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Active Transport in Chaotic Rayleigh-Bénard Convection

Christopher Omid Mehrvarzi

(ABSTRACT)

The transport of a species in complex flow fields is an important phenomenon related to
many areas in science and engineering. There has been significant progress theoretically and
experimentally in understanding active transport in steady, periodic flows such as a chain of
vortices but many open questions remain for transport in complex and chaotic flows. This
thesis investigates the active transport in a three-dimensional, time-dependent flow field char-
acterized by a spatiotemporally chaotic state of Rayleigh-Bénard convection. A nonlinear
Fischer-Kolmogorov-Petrovskii-Piskunov reaction is selected to study the transport within
these flows. A highly efficient, parallel spectral element approach is employed to solve the
Boussinesq and the reaction-advection-diffusion equations in a spatially-extended cylindri-
cal domain with experimentally relevant boundary conditions. The transport is quantified
using statistics of spreading and in terms of active transport characteristics like front speed
and geometry and are compared with those results for transport in steady flows found in
the literature. The results of the simulations indicate an anomalous diffusion process with a
power law 2 ≤ γ ≤ 5/2 – a result that deviates from other superdiffusive processes in simpler
flows, and reveals that the presence of spiral defect chaos induces strongly anomalous trans-
port. Additionally, transport was found to most likely occur in a direction perpendicular to
a convection roll in the flow field. The presence of the spiral defect chaos state of the fluid
convection is found to enhance the front perimeter by t3/2 and by a perimeter enhancement
ratio rp = 2.3.

This work was supported by NSF grant award number: 0747727
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Chapter 1

Introduction

1.1 Motivation

The transport of a scalar species is an important phenomenon related to many areas of scien-
tific and engineering interest. Species transport in a bulk fluid motion which does not affect
the motion of the fluid is defined as passive transport. Examples of passive transport include
dye diffusing within a liquid, advecting particles in the Earth’s atmosphere and oceans, and
the mixing of non-reacting chemicals. Active transport is defined by an additional consider-
ation of a source, or reaction term to the transport equation – this additional term may also
be coupled to the fluid velocity field to add complexity to the transport model. Examples of
active transport include the combustion of premixed gases, transport of biological organisms
in the oceans, and chemical oscillators, like the extensively studied Belousov-Zhabotinski
reaction which has been quantified to yield chaotic dynamics even in the presence of simple
stirred flows [36]. Within the scope of this thesis, the investigation of active transport is lim-
ited to the presence of a reaction and a traveling front that does not affect the surrounding
fluid flow.

The transport of a passive species in a flow field is described by the advection-diffusion
(AD) equation. These systems have been studied both numerically and experimentally for a
range of flow regimes – from time-independent to turbulent flow. There has been significant
progress understanding transport in steady periodic flows such as a ring of vortices. The
transport of a passive species in these simplified time-independent flows can be described
as an overall normal diffusive process which can be modeled by an effective diffusion co-
efficient due to the presence of a flow field. The presence of time-independent flows have
been shown theoretically [31] and experimentally [38] to enhance the transport of a passive
scalar where the effective diffusion coefficient scales proportionally with the square-root of
the fluid velocity, v1/2. Transport is also enhanced in time-dependent flows. Experiments
done with time-dependent cellular flow show transport enhanced 1− 3 orders of magnitude

1



2

higher than that that of time-independent flows [37]. Furthermore, it has been shown that
transport in this flow regime is independent of the molecular diffusion of the tracer used –
a conclusion that further reinforces the importance of the flow field characteristics on the
species transport. The results of these past experiments have shed light on a well-defined
transition from slow, diffusion-limited transport in time-independent flows to fast advective-
dominated transport in turbulent flows.

Likewise, active transport has an extensive literature. Much work has been done with
transport described by reaction-diffusion (RD) systems due to their complex dynamics and
pattern-forming qualities [8]. These systems have been used to model such biological phe-
nomenon as action potential dynamics in neurons [15], heart dynamics [5], and chemical
morphogenesis [41]. However, life is not static; many biological systems experience trans-
port due to a bulk fluid motion. An example of this can be seen in the motion of plankton
blooms in the Earth’s oceans. The motion of these species in the oceans is important for the
regulation of carbon and other chemicals in the atmosphere and are significant in regulating
global temperatures [12]. The transport of an active scalar species within a flow field is
described by the reaction-advection-diffusion (RAD) equation. Typically in RAD systems
the fluid advection is significant to the motion and shape of the reaction front. A well-known
theory described by Fisher and Kolmogorov [19] predicts front propagation speed as a func-
tion of molecular diffusion coefficient and reaction kinetics; however, this front speed changes
with advection and a more detailed theory has yet to be developed.

There have been many studies to develop this theory, especially for active transport in
simple laminar flow regimes. Active transport with reaction laws described by the Fischer-
Kolmogorov-Petrovskii-Piskunov (FKPP) and Arrhenius type were explored in numerical
simulations to show enhancement for front prorogation due to the presence of simple flows
[1]. In systems with open-streamline flows, the front velocity, vf was found to be propor-
tional to the typical fluid velocity, U . In cellular flows, the front velocity is enhanced by a
factor U1/4 and U3/4 depending on whether the advection is relatively fast or slow [2]. It has
been shown that the presence of these flow fields enhance the reaction due to fluid motion
distorting the reaction fronts and thereby increasing the surface area for the reaction kinetics
to occur. However, critical values of fluid advection in cellular flows do exist which can also
lead to reaction front extinction [42]. Similar front motion inhibition in addition to other
interesting dynamics have been seen in experiments with propagating reaction fronts of an
excitable Belousov-Zhabotinski (BZ) reaction. Experiments with the BZ reaction in a driven
oscillatory chain of vortices identified a mode-locking phenomenon of the reaction front as a
function of the amplitude and frequency of the flow field oscillation [29]. This mode-locking
phenomenon is common in many systems in nature, an example of which include circadian
rhythms [14]. Furthermore, experiments showed the chemical oscillations of the BZ reaction
synchronized with the flow field oscillations when the transport in the flow became superdif-
fusive [28]. Transport inhibition of the reaction front was seen in this oscillating chain flow
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when an overall wind was imposed. In these flows, the freezing of the propagation fronts was
a function of the range of imposed winds and the strength of the vorticity of the flow field.
This front freezing, or pinning, has also been found in cellular flows [33].

Another novel method that is being pursued to describe active transport in advecting flows is
through the use of burning invariant manifolds (BIMs). These manifolds are the active trans-
port analogy to Lagrangian coherent structures (LCS) for passive transport. LCS, known
by some as the “hidden skeleton of fluid flows”, are more rigorously described as the most
local repelling or attracting strainlines in a flow field [30]. These stainlines have been used
to effectively identify barriers in a flow field that prohibit transport of advected material.
BIMs can be derived theoretically by modeling a propagating front by a system of ordinary
differential equations [22]. Experiments have shown that these propagating fronts of the BZ
reaction converge to these theoretical calculated BIMs for time-independent and periodically
driven flows [25]. Furthermore, experimental evidence suggest that these BIMs collapse onto
LCS in the limit of advection-dominated transport [4].

Indeed we can see from the wealth of research that has been done on RAD and AD systems
that advection has a significant impact on the transport of a species. One open question
that remains is whether the results that have been discussed so far are recoverable in sys-
tems where the convecting fluid is complex, i.e., flow fields that exhibit spatiotemporal
chaos. It is known already that chaotic transport can occur in simple time-dependent flow
fields. Aref’s [3] numerical investigations of simple mixing procedures of a passive tracer in
a two-point vortex flow suggests the existence of chaotic mixing. Numerical simulations of
spatially-extended fluid convection domains [7] showed passive transport enhancement due
to the presence of more complex, spiral defect chaos flow field that scaled with laws similar
to those found in experiments of cellular rolls in Rayeligh-Bénard convection [37]. The ex-
istence of the two transport scaling regimes is described by the effect of local wavenumber
orientation. For large advection-dominated transport, the diffusivity of the passive species
is enhanced locally in the direction orthogonal to the local wavevector but suppressed in the
direction of the local wavevector [7].

