software applications can use syntactic models of genetic constructs to increase the produc-
tivity of individual users. Syntactic models could also be used to improve infrastructures
serving the entire community. Syntactic categories provide a rigorous foundation to the or-
ganization of genetic parts in different categories. The “Transcriptional regulator” category
of the Registry contains a large collection of prokaryotic promoters. However, some complex
constructs composed of multiple parts (BBa I13005 or BBa J24669) are also found in this
category even though they would probably fit in a category corresponding to a higher level
of abstraction. Similarly, a number of eukaryotic promoters are listed in the Transcriptional
regulator category. It might be preferable to have Eukaryotic transcription activators listed
in their own category as they are not compatible with other prokaryotic genetic parts. By
using syntactic models to develop community infrastructures, it would be possible to verify
user submissions and existing content. As artificial gene networks become more complex
by combining parts coming from distant organisms [38, 67], a broader syntactic model than
the one presented in this paper will help articulate rules of compatibility between parts. Of
particular importance is the inclusion of existing knowledge relating to the use of prokaryotic
transcription factors in eukaryotes [81, 143, 152].

As syntactic models of genetic constructs become broader, it might become necessary to
specify the context in which the construct will be used. The tetracycline repressor has been
shown to work in multiple organisms including mammalian cells and some plants [19, 83, 152,
219] but not all plants. In this context, the distinction between prokaryotes and eukaryotes
may be not sufficient. The distinction between mammalian cells and plant cells may not
be sufficient either as it may be desirable to specify the species in which this transcription
factor can be used. Similarly, a number of eukaryotic promoters are tissue-specific whereas
the activity of other promoters is not affected by the type of cells in which they are used.
Each context will require the development of separate sets of production rules, but some
parts should be useable in multiple contexts.
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2.4.3 Limitations of syntactic models

The models and tools presented in this article rely on a higher level of abstraction than the
DNA sequence. When using a syntactic model to guide the design of a new construct, it
is straightforward to translate the description of the construct into a sequence since each
genetic part corresponds to a unique sequence. However, verifying the sequence of genetic
constructs is more complicated. The very basic lexical analyzer used in the context of this
work is too rigid for practical use. The development of a more flexible analyzer capable of
handling constructs with legacy sequences interspersed between functional parts will require
dedicated efforts. Another limitation of this syntactic model is its purely structural nature.
There is no reference to the function of the parts used in the construct. To capture structure-
function relationships, it will be necessary to develop a semantic model of genetic constructs
that would complement the syntactic model presented here.

2.4.4 Beyond the proof-of-concept

It will take some time after the publication of this proof-of-concept paper to gain a bet-
ter perspective on the advantages and limitations of this approach. Previously published
artificial gene networks appear to have been designed by a labor-intensive and error-prone
process. To the best of our knowl-edge, no other framework has been proposed at this time
to streamline and formalize this process. We are investing significant efforts in the develop-
ment of a user-friendly web site allowing biologists to design new constructs from previously
defined grammars and parts libraries. Users will also be provided with tools to customize
their grammars and parts libraries. Will users having no previous experience with formal
languages be comfortable using this approach? Will they use it preferably to design new
sequences or to verify sequences designed using other approaches? The analysis of patterns
of activity on the Genocad.org web site will, over time, provide the best evaluation of the
approach.
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Abstract

Background: The design and construction of novel biological systems by combining basic
building blocks represents a dominant paradigm in synthetic biology. Creating and main-
taining a database of these building blocks is a way to streamline the fabrication of complex
constructs. The Registry of Standard Biological Parts (Registry) is the most advanced im-
plementation of this idea.

Methods/Principal Findings: By analyzing inclusion relationships between the sequences
of the Registry entries, we build a network that can be related to the Registry abstraction
hierarchy. The distribution of entry reuse and complexity was extracted from this network.
The collection of clones associated with the database entries was also analyzed. The plas-
mid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed
experimentally but unexpected discrepancies have also been identified.
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Conclusions/Significance: Organizational guidelines are proposed to help design and
manage this new type of scientific resources. In particular, it appears necessary to compare
the cost of ensuring the integrity of database entries and associated biological samples with
their value to the users. The initial strategy that permits including any combination of parts
irrespective of its potential value leads to an exponential and economically unsustainable
growth that may be detrimental to the quality and long-term value of the resource to its
users.

3.1 Introduction

De novo gene synthesis [119, 211, 224] is catalyzing a transition from the ad-hoc methods of
traditional genetic engineering to the development of industrial-scale fabrication processes
enabling users to quickly obtain from commercial vendors genetic constructs that would
have been assembled through a custom cloning strategy just a few years ago. Designing
a construct for gene synthesis often consists in combining a number of previously defined
DNA sequences [215]. The design of an expression cassette in Escherichia coli typically in-
cludes a promoter, a Ribosome Binding Site (RBS), a coding sequence, and a transcription
terminator. These functional blocks are commonly referred to as biological parts or genetic
parts. Catalogues of biological parts that are sufficiently well characterized to be used in
the design of new genetic constructs can be described in review articles [216], embedded into
software applications to design new DNA sequences [215], or made available through a web
site [29, 62]. With four years of existence and 4,856 entries in July 2007, the Registry is
the largest publicly available library of genetic parts. The Registry goes beyond just cata-
loguing parts. The parts in the Registry must meet the BioBrick standard, which requires
the part sequence to be framed by standard cloning sites called the prefix and suffix. If the
part sequences do not contain any of the restriction sequences used by the prefix and suffix,
this standardization ensures that it is possible to use a generic cloning process to combine
two BioBrick-compliant parts. The process is generic because the restriction enzymes and
ligation steps it includes are independent of the sequences of the two parts being combined.
This standardized assembly of new genetic constructs derived from standardized parts is
therefore complementary to de novo gene synthesis since both approaches can be used to
fabricate designer DNA sequences. Another benefit from standardizing parts is the physical
composition of BioBrick parts. The restriction sites used by the BioBrick standard ensure
that the combination of two BioBrick parts results in a new BioBrick part that can be added
to the list of parts available for future design projects. The composition of parts leads to
distinguishing two categories of parts. Composite parts are parts resulting from the composi-
tion of two parts whereas basic parts are parts that cannot be decomposed into smaller parts.

In addition to developing a large catalogue of parts, the Registry has developed a repos-
itory of 995 bacterial clones (as of July 2007) corresponding to physical implementations
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of entries in the Registry database. The Registry database content and clone collection
have been primarily developed by students enrolled in the in the International Genetically
Engineered Machine (iGEM) competition [82, 157]. Each year, the iGEM organizers send
the entire clone collection to all the teams enrolled in the competition. The teams use this
toolkit to implement the designs required for their project. At the end of the summer, the
teams contribute back to the Registry new basic parts and new composite parts they have
made during the course of their project. This new material is included in the Registry and
becomes available to the teams enrolled in the competition the following year. If students
enrolled in iGEM still represent the largest group of Registry users, recent publications have
demonstrated that this resource can enable the development of more mainstream research
projects [3, 35, 89, 127, 195].

We have analyzed the Registry to identify usage patterns that could help design the next
generation of infrastructures to host libraries of genetic parts. The analysis consists of two
parts. First, the structure of the database itself is considered in terms of the relationships
between database entries by examining their published sequences and categorization. The
Registry uses two levels of categories to organize its content. Entries of different functional
types (promoters, coding sequences, etc.) are regrouped into three classes according to their
level of complexity. The simplest entries are found at the bottom of the hierarchy in a
class labeled “Parts”. Combinations of parts implementing specific functions like inversion
of a signal, gene expression cassettes, or reporter genes are found in “Devices”. Finally
self-contained combinations of devices designed for a particular application are placed un-
der “Systems” [62]. This categorization implements an abstraction hierarchy, an approach
commonly used in engineering to manage complex engineering projects by allowing different
groups of specialists to work at different levels. Ultimately, engineers with a domain expertise
should be able to develop application-specific systems by combining previously characterized
devices without having to know more about these devices than their operational character-
istics. The second part of our analysis is a comparative analysis of the published sequences
of database entries and the experimental sequences of the corresponding clones, which we
obtained by sequencing the clones in one distribution of the DNA repository.

While a library of parts as a single centralized community resource has clear benefits, there
are still many reasons for organizations or individual investigators to structure their own
libraries of parts [91, 164]. These reasons may include the physical or legal availability
of a limited set of parts, previous experience with a specific parts list, the use of specific
organisms not included in community resources, the inclusion of proprietary parts in the
design, and possibly others. Hence, our results have implications beyond the analysis of a
specific resource at a particular point in time.
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3.2 Results

3.2.1 Analysis of the database content

Since most Registry entries correspond to constructs that have not yet been fabricated, it
appeared more interesting to limit the analysis of the database to the 995 entries for which
a clone was available. Among these 995 entries, 279 were in the “Parts” layer of the Reg-
istry abstraction hierarchy. The remaining 716 entries were categorized in the “devices” and
“systems” layers of the hierarchy. In this paper we use parts to refer to entries in the “parts”
layer and design for entries categorized in the device or systems layers of the hierarchy.

We derived a network of relationships between entries in the Registry from their published
sequence. First, inclusion relation- ships between entries were identified by pair wise com-
parison of the sequences in the database. Entry A is connected to entry B if the sequence of
A includes the sequence of B. In a second step, this directed graph was pruned to eliminate
transitive relationships. For instance, if A includes B and B includes C, then a relation-
ship between A and C can be derived from the previous relationships. In this example the
inclusion of C within A is pruned from the graph. This operation allowed us to draw a
network of 1383 relationships among the 995 entries considered in this analysis (Figure 3.1
and Figure S1). We identified 496 relationships in which the sequences of designs included
part sequences. We also found 826 inclusion relationships between design sequences. Since
parts correspond to the bottom layer of the abstraction hierarchy, it was expected that there
would be few if any connections among entries in this group. However, 49 relationships
between parts have also been identified. Even more surprising, 12 relationships indicated
that entries in the design group were present in the sequences of parts. These observations
appear to be inconsistent with the Registry abstraction hierarchy.

Table 3.1: Joint-distribution of the parts complexity and
popularity.

Popularity1 Complexity2

0 1 2 3 4 5 6 Sum
0 154 64 236 39 5 4 - 502
1 65 24 150 12 1 1 2 255
2 30 9 62 10 3 - - 114
3 21 7 19 1 - - - 48
4 8 3 7 - - - - 18
5 6 4 5 - - - - 15
6 3 - 7 - - - - 10
7 3 - 3 1 - - - 7

Continued on next page. . .
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Table 3.1 (Continued)
0 1 2 3 4 5 6 Sum

8 - - 1 - - - - 1
9 2 - 3 - - - - 5
10 1 - 1 - - - - 2
11 2 - 1 - - - - 3
12 1 - - - - - - 1
13 - - - - - - - 0
14 - 1 1 - - - - 2
15 - - - - - - - 0
16 - - 3 - - - - 3
17 - 1 - - - - - 1
18 - - - - - - - 0
19 - - 1 - - - - 1
20 1 - - - - - - 1
21 - - - - - - - 0
22 1 - - - - - - 1
. . . - - - - - - - 0
31 - - 1 - - - - 1
. . . - - - - - - - 0
36 - - 1 - - - - 1
. . . - - - - - - - 0
39 - - 1 - - - - 1
. . . - - - - - - - 0
52 1 - - - - - - 1
. . . - - - - - - - 0
70 - - 1 - - - - 1
Sum 299 113 504 63 9 5 2 995

After having identified inclusion relationships within the Registry, we summarized this
pruned connection matrix by computing for each entry, the number of other entries directly
included in its sequence (a measure of its design complexity) and the number of entries in
which its sequence is found (a measure of its popularity). The joint distribution of entry
complexity and popularity provides a global perspective on the dynamics of design reuse to
build more complex designs (Table 3.1). Entries in the first column (299 entries) are true
basic parts while the entries that have never been reused are in the first line (502 entries).
If some entries have been used in as many as 70 designs (Table 3.2), 80% have been used
less than 3 times. Because indirect relationships have been removed from the pruned inter-
action network, the complexity axis on Table 3.1 does not refer to the total number of parts

1Number of times Registry entries are used in other entries
2Number of entries included in an entry sequence
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Figure 3.1: Network of inclusion relationships among the Registry entries. Nodes of this
network correspond to entries in the Registry. Nodes are grouped in color-coded circles
according to the Registry categories. Categories corresponding to parts are within the blue
box on the left side of the figure whereas categories corresponding to designs are located
within the red box on the right side. The diameter of the nodes corresponds to the node
connectivity. The directed edges indicate that the sequence of one entry is included in the
sequence of another entry. Edges are color-coded according to the type of relationship. If
most of the edges correspond to natural relations (parts included in designs, and designs
included in other designs), it is somewhat surprising that parts can include other parts
(yellow edges) and it is unclear why some parts would include design in their sequence (red
edges). Detailed analysis of individual entries can be conducted using a Cytoscape [194] file
(Figure S1). doi:10.1371/journal.pone.0002671.g001
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included in the design but it indicates the number of subcomponents an entry is composed
of. Approximately 50% of the entries can be broken down into two other entries, which
is consistent with a pair wise assembly process. It also indicates that users have recorded
most of the construction intermediates. The ideal shape of this joint distribution is not clear
except that few entries should be located near the origin. The value of having a lot of parts
used very infrequently is questionable, so the weight of the popularity distribution should
shift away from 0.

