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Chapter 1 

Introduction 

 An ad in the classified section of a national newspaper reads, “Wanted, factory 

personnel, required to prepare sub-assemblies for small engine manufacturer.  Contract 

position.  $8/hr.”  Common manufacturers with low volume contracts of moderately 

difficult assembly operations greatly benefit from innate human dexterity.  From an early 

age a human being has the ability to put simple objects together.  For example, a child 

can be seen trying to put a star shaped peg into its appropriate hole.  The child may try 

the round hole first, and then the square, but eventually the youngster will insert the peg 

into the star shaped hole.  As the peg is inserted the child automatically corrects for 

misalignment by moving the peg around until the peg slides in successfully.  It is simple 

to see that if a child can handle such a task, then an adult can handle a more complicated 

task that requires fine control of their motor skills.  However, such assembly tasks in 

modern assembly lines are tedious slow, and expensive.  Potential assembly failures arise 

due to human error that may be attributed to many consecutive hours of repetitive tasks.  

Though operator rotation throughout the shift is one way to reduce assembly failure, it 

still does not provide a high quality cost-effective solution to the assembly of large 

volume contracts. 

 

However, the desire to automatically assemble products within a manufacturing line is 

not entirely instigated by a company’s demand for more profits, but instead, is driven by 

the global marketplace.  Productivity was seen as a main area for improvement in order to 

be competitive in the global economy (Nevins, 1980).  An increase in productivity meant 

that a manufacturer must decrease the man-hours, materials, energy, and capital required 

in the production of industrial products.  Simultaneously, good morale in the workforce is 

obtained via a better quality of life for the laborer. 

 

Though the need to be more productive is receiving current headlines, the Russians first 

considered the actual problem of automatic assembly in the 1960’s.  Though the 

motivation for these studies was not completely identified, they did provide the 
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groundwork for the Americans once the documents were “edited” and translated.  In one 

study, the author proposed sending a peg on a pre-described search pattern 

(Savishchenko, 1965).  Here the peg, being held in a fixture, is moved across the surface 

of the mating part in a sinusoidal or spiral search pattern.  Through experimentation, the 

author found that the type of search pattern depended on the geometry of the parts to be 

mated.  In a study as to the automatic assembly of large parts, the author found through 

static load analysis, that horizontal assembly was most effective.  In this form of 

assembly the female part has one contact point on a centering mandrel and another on the 

peg (Andreev, 1966).  The female part corrects its orientation while it slides onto the peg.  

During this period, work was underway to introduce compliance in the automatic 

assembly problem of the peg-in-hole.  Though the analysis was still two-dimensional, a 

research effort was conducted that considered angular as well as axial misalignments of 

the peg.  The primary focus here was to avoid assembly failure by minimizing the 

insertion force.  Through a geometric analysis, the author found that the chamfer on the 

peg should be constructed of a curved radius that is a function of the tilt angle of the peg.  

This minimized the insertion force thereby reducing the chances of failure (Laktionov, 

1966). 

 

These previous studies considered the peg and hole as rigid bodies held in rigid fixtures.  

Compliance in the gripper, or fixture that held the peg, was introduced a year later in an 

experimental analysis.  Here the author devised two alternative work-holding systems, 

one that modeled the elasticity of the once rigid gripper, and another that permitted six 

degrees of freedom in the deflection of the peg.  The author found that to compensate for 

the alignment errors of the peg it was possible to displace the assembly fixtures, but the 

permissible amount of displacement in the assembly fixture must be greater than the sum 

of all the misalignment errors (Karelin, 1967).  Researchers were still interested in 

reducing the assembly force, and another experimental study determined that the contact 

area which produced the smallest contact stress was obtained with a logarithmic chamfer 

at the end of the peg (Andreev, 1969).  This type of chamfer, though difficult to machine 

at that time, outperformed the angular and radial chamfers that are common today.  

Though the assembly problems were primarily interested in peg-in-hole applications, 
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they did cover press-fit and force-fit assemblies.  Here, the researchers avoided the large 

assembly forces by heating up the hole until a clearance was available (Andreev, 1972).   

An equation was derived that modeled the permissible amount of misalignment as a 

function of the heat applied to the hole.  All of the results of the Russian researchers were 

partially based on minimizing the assembly force in order to reduce but not eliminate the 

chance for a failed assembly.  Actually, the idea of introducing some form of compliance 

at the peg was not forgotten and re-emerged in the American literature several years later. 

 

Whitney (1982) published a collection of research results that defined the mating events 

that occur between a peg and hole and the forces that arise during a failure mode.  Here, a 

failure mode is defined as either jamming, where the applied forces are out of proportion 

with the contact state no longer permitting assembly, or as wedging, where the contact 

forces deform the parts and assembly is not possible without reorienting.  The Remote 

Center Compliance (RCC) device was utilized in the research to provide the support for 

the peg since it offered the elasticity necessary for successful assembly.  The remote 

center of compliance in the device is a point projected into space from the support.  Any 

load acting at this point will cause the support to deflect in pure translation, and any 

moment about this point will deflect the support in pure rotation.  This type of support for 

the peg provided the ability to model its successful path into the hole.  Qiao (et al., 1994) 

conducted a similar analysis as to the forces that permit successful assembly, but came up 

with a pre-described approach such that the peg assembled successfully without feed-

back or with the use of a RCC.  Similarly, a study was done that developed a hybrid 

force-position strategy using active compliance to successfully insert convex three-

dimensional pegs (Strip, 1988).  However, both studies did not consider the potential for 

wedging conditions. 

 

The techniques of passive assembly have proved valuable since successful insertion can 

be completed without the need for feedback devices.  Other assembly primitives, such as 

the peg-in-hole, multiple peg-in-hole and polygonal part insertions have been 

successfully analyzed with constraint networks and demonstrated in practice (Sathirakul, 

1998).  Here, a network of contact states is created that determines the path of successful 
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assembly based on static load relations and failure modes.  Contact states are the 

collection of contacts between two parts at each moment during an assembly operation.   

 

Threaded fastener insertion, a ubiquitous assembly primitive and the primary focus of 

this thesis, is an assembly problem that has faced some scrutiny in the literature.  It was 

first considered by Blaer (1962) who found that in order to assemble threaded parts 

automatically, the bolt must be centered in the nut and supported by a longitudinal force 

before rotation of the bolt can begin.  A purely geometric and non-frictional study by 

Romanov (1964) determined that the chamfer angle on the bolt must be less than the 

chamfer angle of the nut to avoid jamming.  Nevins and Whitney (1989) defined the 

potential errors associated with threaded assembly as angular or helical thread mismatch - 

a condition more commonly understood as cross threading.  During angular thread 

mismatch, the rotational position of the fastener causes a portion of the thread to contact 

the nut below the first full thread.  After a small rotation, the fastener becomes wedged in 

the nut.  In the case of helical thread mismatch, the fastener is not in phase with the nut 

thread, resulting in a thread deformation also known as “stripping”. 

 

A more recent attempt to analyze threaded fastener insertion was made by Nicolson and 

Fearing (1991,1993), but their goal was not a passive solution to the thread-mating 

problem.  Instead, an apparatus consisting of a two degree of freedom robot, two 

servomotors to correct for lateral misalignment, and a rotational stepper motor was 

designed to correct the positional uncertainty.  Although their results were successful, 

there is a relative cost to incorporate the control mechanism.  A compliant mechanism 

attached to a robotic arm would allow the assembly of threaded fasteners without the 

need for feedback devices, hence, achieving greater assembly speeds limited only by the 

positional accuracy of the robotic manipulator and the inertia of the parts involved. 

 

Dhayagude, Gao, and Mrad (1996) developed fuzzy logic control of an automated 

threaded assembly.  Here, the control system is able to handle large variability in 

operational parameters.  The clamping forces of the bolt coupled with the torque of the 

driver are two of the measurements used by the fuzzy logic controller.  Torque levels are 
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compared to specifications during assembly to determine if the bolt jammed or slipped.  

In addition to the input, the control unit captures the system dynamics qualitatively, and 

executes the control heuristic in real-time.  The authors conclude that, though the method 

is complex and costly, it will prove valuable in delicate assembly situations where the 

precise clamp load must be known. 

 

1.1 Research Objectives 

Although threaded assembly of C-mount camera lenses has been demonstrated with a 

spatial remote center of compliance (SRCC), it is not fully understood, and therefore can 

not be extrapolated to other cases.  Currently, the assembly is completed by the 

conventional heuristic of rotating the bolt counter clockwise until a "snap" is heard.  The 

"snap" results from a sudden change in the height of the bolt and occurs when the bolt is 

in phase with the nut.  From this point, it is known that any clockwise rotation results in a 

successful assembly provided that the orientation is maintained.  It is of interest to 

determine the nature of contact between the bolt and nut prior to an in-phase condition, 

and how the multiple contact states can be constrained to permit successful completion of 

the threaded fastener task. 

 

A contact analysis between the bolt and nut will provide the information necessary to 

verify that the SRCC responds correctly to the forces involved during assembly.  The 

main objectives of the contact analysis are: 

 

• Identify the surface regions in contact and the resultant normals; 

• Enumerate the multiple contact point configurations; and 

• Determine the contact state network that defines assembly paths. 

 

Once the surface regions are known, the resultant normal for the bolt and nut can be 

calculated for each orientation.  This data will be utilized on a contact state network 

where the optimal path (i.e., the path of least resistance) can be determined.  The 

knowledge of multiple contact points and their depth will allow one to determine the 
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potential for jamming or wedging.  The analysis of this problem shall begin with a two-

dimensional analysis of the problem. 
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Chapter 2 

Planar Contact Analysis 

Instead of trying to visualize spatial contact configurations, it will be beneficial to 

begin the analysis of this problem in two dimensions.  Any insight into the development 

of contact location algorithms can then be gleaned and introduced into the inevitable 

three-dimensional analysis.  In this chapter we identify the standard thread design for 

internal and external threads, and establish the parametric equations that define the cross 

section of such threads so that the contact points can be identified. 