The idea of transport enhancement in these complex flows is an attractive idea for engineering
applications at the micro- and nano-scale where transport enhancement which cannot be done
by inducing turbulence due to the small characteristic length scales. One such example is
“lab-on-a-chip” micro-fluidic devices [17]. One question that remains unaddressed is how a
reaction front behaves in the presence of a spatially-extended, complex flow field. This thesis
will address this question by studying direct numerical simulations of the transport of an
active scalar species in a three-dimensional, time-dependent flow field given by the chaotic
state of Rayleigh-Bénard convection. The active transport that is studied is a unidirectional,
“burn-type” reaction where a species transforms from states A → B. This thesis will shed
light on this fundamental example of transport in spatially-extended systems.
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1.2 Thesis outline

In the preceding section, some current research related to active transport in various flow
conditions was presented to motivate the reader to the topic. Chapter 2 of this thesis will dis-
cuss theoretical details about two different flow fields: a ring of vortices and Rayleigh-Bénard
convection. The equations governing each of the flow phenomenon and their non-dimensional
parameters will be discussed to highlight important physical insights. Additionally, the equa-
tions governing the transport of a species will be introduced followed by a presentation of
the important time scales relevant to the transport of an active species in Rayleigh-Bénard
convection. Chapter 2 will conclude with a discussion of the computational fluid dynam-
ics solver, Nek5000, and the numerical technique used to solve the full partial differential
equations. Chapter 3 will present the results of the simulations proposed in the preceding
chapter. The techniques used to quantify the transport will be defined followed by a discus-
sion of the analysis. Chapter 4 will conclude this thesis with suggestions on future research
paths forward.



Chapter 2

Problem description and numerical

procedure

2.1 Introduction

In this chapter, two flow fields central to this thesis investigation of transport will be dis-
cussed: a time-independent ring of vortices, and a time-dependent, chaotic state of Rayleigh-
Bénard convection. By doing so, we will reinforce the evidence that time-independent con-
vection rolls have on the transport of a species, and then investigate how the spatiotem-
poral chaos of these convection roll patterns further affects these transport characteristics.
The equations describing these phenomena and important parameters that arise from non-
dimensionalization will be explored. The computational domains for each of the flow fields
will be presented with their respective, experimentally relevant boundary conditions. A dis-
cussion of the numerical procedure to solve the partial differential equations will conclude
this chapter.

2.2 Ring of vortices

A time-independent chain of vortices is a simple laminar flow that has many real-world
applications such as mixing in industrial processes. As reviewed in the previous chapter,
transport of both active and passive species within this type of flow field have been well
documented. A common function used to model these type of flow fields in a rectangular
domain is

ψ(x, y) =
Uλ

2π
sin

(

2πx

λ

)

sin

(

2πy

λ

)

(2.1)
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where ψ(x, y) is the stream function of the x-direction and y-direction velocity fields u(x, y)
and v(x, y), λ represents a wavelength, and U is the characteristic velocity of the flow field.
The aspect ratio for this rectangular domain is defined as

Γ =
y

x
. (2.2)

The corresponding contour plot of the stream function in Eq. (2.1) with a wavelength λ = 2
and a characteristic fluid velocity U = 1 for Γ = 10 is presented in Fig. 2.1 as an example.

Figure 2.1: The stream function ψ(x, y) for a two-dimensional, time-independent ring of
vortices for a domain with an aspect ratio Γ = 10. The colors indicate the magnitude of the
stream function and the directionality of the rotation.

The progression of a nonlinear reaction within this type of flow field is shown in Fig. 2.2 for
times (a) t = 0 (b) t = 0.2 and (c) t = 0.4. The reaction highlights the behavior of these
“burn-off” type reactions where a mixture of reactants which in the figure is represented
in blue undergoes a reaction and transforms into products which are represented in red.
Previous studies of active transport in these time-independent flow fields show front speed
enhanced by a factor of U1/4 in a “fast” advecting regime and enhanced by a factor of U3/4 in
a “slow” advecting regime [1] [2]. Simple explicit numerical simulations of transport within
the flow field depicted in Fig. 2.1 show a similar transport enhancement regime as can be
seen in the results in Fig. 2.3. Both the results shown in Fig. 2.3 and within the literature
suggests that the presence and strength of the convection rolls have and affect on the reaction
front speed. This thesis will investigate this mode of enhancement further by the addition of
varied roll orientation within a large spatially-extended domain due to chaotic flow patterns.
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(a)

(b)

(c)

Figure 2.2: The evolution of a reaction in a two-dimensional, time-independent ring of
vortices for Γ = 10 at times (a) t = 0, (b) t = 0.2, and (c) t = 0.4. Red represents the
products and blue represents the reactants.

10
0

10
1

10
0.1

10
0.2

10
0.3

U

〈v̄
f
〉

 

 

Da=10−1

Da=1

〈v̄f〉 ∝ U
1

4

Figure 2.3: Transport enhancement in a two-dimensional ring of vortices. Here the average
speed of the reaction front 〈v̄f 〉 is plotted as a function of the characteristic fluid velocity U
for Damköhler numbers Da = 10−1 and Da = 1 on a log-log plot. The black line indicates a
curve fit with a slope equal to 1/4. This power law behavior is similar to those found in [2]
for advection-dominated reactions.
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2.3 Rayleigh-Bénard convection

Rayleigh-Bénard convection is the natural convection that occurs when a horizontal layer of
fluid is heated from below and cooled from the top normal to the direction of the gravitational
force. This results in a temperature gradient across the domain that causes a change in
density in a quiescent fluid and results in a buoyancy force exerted in the direction of gravity.
This buoyancy force is matched by the viscous forces in the fluid in the opposing direction
which prevents fluid motion. The ratio between the buoyancy and viscous forces can be
quantified by the Rayleigh number,

R =
αgd3

νκ
∆T (2.3)

where β is the coefficient of thermal expansion, g is the gravitational constant, ν is the
kinematic viscosity, α is the thermal diffusivity, and ∆T is the temperature difference, Th −
Tc. In this form, the Rayleigh number can be seen as a non-dimensional measure of the
temperature difference across the domain – the Rayleigh number increases as the temperature
difference ∆T increases. When ∆T reaches a critical value, the buoyancy force overcomes
the viscous force which causes fluid motion to begin. The critical Rayleigh number, Rc, is
defined as the Rayleigh number at which this convective instability occurs. The quantity
used to describe the Rayleigh number relative to the critical Rayleigh number is the reduced
Rayleigh number which is defined as

ǫ =
R−Rc

Rc

. (2.4)

Rayleigh-Bénard convection is the canonical form for studying nonlinear and complex phe-
nomenon such as the weather due to its experimental accessibility. Large spatially-extended
cylindrical domains, like the one shown in Fig. 2.4 are important to these types of studies
and will be the domain investigated in this thesis. The critical Rayleigh number for this
domain was determined experimentally to be Rc ≈ 1708 [8]. At a Rayleigh number of
Rc , time-independent convection rolls develop across the domain. When the temperature
difference is increased further the convection rolls undergo another instability and become
time-dependent. In this phase, the convection rolls begin forming intricate patterns, merging
and annihilating with each other to form complex patterns of spirals and defects. When the
temperature difference is increased further, the convection rolls break down into a cascade
of smaller eddies until the flow becomes fully turbulent.

The aspect ratio for the convection domain shown in Fig. 2.4 is defined as the ratio of the
cylinder’s radius to the depth,

Γ =
r0
d

(2.5)
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Figure 2.4: Schematic of a spatially-extended cylindrical Rayleigh-Bénard convection cell.
The top wall is held at a cold temperature Tc and the bottom wall a hot temperature Th.
The width of the domain is d and r0 is the radius. The direction of the gravitational field is
indicated by g.

where r0 is the radius and d is the depth of the domain. For the spatially-extended systems
that are of interest in this thesis, aspect ratios of Γ ≥ 10 are investigated. Typical temper-
ature fields to the pattern-forming range of Rayleigh-Bénard convection are shown in Fig.
3.1(e) for the Γ = 10 domain and in Fig. 3.2(c) for the Γ = 40 domain.

(a) (b)

Figure 2.5: Typical flow fields visualized by midplane temperature values for the (a) Γ = 10
and (b) Γ = 40 domains. The red color represents hot rising fluid while the blue color
represents cold sinking fluid. Both of these flow fields exhibit spatiotemporally chaotic
dynamics at a Rayleigh number of R = 6000 (ǫ = 2.51).
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2.3.1 Governing equations

The partial differential equations that govern the fluid flow are the Navier-Stokes equations
where the body force is represented with a buoyancy term that is a function of the density
gradient in the fluid. In Rayleigh-Bénard convection, this density gradient is assumed to be
a function of only temperature – a common assumption which is known as the Boussinesq
approximation. The Boussinesq approximation is mathematically described as

(ρ∞ − ρ) ≈ ρβ (T − T∞). (2.6)

where ρ∞ and T∞ are the reference density and temperature, respectively, and β is the
volumetric thermal expansion coefficient which measures the change in density due to tem-
perature while the pressure is held constant. The resulting momentum, mass and energy
equations once the Boussinesq approximation is applied are

σ−1(∂t + ~u •∇)~u(x, y, z, t) = −∇p +∇2~u+RT ẑ (2.7)

∇ • ~u = 0 (2.8)

(∂t + ~u •∇)T (x, y, z, t) = ∇2T (2.9)

where ∂t is the time derivative, and ~u, T , and p are the velocity, temperature, and pressure
fields, respectively, as a function of cartesian coordinates (x, y, z) and of time t. Equations
(2.7)-(2.9) are known as the Boussinesq equations. The Prandtl number σ is defined as

σ =
ν

κ
. (2.10)

Equations (2.7)-(2.9) are non-dimensionalized by the vertical thermal diffusion time, d2/κ,
i.e. the amount of time it takes for heat to travel across the depth of the domain, d.