3.2.2 Analysis of the DNA repository

The analysis of the Registry database reveals some of the challenges in implementing the
abstraction hierarchy upon which this community resource has been built. However, making
the parts physically available adds another level of complexity. We have therefore systemat-
ically analyzed the library of plasmids shipped in May 2007 to teams enrolled in the iGEM
competition.

The plasmids were distributed lyophilized in four 384-well plates. After suspending the DNA
into water, the solutions were quantified using a spectrophotometer and only two wells did
not appear to contain any DNA. In order to obtain enough material for DNA sequencing,
the inserts were amplified using primers complementary to the standardized prefix and suffix
used to clone them into the vector. The products of amplification were analyzed by elec-
trophoresis to select clones suitable for sequencing. In particular, we eliminated 216 clones
that did not amplify and 190 clones that resulted in multiple peaks of size greater than 120
bp. The lack of amplification product can either result from a problem with the amplifi-
cation reaction or indicate the absence of sequences complementary to the primers. The
presence of multiple peaks may be caused by primer dimers, non-specific amplification, or
the presence of different plasmids in the well. Since parts with sequences shorter than 120
bp can easily be obtained as oligonucleotides, only the 789 clones that generated a single
PCR fragment larger than 120 bp were sequenced. Of these 789 sequenced clones, 509 have
published sequences that were used for subsequent analyses.

To get a global measure of the match between published and physical sequences, we plotted
the length of the published sequence against the size of the PCR fragment for the 509 se-
quenced plasmids having a documented sequence. On Figure 3.2, 76 outliers were visually
identified. The rest of the lengths remained close to the expected lengths. Yet, only 285
data points had less than a 10% difference between the two sequence lengths. The differ-
ences in size distribution between measured and expected lengths appears wider than 5%,
the previously reported experimental error affecting the determination of fragment size by
the microfluidic system used for this project [103]. We have not investigated all discrepan-
cies, amplification failures, or multiplicity of amplification products. This would require a
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Table 3.2: The Registry most popular parts.

ID Category N Description Parts included
BBa B0015 Terminator 70 Double terminator consisting of

BBa B0010 and BBa B0012
BBa B0010,
BBa B0012

BBa B0034 RBS 52 RBS based on Elowitz repressilator -
BBa E0430 Reporter 39 Standard YFP Output Device -LVA tag BBa E0130,

BBa S01014
BBa E0432 Reporter 36 EYFP (RBS+ LVA+ TERM)

(B0034.E0032.B0015)
BBa I9045,
BBa S01638

BBa J13002 Regulatory 31 TetR repressed POPS/RIPS generator BBa B0034,
BBa R0040

BBa R0040 Regulatory 22 TetR repressible promoter -
BBa R0011 Regulatory 20 Promoter (lacI regulated, lambda pL hy-

brid)
-

BBa I0500 Regulatory 19 Inducible pBad/araC BBa I13458,
BBa R0080

BBa B0030 RBS 17 Strong RBS based on Ron Weiss thesis BBa B0034
BBa I13507 Composite 16 Screening plasmid intermediate BBa I13501,

BBa I13502
BBa I13504 Reporter 16 Screening plasmid intermediate BBa I13401,

BBa I13500
BBa S03155 Intermediate 16 Terminators B0010+B0012+promoter

R0040
BBa B0015,
BBa R0040

BBa J04500 Intermediate 14 IPTG inducible promoter with RBS BBa B0034,
BBa R0010

BBa Q04121 Inverter 14 LacI QPI with strong RBS, hybrid pro-
moter

BBa P0412

BBa R0062 Regulatory 12 Promoter activated by LuxR in concert
with HSL

-

BBa E0420 Reporter 11 Standard CFP output device w/o LVA tag BBa B0015,
BBa S01022

BBa R0051 Regulatory 11 promoter (lambda cI regulated) -
BBa B0032 RBS 11 Weak1 RBS based on Ron Weiss thesis -
BBa Q04400 Inverter 10 TetR QPI with strong RBS BBa P0440,

BBa S03155
BBa B0031 RBS 10 RBS.2 (weak) derivative of BBa 0030 -
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Figure 3.2: Comparison of the Registry published sequences with the size of the PCR am-
plification products. This plot is limited to the clones that generated a single PCR fragment
greater than 120 bp. Theoretically, the size of the PCR fragment is 41 pb longer than the
length of the published sequence because of the presence of the PCR primer sequences in the
amplification product (n = 509). When all data points were used in the linear regression, the
fit led to a coefficient of correlation R2

1 = 0.33. Based on previously reported experimental
error affecting fragment size determination [103], 76 outliers were eliminated manually (green
points) leading to a greatly improved R2

2 = 0.98. doi:10.1371/journal.pone.0002671.g002
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systematic curation of the published sequences, as well as individual PCR troubleshooting
for each clone, which were beyond the scope of this project.

The next step of our analysis was to look at sequences individually. Of the 789 clones se-
quenced, 591 could be assembled in contigs. The length of assembled sequences ranges from
166 bp to 1897 bp. Some of the inserts that could not be assembled may be too long to
achieve a significant overlap between the two sequence files starting from both extremities
of the insert. Assembling these clones would require additional sequencing runs utilizing
clone-specific primers. Out of the 591 clones assembled, only 354 could be associated with
a Registry entry as the other clones were undocumented in the particular distribution of
the Registry used in this project. The assembled sequences were aligned with the published
sequence using BLAST [5]. Out of 354 assembled sequences for which published sequences
were available, 334 produced alignments with their published sequence and the complete
results of this alignment analysis are reported in Table S1. This spreadsheet was used to
identify clones for which the assembled sequence confirms the published sequence. Since the
assembled sequence can include the primer sequences, the assembled sequence should not be
longer than the published sequence plus the combined length of the two primers (41 bp).
Since the primers used in this project are adjacent to the sequence being verified, the first
and last 10 to 25 bases of the insert can be difficult to read. As a result, the assembled
sequence may be up to 50 bp shorter than the published sequence. These two criteria led
to the selection of 221 clones for which -41≤length (published sequence) - length(assembled
sequence)≤50. In the second step of sequence analysis, we want to ensure that the alignment
of the assembled and published sequences covers most of the shorter of the two sequences.
In this second step, from the 221 clones meeting the assembled sequence length criteria, we
selected 177 clones for which the alignment length is at least 99% of the length of the smaller
of the two sequences being compared. After these two rounds of selections, the percentage
of identity of the assembled and published sequence was always superior or equal to 97%
and greater or equal to 99% for 162 of the 177 clones. It is obvious that different choices
of parameters would lead to larger or smaller number of clones with a confirmed published
sequence.

Just like in the case of PCR results, a systematic control of the published sequences could
improve the clone confirmation statistics. It is quite possible that for a number of these
clones the biological material is correct but their published sequence may be inaccurate.
Additional sequencing runs starting from within the insert sequences would also increase the
number of clones with long inserts that could be confirmed.
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3.3 Discussion

3.3.1 A global analysis of the Registry

This analysis of the DNA library provides no more than a snapshot of one distribution of the
Registry clone collection. Amplification and sequencing problems could result from technical
problems during the experiments described in this paper just as they could indicate problems
with the biological samples themselves. For instance, samples that lead to multiple ampli-
fication products could have been delivered contaminated, could have been contaminated
during one of the steps described in this report, or could simply result from mispriming. In
order to control the experiments, it would be necessary to repeat all the operations start-
ing from a new series of samples. Unfortunately the lack of unique clone identifier makes
such control problematic. The different distributions of the DNA repository do not share a
common key necessary to relate one distribution to another. The data set described in this
article is specific to the 2007 distribution of the DNA repository. Our results are valuable to
understand global issues associated with the design, development, and management of a reg-
istry of biological parts but they would need data describing how different distributions relate
to each other to be used for controlling the quality of specific clones in the Registry collection.

The high-level analysis of the Registry database led to the identification of several non-trivial
issues that need to be addressed. The implementation of a workable abstraction hierarchy
remains problematic. A single category of parts (DNA) appears to be exclusively composed
of basic building blocks. However, our sequence analysis has revealed elements categorized as
parts within the Registry that include other parts, indicating that not all clones categorized
as parts have an atomic nature. Some part sequences even include designs, a higher level
in the abstraction hierarchy. These observations result from the lack of consensus in the
community on how biological parts should be defined. Nothing illustrates this confusion
better than the complex architecture of promoters [46, 150]. On the one hand, promoters
are generally considered as parts but on the other hand they have well characterized domains
that can be associated with specific functions. When developing an abstraction hierarchy,
should promoters lie at its bottom and be considered as atomic parts or should they be
considered as composite parts composed of multiple functional domains? The case of genes
is not simpler as proteins are also composed of multiple functional domains[76]. A complete
access to the Registry database would have made it possible to investigate questions that
could not be addressed using the partial dump of the database content used in this analysis.
For instance, parts have a usefulness attribute used to report if a part works, works with
issues, or does not work as anticipated. It would be interesting to relate the parts popularity
to the usefulness status of a part as one would imagine that the most popular parts are
reported as working. The structure of composite parts is also described as the series of basic
parts they are composed of. Comparing the sequence and structure of composite parts could
help investigate a number of interesting questions. Figure 3.1 reflects the laborious efforts of
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the synthetic biology community to develop and implement the new theoretical framework
it needs to support its scientific vision.

3.3.2 Organizational guidelines

Results presented in this report lead to a number of organizational guidelines that could help
design or manage registries of biological parts.

The published DNA sequence of entries should be carefully curated. Lack of published se-
quences or incorrect ones hamper the quality control of the associated clones. It is important
to clearly identify basic parts of a registry as they generate the rest of the database. Basic
parts should be linked and compared to entries in other sequence databases and peer-reviewed
publications [216]. Basic parts that have not been completely annotated should be flagged
so that people considering using them may proceed with caution. The sequence redundancy
of the basic part set is a difficult problem. Theoretically, a set of basic parts could be atomic
in the sense that it generates all other entries in a registry. However, this approach may not
always be practical. If certain projects need to identify several parts in a promoter sequence,
this level of granularity may be excessive for other projects. The same argument can apply
at higher levels of organization. For the same reasons, nothing prevents the definition of
complete gene expression cassettes and other devices such as switches, inverters, etc. as
basic parts. However, this option does not seem desirable as it would be inconsistent with
the engineering vision of building complex systems from a limited numbers of building blocks.

The integrity of the sequence of composite parts is even more difficult to ensure. There
could either be a static or dynamic link between the sequence of a composite part and the
sequences of the basic parts it is composed of. In the first case, the sequence of a composite
part is automatically derived from the sequence of its components when the composite part is
created but future changes to the sequences of its basic components do not propagate to the
composite part sequence. If such a policy is enforced, discrepancies between the composite
part sequence and the sequences of its basic components can develop over time. It is desir-
able that such discrepancies be identified. In the case of a dynamic link, any change in the
sequence of a basic part propagates to all composite parts using this basic part. The integrity
of the composite part sequence is then always preserved but different versions of the compos-
ite parts that are automatically generated by this process may be very confusing to the users.

Clones in the DNA repository associated to a parts registry need to be uniquely identified
independently of the parts in the registry. Parts numbers are not good identifiers of clones as
many clones correspond to the same part in different plasmids or different bacterial strains.
A clone key is necessary to compare data collected on different distributions of the same
clone and therefore implement quality control procedures. A standardized quality control
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process should be specified to ensure the integrity of the clone collection.

3.3.3 Targeted development of registries of parts

The idea of developing collections of standardized parts is a transformative idea in biol-
ogy [193]. After a few years of a large scale experiment, it becomes apparent that developing
and managing this new type of resource for synthetic biology raises a number of original
questions. Specialized registries built on compatible standards are being developed by vari-
ous groups that will experiment with different user interfaces, workflows, and modes of user
interaction. These initiatives along with future developments of the original Registry will
provide elements of solutions to these new questions.

It will be particularly interesting to see if different registries will adopt different editorial
policies. The cost of maintaining a parts registry depends on its size as each entry needs to
be properly documented and each clone needs to be verified. Parts registries are different
from traditional collections used in biological research as any combination of parts in the
registry can also be integrated in the registry. A small number of basic parts can therefore
generate a potentially infinite collection of clones. Initially, it may be attractive to record
any combination of parts without any consideration of its potential value, but this approach
now appears unsustainable [91]. At some point, users and managers of a parts registry will
need to analyze the allocation of their resources. Table 3.2 and similar analysis on other
registries can help identify entries that are the most valuable to the users and least expen-
sive to maintain. For instance, basic parts deserve special attention because they enable
the development of new designs and errors affecting basic parts can propagate to the entire
resource. This contrasts with the case of a large and specialized construct including mul-
tiple genes that would be expensive to control and might have a low probability of reuse.
Even though it would be desirable to also include such construct in the database and clone
collection, if finite resources require choosing between recording a few new basic parts with
a broad reuse potential and a specialized and expensive part, it is likely that resources will
be preferably allocated to adding basic parts. Similarly, including a switch that could be
used in developing a number of applications will probably be deemed more valuable than
the construction intermediates that were generated during its assembly. Managers of parts
registries need to articulate editorial policies to set criteria for including new entries in their
database so that resources can be targeted to developing content maximizing the benefits to
their users.

Recognizing that repositories of biological parts are an essential component of the upcoming
integrated development environments for synthetic biology [6, 8, 29] may help target the
development of their content. In order to support this integration it is necessary to specify
a minimal data model allowing programmatic access to the registry databases from multiple
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client applications. A draft of such a data model is described in Text S1. Structured methods
for designing synthetic genetic systems will provide a theoretical framework that will guide
the development of user interfaces helping users combine basic parts into complex designs.
Alternative solutions to the organization of parts in categories or the mechanism to define
composite parts will probably be proposed. In this context, recent initiatives to organize
forums aiming at defining technical standards for biological parts appear very timely and
laudable.