 

2.1 Screw Thread Definitions 

The internal and external threads are defined by the American National Standard for 

Unified Screw Threads (Oberg, 1992).  Fillet radii bound the crest and root in order to 

approximate an actual manufactured thread. 
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Figure 2. 1  Internal & External Thread Profiles 

The bolt (or external thread) is made up of 9 regions, as shown in Figure 2.1 above.  The 

flank is defined as positive if the radius of the bolt increases when measured in the 

positive azimuth (+Z) direction.  Likewise, the flank is defined as negative if the radius of 

the bolt decreases in the positive azimuth direction.  This logic is identical for the crest 

fillet and the root fillet.  In addition to these regions the bolt has constant radius surfaces 

defined as the crest and the root.  The ninth, and final, region is known as the base, since 

the bottom of the bolt completes a surface region and has the potential to become 

involved during contact. 
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The nut follows a similar definition, however, due to the nature of an internal thread, the 

value of the radius is a maximum at the root and a minimum at the crest as measured 

from the nut azimuth axis.  The designation of positive or negative as applied to the flank, 

crest fillet, and root fillet of the nut follows the same definition as provided for the bolt.  

The ninth region is known as the surface, and like the bolt, it completes the surface region 

of the nut that has the potential to come into contact.  The top of the bolt and the bottom 

of the nut are not included here because these regions will not come into contact once the 

position and orientation errors are introduced. 

 

The pitch of a thread is defined as the vertical change of the thread per one revolution.  It 

provides a threaded assembly the ability to mesh.  In order for two threaded parts to mate, 

the pitch of each must be the same, or the parts will wedge together and become 

damaged.  The amount of vertical change can be calculated with the following equation: 

πθ
π
θ

20
2

≤≤= p
z     (2. 1) 

Here, p is the pitch in inches (or millimeters) and θ is the angular location in radians.  

Note that any profile, such as the external thread, which is helically swept, will repeat 

itself after one full revolution about the azimuth axis. 

 

2.2 Parametric Equation Derivations 

When the bottom of the bolt is viewed parallel to the negative azimuth axis, a distinct 

cross-section will be seen.  It has the appearance of being elliptical, and can easily be 

defined by mapping the cross section of the bolt from the X-Z plane to the X-Y plane.  If 

one cut the bolt perpendicular to its azimuth axis, then the radius as measured 

counterclockwise will pass through all of the regions (with the exception of the base), 

since one full rotation about the azimuth axis is equivalent to one pitch of the external 

thread.  Figure 2.2 illustrates what the cross-section looks like from this view. 
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Figure 2. 2 General Thread Cross-Section 

Now, as this cross section rotates counter-clockwise, the radius as measured along the X-

axis will increase for the positive regions and decrease for the negative ones.  As the radii 

are measured this way, the positive regions begin at their maximum and end at their 

minimum values while the negative regions begin at their minimum and end at their 

maximum values.  The reason for this lies in the handedness of the thread, if the thread is 

right-handed, then you move in the positive azimuth direction when rotating counter-

clockwise.  If the thread is left-handed, then you move in the positive azimuth direction 

when rotating clockwise.  In this analysis, we will only deal with right-handed threaded 

fasteners. 

 

Let’s begin with two examples where the equation that defines the radius of the bolt as a 

function of θ will be derived �������θ is the angle measured from the origin of the bolt 

to a point on the bolt cross section.  As will be explained in chapter 3, solid modeling 

software provided the original orientation of the bolt and nut.  Thus, for the remainder of 

this chapter, the initial values are predetermined by the solid modeling software. 

 

2.2.1 Negative Root Fillet 

Two known points of the root fillet are selected which are the starting and ending points 

of the negative root fillet region (Figure 2.3).  The starting point of the negative root fillet 

(-RF) is simply the root radius, bmin. The ending point is the root radius plus one half the 
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root fillet radius (denoted rrb) which is calculated through a simple geometric analysis of 

the external thread profile. 
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Figure 2. 3 Negative Root Fillet 

Here, δ refers to the amount the radius changes as one moves in the negative azimuth (z) 

direction.  The change in radius is added to the initial value and forms the following 

equation: 

22 zrrx b −=       (2. 2) 

22 zrrrrxrr bbb −−=−=δ     (2. 3) 

22
min )()( zrrrrbzR bbRF −−+=−    (2. 4) 

Substituting equation 2.1 for the azimuth height, z, one obtains the radius of the negative 

root fillet as a function of θ: 

( ) ( ) 




=−−−+=− π

θθθ
2

)( 222
min

p
LLrrrrbR inibbRF   (2. 5) 

The θini value is a correction factor that allows this part of the thread profile to begin at a 

point other than zero. 
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2.2.2 Negative Flank 

The negative flank (-F) precedes the negative root fillet, and a similar procedure is used 

to derive the radius of the negative flank as a function of azimuth height (Figure 2.4).  

The radius is equal to bmin plus one half the root fillet radius at the starting point, and 

equals bmax minus one half the crest fillet radius at the termination point. 
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Figure 2. 4 Negative Flank 

The radius changes at a rate dependent on the slope of the flank line, which again is 

denoted by δ.  The change in radius is added to the initial value and the following 

equation of the negative flank radius is derived: 

z

δ=°)60tan(        (2. 6) 

zz 3)60tan( =°=δ       (2. 7) 

zrrbzR bF 3
2

1
)( min +





 +=−     (2. 8) 

Substituting in equation 2.1 for the azimuth height, z, one obtains the radius for the 

negative flank as a function of θ: 

π
θθθ

2

3
)(

2

1
)( min

p
KKrrbR inibF =−+





 +=−   (2. 9) 

This process is repeated for the remaining six regions of the bolt and for all of the regions 

of the nut.  The entire set of parametric equations can be found in the appendix. 
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2.3 Planar Contact Regions 

A solid model of the threaded parts will be introduced later on in chapter three, which 

will provide the orientations of the bolt and nut cross sections a priori.  Since the two-

dimensional analysis was constructed based on the solid models, it is necessary to show 

how the two bodies contact one another prior to any rotation about the Z-axis.  Figure 2.5 

shows a planar view when looking down onto the XY plane and a cross-sectional view 

when looking perpendicular to the XZ plane.  The relative alignment of the bolt and nut 

when the phase angle is zero is shown in the cross section for reference. 
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Figure 2. 5 Initial Orientation of Bolt & Nut 

 

Since the bolt and nut are made up of nine regions each that have the potential to come 

into contact, there will be a set of combinations of these regions that represent the 

contacting surfaces.  Given a value of phase, one simply would rotate the bolt cross 

section by that amount about the Z-axis, and equate the parametric equations to ascertain 

the contact point.  In this planar example, there will always be two points of contact, 

since the only degree of freedom is a rotation about the Z-axis.  The pair of combinations 

can be determined with the aid of an annular surface disk (Figure 2.6), which has been 
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derived from the equations to follow in this section for each contact point.  It describes 

the surface regions in contact given a value of phase, φ. 
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Figure 2. 6 Contact Region Combination Disk 

 

The outer annulus identifies contact regions of the nut; the corresponding contact regions 

of the bolt are identified on the inner disk.  The terminology used here is identical to that 

of Figure 2.1, above.  For the example shown in Figure 2.6, at a relative phase angle of 

30° (φ=30°), contact point 1 occurs between the negative flank of the nut and the positive 

flank of the bolt.  The location of contact point 1 is not given in the figure, but can be 

found, along with the orientation of its contact normal, by referring to the data in 

appendix A.  At this same phase angle, Figure 2.6 identifies contact point 2 comprising 

the positive flank of the nut touching the negative flank of the bolt.  The dark region 

shown in the inner disk and outer annulus represents an in-phase condition at which time 

no contact occurs.  Though the locations of the contact points vary with phase, it is of 

primary interest to identify the regions in contact so as to be able to calculate the 

common normal at the contact point, rather than establishing a relationship between 

phase (φ) and the contact locations. 
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2.4 Two Dimensional Contact Point Analysis 

We are now able to set up an analytical method for locating where the cross section of the 

bolt intersects the cross section of the nut.  Given the cross-section of the bolt placed on 

top of the nut cross-section, locate the two points where the radius of the bolt and nut are 

equal.  The only degree of freedom for the bolt in this special case is the rotation about 

the azimuth axis, since there are no translation errors in the X and Y-axes, which are the 

only other remaining degrees of freedom.  The azimuth rotation will be defined by the 

phase angle, φ.  Once φ is given, then in order to solve for the intersecting points one 

must locate which radius equation of the bolt equals the radius equation of the nut.  A 

simple example follows. 

 

2.4.1 Example: φ = 30° 

Figure 2.7 highlights the regions that contain radii equality points at this value of φ.  For 

the first contact point, the positive flank of the bolt intersects the negative flank of the 

nut.  For the second contact point, the negative flank of the bolt intersects the positive 

flank of the nut. 
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Figure 2. 7 Contact Points at φ = 30° 



 15

 

The two contact points can be found by solving the following equations: 

F
n

F
b RR −+ =OneContact     (2. 10) 

F
n

F
b RR +− =TwoContact     (2. 11) 

Each of these equations can be expanded to the following: 
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At first glance, it appears that we have one equation with two unknowns.  However, a 

second equation that defines θb as a function of θn is available.  From Figure 2.8, θb can 

be easily calculated by the following equation: 

)(21# nb θφπθ −−=     (2. 14) 

φθθ −= nb2#      (2. 15) 
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Figure 2. 8 θb Derivation 

 

After a healthy round of algebraic manipulation the following two equations can be used 

to identify the angular location of the two contact points (Fig. 2.5).  Their position in the 

X-Y plane can be determined by converting from Polar to Cartesian coordinates: 



 16







 +++



 +−−= φθθθ n

ini
b
ininbc crrcrrnb

K
)(

2

11

2

1
minmax1   (2. 16) 







 +++



 +−−= φθθθ n

ini
b
inibnc rrrrbn

K
)(

2

11

2

1
minmax2   (2. 17) 

)sin()()cos()( 111111 cc
F

nccc
F

nc RYRX θθθθ −− ==    (2. 18) 

)sin()()cos()( 222222 cc
F

nccc
F

nc RYRX θθθθ ++ ==   (2. 19) 

 
 
2.5 Critical Values of φ 

By determining the critical angles of phase, one will know how to isolate the appropriate 

radii equations so as to enumerate the location of each contact point.  Different radii 

formulae (versions of equations 2.5 and 2.9) are involved depending on the value of 

phase, since different regions of the bolt as well as the nut cross section will intersect.  