The boundary conditions for this problem are as such: A no-slip boundary condition is
imposed for the velocity field ~u along all walls of the non-moving domain,

~u = 0. (2.11)

For the temperature field, conducting surfaces are selected for the boundary condition along
the sidewalls of the domain,

T (z) = 1− z (2.12)
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with fixed temperatures Th and Tc at the top and bottom surfaces. The initial temperature
fields adhere to Eq. (2.12) with superimposed random thermal perturbations to break sym-
metry in the problem. Since there is no dynamical equation for pressure it does not require
boundary conditions.

2.3.2 Chaos in both space and time

The spirals and defect patterns that emerge in the complex flow regime of spatially-extended
systems are characteristic of spatiotemporal chaos, i.e. chaos not only temporally but spa-
tially as well. Many techniques have been developed to quantify temporally chaotic dynamics
since the phenomenon was first identified in Edward Lorenz’s now seminal paper on aperi-
odic dynamics in a deterministic system [21]. Since then, temporal chaos has been identified
and studied in simple mathematical models [24] and experimental systems alike. In fact, a
period doubling cascade to chaos was identified in Rayleigh-Bénard experiments with mer-
cury [20]. The methods that have been developed to quantify these dynamics are based
on Lyapunov exponents which quantify separation of trajectories in phase space [43]. Using
Lyapunov and phase space diagnostics have been particularly useful for analyzing experimen-
tal evidence since one is able to reconstruct attractors by using time series signals. However,
although these methods are useful for quantifying low-dimensional systems, more work needs
to be done to use these tools to explore high-dimensional, spatially complex systems. Only
recently have developments been made to explore and quantify these far-from-equilibrium
systems. Egolf employed these Lyapunov diagnostics to calculate the fractal dimension of
Rayleigh-Bénard convection, i.e., the number of degrees of freedom in a spatially-extended
system that contribute to the chaotic dynamics. Their conclusions showed that the chaos
was extensive and that the fractal dimension of the system increases linearly with the system
volume [10]. The chaotic degrees of freedom were found to correlate with the creation and
annihilation of defects in the flow pattern [10]. Karimi and Paul [16] went further and found
that the leading order Lyapunov exponent could be used to track topology features in the
flow field that contributed to the chaotic dynamics. Their analysis showed that changes from
boundary-dominated to bulk-dominated dynamics occur as the system size increased.

2.4 Transport equations

The equations governing the active transport of a species in a flow field is given by the RAD
equation,

(∂t + ~u •∇)c = L∇2c+Daf(c) (2.13)

where c is the concentration field as a function of cartesian coordinates (x, y, z) and time t,



12

L is the Lewis number, Da is the Damköhler number, and f(c) is the reaction term that
is a function of the concentration field. The Lewis number is defined as the ratio of the
molecular to thermal diffusivity,

L =
D

κ
, (2.14)

where D is the molecular diffusivity of the tracer used. The Damköhler number is important
in measuring the “strength” of the reaction term. Specifically, it is the ratio of the advection
to reaction time scales

Da =
τV
τR

(2.15)

where τV is the advection time scale and τR is the reaction time scale. An AD equation can
be recovered to model passive transport as the Damköhler number approaches zero due to
the reaction time scale approaching infinity.

For the numerical simulations carried out, a simple nonlinear reaction law is selected for the
function f(c) that appears in Eq. (2.13). The nonlinearity is named the FKPP reaction term
and is similar to the one studied in [1] where the function depends on the concentration of
reactants, (1− c) and products, c. Applying this reaction law, the function f(c) becomes

f(c) = c(1− c). (2.16)

The reason for selecting this reaction can be seen by observing its behavior across a range
of reactants and products shown in Fig. 2.6. Fig. 2.6 shows that the reaction function f(c)
is at a maximum when the concentration of the species is at c = 0.5, and is zero at values
of c = 0 and c = 1. This means that no reaction occurs when the concentration field is
fully saturated with reactants (c = 0) or products (c = 1), and that the maximum reaction
rate occurs at an equal concentration of reactants and products (c = 0.5). This behavior is
consistent with the “burn-off” type model that is desired and is similar to physical systems
with combustion-like reactions [32].

Another form of the transport equation described in Eq. (2.13) can be formulated to rep-
resent an AD system. In this form, the AD equation is non-dimensionalized by the vertical
diffusion time of a scalar species, d2/D, and is represented by

(∂t + ~u •∇)c =
1

P
∇2c. (2.17)

By non-dimensionalizing the AD equation by the molecular diffusion time constant, the
parameter P emerges in the equation which is the Péclet number. The Péclet number is a
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Figure 2.6: The reaction function in the RAD equation used to model the “burn-off” type
reaction. In this model, no reaction takes place for saturated values of reactants (c = 0) or
products (c = 1) and reaches a maximum at equal concentrations of reactants and products
(c = 0.5).

measure of the relative strength of advection of the fluid to the molecular diffusion of the
species and is defined as

P =
d||u||

D
, (2.18)

where ||u|| is the fluid velocity. It can be deduced from the comparison of the Péclet and
Lewis numbers that these two parameters are related physically. In fact, the Péclet number
is inversely proportional to the Lewis number and they are related by the expression

P =
U

L
(2.19)

where U is a characteristic fluid speed. Equation 2.13 will be solved simultaneously with
Eqs. (2.7)- (2.9) to determine the behavior of the species spreading in the presence of the
chaotic flow field. The lateral walls in Fig. 2.4 are chosen to be impermeable to the scalar
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species to satisfy the boundary condition,

n̂ •∇c = 0. (2.20)

2.5 Experimentally accessible parameter values

The four non-dimensional quantities that govern the physics of the problem at hand are the
Rayleigh, Prandtl, Lewis (or Péclet), and Damköhler numbers. The combination of these
values create a very large parameter space by which transport may be studied. The goal
of this section is to determine the appropriate parameter space that will orientate the nu-
merical results towards those that are experimentally relevant. The factors that dictate the
parameter space will be through the combination of values that are experimentally accessible
and yield comparable time scales to see the interaction between the three phenomenon: the
reacting, diffusing, and advecting time scales.

Experimentally, the values of Lewis numbers that can be investigated are dictated by material
properties, namely, the diffusion coefficient of the material used as tracers in experiments.
In the experiments carried out in [37] and [38], a particulate impurity (vinyl toluene t-
butylstyrene latex spheres) and methylene blue were used as the tracers which have diffusion
coefficients of D = 1.74× 10−8 cm2/s and D = 5.7× 10−6 cm2/s, respectively. The diffusion
coefficient in these cases are relatively small values. The corresponding Lewis numbers for
this range of diffusion coefficients are 10−3 ≤ L ≤ 10−1. These values of Lewis numbers were
also investigated in the numerical studies done in [7]. It is in this range of Lewis numbers
that one is able to study a range of transport regimes from diffusion-dominated to advective-
dominated transport. The corresponding Péclet numbers for this range of Lewis numbers
are 10 ≤ P ≤ 103.

Typical advection time scales for Rayleigh-Bénard convection are given in Fig. 2.7 for a range
of reduced Rayleigh numbers. This thesis is interested in exploring transport in Rayleigh-
Bénard convection exhibiting spatiotemporal and spiral defect chaos, a phenomenon which
occurs at Rayleigh numbers ranging from 2000 ≤ R ≤ 104. In this range of Rayleigh
numbers, the advection time scales are in the range of τV ≈ 6 to τV → 0. Another useful
way to quantify the advection time scale is to look at the characteristic non-dimensional
speeds across different Rayleigh number flows. Figure 2.8 displays values of characteristic
flow speeds as a function of the reduced Rayleigh numbers. For the range of Rayleigh
numbers that are of interest, the magnitude of the non-dimensional speed is on the order of
O(10).

Since the Lewis numbers are restricted to values based on what is accessible to experiments,
and the Rayleigh numbers are decided to be values that yield spatiotemporal chaos, the
Damköhler numbers will be used as the parameter to achieve a balance between the reaction
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Figure 2.7: Typical advection time scales τV for a range of reduced Rayleigh numbers ǫ. The
black solid line is a curve fit with a slope equal to −1 on a log-log plot.

time scale and the diffusion and advection time scales. In particular, we would like to achieve
a time scale relationship that satisfies the inequality expression

τR ≤ τV < τD. (2.21)

Equation (2.21) signifies that the reaction should be the fastest phenomenon in the problem,
or that it should be comparable to the advection time scale. In either case, the diffusion
should be the longest phenomenon in the problem in order to model the most physically
relevant description. This desired time scale balance is described further in [42].