3.4 Materials and Methods

The plasmids were resuspended in 30 µl of nuclease free water (Ambion) at 4� overnight.
They were quantified using the Nanodrop spectrophotometer. 20 ng of Plasmid DNA was
used in the PCR amplification of the plasmid inserts, using Qiagen’s Taq PCR master mix
kit, and 2 µM primers forward and reverse primers at 100 µl reaction volume. The forward
primer was homologous to the BioBrick prefix (5’ - GAA TTC GCG GCC GCT TCT AG
- 3’) whereas the reverse primer was complementary to the suffix sequence (5’ - CTG CAG
CGG CCG CTA CTA GTA - 3’). PCR conditions: 94� 45 sec, (94� 30 sec, 55� 45 sec,
72� 45 sec) for 24 cycles, 72� 5 minutes, 4� hold.

The PCR product was purified using Qiagen’s QIAquick PCR purification kit, resuspended
in 25 µl of nuclease free water, and quality controlled using the Agilent Bioanalyser DNA
7500 assay. The amplified products were quantified and diluted to 10 ng per ml. The PCR
product and corresponding primers were submitted to the VBI Core Laboratory for Sanger
sequencing using the primers used in the amplification step. Sequencing conditions: 400 ng
template DNA, 3.2 pmol primer, 2.5 ul BigDye Terminator mix v3.1, water to a total volume
15 µl.

Base calling and quality control of sequence chromatograms was done by PHRED [63, 64].
The sequences were assembled using CAP3 [96] with default options except for minimum
overlap size of 21 bp. The assembled sequences were aligned with their respective published
sequences using BLAST [5] with default parameters.

3.5 Supporting Information

Figure S1 Cytoscape file used to generate Figure 3.1. Can be used to interactively explore
the network of relationships within the Registry
Found at: doi:10.1371/journal.pone.0002671.s001 (0.10 MB ZIP)
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Table S1 Blast analysis of the clones assembled sequences against the published sequence.
Found at: doi:10.1371/journal.pone.0002671.s002 (0.14 MB XLS)

Text S1 Describes the supporting database and its data model. Also describes the other files
included in the supplement.
Found at: doi:10.1371/journal.pone.0002671.s003 (0.12 MB PDF)
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Abstract Chemical synthesis of custom DNA made to order calls for software streamlining
the design of synthetic DNA sequences. GenoCAD™(www.genocad.org) is a free web-based
application to design protein expression vectors, artificial gene networks and other genetic
constructs composed of multiple functional blocks called genetic parts. By capturing design
strategies in grammatical models of DNA sequences, GenoCAD guides the user through the
design process. By successively clicking on icons representing structural features or actual
genetic parts, complex constructs composed of dozens of functional blocks can be designed
in a matter of minutes. GenoCAD automatically derives the construct sequence from its
comprehensive libraries of genetic parts. Upon completion of the design process, users can
down- load the sequence for synthesis or further analysis. Users who elect to create a personal
account on the system can customize their workspace by creating their own parts libraries,
adding new parts to the libraries, or reusing designs to quickly generate sets of related con-
structs.

4.1 Introduction

In order to fully reap the potential benefits of de novo chemical gene synthesis [47] it has be-
come necessary to develop tools and methodologies to streamline the design of custom DNA
sequences [80]. Protein expression for structural studies [44], functional genomics [74, 99],
metabolic engineering [108, 125], or gene expression studies [27, 46, 87, 150] are only some

40
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of the numerous possible applications of this emerging technology. Beyond small scale ge-
netic constructs encompassing no more than a few interacting genes, it becomes possible to
reengineer viral [34, 35, 42, 213], bacterial [75], and even eukaryotic [56] genomes. While the
number of users of this technology increases, so does the need to streamline the design of syn-
thetic DNA sequences. GenoCAD is a web-based application filling this need by providing
users with an integrated graphical development environment that no other software provides.

GenoCAD’s design philosophy derives from the notion of genetic parts, which was first artic-
ulated to analyze genomics data [10]. Thinking of genetic systems as composed of parts, each
with its own function and characteristics, is akin to the way parts are described and used in
various engineering fields. Designing complex systems through a bottom up integration of
components is a dominant paradigm in engineering. It was therefore natural that engineers
approaching DNA as an engineering substrate, rather than a natural macromolecule, used
the notion of biological parts as building blocks [62, 85]. For instance, promoters, ribosome-
binding sites (RBS), genes and terminators are all categories of parts that are needed for
designing complex prokaryotic genetic constructs such as switches [9, 72, 102] and oscilla-
tors [9, 61, 205]. One could argue that systematic efforts to decompose biological sequences
into functional modules that can be recombined to meet user-defined specifications is one
of the most distinctive features of synthetic biology compared to more traditional uses of
recombinant DNA technologies [12, 55, 80, 137].

GenoCAD facilitates the design of artificial DNA sequences in three ways. First, Geno-
CAD includes a flexible system to manage libraries of public and user-defined genetic parts.
Second, GenoCAD relies on formal design strategies to guide both novice and experienced
users in the design of structurally valid constructs for various bio- logical applications. Fi-
nally, GenoCAD’s sophisticated data model enables individual users and research groups to
customize their workspace to their specific needs.

4.2 Flexible Management of Genetic Parts Libraries

Nothing better attests the benefits of a parts-based approach to the design of genetic con-
structs than the success of the Registry of Standard Biological Parts (www.partsregistry.org).
By defining the BioBrickTM standard allowing the composition of parts and implementing
mechanisms to share parts, the Registry has been critical in fostering the development of
a vibrant synthetic biology community [47, 62, 85, 155]. We recently analyzed the content
of the Registry database and the associated collection of clones to better understand how
the successes and limitations of this pioneering experiment could guide the development of
a second generation of registries of biological parts [155]. GenoCAD attempts to refine some
of the concepts upon which the Registry was developed.



42

By assuming that genetic designs can be synthesized, GenoCAD eliminates the need for
standardizing the means by which parts are connected. It also eliminates the need to de-
velop a collection of bacterial clones to manage the physical implementation of the parts.
Our analysis also stressed the importance of basic parts used to generate new combinations
of parts with specific functions. Ensuring the accuracy of the sequence and annotation of
the basic parts is essential since inaccuracies at this level may affect numerous designs. As a
result of this observation, GenoCAD parts libraries are exclusively composed of basic parts
while sequences composed of multiple parts are called designs. The libraries of parts avail-
able to all GenoCAD users are limited to sequences used in peer-reviewed publications or
commercial vectors. Parts are curated by a small number of experts according to a process
that will be described in a future publication.

Categorizing parts into functional groups has also proved challenging as the number and
diversity of parts increases. It would be, for instance, questionable to record bacterial and
eukaryotic promoters in the same group. Developing a more granular categorization system
may lead to an exponential growth of categories that would prove cumbersome to navigate.
GenoCAD overcomes this challenge by relying on the notion of grammar [29]. A grammar
is composed of rules describing the structure of DNA sequences. One of the rules of the
Escherichia coli Expression Grammar is CAS → PRO , CIS , TER which reads: an expres-
sion cassette is composed of a promoter, a cistron and a terminator. Another rule of the
same grammar is CIS → RBS ,GEN (a cistron is composed of a RBS and a gene). The
two rules can be used successively to create a basic expression cassette PRO, RBS, GEN,
TER. Different grammars can be developed for different applications and each grammar
has its own parts categorization hierarchy. This approach ensures, for instance, that parts
suitable for designing constructs for specific organisms like E. coli or yeast can easily be
identified. It also enables the development of grammars for specific applications like protein
production, homologous recombination in yeast, etc. Instead of attempting to develop a
universal parts categorization system, GenoCAD provides a generic framework for the de-
velopment of smaller more manage- able application-specific parts-libraries. The ‘Parts’ tab
of the GenoCAD user interface provides a parts library browser (Figure 4.1).

4.3 Point-And-Click Design of Genetic Constructs

In addition to providing a hierarchy of categories, gram- mars include sets of rewriting rules
that formalize design strategies for various types of genetic constructs [29, 80]. The design
feature of GenoCAD embeds the grammars in a graphical user interface that leads users
through the design workflow formalized in the grammar. Grammars usually prompt users
to begin by choosing high-level structures of their system and systematically decomposing
them into individual part categories. The last step of the design process consists in selecting
actual parts corresponding to specific DNA sequences (Figure 4.2). When starting from one
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of the public design templates, users can quickly design constructs by simply selecting parts
in a parts library instead of going through the entire design process described below.

Here, we use the design of a bistable genetic switch to illustrate GenoCAD’s workflow [72].
Selection of a gram- mar and an associated parts library (Figure 4.2) is the first step of this
process. By selecting the grammar the user defines the type of construct that is possible,
and by selecting the library they define the set of parts available to complete the design.
Determining the high level structure of a functional genetic system de novo could potentially
be confusing to users that do not have an intimate knowledge of the role of each part in the
regulation of gene expression. However, each grammar behind GenoCAD provides the design
strategy for specific types of constructs. GenoCAD’s default grammar, ‘E.coli Expression
Grammar’, is suitable for the design of prokaryotic expression constructs. Additional gram-
mars will be added for other applications.

The toggle switch construct was designed in nine steps as shown in Figure 4.2. The his-
tory pane (left side) allows users to review their work at any stage of the design process
by clicking on that step. Users may click in reverse or in forward steps, and they are able
to redesign from any point if they wish. Figure 4.3 shows a slightly condensed version of
the design process of the toggle switch construct. Displayed below each part of a design
are the options available to the user to transform the design. Choices in gray correspond
to transformations that affect the design structure while options in white correspond to the
selection of a specific part. Structural trans- formations are either part categories for which
a specific part selection can be made or a higher level feature that must be decomposed to
features lower in the abstraction hierarchy before the design can be finalized. An example of
a high level part is the cistron (CIS in Figure 4.3), which is transformed into a RBS and gene
(GEN). For each part category users have a choice of one or more specific sequences such
as a specific RBS or gene. A mouse-over feature in the interface provides more information
about the available choices. For example, the name of choice 04 for the promoter (PRO)
category is displayed through this mechanism.

A design is complete when specific sequences have been selected for each of its structural
features. It is then possible to click on the ‘Download Sequence’ button to export the
construct sequence as a text file that can be imported into software to design oligos for gene
synthesis [94, 104, 168, 215]. Alternatively the sequence synthesis can be ordered from a fast
growing number of vendors providing contract gene synthesis services [47].
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Figure 4.1: The GenoCAD parts library browser (used with permission of J. Peccoud, 2010).
Parts are associated with individual libraries, each of which is associated with a specific
grammar. Users select which parts library they view through choice of a grammar and
specific library in drop down boxes on the page. The part category ‘Gene’ is displayed in
this figure along with the icon that represents genes in the designs. By clicking on the
icon, the list of genes expands, allowing the user to see the available choices in the library.
Selecting the link to ‘View Sequence’ for any part opens a small window containing the
sequence of the individual part.
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Figure 4.2: The design interface showing the structure of a genetic toggle switch (used with
permission of J. Peccoud, 2010). The interface has drop down boxes at the top to select the
grammar and parts library that will be used in the design. The history panel allows users
to select one of the steps in the design process and see the structure of the design at that
step. Users are permitted to go back to any step and redesign from that point. The design
is presented in the main panel of the page, and icons for each part and the abbreviated parts
categories are shown at the top of the design. Choices for each part are shown underneath the
part icon. The inset shows the final design for this construct after specific choices (terminals)
are selected for each part category.
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Figure 4.3: A progression through the design of a bistable toggle switch (used with permission
of J. Peccoud, 2010). The starting symbol, S, (1) is where each design begins, and it is
transformed into a transcription cassette, CAS, (2). Since the toggle switch contains two
transcription cassettes, the single cassette is doubled (3). The design we are following has
the cassettes oriented in opposite directions, and we achieve this by transforming the left
cassette to the tpc- option, and the right to the tcp+ option (4), which contain a promoter,
cistron, and terminator, but in opposite orientations. The right cassette is meant to express a
transcriptional repressor and reporter gene in a bicistronic manner, so the cistron is doubled
by selecting the 2cis+ option (5). Each cistron is then decomposed to a RBS and gene (6),
with the RBS and gene in the reverse orientation in the left cassette. Selection of the specific
promoters, RBSs, genes, and terminators produces a final construct that is associated with
a DNA sequence (7).
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Figure 4.4: Creating a custom parts library. Users who create an account at the website
are able to create their own parts libraries, and are then able to add custom parts to these
libraries (used with permission of J. Peccoud, 2010). Through the library creation interface,
users select the grammar that their library will belong to, provide a name for their library,
and can enter a description. Parts can be added to a new library from other libraries of the
same grammar, which are loaded in the lower left box on the web page. All parts or a select
subset of parts, from the existing library can be copied into or removed from the new library
using the orange add and ‘remove’ buttons.
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4.4 Custom User Workspace

Parts available to all users in the public parts library have been derived from peer-reviewed
publications and the documentation of commercial vectors. Registered users are able to
create both their own parts library and their own parts. To create a new parts library, the
user selects the ‘My Libraries’ link on the ‘Design’ or ‘Parts’ tab. When the user selects
the link to create a new library they are presented with a user-friendly interface to do so
(Figure 4.4). Since parts libraries are associated with specific grammars, the user must select
the grammar to which the new library will be linked. Parts can then be copied from other
libraries linked to the same grammar by first pre- loading that library at the lower left of
the interface. Parts can be copied into and removed from the new library with the ‘add’ and
‘remove’ buttons. Once a user has created their own library, they are then able to create
new parts and associate them with that library. In Figure 4.5, the part creation page allows
the user to specify a grammar, select which part category it belongs to, and enter the part
name, sequence and description. One or more user libraries associated with the grammar
must be selected at the bottom of the page before the part can be saved into specific libraries.

