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ABSTRACT 

 

 This work describes a framework for simultaneous estimation and modeling 

(SEAM) of dynamic systems using non-Gaussian belief fusion by first presenting the 

relevant fundamental formulations, then building upon these formulations incrementally 

towards a more general and ubiquitous framework. Multi-Gaussian belief fusion (MBF) is 

introduced as a natural and effective method of fusing non-Gaussian probability 

distribution functions (PDFs) in arbitrary dimensions efficiently and with no loss of 

accuracy. Construction of some multi-Gaussian structures for potential use in MBF is 

addressed. Furthermore, recursive Bayesian estimation (RBE) is developed for linearized 

systems with uncertainty in model parameters, and a rudimentary motion model correction 

stage is introduced. A subsequent improvement to motion model correction for arbitrarily 

non-Gaussian belief is developed, followed by application to observation models. Finally, 

SEAM is generalized to fully nonlinear and non-Gaussian systems. Several parametric 

studies were performed on simulated experiments in order to assess the various 

dependencies of the SEAM framework and validate its effectiveness in both estimation and 

modeling. The results of these studies show that SEAM is capable of improving estimation 

when uncertainty is present in motion and observation models as compared to existing 

methods. Furthermore, uncertainty in model parameters is consistently reduced as these 

parameters are updated throughout the estimation process. SEAM and its constituents have 

potential uses in robotics, target tracking and localization, state estimation, and more.
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GENERAL AUDIENCE ABSTRACT 

 

 The simultaneous estimation and modeling (SEAM) framework and its constituents 

described in this dissertation aim to improve estimation of signals where significant 

uncertainty would normally introduce error. Such signals could be electrical (e.g. voltages, 

currents, etc.), mechanical (e.g. accelerations, forces, etc.), or the like. Estimation is 

accomplished by addressing the problem probabilistically through information fusion. The 

proposed techniques not only improve state estimation, but also effectively “learn” about 

the system of interest in order to further refine estimation. Potential uses of such methods 

could be found in search-and-rescue robotics, robust control algorithms, and the like. The 

proposed framework is well-suited for any context where traditional estimation methods 

have difficulty handling heightened uncertainty.
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CHAPTER 1. Introduction 

1.1 Development and Motivation 

 The various concepts, formulations, and ultimately overall framework discussed in this 

dissertation began with an examination of belief fusion of Gaussian probability distribution 

functions (PDFs). Because belief fusion can be accomplished at the PDF-level by multiplying and 

normalizing the PDFs representing belief coming from different sources, fusion of two Gaussians 

has a special property in that it yields another Gaussian. Though this is an elegant result, it is 

restricted to Gaussian belief only. However, because methods exist for fitting Gaussian sums to 

estimate non-Gaussian PDFs, it became evident that belief fusion of multi-Gaussian PDFs would 

have a similarly elegant solution by means of linear superposition. These premises laid the 

foundation of multi-Gaussian belief fusion (MBF). 

 Given the ubiquity of MBF, it became natural to investigate how to efficiently generate a 

set of non-(multi-)Gaussian PDFs with useful characteristics. The formulation of two of these so-

called “multi-dimensional multi-Gaussian structures” was included in the work relevant to chapter 

2. Upon examining potential uses of these structures in real-world applications, there arose a 

question of accurately accounting for uncertainty in dynamic system modeling. At this juncture, 

the use of MBF in the correction stage of recursive Bayesian estimation (RBE) was warranted, but 

formulation of multi-Gaussian prediction had not been addressed. To this end, non-Gaussian 

prediction for a linearized system was developed with allowance for uncertainty in not only states, 

but also model parameters and inputs. Because this allowance increases sensitivity to observational 

noise in the estimation process, a logical next step was to consider how uncertainty in a system 

model might be continuously reduced. 
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 The rudimentary solution to model-updating proposed in chapter 4 makes the assumption 

that the mean and covariance of an arbitrary state of belief (whether Gaussian or non-Gaussian) 

could be readily extracted and used to update the state matrix of a linearized system. This results 

in an augmented least-squares solution for improving estimates of the elements of the state matrix 

based on previous estimates of both system parameters and states. An additional outcome of this 

approach to model-updating is a series of equations for updating the variances in system 

parameters which are then used to re-initialize another iteration of estimation. Though this 

approach tends to improve model estimates and therefore produce more accurate estimation, it 

does not fully incorporate all available probabilistic information. For this reason, ground-truth 

parameter values are not consistently converged upon. 

 To improve the model-updating step for multi-dimensional and multi-Gaussian belief, an 

optimization approach was taken. Rather than pursue a closed-form solution for updating state 

matrix elements, a state transition error minimization approach was considered. For the examples 

given in chapter 5, this approach gives parameter estimates which more reliably converge upon 

the ground-truth values. However, these formulations still make the assumption that a system is 

linear or linearized. Furthermore, model-updating up to this stage addressed only the system-

intrinsic state matrix of a linear system without regard for the input matrix. Consequently, a more 

general framework was formulated to comprehensively define non-Gaussian simultaneous 

estimation and modeling (SEAM) for arbitrarily nonlinear systems. 

 In order to implement some of the tools developed here for special estimation contexts 

where motion models are unobtainable, chapter 3 addresses recursive Bayesian classification 

(RBC) using the Gaussian toroid as a prediction model. This chapter specifically addresses 

probabilistic classification of stochastically evolving targets in a high-dimensional feature space. 
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Though not addressed in this dissertation, an outcome of this approach to classification led to real-

world improvement in road crack classification, a platform which fits the proposed framework 

well. The information introduced by even a rudimentary prediction model such as the Gaussian 

toroid yields better estimation and probabilistic classification with more accurate uncertainty 

characterization for problems where such an approach is appropriate. 

1.2 Primary Outcome: Simultaneous Estimation and Modeling 

 Though the research presented here covers a wide range of applications and its direction 

branches off into various subdomains at a number of points, the primary outcome of this research 

is the development of the SEAM framework for estimation and modeling of dynamic systems. 

Chapter 2 lays the foundation for development of SEAM, chapter 4 introduces it, and chapters 5 

and 6 progressively generalize and refine the framework. While the notion of overcoming system 

model uncertainty in estimation is not new, existing techniques generally do not address estimation 

and modeling as a recursively symbiotic process reminiscent of an active learning approach. 

Furthermore, the use of MBF in the correction stage allows belief to be continuously represented 

by potentially highly multi-modal non-Gaussian PDFs. This could have significant implications 

for several kinds of robotics tracking problems; such applications are discussed in chapter 7, where 

a summary of the framework can also be found. 

 The aim of SEAM as the outcome of this doctoral research is that properly equipped robots 

and autonomous systems might be able to overcome challenging scenarios where uncertainty is 

more complex and available information is sparser. In order to interact more naturally with humans 

in real-world environments, robots need to be capable of perceiving the world and drawing 

conclusions in a fashion that is more probabilistically similar to the way humans do. Simultaneous 

estimation and modeling is an active online framework for accomplishing these tasks by means of 
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prediction, belief fusion, uncertainty propagation, and optimization. The SEAM technique could 

eventually lead to higher-level characterization of the very kinds of targets being pursued and 

estimated, a valuable extension for autonomy in environments with unknown agents. 

  



 5 

CHAPTER 2. Multi-Gaussian Belief Fusion 

2.1 Introduction 

2.1.1 Motivation 

 Recent decades have seen an increased emphasis on probabilistic methods in the areas of 

estimation, automation, information engineering, and the like [1]. Because humans think and act 

probabilistically, it is important that human-designed systems be similarly equipped. Sensor fusion 

has emerged as an effective tool to help overcome uncertainty in sensor measurements and belief 

states, though existing approaches vary widely. With regards to probabilistic information-

handling, there is need for generalized representation of non-Gaussian belief and a correspondingly 

inclusive fusion framework. One example of a scenario which could benefit from such a 

framework is acoustic target tracking in complex environments, a difficult problem largely because 

sound signals are noisy and often aliased by surface interactions. In order to address a wide range 

of scenarios such as this, the work presented here investigates efficient generalized non-Gaussian 

belief fusion in multiple dimensions and an approach to subsequent probabilistic decision-making. 

2.1.2 Background and Related Work 

 Although the term “sensor fusion” is more widely recognized within the appropriate 

scientific communities, the more general term “belief fusion” is used here to describe analogous 

principles, where belief is defined by probability distribution functions (PDFs). Belief fusion 

describes the joining of multiple estimates, each with a specified uncertainty characteristic, to 

synthesize an estimate with improved certainty characteristics [1]. This definition can be more 

broadly applied to scenarios where physical sensors are not required, making it more appropriate 

for the theoretical formulations presented here. In the traditional sense, fusion has applications in 

image processing and computer vision [2], IMU/GPS/accelerometer localization [3], [4], radar and 
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sonar [5], and more. However, this paper avoids direct association with any single application in 

the effort to clarify the ubiquity of the formulations given. 

 Belief fusion problems are often formulated in terms of two or more state observations, 

each described by a mean and uncertainty [6]. Obtaining a fused output mean and uncertainty is 

approached in a number of ways. The most conventional method assigns the output mean as the 

weighted average of contributing means, where each mean is weighted by the inverse of its 

variance. The output uncertainty is then given as the inverse of the sum of the inverse variances. 

Under the assumptions of Gaussian estimates, this is the direct result of dynamic system smoothing 

formulations [7], as well as an outcome of the central limit theorem [8]. Furthermore, it can be 

shown that the updating stage of the traditional Kalman filter also reduces to this result [6], [9]. 

Other variants arise under the optimal Kalman filter [10], [11], where the output belief bears 

resemblance to the conventional form with the inclusion of optimized elements. Some approaches 

to belief fusion employ Bayesian networks [12], [1] to enhance certainty about an estimated state. 

Furthermore, Dempster-Shafer theory includes a rule for combination of belief, though this 

framework generally does not employ probability distribution functions [13], [14], [15]. 