A description of the time scales in terms of the non-dimensional parameters are needed to
be able to satisfy Eq. (2.21). To do so, we first non-dimensionalize the reaction, advection,
and diffusion time scales by the vertical diffusion time for heat τ = d2

α
which yields

τ ∗R =
τR
d2/α

, (2.22)

τ ∗V =
d2/α

d/||u||
, (2.23)
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Figure 2.8: Typical characteristic fluid speed U for a range of reduced Rayleigh numbers ǫ
for the spatially-extended cylindrical domain investigated. The black solid line is a curve fit
with a slope equal to 6.

and

τ ∗D =
d2/D

d2/α
(2.24)

where ||u|| is the magnitude of the fluid velocity. Noting that the non-dimensional, charac-
teristic fluid speed is

U =
d

||u||
, (2.25)

we can now use Eqs. (2.22)-(2.24) in conjunction with the definition in Eq. (2.25) to
determine the Damköhler numbers necessary to achieve the desired time scale conditions
that satisfy Eq. (2.21). By inspection of Fig. 2.8, it is seen that for the Rayleigh numbers
of interest the characteristic fluid speed is on the order of O(10) and therefore the desired
reaction time scale should be on the order of O(10) as well. By using the information about
the characteristic fluid speed U and noting that the Lewis numbers are restricted to those
that are experimentally accessible, the Damk ohler number range that will satisfy Eq. (2.21)



17

is

0 ≤ Da ≤ 1. (2.26)

One area of active transport that is of importance to the scientific community is the com-
bustion of premixed gases. These type of reactions are generally “fast” compared to the
characteristic fluid velocity, and therefore have very large Damköhler numbers. Approxi-
mate values of front speed and reaction time scales are given in Table 2.1 for methane and
hydrogen. Upon inspection of Table 2.1, it can be seen that the very small reaction time
scales yield Damköhler numbers in the range of 1.5 × 104 ≤ Da ≤ 2.6 × 106. In this large
Damköhler number regime, the transport is reaction-dominated and advection rolls have
little effect on the transport of the species.

pre-mixed gas τR(s) vf (m/s) Da

CH4 1.5× 10−4 0.4 O(104)
H2 2.6× 10−6 3 O(106)

Table 2.1: Values of τR, vf , and Da for combustion of methane (CH4) and hydrogen (H2).

To summarize, the relevant non-dimensional time scales to the transport problem are listed
below as functions of the relevant non-dimensional parameters:

τ ∗V =
1

U
, (2.27)

τ ∗R =
1

UDa
, (2.28)

and

τ ∗D =
1

L
. (2.29)

Summarized below are the simulations that will be carried out and analyzed in this thesis
and the corresponding time scales and non-dimensional parameters. Table 2.2 show the
simulations for the Γ = 10 domain and Table 2.3 show those for the Γ = 40 domain.
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R τ ∗V τ ∗R τ ∗D L P Da

0 N/A N/A 1.0 10−1,10−2,10−3 N/A N/A
2000 5.46 0 1.0 10−1,10−2,10−3 101, 102, 103 0
3000 1.87 0 1.0 10−1,10−2,10−3 101, 102, 103 0
4000 1.02 0 1.0 10−1,10−2,10−3 101, 102, 103 0
5000 0.82 0 1.0 10−1,10−2,10−3 101, 102, 103 0
6000 0.5 0, 5, 0.5 1.0 10−1,10−2,10−3 101, 102, 103 0, 10−1, 1

Table 2.2: List of simulations for Γ = 10

R τ ∗V τ ∗R τ ∗D L P Da

0 N/A N/A 1.0 10−1 N/A N/A
2000 5.46 0.29 1.0 10−1 101 0, 1/2, 1
4000 1.02 7.18× 10−3 1.0 10−1 101 0, 1/2, 1
6000 0.5 4.23× 10−3 1.0 10−1 101 0, 1/2, 1
20000 0.26 2.13× 10−4 1.0 10−1 101 0, 1/2, 1

Table 2.3: List of simulations for Γ = 40

2.6 Direct numerical simulations

The simulations were carried out using the open source solver Nek5000. The Boussinesq
equations in Eqs. (2.7)-(2.9) and the reaction-advection-diffusion equation in Eq. (2.13) are
simultaneously integrated using a parallel spectral element approach. The localized gaussian
distribution is selected for the initial condition of the scalar species such that

c (x, y, z, t = 0) = exp

(

−
x2 + y2 + z2

2∆2

)

, (2.30)

where ∆ = 1/2. The initial conditions used for the Boussinesq equations are temperature,
pressure and velocity fields that have been “warmed-up” from initial random thermal per-
turbations for a total of t = 100 and t = 1600 time units for the Γ = 10 and Γ = 40 domains,
respectively, in order to decay any transient effects in the flow field. These warm-up times
were derived from the fact that it takes one time unit for heat to travel a distance, d, from
the bottom to the top of the domain. Therefore, it is assumed that any transient effects in
the flow field can be neglected after a time of O(Γ2) needed for heat to travel across the area
of the domain.
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Spectral element methods are similar to finite element methods in that they utilize a similar
discretization scheme to yield high-order accurate solutions. The spectral element method
differs from the finite element method in the orthogonality of the basis functions used. In
the latter method, orthogonality is due to the use of nonoverlapping local functions as the
basis functions. In spectral methods, Legendre polynomials are used as the basis functions
across the domain, which is why it lends itself as a global method [9]. Nek5000 is specifically
designed to solve the incompressible Navier-Stokes equations for a variety of boundary con-
ditions. One advantage of employing this spectral element method is that large scale parallel
computations can be done efficiently and with exponential convergence in space. The solver
is capable of using a second or third order accurate Adams-Bashforth time step. Unless
otherwise noted, the simulations are carried out with each element using n = 11 polynomial
interpolating nodes. The solution procedure and more information about the Nek5000 solver
can be found in [13]. The original source code for the solver integrates the mass, momen-
tum, energy and the advection-diffusion equation in three-dimensions. Modifications to the
code allow for the explicit solution of a reaction term in the transport equation. Because
of employing this explicit approach, very high Damköhler numbers, like those found in the
combustion of pre-mixed gasses, are not accessible through the current numerical scheme.
Additionally, as can be seen in Table 2.3 that adding an explicit reaction term limits the
ability to explore the low Lewis number transport regime (i.e. L = 10−2 and L = 10−3), so
for the active transport simulations, only Lewis numbers at L = 10−1 are explored.

Nek5000 was created for a parallelized computer architecture and it has been shown to scale
to over a million processors for some computational problems [40]. However, scaling to a
large number of processors does not necessarily scale the performance. At some point the
communication cost within the parallel architecture overcomes the savings in computation
time. Figure 2.9 summarizes the speedup study using Nek5000 for a domain size Γ = 40 at
a Rayleigh number R = 9000. There is a dramatic increase in performance by scaling from
64 to 128 processors; however, this gain in performance diminishes and plateaus past 128
processors which suggests it is at this number the simulations should be run.

The spectral element meshes constructed for the Γ = 10 and Γ = 40 domains that are used
for the simulations are shown in Fig. 2.10 and Fig. 2.11, respectively.
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Figure 2.9: Average computation time required to advance one time step tsolve as a function
of the number of cores p employed in the job batch. The test case was run for a Γ = 40
domain with 3072 elements with n = 11 order polynomial. The black solid line is a curve fit
with a slope of −2.

Figure 2.10: Mesh of 192 spectral elements used for Γ = 10.
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Figure 2.11: Mesh of 3072 spectral elements used for Γ = 40.



Chapter 3

Results

In this chapter, the results of the simulations will be presented. A discussion of the diagnostic
tools used to quantify transport will follow and the application of these diagnostics to the
results will be presented.

3.1 Simulation results

3.1.1 Flow fields

The flow fields for Γ = 10 and Γ = 40 are presented in Figs. 3.1-3.2. The flow field is
represented by the midplane temperature where the red indicates hot rising fluid and the
blue represents cold sinking fluid. For the Γ = 10 domain, the flow field is time-independent
for R = 2000 (ǫ = 0.17) consisting of parallel convection rolls with a few defects located at
either corner of the domain. Figure 3.1(a) depicts this case. For Rayleigh numbers greater
than R = 2000 (ǫ = 0.17), the flow becomes complex and transitions from time-independent
to time-dependent patterns described by many defects traveling across the flow field solution.
These conditions are present in the flow fields pictured in Fig. 3.1(b)-3.1(e).