The following example illustrates the method to identify all of the critical ranges of 

phase.  Here, the basic question is “What limiting value of φ is the negative flank of the 

bolt still equal to the positive flank of the nut as shown in Figure 2.5?”  From visual 

inspection, it appears that the positive flank switches to the positive crest fillet of the nut, 

while the negative flank of the bolt contacts both regions of the nut.  The value of the nut 

radius at the moment the switch occurs is: 






+= nn crrnR

2

1
min      (2. 20) 

This relationship allows the equation for the location of contact two (eq. 2.13) to be 

written as: 

n
b
inibb RKrrb =−+





 + )(

2

1
min θθ     (2. 21) 

φθθ −= nb       (2. 22) 

Subbing in for θb, and noting that θn is equal to the starting angle of the positive crest 

fillet (since that is where the switch from the positive flank to the positive crest fillet 

occurs) one obtains the following equation for the critical value of phase: 
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In order to automate the process of graphing multiple pivot axes, all of the critical phase 

angles must be calculated, so that the correct equalities can be analyzed.  The critical 

values, along with the appropriate contact angle formulas are listed in appendix A.  

Figure 2.9 illustrates how the contact points vary with phase.  The line which has a phase 

value attached to the endpoints connects each pair of contact points. 

CONTACT
ANGLE

Xn

Yn

P
IV

O
T

 A
X

IS

φ = 0°
φ = 0°

φ = 40°

φ = 40°

φ = 80°

φ = 80°

φ = 120°

φ = 120°

φ = 160°

φ = 160°

CP

CP1

0

 

Figure 2. 9 Pivot Axis Position vs. Phase Angle 

 

The angle that depicts the range where the bolt radius is larger than the nut radius is 

referred to as the contact angle.  The line that connects the two contact points will be 

known as the pivot axis.  Physically, the pivot axis is an axis that the bolt will rotate 

about in order to obtain the third contact point.  Notice how the contact angle diminishes 

as the phase value (φ) increases until the bolt and nut are in-phase.  It is of interest to 

determine if the distance between contact points tend towards zero, or if there is some 

limiting value.  Fortunately, this question can be answered via proof by induction. 
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2.6 Curvature Verification 

Hypothesis:  When the bolt reaches the in-phase value of φ (3.0744 radians), line-line 

contact exists between the two bodies, thereby reaching a minimum straight-line distance 

between the two contact points.  By line-line contact, we are stating that all of the bolt 

radii are equal to all of the nut radii, thus providing an infinite number of contact points 

between the two bodies. 

 

The only way this could be true is if the curvature of the bolt cross-section is identical to 

the curvature of the nut cross-section.  If so, then the points where the curvatures cease to 

equal are the limiting values of the pivot axis.  Just before the bolt and nut are in-phase, 

the region of the nut edge that comes into contact with the bolt is defined by: 
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n
ininnn

F
n KcrrnR θθθ −+





 +=−    (2. 24) 

The equation that locates a point on the curve defined by equation 2.24 is (in vector 

form): 
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The curvature of equation 2.25 is defined by: 
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The first derivative of the position equation (2.25) is: 
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The second derivative of the position equation (2.25) is: 
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After substituting the necessary values into equation 2.26, the following relationship 

defines the curvature of the nut: 
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Just before the bolt and nut are in-phase, the radius equation for the bolt is: 
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Following the same procedure as before, the curvature equation of the bolt is: 
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In order to prove that the curvature is the same it is sufficient to show that the following 

two portions of the equation are identical: 
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bn AA =       (2. 34) 
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Rearranging equation 2.35, and solving for φ, one obtains: 
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When the appropriate values are substituted, one obtains the following value for φ: 
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φ = 176.15° = 3.0744 rad 

This value is identical to the critical value of φ, therefore, the curvature of the bolt and 

nut are identical.  Thus, the contact angle reaches a minimum value instead of tending 

towards zero.  This is beneficial to know, because if the line connecting the two contact 

points reduces to a point, the bolt will not have a predefined direction of rotation that was 

available with the pivot axis.  Without a fully defined pivot axis, the next direction of 

rotation would not be known. 

 

Though the assembly of a threaded fastener is truly a three-dimensional operation, a less 

complicated two-dimensional analysis of the problem provided some insight as to how 

the bolt and nut interact during assembly.  The next chapter will extend this work into 

three dimensions by considering a spatial orientation of the bolt. 
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Chapter 3 

Spatial Contact Analysis 

Although the two dimensional analysis provided some insight into how the 

contacts between a bolt and nut behave during counter-clockwise rotation of the bolt, it 

did not provide the opportunity to analyze the potential for out-of-plane contacts.  By 

modeling the assembly problem in three dimensions, one will be able to determine if any 

out-of-plane contacts exist.  We begin by assuming that the bolt will obtain an out-of-

plane contact once it achieves stability, which is defined as three distinct contact points.  

The following steps predict the path that the bolt will take to obtain stability: 

1. Initial contact at predefined spatial orientation. 

2. Rotation about a vector tangent to the surface of the nut at the initial contact 

point until the second contact is made. 

3. Rotation about a pivot axis defined by the two contact points until a third 

contact is obtained. 

The direction of rotation at the initial contact point will be negative to ensure that the bolt 

will rotate in the direction that corrects its spatial orientation.  The direction of rotation 

about the pivot axis will vary depending on the location of the two contact points.  The 

prediction above is based on the action following a minimization of the virtual work done 

on an unbiased elastic structure, such as an RCC. 

 
3.1 Numerical Contact Analysis 

In order to prove that the bolt follows this contact path, a supervisory code was written to 

isolate the contacts as they occurred in space.  To facilitate the detection of these 

contacts, a software library, known as RAPID (Gottschalk, 1996, version 2.01), was used 

to determine contacts between two solid bodies given some initial orientation in space1.  

However, RAPID required the input of a solid model in a tessellated form.  This meant 

that the bolt and nut must be modeled through solid modeling software, tessellated, and 

exported into a binary data file.  RAPID uses the vertices of the triangles contained in the 

binary data file to store the model in memory.  Once the models are stored, the user then 

                                                 
1 The author gratefully acknowledges the creator of RAPID, Steven Gottschalk, for allowing the 
incorporation of his collision detection library into this analysis. 
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provides the spatial orientation of each model, and RAPID determines if the two parts are 

in contact.  If they are in contact, RAPID returns a list of contact pairs – one triangle for 

the bolt and one triangle for the nut.  However, these pairs are only the identification 

numbers of the triangles, not the coordinate values.  It is up to the user to augment the 

library to calculate the geometric location of the contact coordinates. 

 

3.2 Solid Model Definition 

A solid modeler, Pro/Engineer release 19, was used to create the images of one pitch of 

the bolt and nut thread (#1/4-20 UNC).  Pro/Engineer provides the user with the ability to 

export Stereolithography (.STL) files.  .STL files represent the surfaces of a solid model 

as groups of small polygons, or in this case, groups of triangles.  The quality of an .STL 

file can be controlled through the Pro/Engineer interface, and it depends on the deviation 

of the actual surface from the tessellated surface.  One parameter that can be adjusted is 

the chord height.  This specifies the maximum distance between a chord and a surface 

(Fig. 3.1). 

CHORD HEIGHT

TESSELLATED
SURFACEPART

SURFACE

 

Figure 3. 1 Chord Height 

The minimum value of chord height is determined by the software, and is a function of 

part accuracy.  Another parameter to control the quality of the tessellated output is angle 

control.  If a part has small radial features, like the dimple on a golf ball, then these 

surfaces will have very little definition in the tessellated output.  Angle control regulates 

the amount of additional improvement provided along curves with small radii.  Like the 

chord height parameter, angle control is bounded with the minimum being determined by 

the software.  For the contact analysis between the bolt and nut, the best tessellation was 

desired, so the minimum values of chord height (1.0 x 10-4) and angle control (0.5) were 
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chosen for both the nut and bolt.  The bolt was made hollow, and the nut was cut out of a 

16-sided polygon to reduce the size of triangles that appeared on the top and bottom 

surfaces of the bolt and nut.  This produced a model that deviated from the true surface 

by a few millionths of an inch, which is within the surface noise of a real threaded part 

(Fig. 3.2). 

 

Figure 3. 2 Tessellated Solid Model – Bolt & Nut 

The data in the .STL files is in binary format to maintain accuracy, and to reduce the size 

so that the models could be transported via diskette.  Each triangle in the solid model is 

allotted 50 bytes, while the first 84 bytes of the file contain header information and the 

number of facets the model contains.  The following depicts the breakdown of the binary 

file format (Fig. 3.3): 

Address   Length  Type  Description   

0   80  char  Header Information 
80   4  long  #of facets in solid 

 
First Facet (50 bytes): 
84   4  float  Normal (θx) 
88   4  float  Normal (θy) 
92   4  float  Normal (θz) 
96   4  float  Vertex 1 (X-component) 
100   4  float  Vertex 1 (Y-component) 
104   4  float  Vertex 1 (Z-component) 
108   4  float  Vertex 2 (X-component) 
112   4  float  Vertex 2 (Y-component) 
116   4  float  Vertex 2 (Z-component) 
120   4  float  Vertex 3 (X-component) 
124   4  float  Vertex 3 (Y-component) 
128   4  float  Vertex 3 (Z-component) 
132   2  short  Attribute Info. (Not used) 

 
Second Facet (50 bytes): 
134 …. 

Figure 3.3 .STL File Output Description 
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When the model is sent into RAPID, only the vertex information is provided.  A copy of 

what is sent to RAPID is maintained in memory, so when RAPID returns the list of 

contact pairs one can locate the triangle vertices involved.  The type identifier indicates 

the variable declaration, which is single precision (float) for all of the vertices.  The long 

and short identifiers are integers that require 4 and 2 bytes, respectively.  Pro/Engineer 

did not provide the ability to export the vertices of the tessellation in double precision, 

because the .STL file format only uses single precision. 

