Chapter 1

I ntroduction

An ad in the classified section of a national newspaper reads, “Wanted, factory
personnel, required to prepare sub-assemblies for small engine manufacturer. Contract
position. $8/hr.” Common manufacturers with low volume contracts of moderately
difficult assembly operations greatly benefit from innate human dexterity. From an early
age a human being has the ability to put simple objects together. For example, achild
can be seen trying to put a star shaped peg into its appropriate hole. The child may try
the round hole first, and then the square, but eventually the youngster will insert the peg
into the star shaped hole. Asthe peg isinserted the child automatically corrects for
misalignment by moving the peg around until the peg slides in successfully. Itissimple
to see that if achild can handle such atask, then an adult can handle a more complicated
task that requires fine control of their motor skills. However, such assembly tasksin
modern assembly lines are tedious slow, and expensive. Potential assembly failures arise
due to human error that may be attributed to many consecutive hours of repetitive tasks.
Though operator rotation throughout the shift is one way to reduce assembly failure, it
still does not provide a high quality cost-effective solution to the assembly of large

volume contracts.

However, the desire to automatically assemble products within a manufacturing lineis
not entirely instigated by a company’ s demand for more profits, but instead, is driven by
the global marketplace. Productivity was seen as amain area for improvement in order to
be competitive in the global economy (Nevins, 1980). An increase in productivity meant
that a manufacturer must decrease the man-hours, materials, energy, and capital required
in the production of industrial products. Simultaneously, good morale in the workforceis
obtained via a better quality of life for the laborer.

Though the need to be more productive is receiving current headlines, the Russians first
considered the actual problem of automatic assembly in the 1960's. Though the
motivation for these studies was not completely identified, they did provide the



groundwork for the Americans once the documents were “edited” and translated. In one
study, the author proposed sending a peg on a pre-described search pattern
(Savishchenko, 1965). Here the peg, being held in afixture, is moved across the surface
of the mating part in asinusoidal or spiral search pattern. Through experimentation, the
author found that the type of search pattern depended on the geometry of the partsto be
mated. In astudy as to the automatic assembly of large parts, the author found through
static load analysis, that horizontal assembly was most effective. In thisform of
assembly the female part has one contact point on a centering mandrel and another on the
peg (Andreev, 1966). The female part correctsits orientation while it slides onto the peg.
During this period, work was underway to introduce compliance in the automatic
assembly problem of the peg-in-hole. Though the analysis was still two-dimensional, a
research effort was conducted that considered angular as well as axial misalignments of
the peg. The primary focus here was to avoid assembly failure by minimizing the
insertion force. Through a geometric analysis, the author found that the chamfer on the
peg should be constructed of a curved radius that is afunction of thetilt angle of the peg.
This minimized the insertion force thereby reducing the chances of failure (Laktionov,
1966).

These previous studies considered the peg and hole as rigid bodies held in rigid fixtures.
Compliance in the gripper, or fixture that held the peg, was introduced a year later in an
experimental analysis. Here the author devised two aternative work-holding systems,
one that modeled the elasticity of the oncerigid gripper, and another that permitted six
degrees of freedom in the deflection of the peg. The author found that to compensate for
the alignment errors of the peg it was possible to displace the assembly fixtures, but the
permissible amount of displacement in the assembly fixture must be greater than the sum
of all the misalignment errors (Karelin, 1967). Researchers were still interested in
reducing the assembly force, and another experimental study determined that the contact
areawhich produced the smallest contact stress was obtained with alogarithmic chamfer
at the end of the peg (Andreev, 1969). Thistype of chamfer, though difficult to machine
at that time, outperformed the angular and radial chamfers that are common today.

Though the assembly problems were primarily interested in peg-in-hole applications,



they did cover press-fit and force-fit assemblies. Here, the researchers avoided the large
assembly forces by heating up the hole until a clearance was available (Andreev, 1972).
An equation was derived that modeled the permissible amount of misalignment as a
function of the heat applied to the hole. All of the results of the Russian researchers were
partially based on minimizing the assembly force in order to reduce but not eliminate the
chance for afailed assembly. Actually, theidea of introducing some form of compliance

at the peg was not forgotten and re-emerged in the American literature several years later.

Whitney (1982) published a collection of research results that defined the mating events
that occur between a peg and hole and the forces that arise during afailure mode. Here, a
failure mode is defined as either jamming, where the applied forces are out of proportion
with the contact state no longer permitting assembly, or as wedging, where the contact
forces deform the parts and assembly is not possible without reorienting. The Remote
Center Compliance (RCC) device was utilized in the research to provide the support for
the peg since it offered the el asticity necessary for successful assembly. The remote
center of compliance in the device is apoint projected into space from the support. Any
load acting at this point will cause the support to deflect in pure translation, and any
moment about this point will deflect the support in pure rotation. Thistype of support for
the peg provided the ability to model its successful path into the hole. Qiao (et a., 1994)
conducted asimilar analysis as to the forces that permit successful assembly, but came up
with a pre-described approach such that the peg assembled successfully without feed-
back or with the use of aRCC. Similarly, a study was done that developed a hybrid
force-position strategy using active compliance to successfully insert convex three-
dimensional pegs (Strip, 1988). However, both studies did not consider the potentia for

wedging conditions.

The techniques of passive assembly have proved valuable since successful insertion can
be completed without the need for feedback devices. Other assembly primitives, such as
the peg-in-hole, multiple peg-in-hole and polygonal part insertions have been
successfully analyzed with constraint networks and demonstrated in practice (Sathirakul,
1998). Here, anetwork of contact statesis created that determines the path of successful



assembly based on static load relations and failure modes. Contact states are the

collection of contacts between two parts at each moment during an assembly operation.

Threaded fastener insertion, a ubiquitous assembly primitive and the primary focus of
thisthesis, is an assembly problem that has faced some scrutiny in the literature. It was
first considered by Blaer (1962) who found that in order to assemble threaded parts
automatically, the bolt must be centered in the nut and supported by alongitudinal force
before rotation of the bolt can begin. A purely geometric and non-frictional study by
Romanov (1964) determined that the chamfer angle on the bolt must be less than the
chamfer angle of the nut to avoid jamming. Nevins and Whitney (1989) defined the
potential errors associated with threaded assembly as angular or helical thread mismatch -
a condition more commonly understood as cross threading. During angular thread
mismatch, the rotational position of the fastener causes a portion of the thread to contact
the nut below thefirst full thread. After asmall rotation, the fastener becomes wedged in
the nut. In the case of helical thread mismatch, the fastener is not in phase with the nut
thread, resulting in athread deformation also known as “ stripping”.

A more recent attempt to analyze threaded fastener insertion was made by Nicolson and
Fearing (1991,1993), but their goal was not a passive solution to the thread-mating
problem. Instead, an apparatus consisting of atwo degree of freedom robot, two
servomotorsto correct for lateral misalignment, and arotational stepper motor was
designed to correct the positional uncertainty. Although their results were successful,
thereis arelative cost to incorporate the control mechanism. A compliant mechanism
attached to arobotic arm would allow the assembly of threaded fasteners without the
need for feedback devices, hence, achieving greater assembly speeds limited only by the

positional accuracy of the robotic manipulator and the inertia of the parts involved.

Dhayagude, Gao, and Mrad (1996) developed fuzzy logic control of an automated
threaded assembly. Here, the control system is able to handle large variability in
operational parameters. The clamping forces of the bolt coupled with the torque of the

driver are two of the measurements used by the fuzzy logic controller. Torque levels are



compared to specifications during assembly to determine if the bolt jammed or slipped.
In addition to the input, the control unit captures the system dynamics qualitatively, and
executes the control heuristic in real-time. The authors conclude that, though the method
Is complex and costly, it will prove valuable in delicate assembly situations where the

precise clamp load must be known.

1.1  Research Objectives

Although threaded assembly of C-mount camera lenses has been demonstrated with a
gpatial remote center of compliance (SRCC), it is not fully understood, and therefore can
not be extrapolated to other cases. Currently, the assembly is completed by the
conventional heuristic of rotating the bolt counter clockwise until a"snap” isheard. The
"snap" results from a sudden change in the height of the bolt and occurs when the bolt is
in phase with the nut. From this point, it is known that any clockwise rotation resultsin a
successful assembly provided that the orientation is maintained. It isof interest to
determine the nature of contact between the bolt and nut prior to an in-phase condition,
and how the multiple contact states can be constrained to permit successful completion of
the threaded fastener task.

A contact analysis between the bolt and nut will provide the information necessary to
verify that the SRCC responds correctly to the forces involved during assembly. The

main objectives of the contact analysis are:

» Identify the surface regionsin contact and the resultant normals;
* Enumerate the multiple contact point configurations; and

» Determine the contact state network that defines assembly paths.

Once the surface regions are known, the resultant normal for the bolt and nut can be
calculated for each orientation. This datawill be utilized on a contact state network
where the optimal path (i.e., the path of least resistance) can be determined. The

knowledge of multiple contact points and their depth will allow one to determine the



potential for jamming or wedging. The analysis of this problem shall begin with atwo-

dimensional analysis of the problem.



Chapter 2

Planar Contact Analysis

Instead of trying to visualize spatial contact configurations, it will be beneficial to
begin the analysis of this problem in two dimensions. Any insight into the devel opment
of contact location algorithms can then be gleaned and introduced into the inevitable
three-dimensional analysis. In this chapter we identify the standard thread design for
internal and external threads, and establish the parametric equations that define the cross

section of such threads so that the contact points can be identified.

21  Screw Thread Definitions

The internal and external threads are defined by the American National Standard for
Unified Screw Threads (Oberg, 1992). Fillet radii bound the crest and root in order to
approximate an actual manufactured thread.
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7POSITIVE ROOT FILLET (+RF)
7 8ROOT (R)

BASE

Figure2.1 Internal & External Thread Profiles
The bolt (or external thread) is made up of 9 regions, as shown in Figure 2.1 above. The
flank is defined as positive if the radius of the bolt increases when measured in the
positive azimuth (+2Z) direction. Likewise, the flank is defined as negative if the radius of
the bolt decreases in the positive azimuth direction. Thislogic isidentical for the crest
fillet and the root fillet. In addition to these regions the bolt has constant radius surfaces
defined as the crest and the root. The ninth, and final, region is known as the base, since
the bottom of the bolt completes a surface region and has the potential to become

involved during contact.