The midplane temperature patterns for Γ = 40 are shown in Fig. 3.2. The first difference
between these patterns to those of Γ = 10 is with the stable solution at R = 2000 (ǫ =
0.17). Figure 3.2(a) shows that at this Rayleigh number, the stable solution produced is
a series of steady concentric convection rings that form a target pattern. As the Rayleigh
number is increased, the pattern breaks down into an unstable time-dependent pattern that is
characterized as spiral defect chaos. These types of patterns are depicted in Figs. 3.2(b)-(d).
As the Rayleigh number is increased further, the convection rolls exhibit a lateral oscillatory
instability, as seen in the solutions in Fig. 3.2(e) and Fig. 3.2(f), that is characteristic
of plume formation in turbulent flows. These lateral oscillations in the flow fields exist
when solved with higher-order polynomials, which suggest that they are not attributed to

22
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numerical noise, but instead due to the convection pattern undergoing an instability.

These flow fields were used as the initial pressure, temperature and velocity fields for the
evolution of the transport simulations described in the next section.

3.1.2 Passive transport

The set of images shown in Fig. 3.3 display the time evolution of a passive scalar species
with a Lewis number L = 10−2 within a flow field with Prandtl number σ = 1 and Rayleigh
number R = 6000 (ǫ = 2.51). The domain size used for the passive transport simulations
was Γ = 10. The black contour lines represent midplane (z = 0.5) temperature values
that roughly correspond to the boundaries between convection rolls. The colors in the plots
indicate the level of concentration of the species with red indicating the highest concentration
and blue indicating a concentration of zero. The scalar spreading progresses from an initial
condition t = 0 as shown in Fig. 3.3(a) to a final time at t = 50 shown in Fig. 3.3(f). At
each time the scale for the species concentration changes in order to visualize the spreading
and therefore should not be mistaken as the presence of a species source within the system.
Figure 3.3(b) shows transport of the species occurring parallel to the convection roll while
maintaining a local distribution. At later times, as shown in Fig. 3.3(c)-(e), the species
begins to diffuse across the convection rolls and spreads across the domain until it saturates
at about time t = 50 as shown in Fig. 3.3(f).

3.1.3 Active transport

A sample result of active transport governed by a nonlinear FKPP reaction term is presented
in Fig. 3.4 for a Prandtl number σ = 1 and Rayleigh number R = 6000 (ǫ = 2.51) and
Γ = 40. The Lewis number of the species is L = 10−1. The midplane temperature contours
are represented by the black lines with with color representing the concentration of the active
species. In these plots, the red represents the presence of products (c = 1) and the blue
represents the absence of products (c = 0). The spreading begins from an initial Gaussian
distribution in Fig. 3.4(a) at t = 0 to a complete saturation of products across the domain as
shown in Fig. 3.4(f) at around time t = 20. Many interesting features can be seen the time
evolution of the reaction. One feature is the enhanced spreading of the reacting species that
occurs significantly at times of t < 10 as seen in Fig. 3.4(b) and Fig. 3.4(c). This enhanced
spreading orientation is not seen at later times of the species evolution where the reaction
front begins to advance in all directions uniformly. The other important feature to note is
the fractal-like front structure that emerges in the presence of the flow field. This may be
an indication of a reaction enhancement taking place due to an increase in the surface area
boundary between reactants and products. Methods to quantify this enhancement will be
discussed in the following sections. Figure 3.5 shows the evolution of a reaction within a
R = 2000 flow field at Γ = 40, σ = 1, and L = 10−1. Within this region, the flow field
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is characterized by a time-independent target pattern which is analogous to other systems
of two-dimensional chain of time-independent vortices that were discussed in Section 2.2.
Figure 3.6 shows a cross-sectional view of the reaction from an intersection of the x = 0
plane. These images are taken are a smaller subsection of the Γ = 40 domain to better
visualize the spreading.



25

(a) (b)

(c) (d)

(e)

Figure 3.1: Γ = 10 temperature fields at the midplane location z = 0.5 for Rayleigh numbers
(a) R = 2000 (ǫ = 0.17), (b) R = 3000 (ǫ = 0.76), (c) R = 4000 (ǫ = 1.34), (d) R =
5000 (ǫ = 1.93), and (e) R = 6000 (ǫ = 2.51). Red represents hot rising fluid while blue
represents cold sinking fluid. Qualitatively, the complexity of the convection roll pattern
increases as the Rayleigh number increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Γ = 40 temperature fields at the midplane location z = 0.5 for Rayleigh numbers
(a) R = 2000 (ǫ = 0.17), (b) R = 4000 (ǫ = 1.34), (c) R = 6000 (ǫ = 2.51), (d) R =
9000 (ǫ = 4.27), (e) R = 15000 (ǫ = 7.78) and (f) R = 20000 (ǫ = 10.71). Red represents
hot rising fluid while blue represents cold sinking fluid. Similar to the Γ = 10 flow fields, the
complexity of the convection roll pattern increases as the Rayleigh number increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Transport of a passive scalar species for Γ = 10, R = 6000 and L = 10−2. Each
figure represents the passive species concentration at times (a) t = 0, (b) t = 10, (c) t = 20,
(d) t = 30, (e) t = 40, and (f) t = 50. In these figures the high concentrations are indicated
by red and zero concentration indicated by blue. The midplane temperature solution for
T = 0.5 are indicated by the black contour lines to visualize the convection rolls.
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(e) (f)

Figure 3.4: Active transport for Γ = 40, R = 4000, L = 10−1, and Da = 1/2 at times
(a) t = 0, (b) t = 4, (c) t = 8, (d) t = 12, (e) t = 16, and (f) t = 20. In these images
the products of the reaction are indicated as red and the reactants as blue. The midplane
temperature solution for T = 0.5 are indicated by the black contour lines to visualize the
convection rolls.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Active transport for Γ = 40, R = 2000, L = 10−1, and Da = 1 at times (a) t = 0,
(b) t = 4, (c) t = 9, (d) t = 12, (e) t = 16, and (f) t = 20. In these images the products
of the reaction are indicated as red and the reactants as blue. The midplane temperature
solution for T = 0.5 are indicated by the black contour lines to visualize the convection rolls.
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(a)

(b)

(c)

(d)

(e)

Figure 3.6: Vertical cross-section of the reaction for the same parameters as those in Fig.
3.5 for times (a) just after t = 0, (b) t = 4 (c) t = 9 (d) t = 12 and (e) t = 16. Only half of
the domain is shown in the figures above to better visualize the details of the spreading.



31

3.2 Diagnostics

There are many ways to quantify the transport of species within a spatially-extended domain.
In this section, these methods will be described and applied to the results from the numerical
simulations. The transport of the species is analyzed as a two-dimensional spreading process
due to the large aspect ratio domain studied.

3.2.1 Statistical moments

One way to study the transport of a species is to quantify the spreading globally by calcu-
lating the mean-square displacement over time. Since the domains investigated have large-
aspect ratios, the statistics of the spreading of the species can be quantified in two dimensions.
The mean-square displacement in cylindrical coordinates is represented as

V (t) =

∫ Γ

0

∫ 2π

0
[r − r̄ (t)]2 c (r, θ, t) rdrdθ

∫ Γ

0

∫ 2π

0
c (r, θ, t) rdrdθ

(3.1)

where the quantity r̄ (t) is the area-averaged species concentration field and is defined as

r̄ (t) =

∫ Γ

0

∫ 2π

0
rc (r, θ, t) rdrdθ

∫ Γ

0

∫ 2π

0
c (r, θ, t) rdrdθ

. (3.2)

The mean-square displacement was numerically integrated for each of the simulations. Figure
3.7 shows the mean-square displacement over time for passive transport in a flow field with
R = 3000 (ǫ = 0.17), L = 10−1, L = 10−2, and L = 10−3. The mean-square displacement
grows proportional to time with a power law γ ≈ 1. These results have also been documented
in [7] for numerical simulations in chaotic flow fields. Since the growth of the mean-square
displacement over time time follows a unity power law, that is,

V (t) ∝ tγ (3.3)

where γ = 1, the spreading can be described as an overall normal diffusion process and
the averaged spreading of the species, c̃ (t), can be described by a reduced one-dimensional
diffusion process governed by

∂tc̃ (r, t) = L∗∂rrc̃ (3.4)

where L∗ is the effective Lewis number – in other words, the effective Lewis number captures
the contributions of convection into the transport equation. This value can be extracted
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Figure 3.7: The mean-square displacement V as a function of time t for passive transport
for Γ = 10 and R = 3000. The mean-square displacement grows proportionally with time
following a power law γ = 1 for all Lewis numbers L = 10−1, L = 10−2, and L = 10−3. The
deviation of the trend at large times is due to finite wall effects for Γ = 10.

from the mean-square displacement by the equation,

V (t) = 4L∗t. (3.5)

Another test that can be done to confirm that the averaged spreading is a normal diffusive
process is to look at the ratio of higher-order moments to the mean-square displacement.
For normal diffusive processes, the higher-order moments should scale

Mq(t) ∝ t
q

2 (3.6)

where q is an integer of higher order moments and Mq is the higher-order moment defined
as

Mq(t) =

∫ Γ

0

∫ 2π

0
[r − r̄ (t)]q c (r, θ, t) rdrdθ

∫ Γ

0

∫ 2π

0
c (r, θ, t) rdrdθ

. (3.7)

Notice that when q = 2, the definition of the mean-square displacement V (t) in Eq. (3.1) is
recovered. The ratio of this higher-order moment with the mean-square displacement should
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then be constant in time for normal diffusive processes. Plotted in Fig. 3.8 are ratios of
higher-order moments for q = 4, 6, and 8. Each of the higher-order moment ratios approach
a constant value over time which confirm that normal diffusion is occurring.
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Figure 3.8: Ratio of higher-order moments Mq(t)
2/q to the mean-square displacement M2 as

a function of time t for values of q = 4, q = 6, and q = 8. The leveling off of Mq(t)
2/q/M2

over a certain time interval suggests a normal diffusion process.