 

Before describing the contact location algorithm, we will begin with a brief introduction 

to vector algebra, which is required to understand the derivation of a line in symmetric 

form, and move immediately into the general equations that locate the approximate 

contact point between two intersecting triangles in space. 

 

3.3 General Vector Algebra 

A vector in space is defined as a mathematical expression possessing magnitude and 

direction.  If a point ‘A’ is located in space by (x0, y0, z0) and point ‘B’ is located at (x1, 

y1, z1) then the vector from ‘A’ to ‘B’ is: 

kjiAB ˆ)(ˆ)(ˆ)( 010101 zzyyxx −+−+−=    (3. 1) 

Given two vectors in space, the dot product is defined as the product of the magnitudes of 

the two given vectors and of the cosine of the angle between them. 

kjiQkjiP ˆˆˆˆˆˆ zyxcba ++=++=  

)cos(θQPQP =++=• czbyax          (3. 2) 
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Given any vector in space, the direction cosines can be computed by fixing a reference 

frame at the base of the vector, and then dividing the dot product of the vector with each 

respective axis by its magnitude. 
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The sum of the squares of the direction cosines is always equal to 1.  In the contact study 

that follows in chapter 4, the direction cosines will serve as an invaluable tool in the 

determination of assembly motions.  Given any two nonparallel vectors in space, the 

cross product is a vector whose length is numerically equal to the area of the 

parallelogram spanned by the two given vectors.  The cross product obeys the right hand 

rule such that the direction of computation occurs counterclockwise when looking down 

onto the plane created by two given vectors.  Unlike the dot product, the cross product is 

not a commutative operation; therefore, the order in which a cross product is performed 

must be monitored.  The standard basis vectors involved in the cross product of the right-

handed system are shown below: 

jikikjkji ˆˆˆˆˆˆˆˆˆ =×=×=×  

jkiijkkij ˆˆˆˆˆˆˆˆˆ −=×−=×−=×  

0kk0jj0ii =×=×=× ˆˆˆˆˆˆ  

kjiQkjiP ˆˆˆˆˆˆ fedcba ++=++=  

kjiQP ˆ)(ˆ)(ˆ)( bdaeafcdcebf −+−+−=×    (3. 4) 

 

3.4 Equation of a Line in Symmetric Form 

A normal vector, or a vector perpendicular to a plane in space, can be computed from 

three points that lie on the plane.  If V1 is the vector from point 1 to 3 and V2 is the vector 

from point 1 to 2, then the normal vector is defined by the cross product of V2 and V1 

(Fig. 3.4). 

1

2

3

V1

V2
(x ,y ,z )1 1 1

(x ,y ,z )2 22

(x ,y ,z )3 3 3

 

Figure 3. 4 Normal Vector to a Plane 
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12 VVN ×=       (3. 5) 

    Where: 

kjiV1
ˆ)(ˆ)(ˆ)( 131313 zzyyxx −+−+−=    (3. 6) 

kjiV2
ˆ)(ˆ)(ˆ)( 121212 zzyyxx −+−+−=    (3. 7) 

Therefore the normal vector becomes: 
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yyxxyyxx
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+−−−−−=

  (3. 8) 

A line in space can be considered as the result of the intersection of two non-parallel 

infinite planes.  Therefore, given two sets of points, each of which defines an infinite 

plane in space, one can derive the equation of the line of intersection.  The general form 

for the vector equation of the plane with normal vector N is: 

0RRN =−• )( 1      (3. 9) 

The vector R1 is drawn from the origin to any given point on the plane (point 1), and the 

vector R is drawn from point 1 to any arbitrary point on the plane (Fig. 3.5). 

1

R1

R
(x ,y ,z )1 1 1

X
Y

Z

(x,y,z)

 

Figure 3. 3 Arbitrary Plane in Space 

Choosing point 1 as the given point, the quantity (R-R1) becomes: 

kjiRR 1
ˆ)(ˆ)(ˆ)()( 111 zzyyxx −+−+−=−    (3. 10) 
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Utilizing the normal vector calculated from the given coordinates, the equation of the 

plane becomes: 

Given: kjiN ˆˆˆ cba ++=        

0)()()()( 111 =−+−+−=−• zzcyybxxa1RRN     (3. 11) 

Equation of a plane:     

       )( 111 czbyaxczbyax ++=++              (3. 12) 

Since the two planes are assumed non-parallel, there will be two distinct normal vectors 

N1 and N2.  The normal vectors are perpendicular at any point on their respective planes, 

so they can be placed such that the origins of the vectors meet at the line of intersection. 

X Y

Z

l

BOLT PLANE

NUT PLANE

M

N1
2N

 

Figure 3. 4 Direction & Normal Vectors to a Plane 

The direction vector (M) is defined as a vector parallel to the line created from two 

intersecting planes, and it is computed from the cross product of the normal vectors: 

21 NNM ×=            (3. 13) 

Where:    
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Therefore:         

kjiM ˆ)(ˆ)(ˆ)( nbnbnbnbnbnb abbacaacbccb −+−+−=   (3. 14) 

The line of intersection, l, can be derived from the two equations for the plane and the 

direction vector in the following manner.  Since the line is infinite, it will intersect at least 

one of the XZ, YZ, or XY planes.  For the initial derivation it is assumed that the line 
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intersects the YZ plane, therefore, let YO=0 as a point on the line.  Then the two plane 

equations become: 

)( 111 ZcYbXaZcXa bbbObOb ++=+     (3. 15) 

)( 111 ZcYbXaZcXa nnnOnOn ++=+     (3. 16) 

Thus, given the value of YO, the remaining two simultaneous linear equations can be 

solved for XO and ZO. 
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The symmetric equation of the line becomes: 

kMjMiM ˆ)(ˆ)(ˆ)(
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     (3. 19) 

Subbing in for the direction vector M and Y0: 
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If any one of the components of the direction vector is zero then the equation of the line 

has only one dependent variable.  For example, if the direction vector has only Y-axis 

and Z-axis components, then the line must be parallel to the YZ plane at a position of XO 

on the X-axis.  The derivation of the symmetric equations of the line must be repeated to 

account for all possible cases, since up to two values of the direction vector can be zero.  

The derivation for these cases is similar to the one above, thus, only the resulting 

equations are listed below: 

When Z0 = 0: 
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When X0 = 0 
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If two of the directional components are zero, the equations reduce to the trivial case of a 

line parallel to the X, Y, or Z-axis. 

 

3.5 Contact Location Methodology 

Given two intersecting triangles in space, one can locate the approximate coordinates of 

the contact point at the moment the intersection occurs.  Knowing that each triangle 

defines a plane in space, and as long as the planes are not parallel, then there will be a 

line that results from the intersection of the two planes.  Now, the vertices of the triangle 

define three intersecting lines that bound one another and form a triangle in space.  

Hence, given two intersecting triangles, one can determine the equation of the plane that 

each triangle defines via its vertices.  From this, the equation of the line resulting from 

the intersection of the two planes can be derived.  Now, the line can be reduced to a line 

segment by determining where it intersects the sides of the bolt triangle.  The bolt triangle 

is chosen here, because in the tessellation of the solid model it is generally smaller than 

the nut triangle, and therefore would be more accurate in locating the contact point. 

 

At this point the boundary of the nut triangle is analyzed to see what part of the line 

segment is included in the plane bounded by the sides of the nut triangle.  Basically, part 

of the line segment that lies in the plane of the bolt will intersect at least one of the sides 

of the nut triangle.  Vectors are drawn from the intersecting points in the bolt plane 

towards the intersecting points in the nut plane.  The magnitudes of these vectors are 

analyzed to determine the appropriate end points of the line segment.  Finally, the 

midpoint of the line segment is taken as the estimated contact point for that contact pair.  

This process is repeated for each set of contacts and all of the midpoints are summed and 

averaged in order to produce the approximate contact point.  Ideally, the smaller number 

of contact pairs the better the approximation.  The number of triangles in the tessellated 

model determines the accuracy of this result.  For our purposes, by moving the bolt down 

in steps of 1 instead of 100 micro inches, we are able to reduce the maximum variation of 

the calculated contact point by an average of 0.0025 inches.  The following section 

details the mathematics involved in the contact point calculation. 
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3.6 Contact Location Derivation 

Currently, we know the symmetric equation of the line defined by a single contact pair.  

However, there are multiple contact pairs involved in a theoretical contact location, since 

the surface of the bolt will intersect the surface of the nut to some degree thereby 

increasing the number of contacting triangle pairs.  If each contact pair is considered, 

then how does one determine where the actual contact point occurred?  The following 

algorithm will be presented to approximate the contact location. 

 

Ideally, we are interested in the segment of the line bounded by the plane of the bolt and 

nut triangle.  In fact, both planes must share the line segment because the plane of the 

bolt and nut defined it.  However, the nut triangle may not fully intersect the bolt triangle, 

as it has the potential to intersect the bolt triangle in four ways (Fig. 3.7). 