The nut follows asimilar definition, however, due to the nature of an internal thread, the
value of theradiusis amaximum at the root and a minimum at the crest as measured
from the nut azimuth axis. The designation of positive or negative as applied to the flank,
crest fillet, and root fillet of the nut follows the same definition as provided for the bolt.
The ninth region is known as the surface, and like the bolt, it compl etes the surface region
of the nut that has the potential to come into contact. The top of the bolt and the bottom
of the nut are not included here because these regions will not come into contact once the
position and orientation errors are introduced.

The pitch of athread is defined as the vertical change of the thread per one revolution. It
provides a threaded assembly the ability to mesh. In order for two threaded parts to mate,
the pitch of each must be the same, or the parts will wedge together and become

damaged. The amount of vertical change can be calculated with the following equation:

2=P%  ocp<on 2. 1)
2T

Here, p isthe pitch in inches (or millimeters) and 8isthe angular location in radians.
Note that any profile, such as the external thread, which is helically swept, will repeat
itself after one full revolution about the azimuth axis.

2.2  Parametric Equation Derivations

When the bottom of the bolt is viewed parallel to the negative azimuth axis, a distinct
cross-section will be seen. It has the appearance of being elliptical, and can easily be
defined by mapping the cross section of the bolt from the X-Z plane to the X-Y plane. If
one cut the bolt perpendicular to its azimuth axis, then the radius as measured
counterclockwise will pass through all of the regions (with the exception of the base),
since one full rotation about the azimuth axisis equivalent to one pitch of the external
thread. Figure 2.2 illustrates what the cross-section looks like from this view.



Figure2. 2 General Thread Cross-Section
Now, as this cross section rotates counter-clockwise, the radius as measured aong the X-
axiswill increase for the positive regions and decrease for the negative ones. Asthe radii
are measured this way, the positive regions begin at their maximum and end at their
minimum values while the negative regions begin at their minimum and end at their
maximum values. The reason for thislies in the handedness of the thread, if the thread is
right-handed, then you move in the positive azimuth direction when rotating counter-
clockwise. If thethread isleft-handed, then you move in the positive azimuth direction
when rotating clockwise. Inthisanaysis, we will only deal with right-handed threaded
fasteners.

Let’ s begin with two examples where the equation that defines the radius of the bolt as a
function of © will be derived — where 0 is the angle measured from the origin of the bolt
to apoint on the bolt cross section. Aswill be explained in chapter 3, solid modeling

software provided the original orientation of the bolt and nut. Thus, for the remainder of

this chapter, the initial values are predetermined by the solid modeling software.

2.2.1 Negative Root Fillet

Two known points of the root fillet are selected which are the starting and ending points
of the negative root fillet region (Figure 2.3). The starting point of the negative root fillet
(-RF) issimply the root radius, bmin. The ending point is the root radius plus one half the



root fillet radius (denoted rrp) which is calculated through a simple geometric analysis of
the external thread profile.
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Figure 2. 3 Negative Root Fillet
Here, 0 refers to the amount the radius changes as one moves in the negative azimuth (z)
direction. The changein radiusis added to theinitial value and forms the following

equation:
x=,/rr} —2° (2.2

O=rr,—X=rr, = /rr, -2z (2.3)

R—RF (Z) = (bmin + rrb) R rrb2 -7 (2- 4)

Substituting equation 2.1 for the azimuth height, z, one obtains the radius of the negative

root fillet as afunction of ©:

- _[r2_12(g—g )2 _Hb .
R (0) = (b +11,)—rrZ - 2(6-6, ) L @QTT@ (2.5

The 6, valueis a correction factor that allows this part of the thread profile to begin at a

point other than zero.
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2.2.2 Negative Flank

The negative flank (-F) precedes the negative root fillet, and a similar procedure is used
to derive the radius of the negative flank as afunction of azimuth height (Figure 2.4).
Theradiusis equal to by,in plus one half the root fillet radius at the starting point, and
equals bmax Minus one half the crest fillet radius at the termination point.

| 1
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R
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Figure 2. 4 Negative Flank
The radius changes at a rate dependent on the slope of the flank line, which again is

denoted by 6. The changein radiusis added to theinitial value and the following
equation of the negative flank radiusis derived:

tan(60°) = g (2. 6)

d = ztan(60°) = /3z (2.7

R (2) = by + 211, D 432 (2.8)
O 2 0

Substituting in equation 2.1 for the azimuth height, z, one obtains the radius for the

negative flank as a function of ©:

V3p

R (6)= by 451, 4 K(O-6,)  K=2F 2.9)

This processis repeated for the remaining six regions of the bolt and for al of the regions

of the nut. The entire set of parametric equations can be found in the appendix.
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2.3  Planar Contact Regions

A solid model of the threaded parts will be introduced later on in chapter three, which
will provide the orientations of the bolt and nut cross sections a priori. Since the two-
dimensiona analysis was constructed based on the solid models, it is necessary to show
how the two bodies contact one another prior to any rotation about the Z-axis. Figure 2.5
shows a planar view when looking down onto the XY plane and a cross-sectional view
when looking perpendicular to the XZ plane. The relative alignment of the bolt and nut

when the phase angle is zero is shown in the cross section for reference.

Figure 2. 5 Initial Orientation of Bolt & Nut

Since the bolt and nut are made up of nine regions each that have the potential to come
into contact, there will be a set of combinations of these regions that represent the
contacting surfaces. Given avalue of phase, one simply would rotate the bolt cross
section by that amount about the Z-axis, and equate the parametric equations to ascertain
the contact point. In this planar example, there will aways be two points of contact,
since the only degree of freedom is arotation about the Z-axis. The pair of combinations
can be determined with the aid of an annular surface disk (Figure 2.6), which has been

12



derived from the equations to follow in this section for each contact point. It describes

the surface regions in contact given avalue of phase, @.

CONTACT POINT 1 CONTACT POINT 2

Figure 2. 6 Contact Region Combination Disk

The outer annulus identifies contact regions of the nut; the corresponding contact regions
of the bolt are identified on the inner disk. The terminology used hereisidentical to that
of Figure 2.1, above. For the example shown in Figure 2.6, at arelative phase angle of
30° (@=30°), contact point 1 occurs between the negative flank of the nut and the positive
flank of the bolt. The location of contact point 1 is not given in the figure, but can be
found, along with the orientation of its contact normal, by referring to the datain
appendix A. At this same phase angle, Figure 2.6 identifies contact point 2 comprising
the positive flank of the nut touching the negative flank of the bolt. The dark region
shown in the inner disk and outer annulus represents an in-phase condition at which time
no contact occurs. Though the locations of the contact points vary with phase, it is of
primary interest to identify the regions in contact so as to be able to calculate the
common normal at the contact point, rather than establishing a relationship between

phase (@) and the contact locations.
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24  Two Dimensional Contact Point Analysis

We are now able to set up an analytical method for locating where the cross section of the
bolt intersects the cross section of the nut. Given the cross-section of the bolt placed on
top of the nut cross-section, locate the two points where the radius of the bolt and nut are
equal. The only degree of freedom for the bolt in this special case is the rotation about
the azimuth axis, since there are no trandlation errorsin the X and Y -axes, which are the
only other remaining degrees of freedom. The azimuth rotation will be defined by the
phase angle, @. Once @is given, then in order to solve for the intersecting points one
must locate which radius equation of the bolt equals the radius equation of the nut. A

simple example follows.

24.1 Example @=30°

Figure 2.7 highlights the regions that contain radii equality points at this value of @. For
thefirst contact point, the positive flank of the bolt intersects the negative flank of the
nut. For the second contact point, the negative flank of the bolt intersects the positive

flank of the nut.

Figure 2. 7 Contact Pointsat ¢ = 30°

14



The two contact points can be found by solving the following equations:

ContactOne R'F =R " (2. 10)
Contact Two R;F =R'F (2.11)

Each of these equations can be expanded to the following:

Contact One Hamax —lcrrb H K8, -86>) = H’Imin +1crrn H K@, +6r) (2. 12
g 2 0 0 2 'O

Contact Two b, +~rr, b K@, -6%)=Fh . -Lrr B-Kk@, -67) (2 13)
| 2 0 O 2 0

At first glance, it appears that we have one equation with two unknowns. However, a
second equation that defines By, as afunction of 6, isavailable. From Figure 2.8, 6, can

be easily calculated by the following equation:
#l 6, =2m—(p-6,) (2.149)

#2 6,=6-¢ (2. 15)

Figure 2. 8 6, Derivation
After a healthy round of algebraic manipulation the following two equations can be used

to identify the angular location of the two contact points (Fig. 2.5). Their position in the

X-Y plane can be determined by converting from Polar to Cartesian coordinates:

15




ecl :%E% %max - nmin _%(Crrb +Crrn)E+ 0|tr)1| +6|rr]1| + 40% (2 16)
_101Q _1 b, on 4 O
62 =5 D i ™ ST+ rrb)g O *+ O + 90 (2.17)
=R." (6,,)cos(6,,) =R." (6,)sin(6,,) (2.18)
R (0,)0080,) Yo, =R (8,)sn(6,) (2.19

25  Critical Valuesof ¢

By determining the critical angles of phase, one will know how to isolate the appropriate
radii equations so as to enumerate the location of each contact point. Different radii
formulae (versions of equations 2.5 and 2.9) are involved depending on the value of
phase, since different regions of the bolt as well as the nut cross section will intersect.
The following example illustrates the method to identify all of the critical ranges of
phase. Here, the basic question is“What limiting value of @isthe negative flank of the
bolt still equal to the positive flank of the nut as shown in Figure 2.5?7° From visual
Inspection, it appears that the positive flank switches to the positive crest fillet of the nut,
while the negative flank of the bolt contacts both regions of the nut. The value of the nut

radius at the moment the switch occursis:

=N, + B%crrn H 2.20
R, oL (2. 20)
This relationship alows the equation for the location of contact two (eg. 2.13) to be
written as:
Ler, e
b +=rr, K (G, -6°) = 2.21
b, + 5, CF K (6, ~60) = R, (2.2
6,=6,-¢ (2.22)

Subbing in for 6y, and noting that 6, is equal to the starting angle of the positive crest
fillet (since that is where the switch from the positive flank to the positive crest fillet

occurs) one obtains the following equation for the critical value of phase:
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1 1 0
@ =60 -6° +— o+ R 2.23
cr n ini K %)mm 2 bg_ H ( )

In order to automate the process of graphing multiple pivot axes, al of the critical phase
angles must be calculated, so that the correct equalities can be analyzed. The critical
values, aong with the appropriate contact angle formulas are listed in appendix A.
Figure 2.9 illustrates how the contact points vary with phase. The line which has a phase

value attached to the endpoints connects each pair of contact points.