 Recursive Bayesian estimation (RBE) is a widely implemented estimation framework 

which addresses belief fusion in the updating, or correction, stage [16], [17]. It is worth noting that 

the Kalman filter is one simplification of RBE. In general, though, belief fusion under RBE is 

addressed from an arbitrary standpoint where the PDFs of contributing estimates are allowed to 

take any form. One approach to belief fusion in RBE is the grid-based method [18], which 

discretizes a belief space into sampled grid cells and performs element-wise operations on all cells. 

Computation time for such non-parametric methods increases exponentially with dimensionality, 
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and the trade-off is low resolution in the belief space. This poses a problem with regards to 

accurate, real-time belief fusion. 

 An additional category of probabilistic filtering towards RBE is the well-known particle 

(or sequential Monte Carlo) filter [19], [20]. Developed for nonlinear/non-Gaussian applications, 

the particle filter is predominantly used for contexts in which decisions are made from incomplete, 

or “hidden”, observations. The particle filter is also used extensively in probability hypothesis 

density (PHD) filtering, a similar process which requires a form of belief fusion [21]. Although 

particle filters are capable of handling fusion of non-Gaussian PDFs, there is inherent imprecision 

in the required weight-changing and resampling processes, and computation demand may be high 

if many particles are dealt with for improved accuracy. 

 Sorenson, et al. [22], [23] employed Gaussian sums for belief fusion in RBE. Under this 

approach, there arises an issue of inflating Gaussian components which was addressed by these 

authors and, more recently, others [24]. This is also addressed, though to a lesser extent, in the 

work presented here. Because past work has largely focused on this issue in addition to proving 

the effectiveness of Gaussian sums in modeling non-Gaussian PDFs, a discussion of general multi-

dimensional, multi-Gaussian belief fusion is lacking. More importantly, past work does not address 

the decision-making aspect of multi-Gaussian representation of belief, a matter which is given 

substantial attention here. 

2.1.3 Objectives and Outline 

 This paper describes the mathematical formulations developed for multi-dimensional, 

multi-Gaussian belief fusion (MBF), in addition to original formulations of useful non-Gaussian 

structures and probabilistic decision-making. MBF is achieved by exploiting the properties of 

Gaussian multiplication and superposition in 𝑁-D. In order to make MBF a natural solution to 
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real-world information fusion applications, two useful non-Gaussian PDF structures are 

formulated here. These include toroidal and linear PDFs, where the former leverages the 

subtraction of two Gaussians with equal mean vectors, and the latter implements a “Gaussian train” 

with context-specific periodicity. These PDFs efficiently represent structured belief for natural 

integration into the formulations of MBF. High-level probabilistic decision-making additionally 

proposed in this paper exploits the properties of multi-Gaussian distributions to integrate joint 

PDFs for probabilistically modeled training data and give class probabilities with low 

computational demand. These original contributions have potential applications in a wide range of 

related scenarios demanding high-speed, multi-dimensional, non-Gaussian belief fusion. 

 The paper is organized as follows: the next section explains the fundamental concepts of 

belief and belief fusion as they are used in this paper, which are essential for describing the 

proposed MBF techniques.  Section 3 presents the formulations of MBF and describes two kinds 

of useful non-Gaussian structures which easily integrate into the framework. Probabilistic 

decision-making is also addressed for multi-Gaussian belief.  Numerical results are shown and 

analyzed in Section 4, and Section 5 introduces applications of the proposed formulations.  

Conclusions and ongoing work are summarized in Section 6. 

2.2 Foundational Concepts 

2.2.1 Belief: Gaussian vs. Non-Gaussian PDFs 

 While the term “belief” has various meanings and interpretations, some of which are 

mathematical and others philosophical, it will be defined in this paper exclusively by probability 

distribution functions (PDFs). A PDF is defined as a function whose integral over a specified 

boundary gives the probability that an associated random variable falls within that boundary [25]. 

From the axioms of probability, it follows that any PDF must 1) be nonnegative over the entire 
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domain (or belief space) and 2) integrate to 1 over the entire 

domain. The mathematical notation adopted here for a PDF 

corresponding to a random variable (or more generally, a random 

vector) 𝑿 is 𝑝(𝒙), where the argument 𝒙 is an indexing variable 

belonging to the belief space 𝒳. 

 Many contexts which require a PDF-based representation of 

belief utilize the Gaussian distribution, shown in Fig. 1a. This 

particular PDF is useful for two reasons: 1) most random variables 

with stochastic influence coming from many sources are well-

described by the Gaussian, and 2) the Gaussian can be fully characterized by only two parameters, 

a mean and a variance. However, some contexts require non-Gaussian representation of belief. 

Examples can be found across many fields, from image segmentation to acoustic localization to 

feature-based classification to biostatistics. Though non-Gaussian distributions tend to be fairly 

context-specific and unstructured, certain structured non-Gaussian PDFs can often be useful. One 

example is a symmetric-Gaussian distribution which may have use in electromagnetic sensing. A 

sensed electric field at some point in space may be caused by a positive charge at one location or 

a negative charge at a polar opposite location. If there is some Gaussian uncertainty in the sensor 

reading, belief can be represented as shown in Fig. 1b. In this example, the random variable about 

which belief is represented is the location of some charged particle being sensed. Although this 

particular example is 1-D, the concept of structured non-Gaussian PDFs scales to 𝑁-D. 

2.2.2 Belief Fusion 

 Belief fusion combines knowledge about a particular object from multiple different 

sources, taking into account the parameters that describe each source’s certainty. For the sake of 

Figure 1. a) 1-D Gaussian PDF, b) 1-
D non-Gaussian PDF example. 
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development, let the vector 𝒙 represent the state whose belief is being estimated and 𝒛𝑖 represent 

the 𝑖𝑡ℎ observation of 𝒙. The belief that the observation 𝒛𝑖 has correctly estimated 𝒙 is given by a 

conditional PDF 𝑝(𝒙|𝒛𝑖). The goal of belief fusion, as it is presented here, is to obtain 

𝑝(𝒙|𝒛1, 𝒛2, … , 𝒛𝑛) = 𝑝(𝒙|𝒛1:𝑛), the fused PDF that describes belief about 𝒙, given all 𝑛 available 

observations. Given that the observations are independent, it can be shown that this PDF is given 

by: 

𝑝(𝒙|𝒛1:𝑛) =
∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1

∫ ∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1 𝑑𝒙

𝜒

,(1) 

where each observation’s PDF 𝑝(𝒙|𝒛𝑖) can be estimated by some characterization of the 

uncertainty inherent in the sensor or source from which the observation came. Note that 𝑝(𝒙|𝒛1:𝑛) 

is simply the normalized product of the constituent PDFs, a fundamentally useful property that is 

leveraged below. 

2.2.3 Product of Gaussians 

In the simplest 1-D case where two observations have PDFs 

characterized by Gaussian distributions, it can be shown that 

belief fusion yields a third Gaussian PDF which is the 

normalized product of the two constituents. This is shown in 

Fig. 2. Note that the product of the distributions alone is not a 

PDF because it is not scaled such that the area enclosed by the 

curve equals one. Once the curve has been normalized by dividing by the area, ∫ ∏ 𝑝(𝒙|𝒛𝑖)
2
𝑖=1 𝑑𝒙

𝒳
, 

the result is a proper PDF 𝑝(𝒙|𝒛1:2). 

 As this example shows, the fusion of two Gaussians yields a third Gaussian with a 

smaller variance than either constituent PDF. Furthermore, the mean of the fused PDF is 

Figure 2. Belief fusion in 1D with unimodal 
Gaussian PDFs. 
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influenced by both 𝑝(𝒙|𝒛1) and 𝑝(𝒙|𝒛2), with the latter having a weaker effect due to its higher 

uncertainty. This natural result lends to the intuitiveness of belief fusion as described below. 

2.3 Multi-Gaussian Belief Fusion 

 The multi-dimensional MBF technique formulated here handles complex PDFs by making 

use of the concepts previewed thus far, as well as exploiting the linear superposition of Gaussian 

products. 

2.3.1 Linear Superposition of Gaussian Products 

 Non-Gaussian PDFs can be estimated by normalized sums of Gaussians, described by the 

following formula: 

𝑝(𝒙) =
∑ 𝑐𝑖𝒩(𝒙;𝝁𝑖, 𝚺𝑖)
𝐼
𝑖=1

∫ ∑ 𝑐𝑖𝒩(𝒙; 𝝁𝑖, 𝚺𝑖)
𝐼
𝑖=1 𝑑𝒙

𝒳

=∑𝑐𝑖
′𝒩(𝒙;𝝁𝑖 , 𝚺𝑖)

𝐼

𝑖=1

.(2) 

Here, 𝑐𝑖 is some weighting coefficient and 𝒩(𝒙;𝝁𝑖, 𝚺𝑖) is a Gaussian distribution in the 𝒙 domain, 

with mean vector 𝝁𝑖 and covariance matrix 𝚺𝑖. Note the reduction to 𝑐𝑖′: this is done to simplify 

notation, where it is understood that 𝑐𝑖
′ = 𝑐𝑖(∫ ∑ 𝑐𝑖𝒩(𝒙; 𝝁𝑖, 𝚺𝑖)

𝐼
𝑖=1 𝑑𝒙

𝒳
)
−1

. Because each Gaussian 

alone by definition integrates to one, it becomes clear that 𝑐𝑖
′ = 𝑐𝑖(∑ 𝑐𝑖

𝐼
𝑖=1 )−1. For unstructured 

PDFs, the weighting coefficients 𝑐𝑖 are chosen to best fit a particular non-Gaussian PDF with a 

sum of Gaussians (this is beyond the scope of this paper). For clarity of following derivations, the 

general formula for a multivariate Gaussian is given below: 

𝒩(𝒙;𝝁𝑖, 𝚺𝑖) =
1

√|2𝜋𝚺𝑖|
exp (−

1

2
(𝒙 − 𝝁𝑖)

𝑇𝚺𝑖
−1(𝒙 − 𝝁𝑖)).(3) 

 It was shown by [22] that any non-Gaussian PDF can be constructed according to (2), 

provided a sufficient number of terms with appropriate parameters. This point is critical to 

propagation of belief via fusion using the proposed MBF method. Because 1) every component 
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PDF of belief fusion is a weighted linear superposition of Gaussians, 2) the fusion process involves 

the normalized product of multiple PDFs, and 3) the product of two Gaussians yields a third 

(unnormalized) Gaussian, the output of belief fusion can also therefore be represented as a 

weighted linear superposition of Gaussians. This is the essence of MBF.  The mean and covariance 

of the product of two Gaussians can be written in terms of the constituent means and covariances 

[26]:   

𝒩(𝒙; 𝝁(1), 𝚺(1))𝒩(𝒙;𝝁(2), 𝚺(2)) = 𝑐(3)𝒩(𝒙; 𝝁(3), 𝚺(3)),(4) 

 where  

𝚺(3) = [(𝚺(1))−1 + (𝚺(2))−1]
−1
, 

𝝁(3) = 𝚺(3)[(𝚺(1))−1𝝁(1) + (𝚺(2))−1𝝁(2)], 

𝑐(3) =
1

√|2𝜋(𝚺(1) + 𝚺(2))|
exp (−

1

2
(𝝁(1) − 𝝁(2))

𝑇
(𝚺(1) + 𝚺(2))

−1
(𝝁(1) − 𝝁(2))). 