TYPE I TYPE II TYPE III TYPE IV
 

Figure 3. 5 Types of Bolt & Nut Triangle Intersection 

Note that in the fourth case, the nut triangle does not actually intersect the bolt triangle, 

but it has the potential to be returned as a contact pair by RAPID.  This is due to the 

internal accuracy of the collision detection library and cannot be avoided.  Hence, the 

contact location algorithm will check for this special case and only use the line segment 

defined by the bolt triangle.  For the remaining types, the portion of the infinite line that 

is actually involved with the intersection of the bolt and nut triangle will be used to locate 

the contact point.  The approximate location of the contact point will be the average of 

the sum of the midpoints for each line segment.  Hence, if there are 10 contact pairs 

involved (that fall within the 4 valid intersection types above), then there will be 10 

midpoints that will be averaged to define one contact point.  The process of enumerating 

the line segment helps eliminate potential error associated with triangle size.  For 

instance, if the triangles are large, then the line segment bounded by just the bolt triangle 

will be large, subsequently creating error when calculating the midpoint.  However, the 
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length of the line segment can be reduced by determining where it is bounded by the bolt 

and nut triangle.  This, in turn, will reduce the potential for error in the contact point 

location.  Moreover, note that it is of primary interest to minimize the number of contact 

pairs involved in a contact so as to eliminate the potential for error. 

bc1 bc2 bc3
nc1 c2n c3n l

BOLT LINE
SEGMENT

NUT LINE
SEGMENT

BOLT
TRIANGLE

NUT
TRIANGLE

b3

2b

1b

2n

1n

 

Figure 3. 6 Endpoints of Intersecting Line Segment 

The following steps summarize how we approximate the contact point (Fig. 3.8): 

1. Derive an equation of a line that defines each boundary of the bolt triangle 

2. Enumerate where line, l, intersects the bolt triangle (bc1, bc2, bc3) 

3. Check and identify which two of the three points are bounded by the bolt triangle 

4. Derive an equation of a line that defines each boundary of the nut triangle 

5. Enumerate where line, l, intersects the nut triangle (nc1, nc2, nc3) 

6. Check and identify which two of the three points are bounded by the nut triangle 

7. Determine if any of the nut points fall within the boundary of the bolt triangle 

8. Extract the endpoints of the line segment 

9. Calculate the midpoint, and repeat steps 1-8 for next contact pair 

10. Average midpoints from each contact pair 

 

The first step will be to derive the equation of a line for each side of the bolt triangle.  A 

simplified method of determining the equation of a line in symmetric form will be used.  
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Here, one can simply determine the direction vector M from the vertex points since the 

line is already parallel to the plane of the bolt triangle.  The line equations become: 

From Vertex 1 to 3: 

13

1

13

1

13

1

bb

b

bb

b

bb

b

zz

zz

yy

yy

xx

xx

−
−

=
−

−
=

−
−

      (3. 23) 

From Vertex 2 to 3: 
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      (3. 24) 

From Vertex 1 to 2: 
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      (3. 25) 

The contact points (bc1, bc2, bc3) are determined by solving a system of equations.  Two of 

the equations are supplied by the triangle line equations while the third is provided by the 

symmetric equation of the line: 
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   (3. 26 a,b,c) 

The line resulting from the intersection of the bolt and nut triangle will intersect the lines 

that make up the sides of the bolt triangle three times.  It is of interest to find out which 

two of the three points are bounded by the bolt triangle.  In order to verify that bc1 and bc2 

meet the criteria, the magnitude of the vector drawn from b1 to bc1 must be less than the 

magnitude of the vector drawn from b1 to b3, and the magnitude of the vector drawn from 

b2 to b3 must be less than the magnitude of the vector drawn from b2 to bc2.  This will 

succeed unless one of the lines that make up a boundary of the bolt triangle is parallel to 

l, in which case a third point of intersection can not be calculated.  The entire process is 

defined in the steps below: 

1. Calculate the vector magnitudes for each side of the bolt triangle: 
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2. Calculate the vector magnitudes for each vector drawn from a vertex of the bolt 

triangle to the intersection point: 
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3. Calculate the angle between the vector that defines the side of the triangle and the 

vector drawn from the vertex to the intersection point: 
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4. If the vectors are coincident (the angle is zero) and the magnitude of the vector drawn 

from the vertex to the contact point is less than the magnitude of the vector that 

defines a side of the bolt triangle, then the intersection point falls on the triangle 

boundary. 

 

This process is repeated for the nut triangle, resulting in two sets of two points.  Thus we 

are left with the endpoints of the nut and bolt line segment.  Now we must check and see 

if the location of the nut endpoints match any of the five intersection types listed above.  

We want to determine where the nut endpoints are in order to reduce the length of the 

contact line segment.  Once again, vector magnitudes as well as vector directions are used 

to correctly isolate the appropriate endpoints.  This process is emulated with the 

following steps (assuming that bc1, bc2, nc2, nc3 are the two intersection points that lie 

within the boundaries of the bolt and nut triangle, respectively): 
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1. Determine the magnitude of the vector drawn from bc1 to bc2: 
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2. Determine the magnitude of the vector drawn from bc1 to nc2: 
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3. Determine the magnitude of the vector drawn from bc1 to nc3: 
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4. Calculate the angle between the vector from bc1 to bc2 and the vector from bc1 to nc2: 
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5. Calculate the angle between the vector from bc1 to bc2 and the vector from bc1 to nc3: 
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6. Determine the magnitude of the vector drawn from bc2 to nc2: 
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7. Determine the magnitude of the vector drawn from bc2 to nc3: 
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8. Calculate the angle between the vector from bc2 to bc1 and the vector from bc2 to nc2: 
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9. Calculate the angle between the vector from bc2 to bc1 and the vector from bc2 to nc3: 
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All of these calculations are necessary, since we do not have prior knowledge of the order 

of the intersection points (bc1, bc2, bc3).  In the first contact situation, the four ordered 

pairs of the bolt and nut intersection points produce four possible arrangements of the 

angle between them as shown in Table 3.1: 

Table 3. 1 

 θ0
1 θ0

2 θ1
1 θ1

2 
(nc2, bc1, nc3, bc2) π 0 0 0 
(nc3, bc1, nc2, bc2) 0 π 0 0 
(nc2, bc2, nc3, bc1) 0 0 π 0 
(nc3, bc2, nc2, bc1) 0 0 0 π 

Thus, the intersection between the bolt and nut will fall into the first type provided that 

the angle between the respective vectors matches one line in the table above.  If not, then 

the angular results are compared with the next intersection type.  In addition to the 

angular check, the magnitudes of the vectors (shown in steps 1-3 and 5-7) are compared 

in order to verify that the intersection point falls within the plane of the bolt triangle.  If 

the nut intersection point does not fall within the plane of the triangle, then either the 

fourth or fifth intersection type will define the resulting line segment.  The remaining 

cases can be found in appendix B and highlighted within the C++ code in appendix D. 

 

Before defining the multiple contact state models, we will begin with a brief review of 

coordinate system transformations since this technique is required to understand the 

progression of the bolt from the initial to the final contact state. 

 

3.7 Coordinate System Transformations 

One can efficiently conduct an assembly analysis between two bodies by utilizing Euler 

rotations.  Here, the orientation of one body that is fixed is considered the fixed reference 

frame.  This is also known as the fixed inertial reference frame, as discussed in any 

dynamics text, but this analysis is purely geometric, and therefore, the fixed inertial 

reference frame will be known as the fixed reference frame.  The position of the active 

body, or the body being manipulated, is firstly defined in its local reference frame.  

Instead of dealing with two reference frames, it is far simpler to first define the active 

body’s orientation in its local reference frame, and then transform the orientation to the 
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fixed reference frame.  Once this is done, then a contact analysis between two bodies in 

space can be accomplished.  Since the local reference frame is a moving reference, the 

orientation of the moving body will be transformed to the fixed reference frame in order 

to keep track of its orientation in space.  Consider two coordinate systems that share a 

common origin.  The unprimed and primed axes will denote the fixed and local reference 

frame, respectively (Fig. 3.9). 
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Figure 3. 7 Rotating Reference Frames 

Consider a fixed body that contains a set of mutually orthogonal unprimed coordinate 

axes located at point O.  Also, consider a moving body containing another set of mutually 

orthogonal primed coordinate axes, initially coincident at point O and containing an 

arbitrary point P at (x’, y’, z’).  If the primed axes are rotated about the OX axis an 

amount α, then the coordinates that locate the point P in the fixed frame are (x, y, z).  

These two sets of coordinates are related by the following transformation (Meirovitch, 

1970): 
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[RX] will be referred to as the X-axis rotation matrix.  Similarly, if the primed axes are 

rotated about the OY axis by an amount β, the Y-axis rotation matrix becomes: 
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Finally, if the primed axes are rotated about the OZ axis by an amount φ, then the Z-axis 

rotation matrix becomes: 
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When one considers the orientation of a body in space, the order of rotation becomes 

paramount.  In two dimensions, only one rotation, a rotation about an axis perpendicular 

to the plane, is possible, therefore the orientation of a body is defined as two translations 

and one rotation.  Translations are commutative in two and three dimensions, but 

rotations are not commutative in three dimensions.  A body will possess a different 

orientation depending on the order of rotation.  There are 12 unique parameterizations of 

a rotation matrix using successive rotations about a set of mutually orthogonal axes 

(Craig, 1989), however; only a Z-Y-X rotation will be used in this analysis.  Here, the 

moving body rotates about the OZ axis by an amount φ first, followed by a rotation about 

the OY axis by an amount β, and finished with a rotation about the OX axis by an amount 

α.  The coordinates of point P in the local frame are transformed to coordinates in the 

fixed reference frame by sequentially multiplying the rotation matrices.  Using the order 

of rotation described above, the matrix multiplication begins by multiplying the rotation 

matrices in the prescribed order right to left: 

[ ] [ ] [ ]












=












′
′
′

z

y

x

z

y

x

ZYX RRR        (3. 47) 



 38

[ ] [ ] [ ] [ ]
















−+
+−

−
==

βαφαφβαφαφβα
βαφαφβαφαφβα
βφβφβ

cccssscsscsc

csccssssccss

ssccc

ZYX RRRR   (3. 48) 

Here cβ is defined as the cos(β), and sβ is defined as the sin(β).  Since the columns of a 

rotation matrix all have unit magnitude and are orthogonal to one another, the inverse of a 

rotation matrix is equivalent to its transpose (Crane, 1998).  Therefore, by providing 

known coordinates of any point in the local reference frame the equivalent values of 

those points can be obtained through the following matrix calculation: 
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When dealing with coordinate transformations that require translations as well as 

rotations it is more efficient to deal with 4×4 transformation matrices.  Here, the local 

coordinate system is translated from and rotated about a fixed reference frame (Fig. 3.10).  