CONTACT
ANGLE

Figure 2. 9 Pivot Axis Position vs. Phase Angle

The angle that depicts the range where the bolt radiusis larger than the nut radiusis
referred to as the contact angle. The line that connects the two contact points will be
known as the pivot axis. Physically, the pivot axisis an axis that the bolt will rotate
about in order to obtain the third contact point. Notice how the contact angle diminishes
as the phase value (¢) increases until the bolt and nut are in-phase. It is of interest to
determine if the distance between contact points tend towards zero, or if there is some

limiting value. Fortunately, this question can be answered via proof by induction.
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2.6 CurvatureVerification

Hypothesis: When the bolt reaches the in-phase value of ¢ (3.0744 radians), line-line
contact exists between the two bodies, thereby reaching a minimum straight-line distance
between the two contact points. By line-line contact, we are stating that all of the bolt
radii are equal to all of the nut radii, thus providing an infinite number of contact points

between the two bodies.

The only way this could be trueisif the curvature of the bolt cross-section isidentical to
the curvature of the nut cross-section. If so, then the points where the curvatures cease to
equal are the limiting values of the pivot axis. Just before the bolt and nut are in-phase,

the region of the nut edge that comes into contact with the bolt is defined by:

F B 1 _an
Ry (6,) = Do +501T, 0 K(6, = 6)) (2. 24)

The equation that locates a point on the curve defined by equation 2.24 is (in vector

form):

P=R."(8,)co86,)i + R."(8,)sin(8,)] (2.25)
The curvature of equation 2.25 is defined by:

k _ Epir Pj" _ Pi" PJ! B (2 26)
n = i1 \3/2 :
3 (P B
The first derivative of the position equation (2.25) is:
P ~ O
E:?PE: B’ = (K cos(6,) - %m +%crrn §+ K(6, -6 )Esin(en)%
" H H 2.27)
U]
* DK S8,) + L, + o, B K@, -G 0s(6,)1]
0 2 0 B: ]
The second derivative of the position equation (2.25) is:
. g
g =P =Craksn@) - i, + Jom e K@, - 60 )ceoste)d
6, 0 2 O Ef 0
(2. 28)

+ (2K cos(6,) - % + Lo Bk, —ei';i)ﬁeinwn)%
0 2 0 0
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After substituting the necessary values into equation 2.26, the following relationship

defines the curvature of the nut:

1 f
2K2+ min+7crrnH+K(9n_9i2i)
H 1 e
K2 o ek -0n
g‘ + %mm + 2crrn |:| ( n |nI)H %

Just before the bolt and nut are in-phase, the radius equation for the bolt is:

R;* (6,) = by + %rrb §+ K8, -6") (2. 30)

Following the same procedure as before, the curvature equation of the bolt is:

K, =

1 cf
2KZ+ b+ rr, K (8, - (@+62))
%3 20 Hg (2.31)

E 1 o OR
EAK +%min+2rrb§+K(9n (¢)+9|n|))H%

In order to prove that the curvature is the same it is sufficient to show that the following

two portions of the equation are identical:

k, =k, (2.32)
2 2 2 2
MrA KA (2.33)
a2+ A2z [ak2 + A2

A=A (2.34)

b + 2, B 2 )) =y, +=crr, B n
min T K en - +9ini - min +—C|'|'n K en _eini 2.35
x 5 (@, —(p+65)) . 5 CM D ( ) (2.35)

Rearranging equation 2.35, and solving for ¢, one obtains:

=65~ Eeil:ﬂ +EH a=ng, —by, 2.36
@ B+ B (2. 36)

When the appropriate values are substituted, one obtains the following value for ¢
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@=176.15° = 3.0744 rad
Thisvalueisidentical to the critical value of @, therefore, the curvature of the bolt and
nut are identical. Thus, the contact angle reaches a minimum value instead of tending
towards zero. Thisisbeneficia to know, because if the line connecting the two contact
points reduces to a point, the bolt will not have a predefined direction of rotation that was
available with the pivot axis. Without afully defined pivot axis, the next direction of

rotation would not be known.

Though the assembly of athreaded fastener istruly athree-dimensional operation, aless
complicated two-dimensional analysis of the problem provided some insight as to how
the bolt and nut interact during assembly. The next chapter will extend this work into

three dimensions by considering a spatial orientation of the bolt.
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Chapter 3
Spatial Contact Analysis

Although the two dimensional analysis provided some insight into how the
contacts between a bolt and nut behave during counter-clockwise rotation of the bolt, it
did not provide the opportunity to analyze the potential for out-of-plane contacts. By
modeling the assembly problem in three dimensions, one will be able to determineif any
out-of-plane contacts exist. We begin by assuming that the bolt will obtain an out-of-
plane contact once it achieves stability, which is defined as three distinct contact points.
The following steps predict the path that the bolt will take to obtain stability:

1. Initial contact at predefined spatial orientation.

2. Rotation about a vector tangent to the surface of the nut at the initial contact

point until the second contact is made.

3. Rotation about a pivot axis defined by the two contact points until athird

contact is obtained.
The direction of rotation at theinitial contact point will be negative to ensure that the bolt
will rotate in the direction that correctsits spatial orientation. The direction of rotation
about the pivot axis will vary depending on the location of the two contact points. The
prediction above is based on the action following a minimization of the virtual work done
on an unbiased elastic structure, such as an RCC.

3.1 Numerical Contact Analysis

In order to prove that the bolt follows this contact path, a supervisory code was written to
isolate the contacts as they occurred in space. To facilitate the detection of these
contacts, a software library, known as RAPID (Gottschalk, 1996, version 2.01), was used
to determine contacts between two solid bodies given some initial orientation in space’.
However, RAPID required the input of a solid model in atessellated form. This meant
that the bolt and nut must be model ed through solid modeling software, tessellated, and
exported into abinary datafile. RAPID uses the vertices of the triangles contained in the
binary datafile to store the model in memory. Once the models are stored, the user then

! The author gratefully acknowledges the creator of RAPID, Steven Gottschalk, for allowing the
incorporation of his collision detection library into this analysis.
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provides the spatial orientation of each model, and RAPID determines if the two parts are
in contact. If they arein contact, RAPID returns alist of contact pairs— onetriangle for
the bolt and one triangle for the nut. However, these pairs are only the identification
numbers of the triangles, not the coordinate values. It is up to the user to augment the

library to cal cul ate the geometric location of the contact coordinates.

3.2 Solid M odel Definition

A solid modeler, Pro/Engineer release 19, was used to create the images of one pitch of
the bolt and nut thread (#1/4-20 UNC). Pro/Engineer provides the user with the ability to
export Stereolithography (.STL) files. .STL files represent the surfaces of a solid model
as groups of small polygons, or in this case, groups of triangles. The quality of an .STL
file can be controlled through the Pro/Engineer interface, and it depends on the deviation
of the actual surface from the tessellated surface. One parameter that can be adjusted is
the chord height. This specifies the maximum distance between a chord and a surface
(Fig. 3.2).

CHORD HEIGHT

TESSELLATED

PART SURFACE

SURFACE

Figure 3.1 Chord Height
The minimum value of chord height is determined by the software, and is a function of
part accuracy. Another parameter to control the quality of the tessellated output is angle
control. If apart has small radial features, like the dimple on agolf ball, then these
surfaces will have very little definition in the tessellated output. Angle control regulates
the amount of additional improvement provided along curves with small radii. Likethe
chord height parameter, angle control is bounded with the minimum being determined by
the software. For the contact analysis between the bolt and nut, the best tessellation was

desired, so the minimum values of chord height (1.0 x 10%) and angle control (0.5) were
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chosen for both the nut and bolt. The bolt was made hollow, and the nut was cut out of a
16-sided polygon to reduce the size of triangles that appeared on the top and bottom
surfaces of the bolt and nut. This produced a model that deviated from the true surface
by afew millionths of an inch, which iswithin the surface noise of areal threaded part
(Fig. 3.2).

Figure 3. 2 Tessellated Solid Model —Bolt & Nut
The datain the .STL filesisin binary format to maintain accuracy, and to reduce the size
so that the models could be transported via diskette. Each triangle in the solid model is
allotted 50 bytes, while the first 84 bytes of the file contain header information and the
number of facets the model contains. The following depicts the breakdown of the binary
fileformat (Fig. 3.3):

Address Length Type Description

0 80 char Header Information

80 4 long #of facetsin solid

First Facet (50 bytes):

84 4 float Normal (6,)

88 4 float Normal (8,)

92 4 float Normal (6,)

96 4 float Vertex 1 (X-component)
100 4 float Vertex 1 (Y-component)
104 4 float Vertex 1 (Z-component)
108 4 float Vertex 2 (X-component)
112 4 float Vertex 2 (Y-component)
116 4 float Vertex 2 (Z-component)
120 4 float Vertex 3 (X-component)
124 4 float Vertex 3 (Y-component)
128 4 float Vertex 3 (Z-component)
132 2 short Attribute Info. (Not used)
Second Facet (50 bytes):

134

Figure 3.3 .STL File Output Description
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When the model is sent into RAPID, only the vertex information is provided. A copy of
what is sent to RAPID is maintained in memory, so when RAPID returnsthe list of
contact pairs one can locate the triangle vertices involved. The type identifier indicates
the variable declaration, which is single precision (float) for all of the vertices. Thelong
and short identifiers are integers that require 4 and 2 bytes, respectively. Pro/Engineer
did not provide the ability to export the vertices of the tessellation in double precision,
because the .STL file format only uses single precision.

Before describing the contact location algorithm, we will begin with a brief introduction
to vector algebra, which is required to understand the derivation of aline in symmetric
form, and move immediately into the general equations that locate the approximate
contact point between two intersecting triangles in space.

3.3 General Vector Algebra
A vector in space is defined as a mathematical expression possessing magnitude and
direction. If apoint ‘A’ islocated in space by (Xo, Yo, Zo) and point ‘B’ islocated at (X,

Y1, Z1) then the vector from ‘A’ to ‘B’ is:

AB = (%, = %)i + (¥, = o) + (2~ Z)k (3.1)
Given two vectorsin space, the dot product is defined as the product of the magnitudes of
the two given vectors and of the cosine of the angle between them.

P=ai+bhj+ck Q=xi+yj+z

P+ Q =ax+by +cz =|P|Q|cos(6) (3.2
Fsi kR =1
’i\.]\:’i\.lz:]\.l’(\ =0

Given any vector in space, the direction cosines can be computed by fixing areference
frame at the base of the vector, and then dividing the dot product of the vector with each
respective axis by its magnitude.