The scaling factor 𝑐(3) is equivalent to the area of the unnormalized curve. 

 The implementation of MBF for belief fusion with two multi-Gaussian PDFs is as follows. 

Let the first PDF be denoted 𝑝(1)(𝒙), and the second 𝑝(2)(𝒙). The product of these distributions is 

𝑝(3)(𝒙) = [𝑝(1)(𝒙)][𝑝(2)(𝒙)] = [∑𝑐𝑖
(1)𝒩(𝒙;𝝁𝑖

(1), 𝚺𝑖
(1))

𝐼

𝑖=1

] [∑𝑐𝑗
(2)𝒩(𝒙;𝝁𝑗

(2), 𝚺𝑗
(2))

𝐽

𝑗=1

] 

=∑∑𝑐𝑖
(1)

𝐽

𝑗=1

𝑐𝑗
(2)

𝐼

𝑖=1

𝑐𝑖𝑗
(3)𝒩(𝒙;𝝁𝑖𝑗

(3), 𝚺𝑖𝑗
(3)),(5) 

where 

𝑐𝑖𝑗
(3) =

1

√det (2𝜋 (𝚺𝑖
(1) + 𝚺𝑗

(2)))

exp (−
1

2
(𝝁𝑖

(1) − 𝝁𝑗
(2))

𝑇

(𝚺𝑖
(1) + 𝚺𝑗

(2))
−1

(𝝁𝑖
(1) − 𝝁𝑗

(2))) , (6) 
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𝚺𝑖𝑗
(3) = [(𝚺𝑖

(1))−𝟏 + (𝚺𝑗
(2))−𝟏]

−1

,(7) 

𝝁𝑖𝑗
(3)
= 𝚺𝑖𝑗

(3)[(𝚺𝑖
(1)
)−𝟏𝝁𝑖

(1)
+ (𝚺𝑗

(2)
)−𝟏𝝁𝑗

(2)].(8) 

 Therefore, the output under MBF is an array of 𝑁 × 1 mean vectors, 𝑁 × 𝑁 covariance 

matrices, and scalar weighting coefficients, where 𝑁 is the dimensionality of 𝒙; each output 

channel contains 𝐼 × 𝐽 components. The required memory storage, then, goes as (𝑁2 +𝑁 +

1)(𝐼 × 𝐽). If observations are available from 𝑀 sources, this becomes (𝑁2 +𝑁 + 1)𝐾, where 𝐾 =

∏ 𝐼𝑚
𝑀
𝑚=1 , and 𝐼𝑚 is the number of Gaussians in the 𝑚𝑡ℎ observation’s PDF. 

Figure 3 provides a block diagram of MBF, with variables explicitly shown for fusion of 

two observations. As the figure shows, the three channels (for 𝑐, 𝝁, and 𝚺) from each constituent 

PDF are input to the algorithm, which then outputs three new channels, each of which contains a 

number of elements equal to the product of the numbers of Gaussian components in all 

constituents. The actual output PDF can then be assembled according to (5). For fusion of multiple 

PDFs, the same algorithm is executed recursively, where the output of a previous iteration is fused 

Figure 3. MBF for two multi-Gaussian PDFs. 
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with the next PDF. Figure 4 illustrates this concept with a more 

abstracted diagram. Note that this diagram returns to the more 

formal notation developed in Section 2.2. 

 Once the three output channels have been computed, 

evaluating the fused PDF at any specific belief space location 𝒙 =

�̃� is as simple as making the following substitution: 

𝑝(3)(�̃�|𝒛1:2) =∑∑𝑐𝑖
(1)

𝐽

𝑗=1

𝑐𝑗
(2)

𝐼

𝑖=1

𝑐𝑖𝑗
(3)𝒩(�̃�; 𝝁𝑖𝑗

(3), 𝚺𝑖𝑗
(3)) 

In general, however, for a total number 𝐾 of elements in each 

output channel from fusion of 𝑀 observations, a more appropriate algorithmic form is: 

𝑝(�̃�|𝒛1:𝑛) = ∑𝑐𝑘𝒩(�̃�; 𝝁𝑘, 𝚺𝑘)

𝐾

𝑘=1

.(9) 

In this form, all three weighting coefficients are lumped into a single 𝑐𝑘. The MBF algorithm does 

this internally, so that the outputted array of weights in (9) is readily available. 

 Algorithm 1 provides pseudo-code for the MBF algorithm. To visualize the output, a 

separate function must be implemented that evaluates 𝑝(𝒙|𝒛1:𝑛) in a sufficiently densely sampled 

multi-dimensional space. It should then be evident that MBF reduces computation because, rather 

than store values of the fused PDF 

𝑝(𝒙|𝒛1:𝑛) at regular grid points in 

multi-dimensional space, only the 

parameters necessary to 

reconstruct this PDF are stored. 

The former is 𝑂(𝑅𝑁) complex, 

Figure 4. Recursive MBF for fusion of 
multiple belief sources. 

Algorithm 1: MBF of Two Mixed Gaussians 
 

inputs: C1,M1,S1,C2,M2,S2 // Three channel arrays per PDF 

output: C,M,S // Three output channel arrays 
 

for i along length of first channels 

   for j along length of second channels 

      extract ith element of C1, M1, and S1 

      extract jth element of C2, M2, and S2 

      compute new C, M, and S 

      C = C*(ith element of C1)*(jth element of C2) 

      insert new C, M, and S into output arrays 

   end 

end 
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while the latter is 𝑂(𝑁2) complex, where 𝑅 is the resolution of the sampled space and 𝑁 is the 

dimensionality of that space. 

2.3.2 Construction of Non-Gaussian Structures 

 The usefulness of multi-Gaussian belief fusion is directly tied to how well belief is actually 

represented by multi-Gaussian PDFs. Determining the composition of arbitrary unstructured PDFs 

input to MBF is largely left to such methods as the Expectation-Maximization (EM) algorithm 

[27] or other clustering algorithms [28]. However, certain types of structured non-Gaussian PDFs 

have particular practicality in specific contexts, such as that given in Section 2.1. When belief in 

some scenario is restricted by some fully or partially determined set of laws, the representative 

PDF ought to be structured accordingly. Such circumstances mandate the intelligent construction 

of multi-Gaussian PDFs for the sake of accuracy and efficiency, bypassing the need for the fitting 

algorithms described above. This section describes the motivations and derivations of two types 

of Gaussian mixtures which form structures that are of particular mathematical value. These 

structures are proposed in order to supplement MBF as a platform for efficient and accurate belief 

fusion in structured contexts. 

2.3.2.1 Gaussian Toroid 

 In a multi-dimensional polar coordinate system where belief is only quantified in the radial 

dimension, representation of belief in tangential directions ought to be unbiased. In two 

dimensions, this can be visually likened to a torus, but will be more appropriately termed “toroidal” 

here. The toroidal distribution is, needless to say, heavily non-Gaussian in the Cartesian coordinate 

system. This structured PDF could, for instance, model prediction for an 𝑁-D random walk where 

step size is approximately normally distributed and step direction is uniformly distributed.  As Fig. 

5 demonstrates, a Gaussian toroid can be achieved by simply taking the difference of two Gaussian 
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distributions with the same mean and different variances. An additional constraint is that each 

constituent has no co-variance. Furthermore, for strictly circular toroidal distributions (excluding 

elliptical toroids), the variance in all dimensions of each component must be equal. Therefore, the 

form of a covariance matrix used to compose a Gaussian toroid is 𝚺 = 𝜎2𝑰𝑁×𝑁. Although elliptical 

toroids may be considered, their practical use is neither apparent nor ubiquitous, so the following 

developments will be reserved specifically for circular toroids.  

 So that the center of the toroidal PDF has a value of zero, the scaling constant that must 

multiply the “inner” Gaussian is the ratio of the maximum of the outer Gaussian to the maximum 

of the inner Gaussian. Since the maximum occurs at the mean, evaluating (3) at 𝒙 = 𝝁 gives the 

maximum value of the function, 
1

√|2𝜋𝚺|
. Let 𝚺1denote the outer distribution, while 𝚺2 describes the 

inner distribution. The scaling ratio that must then be used is simply:  

1

√|2𝜋𝚺1|

1

√|2𝜋𝚺2|

= √
|2𝜋𝚺2|

|2𝜋𝚺1|
= √

𝜎2
2𝑁

𝜎1
2𝑁 . 

Because the covariance matrices are restricted by the above stipulations, this simplifies to the ratio 

of the scalar standard deviations raised to the power of 𝑁, the dimensionality of 𝒙. In total, then, 

the formula for a Gaussian toroid is given as: 

𝜏(𝒙; 𝝁, 𝑟) = 𝒩(𝒙;𝝁, 𝜎1
2𝑰) − (

𝜎2
𝜎1
)
𝑁

𝒩(𝒙;𝝁, 𝜎2
2𝑰).(10) 

Figure 5. Construction of a 2-D Gaussian toroid as the difference between two Gaussian distributions. 
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Note the introduction of a new implicit variable, 𝑟. This is the radius 

of the toroid, which will be shown to depend on the combination of 

𝜎1
2 and 𝜎2

2. Consider the 1-D case shown in Fig. 6. The radius is the 

distance from the center of the 1-D toroid to each maximum. This 

can be found symbolically, and then extrapolated to the 𝑁-D case, by taking the derivative of 

𝜏(𝑥; 𝜇, 𝑟) to find local maxima. Explicitly, this can be stated as: 

𝑑

𝑑𝑥
(𝜏(𝑥; 𝜇, 𝑟)) =

𝑑

𝑑𝑥
(

1

√2𝜋𝜎1
2
exp (−

(𝑥 − 𝜇)2

2𝜎1
2 ) −

𝜎2
𝜎1

1

√2𝜋𝜎2
2
exp(−

(𝑥 − 𝜇)2

2𝜎2
2 )). 