Users can also save their designs in their workspace. Designs can be saved and named at any
stage of the design process. The ‘My Designs’ page provides links to delete and clone (i.e.
copy) previously saved designs. By saving a design prior to selecting parts, users can quickly
clone a design template into multiple variants without having to go through the entire design
process for each of them.

4.5 Implementation and Data Model

The GenoCAD website is written in a combination of PHP and JavaScript and runs on an
Apache server. The MySQL database is on a different server, and both servers use the Linux
operating system. The validation page relies on a custom parser developed in C++.

The data model for GenoCAD is summarized on Figure 4.6. Each design is associated with
a specific parts library which, in turn, is linked to a specific grammar. Multiple public and
user-defined libraries can be associated with each grammar and multiple designs can be as-
sociated with a specific library. Parts defined by users need to be associated with one of the
user’s parts libraries.

This simple data model has several limitations. Since many parts such as coding sequences
can be used in different organisms, it would be desirable to replace the current hierarchical
data model with a more refined model allowing the same part to be used in multiple libraries
and grammars. It would also be desirable to define parts corresponding to coding regions
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Figure 4.5: Interface to add a new part. Users that have created a custom library are able
to add and save parts that can be used in their designs (used with permission of J. Peccoud,
2010). The categories of parts permissible in designs are defined in the grammar, so the
grammar must be chosen first through a drop down menu. A second drop down, then allows
users to choose which part category the new part will belong to; in this case a new terminator
is being created. The sequence and description of the part are entered in text boxes, and
the library(s) to which the part will be added must be checked.
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Figure 4.6: GenoCAD data model. Each grammar encompasses a set of rules by which
constructs can be designed. The grammar also defines the categories of parts that are
available to design the constructs. For each grammar there is a collection of public parts
(solid, blue rectangle), which constitute a publicly available parts library (dashed, blue
rectangle). ‘User Libraries’ can be created from any subset of the public parts, and this
library can be supplemented with user-created parts (solid, red rectangle). Two user libraries
(dashed, red and dashed, green rectangles) are shown here that contain different subsets of
public and user-created parts. User library 2 contains all user-created parts. When a design
is created, all the parts to complete the design must be contained within a single library.
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by their amino-acid sequences instead of being limited to a DNA sequence with codons that
are optimal for expression in a specific organism.

Additional grammars will be defined for the use of specific applications or for applications
relevant to specific organisms in collaboration with organism or domain experts. Defining
parts categories and design strategies suitable for a particular application will require a dia-
logue between biologists and computer scientists having experience in grammar development.
Once agreed upon, grammars can easily be recorded in the MySQL database. Even though
it would be attractive to guide the user in the definition of new grammars, the complexity of
this process makes it unlikely that it will be possible to develop a grammar-building wizard
in the foreseeable future.

4.6 Summary and Future Work

Like the stand-alone Gene Designer [215] or the web-based Registry of Standard Biologi-
cal Parts, GenoCAD allows users to quickly design new genetic constructs by combining
sequences corresponding to various functional elements known as parts. Unlike its pre-
decessors though, GenoCAD guides the user through a design workflow corresponding to
previously agreed upon design principles captured in grammars. Since it relies on linguistic
models of DNA sequences [188], GenoCAD is a tool to help users write in the language of
DNA sequences.

GenoCAD is a work in progress. The sequence validation tool makes it possible to test
whether a sequence developed outside of GenoCAD is consistent with a specific grammar
and parts library. This tool is still rudimentary since it simply provides pass/fail information.
Eventually, more sophisticated error messages will be generated to help user troubleshoot
their sequence. As the GenoCAD user base grows, GenoCAD will support workgroups by
allowing them to share parts, libraries and grammars.

The next major improvement to GenoCAD will include tools to predict the design behavior.
By augmenting GenoCAD data model it is possible to compile a design DNA sequence into
a SBML file [97] that can be simulated by one of the numerous applications that supports
this standard [93]. GenoCAD will then join a growing number of applications experimenting
with mechanisms to derive the gene network model encoded in genetic con- structs com-
posed of standard biological parts [80, 92, 137, 175]. GenoCAD will also integrate tools to
track the synthesis and assembly of designs generated in GenoCAD. Optimizing the DNA
fabrication process based on the strategies used to design a series of constructs would be
extremely valuable.



52

While the GenoCAD web site is stable and has been in operation since 2007, the exper-
imental validation of the concepts upon which it has been developed is still ongoing. As
a reminder of the necessity to test designs in the lab, we will consider GenoCAD in beta
test until extensive characterization of GenoCAD-designed systems has been described in
peer-reviewed publications.
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Abstract: One of the foundations of synthetic biology is the project to develop libraries of
standardized genetic parts that could be assembled quickly and cheaply into large systems.
The limitations of the initial BioBrick standard have prompted the development of multi-
ple new standards proposing different avenues to overcome these shortcomings. The lack of
compatibility between standards, the compliance of parts with only some of the standards or
even the type of constructs that each standard supports have significantly increased the com-
plexity of assembling constructs from standardized parts. Here, we describe computer tools
to facilitate the rigorous description of part compositions in the context of a rapidly chang-
ing landscape of physical construction methods and standards. A context-free grammar has
been developed to model the structure of constructs compliant with six popular assembly
standards. Its implementation in GenoCAD makes it possible for users to quickly assemble
from a rich library of genetic parts, con- structs compliant with any of six existing standards.
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5.1 Introduction

The compelling vision of libraries of biological components with standardized interfaces en-
abling a fast and cheap assembly of large biological systems is one of the foundations of
synthetic biology [62, 85]. The BioBrick Foundation (BBF) has been instrumental in pro-
moting the BioBrick standard. A BioBrick compliant part is a DNA fragment flanked by a
prefix and a suffix sequence having specific restriction sites [8, 32]. Two BioBrick parts can
be assembled by using a specific series of restriction digestions and ligations independent
of the parts sequences. The different restriction sites used by the prefix and suffix result
in complementary overhangs that can be ligated without recreating any of the prefix and
suffix restriction sites. The legacy sequence between two adjoining parts is called the scar.
BioBrick parts are physically composable in the sense that the assembly of two BioBricks re-
sults in a new part compliant with the same standard. The first BioBrick assembly standard,
BBa1.0, was proposed by Knight in a BBF Request For Comments (BBF RFC 10). It uses
EcoRI, NotI and Xbal in the prefix, and SpeI, NotI and PstI in the suffix. Later on, it has
been proposed to replace PstI with SbfI, an enzyme with a longer restriction site less likely to
be found in parts sequences (BBF RFC 11). Both standards have been well received by the
community and widely used by teams enrolled in the international Genetically Engineered
Machine (iGEM) competition [82, 201]. However, both BBa1.0 and BBa2.0 create an eight-
base scar (TACTAG AG), which results in a frame shift when assembling two protein-coding
sequences. To address this problem, several new standards have been proposed (BBF RFCs
12, 21, 23 and 25) to allow protein fusion by introducing six-base scars. These standards are
summarized in Table 5.1.

‘The best thing about standards is that there are so many to choose from!’ summarizes well
the difficulty of navigating this increasingly complicated technical land- scape. The multi-
plication of assembly standards creates a number of new difficulties. Most parts are only
compliant with some of the assembly standards due to the presence of reserved restriction
sites in their sequence. A design framework that could automatically manage the constraints
associated with the different standards could help the community better leverage ongoing
standardization efforts. Here, we introduce a context-free grammar (CFG) [29] to model the
structure of genetic con- structs compliant with any of the existing assembly standards. A
CFG is a set of rewriting rules, which defines the set of all designs that can be derived by
the grammar. A context-free rule can be written as χ→ γ, where χ is a single non-terminal
and γ is any string of terminals and/or non-terminals (possibly empty). In the case of
the BioBrick grammar presented in this article, non-terminals include parts categories (e.g.
promoter) and categories of composite parts (e.g. cistron), while terminals are specific Bio-
Bricks (e.g. BBa R0040) and standard-specific prefixes, suffixes and scars. For instance, a
rule “Cass1→ Prom1 C1 Cist1 C1 Term1” is interpreted as an expression cassette (Cass1)
can be transformed into a DNA sequence comprising a promoter (Prom1), a BioBrick scar
(C1), a cistron (Cist1), a BioBrick scar (C1) and a terminator (Term1).
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The grammar was implemented in GenoCAD (www.genocad.org), a web-based application
to design synthetic genetic constructs [48]. GenoCAD is built upon a solid computational
linguistic foundation. Yet, its point-and-click graphical user interface enables users to design
complex constructs in a matter of minutes. GenoCAD captures design strategies of synthetic
genetic constructs in the form of grammatical models. The linguistic models can be used in
two ways: a user can design a synthetic construct by successively selecting design rules to
transform the structure of the design; or a user can upload a DNA sequence designed outside
GenoCAD to validate its consistency with the grammatical model. GenoCAD provides a
central parts database with each grammar, and the BioBrick grammar comes with a library
of 2312 basic genetic parts available in the Registry of Standard Biological Parts in May 2009.
Users, who elect to create a GenoCAD personal account, can log in the system to create
project-specific parts libraries, upload new parts into their workspace and save designs for
later use.

5.2 Materials and Methods

A static snapshot of the Registry content is available as a FASTA file at http://partsregistry.
org/fasta/parts/All_Parts. For each part, the file includes its identifier, category, a short
description and the part sequence. The version of this file published in May 2009 included
9526 parts. A Perl script was developed to parse out the content of this file into structured
data format, which could be imported into a MySQL database.

5.3 Results

Compliance with different BioBrick standards

The Registry includes both basic parts (e.g. promoter and RBS) and composed parts, which
include multiple basic parts (e.g. device, project and composite). As the set of composed
parts can be regenerated from the basic parts [155], we only focused on the basic parts
which include categories of Regulatory, RBS, Coding, Terminator and, Plasmid Backbone.
By querying the MySQL database, we extracted a set of 2312 basic parts with DNA se-
quences. Because a part is compatible with a BioBrick standard if its sequence does not
include any of the restriction sites used by the assembly standard, we developed SQL queries
to check for the presence of the restriction sites listed in Table 5.1.

Interestingly, there are 2166 parts compliant with the BBa1.0, BBa2.0 and Biofusion stan-
dards. This observation is not surprising because these three standards use almost identical

www.genocad.org
http://partsregistry.org/fasta/parts/All_Parts
http://partsregistry.org/fasta/parts/All_Parts
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Table 5.1: Summary of prefix, suffix and scar groups used in different BioBrick assembly
standards

Standard Reference Prefix Suffix Scar Compatible parts
Prom. RBS Gene Ter. PB

BBa1.0 RFC 10 EcoRI
NotI

SpeI NotI TACTAGAG 2166

XbaI PstI 761 149 1149 98 9
BBa2.0 RFC 11 EcoRI

NotI
SpeI NotI TACTAGAG 2166

XbaI SbfI/PstI 761 149 1149 98 9
Biofusion RFC 23 EcoRI

NotI
SpeI NotI ACTAGA 2166

XbaI PstI 761 149 1149 98 9
Freiburg RFC 25 EcoRI

NotI
AgeI SpeI ACCGGC 1969

XbaI Met
NgoMIV

NotI PstI 743 148 973 96 9

BBb RFC 21 EcoRI BamHI GGATCT 2019
BglII XhoI 636 149 1112 83 39

Knight RFC 12 EcoRI NheI GCTAGT 2140
SpeI PstI 724 150 1159 97 10
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restriction sites. There are slightly fewer parts available for newly proposed standards like
the BBb standard.

Grammar design

The general methodology of developing grammars to model the structure of synthetic ge-
netic constructs has been described elsewhere [29]. Here, we highlight the introduction of
new rewriting rules and non-terminals that augment the previously described grammars.
The full grammar is described in Table 5.2.

Table 5.2: A CFG describing different BioBrick assembly
standards. Terminals are italicized. P, C and S are ter-
minals representing prefix, scar and suffix, respectively.
As BBa2.0 uses the same prefix and scar as BBa1.0, there
is no P2 and C2 in the grammar.