: R

cos(@) = /?T| cos(B) =21 cosy) =

A|'k (3.3)

Al
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The sum of the squares of the direction cosinesis always equal to 1. In the contact study
that follows in chapter 4, the direction cosines will serve as an invauable tool in the
determination of assembly motions. Given any two nonparallel vectors in space, the
cross product is a vector whose length is numerically equal to the area of the
parallelogram spanned by the two given vectors. The cross product obeys the right hand
rule such that the direction of computation occurs counterclockwise when looking down
onto the plane created by two given vectors. Unlike the dot product, the cross product is
not a commutative operation; therefore, the order in which a cross product is performed
must be monitored. The standard basis vectorsinvolved in the cross product of the right-

handed system are shown below:

P=ai+hj+ck Q=di+g+fk

PxQ = (bf —ce)i +(cd —af )j + (ae—bd)k (3. 4)

3.4 Equation of aLinein Symmetric Form
A normal vector, or a vector perpendicular to a plane in space, can be computed from
three points that lie on the plane. If V1 isthe vector from point 1 to 3 and V, is the vector

from point 1 to 2, then the normal vector is defined by the cross product of V, and V4

(Fig. 3.4).

3 %.2)

(XZYyZ 'ZZ)

Figure 3. 4 Normal Vector to a Plane
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N=V,xV, (3.5)

Where:
V, = (% = %)i +(y; — V)i +(z, — 2K (3.6)
V, = (% = x)i + (¥, — yo)i +(z, - z)k 3.7)

Therefore the normal vector becomes;

N =Y, ~ ¥i)(2 = 2) = (¥ ~ Yi)(Z, —2)]i +
[0 =%)(2 = 2) = (%, = %)(z, = 2)]j + (3.9)
[0 = X)(Ys = Y1) = (% = X)(Y, — YK
A line in space can be considered as the result of the intersection of two non-paralel
infinite planes. Therefore, given two sets of points, each of which defines an infinite
plane in space, one can derive the equation of the line of intersection. The general form
for the vector equation of the plane with normal vector N is:

N-.(R-R,)=0 (3.9)

The vector R is drawn from the origin to any given point on the plane (point 1), and the

vector R isdrawn from point 1 to any arbitrary point on the plane (Fig. 3.5).

Figure 3. 3 Arbitrary Planein Space
Choosing point 1 as the given point, the quantity (R-R1) becomes:

(R-R,)=(x-x)i +(y-y,)j +(z-2z)k (3.10)
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Utilizing the normal vector calculated from the given coordinates, the equation of the

plane becomes:
Given: N=ai + b] +ck
N.(R-R;)=a(x-x)+b(y-y)+c(z-2)=0 (3.11)
Equation of aplane:
ax+by+cz=(ax, +by, +cz) (3.12)
Since the two planes are assumed non-parallel, there will be two distinct normal vectors

N1 and N,. The normal vectors are perpendicular at any point on their respective planes,

so they can be placed such that the origins of the vectors meet at the line of intersection.

X

Figure 3. 4 Direction & Normal Vectorsto a Plane
The direction vector (M) is defined as a vector parallel to the line created from two

intersecting planes, and it is computed from the cross product of the normal vectors:

M =N, xN, (3.13)

Where:
N, :abi+bbj+cbi2
N, = anf+bn]+cnl2
Therefore:
M = (b,c,=C,b,)i + (€3, —a,C,)] +(ab, ~b,a,)k (3.14)

Theline of intersection, |, can be derived from the two equations for the plane and the

direction vector in the following manner. Sincethelineisinfinite, it will intersect at least
one of the XZ, YZ, or XY planes. For theinitial derivation it is assumed that the line
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intersects the Y Z plane, therefore, let Y =0 as a point on the line. Then the two plane

equations become:
3, Xo +CZo = (8, X, +bY, +¢,Z)) (3.19)
a, X, +¢,Z, = (a,X; +b.Y; +¢,Z,) (3.16)

Thus, given the value of Y o, the remaining two simultaneous linear equations can be

solved for Xo and Zo.

Xo =X, +MYl (3.17)
(Cnab - ancb)

_ 5, (ba -ah)
Z,= Z+——=="Y, 3.18
© 1+ (Cnab _ancb) ' ( )

The symmetric equation of the line becomes:

X-Xo Y=Yy Z-Z,

B T " (3- 19)
M) M)j (M)
Subbing in for the direction vector M and Y o:
X-Xo _ Y _Z-Z, (3.20)

b,c,-cb, c.a,—a,c, - ab, —ba,
If any one of the components of the direction vector is zero then the equation of the line
has only one dependent variable. For example, if the direction vector has only Y -axis
and Z-axis components, then the line must be parallel to the YZ plane at a position of Xo
on the X-axis. The derivation of the symmetric equations of the line must be repeated to
account for all possible cases, since up to two values of the direction vector can be zero.
The derivation for these cases is similar to the one above, thus, only the resulting

equations are listed below:

When Zo=0:
Xo - X1 + (Cbbn —ban) Z:L Yo :Yl + (aan _Cban) Zj_ (3 21)
(a‘bbn _bban) (abbn _bban)

When Xo=0

Yo - 4 + (aan _Cban) X:L Zo - Zl + (bban _abbn) X (3 22)

(bbcn _Cbbn) (bbcn _Cbbn) '
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If two of the directional components are zero, the equations reduce to the trivial case of a

line paralel tothe X, Y, or Z-axis.

3.5 Contact L ocation M ethodology

Given two intersecting triangles in space, one can locate the approximate coordinates of
the contact point at the moment the intersection occurs. Knowing that each triangle
defines a plane in space, and as long as the planes are not parallel, then there will be a
line that results from the intersection of the two planes. Now, the vertices of the triangle
define three intersecting lines that bound one another and form atriangle in space.
Hence, given two intersecting triangles, one can determine the equation of the plane that
each triangle defines viaiits vertices. From this, the equation of the line resulting from
the intersection of the two planes can be derived. Now, the line can be reduced to aline
segment by determining where it intersects the sides of the bolt triangle. The bolt triangle
is chosen here, because in the tessellation of the solid model it is generally smaller than

the nut triangle, and therefore would be more accurate in locating the contact point.

At this point the boundary of the nut triangle is analyzed to see what part of the line
segment isincluded in the plane bounded by the sides of the nut triangle. Basically, part
of the line segment that liesin the plane of the bolt will intersect at least one of the sides
of the nut triangle. Vectors are drawn from the intersecting points in the bolt plane
towards the intersecting points in the nut plane. The magnitudes of these vectors are
analyzed to determine the appropriate end points of the line segment. Finaly, the
midpoint of the line segment is taken as the estimated contact point for that contact pair.
This process is repeated for each set of contacts and all of the midpoints are summed and
averaged in order to produce the approximate contact point. Ideally, the smaller number
of contact pairs the better the approximation. The number of trianglesin the tessellated
model determines the accuracy of thisresult. For our purposes, by moving the bolt down
in steps of 1 instead of 100 micro inches, we are able to reduce the maximum variation of
the calculated contact point by an average of 0.0025 inches. The following section

details the mathematics involved in the contact point calculation.
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3.6 Contact L ocation Derivation

Currently, we know the symmetric equation of the line defined by a single contact pair.
However, there are multiple contact pairsinvolved in atheoretical contact location, since
the surface of the bolt will intersect the surface of the nut to some degree thereby
increasing the number of contacting triangle pairs. If each contact pair is considered,
then how does one determine where the actual contact point occurred? The following

algorithm will be presented to approximate the contact location.

Ideally, we are interested in the segment of the line bounded by the plane of the bolt and
nut triangle. In fact, both planes must share the line segment because the plane of the
bolt and nut defined it. However, the nut triangle may not fully intersect the bolt triangle,

asit has the potentia to intersect the bolt triangle in four ways (Fig. 3.7).

AN

TYPE | TYPE I TYPE 111 TYPE IV

Figure 3. 5 Typesof Bolt & Nut Triangle I nter section
Note that in the fourth case, the nut triangle does not actually intersect the bolt triangle,
but it has the potentia to be returned as a contact pair by RAPID. Thisisdueto the
internal accuracy of the collision detection library and cannot be avoided. Hence, the
contact location algorithm will check for this specia case and only use the line segment
defined by the bolt triangle. For the remaining types, the portion of the infinite line that
Is actually involved with the intersection of the bolt and nut triangle will be used to locate
the contact point. The approximate location of the contact point will be the average of
the sum of the midpoints for each line segment. Hence, if there are 10 contact pairs
involved (that fall within the 4 valid intersection types above), then there will be 10
midpoints that will be averaged to define one contact point. The process of enumerating
the line segment helps eliminate potential error associated with triangle size. For
instance, if the triangles are large, then the line segment bounded by just the bolt triangle

will be large, subsequently creating error when calculating the midpoint. However, the
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length of the line segment can be reduced by determining where it is bounded by the bolt
and nut triangle. This, in turn, will reduce the potential for error in the contact point
location. Moreover, notethat it is of primary interest to minimize the number of contact
pairsinvolved in a contact so as to eliminate the potential for error.

BOLT
TRIANGLE

ncl nc c2 bc3 |
——
n
1 b2
NUT
TRIANGLE

BOLT LINE

b SEGMENT

Figure 3. 6 Endpoints of I ntersecting Line Segment
The following steps summarize how we approximate the contact point (Fig. 3.8):
. Derive an equation of aline that defines each boundary of the bolt triangle
. Enumerate where ling, |, intersects the bolt triangle (bc1, beo, be3)
. Check and identify which two of the three points are bounded by the bolt triangle

. Derive an equation of aline that defines each boundary of the nut triangle

1
2
3
4
5. Enumerate where ling, |, intersects the nut triangle (ncz, Ne2, Ne3)
6. Check and identify which two of the three points are bounded by the nut triangle
7. Determineif any of the nut points fall within the boundary of the bolt triangle

8. Extract the endpoints of the line segment

9. Calculate the midpoint, and repeat steps 1-8 for next contact pair

10. Average midpoints from each contact pair

Thefirst step will be to derive the equation of aline for each side of the bolt triangle. A
simplified method of determining the equation of aline in symmetric form will be used.