3.2.2 Transport enhancement due to spatiotemporal chaos

One way to quantify transport enhancement is to quantify the difference between the effective
Lewis number L∗ and the Lewis number L in order to isolate effects of the convection on the
overall diffusive process. The non-dimensional transport enhancement factor is defined as

∆ =
L∗ −L

L
. (3.8)

Distinct enhancement regimes emerge when the transport enhancement factor is plotted as a
function of the Péclet number of the flow. Figure 3.9 highlights the appearance of these two
transport regimes: a diffusion-dominated and an advection-dominated regime that occur as a
result of the presence of the complex flow field. These regimes depend on the relative strength
of the advecting fluid therefore by describing the transport enhancement factor as a function
of the Péclet number, the two regimes may be described based on the relative importance of
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advection and diffusion in the problem. For diffusion-dominated transport that occurs in the
low Péclet number regime, the transport enhancement factor is proportional to Péclet number
by ∆ ∝ P1/2. At a certain Péclet number, the transport becomes advection-dominated and
the scaling law that the transport enhancement factor follows becomes ∆ ∝ P. It is unclear
yet whether this transition between the two scaling regimes is gradual or an abrupt transition.
However, these two transport enhancement regimes are in agreement with those found in
experiments of passive tracers in time-independent [37] and time-dependent flow fields [37]
as well as in numerical simulations of spiral defect chaos [7].
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Figure 3.9: Transport enhancement ∆ of a passive species as a function of the Péclet number,
P for Γ = 10. Two distinct transport enhancement regimes occur for diffusion-dominated
and advective-dominated transport which scale by P1/2 and P, respectively.

3.2.3 Anomalous diffusion for nonlinear reactions

It can be seen from the preceding section that when the spreading of the species follows a
normal diffusion process, quantifying transport enhancement can be done relatively easily
by extracting an overall diffusion coefficient from the mean-square displacement. This pro-
cedure cannot be used when the diffusive behavior is anomalous – that is, the mean-square
displacement follows the trend described by Eq. (3.3) with an exponent γ 6= 1. As will
be seen, transport involving nonlinear reactions like FKPP reaction studied in this thesis
subscribe to this type of anomalous behavior.

Figure 3.10 displays the mean-square displacement over time for R = 6000 and Da =



35

0 (passive), Da = 1 and Da = 10. The results show that for Da = 0, the transport
recovers the normal diffusive process with γ = 1 as seen in the previous section. However,
for active transport with Da > 0, the mean-square displacement exhibits γ > 1 indicating
a superdiffusive process. Additionally, the finite wall effects of the Γ = 10 domain are more
pronounced in the spreading of the active species. It is for this reason that the transition to
transport simulations were conducted in Γ = 40 to better quantify the spreading dynamics.
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Figure 3.10: Mean-square displacement over time for Da = 0 (passive transport), Da = 1,
and Da = 10 for Γ = 10. The mean-square displacement for Da = 1 and Da = 10 deviate
from normal diffusion.

In Fig. 3.11, the time history of the mean-square displacement for a RD system is given
for Damköhler numbers Da = 0, Da = 1/2, and Da = 1 in the Γ = 40 domain. In the
absence of the fluid advection, the mean-square displacement scales with time by γ = 2.
Also plotted in Fig. 3.11 is the mean-square displacement over time for Da = 0 which
represents a pure diffusive system with γ = 1. It is interesting to note that these power
law relationships for a RD system are similar to those of a RAD system where the fluid
advection is due to a time-independent target pattern flow. For the simulations exhibiting
spatiotemporal chaos, classifying the scaling laws will help compare the diffusive nature of
the spreading compared to those found in RD systems and RAD systems exhibiting simpler
flow fields. Figure 3.12 displays the mean-square displacement over time for the Rayleigh
number R = 6000. Superdiffusive behavior is also seen in the reacting flows (Da > 0) but
at a larger scaling exponent than is seen in the previous cases.

Table 3.1 shows power laws extracted from mean-square displacement for all the simulations
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Figure 3.11: The mean-square displacement as a function of time for a RD system for
Damköhler numbers Da = 0, Da = 1/2 and Da = 1 in the Γ = 40 domain. The reactions
for Da = 1/2 and Da = 1 are superdiffusive that scale by an exponent γ = 2.

in the Γ = 40 domain. The results show that for active transport for spiral defect chaos de-
scribe a superdiffusive process that not only describes anomalous diffusion, but is described
by a scaling law γ greater than those found for RD systems in the absence of flow and
time-independent target pattern flow. This deviates from the behavior seen in passive trans-
port and suggests that the presence of the spatiotemporally chaotic flows induces strongly
anamolous transport for the spreading of an active species.

3.2.4 Front speed enhancement

The speed of a reacting front is an important property related to quantifying active transport
in RAD systems. An existing classical theory developed by Kolmogorov [19] describes the
front velocity for RD systems to prorogate at a speed of

vf =

√

2D

τR
. (3.9)

This theory can be extended to RAD systems that exhibit normal diffusive behavior by using
an enhanced molecular diffusivity D∗ in place of the D for Eq. (3.9). Unfortunately this
may not be applied to the complex flow fields under consideration as the results from the
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Figure 3.12: Mean-square displacement over time for Damköhler numbers Da = 0 (passive
transport), Da = 1/2, and Da = 1 in the Γ = 40 domain for R = 6000. The reactions for
Da = 1/2 and Da = 1 are superdiffusive that scale by an exponent γ = 5/2.

previous section indicate superdiffusive behavior. The theory describing anomalous diffusion
in RAD systems is still in its infancy. Mancinelli et al. [23] advance the theory by deriving
linear operators to describe the diffusion and advection effects in reduced RAD systems
with relatively slow reactions. These linear operators are functions of the scaling law for
the system but also the shape of the probability density function of the diffusive process.
Furthermore, this theory is derived for classical flow cases that are unable to be applied in this
particular RAD system. However, it is noted that this modified FKPP theory is employed
in front prorogation of RAD systems studied in [1] and [2] with simpler, time-independent
flow fields. These studies show reaction front speeds dependent on the characteristic fluid
velocities for two different reaction regimes. Therefore, the results obtained for front speeds
in spiral defect chaos will be compared to those scaling relations.

The front speed in large cylindrical domains is quantified by the time rate of change of the
radius of the averaged product spread. This is first done by defining the average growth of
the area of products as

dA(t)

dt
= 2π 〈R(t)〉θ

dR(t)

dt
(3.10)

where A(t) is area of the reacted products, R(t) is the radius of the products spread, and
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Da R γ

0.5 0 (RD system) 2
2000 2
4000 2
6000 5/2
20000 2

1 0 (RD system) 2
2000 2
4000 5/2
6000 5/2
20000 5/2

Table 3.1: Mean-square displacement power laws γ for a variety of flow conditions described
by the Rayleigh numberR and the Damköhler numberDa. The presence of chaotic Rayleigh-
Bénard convection changes the power law scaling from γ = 2 to γ = 5/2.

〈R(t)〉θ is the azimuthally-averaged radius of the products spread across the domain which
is also a function of time and is defined by

〈R(t)〉θ =
1

2π

∫ 2π

0

R(t) dθ. (3.11)

The front speed is defined as the quantity, dR(t)
dt

and so rearranging Eq. (3.10) the front
speed can be defined as

〈vf(t)〉θ =
1

2π 〈R(t)〉θ

dA(t)

dt
. (3.12)

Figure 3.13 shows this azimuthally-averaged velocity as a function of time for active trans-
port for Γ = 40, R = 6000, L = 10−1 and Da = 1. The results show that this front speed
experiences an initial transient period in which the speed increases and then oscillates be-
tween some maximum value before decreasing again due to the reaction reaching the end
of the domain. Equation (3.13) can be used to calculate the front speed averaged over the
entire simulation time t0 which will be used as a comparison with the trends published in
the literature. This expression can be obtained by simply taking the time-average of Eq.
3.12 to yield

〈v̄f〉θ =
1

t0

∫ t0

0

〈vf(t)〉θ dt. (3.13)

Table 3.2 displays the azimuthal- and time-averaged front speed for active transport simula-
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tions in the Γ = 10 domain. The reaction speed increases due to an increase in Damköhler
number as what would be expected for the increase in the reaction time scale. The transition
to the Γ = 40 domain allows us to consider a wider number of flow conditions and examine
the front speed enhancement.