After differentiation, the following is obtained: 

1

√2𝜋𝜎1
2
(𝑥 − 𝜇) [

1

𝜎2
2 exp (−

(𝑥 − 𝜇)2

2𝜎2
2 ) −

1

𝜎1
2 exp (−

(𝑥 − 𝜇)2

2𝜎1
2 )]. 

This expression has one clear zero at 𝑥 = 𝜇, corresponding to the minimum at the mean. Other 

zeros occur when: 

1

𝜎2
2 exp (−

(𝑥 − 𝜇)2

2𝜎2
2 ) =

1

𝜎1
2 exp(−

(𝑥 − 𝜇)2

2𝜎1
2 ). 

Solving the above expression for the value of 𝑥 that is of interest gives the following result, 

𝑥 = 𝜇 ±√
2(ln(𝜎2

2) − ln(𝜎1
2))

𝜎1
−2 − 𝜎2

−2 , 

where the radius is clearly then: 

𝑟 =  √
2(ln(𝜎2

2) − ln(𝜎1
2))

𝜎1
−2 − 𝜎2

−2 .(11) 

 The above result is useful for predicting the radius of a toroid with specified variances. 

However, creating a toroid of a particular desired radius means solving instead for 𝜎1
2 when given 

𝑟 and 𝜎2
2. Therefore, rearranging (11) gives: 

Figure 6. A 1-D Gaussian toroid. 
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𝜎2
2 exp (

𝑟2

2𝜎2
2) = 𝜎1

2 exp(
𝑟2

2𝜎1
2), 

a difficult expression to solve explicitly for either 𝜎1
2 or 𝜎2

2. At this juncture, the Lambert W 

function (also known as the product logarithm function) [29] is introduced. It is defined as follows: 

𝑊(𝑥)𝑒𝑊(𝑥) = 𝑥,  𝑊(𝑥𝑒𝑥) = 𝑥. 

The Lambert W function is double-valued on the interval −
1

𝑒
< 𝑥 < 0, and has two principle real, 

single-valued branches denoted by 𝑊0(𝑥) and 𝑊−1(𝑥), where 𝑊0(𝑥) is defined over the interval 

𝑥 ≥ −
1

𝑒
  and 𝑊−1(𝑥) is defined over the interval −

1

𝑒
≤ 𝑥 < 0. It can be shown that the solution 

for 𝜎1
2 is given by: 

𝜎1
2 = −

𝑟2

2𝑊0 (−
𝑟2

2𝜎2
2 𝑒𝑥𝑝 (−

𝑟2

2𝜎2
2))

.(12) 

There are a few noteworthy observations. First, the upper bounds on the argument to the Lambert 

W function is zero in the trivial case when 𝑟 = 0. Furthermore, the particular branch chosen is the 

𝑊0 branch because the 𝑊−1 branch yields the meaningless result that 𝜎1
2 = 𝜎2

2 (this is left to the 

reader to prove without much effort). Due to the nature of the 0𝑡ℎ branch of the function, the lower 

bound of the argument which yields real values is −
1

𝑒
. In order to satisfy this lower bound and 

achieve an acceptable result, 𝜎2
2 must be chosen relative to 𝑟 so that the following holds true: 

2𝜎2
2 < 𝑟2 → 𝜎2

2 <
𝑟2

2
.(13) 

Therefore, given a desired radius, the necessary variances of the inner and outer Gaussian 

distributions forming a Gaussian toroid can be determined from equation (13) and then (12). 

Algorithm 2 develops the function for creating a Gaussian toroid in more detail. 
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 In keeping with this paper’s 

emphasis on efficiency, it is worth 

noting that the function for 

implementing the product logarithm 

uses Halley’s iterative 

approximation approach which was formulated specifically for the Lambert W function as 

described in [29]. The solution converges quickly for as few as five iterations, even when seeded 

poorly. Because the dimensionality of the covariance matrices does not appear in the final 

expressions (12) and (13), and because of the restrictions placed on these matrices, Algorithm 2 

can be used to construct the covariance matrices in any arbitrary number of dimensions according 

to 𝚺𝑖 = 𝜎𝑖
2𝑰. The Gaussian toroid fits the form of a PDF given by (2) which allows it to readily 

integrate into MBF. To satisfy that the function integrates over all dimensions to 1, the weighting 

constants must sum to 1 while their ratio is held constant. Therefore, equation (10) can be reduced 

to (2), where 𝑐′1 =
𝜎1
𝑁

𝜎1
𝑁−𝜎2

𝑁, 𝑐2
′ =

𝜎2
𝑁

𝜎2
𝑁−𝜎1

𝑁, 𝝁1 = 𝝁2 = 𝝁, 𝚺1 = 𝜎1
2𝑰𝑁×𝑁, and 𝚺2 = 𝜎2

2𝑰𝑁×𝑁, with 𝜎1
2 

and 𝜎2
2 being determined by Algorithm 2. The primary advantage of this mathematical formulation 

for the toroid is that it allows for a highly structured and yet non-Gaussian representation of belief 

using only two Gaussian components. After several cycles of MBF, it becomes increasingly 

important for the sake of computational efficiency that the number of component PDFs be kept to 

a minimum, as verified in the results section. 

2.3.2.2 Gaussian Line 

 In a Cartesian coordinate system where the PDF of belief in one dimension or direction is 

unquantified, an appropriate representation of belief may be what is termed here a Gaussian line . 

Sampling the probability distribution exclusively along a direction in which belief is unquantified 

Algorithm 2: Gaussian Toroid 
 

input: r // Desired radius of toroid 

outputs: s1, s2 // Required outer and inner variances 
 

s2 = (decimal between 0 and 1)(r^2/2) 
 

s1 = -r^2/(2*W(-r^2/(2*s2)exp(-r^2/(2*s2)))) 
 

function W(x) 

   implement Halley’s method for the Lambert W function 

end 
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ought to yield a constant value. This is visualized below in Fig. 7. Such a structured non-Gaussian 

PDF could be used to probabilistically model a linear-predictive relationship between two 

stochastic variables. Construction the Gaussian line is derived and explained here. In order to make 

use of linear superposition of normal distributions, the essential exploitation of MBF, the Gaussian 

line must fit the form of (2). This means that, although it is a valid way to extend a Gaussian along 

a line, causing 𝝁 to be a function of 𝒙 is not allowable here. 

 A finite sum of equally-spaced Gaussian PDFs with equal variances behaves differently 

depending on the ratio of the spacing to the variance. If this ratio is sufficiently large, the Gaussians 

are isolated. As the ratio decreases, they begin to interfere with one another, creating a nearly-

sinusoidal profile. Over a certain range, then, this profile flattens out before beginning to resemble 

a single large Gaussian. These four cases are shown in Fig. 8. The third case is the one of interest. 

The two-dimensional equivalent of this case is a Gaussian line, reminiscent of the convolution of 

a finite linear segment and a Gaussian distribution. This holds true in higher dimensions as well. 

Figure 7. Cross-sectional characteristics of 2-D Gaussian line. 

Figure 8. Profiles of Gaussian sum with equal variance and constant spacing. Colors serve only to show each PDF distinctly. 
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The problem, then, is to determine the critical spacing-to-variance ratio such that a flat profile is 

just achieved in the center. Again, the 1-D case will be used to answer this question. 

 For the infinite case, a sum of Gaussians can be represented by the following: 

𝑦(𝑥) = ∑ 𝒩(𝑥; 𝜇𝑚 , 𝜎
2)

∞

𝑚=−∞

= 𝒩(𝑥; 0, 𝜎2) + ∑ 𝒩(𝑥; 𝜇 +𝑚𝛿, 𝜎2)

∞

𝑚=1

+𝒩(𝑥; 𝜇 − 𝑚𝛿, 𝜎2) 

where 𝛿 is the desired spacing. By substitution of the formula for a 1-D Gaussian, this becomes: 

𝑦(𝑥) =
1

√2𝜋𝜎2
[exp (−

𝑥2

2𝜎2
) + ∑ exp(−

(𝑥 +𝑚𝛿)2

2𝜎2
) + exp(−

(𝑥 −𝑚𝛿)2

2𝜎2
)

∞

𝑚=1

]. 

To find the optimal spacing such that flatness is achieved, the convergence of 𝑦(𝑥)|
𝑥=

𝛿

2

 towards 

𝑦(𝑥)|𝑥=0 is observed. By substitution, this requires the following: 

1 − exp (−
𝛼2

8
) − lim

𝑀→∞
[∑ (2 exp (−

𝑚2𝛼2

2
) − exp (−

(2𝑚 + 1)2𝛼2

8
) − exp (−

(2𝑚 − 1)2𝛼2

8
))  

𝑀

𝑚=1

] = 0, 

where 𝛼 =
𝛿

𝜎
, the aforementioned ratio of the spacing to the standard deviation. Because this 

expression is intractable, it was plotted for increasingly large values of 𝑀, yielding the graphs 

shown in Fig. 9. As one can see, there is a range of values between 𝛼 ≅ 1.5 and 𝛼 ≅ 0.5 that yields 

consistent convergence as 𝑀 increases, with the lower bound approaching zero as 𝑀 approaches 

infinity. This means that, even for a relatively small number of Gaussian components, near-perfect 

Figure 9. Flatness as a function of the ratio between spacing and standard deviation of distributions. 
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flatness in the center of the summed distribution can be achieved when 0.5 < 𝛼 < 1.5. Choosing 

a value for 𝛼 in algorithmic implementation is then an efficiency-accuracy tradeoff. 