31



Here, one can simply determine the direction vector M from the vertex points since the
lineis aready parallel to the plane of the bolt triangle. The line equations become:
From Vertex 1to 3:

X=Xy _ Y~ Y _ 272y

(3.23)
Xos " X1 Yo3 = Y Zpz ~Zn
From Vertex 2to 3:
X7X2 _ Y7 Yo _ 274 (3. 24)
Xos " X2 Yos " Yoo Loz T 4
From Vertex 1to 2:
X=Xy _ Y7 Y _ 272y (3. 25)

Xp2 " X1 Yoo " Ym D2 T Zm
The contact points (be1, beo, bes) are determined by solving a system of equations. Two of
the equations are supplied by the triangle line equations while the third is provided by the
symmetric equation of the line:

b, : b, : b,

X=X, _ Z-2Z, X=X, _ Z-Z, X=Xy, _ Z2-2,

xb3 xbl Zb3 Z xb3 xb2 Zb3 sz xb2 Xbl Zb2 Z

Y=Y, Z2-Z, Y=Y, Z-2Z, Y=Y, Z-Z, (3. 26 a,b,c)
Yb3 Ybl Zb3 Z Yb3 Yb2 Zb3 Z Yb2 Ybl Zb2 Z

X - XO_Z—ZO X - XO Z—ZO X - XO Z—ZO

M) (M)k M) (M)k M)l (M)k

The line resulting from the intersection of the bolt and nut triangle will intersect the lines
that make up the sides of the bolt triangle three times. It isof interest to find out which
two of the three points are bounded by the bolt triangle. In order to verify that b, and b,
meet the criteria, the magnitude of the vector drawn from b, to be; must be less than the
magnitude of the vector drawn from b, to bs, and the magnitude of the vector drawn from
b, to bs must be less than the magnitude of the vector drawn from b, to be,. Thiswill
succeed unless one of the lines that make up a boundary of the bolt triangle is parallel to
I, in which case athird point of intersection can not be calculated. The entire processis
defined in the steps below:

1. Calculate the vector magnitudes for each side of the bolt triangle:
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V13 = \/(bxs - bxl)2 + (by3 - byl)2 + (bz3 - bu)z

V23 = \/(bx3 - bx2)2 + (byS - by2 )2 + (bZ3 - b22 )2

\712 = \/(bxz - bx1)2 + (byz - by1)2 + (b22 - bzl)2

(3.27)

(3. 28)

(3. 29)

2. Caculate the vector magnitudes for each vector drawn from a vertex of the bolt

triangle to the intersection point:

3. Calculate the angle between the vector that defines the side

vector drawn from the vertex to the intersection point:

E\/ Cl H =cos B\/ CZ H =cos
Avave] HV SR & HV“Z 7"

4. If the vectors are coincident (the angle is zero) and the mag

6., =cos”

\7161 = \/( fl - bxl)2 +( ;l _byl)z +( fl - bzl)2 (3- 30)
Vs = Jlo b f + b7 -b,.F + o -b,.) (3.31
Ve = b —b, ] + (b ~b, ] + (b -b, ) (3. 32)

of the triangle and the

%\//Hvﬁﬁ (3.33a,b,c)

hitude of the vector drawn

from the vertex to the contact point is less than the magnitude of the vector that

defines a side of the bolt triangle, then the intersection point falls on the triangle

boundary.

This processis repeated for the nut triangle, resulting in two sets of two points. Thuswe

are left with the endpoints of the nut and bolt line segment. Now we must check and see

if the location of the nut endpoints match any of the five intersection types listed above.

We want to determine where the nut endpoints arein order tor

educe the length of the

contact line segment. Once again, vector magnitudes as well as vector directions are used

to correctly isolate the appropriate endpoints. This process is emulated with the

following steps (assuming that be, beo, Ne2, Nez are the two intersection pointsthat lie

within the boundaries of the bolt and nut triangle, respectively):
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. Determine the magnitude of the vector drawn from by, to bey:

= oz -2 o -5 + o b2 (339
. Determine the magnitude of the vector drawn from bg; to ne:

e Y2 =petf o+ (n b2 + (2 - b2t (3.35)

N
V C

~ b
V %2
b1

. Determine the magnitude of the vector drawn from bg; to nes:

=0 - b ) + (0~ b3 + (e b2t (3. 36)

. Cdculate the angle between the vector from b, to be, and the vector from bg; to ney:

v
c2
Vb

cl

ch V Nc2
=cos™ HV b°1 H (3.37)

B‘V o2
. Cdculate the angle between the vector from b, to be, and the vector from bg; to nes:

H\_];CZ \7b c3 H

2 =cos” 57‘31 (3.38)
H‘V co

. Determine the magnitude of the vector drawn from bg, to ne:

=07 - b2) + (122 b2 ) + (n2 - bz2f (3.39)

. Determine the magnitude of the vector drawn from bg, to nes:

b | = \/ (n§3 - b§2)2 + (n§3 ~by? )2 + (nf’ - b;:z)2 (3. 40)

C

7 N
cl
Vb

c2

. Cdculate the angle between the vector from b, to b, and the vector from bg, to ne:
Pt

—1BV 02 c2 E

1 2

H‘V 2 Ve2| 0

. Cdculate the angle between the vector from b, to b, and the vector from bg, to nes:
Pt

—1Bv c2 c2 H

> =cos O ——— 0
‘V cl Vbc3 H

c2

= COos

(3. 41)

(3. 42)




All of these calculations are necessary, since we do not have prior knowledge of the order
of the intersection points (b1, beo, bes). In thefirst contact situation, the four ordered
pairs of the bolt and nut intersection points produce four possible arrangements of the

angle between them as shown in Table 3.1:

Table3.1
901 902 911 912
(Nc2, be1, Ne3, beo) T 0 0 0
(Nes, be1, Ne2, be2) 0 T 0 0
(N2, bz, Ne3, bey) 0 0 Tt 0
(Nes, be2, Ne2, bea) 0 0 0 T

Thus, the intersection between the bolt and nut will fall into the first type provided that
the angle between the respective vectors matches one line in the table above. If not, then
the angular results are compared with the next intersection type. In addition to the
angular check, the magnitudes of the vectors (shown in steps 1-3 and 5-7) are compared
in order to verify that the intersection point falls within the plane of the bolt triangle. If
the nut intersection point does not fall within the plane of the triangle, then either the
fourth or fifth intersection type will define the resulting line segment. The remaining
cases can be found in appendix B and highlighted within the C++ code in appendix D.

Before defining the multiple contact state models, we will begin with a brief review of
coordinate system transformations since this technique is required to understand the
progression of the bolt from the initial to the final contact state.

3.7 Coordinate System Transformations

One can efficiently conduct an assembly analysis between two bodies by utilizing Euler
rotations. Here, the orientation of one body that isfixed is considered the fixed reference
frame. Thisisalso known asthe fixed inertial reference frame, as discussed in any
dynamics text, but this analysisis purely geometric, and therefore, the fixed inertial
reference frame will be known as the fixed reference frame. The position of the active
body, or the body being manipulated, isfirstly defined initslocal reference frame.
Instead of dealing with two reference frames, it isfar smpler to first define the active

body’ s orientation in its local reference frame, and then transform the orientation to the
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fixed reference frame. Oncethisis done, then a contact analysis between two bodiesin
space can be accomplished. Since the local reference frame is a moving reference, the
orientation of the moving body will be transformed to the fixed reference frame in order
to keep track of its orientation in space. Consider two coordinate systems that share a
common origin. The unprimed and primed axes will denote the fixed and local reference

frame, respectively (Fig. 3.9).

Figure 3. 7 Rotating Refer ence Frames
Consider afixed body that contains a set of mutually orthogonal unprimed coordinate
axes located at point O. Also, consider amoving body containing another set of mutually
orthogonal primed coordinate axes, initially coincident at point O and containing an
arbitrary point Pat (x’, y’, Z'). If the primed axes are rotated about the OX axis an
amount a, then the coordinates that locate the point P in the fixed frame are (X, v, 2).
These two sets of coordinates are related by the following transformation (Meirovitch,
1970):

'
'%: [Rx]
H

[X
N
&'

(X
g 0

v
e

(3. 43)
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1 0 0 O
[RX] = %) cos(a) sin(a)% (3.44)
@ -sin(@) cos(@)f
[Rx] will bereferred to as the X-axis rotation matrix. Similarly, if the primed axes are
rotated about the OY axis by an amount [3, the Y -axis rotation matrix becomes:
[cos(8) 0 -sin(B)O
RJ=50 1 o 7
Bin(B8) 0 cos(B)
Finally, if the primed axes are rotated about the OZ axis by an amount @, then the Z-axis

(3. 45)

rotation matrix becomes:

Ocos(¢) sin(g) OO
[R.]=Fsn(@ coste) 0 (3.46)

H O 0 15
When one considers the orientation of a body in space, the order of rotation becomes
paramount. Intwo dimensions, only one rotation, a rotation about an axis perpendicular
to the plane, is possible, therefore the orientation of abody is defined as two trandations
and one rotation. Trandations are commutative in two and three dimensions, but
rotations are not commutative in three dimensions. A body will possess a different
orientation depending on the order of rotation. There are 12 unique parameterizations of
arotation matrix using successive rotations about a set of mutually orthogonal axes
(Craig, 1989), however; only aZ-Y-X rotation will be used in thisanalysis. Here, the
moving body rotates about the OZ axis by an amount @first, followed by a rotation about
the OY axis by an amount 3, and finished with arotation about the OX axis by an amount
a. The coordinates of point P in the local frame are transformed to coordinates in the
fixed reference frame by sequentially multiplying the rotation matrices. Using the order
of rotation described above, the matrix multiplication begins by multiplying the rotation
matrices in the prescribed order right to left:

I

i it
ov'0=[Rx][RV][ R v (3.47)
'
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0 chky cBsp -sf0
[R]=[R,J[RJ[R] = %asﬁcq)— casp sasPsp+cacy sacﬂ% (3.48)
asfce+sasg casfsep-sacy cacBH
Here cB is defined as the cos(3), and s is defined asthe sin(3). Since the columns of a
rotation matrix all have unit magnitude and are orthogonal to one another, the inverse of a
rotation matrix is equivalent to its transpose (Crane, 1998). Therefore, by providing
known coordinates of any point in the local reference frame the equivalent values of

those points can be obtained through the following matrix calculation:

25 B
vo=[R]" oy’ (3. 49)

70 O

X0 [EBcp sasBecp—-case casfe+ saselX [

V= Rsp saspsp+cace cassp- sacgliy D (3.50)
BZH HsB sacf cacf H

When dealing with coordinate transformations that require trandations as well as
rotationsit is more efficient to deal with 4x4 transformation matrices. Here, the local
coordinate system is trandlated from and rotated about a fixed reference frame (Fig. 3.10).
The coordinates that |ocate the origin of the moving frame are homogenous, meaning that
they are all scaled by afourth variable. This fourth variable permits the use of a4x4
matrix when representing coordinate transformations. In homogenous coordinates, a
three-dimensional point given by X, Y, and Z is represented by four scalar values, x, v, z,

and w. The homogenous and three-dimensional coordinates are related by:

I

x =X y=Y z=% (3.51ab,0)
w w w
Therefore, the first three components of the homogenous coordinates of a point are the

same as the three-dimensional coordinates of the point when w =1 (McCrea, 1947).
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Figure 3. 8 Trandated & Rotated Reference Frames
The homogenous coordinates are then utilized in amatrix multiplication that enumerates

a homogenous transform. A homogenous transformation is constructed as:

X | X

y|_| R [Ty
z ] Z

1 0 001 1

(3.52)
In the matrix equation above, the vector t is drawn with respect to the unprimed frame,
thus, given a point in the primed reference frame; one can find the location of that point
as measured from the unprimed frame. Given the primed frame as body A and the

unprimed frame as body B, the matrix equation becomes:

X[ X0
Y .-y
O0=ATO O

[ 0
HE  HB,

In the case of multiple rotations, it may occur that the user is interested in the location of

(3.53)

apoint on arigid body after the solid body has undergone several transformations. This

Iswhere the user can take advantage of the simplicity of the 4x4 homogenous
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transformation method by using it to map multiple coordinate systems. For example,
consider a moving body that underwent two tranglations and rotations in the figure
below:

(X4 Y 2,)

o)

B
o
S~

Figure 3. 9 Multiple Homogenous Transfor mations
A point located on the moving body can be mapped by the following set of equations:

HyH

:ABT'l =877 =87 '1ABT'l (3.54ab,0)

(X[ (X[
2V HyH aYn BVH EL/H
i i
HLE, ElEL HE, 5153 515) @EL

The benefit of keeping track of the position of a moving frame will proveto be an
essential tool during the contact analysis of athreaded assembly. The next topic will
discuss how the spatial orientation of the bolt was modeled as the bolt moved through

multiple contact phases.

3.8 1% Contact State M odel

The datafiles of the bolt and nut are exported from Pro/Engineer sharing the same
reference frame. Thisreference frame will be referred to as the “fixed” frame. All the
vertices of the bolt undergo atransformation that orients and translates each coordinate in
space. The bolt isthen translated along the Z-axis of the fixed frame in a series of
regressing steps of finer adjustment until contact with the nut is made, sinceit is of

primary interest to cause a contact with the least amount of penetration (smallest number
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of contact pairs). Once the final move is made, at a value of 10 micro inches, the contact
pairs are sent to the contact location subroutine. Figure 3.12 shows the orientation of the
reference frames and the transformation between them once the first contact point (CPo)
IS obtained.

Figure 3. 10 1¥ Contact State M odel
The vector u locates the contact point CPy, and the vector t |ocates the origin of the bolt
reference frame; both of which are measured with respect to the fixed reference frame.
The vector s locates the contact point as measured in the bolt reference frame. The
vertices of the bolt are transformed to the fixed frame via equation 3.55:

(XU (Xt
o

=T (3.55)
0 #0
HE  Bf
The transformation is defined as:
[CLcy sasfey-case casfeg+sasey 00
bT = %,Bsq) sasfsg+cacy casfsy—sase OB (3.56)
FOB-sB sacP cacf t, 0 '
k! 0 0 10

Note that a, 3, and @ are given because the orientation of the bolt is known a priori, and
that the value of t, is determined numerically through the series of regressing steps
mentioned earlier. Now, the contact point as viewed in the bolt frame can easily be

calculated through the following homogenous transformation:
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Thisis useful because the parametric equation that defines the cross-section of the bolt at

(3.57)

the contact can only be utilized once the contact point in the bolt reference frame is

known.

3.9 2" Contact State Model

Once thefirst contact point is obtained, a new reference frame, Co, is created at the
location of the contact point, CPy. Thisis done because the collision detection library,
RAPID, needs to start with both tessellated models sharing the same reference frame.
Thisisthe sole reason why new models of the bolt and nut need to be created in the code.
Thus, the bolt triangles maintain the first contact point configuration prior to a subsequent
rotation about the X-axis of the Cy frame. The actual contact locations are stored in
memory and converted back to the fixed reference frame so the user has knowledge of
where the contacts occurred with reference to the actual position of the bolt and nut. The
X-axis of the Cy frame is aligned with a vector drawn tangent to the nut surface at the
contact location. The bolt and nut vertices will be rotated about this X-axis until the

second contact point is obtained (Fig. 3.13).

Figure 3. 11 2™ Contact State Model
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Before commencing with a rotation about the X-axis of the Cy frame, the bolt and nut

vertices must be transformed by the following matrix equations:

(X0 (X0 (X0 (X0
@”@ =547 bJ'l@y@ Q@ =T @”@ (3.58ab)
%0 0 0 0
e a8 BE BB
g:dzcdl cd,88, —s6, (-cd,co,)u, —(cd,sd,)u, +(sd, )uzg
Copo0" S0 CO 0 (s3, )u, = (cd,)u, 0 (359
" 5,co, s3,50, cJ, (-s0,c0,)u, —(sd,s5,)u, —(cd,)u, O
H o 0o 0 1 .

O, and &, are calculated from the direction cosines of the vector tangent to the surface of
the nut at the contact point and are represented in the fixed reference frame. Figure 3.14
depicts the two-step process of transforming the X-axisto a general orientation of a

vector tangent to the nut surface.

Figure 3. 12 Vector Rotation Angles
The fixed frame is rotated about the Z-axis first by an amount d;. Then the new fixed

frame (denoted by a prime) is rotated about the Y’ -axis by an amount &,. The formulae

for calculating 6; and &, are given below:

O v O
0. =a X 0 0, =a ()S{@ - 3. 60 a,b
! cos 1ﬂ—.n(aCOSQZ)D 2 ¢ Z) 020 ( )



Note that 6 and 6, are expressed in radians, since the vector tangent to the surface of the
nut at the contact point is of unit magnitude. The transformation that orients the bolt
frame with the C, frame follows a similar derivation. Here, the Xg-axis must be aligned
with the X co-axis via two successive rotations, J; and .. However, the direction
cosines of the vector tangent to the nut surface must be expressed in the bolt frame prior

to the computation of these angles.

Coycy, cysyy - Sy, (—cwzcwl)sx—(cwzswl)sy+(sw2)szg
Co1 =0 — s, cyY, 0 (Sllfl)sx - (Clﬂl)Sy O (3. 61)
© By, sy,sy, oy,  (-sw.cyy)s, —(sw,sw)s, —(cw,)s, O

| |

oo 0 0 1 0

S _ o)
wl—acos%wg W, —acos(HZ) Eg@ (3. 62 a,b)

At this point the bolt is rotated about the X-axis of the Cy frame until the second contact
point isobtained. The direction of rotation is negative, because the vector tangent to the
surface of the nut is directed counter-clockwise, and the assembly forceis acting along
the negative azimuth axis of the bolt. Subsequently, a negative rotation about this axis
will rotate the bolt towards the nut surface. Figure 3.15 depicts the position of the bolt

frame once it obtains the second contact point, CP;.

Figure 3. 13 Coordinate Frames at Two-Point Contact



The transformation that carries the bolt to the second contact state is simply comprised of

arotation about the X cg-axis:

1 0 0 00O
%) cosA  snA OD

O 3.63
[0 -snA cosA 0O ( )

8) 0 0 15

The advent of the second contact point provides a more constrained situation, as now the

C1'|':
Co

bolt has a maximum of two degrees of freedom provided it still maintains both contact
points. Once the bolt has achieved this situation, a new model of the nut and bolt must be
created as observed from a new reference frame defined by the contact points. At all
times the contact states are validated as being quasi-stable with respect to an elastic

support, such asan RCC.

3.10 3" Contact State Model

Once again, an additional reference frame will be established at the initial contact point
CPy, but the X-axis of this coordinate system will be defined by a vector drawn from the
first to the second contact point (Fig. 3.16).

/\
oL oT AT
Cl C0 b b

Figure 3. 14 3" Contact State M odel
The transformation from the fixed frame to the Py frame will follow a similar derivation

for the transformation from the fixed frame to the Co frame. However, in this case, the



transformation will occur in several steps. Thefirst step, aready known, isthe
transformation of the fixed frame to the C, frame. The second step is the transformation
from the Co frame to the P frame. Again, there are two rotations that line up the Cy
coordinate axes with ageneral vector in space. The two rotations are:

0 6" 0
., =acos x 6., =acosle?)-H*H 3.64
P1 W% P2 5( z) 020 ( )
Recall that in a computer code the direction cosines are given in radians not degrees.

Now, the transformation follows directly from the previous derivation:

[€©6,,C0p COpySOp  —SOp, OO0

a_ H

ZOT -0 SO, COp, 0 OD (3. 65)
0 E"B@PZCHM S0p,S0p;  COp, OB
0 O 0 0 10

Given a set of coordinates in the fixed frame, one can transform them to the Py frame via

the following calculation:

(Xt (Xt
i =0T °°J§y§ (3. 66)
[FO [FO

7R, B4

The transformation equation for coordinatesinitially given in the bolt frame is somewhat
more complicated. Recall that the bolt vertices begin by being represented in the fixed
frame. The vertices must be transformed to the current location of the bolt coordinate
system, so they are transformed to the initial contact configuration first (such that the bolt
coordinate system at the moment of initial contact is viewed from the fixed reference
frame). Then they are transformed from the fixed to the C, frame, followed by an inverse
transformation to record the second contact configuration of the bolt (the moment when
the bolt obtains two contact points) as represented in the Cy frame. Finally, the bolt
vertices are transformed from the Cy to the Po frame. The cyclic representation of the

transformationsinvolved is shown in Figure 3.17:
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Figure 3. 15 Cyclic Diagram for 3" Contact State Model
The entire homogenous transformation is shown in the equation below:

(X[ X[
38 e or o
o0 [0

HE, 25,
Unlike the second contact point analysis, when the direction of rotation was known, the
direction of rotation about the Xp-axis must be determined. The X-Y plane of the P
frameis assumed to be parallel to the X-Y plane of the fixed frame, since a mgority of
the contact points will occur at or near the surface. Hence, the fixed frameis simulated at
the surface of the nut while the direction of rotation about the Xp-axis is determined. The
enumeration of the quadrant location of CPy and CP;, the determination of whether the
Xp-axisintersects the positive or negative Xaxis and whether the slope of the Xp-axisis
positive or negative will determine the direction of rotation. All of these parameters are

measured with respect to the fixed reference frame. A portion of the rotation direction

algorithm is shown below:

Table3.2
CPq Xpint. Slope CP, DIR. ROT
Q1 +XE Negative Q2 Negative
Q4 Positive
Positive Q3 Positive
Q4 Positive
-Xg Negative IMP
Positive Q2 Negative
Q3 Negative
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For each of the quadrants that CPy has the potential to occur in, thereis one configuration
that is geometrically impossible. 1n the previous example, it is geometrically impossible
for CPg to occur in quadrant one, the Xp-axis to intersect the negative X-axis, and for the
slope of the Xp-axisto be negative. The remainder of the pivot direction algorithmis

located in appendix C.