The coordinates that locate the origin of the moving frame are homogenous; meaning that 

they are all scaled by a fourth variable.  This fourth variable permits the use of a 4×4 

matrix when representing coordinate transformations.  In homogenous coordinates, a 

three-dimensional point given by X, Y, and Z is represented by four scalar values, x, y, z, 

and w.  The homogenous and three-dimensional coordinates are related by: 

w

x
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w

y
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w

z
Z

′
=   (3. 51 a,b,c) 

Therefore, the first three components of the homogenous coordinates of a point are the 

same as the three-dimensional coordinates of the point when w = 1 (McCrea, 1947). 
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Figure 3. 8 Translated & Rotated Reference Frames 

The homogenous coordinates are then utilized in a matrix multiplication that enumerates 

a homogenous transform.  A homogenous transformation is constructed as: 
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In the matrix equation above, the vector t is drawn with respect to the unprimed frame, 

thus, given a point in the primed reference frame; one can find the location of that point 

as measured from the unprimed frame.  Given the primed frame as body A and the 

unprimed frame as body B, the matrix equation becomes: 
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In the case of multiple rotations, it may occur that the user is interested in the location of 

a point on a rigid body after the solid body has undergone several transformations.  This 

is where the user can take advantage of the simplicity of the 4×4 homogenous 
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transformation method by using it to map multiple coordinate systems.  For example, 

consider a moving body that underwent two translations and rotations in the figure 

below: 
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Figure 3. 9 Multiple Homogenous Transformations 

A point located on the moving body can be mapped by the following set of equations: 
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 (3. 54 a,b,c) 

The benefit of keeping track of the position of a moving frame will prove to be an 

essential tool during the contact analysis of a threaded assembly.  The next topic will 

discuss how the spatial orientation of the bolt was modeled as the bolt moved through 

multiple contact phases. 

 

3.8 1st Contact State Model 

The data files of the bolt and nut are exported from Pro/Engineer sharing the same 

reference frame.  This reference frame will be referred to as the “fixed” frame.  All the 

vertices of the bolt undergo a transformation that orients and translates each coordinate in 

space.  The bolt is then translated along the Z-axis of the fixed frame in a series of 

regressing steps of finer adjustment until contact with the nut is made, since it is of 

primary interest to cause a contact with the least amount of penetration (smallest number 



 41

of contact pairs).  Once the final move is made, at a value of 10 micro inches, the contact 

pairs are sent to the contact location subroutine.  Figure 3.12 shows the orientation of the 

reference frames and the transformation between them once the first contact point (CP0) 

is obtained. 
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Figure 3. 10 1st Contact State Model 

The vector u locates the contact point CP0, and the vector t locates the origin of the bolt 

reference frame; both of which are measured with respect to the fixed reference frame.  

The vector s locates the contact point as measured in the bolt reference frame.  The 

vertices of the bolt are transformed to the fixed frame via equation 3.55: 
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The transformation is defined as: 
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Note that α, β, and φ are given because the orientation of the bolt is known a priori, and 

that the value of tz is determined numerically through the series of regressing steps 

mentioned earlier.  Now, the contact point as viewed in the bolt frame can easily be 

calculated through the following homogenous transformation: 
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This is useful because the parametric equation that defines the cross-section of the bolt at 

the contact can only be utilized once the contact point in the bolt reference frame is 

known. 

 

3.9 2nd Contact State Model 

Once the first contact point is obtained, a new reference frame, C0, is created at the 

location of the contact point, CP0.  This is done because the collision detection library, 

RAPID, needs to start with both tessellated models sharing the same reference frame.  

This is the sole reason why new models of the bolt and nut need to be created in the code. 

Thus, the bolt triangles maintain the first contact point configuration prior to a subsequent 

rotation about the X-axis of the C0 frame.  The actual contact locations are stored in 

memory and converted back to the fixed reference frame so the user has knowledge of 

where the contacts occurred with reference to the actual position of the bolt and nut.  The 

X-axis of the C0 frame is aligned with a vector drawn tangent to the nut surface at the 

contact location.  The bolt and nut vertices will be rotated about this X-axis until the 

second contact point is obtained (Fig. 3.13). 
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Figure 3. 11 2nd Contact State Model 
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Before commencing with a rotation about the X-axis of the C0 frame, the bolt and nut 

vertices must be transformed by the following matrix equations: 

b

b
F

0C
F

0C

TT



















=



















−

11

1

z

y

x

z

y

x

 

n

0C
F

0C

T



















=



















11

z

y

x

z

y

x

  (3. 58 a,b) 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )


















−−−
−−

+−−−

=

1000

0

2121221212

1111

2121221212

zyx

yx

zyx

ucussucscsscs

ucuscs

ususcuccssccc

δδδδδδδδδδ
δδδδ

δδδδδδδδδδ

T0C
F      (3. 59) 

δ1 and δ2 are calculated from the direction cosines of the vector tangent to the surface of 

the nut at the contact point and are represented in the fixed reference frame.  Figure 3.14 

depicts the two-step process of transforming the XF-axis to a general orientation of a 

vector tangent to the nut surface. 
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Figure 3. 12 Vector Rotation Angles 

The fixed frame is rotated about the ZF-axis first by an amount δ1.  Then the new fixed 

frame (denoted by a prime) is rotated about the Y’F-axis by an amount δ2.  The formulae 

for calculating δ1 and δ2 are given below: 
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Note that θx and θz are expressed in radians, since the vector tangent to the surface of the 

nut at the contact point is of unit magnitude.  The transformation that orients the bolt 

frame with the C0 frame follows a similar derivation.  Here, the XB-axis must be aligned 

with the XC0-axis via two successive rotations, ψ1 and ψ2.  However, the direction 

cosines of the vector tangent to the nut surface must be expressed in the bolt frame prior 

to the computation of these angles. 
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At this point the bolt is rotated about the X-axis of the C0 frame until the second contact 

point is obtained.  The direction of rotation is negative, because the vector tangent to the 

surface of the nut is directed counter-clockwise, and the assembly force is acting along 

the negative azimuth axis of the bolt.  Subsequently, a negative rotation about this axis 

will rotate the bolt towards the nut surface.  Figure 3.15 depicts the position of the bolt 

frame once it obtains the second contact point, CP1. 
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Figure 3. 13 Coordinate Frames at Two-Point Contact 
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The transformation that carries the bolt to the second contact state is simply comprised of 

a rotation about the XC0-axis: 
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The advent of the second contact point provides a more constrained situation, as now the 

bolt has a maximum of two degrees of freedom provided it still maintains both contact 

points.  Once the bolt has achieved this situation, a new model of the nut and bolt must be 

created as observed from a new reference frame defined by the contact points.  At all 

times the contact states are validated as being quasi-stable with respect to an elastic 

support, such as an RCC. 

 

3.10 3rd Contact State Model 

Once again, an additional reference frame will be established at the initial contact point 

CP0, but the X-axis of this coordinate system will be defined by a vector drawn from the 

first to the second contact point (Fig. 3.16). 
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Figure 3. 14 3rd Contact State Model 

The transformation from the fixed frame to the P0 frame will follow a similar derivation 

for the transformation from the fixed frame to the C0 frame.  However, in this case, the 
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transformation will occur in several steps.  The first step, already known, is the 

transformation of the fixed frame to the C0 frame.  The second step is the transformation 

from the C0 frame to the P0 frame.  Again, there are two rotations that line up the C0 

coordinate axes with a general vector in space.  The two rotations are: 
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Recall that in a computer code the direction cosines are given in radians not degrees.  

Now, the transformation follows directly from the previous derivation: 
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Given a set of coordinates in the fixed frame, one can transform them to the P0 frame via 

the following calculation: 
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     (3. 66) 

The transformation equation for coordinates initially given in the bolt frame is somewhat 

more complicated.  Recall that the bolt vertices begin by being represented in the fixed 

frame.  The vertices must be transformed to the current location of the bolt coordinate 

system, so they are transformed to the initial contact configuration first (such that the bolt 

coordinate system at the moment of initial contact is viewed from the fixed reference 

frame).  Then they are transformed from the fixed to the C1 frame, followed by an inverse 

transformation to record the second contact configuration of the bolt (the moment when 

the bolt obtains two contact points) as represented in the C0 frame.  Finally, the bolt 

vertices are transformed from the C0 to the P0 frame.  The cyclic representation of the 

transformations involved is shown in Figure 3.17: 
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Figure 3. 15 Cyclic Diagram for 3rd Contact State Model 

The entire homogenous transformation is shown in the equation below: 
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Unlike the second contact point analysis, when the direction of rotation was known, the 

direction of rotation about the XP-axis must be determined. The X-Y plane of the P0 

frame is assumed to be parallel to the X-Y plane of the fixed frame, since a majority of 

the contact points will occur at or near the surface.  Hence, the fixed frame is simulated at 

the surface of the nut while the direction of rotation about the XP-axis is determined.  The 

enumeration of the quadrant location of CP0 and CP1, the determination of whether the 

XP-axis intersects the positive or negative XF-axis and whether the slope of the XP-axis is 

positive or negative will determine the direction of rotation.  All of these parameters are 

measured with respect to the fixed reference frame.  A portion of the rotation direction 

algorithm is shown below: 

Table 3. 2 

CP0 XP int. Slope CP1 DIR. ROT 
Q1 +XF Negative Q2 Negative 

   Q4 Positive 
  Positive Q3 Positive 
   Q4 Positive 
 -XF Negative IMP  
  Positive Q2 Negative 
   Q3 Negative 
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For each of the quadrants that CP0 has the potential to occur in, there is one configuration 

that is geometrically impossible.  In the previous example, it is geometrically impossible 

for CP0 to occur in quadrant one, the XP-axis to intersect the negative XF-axis, and for the 

slope of the XP-axis to be negative.  The remainder of the pivot direction algorithm is 

located in appendix C. 

 

At the moment the bolt obtains a third contact point with the nut, it is assumed to have a 

stable configuration.  At this point the motion of the bolt is complete, and the critical 

contact data can be exported into a data file.  Figure 3.18 depicts the coordinate systems 

at the moment the third contact point (CP2) is obtained. 
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Figure 3. 16 Coordinate Frames at Three-Point Contact 

The final transformation that pivots the bolt into the third contact point is defined as: 
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The series of transformations that convert a set of contact coordinates as measured in the 

P0 to the fixed frame is shown below: 
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However, knowledge of where the contacts occurred as measured from the bolt frame is 

required to ascertain the appropriate parametric equation.  Since the models of the bolt 

and nut were recreated in the P0 frame, any contact point will be represented by this 

coordinate system.  Hence, the coordinates must be converted from the P0 frame to the 

bolt frame.  This more complicated procedure begins with a transformation from the P0 

frame to the P1 frame, followed by an inverse transformation that carries the coordinates 

from the P1 to the C0 frame.  At this point the vertices are transformed from the C0 frame 

to the C1 frame, followed by another inverse transformation that converts the vertices 

from the C1 frame back to the bolt frame.  A cyclic representation of the transformations 

involved in the conversion from the P0 to the bolt frame is shown in Figure 3.19: 
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Figure 3. 17 Cyclic Diagram to Convert to Bolt Reference Frame 

The entire transformation is shown in equation 3.70: 
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Note that the transformations from the bolt to the C1 frame and from the C0 to the P1 

frame are equivalent to the transformations from the bolt to the C0 frame and from the C0 

to the P0 frame, respectively. 