Rule Comments Left term Right term
1 Select a standard (BBa1.0) S BBa1.0
2 Similar to rule 1 S BBa2.0
3 Similar to rule 1 S Biofusion
4 Similar to rule 1 S Freiburg
5 Similar to rule 1 S BBb
6 Similar to rule 1 S Knight
7 Transform a standard (BBa1.0) into a plasmid

backbone (PB1), a prefix (P1), a cassette (Cass1)
and a suffix (S1)

BBa1.0 PB1 P1 Cass1 S1

8 Transform a cassette (Cass1) into two cassettes
(Cass1) with a scar (C1) in between

Cass1 Cass1 C1 Cass1

9 Reverse the sequence orientation of a cassette
(Cass1)

Cass1 [Cass1]

10 Transform a cassette (Cass1) into a promoter
(Prom1), a scar (C1), a cistron (Cist1), a scar
(C1) and a terminator (Term1)

Cass1 Prom1 C1 Cist1 C1 Term1

11 Transform a cistron (Cist1) into two cistrons
(Cist1) with a scar (C1) in between

Cist1 Cist1 C1 Cist1

12 Transform a cistron (Cist1) into a RBS (RBS1),
a scar (C1) and a gene (Gene1)

Cist1 RBS1 C1 Gene1

13 Transform a terminator (Term1) into two termi-
nators (Term1) with a scar (C1) in between

Term1 Term1 C1 Term1

14 Similar to rule 7 BBa2.0 PB2 P1 Cass2 S2
15 Similar to rule 8 Cass2 Cass2 C1 Cass2

Continued on next page. . .
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Table 5.2 (Continued)
Rule Comments Left term Right term
16 Similar to rule 9 Cass2 [Cass2]
17 Similar to rule 10 Cass2 Prom2 C1 Cist2 C1 Term2
18 Similar to rule 11 Cist2 Cist2 C1 Cist2
19 Similar to rule 12 Cist2 RBS2 C1 Gene2
20 Similar to rule 13 Term2 Term2 C1 Term2
21 Similar to rule 7 Biofusion PB3 P3 Cass3 S3
22 Similar to rule 8 Cass3 Cass3 C3 Cass3
23 Similar to rule 9 Cass3 [Cass3]
24 Similar to rule 10 Cass3 Prom3 C3 Cist3 C3 Term3
25 Similar to rule 11 Cist3 Cist3 C3 Cist3
26 Similar to rule 12 Cist3 RBS3 C3 Gene3
27 Transform a gene (Gene3) into two genes (Gene3)

with a scar (C3) in between, i.e. protein fusion
Gene3 Gene3 C3 Gene3

28 Similar to rule 13 Term3 Term3 C3 Term3
29 Similar to rule 7 Freiburg PB4 P4 Cass4 S4
30 Similar to rule 8 Cass4 Cass4 C4 Cass4
31 Similar to rule 9 Cass4 [Cass4]
32 Similar to rule 10 Cass4 Prom4 C4 Cist4 C4 Term4
33 Similar to rule 11 Cist4 Cist4 C4 Cist4
34 Similar to rule 12 Cist4 RBS4 C4 Gene4
35 Similar to rule 27 Gene4 Gene4 C4 Gene4
36 Similar to rule 13 Term4 Term4 C4 Term4
37 Similar to rule 7 BBb PB5 P5 Cass5 S5
38 Similar to rule 8 Cass5 Cass5 C5 Cass5
39 Similar to rule 9 Cass5 [Cass5]
40 Similar to rule 10 Cass5 Prom5 C5 Cist5 C5 Term5
41 Similar to rule 11 Cist5 Cist5 C5 Cist5
42 Similar to rule 12 Cist5 RBS5 C5 Gene5
43 Similar to rule 27 Gene5 Gene5 C5 Gene5
44 Similar to rule 13 Term5 Term5 C5 Term5
45 Similar to rule 7 Knight PB6 P6 Cass6 S6
46 Similar to rule 8 Cass6 Cass6 C6 Cass6
47 Similar to rule 9 Cass6 [Cass6]
48 Similar to rule 10 Cass6 Prom6 C6 Cist6 C6 Term6
49 Similar to rule 11 Cist6 Cist6 C6 Cist6
50 Similar to rule 12 Cist6 RBS6 C6 Gene6
51 Similar to rule 27 Gene6 Gene6 C6 Gene6
52 Similar to rule 13 Term6 Term6 C6 Term6

Figure 5.1 lists the non-terminals along with the icons used for their graphical representation.
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Figure 5.1: Correspondence between parts categories, non-terminals and icons used to graph-
ically represent construct structures.
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S is the start symbol used to initiate the design process. In order to ensure the consistency of
a design with a specific standard, it is necessary to introduce for each category of parts a dif-
ferent non-terminal for each standard. For instance, instead of having a single non-terminal
for genes, we defined the non-terminal Gene1 to represent genes compliant with the BBa1.0
standard, Gene2 for genes compliant with BBa2.0 standards and so on. Non-terminals P,
C and S were introduced to represent the prefixes, scars and suffixes of different standards.
Non-terminals PB1PB6 represent the plasmid backbone. Finally, we used non-terminals
that do not correspond to specific DNA sequences. A class of non-terminals is used to repre-
sent the different assembly standards. Square brackets are introduced to represent that part
of a construct is coded on the reverse strand of the DNA molecule, as illustrated in Figure 5.2.

Table 5.2 lists all the production rules of the six standards. Rules P1P6 specify the assembly
standard the design complies with. Rules P7, P14, P21, P29, P37 and P45 specify that a
design is composed of a plasmid backbone and a gene expression cassette flanked by the
standard prefix and suffix. P8, P15, P22, P30, P38 and P46 allow a single cassette to be
transformed into two cassettes with a scar in the middle. Applying these rules n times
will create n + 1 cassettes in the design. P9, P16, P23, P31, P39 and P47 can be used to
reverse the orientation of a cassette. P10, P17, P24, P32, P40 and P48 define the structure
of a cassette to be a promoter, a cistron and a terminator, separated by scars. P11, P18,
P25, P33, P41 and P49 allow multiple cistrons in a cassette. P12, P19, P26, P34, P42
and P50 specify that a cistron is composed of a RBS, a scar and a gene. P13, P20, P28,
P36, P44 and P52 allow introducing multiple terminators. As BBa1.0 and BBa2.0 both
use an eight-base scar (TACTAGAG), which results in the frame shift, protein fusion is not
permissible. However, the other standards use six-base scars (such as ACTAGA for the
Biofusion standard) compatible with in-frame fusion of protein-coding parts. The grammar
reflects this fact by having rules P27, P35, P43 and P51 for protein fusion while using those
standards.

GenoCAD implementation

We imported all the basic parts present in the Registry of Standard Biological Parts into the
GenoCAD-backend database. We also implemented the BioBrick grammar in GenoCAD.
The large number of parts included in the BioBrick parts library may be difficult to navigate
when working on a specific project. After they have logged into the system, users can cus-
tomize their workspace by adding new parts and creating new parts libraries. When starting
a project, it is suggested to first create a parts library for the project. This parts library
should contain all the parts needed for the project. Most parts will be imported from the
general BioBrick library. However, if there is a need for additional parts, it is possible to
define new parts and include them in the project parts library.
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Figure 5.2: Three different representations of a BBa2.0 design. (A) This design includes two
gene expression cassettes in opposite orientations. The first icon represents the construct
backbone. The icons P1 (second to the left) and S2 (last) represent the construct prefix and
suffix. The brackets [ and ] indicate the reverse orientation of the first cassette. Because
BBa1.0 and BBa2.0 share the same prefix and scars, the design includes P1, C1 and S2. (B)
The sequence generated by the grammar includes the special characters [ and ] to indicate
the fragment in reverse orientation in bold characters. (C) The sequence of the construct is
generated by replacing the sequence in bold character by its reverse complement.
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Once the project library is complete, the design phase can start. After selecting the BioBrick
grammar, the project-specific parts library can be selected. The construct design proceeds
through a series of rewriting operations corresponding to the selection of specific grammar
rules. The BioBrick grammar first prompts the user to select a particular assembly standard
and then a cloning vector. The design then proceeds through a series of steps to specify the
structure of the constructs and specific parts to implement this structure. A more detailed
description of the design workflow and GenoCAD various features have been published re-
cently [48].

The recent multiplication of assembly standards has led to new design challenges. When all
parts complied with a single standard, it was very straightforward to combine them. Now, it
becomes necessary to verify that all parts used in a project are consistent with the standard
selected for the project. GenoCAD structured approach to the design of genetic constructs
makes it possible to gracefully navigate complex libraries of genetic parts compliant with
multiple assembly standards. Once a standard has been selected, only the parts compatible
with this standard are available to the designer. The construct prefix and suffix along with
the scars are properly represented along with the sequence of the cloning vector used to
propagate the design.

Designing an iGEM project using GenoCAD

To demonstrate how to use GenoCAD and the BioBrick grammar to quickly design an iGEM
project, we selected the wintergreen odor biosynthetic system (http://bit.ly/85Hhgd) de-
signed and implemented by the MIT iGEM team in 2006. The system contains two expression
cassettes: one produces salicylate acid from the cellular metabolite, and the second one con-
verts the salicylic acid to methyl salicylate that produces the wintergreen odor. We designed
this system with the BBa1.0 assembly standard using GenoCAD. The step-by-step design
process is depicted in Figure 5.3. The design process starts with selecting the BBa1.0 assem-
bly standard (P1); P7 is used to transform the design into a plasmid backbone, a prefix, a
cassette and a suffix; as there are two cassettes needed in the wintergreen odor biosynthetic
system, P8 is applied to allow two cassettes in the design; by applying P10 to both cassettes,
we specified the structure of each cassette to be a promoter, a scar, a cistron, a scar and a
terminator; by applying P12 to each cistron, the structure of a cistron is expanded to a RBS,
a scar and a gene; finally, we used P13 to allow the usage of a double terminator in each
cassette, which ensures a tight transcription termination. After specifying the structure of
the design, the last step is to select a specific part for each category, and the DNA sequence
of the design is ready for export as a text file.

http://bit.ly/85Hhgd
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Figure 5.3: Step-by-step design process of a wintergreen odor system using GenoCAD. The
construct is designed in nine steps. For each step, the rewriting rule used is indicated in
blue in the second column using the same number as in Table 5.2. The rewriting resulting
from the rule selection is indicated in the graphical representation of the construct. The icon
underlined by the base of the arrow indicates the left term of the rule. The icons enclosed
in a blue rectangle correspond to the right term of the rule. For instance, applying the rule
P8 to Cass1 in step 2 transforms this element into Cass1 C1 Cass1 in step 3.
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5.4 Discussion

Data exchange

The method used to import in GenoCAD data from the Registry suffers from a number of
obvious limitations. A live connection between parts registries has been envisioned for some
time. The recently launched BioBrick Parts Catalog (www.biobrickparts.org) provides an
API to read its content using the JavaScript Object Notation (JSON). We are also working
on the development of web services allowing other clients to communicate with the Geno-
CAD database.

However, setting up web services to access databases solves only part of the data exchange
challenge. As data are available easily, it will become apparent that the nature of the data
exchanged needs to be documented. It is safe to assume that all registries will associate
a unique identifier, a DNA sequence and a description with the parts. The description of
the nature of parts is a more difficult issue. The Registry of Standard Biological Parts,
the BioBrick Parts Catalog and GenoCAD use their own system of categories, but these
categorization systems are developed independently of each other making it difficult to map
categories of one resource into categories used by another system. This problem can be
solved by the development of an ontology giving the community a common controlled vo-
cabulary to describe genetic parts. Early efforts to develop the Synthetic Biology Open
Language have been somewhat hampered by the magnitude of the task. In particular, it is
difficult to properly appreciate the scope of what needs to be described by this language. It
is also challenging to evaluate the possibility of using existing ontologies like the Sequence
Ontology [59] for this new application.

Ensuring that parts are properly delimited at the DNA sequence level is another challenge.
The BioBrick grammar presented in this article carefully handles the fusion of coding se-
quences when using assembly standards allowing this type of construct. However, the possi-
ble inclusion of a stop codon in the sequence of genes may prevent the actual fusion of two
adjacent proteins. It is, therefore, necessary to set standards to delimit the DNA sequences
of different categories of parts (BBF RFC 13).

Advantages and limitations of the BioBrick grammar

The syntactic model proposed in this article constrains the design space of BioBrick-based
systems. The point- and-click approach to the design process makes it easy for someone
to quickly design constructs compliant with any of the proposed standards. The design
strategy embedded in the grammar is very conservative to maximize the chances of de-
signing functional systems. However, GenoCAD currently excludes some ‘out of the box’

www.biobrickparts.org
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designs, e.g. an expression cassette with multiple promoters. Advanced users can over-
come this limitation by creating new parts in their personal workspace. For instance, it
is possible to use a sequence editor to combine the sequence of two promoters and then
save it in GenoCAD as a regular promoter. Domain-specific languages like Eugene (http:
//sourceforge.net/projects/eugene) or GEC [158] provide users with richer frameworks
and greater design flexibility, but these programming environments may have steeper learn-
ing curves than GenoCAD. The Registry of Standard Biological Parts or Gene Designer [215]
provides the ultimate design flexibility by allowing users to combine any parts in any order,
but the lack of verification or guidance creates more opportunities for design errors that will
manifest only when the part is fabricated or characterized.

Fabrication

GenoCAD and the BioBrick grammar described in this article do not provide users with a
path to fabrication, but it generates the theoretical DNA sequence of a design that can be
used to analyze sequencing data collected to verify physical implementations of a design.

It is fairly common for expression vectors to include expression cassettes in opposite ori-
entations [72] as this configuration limits interferences between promoters. The BioBrick
grammar allows users to select the orientation of gene expression cassettes. The reverse
complementation operation, necessary to generate the final sequence, includes a reverse
complementation of the scar sequences between parts. The final sequence is identical to
the sequence of a cassette first assembled in a direct orientation and then flipped before
its insertion into cloning vector. Because most parts are defined in the same orientation in
the various registries, this scenario is the most likely assembly strategy, but other strategies
leading to different DNA sequences can be imagined.