 The value of 1.15 was heuristically chosen to satisfy the desired condition of flatness. This 

balances the assurance of flatness with the efficiency with which flatness can be achieved by using 

as few Gaussians as possible. Because 𝛼 = 1.15, the spacing must be chosen such that 𝛿 ≤ 1.15𝜎. 

Let the vectors 𝒆1 and 𝒆2 denote two endpoints of a Gaussian line in 𝑁-D. The distance 𝐷 that the 

line spans, then, is given by 𝐷 =‖𝒆1 − 𝒆2‖. To construct this line, the number of Gaussian 

components required is 𝑀 =
𝐷

𝛿
≥

𝐷

1.15𝜎
: this value is rounded to ⌈

𝐷

1.15𝜎
⌉. The required spacing 

between each Gaussian in the 𝑛𝑡ℎ dimension, 𝛿(𝑛), is then given by: 

𝛿(𝑛) = 𝛿 (
𝑒1
(𝑛)
− 𝑒2

(𝑛)

𝐷
). 

Finally, then, the Gaussian line is defined by the following expression: 

𝜆(𝒙; 𝒆1, 𝒆2, 𝜎) = ∑ 𝒩(𝒙;𝝁𝑚 , 𝚺)

𝑀

𝑚=1

(14) 

where 

𝝁𝑚 =

[
 
 
 
 𝜇𝑚−1

(0) + 𝛿(0)

𝜇𝑚−1
(1) + 𝛿(1)

⋮

𝜇𝑚−1
(𝑁) + 𝛿(𝑁)]

 
 
 
 

 

and 

𝚺 = 𝜎2𝑰𝑁×𝑁. 

It should also be apparent that 𝝁1 = 𝒆1 and 𝝁𝑀 = 𝒆2 so that the line is closed. The above 

expressions inform a function which automatically produces the channels of mean vectors and 

covariance matrices that compose a Gaussian line between two points, with a desired cross-
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sectional standard deviation 𝜎. 

The channel of weighting 

coefficients is simply an array of 

values which all equal 𝑀−1. 

Algorithm 3 describes the 

proposed solution for creating an 

𝑁-D Gaussian line according to 

the above formulas. Note the slight 

notation change of the number of components, 𝑀, to 𝐾: this is done to retain the variable name 𝑀 

for the output array of means in keeping with other algorithms in the text. The outputs of this 

algorithm can be used as inputs fed directly to the MBF algorithm. 

 It is worth noting that the described function creates a Gaussian line connecting two finite 

points, while the case where belief in one dimension or direction is unquantified implies an infinite 

line along this direction. Such a non-converging distribution is not a true PDF and it cannot be 

represented in the form of (3), a finite summation. In order to make use of the advantages of MBF, 

it is admittedly necessary to truncate belief in the unknown direction based on the boundaries of  

a certain space. However, as nearly any conceivable problem will have some expected range 

beyond which the true state of an estimated variable cannot possibly fall, the endpoints of the 

Gaussian line can simply be chosen at the edges of this belief space. 

 Figure 10 gives a few examples of 2-D Gaussian lines of various thicknesses (𝜎’s), lengths, 

and slopes. As the figure shows, the Gaussian line is a reasonable representation of belief that is 

constant in one direction and Gaussian in all others. Because the covariance matrices used to 

construct the Gaussian line are of the form 𝜎2𝑰𝑁×𝑁, the level curves of each component PDF are 

Algorithm 3: Gaussian Line 
 

input: e1, e2, s // Endpoints and desired std. dev. 

outputs: M, S, C // Output array of means and covariances 

 

Compute D 

Compute K (number of components, M in the text) 

Compute delta 
 

for i along dimensionality of endpoints 

   Compute delta of ith dimension 

   Insert delta into vector ds at ith position 

End 
 

m = e1 

for i along K 

   m = m + ds 

   Insert m into array of means M at ith position 

end 

S = array of covariances, each of form s^2*I 

C = array of weighting coefficients, each equal to 1/K 
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circular. This means that there is 

no inherent bias towards a 

“straight” line, which has 

significant implications with 

regards to the versatility of 

Gaussian line-making. In fact, 

any arbitrarily curved line in 

multiple dimensions can be 

transformed into a PDF via this 

method, so long as the line is discretized such that the Euclidean distance between each mean and 

the next is approximately 1.15𝜎. This fact can be useful when there is some known nonlinear 

relationship between or amongst the dimensions of a belief space. Section 5.1 gives examples of 

such a scenario. 

2.3.3 Decision-Making 

 There are multiple potential approaches to 

decision-making. One proposition is to simply 

locate the modes (local maxima) of a distribution 

[30]. However, this approach, known as maximum 

likelihood estimation (MLE), neglects most of the 

information-rich PDF, and multi-modal 

distributions can yield contradictory results. Figure 

11 illustrates this concept in 2-D. Another possible approach is to integrate the output PDF over 

decision boundaries in the multi-dimensional space to obtain the probability that belief 

Figure 10. Four examples of Gaussian lines with varying attributes. 

Figure 11.MLE/decision boundary classification. 
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corresponds to each region. These decision boundaries can be generated by various means, one of 

which is the quadratic Bayesian classifier (QBC) [31] However, efficiently performing symbolic 

multi-dimensional integration of a multi-Gaussian PDF over arbitrary decision boundaries is 

effectively intractable. 

 The approach to decision-making proposed in this paper is one which fully exploits all 

contributing components of the multi-Gaussian PDF without sampling the belief space. This can 

be done by an operation which bears resemblance to the total-probability theorem of continuous 

distributions. Let 𝑝(𝑤𝑎|𝒙) represent the PDF corresponding to a class 𝑤𝑎 to which a target of 

estimation may belong, given the estimate of 𝒙 that is given by training observations. Furthermore, 

recall that 𝑝(𝒙|𝒛1:𝑛) is the PDF coming from MBF. Because the actual location being estimated 

in the belief space 𝒙 is independent of the observations made (although the converse is not true), 

this becomes just 𝑝(𝒙). Therefore, the probability that a location 𝒙 being estimated belongs to 

class 𝑤𝑎 is estimated by the marginalization of the joint probability function 𝑝(𝑤𝑎 , 𝒙) as shown 

below: 

𝑃(𝑤𝑎) = ∫ 𝑝(𝑤𝑎 , 𝒙)𝑑𝒙

∞

−∞

= ∫ 𝑝(𝑤𝑎|𝒙)𝑝(𝒙)𝑑𝒙

∞

−∞

.(15) 

 Figure 12 offers a valuable visualization of (15). The area under the joint probability curve 

is largest for class 2, lending to the intuitive conclusion that the probability of the output PDF 

belonging to this class is greatest. Because the product of the two PDFs 𝑝(𝑤𝑎|𝒙) and 𝑝(𝒙) is not 

Figure 12. Decision-making by integration of the joint probability of training PDFs with the output of MBF. 
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normalized, the values of 𝑃(𝑤𝑎) will not sum to one, though their relative proportions are accurate. 

Therefore, a discrete normalization of these probabilities can be performed to provide probabilities 

corresponding to each class in the standard sense. 

 Equation (15) involves an integration that can be achieved non-numerically since it is not 

bounded by decision boundaries. According to theory developed in Section 3.1, 𝑝(𝑤𝑎 , 𝒙) can be 

found for the general case where both 𝑝(𝑤𝑎|𝒙) and 𝑝(𝒙) are multi-Gaussian PDFs, 

𝑝(𝑤𝑎 , 𝒙) = [∑𝑐𝑖
(𝑝(𝑤𝑎|𝒙))𝒩(𝒙;𝝁𝑖

(𝑝(𝑤𝑎|𝒙)), 𝚺𝑖
(𝑝(𝑤𝑎|𝒙)))

𝐼

𝑖=1

] [∑𝑐𝑗
(𝑝(𝒙))

𝒩(𝒙;𝝁𝑗
(𝑝(𝒙))

, 𝚺𝑗
(𝑝(𝒙))

)

𝐽

𝑗=1

] 

=∑∑𝑐𝑖
(𝑝(𝑤𝑎|𝒙))

𝐽

𝑗=1

𝑐𝑗
(𝑝(𝒙))

𝐼

𝑖=1

𝑐𝑖𝑗
(𝑝(𝑤𝑎,𝒙))𝒩(𝒙;𝝁𝑖𝑗

(𝑝(𝑤𝑎,𝒙)), 𝚺𝑖𝑗
(𝑝(𝑤𝑎,𝒙))) 

where  

𝑐𝑖𝑗
(𝑝(𝑤𝑎 ,𝒙)) =

1

√det(2𝜋 (𝚺
𝑖

(𝑝(𝑤𝑎|𝒙)) + 𝚺
𝑗

(𝑝(𝒙))
))

exp(−
1

2
(𝝁𝑖

(𝑝(𝑤𝑎|𝒙)) −𝝁𝑗
(𝑝(𝒙))

)
𝑇
(𝚺𝑖

(𝑝(𝑤𝑎|𝒙)) + 𝚺𝑗
(𝑝(𝒙))

)
−1
(𝝁𝑖

(𝑝(𝑤𝑎|𝒙)) − 𝝁𝑗
(𝑝(𝒙))

)). 

This is essentially a restatement of (5). Because each Gaussian distribution integrates to one, it 

becomes apparent that the area under the PDF-product for each class 𝑤𝑎 is given by: 

𝑃(𝑤𝑎) = ∫ 𝑝(𝑤𝑎 , 𝒙)𝑑𝒙

∞

−∞

=∑∑𝑐𝑖
(𝑝(𝑤𝑎|𝒙))

𝐽

𝑗=1

𝑐𝑗
(𝑝(𝒙))

𝐼

𝑖=1

𝑐𝑖𝑗
(𝑝(𝑤𝑎,𝒙)).(16) 

The above formulations are implemented in Algorithm 4. The subsequent discrete normalization 

that is necessary to yield 

appropriate probabilities for each 

class 𝑎 of all 𝐴 classes is then 

simply: 

�̃�(𝑤𝑎) =
𝑃(𝑤𝑎)

∑ 𝑃(𝑤𝑎)
𝐴
𝑎=1

. 