 

The direction of the contact normal is critical in the determination of the potential for 

jamming and/or wedging.  During a threaded assembly, it is possible to determine the 

common normal between two helically swept surfaces through the use of vectors tangent 

to the bolt and nut.  The following section outlines the technique involved in the 

determination of a common normal at a contact point between the bolt and nut. 

 

3.11 Common Normal between Two Curves in Space 

If two known curves in space meet at a point, then it is possible to draw a tangent vector 

to each individual curve at that point.  The cross product of the tangent vectors (since 

they are co-incident) will provide the common normal vector between them (Fig. 3.20).  

It is assumed here that each curve is planar to its respective coordinate system.  By 

setting it up this way, one can find the unique tangent vector for each curve by drawing a 

position vector in Polar coordinates from the origin of each curve’s reference frame. 

 

Figure 3. 18 Common Normal to Two Spatial Curves 

PB is the position vector, defined in Polar coordinates, drawn from the origin of the bolt 

frame to the contact point where RB is a known scalar value.  The tangent vector is 

defined as the derivative of the position vector with respect to its angular orientation 

(Munem, 1984).  The unit tangent vector is found by normalizing the derivative, thereby 
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elimination knowledge of the magnitude of the tangent vector.  Since this study is 

consists of a purely geometric analysis, only the direction of the tangent is of importance.  

The procedure to obtain the tangent vector is defined in the following equations: 

jiPB
ˆ)sin(ˆ)cos( θθ BB RR +=      (3. 71) 
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Now that the direction of the tangent vector is determined, it must be transformed back to 

the fixed reference frame, since it was initially defined in the bolt frame.  Since the 

transformation is homogenous, the magnitude of the tangent vector will remain unity.  

The unit tangent vector of the planar curve located in the nut reference frame can be 

determined similarly.  No transformation is needed, however, because this vector is 

defined in the fixed reference frame.  Once the two tangent vectors are obtained, the cross 

product will yield the direction of the common normal between the two curves: 

NB TTN ˆˆ ×=      (3. 75) 

Though the tangent vectors are unity, their cross product may not equal unity.  

Nevertheless, the direction cosines of the common normal can be obtained by 

normalizing its components.  Recall that during the derivation of the parametric equations 

for the bolt and nut, RB is not a scalar value but dependent on the angular location of the 

contact point.  Therefore, it will not factor out of the equation unless the parametric 

equation has a constant radius as with the root and crest, respectively. 

 

The next chapter will present the results of the contact analysis for multiple initial 

configurations.  All of the techniques involved in this chapter were converted to computer 

code in order to automate the contact analysis via a computer simulation.  For the 

interested reader, the computer code is available in appendix D. 
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Chapter 4 

Spatial Contacts from Discretized Orientation Errors 

Recall that the threaded assembly is completed by the conventional heuristic of 

rotating the bolt counter-clockwise until a “snap” is heard.  The “snap” results from a 

sudden change in the height of the bolt and occurs when the bolt is in phase with the nut.  

From this point it is known that any clockwise rotation results in a successful assembly 

provided that the orientation is maintained.  By utilizing the contact state models derived 

in the previous chapter, we conducted an exhaustive test sequence simulating this 

heuristic to ascertain the contact locations throughout a counter-clockwise rotation of the 

bolt. 

 

The initial approach of the bolt has 6 degrees of freedom, three rotations (roll, pitch, and 

phase) and three translations (horizontal, vertical, and azimuth), resulting in a multitude 

of infinities.  One way to reduce the number of free choices during the initial approach is 

to develop a pre-alignment strategy.  An example of this is the Azimuth Rotation Strategy 

as discussed by Sturges (1996) that preconditions the constraint network for prismatic 

peg insertion.  In our case, the bolt shall be considered as having two rotational freedoms 

(roll, α, and pitch, β) over the range –4, 0, and +4 degrees, as this is the extent of 

expected elastic compensation for an RCC.  Thus, the bolt can be pre-aligned eight 

different ways based on the rotational degrees of freedom: +α only, +β only, -α only, -β 

only, +α and +β, +α and -β, -α and +β, -α and -β.  For this analysis, it will be assumed 

that the translation errors in the vertical and horizontal directions (X and Y-axes) are 

corrected by the standard RCC.  The azimuth translation (Z-axis) is constrained by the 

orientation of the bolt, as it is calculated once the bolt achieves its first contact.  Hence 

the bolt will be positioned above the nut, and moved down the azimuth axis until RAPID 

detects a contact.  Since the bolt will be rotated counter-clockwise, there are no 

restrictions on the phase angle φ, so it was discretized over one period (zero to 360°) in 

steps of 5 degrees, in order to determine the entire gamut of potential contact states.  The 

complete set of motions involved in the contact analysis was numerically simulated by a 
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supervisory code written in Microsoft Visual C++ version 5.0, which was compiled on a 

Pentium II 450 MHz computer with 128 Megabytes of RAM. 

 

4.1 Computer Code Output File 

During a simulation the code outputs the following information: 

• Spatial Orientation Parameters (α,β,φ -- roll, pitch, and phase); 

• The number of contact locations at the third contact state; 

• The amount of rotation about the XC0 and XP0 axes (XROLL, PSI, respectively); 

• The contact point coordinates once the bolt acquires its second contact point; 

• The origin of the BOLT frame at the second contact state; 

• The contact point coordinates once the bolt acquires its third contact point; 

• The number of contact pairs involved in the determination of each of the contact 

points at the third contact state; and 

• The origin of the BOLT frame at the third contact state, along with the 

coordinates of a point displaced along the Z-axis of the bolt frame by one pitch 

(0.050 inches). 

A sample of the text file is shown in Figure 4.1 (coordinates measured with respect to the 

fixed reference frame): 

ROLL = -4 PITCH = 0 PHASE = 6 
Number of contact locations: 3 XROLL = -0.2199 PSI = -3.913 
Contact Point Locations: 
The original 1st two points are: 
X0 -0.107471 Y0 -0.00764779 Z0 0.0499998 
X1 0.109120  Y1 0.00327747 Z1 0.0500000 
BOLT Origin at the Second Contact State 
1.8258e-007 3.67833e-008 0.0498432 
The three computed contact points are: 
X  Y  Z  # Contact Pairs 
0.109120  0.00327661 0.0500000 
0.109572  0.01437670 0.0499961 
0.109408  0.00930305 0.0499955  26 
-0.107468 -0.00759809 0.0499928 
-0.107471 -0.00764896 0.0500000 
-0.107471 -0.00764779 0.0499998  4 
0.103651  0.04944990 0.0500000 
0.103642  0.04947910 0.0500000 
0.103647  0.04946450 0.0500000  4 
BOLT Origin at the Third Contact State 
9.8259e-007 -1.58201e-005 0.0496918 
BOLT Top Surface at the Third Contact State 
-0.00034701 0.00688221 0.0992125 

Figure 4.1 – Angles are in degrees, Coordinates are in inches 
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It is of interest to determine if the bolt purely rotates about the initial two contact points.  

If so, then we are assured that the model is sufficient to locate the three contact points 

that stabilize the bolt.  However, if the number of contact pairs increases at either of the 

original contact points, then the model may not be providing accurate information as to 

the whereabouts of the third contact point.  One way to determine if the model is actually 

locating three contact points is to analyze the depth of intersection between the bolt and 

nut, since excessive intersection at the endpoints of the pivot axis represents an 

impossible state. 

 

4.2 Contact Embedment Analysis 

In order to determine if there was excessive interference, the origin of the bolt reference 

frame at the two-point and three-point contact states needs to be recorded.  If the origin of 

the bolt frame moved less then the amount that the bolt embedded in the nut, then we 

have an unstable case because we located a third contact point by doing something 

impossible (embedding a rigid body into another rigid body).  If the origin of the bolt 

frame drops more than the amount that the bolt embeds in the nut, then this a possible 

movement because the bolt is releasing its potential energy.  Furthermore, the location of 

the pivot axis will determine the stability of the bolt at the second contact state.  If the 

pivot axis crosses at or near the origin of the bolt, then we could have a special “quasi-

stable” two-point contact case.  Here, the axis passes close to the compliance center 

(origin of the bolt frame) at which point the moment due to the applied load is nearly 

negligible.  If the axis is far away from the origin of the bolt, then the code was unable to 

determine where the third contact point is because the pivot axis is rolling on the surface 

thereby producing an unstable contact state.  A rolling axis is defined as acquiring more 

triangles at one or both of the original points once rotation about the pivot axis 

commences.  Therefore, the output file was analyzed to determine whether the computed 

contact information was two-point unstable, two-point quasi-stable or three-point stable 

throughout each of the eight approaches. 
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4.2.1 Unstable Two-Point Contact State 

Figure 4.1 depicts four contact points labeled 1, 2, 3A, and 3B.  Points 1 and 2 define the 

endpoints of the pivot axis, or the X-axis of the P0 frame.  The code simulates a rotation 

of the bolt about the pivot axis until RAPID returns (and the code categorizes) three 

distinct contact states.  In a majority of the test runs, it was found that the third contact 

point was only obtained by embedding itself into the nut, thereby producing a 

discontinuity in the contact pair output.  An example of an unstable state for the given 

orientation is shown below: 
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Figure 4. 2 Unstable Contact Point Locations @ (α=4°, β=0°, φ=185°) 

 

The diamond in the center of the chart is the location of the bolt origin when the third 

contact state is reached.  The circular object is the interior edge of the planar cross-

section of the nut.  The swath of embedment is pictorially shown by the close proximity 

of points 3A and 3B.  Here, the code detected a discontinuity between points 2 and 3A, so 

it stopped rotating the bolt about the pivot axis and returned a series of contact pairs. In 

this case, it is determined that the bolt is unstable, because the origin of the bolt frame 

moved less than the amount embedded in the nut.  The origin of the bolt frame moved 

from 0.047 to 0.046 inches (1.19 to 1.17 mm), or a displacement of 0.001 inches (0.03 



 56

mm).  However, the depth of embedment was found to be 0.004 inches (0.10 mm), which 

is greater than the movement of the bolt reference frame, therefore we have an unstable 

case. 