Choosing an assembly standard is only one element in the development of an assembly strat-
egy. The availability of clones, representing physical implementations of various elements
of the design, guides a fabrication process that often includes de novo synthesis steps and
assembly of existing DNA fragments using various cloning techniques[47]. Note that the
choice of a particular assembly standard does not automatically restrict the user to a spe-
cific assembly process. As they do not rely on restriction enzymes, USER fusion (BBF RFC
39) [167, 199] or In-Fusion cloning (BBF RFC 26) [20] are compatible with any assembly
standard. The determination of an optimal assembly process can be solved by dynamic
programming algorithms (18).
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GenoCAD for iGEM

GenoCAD provides users having limited domain expertise with a user-friendly environment
to quickly design structurally valid BioBrick constructs compliant with different assembly
standards. Students enrolled in the iGEM competition represent an important group of
potential users, and the BioBrick grammar has been developed with this group in mind.
By importing parts available in the Registry, reusing the system of categories used by the
Registry, capturing physical and basic functional composition rules, the BioBrick grammar
customizes the GenoCAD environment for the needs of iGEM participants. As a result, any
curation of the data imported from the registry has been avoided.

GenoCAD is part of a quickly growing arsenal of software tools for synthetic biology [36, 92,
137, 138]. It has been recently proposed to use attribute grammars, an extension of the CFG
formalism used in this report, to develop semantic models of DNA sequences [30]. Embedding
this formalism in GenoCAD will enable users to translate their designs into SBML files
describing their expected behavior. This capability will make it possible to investigate the
possible influence on gene expression of the scars associated with the different assembly
standards. It was initially assumed that scars would not significantly influence the phenotype
coded in a genetic design, but rapid progress in the characterization of the relations between
structure and functions of ribosome-binding sites [121, 182] and promoters [46, 60] may
contribute to re-evaluate this hypothesis.
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Sequences using Attribute Grammars

Published at: Y. Cai, M. W. Lux, L. Adam, and J. Peccoud. Modeling structure-function
relationships in synthetic DNA sequences using attribute grammars. PLoS Comput Biol,
5(10):e1000529, Oct 2009.

Authors: Yizhi Cai, Matthew W. Lux, Laura Adam, Jean Peccoud
Abstract: Recognizing that certain biological functions can be associated with specific
DNA sequences has led various fields of biology to adopt the notion of the genetic part.
This concept provides a finer level of granularity than the traditional notion of the gene.
However, a method of formally relating how a set of parts relates to a function has not yet
emerged. Synthetic biology both demands such a formalism and provides an ideal setting for
testing hypotheses about relationships between DNA sequences and phenotypes beyond the
gene-centric methods used in genetics. Attribute grammars are used in computer science to
translate the text of a program source code into the computational operations it represents.
By associating attributes with parts, modifying the value of these attributes using rules that
describe the structure of DNA sequences, and using a multi-pass compilation process, it is
possible to translate DNA sequences into molecular interaction network models. These ca-
pabilities are illustrated by simple example grammars expressing how gene expression rates
are dependent upon single or multiple parts. The translation process is validated by sys-
tematically generating, translating, and simulating the phenotype of all the sequences in the
design space generated by a small library of genetic parts. Attribute grammars represent
a flexible framework connecting parts with models of biological function. They will be in-
strumental for building mathematical models of libraries of genetic constructs synthesized to
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characterize the function of genetic parts. This formalism is also expected to provide a solid
foundation for the development of computer assisted design applications for synthetic biology.

Author Summary: Deciphering the genetic code has been one of the major milestones in
our understanding of how genetic information is stored in DNA sequences. However, only
part of the genetic information is captured by the simple rules describing the correspon-
dence between gene and proteins. The molecular mechanisms of gene expression are now
understood well enough to recognize that DNA sequences are rich in functional blocks that
do not code for proteins. It has proved difficult to express the function of these genetic
parts in a computer readable format that could be used to predict the emerging behavior of
DNA sequences combining multiple interacting parts. We are showing that methods used by
computer scientists to develop programming languages can be applied to DNA sequences.
They provide a framework to: 1) express the biological functions of genetic parts, 2) how
these functions depend on the context in which the parts are placed, and 3) translate DNA
sequences composed of multiple parts into a model predicting how the DNA sequence will
behave in vivo. Our approach provides a formal representation of how the biological func-
tion of genetic parts can be used to assist in the engineering of synthetic DNA sequences by
automatically generating models of the design for analysis.

6.1 Introduction

“How much can a bear bear?” This riddle uses two homonyms of the word “bear”. The
first instance of the word is a noun referring to an animal, and the second is a verb meaning
“endure”. Although the word “bear” has over 50 different meanings in English, its meaning
in any given sentence is rarely ambiguous. In a simple case like this riddle, the meaning of
each word can be deciphered by looking at other words in the same sentence. In other cases,
it is necessary to take into account a broader context to properly interpret the word. For
instance, it may be necessary to read several sentences to decide if “bear claw” refers to a
body part or a pastry. A reader will progressively derive the meaning of a text by recogniz-
ing structures consistent with the language grammar. It is often difficult to understand the
meaning of a text by relying exclusively on a dictionary.

It is interesting to compare this bottom-up emergence of meaning with the top-down ap-
proach that made genetics so successful. The discipline was built upon a quest to define
hereditary units that could be associated with observable traits well before the physical sup-
port of heredity was discovered [109, 206]. The one-to-one relationship between genes and
traits was later refined by Beadle and Tatum’s hypothesis that the gene action was mediated
by enzymes [197, 210]. Cracking the genetic code has been one of the major milestones in
understanding the information content of nucleic acids sequences. By demonstrating the
colinearity of DNA, RNA, and protein sequences, the genetic code was instrumental in the
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identification of specific DNA sequences as genes. The influence of this legacy on contem-
porary biology cannot be underestimated. Models used in quantitative genetics predict
phenotypes from unstructured lists of alleles at different loci [65, 136]. Similarly, genome
annotations remain very gene-centric. Most bioinformatics databases have been designed to
collect information relative to coding regions or candidate genes. Few, if any, annotations
of non-coding regions or higher order structures are being systematically recorded even for
model organisms like yeast [88, 223].

Yet, despite its success, the notion of gene appears insufficient to express the complexity
of the relation between an organism genome and its phenotype [109, 110] The elucidation
of the molecular mechanisms controlling gene expression has revealed a web of molecular
interactions that have been modeled mathematically to show that important phenotypic
traits are the emerging properties of a complex system [37, 166, 205, 212, 218, 220]. The
development of this more integrated understanding of the cell physiology leads to a progres-
sive adoption of the more neutral notion of genetic part as a replacement for the notion of
genes associated with specific traits. Making sense of the list of parts generated in genomics,
proteomics, and metabolomics has been a major challenge for the systems biology commu-
nity [10, 21, 58, 68, 146, 203].

It is becoming apparent that the genetic code captures only a small fraction of the infor-
mation content of DNA molecules [163, 192]. Yet, if there is a general agreement that
the cell dynamics is somehow coded in genetic sequences, no formal relationship between
DNA sequences and dynamical models of gene expression has been proposed so far. In
particular, the formalization of the biological functions of genetic parts has remained elu-
sive. As a result, building models of gene networks encoded in DNA sequences remains
a labor-intensive process. This limitation has hampered the development of large families
of models needed to analyze phenotypic data generated by libraries of related genetic con-
structs [46, 72, 73, 86, 87, 150].

Synthetic biology is likely to be instrumental in refining our understanding of the design of
natural biological systems [55]. Just like the genetic code was partly elucidated through
the de novo chemical synthesis of DNA molecules [2, 107], the redesign of genomic se-
quences will shed a new light on the relations between structure and function in genetic
sequences [35, 56, 75]. By considering biological parts as the building blocks of artificial
DNA sequences [62], designing new parts that do not exist in nature [46, 73, 150], and mak-
ing parts physically available to the community [155], synthetic biology calls for a systematic
functional characterization of genetic parts [32]. These efforts are still limited by the diffi-
culty in expressing how the function of biological parts may be influenced by the structure
of the DNA sequence in which they are used. It has been shown that a partial redesign of
the genomic sequences of two viruses had a significant effect on the virus fitness even though
the redesigns preserved the protein sequences [35, 42]. Just as the context of the expression
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“bear claw” helps understand its meaning, it is necessary to consider the entire structure of
the DNA molecule coding for particular genes to appreciate how those genes contribute to
the phenotype.

One possible approach to this problem is to extend the linguistic metaphor used to formulate
the central dogma. The notions of genetic code, transcription, and translation are derived
from a linguistic representation of biological sequences. Several authors have modeled the
structure of various types of biological sequences using syntactic models [39, 54, 76, 115, 172,
183, 186, 188]. However, these structural models have not yet been complemented by formal
semantic models expressing the sequence function. An interesting attempt to use grammars
to model the dynamics of gene expression did not rely on a description of the DNA sequence
structure. Instead, this grammar described how various inducible or repressible promoters
can transition between different states under the control of environmental parameters [18].
The simple semantic model stored in a knowledge base established a correspondence between
the strings generated by the syntax and the physiological state of the cell. The Sequence
Ontology [59] and the Gene Regulation Ontology [15] represent other attempts to associate
semantic values with biological sequences. Their controlled vocabularies can be used by
software applications to manage knowledge. However, the semantics derived from these
ontologies is a semantics of the sequence annotation, not of the sequences themselves.

6.2 Model

We recently described a fairly simple syntactic model of synthetic DNA sequences [29] capable
of generating a large number of previously published synthetic genetic constructs [61, 72, 86].
We have now enhanced this initial syntactic model with a formal semantic model capable of
expressing the dynamics of the molecular mechanisms coded by the DNA sequences. Spe-
cialized terms like syntax, semantics, and others are defined in Table 6.1. Our approach uses
attribute grammars [151], a theoretical framework developed in the 60s to establish a formal
correspondence between the text of a computer program and the series of microprocessor
operations it codes for [116, 117]. Even though other types of semantic models have been de-
veloped since then [198, 204], attribute grammars still represent a good compromise between
simplicity and expressivity, an important characteristic to ensure that the framework can
be used by non-computer scientists. Attribute grammars make it possible to use well char-
acterized compilation algorithms to translate a DNA sequence into a mathematical model
of the molecular interactions it codes for. As the static source code of a program directs
the dynamic series of operations carried out by the microprocessor based on user inputs,
the compilation process translates the static information of cells coded by DNA sequences
into a dynamical model of the development of a phenotype in response to environmental
influences [128].
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Table 6.1: Glossary of specialized terms used throughout this article.

Attribute grammar An attribute grammar is a context free grammar augmented
with attributes, semantic rules, and conditions. Attribute gram-
mars were developed as a means of formalizing the semantics of
a context free grammar.

Context free grammar A context free grammar is a quadruple (V,
�

, P, S) where V
is a finite set of non-terminal symbols,

�
(the alphabet) is a

finite set of terminal symbols, P is a finite set of rules, and
S is a distinguished element of V called the start symbol. A
rule P is of the following form A → ω where A is a single
non-terminal symbol and ω is a string of terminals and/or non-
terminals (possibly empty). The term “context-free” expresses
the fact that non-terminals are rewritten without regard to the
context in which they occur.

Cusp bifurcation A codimension 2 bifurcation formed by the tangential meeting
of two loci of saddle-node bifurcations. In other words, a cusp
bifurcation traces the path of the points bounding a bistable re-
gion as they change with changes in two parameters. Bistability
is implied within the cusp bounds.

Direct left recursion A direct left recursion in context free grammar refers to rules
of the form A → Aω. Parsing left recursion can possibly lead
the parser down an infinite branch of the search tree in the
corresponding logic program.

PoPS The measurement of polymerase per second transcribing past a
defined point of DNA.

SBML The Systems Biology Markup Language (SBML) is a machine-
readable language, based on XML, for representing models of
biochemical reaction networks.

Semantics Semantics reveals the meaning of syntactically valid strings in
a language. For natural languages, this means correlating sen-
tences and phrases with the objects, thoughts, and feelings of our
experiences. For programming languages, semantics describes
the behavior that a computer follows when executing a program
in the language.

Syntax Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in a language. Syntax de-
fines the formal relations between the constituents of a language,
thereby providing a structural description of the various expres-
sions that make up legal strings in the language. Syntax deals
solely with the form and structure of symbols in a language
without any consideration given to their meaning.
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The translation of a gene network model from a genetic sequence is very similar to the
compilation of the source code of a computer program into an object code that can be
executed by a microprocessor (Figure 6.1). The first step consists in breaking down the
DNA sequence into a series of genetic parts by a program called the lexer or scanner. Since
the sequence of a part may be contained in the sequence of another part, the lexer is capable
of backtracking to generate all the possible interpretations of the input DNA sequences as a
series of parts. All possible combinations of parts generated by the lexer are sent to a second
program called the parser to analyze if they are structurally consistent with the language
syntax. The structure of a valid series of parts is represented by a parse tree [29] (Figure 6.2).
The semantic evaluation takes advantage of the parse tree to translate the DNA sequence
into a different representation such as a chemical reaction network. The translation process
requires attributes and semantic actions. Attributes are properties of individual genetic parts
or combinations of parts. Semantic actions are associated with the grammar production
rules. They specify how attributes are computed. Specifically, the translation process relies
on the semantic actions associated with parse tree nodes to synthesize the attributes of the
construct from the attributes of its child nodes, or to inherit the attributes from its parental
node. In our implementation, the product of the translation is a mass action model of the
network of molecular interactions encoded in the DNA sequence. By using the standardized
format of Systems Biology Markup Language (SBML), the model can be analyzed using
existing simulation engines [1, 84, 93].