Algorithm 4: Classification-Based Decision-Making 
 

input: M1, S1, C1, M2, S2, C2 // Parameters of testing PDF 

and training PDF (class wa only) 

outputs: Pwa // Unnormalized probability for class wa 
 

Pwa = 0 

for i along length of first channels 

   for j along length of second channels 

      extract ith element of C1, M1, and S1 

      extract jth element of C2, M2, and S2 

      compute C 

      Pwa = Pwa + C*(ith element of C1)*(jth element of C2) 

   end 

end 
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The final result is an array of probabilities, each of which corresponds to one of the classes 

established in training, which sum to one. These probabilities can then be used in various ways to 

inform action. 

2.4 Results 

 It is insightful to include some practical examples of MBF working, and show how it 

compares to discretization methods. This section will provide examples of multi-Gaussian belief 

fusion for miscellaneous non-Gaussian PDFs (both structured and unstructured), including a 

comparison between the proposed probabilistic decision-making scheme and other potential 

approaches. In addition, several precision-efficiency trade-off studies will be presented here. 

2.4.1 Belief Fusion and Decision-Making Examples 

 To confirm the correctness of the algorithms for constructing 

Gaussian structures, executing MBF, and carrying out probabilistic 

decision-making, eight arbitrary 2-D examples of fusion for two and 

three combinations of different distributions were studied. A training set 

consisting of three classes with uni-Gaussian PDFs was arbitrarily 

constructed, as shown in Fig. 13. The decision boundaries shown were 

established by a quadratic Bayesian classifier, though this only has direct 

value in terms of visualization. The results of MBF were compared to 

grid-based belief fusion, where a discretized 2-D grid containing values of the PDFs evaluated at 

regular sample points was stored in memory and element-wise belief fusion operations were 

executed. Since the discretization was conducted at high resolution, the result of the grid-based 

belief fusion was considered ground truth. It should be noted that, although higher-dimensional 

Figure 13. Three training 
classes and their decision 
boundaries. 
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examples could be used for validation, what could be an already expansive parametric study 

needed to be restricted to the easily visualized 2-D examples. 

 As Fig. 14 shows, belief fusion of multiple non-Gaussian PDFs yields results which are 

also highly non-Gaussian and can be oftentimes multi-modal. The results of the MBF algorithm 

are effectively indistinguishable from ground truth. Furthermore, since MBF is a lossless method 

of belief fusion, any difference between it and the grid-based approach is in fact error in the latter. 

Table I gives class probabilities obtained in each of the eight examples under the two simpler 

decision-making schemes described in Section 3.3 (MLE and QBC) and the proposed technique.  

Table 1. Class probabilities. Bold numbers denote winning classes; highlighted columns correspond to proposed approach. 

 A B C D E F G H 
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M
L

E
 

Q
B

C
 

P
D

M
 

Class 1 0.367 0.371 0.385 0.999 0.509 0.464 0.002 0.282 0.161 0.003 0.079 0.004 0.999 0.436 0.648 0.000 0.002 0.000 0.000 0.006 0.004 0.001 0.106 0.086 

Class 2 0.000 0.276 0.384 0.000 0.325 0.380 0.000 0.301 0.315 0.931 0.562 0.792 0.000 0.326 0.213 0.000 0.106 0.061 0.142 0.326 0.113 0.000 0.260 0.305 

Class 3 0.633 0.353 0.231 0.001 0.166 0.156 0.998 0.417 0.524 0.066 0.359 0.204 0.001 0.238 0.139 1.000 0.892 0.939 0.858 0.668 0.883 0.999 0.634 0.609 

Figure 14. Eight examples of MBF. A: two arbitrary Gaussian mixtures (AGM), B: AGM and Gaussian toroid (GT), C: two 
GT, D: three GT, E: AGM and Gaussian line (GL), F: GL and GT, G: two GL, H: AGM, GT, and GL. Separated columns show 

result of decision-making fusion corresponding to three training classes shown in Fig. 13. Class probabilities are directly 
proportional to the volumes beneath the fused decision-making distributions. 
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Figure 15 shows the information entropy corresponding to each classifier for each example. This 

measure is employed to quantify the uncertainty present in a probabilistic decision that has been 

made. The information entropy 𝐻(𝑋) is calculated here as: 

𝐻(𝑋) = −∑𝑃𝑖(𝑋) log2(𝑃𝑖(𝑋))

𝑛

𝑖=1

, 

where 𝑃𝑖(𝑋) is the probability that the 

random variable 𝑋 belongs to class 𝑖. 

Because the PDFs of Fig. 14 were 

artificially generated, ground-truth 

class probability information was 

nonexistent. Although the proposed 

method cannot explicitly be shown to 

be more accurate for this reason, some 

important conclusions can be made. First, though all three methods yield the same class assignment 

for all but one example, the MLE approach often yields vastly overconfident probabilities. This is 

shown by the low MLE values in Fig. 15. Furthermore, the probabilities assigned by the proposed 

probabilistic decision-making (PDM) and QBC methods correspond more naturally to a human’s 

innate ability to probabilistically classify a target with significant uncertainty given sufficient 

information.  As Fig. 15 shows, information entropy is higher for both these classifiers to reflect 

the uncertainty in decision-making under these approaches. Because these classification methods 

avoid asserting an overconfident decision, it is more meaningful in cases where 𝐻(𝑋) is low (for 

example, in case G). In comparing the QBC and PDM methods, however, the PDM approach is 

Figure 15. Information entropy for three classifiers across eight 
examples of post-belief fusion decision-making. 
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much more efficient since the boundary-integration approach labeled by QBC requires belief-

space discretization which is to be avoided for reasons already given. 

2.4.2 Gaussian Component Pruning 

 One drawback of MBF is that, for continuous belief fusion where the algorithm is 

recursively implemented or when each constituent PDF has many Gaussian components, the length 

of the output channels becomes quite large. However, in the vast majority of instances where this 

situation occurs, most of the Gaussian components contribute very little. Generally, in fact, the 

more Gaussian components are present, the less most of them contribute. This makes it possible 

to simply “prune” out minimally-contributing components. This can be done by removing those 

whose weighting coefficients’ absolute value is below a certain threshold. Alternatively, the 

number of top contributors chosen can be specified. The effects of pruning on examples A, B, E, 

F, G, and H are shown in Fig. 16 (examples C and D are excluded because they already contain 

few components, and all contribute approximately equally). 

 The accuracy of the pruned PDFs is quantified by two metrics: max error percent and mean 

error percent. These are simply defined as the maximum absolute-value-error and mean absolute-

Figure 16. Effect of pruning on examples A, B, E, F, G, and H with accompanying bar graphs of 

constituent weighting coefficients. On average, over half the components can be removed with little overall 
error. 
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value-error in each PDF (compared to the unpruned PDF) divided by the maximum value of the 

pruned PDF. They are meant to show the max and mean error in proportion to the scale of the PDF 

overall. As the figure details, the mean error percent is often only a few percent, and the max error 

percent at times rises above 20%. However, considering the substantial computational benefit of 

pruning in some cases (particularly example H), these small errors are often worth inducing. 

 For a more rigorous quantitative analysis of the effect of component pruning on the class 

probabilities assigned in a probabilistic decision-making stage, the class probabilities were plotted 

over the number of components 𝑀 preserved in pruning for each example. Components were 

added in descending order according to the absolute value of their weighting coefficients. Figure 

17 shows these plots. If classes are assigned based on maximum probability, the highlighted 

regions correspond to values of 𝑀 for which pruning to the 𝑀 most contributing components yields 

correct classification. The red region in example D indicates a condition where the particular 

components retained causes instability in reconstructing the output of MBF. This is due to the 

contribution of negative terms by the Gaussian toroid components. A more in-depth study of the 

Figure 17. Plots of output class probabilities vs. number of Gaussian components for examples A-H. Red = class 1, green = class 
2, and blue = class 3. 
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causes of unstable partial-reconstructions due to negative terms is warranted, but extends beyond 

the scope of this paper. 

 As the figure shows, removing the least-contributing half of the Gaussian components 

coming from MBF results in the correct maximum-probability classification for examples B, C, E, 

F, G, and H. In other cases, special selections of 𝑀 yield correct classification. In example A, 

although the highlighted regions cover less area, it is clear that classes 1 and 2 compete closely, so 

misclassification in this case costs relatively little. It is important to note here that other methods 

of component selection may be utilized to yield even better results with fewer components. Again, 

while this warrants further scrutiny, it is beyond the scope of this paper. 

2.4.3 Efficiency vs. Dimensionality 

 For the grid-based method, computation includes not only element-wise multiplication, 

division, and summation involved in belief fusion, but also the operations involved in populating 

a discrete space with the appropriate values corresponding to the distributions of each input PDF. 

Though the latter procedure is not formally a part of the belief fusion operation, it must take place 

for each observation contributing to belief fusion and therefore must be considered. Populating an 

𝑁-D belief space of resolution 𝑅 with a single Gaussian requires the following operations (among 

other smaller ones): 

1) Evaluating the inverse of an 𝑁 × 𝑁 matrix, which involves: 

a) Evaluating the determinant of an 𝑁 × 𝑁 matrix 

b) Evaluating the adjoint of an 𝑁 × 𝑁 matrix 

2) Subtracting two 𝑁 × 1 vectors 

3) Evaluating the transpose of an 𝑁 × 1 vector 

4) Looking up the value of an exponential function or approximating it numerically 

The minimum computation, then, involved in this procedure is one iteration of the steps involved 

in 1) and 𝑅𝑁 iterations of steps 2) - 4) (assuming each dimension has equal resolution). Assuming 
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steps 2) - 4) require a constant amount of computation time γ, the dominant characteristic of this 

operation in high dimensions, assuming efficient execution of 1), is at best (𝑅𝛾)𝑁. Carrying out 

actual belief fusion, then, involves: 

1) Multiplying the values of two input PDFs at each sampled cell through dimensions 

𝑚1, 𝑚2, … ,𝑚𝑁: 

𝑝𝑚1,𝑚2,…,𝑚𝑁

(3)
= 𝑝𝑚1,𝑚2,…,𝑚𝑁

(1)
× 𝑝𝑚1,𝑚2,…,𝑚𝑁

(2)
 

2) Summing over all locations of 𝑝𝑚1,𝑚2,…,𝑚𝑁

(3)
 in 𝑁-D space: 

𝛼 = ∑ ∑ … ∑ 𝑝𝑚1,𝑚2,…,𝑚𝑁

(3)

𝑀𝑁

𝑚𝑁=1

𝑀2

𝑚2=1

𝑀1

𝑚1=1

 

3) Dividing each cell by 𝛼: 

𝑝𝑚1,𝑚2,…,𝑚𝑁

(4)
=
𝑝𝑚1,𝑚2,…,𝑚𝑁

(3)

𝛼
 

Though operations 1 and 3 are simple, they are done 𝑅𝑁 times. Operation 2 is done once, but this 

operation itself requires the addition of 𝑅𝑁 elements. Therefore, this procedure is also dominated 

by a power law, as was described at the end of Section 3.1. 