 

4.2.2 Quasi-Stable Two-Point Contact State 

A “quasi-stable” two-point case is also present when approaching the nut with a positive 

rotation about the roll and pitch axes (Figure 4.2).  Here the bolt reference frame dropped 

0.0045 inches (0.11 mm) but the largest amount of interference was 0.0013 inches (0.03 

mm), therefore the bolt released some potential energy as it moved down the azimuth 

axis of the fixed reference frame.  Though only two contact points are present, the pivot 

axis passes near the origin of the bolt reference frame, thereby providing the potential for 

stability with an appropriately applied force. 
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Figure 4. 3 Quasi-Stable Contact Point Locations @ (α=4°, β=4°, φ=235°) 

 

Once again, the diamond in the center of the chart signifies the origin of the bolt 

reference frame, and points 1 and 2 represent the endpoints of the pivot axis.  However, 

the code continued to rotate until it obtained a swath of triangles that begin with point 3A 

and end with 3B, since it is unable to decipher a quasi-stable contact configuration. 
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4.2.3 Stable Three-Point Contact State 

An example of a stable three-point contact case is shown in Figure 4.3.  Here, the number 

of contact pairs at each of the distinct contact points is minimized (4 pairs each).  

Moreover, the bolt did not embed itself into the nut as it pivoted about the axis defined by 

points 1 and 2.  The origin of the bolt frame dropped slightly as it rotated about the XP0- 

axis, however, all three contact points occurred at the surface of the nut which means that 

the two solid bodies did not interfere with one another. 
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Figure 4. 4 Stable Contact Point Locations @ (α=-4°, β=0°, φ=131°) 

 

This type of result was interspersed throughout each of the approaches, however, it 

occurred the least number of times. 

 

4.3 Code Validity 

The code functioned as intended, in that it was capable of isolating three distinct contact 

points.  Yet, the model is limited in its ability to isolate actual non-interfering contact 

points since it constrained the bolt to rotate about an axis fixed in space.  Moreover, there 
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were instances when one of the endpoints of the pivot axis disappeared after the third 

contact point was recorded.  This meant that the bolt lost a contact as it rotated about the 

pivot axis, and the code continued to rotate the bolt in order to obtain three distinct sets of 

contact pairs.  In this case, the physical response of the bolt would be to release some 

potential energy by moving down the azimuth axis of the fixed reference frame, however, 

this was not accounted for in the model.  An adjustment to the model, such as modeling a 

rolling pivot axis, or performing a compound rotation about the pivot axis, has the 

potential to improve the results. 

 

Nevertheless, the parametric equations derived in chapter two can be used without 

modification to create a full spectrum of maps at any point in the history of a threaded 

assembly operation.  Recall that, in the two-dimensional case, the contact points were 

calculated once the contacting surface regions were identified. 
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Figure 4. 5 Expansion of Two Dimensional Analysis 

 

In the three-dimensional case, errors in rotation about the X and Y-axes of the bolt 

reference frame are permitted.  This creates the opportunity for out-of-plane contacts, 
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where each contact will have its own annulus describing the surface regions in contact.  

However, the annulus of chapter two must be modified to represent the parametric 

equations of the bolt cross-section at the moment a third contact point is obtained, or 

when the bolt is no longer parallel to the nut surface.  Figure 4.4 shows the expansion of 

the two-dimensional analysis into the three-dimensional contact analysis.  For our 

purposes, values of roll and pitch were calculated at every one-degree from –4 to +4 

degrees.  Thus, the three-dimensional analysis covers 81 cases of thread mating contacts 

for every possible phase angle between the nut and bolt.  For example, figure 4.4 shows 

the contact states for a bolt with rotational errors of –3 degrees roll and +3 degrees pitch.  

The contact regions, once the third contact is obtained, are shown below the grid that 

represents the gamut of orientation errors. 

 

In summary, we have investigated 81 potential orientations, each of which has its own set 

of contact points.  This amount of variation constitutes a library that is comprised of all 

the contact states.  From this library, the user will be able to correlate a contact state 

history, and develop a constraint network that permits successful assembly.  The choice 

and number of grid points and phase angles used in this analysis convince us, by 

exhaustive examination, that there are no other possible contact states. 
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Chapter 5 
Conclusion & Future Work 

 The demands for an increase in productivity and reduced assembly costs require 

engineers to automate solutions that replace manual labor.  Currently, there does not exist 

a passive solution to assemble threaded fasteners, a common assembly primitive.  

Therefore, this work concentrated on threaded fastener insertion, in an effort to determine 

the nature of contact between the bolt and nut prior to an in-phase condition.  This is the 

first step in the construction of a passive solution to this assembly problem, while the 

next two steps are the development of a constraint network guaranteeing successful 

assembly and experimentation to prove the theoretical design.  In this chapter we 

summarize the results of this work and highlight the major contributions.  We conclude 

with recommendations for future work concerning the analysis of threaded fastener 

assembly. 

 

5.1 Planar Analysis 

We started our research by simplifying the problem as a two-dimensional assembly 

analysis to gain an understanding about how contacts between the bolt and nut change 

during counter-clockwise motion.  Here we were able to extract the planar parametric 

equations and the theoretical contact point locations when the bolt is flush with the 

surface. Though the location of the contact points varied with phase, it was of primary 

interest to identify the regions in contact so as to be able to calculate the common normal 

at the contact point, once the planar equations are extrapolated to a spatial reference 

system. 

 

Yet, the tangent vectors can not be determined unless the contact point is known before 

hand.  The technique used to locate the contact point began with the tessellation of one 

pitch of a #1/4-20 UNC thread, both internal and external.  Tessellation was necessary 

since we utilized a collision detection library, RAPID, which required the solid bodies to 

be stored in memory as a series of triangles.  During a collision, spatial geometry was 

used to locate an approximate contact point.  Here, given a contact pair, the coordinates 

of the endpoints of a line segment created by the planar intersection of a bolt and nut 
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triangle were enumerated through vector geometry.  The midpoint of the line segment for 

each contact pair was averaged to produce an approximate location of the contact point.  

The minimum number of triangles was required to reduce the variation in position due to 

tessellation, so the bolt was dropped onto the nut in a series of iterations ending with 1 

micro inch (25.4 x 10-9 m) adjustments. 

 

5.2 Contact State Model & Results 

Since the insertion force is assumed to be acting through the origin of the bolt reference 

frame and parallel to the azimuth axis of the bolt, the first contact state was constructed 

that rotated the bolt about a tangent vector to the surface or edge of the nut until a second 

contact point was obtained.  The advent of a second contact point presented a more 

constrained contact state since we are interested in maintaining both contacts; thus it was 

hypothesized that the bolt would rotate about an axis defined by the original two contact 

points.  The appropriate transformations were derived and the models entered into 

RAPID such that it was possible to rotate about the pivot axis until a third contact point is 

enumerated. 

 

However, in order to show that the hypothesis was true, we analyzed the depth of 

intersection of the bolt into the nut as well as the vertical movement of the origin of the 

bolt reference frame.  This determined whether the bolt was releasing potential energy or 

embedding itself into the nut.  The calculated results show three types of contact states 

returned by the program: 

• Unstable Two-Point Contact State 

• Quasi-Stable Two-Point Contact State 

• Stable Three Point Contact State 

Though the unstable case still needs to be deciphered, the parametric equations derived in 

this work can be used without modification to create a full spectrum of maps at any point 

in the history of a threaded assembly problem.  We investigated 81 potential orientations, 

each of which has its own set of contact points, which was described by a contact region 

disk.  From this exhaustive examination, we are capable of detailing a contact state 

history and, from this, able to develop a constraint network. 
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5.3 Future Work 

We have eliminated some of the unknown contact behavior between a bolt and nut during 

threaded assembly, but in order to complete the library of contacts one must continue to 

decipher the unstable two-point contact states.  Here, the results can be improved by 

altering the model after the first contact point is obtained, such that the third contact point 

can be identified.  One possibility would be to rotate the bolt about a dynamically rolling 

pivot axis.  For instance, conduct a rotation about a vector tangent to the surface of the 

nut, and then determine if the contact pairs at the endpoints of the pivot axis increased.  If 

the bolt lost some potential energy in the move, then alter the position of the pivot axis to 

represent the adjusted pair of contact points.  If one of the endpoints disappears during an 

incremental rotation, then the bolt must be rotated about a vector tangent to the remaining 

contact point until a new endpoint can be found.  If the bolt does not lose potential energy 

during a rotation about the pivot axis, then there is a possibility for a quasi-stable case 

provided that the pivot axis passes close to the origin of the bolt reference frame.  

Another possibility would be to rotate the bolt about a compound angle in such a way that 

it maintains the original two contacts and picks up a third without interfering with the nut.  

Such a rotation has the potential to be calculated through numerical simulation, which 

will condense several individual movements into one rotation. 

 

Once the remaining regions are identified, and a constraint network is developed, it is our 

hope that designers of threaded fastener strategies will use the proposed generalized 

constraint network as an evaluation tool.  For example, such a tool will provide the 

designer with the correct pitch angle setting (for an SRCC) based on thread geometry.  

Furthermore, it is recommended that experimentation be conducted with an RCC to 

determine what ranges of phase, if any, permit clockwise rotation of a threaded fastener 

without cross threading.  This, in turn, could lead to an understanding of which contact 

states to avoid such that the automatic assembly system can reliably fasten a bolt and nut 

in a clockwise, and subsequently, more efficient manner. 

 

 