6.3 Results

Compilation of a DNA sequence

We have developed a simple grammar compact enough to be presented extensively, yet suffi-
ciently complex to represent basic epistatic interactions. The grammar generates constructs
com- posed of one or more gene expression cassettes. The gene expression cassettes are
themselves composed of a promoter, cistron, and transcription terminator. Finally, a cistron
is composed of a Ribosome Binding Site (RBS) and a coding sequence (gene). The syntax is
composed of 12 production rules (P1 to P12) displayed in bold characters in Figure 6.3 where
each entry is composed of a rewriting rule (bold), and semantic actions (curly brackets). The
symbol e refers to an empty string, [ , ] to a list, [] to an empty list, and the ‘+’ sign indicates
the concatenation operation on two lists. This syntax is comparable to the one described
previously [29] except that we introduced the extra non- terminal restConstructs to allow
the generation of constructs with multiple cassettes without introducing parsing problems
due to direct left recursions [145].

The attributes of a part include the kinetic rates related to this part and the interaction in-
formation. For example, the attributes of a promoter include a transcription rate along with
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Figure 6.1: Workflow of generating the gene network model encoded in a DNA sequence. The
input for this process is a DNA sequence that is first broken down into parts by the scanner.
The combination of the parts is validated by the parser according to a syntactic model. After
validation by the parser, the sequence is translated by applying semantic actions attached
to the rules to transform the series of parts into a set of chemical equations. The resulting
equations can then be solved using existing simulation engines. Each step takes the output
of the previous step as input, so the workflow can start from any step if the appropriate
input is provided.
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Figure 6.2: Parse tree showing the derivation process of a two-cassette genetic construct.
In the derivation tree, terms in ,. corresponds to the non-terminals in the grammar, while
terms in [ ] are terminals, and the dashed lines indicate the transformation to terminals. The
subscripts are used to distinguish different instances of the same category.
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P1. constructs→ cassette, restConstructs{
constructs.promoter list = cassette.promoter list + restConstructs.promoter list
constructs.equation list = cassette.equation list + restConstructs.equation list
cassette.protein list = constructs.protein list
restConstructs.protein list = constructs.protein list}
P2. restConstructs→ constructs{
restConstructs.promoter list = constructs.promoter list
restConstructs.equation list = constructs.equation list
constructs.promoter list = restConstructs.protein list}
P3. restConstructs→ ε{
restConstructs.promoter list = [ ]
restConstructs.equation list = [ ]
restConstructs.protein list = [ ]}
P4. cassette→ promoter, cistron, terminator{
cassette.promoter list = [promoter.name, cistron.transcript]
cassette.equation list = cistron.equation list + promoter protein interaction(
cassette.promoter list, cassette.protein list) + transcription(promoter, cistron.transcript)}
P5. cistron→ rbs, gene{
cistron.transcript = rbs.name + gene.name
cistron.equation list = translation(rbs, gene)}
P6. promoter → pro u{
promoter.name = [pro u]; promoter.transcription rate = k1

promoter.leakiness rate = k11; promoter.repressor list = [(u, 2, k9, k9r)]
P7. promoter → pro v{
promoter.name = [pro v]; promoter.transcription rate = [k2]
promoter.leakiness rate = [k12]; promoter.repressor list = [(v, 4, k10, k10r)]}
P8. rbs→ rbsA{
rbs.name = [rbsA]; rbs.translation rate = [k3]}
P9. rbs→ rbsB{
rbs.name = [rbsB]; rbs.translation rate = [k4]}
P10. gene→ u{
gene.name = [u]; gene.mRNA degradation rate = [k5]
gene.protein degradation rate = [k7]}
P11. gene→ v{
gene.name = [v]; gene.mRNA degradation rate = [k6]
gene.protein degradation rate = [k8]}
P12. terminator → t1{
terminator.name = [t1]}

Figure 6.3: An example of attribute grammar.



77

Table 6.2: Attributes associated with non-terminals.

Non-terminals Inherited Attribute Synthesized Attributes
constructs protein list promoter list, equation list
cassette protein list promoter list, equation list
restConstructs protein list promoter list, equation list
cistron protein list transcript, equation list
promoter - name, transcription rate, leakiness rate, repressor list
RBS - name, translation rate
gene - name, mRNA degradation rate, protein degradation rate
terminator - name

a list of proteins repressing it and the kinetic parameters of the protein-DNA interactions.
For non-terminal variables corresponding to combinations of parts such as cistrons, the at-
tributes include a list of proteins, a list of promoters, and a list of chemical equations. The
equation list is used to store the model of the system behavior, while the lists of promoters
and proteins are recorded for computing the molecular interactions resulting from the DNA
sequence. The complete set of attributes used in this simple grammar is listed in Table 6.2.

If many attributes can be computed locally by only considering a small fragment of the
DNA sequence, other attributes are global properties of the system. For instance, the com-
putation of protein-DNA interactions requires access to a global list of proteins expressed
by the constructs. However, this list is not available until all of the different cassettes have
been parsed. The problem is overcome by using a multiple-pass compilation method. In
the first pass, the compiler does not do any structural validation but builds the list of pro-
teins in the system and passes the list as an inherited attribute to the second pass. In the
second pass, the promoter-protein interactions can be calculated locally at the level of each
cassette. Rules P1 to P5 define the structure of a design, while rules P6 to P12 cover the
selection of a specific part for each category. In the semantic action, the relation between
an attribute and its variable is indicated by a dot and constants are enclosed by brackets.
For instance, gene.mRNA degration rate = [k6] indicates that the value of the attribute
mRNA degration rate of a gene is a constant k6. The attribute repressor list used in P6
and P7 includes the name of the repressor, the stoichiometry, and the kinetic constants of the
forward and reverse reactions of the protein-DNA interaction. Table S1 details the parsing
steps and computational dependence of each step. Finally, the equation writing operations
are handled by functions typed in italics in Figure 6.3 and defined in Figure 6.4.

The translation of the DNA sequence into a mathematical model is available as the equationlist
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Figure 6.4: Equation generators.
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[Reactions]
R1: pro u rbsA v → pro u rbsA v + mRNA rbsA v [k1]
R2: mRNA rbsA v → φ [k6]
R3: mRNA rbsA v → mRNA rbsA v + protein v [k3]
R4: protein v → φ [k8]
R5: pro v rbsB u→ pro v rbsB u + mRNA rbsB u [k2]
R6: mRNA rbsB u→ φ [k5]
R7: mRNA rbsB u→ mRNA rbsB u + protein u [k4]
R8: protein u→ φ [k7]
R9: pro v rbsB u + 4protein v ↔ pro v rbsB u x [k10, k10r]
R10: pro v rbsB u x→ pro v rbsB u x + mRNA rbsB u [k12]
R11: pro u rbsA v + 2protein u↔ pro u rbsA v x [k9, k9r]
R12: pro u rbsA v x→ pro u rbsA v x + mRNA rbsA v [k11]
[Initial Values]
pro u rbsA v = 1
pro v rbsB u = 1
protein v = user input
protein v = user input

Figure 6.5: Chemical equations translated from a DNA sequence.

attribute of constructs. The model outputs are generated by equations generators, which
are purposely decoupled from the semantic actions. The decoupling enables the flexibility
of using different equation formats to describe a biological process. The translation of the
construct composed of the parts pro u rbsA gene v t1 pro v rbsB gene u t1 generates the
equations displayed in the [Reactions] section of Figure 6.5. Each line is composed of a
reaction index (R1 to R12), the chemical equation itself, and one or two reaction parameters
depending on the reaction reversibility. The initial values have been computed by assigning 1
to variables representing DNA sequences and prompting the user to set the initial condition
of proteins. The scripts and data used in this report are available in Dataset S1.

Expressing context-dependencies of parts function

The semantic model presented in the previous section is completely modular since the param-
eters of the model describing the construct behavior are attributes of individual parts, not of
higher order structures. For instance, in the previous model (Figures 3 and 4), translational
efficiency is primarily determined by the RBS sequence [196, 214]. This association between
RBS and translation rate was successfully used to design one of the first artificial gene net-
works [72] and is still used by many synthetic biology software applications [92, 137, 158, 175].
Yet, it is also well known that translation initiation can be attenuated by stable mRNA sec-
ondary structures [50, 52, 121]. This leads to a situation where a translational rate can no
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longer be considered the attribute of an individual part but needs to be considered as the
attribute of a specific combination of parts. This type of context-dependency can naturally
be expressed using attribute grammars since the translation reaction is computed at the
cistron level, not at the level of individual parts. Rule P5 of Figure 6.3 can be modified by
introducing a new function to retrieve the translation rate for specific combination of gene
and RBS.

P5. cistron -> rbs, gene {

cistron.translation_rate = get_translation_rate (rbs, gene)

cistron.transcript = rbs.name+gene.name

cistron.equation_list = translation(rbs, gene, cistron.translation_rate)

}

The get translation rate function checks for specific cases of interactions between an RBS
and coding sequence first. If none is found, then the default RBS translation rate is used.

If exists translation_rate(rbs, gene)

translation_rate = translation_rate(rbs, gene)

else

translation_rate = translation_rate(rbs)

endif

This approach is illustrated in Table 6.3 using previously published data demonstrating the
interference between the RBS and coding sequence [50]. Specifically, this report provides
the relation expression observed in 23 different constructs generated by combining different
variants of the RBS and MS2 coat protein gene. This data set has been reorganized in
Table 6.3 by sorting the constructs according to the RBS and gene variants they used. Three
of the constructs using the WT RBS sequence resulted in a maximum level of expression
while the expression of the gene variants ORF4, ORF5, and ORF6 were expressed at a much
lower level due to the greater stability of the mRNA secondary structure. A similar pattern is
observed for other RBS variants (RBS1, RBS2, RBS3, RBS7). For all of these RBS variants,
it is possible to define the translation rate function by associating the default translation
rate with the maximum expression rate. Specific translation rates associated with particular
pairs of RBS and gene variants are recorded separately.

Exploration of genetic design space

The semantic model in Figures 3 and 4 is a compact proof of concept example, but it does
not capture a number of features commonly found in actual genetic constructs. In order to
demonstrate that our approach is capable of modeling more realistic DNA sequences, we have



81

Table 6.3: Context-dependency of experimentally determined translation rates.

Mutant RBS ORF Expression Translation rate function
1 RBS WT ORF WT 100 translation rate(RBS WT)
6 RBS WT ORF2 100 translation rate(RBS WT)
7 RBS WT ORF3 100 translation rate(RBS WT)
17 RBS WT ORF4 3 translation rate(RBS WT, ORF4)
20 RBS WT ORF5 6 translation rate(RBS WT, ORF5)
23 RBS WT ORF6 0.3 translation rate(RBS WT, ORF6)
4 RBS1 ORF WT 100 translation rate(RBS1)
2 RBS1 ORF1 100 translation rate(RBS1)
3 RBS1 ORF2 100 translation rate(RBS1)
5 RBS1 ORF3 4 translation rate(RBS1, ORF3)
14 RBS1 ORF4 < 0.003 translation rate(RBS1, ORF4)
9 RBS2 ORF WT 100 translation rate(RBS2)
8 RBS2 ORF1 100 translation rate(RBS2)
10 RBS2 ORF3 100 translation rate(RBS2)
12 RBS3 ORF WT 100 translation rate(RBS3)
11 RBS3 ORF1 20 translation rate(RBS3, ORF1)
13 RBS3 ORF3 100 translation rate(RBS3)
15 RBS4 ORF4 0.1 translation rate(RBS4)
16 RBS5 ORF4 0.05 translation rate(RBS5)
22 RBS6 ORF WT 0.2 translation rate(RBS6, ORF WT)
18 RBS6 ORF4 80 translation rate(RBS6)
21 RBS7 ORF WT 100 translation rate(RBS7)
19 RBS7 ORF4 100 translation rate(RBS7)
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extended this semantic model (Supplementary Materials) to translate the DNA sequences of
previously published DNA plasmids that include polycistronic cassettes in different orienta-
tions [72]. This plasmid library was generated by 32 different genetic parts (three promoters:
pLtetO-1, pLs1con, ptrc-2; eight RBS: rbsA to rbsH; and four genes: tetR, cIts, lacI, and gfp
and one terminator, all in both orientations). The syntax generates 72 different single gene
expression constructs in each orientation. By combining two genes repressing each other in
a construct, it is possible to make bistable artificial gene networks that are represented in
Figure 6.6. These bistable networks can be used as a genetic switch.

To demonstrate the potential use of a semantic model to search for a desirable behavior in
a large genetic design space, we have generated the DNA sequences of all 41,472 possible
sequences (72268 RBS for the reporter gene) having the same structure as previously de-
scribed switches. All sequences were translated into separate model files and a script was
developed to perform a bistability analysis of each model. Parameters of the semantic model
were obtained by qualitatively matching the experimental results of the six previously pub-
lished switches [72] and are summarized in Table S2. Most of the automatically generated
sequences led to inherently non-bistable networks because the necessary repressor/promoter
pairs did not match. Since this specific example is particularly well understood, we could
have generated a limited number of targeted constructs. Yet, we chose to generate all possi-
ble sequences to demonstrate the generality of our approach. In particular, it was important
to evaluate the computational cost of generating and translating DNA sequences to ensure
that it would not prevent a systematic exploration of more complex design spaces. It takes
only minutes to generate 41,472 sequences and translate them into SBML files. Hence, the
computational cost of this step is negligible compared to the time required by the simulation
of the SBML files.