 In order to rigorously compare MBF with the existing grid-based approach, belief fusion 

was carried out for two arbitrary two-component PDFs in 1-, 2-, 3-, 4-, 5-, and 6-D. In each 

successive dimension, the means and corresponding covariances were retained from the lower 

dimension so as to maintain consistency across the trials. To cover the computationally worst-case 

scenario, each covariance matrix was non-sparse. The algorithms were run in Matlab 2018a on a 

non-dedicated Intel i7 processor with 12GB RAM running at 2.20 GHz. Figure 18 shows the 

computation time plotted as a function of dimensionality, both in linear and logarithmic scales. In 
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the study shown, the resolution of the sample spaces was extremely low, at only 10 grid cells per 

dimension. 

 As the figure shows, at low dimensionality (1- and 2-D), computation is fast enough that 

processing speeds are negligible and therefore highly variable because other processor operations 

on the non-dedicated machine fluctuate. However, as expected for the grid-based method, the 

relationship becomes dominated by a power law at higher dimensionality. This is especially clear 

in the near-linear form of the logarithmic plot past 2-D. The computation involved with MBF 

remains so small that it is dominated by other processor operations. This expected benefit makes 

MBF far more favorable than grid-based belief fusion of non-Gaussian PDFs in many dimensions. 

 Because the efficiency of the two methods is comparable in 2-D, an accuracy trade-off 

study was conducted to compare the two at this dimensionality. Inaccuracy in the grid-based 

approach comes at the discretization level, whereas it is introduced in MBF by component pruning. 

As a representative case, example E from Sections 4.1 and 4.2 was chosen to carry out this study. 

For ground-truth, a densely sampled 200-by-200 belief space was selected to evaluate the two 

methods. Representation of the output from grid-based fusion was examined over twenty 

resolutions from 5 to 100, and MBF output belief was reconstructed in the 200-by-200 belief space 

Figure 18. Computation time as a function of dimensionality for uniform resolution of 10 grid cells per 
dimension. 
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after incorporating each of the 28 components, ordered from most- to least- contributing. Root-

mean-squared-error (RMSE) was computed over all grid cells. The results are shown in Figure 19. 

 In order to make use of the 

figure, note that each approach’s 

independent variable has its own 

axis label. To compare the two, the 

RMSE at a particular resolution or 

number of components can be 

found and then related to the other 

approach. For example, at a 

resolution of 30-by-30, the grid-

based representation of belief results in error comparable to that induced by pruning approximately 

13 components after MBF. In other words, to achieve results with MBF that are more accurate 

than the grid-based method at a resolution of 30 grid cells, one would be able to eliminate up to 

half the Gaussian components representing output belief. For two further iterations of belief fusion 

with arbitrary two-component PDFs, the average computation time required for MBF was 5.2 ms 

(maintaining only 13 components) while grid-based fusion took an average of 23.4 ms (for 30-by-

30 resolution). This means that for the 2-D example E, MBF equals the accuracy of grid-based 

fusion while quartering the required computation time. 

2.4.3 Efficiency/Accuracy Tradeoff for Multiple MBF Iterations 

 To more comprehensively study the effect of Gaussian component pruning on efficiency 

and accuracy, seven consecutive fusions were executed using both MBF and grid-based fusion for 

Figure 19. RMSE of grid cells in 200-by-200 belief space for example E under 
two methods. 
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the eight miscellaneous 2-D PDFs shown in Fig. 20. Between each fusion event, the cumulative 

execution time and the RMSE were recorded, where ground-truth was established by a densely 

sampled 500-by-500 cell space. These two metrics were assessed for varying resolutions under the 

grid-based method and for varying component-pruning laws under MBF. The results of this study 

are shown in Fig. 21. 

 As expected, there is a roughly 

proportional trend between time and 

fusion events for grid-based fusion since 

the memory needed to store PDF 

information is constant. Alternatively, 

because the number of components 

needed to represent belief under MBF 

follows a product law, many MBF 

iterations become expensive under this approach. However, by simply eliminating half the 

Gaussian components after each fusion event, computation time is drastically reduced. 

Furthermore, restricting belief to be represented by a constant number of components (in this 

example, 10) causes MBF computation time to be governed by a proportional law. At this level, 

MBF is not much more expensive than grid-based fusion in 2-D, and the accuracy is also 

Figure 20. Eight miscellaneous multi-Gaussian PDFs fused in consecutive iterations of MBF. From upper-left to lower-
right, the PDFs contain 4, 4, 3, 3, 7, 11, 5, and 4 components. The final PDF, therefore, contains 221,760 components. 

Figure 21. Timing and error as functions of the number of fusion events 
for various resolutions and pruning laws. 
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comparable. As the previous section shows, however, the advantage of MBF becomes much more 

pronounced in higher dimensions. For any applications requiring the fusion of only a few PDFs, 

MBF is both efficient and perfectly accurate without any pruning. 

2.5 Applications 

 For completeness, this work requires some elaboration about the various potential 

applications of MBF. Ultimately, in most contexts where human-like estimation and probabilistic 

problem solving is desired, these methods could likely have some use. This section will focus on 

three areas of particular interest: state variable estimation, target tracking, and classification. 

2.5.1 Dynamics: State Variable Estimation 

 In the fields of dynamics and controls, state-space representations of complex systems are 

often sought after in order to solve stability problems, provide appropriate actuation, and the like. 

A state space is analogous to the concept of a belief space that was used to develop MBF. State 

spaces are often many-dimensional, and state vectors are often accompanied with uncertainty. In 

many cases, the Kalman filter and its variants are capable of state estimation in the time domain 

under the assumption of Gaussian uncertainty. A proposed use of MBF in dynamics is instead in 

the state domain where non-Gaussian models are appropriate. 

 Consider a simple system with state vector 𝒙 = [𝑦(𝑡) �̇�(𝑡)]𝑇. There is a deterministic 

curve that could be drawn in the 2-D state space for different functions 𝑦(𝑡) and their 

Figure 23. Belief fusion of decaying exponential 

with observation at 𝑦 = 15, 𝜎𝑦 = 1. 

Figure 22. Time domain plot, state-space plot, and state-space PDF of decaying sinusoid of form 𝐶𝑒𝑥𝑝(−
𝑡

𝜏
) 𝑠𝑖𝑛(𝜔𝑡) where 𝐶 =

25, 𝜏 = 10, and 𝜔 = 1. 



 38 

corresponding derivatives �̇�(𝑡). For the free-response of a spring-mass-damper system, these two 

states are plotted in the time domain in Fig. 22. If the states are instead plotted in the state-space, 

the resulting shape can be described as a spiral, as shown in the second part of the figure. An 

observation at any time ought to fall somewhere along this path. Furthermore, if the uncertainty 

with which this path is known can be estimated, the deterministic trajectory can be transformed 

into a PDF by placing equally-spaced non-covariant Gaussians along the path according to the 

theory developed in Section 3.2.2 (shown in the third part of Fig. 22). Because the curve describes 

the dependency of �̇�(𝑡) on 𝑦(𝑡), this PDF corresponds to the conditional distribution of  �̇�(𝑡) given 

𝑦(𝑡) at any time. A measurement of 𝑦(𝑡) with Gaussian uncertainty would then be represented by 

a vertical Gaussian line with a specified mean and variance. This structure is normally distributed 

in the 𝑦(𝑡) direction and uniformly distributed in the �̇�(𝑡) 

direction to reflect 1-D belief in 2-D space.  The fusion of 

these two non-Gaussian 2-D PDFs would yield the joint 

PDF of �̇�(𝑡) and 𝑦(𝑡), which could then be used to extract 

the marginal distribution describing �̇�(𝑡). This fusion is 

demonstrated in Fig. 23. 

 A few examples of other potentially relevant or interesting state-space trajectories are given 

in Fig. 24 as non-Gaussian PDFs. Although the primary relationship explored here is that of a 

Figure 24. Examples of four potential state-space PDFs where the states are the associated function and its derivative. Note how 
the diverging first and fourth examples are unbounded in the state space in keeping with their instability. 

Figure 23. Joint PDF of 𝑦(𝑡) and �̇�(𝑡). 
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function and its derivative, any other set of states with some defined correlation can be used to 

create a state-space conditional PDF. 

2.5.2 Robotics: Target Tracking 

 Target tracking in the robotics community is perhaps the most physically intuitive 

application of MBF. In this context, the belief space is limited to strictly low- dimensional physical 

spaces. It is not difficult, therefore, to conceive of some examples where a complex multi-Gaussian 

PDF would be appropriate for representing belief. For example, consider the case where an 

assistive robot is being tracked as it moves through a one-story home. The belief space can be 

reasonably represented in 2-D, with the confines of the home defining the boundaries on the space. 

If, for instance, the robot is restricted to open areas only and cannot enter any rooms, prior belief 

about the robot’s location could be represented by a PDF that is given by Gaussian lines along all 

allowable paths through the home (Fig. 25). In this example, the uncertainty in the Gaussian lines 

could be established based on known parameters with 

regards to the robot or its observational sensor (i.e. robot 

size, noise in motor encoders, quality of camera, etc.) and 

therefore the spacing of each contributing mean (denoted 

by black dots along the purple path) would be adjusted 

accordingly. Despite the simplistic presentation of such a task in comparison with real-world 

application, the concepts are sound and warrant further investigation. 