At the moment the bolt obtains a third contact point with the nut, it is assumed to have a
stable configuration. At this point the motion of the bolt is complete, and the critical
contact data can be exported into adatafile. Figure 3.18 depicts the coordinate systems
at the moment the third contact point (CP) is obtained.

Figure 3. 16 Coordinate Framesat Three-Point Contact
Thefinal transformation that pivots the bolt into the third contact point is defined as:

1 0 0 0O

; 0
Pl_l_:%) cos{ sin{ OD (3.68)
o0 [ -sind cos{ OO

0 0 15
The series of transformations that convert a set of contact coordinates as measured in the

Py to the fixed frame is shown below:
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However, knowledge of where the contacts occurred as measured from the bolt frameis

C 1 P,
—~0 1 "o
=0T COT

required to ascertain the appropriate parametric equation. Since the models of the bolt
and nut were recreated in the Py frame, any contact point will be represented by this
coordinate system. Hence, the coordinates must be converted from the P, frame to the
bolt frame. This more complicated procedure begins with a transformation from the Py
frame to the P, frame, followed by an inverse transformation that carries the coordinates
from the P; to the C, frame. At this point the vertices are transformed from the C, frame
to the C; frame, followed by another inverse transformation that converts the vertices
from the C; frame back to the bolt frame. A cyclic representation of the transformations

involved in the conversion from the Py to the bolt frame is shown in Figure 3.19:

P
& e C1 \\C;T\l‘

Figure 3. 17 Cyclic Diagram to Convert to Bolt Reference Frame

The entire transformation is shown in equation 3.70:

(X0 (Xt
i =T AT AT AT S

0 40
HLE, HE,

(3. 70)
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Note that the transformations from the bolt to the C; frame and from the Cq to the P,
frame are equivalent to the transformations from the bolt to the C, frame and from the Cq

to the Py frame, respectively.

The direction of the contact normal is critical in the determination of the potential for
jamming and/or wedging. During athreaded assembly, it is possible to determine the
common normal between two helically swept surfaces through the use of vectors tangent
to the bolt and nut. The following section outlines the technique involved in the

determination of acommon normal at a contact point between the bolt and nut.

3.11 Common Normal between Two Curvesin Space

If two known curves in space meet at a point, then it is possible to draw atangent vector
to each individual curve at that point. The cross product of the tangent vectors (since
they are co-incident) will provide the common normal vector between them (Fig. 3.20).
It is assumed here that each curve is planar to its respective coordinate system. By
setting it up this way, one can find the unique tangent vector for each curve by drawing a

position vector in Polar coordinates from the origin of each curve sreference frame.

Figure 3. 18 Common Normal to Two Spatial Curves
Pg is the position vector, defined in Polar coordinates, drawn from the origin of the bolt
frame to the contact point where Rg is a known scalar value. The tangent vector is
defined as the derivative of the position vector with respect to its angular orientation

(Munem, 1984). The unit tangent vector is found by normalizing the derivative, thereby
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elimination knowledge of the magnitude of the tangent vector. Since thisstudy is
consists of a purely geometric analysis, only the direction of the tangent is of importance.

The procedure to obtain the tangent vector is defined in the following equations:

P, = R, cos(8)i + R, sin(6)] (3.71)
T, = dPs _ R, [31 n(6)i —cos(e)]] (3.72)
dPy . R
+ _ o _-R|ine) - cos(@)] 57
®|dP, R, '
do
T, = —sin(8)i +cos(8)] (3. 74)

Now that the direction of the tangent vector is determined, it must be transformed back to
the fixed reference frame, since it was initially defined in the bolt frame. Since the
transformation is homogenous, the magnitude of the tangent vector will remain unity.
The unit tangent vector of the planar curve located in the nut reference frame can be
determined similarly. No transformation is needed, however, because this vector is
defined in the fixed reference frame. Once the two tangent vectors are obtained, the cross

product will yield the direction of the common normal between the two curves:

N=T,xT, (3.75)
Though the tangent vectors are unity, their cross product may not equal unity.
Nevertheless, the direction cosines of the common normal can be obtained by
normalizing its components. Recall that during the derivation of the parametric equations
for the bolt and nut, R is not a scalar value but dependent on the angular location of the
contact point. Therefore, it will not factor out of the equation unless the parametric

equation has a constant radius as with the root and crest, respectively.

The next chapter will present the results of the contact analysis for multipleinitial
configurations. All of the techniques involved in this chapter were converted to computer
code in order to automate the contact analysis viaa computer ssimulation. For the

interested reader, the computer code is availablein appendix D.
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Chapter 4

Spatial Contactsfrom Discretized Orientation Errors
Recall that the threaded assembly is completed by the conventional heuristic of

rotating the bolt counter-clockwise until a“snap” isheard. The “snap” results from a
sudden change in the height of the bolt and occurs when the bolt isin phase with the nut.
From this point it is known that any clockwise rotation results in a successful assembly
provided that the orientation is maintained. By utilizing the contact state models derived
in the previous chapter, we conducted an exhaustive test sequence simulating this
heuristic to ascertain the contact |ocations throughout a counter-clockwise rotation of the
bolt.

Theinitia approach of the bolt has 6 degrees of freedom, three rotations (roll, pitch, and
phase) and three trandlations (horizontal, vertical, and azimuth), resulting in a multitude
of infinities. One way to reduce the number of free choices during the initial approachis
to develop a pre-alignment strategy. An example of thisisthe Azimuth Rotation Strategy
as discussed by Sturges (1996) that preconditions the constraint network for prismatic
peg insertion. In our case, the bolt shall be considered as having two rotational freedoms
(roll, a, and pitch, ) over the range —4, 0, and +4 degrees, asthisis the extent of
expected elastic compensation for an RCC. Thus, the bolt can be pre-aligned eight
different ways based on the rotational degrees of freedom: +a only, +§ only, -a only, -
only, +a and +f3, +a and -3, -a and +f3, -a and -3. For thisanalysis, it will be assumed
that the tranglation errors in the vertical and horizontal directions (X and Y -axes) are
corrected by the standard RCC. The azimuth translation (Z-axis) is constrained by the
orientation of the bolt, asit is calculated once the bolt achievesitsfirst contact. Hence
the bolt will be positioned above the nut, and moved down the azimuth axis until RAPID
detects a contact. Since the bolt will be rotated counter-clockwise, there are no
restrictions on the phase angle @, so it was discretized over one period (zero to 360°) in
steps of 5 degrees, in order to determine the entire gamut of potential contact states. The

complete set of motions involved in the contact analysis was numerically simulated by a
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supervisory code written in Microsoft Visual C++ version 5.0, which was compiled on a
Pentium 11 450 MHz computer with 128 Megabytes of RAM.

41  Computer Code Output File
During a simulation the code outputs the following information:
» Spatial Orientation Parameters (a,(3,¢-- roll, pitch, and phase);
* Thenumber of contact locations at the third contact state;
* Theamount of rotation about the X o and Xpp axes (XROLL, PSI, respectively);
» The contact point coordinates once the bolt acquires its second contact point;
e Theorigin of the BOLT frame at the second contact state;
» The contact point coordinates once the bolt acquiresits third contact point;
» The number of contact pairsinvolved in the determination of each of the contact
points at the third contact state; and
» Theorigin of the BOLT frame at the third contact state, along with the
coordinates of a point displaced along the Z-axis of the bolt frame by one pitch
(0.050 inches).
A sample of the text fileis shown in Figure 4.1 (coordinates measured with respect to the

fixed reference frame):

ROLL = -4 PITCH=0 PHASE =6

Number of contact locations; 3 XROLL =-0.2199 PS| =-3.913
Contact Point Locations:

Theorigina 1st two points are;

X0 -0.107471 YO -0.00764779 Z0 0.0499998
X1 0.109120 Y1 0.00327747 Z1 0.0500000
BOLT Origin at the Second Contact State

1.8258e-007 3.67833e-008 0.0498432

The three computed contact points are:

X Y z # Contact Pairs
0.109120 0.00327661 0.0500000

0.109572 0.01437670 0.0499961

0.109408 0.00930305 0.0499955 26
-0.107468 -0.00759809 0.0499928

-0.107471 -0.00764896 0.0500000

-0.107471 -0.00764779 0.0499998 4
0.103651 0.04944990 0.0500000

0.103642 0.04947910 0.0500000

0.103647 0.04946450 0.0500000 4

BOLT Origin at the Third Contact State

9.8259e-007 -1.58201e-005 0.0496918

BOLT Top Surface at the Third Contact State

-0.00034701 0.00688221 0.0992125

Figure4.1 — Anglesarein degrees, Coordinatesarein inches
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It is of interest to determine if the bolt purely rotates about the initial two contact points.
If so, then we are assured that the model is sufficient to locate the three contact points
that stabilize the bolt. However, if the number of contact pairs increases at either of the
original contact points, then the model may not be providing accurate information as to
the whereabouts of the third contact point. One way to determine if the model is actually
locating three contact pointsis to analyze the depth of intersection between the bolt and
nut, since excessive intersection at the endpoints of the pivot axis represents an

impossible state.

4.2  Contact Embedment Analysis

In order to determine if there was excessive interference, the origin of the bolt reference
frame at the two-point and three-point contact states needs to be recorded. If the origin of
the bolt frame moved less then the amount that the bolt embedded in the nut, then we
have an unstable case because we located a third contact point by doing something
Impossible (embedding arigid body into another rigid body). If the origin of the bolt
frame drops more than the amount that the bolt embeds in the nut, then this a possible
movement because the bolt is releasing its potential energy. Furthermore, the location of
the pivot axiswill determine the stability of the bolt at the second contact state. If the
pivot axis crosses at or near the origin of the bolt, then we could have a specia “quasi-
stable” two-point contact case. Here, the axis passes close to the compliance center
(origin of the bolt frame) at which point the moment due to the applied load is nearly
negligible. If the axisisfar away from the origin of the bolt, then the code was unable to
determine where the third contact point is because the pivot axisisrolling on the surface
thereby producing an unstable contact state. A rolling axisis defined as acquiring more
triangles at one or both of the original points once rotation about the pivot axis
commences. Therefore, the output file was analyzed to determine whether the computed
contact information was two-point unstable, two-point quasi-stable or three-point stable

throughout each of the eight approaches.