Bistability was tested numerically by integrating the differential equations until they con-
verged to a steady state starting from two different initial conditions. The two initial con-
ditions started with one protein level very high and the other very low and vice versa. We
characterized the bistability by computing the ratio of reporter concentration for the two
steady state values. In order to globally verify the behavior of this large population of
models, we focused on the 3,072 constructs potentially capable of bistability, 1,408 of which
were found to be bistable. We further reduced the number of constructs used to verify the
translation process from 3,072 to 384 by assuming that two constructs differing only in the
RBS in 59 of the reporter gene would produce the same ratio of steady state values. Fig-
ure 6.6 visualizes the behavior of these 384 constructs. Constructs that are not bistable have
a ratio of 1. This ratio gives insight into how the construct is expected to be experimentally
detectable. Since most experimental methods cannot give an exact value of protein concen-
tration, a high ratio is desired to rise above experimental noise. Each of the 6 windows is
analogous to the previously described two-parameter bifurcation diagram for that pair of
repressors [72]. This gives confidence that both the semantic model of DNA sequences and
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Figure 6.6: Mapping the behavior of 384 genetic constructs. Each section A to F indicates
a different selection of repressors within a toggle switch: (A) tetR and lacI, (B) lacI and
tetR, (C) lacI and cI, (D) cI and lacI, (E) cI and tetR, and (F) tetR and cI. Other networks
that cannot give rise to bistability (e.g. a construct with tetR as both genes) are excluded
as are designs that only vary the GFP RBS (see text). Each pair is explored by varying the
RBS (ordered by translational efficiency from low (RBS H) to high (RBS B) as determined
by a qualitative fit of the results of Gardner et al. [72] with consistent letter-based labels)
and calculating the detectability ratio, defined as the steady state GFP concentration in
the “on” state divided by the concentration in the “off” state. These ratios are displayed
using a color map as indicated by the legend to the right. Monostable constructs have a
ratio of 1 and are indicated by gray boxes. The ratio gives a measure of how easily the two
steady states can be distinguished, which is important due to high experimental noise. Each
pane also elucidates the traditional two-parameter bifurcation diagram of each gene pair as
the translational rates are varied by changing RBSs. Constructs near the edge of the cusp
operate near saddle-node bifurcations and are more prone to noise-induced switching. Thus,
constructs from the cusp interior are preferred for robust behavior.
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the compiler used to translate automatically generated DNA sequences give results consis-
tent with manually developed models of this family of gene networks. In the long term, the
advantage to our approach over a traditional two-parameter bifurcation is the association of
discrete parameter values with specific parts. This will prove particularly valuable when the
context-dependencies of parameter values are better documented experimentally.

This example demonstrates the benefit of building a semantic model of synthetic DNA
sequences. Even a small library of genetic parts can generate large numbers of artificial
gene networks having no more than a few interacting genes. A syntactic model describing
how parts can be combined into constructs is a compact representation of the genetic design
space generated from the parts library. While it is possible to manually build mathematical
models capturing the dynamics of some of these artificial gene networks individually, it
becomes desirable to automate the process to ensure the model consistency when building
large families of related models derived from the same parts library. By considering genetic
parts as the terminal symbols of an attribute grammar, it becomes possible to automatically
generate models of numerous artificial gene networks derived from this parts library and
quickly identify the optimal designs [80].

6.4 Discussion

Computer assisted design of synthetic genetic constructs

The parameter values used in the previous example were selected to match an extremely
small set of six experimental data points. Although the under-determination of the model
does not make it possible to precisely estimate the value of these parameters, the example
illustrates how the framework could provide valuable guidance in selecting specific parts for a
design. Considering that the exact value of parameters for parts is still a far off perspective,
the automatic exploration of the design space presented here will provide useful guidance in
construct design. For example, robust constructs from the cusp interior of the tetR/cI and
lacI/cI pairings could be built and tested while less robust switches based on the lacI/tetR
pairing would be avoided. As more is learned about these parts including the specific rates
in different genetic contexts, the predictive ability of such maps will increase. Other motifs
could be explored in a similar manner. For example, oscillators [205] could be explored by
permuting parts and calculating the model-predicted existence of oscillations as well as their
period or amplitude.

The approach presented in this report will be implemented into GenoCAD [48], the web-based
tool we have developed to give biologists access to our syntactic design framework. Through
GenoCAD, users will benefit from the syntactic and semantic models of various parts sources
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(GenoCAD provided library, MIT Registry of Standard Biological Parts, or user created parts
library). Initially, users will be able to translate their designs into SBML files that could be
imported in SBML-compliant simulation tools (www.sbml.org/SBML_Software_Guide) for
further analysis. At a later stage, simulation results and more advanced numerical analyses
will be seamlessly integrated in GenoCAD’s workflow. One of the major obstacles toward the
implementation of such semantic models in GenoCAD is the development of a data model
allowing users to understand and possibly edit the functional model of the parts they use.

A function description language called Genetic Engineering of living Cells (GEC) was re-
cently introduced to specify the properties of a design [158]. GEC is capable of finding
a DNA sequence that implements the desirable phenotypic functions. Several other soft-
ware applications have been recently released to design biological systems from standardized
genetic parts. ASMPART [175], SynBioSS [92], a specialized ProMot package [137] and Tin-
kerCell (www.tinkercell.com) illustrate this trend. These tools are still exploratory. One of
their limitations is the requirement to define parts in a specialized format, such as SBML or
Modeling Description Language (MDL). Furthermore, instead of defining parts interactions
in the underlying parts data models, these tools rely on the user to manually define them
textually [92] or graphically [137]. As a result of this specific limitation, several of these tools
do not appear suitable for the automatic exploration of a design space. Moreover, they tend
to rely on a loosely defined relationship between the structure of the genetic constructs and
their behavior. They allow parts to be assembled in any order without regard for biological
viability.

Still, the scripts developed to generate our results are of lesser importance than the appli-
cation of the theory of semantics-based translation using attribute grammars to the trans-
lation of DNA sequences into dynamical models representing the molecular interactions
they encode. Since this approach is used to develop the compilers of many computer lan-
guages [7, 198], a wealth of existing theoretical results and software tools can find new ap-
plications in the life sciences. For instance, we have implemented semantic models of DNA
sequences into two widely used but very different programming environments, Prolog [22]
and ANTLR [153]. Future research efforts will need to investigate the pros and cons of dif-
ferent compiler generators and different parsing algorithms for analyzing even genome-scale
DNA sequences and how they impact the ability of grammars to express various features
of DNA sequences. Also, the type of attributes associated with parts is flexible. Here we
primarily use mass action kinetic rates as attributes, but we could just as easily have used
an emerging synthetic biology unit like polymerase per second (PoPS) [32, 111].

Ultimately, tools capable of automatically generating models of the behavior of synthetic
DNA sequences will be important for the advancement of synthetic biology [80]. However,
these tools will need to be able to express that the contribution of a genetic part to the phe-
notype of an organism depends largely on the local and global context in which it is placed.

www.sbml.org/SBML_Software_Guide
www.tinkercell.com
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The interference between RBS and coding sequence is just one example of the biological
complexity that computer assisted design applications will have to properly consider.

Functional characterization of genetic parts

Before it will be used to build synthetic genetic systems meeting user-defined specifica-
tions, the semantic model of DNA sequences presented in this report will be instrumental
in the quantitative characterization of structure-function relationships in synthetic DNA se-
quences. The vision of applying quantitative engineering methods to biological problems
has been recognized as a promising avenue to biological discovery [55]. The critical role
of artificial gene networks in the characterization of molecular noise affecting the dynamics
of gene networks [165] illustrates the potential of synthetic biology as a route to refine the
understanding of basic biological processes.

Ongoing efforts aim to carefully define how parts should fit together syntactically and what
attributes are needed to characterize their function. For example, the sequence between the
RBS and the start codon has been shown to play an important role in translation rate [214].
The question arises whether the RBS should be defined to include the spacing, or if there
should be a separate parts category for the spacer. The rapid development of gene synthesis
techniques [47] will make it possible to investigate these questions with a base-level resolution.
Beyond libraries of parts for designing expression vectors, similar curation efforts could lead
to the identification of parts in genomic sequences, whereby the hypothetical function of these
parts as they are expressed in attribute grammars could be tested by genome refactoring [35].

6.5 Supporting Information

Table S1 Computation dependence corresponding to the derivation tree in Fig. 2 The com-
putation starts from the leaves of the tree, and the semantic values computed are transferred
to upstream nodes. The computation of each node cannot proceed until all of its sub-trees
are computed. For example, the computation of semantic values of < constructs1 > (2) is
pending until its subtrees < cassette1 > (3) and < restConstructs1 > (4) are computed.
Found at: doi:10.1371/journal.pcbi.1000529.s001 (0.01 MB PDF)

Table S2 List of parts used in the “exploration of genetic space” section and values of asso-
ciated attributes.
Found at: doi:10.1371/journal.pcbi.1000529.s002 (0.01 MB PDF)

Dataset S1 Zip file containing the scripts and data used in this report.
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Found at: doi:10.1371/journal.pcbi.1000529.s003 (0.03 MB ZIP)
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Chapter 7

Outlooks and Perspectives

Standardization of parts is one of the most important concepts in synthetic biology. The
MIT Registry of standard biological parts is quite successfully in implementing this idea,
evidenced by the largest parts collections (around 10,000 parts at this moment) and the
largest user base (more than 1000 new users per year). In the work presented here, two
chapters are directly related to the Registry: a comprehensive analysis of the Registry is
presented at Chapter 3, and a domain-specific grammar for BioBricks has been developed
and presented in Chapter 5. There are a lot of efforts and motivations to improve the
Registry, or even to build new Registries to better support the community of synthetic biol-
ogy. Stanford University hosts a BioBrick Parts Catalog (www.biobrickparts.org) which
provides Application Programming Interface (API) to support the third-party software de-
velopment. Joint BioEnergy Institute (JBEI) is building yet another Registry of parts –
JBEIR (https://www.jbeir.org/), and recently it has been chosen as the CAD tool for
the BioFab project. As more and more parts and Registries are available to the public, there
are a few issues the whole community should think carefully to address so that together
we can develop a better home for parts, which ultimately will facilitate the development of
synthetic biology. Right now the available information of a part is sequence-centric, but the
information of its functionality is somehow scarce. For example, what’s the primary func-
tion of a particular part (in what context)? how is this part measured? how reliable is this
part (in a context sense and also in an evolutionary sense)? This type of information is as
important as the sequence itself. Kelly et al. undertook a pioneering step in measuring the
transcription strength of BioBrick promoters using an in vivo reference standard in different
laboratories world wide [111]. Canton et al. calibrate a particular BioBrick device BBa F2620
and reported the result in a proposed datasheet [32]. As the calibration of parts progresses,
attributes of parts will be available for developing the semantic models described in Chap-
ter 6. The next question will be how do we associate those attributes with parts, or how do
we represent parts? Standardizing the part representation will make it much easier for data
exchange and communication between different registries. Cooling et al. recently proposed
to use CellML [130, 131] to describe parts, which makes it possible to develop mathematical
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models for biological systems in a modular manner [45]. However, it should be noted that
CellML is ODE (Ordinary Differential Equation) based, which makes it incompatible with
stochastic simulation. Another option to represent parts is to utilize the ontology techniques
being developed by the bioinformatics community [15, 59]. Sharing information, synchro-
nizing data among registries or even interfacing existing bioinformatics databases such as
RegulonDB [98] will be a very challenging task as well. The community will need to develop
a protocol for sharing parts information which allows for dynamical data integration. The
distributed Annotation System (DAS) [105] which has been widely used in both the genome
and protein bioinformatics communities, seems to be a good starting point towards this goal.

GenoCAD itself is undergoing the second phase of development. One significant new fea-
ture is the integration of the semantic model presented in Chapter 6 into the GenoCAD
web application. This feature will allow users to design a biological sequence in GenoCAD,
translate the sequence into an SBML file using the built-in compiler, and run a computer
simulation to check whether its performance fits the user’s expectation. However, the im-
plementation of this feature is non-trivial. The main hindrance is to find a suitable data
model for presenting the semantic models. As the parts information is part of a semantic
model, the model should have the capability to be dynamically updated to reflect the parts
information in the database. A proof-of-concept semi-dynamic compiler has been imple-
mented thus far, but a considerable amount of effort is still required to make it production
grade. The rule-based design in GenoCAD is very useful and elegant in guiding small scale
genetic constructs. However, it is difficult to scale up the design for applications such as
an artificial yeast chromosome. One possible approach is to allow free-style design and use
the built-in compiler to debug the genetic code. This is similar to computer programming:
most sophisticated programming environments allow programmers to write source code as
they like, but provide a compiler for them to debug the code. Design optimization is also
essential for CAD tools, and we can consider the integration of some optimization methods
such as codon optimization into GenoCAD to enhance the gene expression of a design. Fi-
nally, we also would like to explore the new research direction of grammatical inference. At
this moment, all the grammatical models in GenoCAD were built by human experts with
necessary domain specific knowledge. We would like to employ learning algorithms being
developed in computational linguistics to automate the knowledge mining process.

We have shown here that the field of synthetic biology holds great promise to shed light on
fundamental questions in life science and improve the living conditions for human beings. We
introduced the linguistic methodologies to design DNA sequences, and developed a computer
assisted design tool (GenoCAD) for the synthetic biology community. In the work presented
in this dissertation, both syntactic and semantic aspects of synthetic DNA sequences have
been explored. The results suggest that linguistic approaches will find new applications in
the area of synthetic biology, and GenoCAD will play an important role in the design and
verification of synthetic DNA sequences.
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