Da 〈v̄f 〉θ
1 1.29
10 5.71

Table 3.2: Front speed for Γ = 10.

Figure 3.14 display the azimuthal- and time-averaged front speed as a function of the char-
acteristic fluid speed U for Damköhler numbers Da = 1/2 and Da = 1. The plots show
a general enhancement in the reaction front speed based on the strength of the flow field.
For Da = 1/2 the reaction front speed is enhanced by the presence of the flow by a factor
〈v̄f〉θ ∝ U0.43. For Da = 1 this enhancement factor becomes 〈v̄f〉θ ∝ U0.38. An interesting
feature to point out in these results is the change in front speed during the transition from
time-independent to time-dependent spiral defect chaos. The second point in for each set of
data in Fig. 3.14 represent the front speed at Rayleigh number R = 2000 which corresponds
to a stable state of Rayleigh-Bénard convection that is analogous to a time-independent ring
of vortices. The next point in the plot represents the characteristic velocity in Rayleigh num-
ber R = 4000 which represents Rayleigh-Bénard convection in the spiral defect chaos state.
It is seen that in the Da = 1/2 reaction the front speed actually decreases in the complex
flow field, and then increases as the flow field velocity increases. A similar situation happens
in the Da = 1 reaction as represented in Fig. 3.14 but while the front speed increases, the
rate of increase is much smaller than the other points. This suggests that front inhibition
may occur in the transition from stable to chaotic states of Rayleigh-Bénard convection for
reactions in advection-dominated transport. More simulations would need to be carried out
to investigate further and confirm this behavior.

3.2.5 Transport in terms of local flow field properties

As can be seen in the simulation results that are presented in Fig. 3.1-3.4, one the most
interesting features of the chaotic flow fields is their pattern forming qualities. Methods
have been developed to quantify the local properties of the flow field by calculating the local
wavevectors. Figure 3.15 illustrates how these quantities relate to a flow field pattern.

This section will discuss the attempts to quantify these pattern forming systems in terms
of local wavenumbers and derive other important characteristics related to the patterns.
Doing so will give qualitative insight into how local convection roll patterns can affect the
transport of reactive species. Egolf [11] describes a fast method to determine local properties
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Figure 3.13: Azimuthally-averaged front speed 〈vf〉θ as a function of time t for active trans-
port with Γ = 10, R = 6000, L = 10−1 and Da = 1. After an initial transient period, the
front speed oscillates between some long-time limit value, denoted by the black dashed line,
before decreasing again due to finite-wall effects. The long-time limit value is denoted as the
azimuthal- and time-averaged front speed 〈v̄f〉θ.

in pattern-forming systems which will be employed here. For systems that form a locally
striped pattern, each point in a field can be approximated by the function

u(~x) = A(~x) cos(φ(~x)) (3.14)

where u(~x) is a field quantity that is a function of cartesian coordinates, ~x. The local
wavevector is defined as

~k(x̂) ≡ ∇φ(~x). (3.15)

The assumption made here is that variations in the value of A(~x) in Eq. (3.14) are small
compared to the variations in φ(~x) and that the local property is sufficiently far from defects
and grain boundaries. The components of the local wavenumber in a two-dimensional plane



41

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

〈v̄
f
〉 θ

U

 

 

Da=1/2

Da=1

〈v̄f〉θ=U 0.43− 0.88

〈v̄f〉θ=U 0.37− 0.38

〈v̄f〉θ ∝ U 1/4

Figure 3.14: The azimuthal- and time-averaged front speed 〈v̄f〉θ as a function of the char-
acteristic fluid speed U for reactions at Damköhler numbers Da = 1/2 and Da = 1. The
solid lines represent the fits for both reactions and indicate that for this reaction range, the
front speed is enhanced 〈v̄f 〉θ ∝ U2/5. The black dashed line represents the upper-bound for
a front speed derived for two-dimensional cellular flows found in [1] and [42].

can than be calculated as

k2x = −
∂2xu(~x)

u(~x)
(3.16)

where kx ≡ ~k • x̂ and ∂2x ≡ ∂2/∂2x. The counterpart equation to Eq. (3.21) that can be used
to calculate the y-direction wavenumber ky is

k2y = −
∂2yu(~x)

u(~x)
. (3.17)

This method introduces two problems when analyzing convection rolls in Rayleigh-Bénard
convection. First, Eq. (3.21) can be sensitive to small errors introduced through numerical
noise. To overcome this problem, Eq. (3.21) and Eq. (3.20) can be replaced with

k2x = −
∂3xu(~x)

∂xu(~x)
(3.18)
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Figure 3.15: Local properties of a flow field where the convection rolls are represented by the
blue diagonal lines with a wavelength λ. Perpendicular to the convection rolls is a wavevector
defined ~k whose magnitude is the wavenumber k. A roll orientation angle θ is defined as the
angle the wavevector forms with the x-axis in cartesian coordinates.

and

k2y = −
∂3yu(~x)

∂yu(~x)
(3.19)

respectively. The higher order derivatives in these new expressions can smooth out numerical
noise introduced in the system. Second, this method calculates k2x which is a magnitude of
a vector and does not conserve any information about the wavevector’s orientation. This
problem is overcome by keeping the relative sign between the wavevector components in
order to preserve directional information. Procedurally, this can be done by first computing
the wavevector components using Eq. (3.21) and Eq. (3.20) and then computing the other
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components with the equations,

ky = kx
∂2xyu(~x)

∂2xu(~x)
(3.20)

and

kx = ky
∂2yxu(~x)

∂2yu(~x)
. (3.21)

In this procedure kx will always be a positive value and ky will contain information about the
orientation of the wavedirection. The full procedure is outlined rigorously in [11]. Once the
information of the wavevectors are obtained, the local roll orientation angle can be computed
by

θ = arctan

(

ky
kx

)

. (3.22)

The curvature of a roll is defined as the divergence of the wavevector and is calculated using

κ =
~∇ • k̂

k
. (3.23)

Figure 3.16 displays these local properties calculated for a Γ = 40 and R = 6000 flow field.
Figure 3.16(a) displays the deviation from the midplane temperature field. Figure 3.16(b)
shows the local wavenumber calculated for this field. The mean wavenumber for this flow
field is k = 2.2 which falls within the unstable region of the “Busse balloon” [6], as should
be expected for this particular Rayleigh-Bénard convection field. Significant deviation from
the mean wavenumber are seen in parts of the flow and are shown by the darkened regions.
Figure 3.16(c) shows the local roll orientation which using the procedure yields values that
range between −π/2 ≤ θ ≤ π/2. Lastly, the roll curvature is represented in Fig. 3.16(d),
which also shows regions of anomalous values.

From the information of the local properties of the flow field, a horizontal spreading orien-
tation angle can be quantified by

cos(Φ) =
∇c •

~k

‖∇c‖‖~k‖
(3.24)

where Φ is the horizontal spreading orientation, ∇c is the gradient of the concentration
field, and ~k is the local wavevector. The horizontal spreading orientation can quantify
the spreading of the species relative to the direction of the local wavevector. This gives
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Figure 3.16: Local properties of a flow field for Γ = 40 and R = 6000. Figure 3.16(a) shows
the deviation of the temperature field from the midplane values. Figure 3.16(b) is the filtered
local wavenumber field. Figure 3.16(c) is the local convection roll orientation. Figure 3.16(d)
is the local curvature.

information and insight on how the species spreads across a convection roll. The angle
Φ can be calculated at every point in the flow field and quantified statistically. Figure
3.17 shows the probability distribution function of the horizontal spreading orientation at a
particular time t = 5.8 for active transport for parameters Γ = 40, R = 6000, and Da = 1/2.
This snapshot of the transport shows that the spreading is most likely to occur at Φ = π/2,
or in a direction perpendicular to a convection roll. The next likely orientation that the
spreading will occur is at an angle close to Φ = 0. The spreading is least likely to occur at
angles between these two angles. The results shown here are in agreement with those found
for passive transport at the same Lewis number L = 10−1 [7]. The mechanisms that explain
these trends are attributed to the higher probability that random walks of particles will cross
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the separatrix between the convection rolls, as described analytically in [35]. The reason for
the larger peak closer to the angle of Φ = 0 must be attributed to the effect of the additional
reaction. One speculation for the mechanism at work is the spreading perpendicular to the
convection roll might enhance the reaction in parallel. More data would need to be collected
to test this hypothesis.
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Figure 3.17: Probability distribution function of the horizontal spreading orientation at a
time t = 5.8 for active transport for parameters Γ = 40, R = 6000, and Da = 1/2. The
highest probability of the spreading occurs at an angle Φ = π/2

3.2.6 Quantifying front geometry

The emergence of the complex front structure for the active transport simulation results as
seen in Fig. 3.4 suggest an enhancement in the front area occurs for reactions in the presence
of advection. It has been observed that mixing of active species in RAD systems enhance
the the rate of reaction. The physical explanation for this has been attributed to the the
increase in the surface area of the front which increases the area available for reactants to
change to products [18]. The results obtained in this study suggest that spiral defect chaos
also enhances this reaction.