4.2.1 Unstable Two-Point Contact State

Figure 4.1 depicts four contact points labeled 1, 2, 3A, and 3B. Points 1 and 2 define the
endpoints of the pivot axis, or the X-axis of the Py frame. The code simulates a rotation
of the bolt about the pivot axis until RAPID returns (and the code categorizes) three
distinct contact states. In amajority of the test runs, it was found that the third contact
point was only obtained by embedding itself into the nut, thereby producing a
discontinuity in the contact pair output. An example of an unstable state for the given
orientation is shown below:

-0.05

¥ Axis (inches) 0.1 X Axis (inches)

Figure4.2 Unstable Contact Point Locations @ (a=4°, 3=0°, ¢=185°)

The diamond in the center of the chart is the location of the bolt origin when the third
contact state isreached. The circular object isthe interior edge of the planar cross-
section of the nut. The swath of embedment is pictorially shown by the close proximity
of points 3A and 3B. Here, the code detected a discontinuity between points 2 and 3A, so
it stopped rotating the bolt about the pivot axis and returned a series of contact pairs. In
this case, it is determined that the bolt is unstable, because the origin of the bolt frame
moved |ess than the amount embedded in the nut. The origin of the bolt frame moved
from 0.047 to 0.046 inches (1.19 to 1.17 mm), or a displacement of 0.001 inches (0.03
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mm). However, the depth of embedment was found to be 0.004 inches (0.10 mm), which
is greater than the movement of the bolt reference frame, therefore we have an unstable

case.

4.2.2 Quasi-Stable Two-Point Contact State

A “quasi-stable” two-point case is also present when approaching the nut with a positive
rotation about the roll and pitch axes (Figure 4.2). Here the bolt reference frame dropped
0.0045 inches (0.11 mm) but the largest amount of interference was 0.0013 inches (0.03
mm), therefore the bolt released some potential energy as it moved down the azimuth
axis of the fixed reference frame. Though only two contact points are present, the pivot
axis passes near the origin of the bolt reference frame, thereby providing the potential for
stability with an appropriately applied force.

Y Axis (inches) . 0.1

X Axis (inches)

Figure4.3 Quasi-Stable Contact Point Locations @ (a=4°, 3=4°, ¢=235°)

Once again, the diamond in the center of the chart signifies the origin of the bolt
reference frame, and points 1 and 2 represent the endpoints of the pivot axis. However,
the code continued to rotate until it obtained a swath of triangles that begin with point 3A

and end with 3B, since it is unable to decipher a quasi-stable contact configuration.
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4.2.3 Stable Three-Point Contact State

An example of a stable three-point contact case is shown in Figure 4.3. Here, the number
of contact pairs at each of the distinct contact pointsis minimized (4 pairs each).
Moreover, the bolt did not embed itself into the nut asit pivoted about the axis defined by
points 1 and 2. The origin of the bolt frame dropped dightly asit rotated about the X po-
axis, however, all three contact points occurred at the surface of the nut which means that
the two solid bodies did not interfere with one another.

Y Axis (inches) 0.1

X Axis (inches)

Figure4.4  Stable Contact Point Locations @ (a=-4°, 3=0°, ¢=131°)

This type of result was interspersed throughout each of the approaches, however, it
occurred the least number of times.

43 CodeValidity
The code functioned as intended, in that it was capable of isolating three distinct contact
points. Yet, the model islimited in its ability to isolate actual non-interfering contact

points since it constrained the bolt to rotate about an axis fixed in space. Moreover, there
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were instances when one of the endpoints of the pivot axis disappeared after the third
contact point was recorded. This meant that the bolt lost a contact as it rotated about the
pivot axis, and the code continued to rotate the bolt in order to obtain three distinct sets of
contact pairs. In this case, the physical response of the bolt would be to release some
potential energy by moving down the azimuth axis of the fixed reference frame, however,
this was not accounted for in the model. An adjustment to the model, such as modeling a
rolling pivot axis, or performing a compound rotation about the pivot axis, has the

potential to improve the results.

Nevertheless, the parametric equations derived in chapter two can be used without
modification to create afull spectrum of maps at any point in the history of a threaded
assembly operation. Recall that, in the two-dimensional case, the contact points were

calculated once the contacting surface regions were identified.
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Figure4.5 Expansion of Two Dimensional Analysis

In the three-dimensional case, errorsin rotation about the X and Y -axes of the bolt
reference frame are permitted. This creates the opportunity for out-of-plane contacts,
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where each contact will have its own annulus describing the surface regionsin contact.
However, the annulus of chapter two must be modified to represent the parametric
equations of the bolt cross-section at the moment a third contact point is obtained, or
when the bolt is no longer parallel to the nut surface. Figure 4.4 shows the expansion of
the two-dimensional analysis into the three-dimensional contact analysis. For our
purposes, values of roll and pitch were calculated at every one-degree from —4 to +4
degrees. Thus, the three-dimensional analysis covers 81 cases of thread mating contacts
for every possible phase angle between the nut and bolt. For example, figure 4.4 shows
the contact states for a bolt with rotational errors of —3 degrees roll and +3 degrees pitch.
The contact regions, once the third contact is obtained, are shown below the grid that

represents the gamut of orientation errors.

In summary, we have investigated 81 potential orientations, each of which hasits own set
of contact points. Thisamount of variation constitutes a library that is comprised of all
the contact states. From this library, the user will be able to correlate a contact state
history, and develop a constraint network that permits successful assembly. The choice
and number of grid points and phase angles used in this analysis convince us, by

exhaustive examination, that there are no other possible contact states.
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Chapter 5
Conclusion & Future Work

The demands for an increase in productivity and reduced assembly costs require
engineers to automate solutions that replace manual labor. Currently, there does not exist
a passive solution to assemble threaded fasteners, a common assembly primitive.
Therefore, thiswork concentrated on threaded fastener insertion, in an effort to determine
the nature of contact between the bolt and nut prior to an in-phase condition. Thisisthe
first step in the construction of a passive solution to this assembly problem, while the
next two steps are the devel opment of a constraint network guaranteeing successful
assembly and experimentation to prove the theoretical design. In this chapter we
summarize the results of thiswork and highlight the major contributions. We conclude
with recommendations for future work concerning the analysis of threaded fastener

assembly.

51 Planar Analysis

We started our research by simplifying the problem as a two-dimensional assembly
analysis to gain an understanding about how contacts between the bolt and nut change
during counter-clockwise motion. Here we were able to extract the planar parametric
equations and the theoretical contact point locations when the bolt is flush with the
surface. Though the location of the contact points varied with phase, it was of primary
interest to identify the regions in contact so as to be able to calculate the common normal
at the contact point, once the planar equations are extrapolated to a spatial reference
system.

Y et, the tangent vectors can not be determined unless the contact point is known before
hand. The technique used to locate the contact point began with the tessellation of one
pitch of a#1/4-20 UNC thread, both internal and external. Tessellation was necessary
since we utilized a collision detection library, RAPID, which required the solid bodies to
be stored in memory as a series of triangles. During a collision, spatial geometry was
used to locate an approximate contact point. Here, given a contact pair, the coordinates

of the endpoints of aline segment created by the planar intersection of a bolt and nut
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triangle were enumerated through vector geometry. The midpoint of the line segment for
each contact pair was averaged to produce an approximate location of the contact point.
The minimum number of triangles was required to reduce the variation in position due to
tessellation, so the bolt was dropped onto the nut in a series of iterations ending with 1
micro inch (25.4 x 10° m) adjustments.

52  Contact State Model & Results

Since the insertion force is assumed to be acting through the origin of the bolt reference
frame and parallel to the azimuth axis of the bolt, the first contact state was constructed
that rotated the bolt about a tangent vector to the surface or edge of the nut until a second
contact point was obtained. The advent of a second contact point presented a more
constrained contact state since we are interested in maintaining both contacts; thusit was
hypothesized that the bolt would rotate about an axis defined by the original two contact
points. The appropriate transformations were derived and the models entered into

RAPID such that it was possible to rotate about the pivot axis until athird contact point is
enumerated.

However, in order to show that the hypothesis was true, we analyzed the depth of
intersection of the bolt into the nut as well as the vertical movement of the origin of the
bolt reference frame. This determined whether the bolt was releasing potential energy or
embedding itself into the nut. The calculated results show three types of contact states
returned by the program:

» Unstable Two-Point Contact State

e Quasi-Stable Two-Point Contact State

o Stable Three Point Contact State
Though the unstable case still needs to be deciphered, the parametric equations derived in
thiswork can be used without modification to create a full spectrum of maps at any point
in the history of athreaded assembly problem. We investigated 81 potential orientations,
each of which hasits own set of contact points, which was described by a contact region
disk. From this exhaustive examination, we are capable of detailing a contact state

history and, from this, able to develop a constraint network.
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53  FutureWork

We have eliminated some of the unknown contact behavior between a bolt and nut during
threaded assembly, but in order to complete the library of contacts one must continue to
decipher the unstable two-point contact states. Here, the results can be improved by
atering the model after the first contact point is obtained, such that the third contact point
can beidentified. One possibility would be to rotate the bolt about a dynamically rolling
pivot axis. For instance, conduct a rotation about a vector tangent to the surface of the
nut, and then determine if the contact pairs at the endpoints of the pivot axisincreased. If
the bolt lost some potentia energy in the move, then ater the position of the pivot axisto
represent the adjusted pair of contact points. If one of the endpoints disappears during an
incremental rotation, then the bolt must be rotated about a vector tangent to the remaining
contact point until a new endpoint can be found. If the bolt does not lose potential energy
during arotation about the pivot axis, then there is a possibility for a quasi-stable case
provided that the pivot axis passes close to the origin of the bolt reference frame.

Another possibility would be to rotate the bolt about a compound angle in such away that
it maintains the original two contacts and picks up athird without interfering with the nut.
Such arotation has the potential to be calculated through numerical simulation, which

will condense severa individual movements into one rotation.

Once the remaining regions are identified, and a constraint network is developed, it is our
hope that designers of threaded fastener strategies will use the proposed generalized
constraint network as an evaluation tool. For example, such atool will provide the
designer with the correct pitch angle setting (for an SRCC) based on thread geometry.
Furthermore, it is recommended that experimentation be conducted with an RCC to
determine what ranges of phase, if any, permit clockwise rotation of athreaded fastener
without cross threading. This, in turn, could lead to an understanding of which contact
states to avoid such that the automatic assembly system can reliably fasten abolt and nut

in a clockwise, and subsequently, more efficient manner.
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