One method that will be used to quantify the front enhancement is to calculate the reaction
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area over time for each of the simulations conducted. The reaction area will be defined as

Af = Pfd (3.25)

where Af is the surface area of the front, Pf is the front perimeter and d is the front
depth. Since the analysis is reduced to a two-dimensional spread, the depth for the spatially-
extended system is d = 1. A method is implemented than to track the reaction front for each
time and to estimate the front perimeter which in turn gives an estimate for the reaction
surface area. Upon observation of the front images in Fig. 3.4, one natural way to estimate
the front area is by identifying the the interface between the reactants and products which
is roughly quantified by the green boundaries. The criteria used to identify the front is

0.45 ≤ c (x, y, t) ≤ 0.55 (3.26)

which turns out to be a good estimate of the reaction front. Figure 3.18 is an example of the
procedure discussed above applied to a reaction front with a Damköhler number Da = 1/2
in a Rayleigh number R = 6000 flow field. From this procedure the reaction front was
calculated for each of the active transport simulations. Figures 3.19-3.22 show the front
perimeter Pf for reactions at Damköhler numbers Da = 1/2 and Da = 1 as a function of
time for a variety of flow fields. Figure 3.19 shows this trend for a RD system in the absence
of any fluid advection. In this case, the front perimeter grows with time according to a unity
power law. This power law growth is also observed for a system with advection in the form
of a target pattern flow field as indicated in Fig. 3.20. This means that there is no significant
enhancement in the surface area of the front with the addition of a time-independent chain
of vortices. However, in the transition to a flow field defined by spiral defect chaos, the
power law growth increases to slope of 3/2. It is during this transition that the fractal-like
structure of the front can be seen.

There have been many methods proposed to quantify fractal-like structures in the field of
dynamical systems, including structures that are not self-similar [27] [39]. One simple yet
effective method is to calculate the fractal dimension of the geometry using the box-counting
method. In this method, a d-dimensional set that represents the reaction front will have an
area N(s) that is approximated by the total number of boxes needed with side length s to
cover the planer area. Applying this rule yields the relationship

N(ǫ) ∝
1

sd
. (3.27)

Rearranging Eq. (3.27) and taking the limit as the box side-length approaches zero yields
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(a) (b)

(c) (d)

Figure 3.18: Example result of front tracking method for active transport for Γ = 40,
Da = 1/2, and R = 6000 for times (a) t = 5, (b) t = 10, (c) t = 15, and (d) t = 20.

the definition of the fractal dimension,

Dbox = lim
s→0

lnN(s)

ln 1
s

. (3.28)

Fig. 3.23 shows the fractal dimension calculated for increasingly smaller box side-lengths.
The fractal dimension is constant at Dbox = 2 which means that this tool does not capture
any fractional dimension. This is likely attributed to finite pixel size of the images processed
and therefore other methods must be explored to quantify the front’s fractional characteristic.

Another way that was used to quantify the perimeter enhancement of the reaction front is to
compare the instantaneous perimeter with a perimeter formed by an azimuthally-averaged
radius. Figure 3.24 can aid in visualizing these definitions more clearly. The solid black line
in Fig. 3.24 represents the perimeter of the front P (t) at any given time t. This perimeter
can be quantified by a perimeter formed by the azimuthally-averaged radius 〈R(t)〉θ at the
same time t. From these definitions an enhancement of the perimeter can be quantified.
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Figure 3.19: Front perimeter Pf over time t for Γ = 40 in the absence of fluid advection.
The front perimeter grows proportionally to time with a power law of unity as indicated by
the black dashed line.

A perimeter enhancement ratio is defined as

rp =
Pf(t)

2π 〈R(t)〉θ
. (3.29)

where 〈R(t)〉θ is the azimuthally-averaged radius of the products spread across the horizontal
plane. Figures 3.25-3.27 show rp as a function of time t for active transport in the absence
of fluid flow, for R = 2000, and for R = 4000. The results show a clear enhancement of the
front perimeter for a reaction in the presence of spiral defect chaos which was determined
to be rp = 2.3 in comparison with identical transport cases within a target pattern flow
field (rp = 1.8) and for an RD system (rp = 1). Notice that prominent oscillations in the
value of rp over time that is seen for the transport in the target flow pattern. These can be
attributed the mechanism of the front progressing along the time-independent vortex chain
across the domain which leads to a front thickening and thinning detected by the method
implemented.
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Figure 3.20: Front perimeter Pf over time t for Γ = 40 and R = 2000. The front perimter
grows proportionally to time with a power law of unity as indicated by the black dashed line.
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Figure 3.21: Front perimeter Pf over time t for Γ = 40 and R = 4000. The front perimeter
grows proportionally to time with a power law of 3/2 as indicated by the black dashed line.
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Figure 3.22: Front perimeter Pf over time t for Γ = 40 and R = 6000. The front perimeter
grows proportionally to time with a power law of 3/2 as indicated by the black dashed line.
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Figure 3.23: Semilog plot of the fractal dimension Dbox using the box-counting method as a
function of the inverse of the box-size 1/s. As the box size decreases, the dimension remains
at a constant value of Dbox = 2.
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Figure 3.24: Graphic representation of definitions for front dynamics. The solid black line
is the perimeter of the front Pf(t) at any given time t. The blue dashed line represents
the perimeter formed by the azimuthally-averaged radius 〈R(t)〉θ at the same time t. The
perimeter enhancement ratio rp is the ratio of these two quantities.
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Figure 3.25: The front enhancement ratio rp as a function of time t for a RD system for
Γ = 40. Ignoring the transient period, the value of rp becomes one which means that no
front enhancement due to the flow field is occurring.
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Figure 3.26: The front enhancement ratio rp as a function of time t for a RAD system for
Γ = 40 and R = 2000. Ignoring the transient period, the value of average front enhancement
is rp = 1.8 which means enhancement occurs in the target pattern flow field. The oscillatory
response is due to the reaction thickness varying in the presence of the time-independent
vortex chain.
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Figure 3.27: The front enhancement ratio rp as a function of time t for a RAD system for
Γ = 40 and R = 6000. Ignoring the transient period, the value of average front enhancement
is rp = 2.3 which means enhancement is greatest in the spiral defect chaos flow field.



Chapter 4

Conclusions

This thesis investigates active transport in a three-dimensional, time-dependent flow field
given by chaotic Rayleigh-Bénard convection using high performance numerical simulations.
The results show transport enhancement deviates from the enhancement studies in the liter-
ature for RAD systems with time-independent and time-periodic flow fields suggesting that
the presence of a chaotic flow field further enhances reactions compared to flow fields studied
in these previous studies. Three different methods to quantify the transport were studied in
this thesis. First, the two-dimensional spreading was quantified statistically by measuring
the time history of the mean-square displacement. The spreading of the active species was
characterized by anomalous diffusion with scaling exponents between 2.0 ≤ γ ≤ 5/2. The
presence of spiral defect chaos induced strongly anomalous transport. Second, the trans-
port was quantified based on local properties of the convection roll field. These methods
showed qualitatively that the roll curvature in the spiral defect chaos flow field affected the
reaction spreading. In particular, the horizontal spreading of the species was found to most
likely to occur in the direction perpendicular to the convection roll. Third, the geometry
of the front was quantified based on a front tracking method and calculation of the fractal
dimension. The surface area was found to be enhanced over time due to the presence of the
complex field by a factor t3/2 when compared to proportionality for the absence of flow and
a time-independent target pattern. Finally, the front perimeter for active transport in spiral
defect chaos was found to be enhanced over transport in RD and time-independent flows by
a perimeter enhancement ratio rp = 2.3.

4.1 Future Work

There are many avenues that can be pursued to expand on the work done in this thesis.
The methods to quantify the spreading in this thesis were global methods. Another method
that can be pursued is to study the local spreading and stretching of fluid tracers from a
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Lagrangian perspective. By doing so, one is able to quantify the local stretching using the
spectrum of Lyapunov exponents. Shadden et al. [34] provides a comprehensive overview of
this procedure that has been well-established for research in dynamical systems and shows
its natural extension to fluid systems, where transport of passive tracers are studied using
quantities like Finite Time Lyapunov Exponents (FTLE). Taking a Lagrangian approach to
the research presented in this thesis would take steps towards connecting the insights gained
here to other modern approaches to RAD systems – in particular, those pertaining to BIMs.
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