2.5.3 Automation: Classification 

 In the fields of robotics and automation, a potential use of MBF is in perception and 

classification. In such a scenario, the belief space would be a multi-dimensional feature space in 

which multiple observations coming from a computer vision system, auditory processing unit, etc. 

Figure 25. Allowable path-based non-Gaussian 
PDF superimposed on floorplan. 
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are represented as PDFs. The uncertainty characteristics of potentially multi-Gaussian 

distributions would be determined by the reliability of the sensing system, and MBF across 

multiple sensors or observations would increase certainty in belief. Probabilistic classification 

could then be achieved by the decision-making methods described in Section 3.3 and validated in 

Section 4.1, where training data consists of manually assessed ground-truth instances. 

2.6 Conclusion 

 In conclusion, the MBF technique described in this paper offers a fast and precise solution 

to probabilistic belief fusion in a broad range of conceivable applications. The mathematical 

formulations of MBF are capable of handling high-dimensional non-Gaussian belief when 

mandated by the problem at hand. Because there is no need to store values in a discretely sampled 

space or generate random particles to handle non-Gaussian belief, MBF is fast and accurate in 

many dimensions as compared to existing methods. While a grid-based approach requires belief 

space discretization and therefore reflects a power law in computational efficiency, MBF 

computation is dominated by a square law, making it far more efficient in many dimensions. 

 This work also developed two useful Gaussian structures as tools for implementing MBF 

in potentially common instances. In addition, a probabilistically robust decision-making scheme 

was presented, enhancing the practicality of MBF as shown in the working examples. For eight 

arbitrary 2-D examples, non-Gaussian belief fusion was executed with full precision, and it was 

found that the computational advantage afforded by appropriate Gaussian component pruning had 

little negative effect on classification outcomes. This was evidenced by the fact that, in most cases, 

removing the least-contributing half of the Gaussian components resulted in the same maximum-

probability classification according to the classification scheme given. Considering the substantial 

computational benefit of pruning, small errors are often worth inducing. 
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 Additional research is needed to investigate applications of this work to problems 

mandating real-time agility and real-world complexity.  Ongoing work includes implementation 

of the developed algorithms into a Graphics Processor Unit (GPU) and the development of more 

useful Gaussian structures, including the effect of pruning on such structures. The developed 

algorithms have high compatibility with parallel computing and thus can be performed at 

accelerated speeds on a GPU.  Techniques for creating non-Gaussian PDFs by sums of Gaussian 

with positive and negative weighting coefficients may substantially ease computational burden. 

For example, the 𝑁-D Gaussian toroid could in theory be approximated by a different Gaussian 

sum, but is instead much more efficiently modeled by the subtraction of only two Gaussians. 

Finally, for contexts where decision-making requires a single location vector rather than a PDF, 

multi-Gaussian-specific maximum likelihood estimation is being developed. SDG 
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CHAPTER 3. The Gaussian Toroid as a Prediction Model 

3.1 Introduction 

3.1.1 Background 

 The fields of robotics and automation have become increasingly reliant on probabilistic 

methods in recent decades. From state estimation in the feedback control of actuated systems to 

the problem of target estimation, the importance of creating robots and automated systems that can 

overcome uncertainty and noise is well recognized. Recursive Bayesian estimation (RBE) is a tool 

that has been particularly influential in probabilistic robotics; it is often applied in the context of 

spatial target estimation, though many other applications are within the realm of possibility. One 

area in which the probabilistic benefits achieved by recursive Bayesian techniques have not been 

fully realized is in automated classification and perception. This paper presents an augmentation 

to RBE that is formulated specifically for classification problems. The proposed recursive 

Bayesian classification (RBC) technique has potential for use in a wide variety of robotic 

perception and machine learning problems. 

 In many conceivable scenarios, the class of a target of perception may evolve stochastically 

over time or space. Such evolution must be addressed probabilistically in order to preserve inherent 

uncertainties and their implications. This non-deterministic nature of class evolution is 

compensated for in this work by the introduction of a Gaussian toroid prediction model. 

Furthermore, with regards to automated perception contexts, computational efficiency and real-

time processing capabilities are often key objectives. As a result, the techniques proposed here aim 

to specifically address the propagation of non-Gaussian belief in high-dimensional feature spaces 

without computational burden that would compromise real-time analysis. 
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3.1.2 Related Work 

 In traditional machine learning contexts, classification is foundational. Methods for 

classification vary from neural networks to statistical clustering analysis [1] to Bayesian methods 

[2] and the like. Various intelligent classification systems go beyond the simplest approaches to 

make use of rich probabilistic information and reexamine the assumptions underlying traditional 

methods [3], [4], [5]. However, well-established approaches do not implement the robust 

prediction-observation-correction scheme of recursive Bayesian estimation, usually found in target 

tracking or dynamics estimation problems [6], in the context of classification and robotic 

perception. Although the machine learning community has seen advances in adaptive classification 

where the classifier or underlying training classes are continuously evolving [7], [8], evaluation of 

evolving targets is generally not addressed in existing literature. A partial form of RBE oriented 

towards classification problems was investigated in [9], but this work was limited to correction 

only, in a low-dimensional feature space. 

 Existing means of carrying out RBE are well known, and range from the Kalman filter and 

its variants [10], [11] to the particle filter [12], to expensive discretization methods [13]. Most of 

these approaches work well and are efficient for low-dimensional belief spaces, but they present 

issues when high dimensionality and high accuracy are required. A multi-Gaussian approach to 

estimating non-Gaussian belief was addressed in [14], and has since been expanded by [15] for 

belief fusion in high-dimensional spaces. Due to the efficiency of the multi-Gaussian solution to 

RBE, and its ability to handle high dimensionality without approximation, this approach is 

leveraged in the work proposed here. 

 This paper is partitioned as follows: first the required fundamental formulations for RBC 

will be introduced, followed by a more detailed development of the technique itself. Next, the 
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results of recursive Bayesian classification as applied to simulated experiments will be compared 

to the results obtained by naïve classification. Finally, the relevant conclusions about this method 

will be made and applications of RBC will be briefly discussed. 

3.2 Prediction, Belief Fusion, and Decision-Making 

 This section is devoted to an overview of the concepts on which RBC is built. These include 

prediction, belief fusion, and decision-making. Additionally, the formulation of the Gaussian 

toroid is presented here. 

3.2.1 Prediction 

 Under the RBE framework, prediction is governed by the continuous Chapman-

Kolmogorov equation given by: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘|𝒙𝑘−1)𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑑𝒙𝑘−1 .(1) 

The probability distribution function (PDF) 𝑝(𝒙𝑘|𝒙𝑘−1) corresponds to belief of the state 𝒙𝑘 based 

on a prediction model, and 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) corresponds to belief based on previous observations. 

Various simplifications arise from this formulation, one of the best-known of which is the Kalman 

filter (KF). This method assumes that belief of a state can be well-represented by a Gaussian 

distribution, so that only a mean vector and covariance matrix must be monitored through 

prediction and correction stages. For linear dynamic systems with state-space motion models given 

by 

�̇� = 𝑨𝒙 + 𝑩𝒖 +𝒘,𝒛 = 𝑪𝒙 + 𝑫𝒖 + 𝒗,(2) 

the KF dictates that the mean in prediction at discrete time step 𝑘 given the previous time step 𝑘 −

1 is 

�̅�𝑘|𝑘−1 = 𝑨�̅�𝑘−1|𝑘−1 + 𝑩𝒖𝑘−1.(3) 
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Furthermore, the covariance 𝚺𝑥𝑘|𝑘−1 of the Gaussian representing belief at step 𝑘 is given by 

𝚺𝑥𝑘|𝑘−1 = 𝑨𝚺𝑥𝑘−1|𝑘−1𝑨 +𝚺𝑤𝑘−1.(4) 

3.2.2 Gaussian Toroid Model 

 In recent work, formulation for a multi-dimensional Gaussian toroid was developed as a 

general tool to be used in representing useful non-Gaussian probability distribution functions [15]. 

Because many rudimentary prediction schemes fit this particular model well, it is important to 

introduce the Gaussian toroid in this section. A multi-dimensional Gaussian toroid is defined here 

as an n-shell with Gaussian cross-sectional properties. Figure 1 gives an example of a Gaussian 

toroid in 2-D belief space. As the figure illustrates, this shape is obtained as the difference between 

two non-covariant Gaussian distributions with equal means and unequal variances, offering a 

compact and efficient representation of the desired toroidal shape. 

 The mathematical formulation of the Gaussian toroid is given as follows: 

𝜏(𝝁, 𝑟) = 𝒩(𝒙;𝝁, 𝚺1) − (
𝜎1
𝜎2
)
𝑁

𝒩(𝒙;𝝁, 𝚺2)(5) 

where 𝑟 is the radius of the toroid (an implicit function of 𝜎1 and 𝜎2), 𝝁 is the location of the center 

of the toroid, and 𝑁 is the dimensionality of the belief space. Furthermore, it is required that 𝚺1 =

𝜎1
2𝑰 and 𝚺1 = 𝜎1

2𝑰. The relationship between the toroidal radius and the two variances 𝜎1
2 and 𝜎2

2 

can be established so that a radius is specified in the creation of a toroid. It can be shown that 

Figure 1. Visual construction of a 2-D Gaussian toroid [15]. 
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𝜎2
2 <

𝑟2

√2
(6) 

and 

𝜎1
2 = −

𝑟2

2𝑊0 (−
𝑟2

2𝜎2
2 𝑒𝑥𝑝 (−

𝑟2

2𝜎2
2))

(7) 

where 𝑊0(𝑥) denotes the zeroth branch of the Lambert W function. This branch is defined for𝑥 ≥

−𝑒−1, which gives rise to the constraint of (6). 

3.2.3 Belief Fusion 

 The second stage of recursive Bayesian classification, namely correction, is the fusion of 

belief from prediction with belief from an observation. The traditional formula for correction in 

traditional RBE is 

𝑝(𝒙𝑘|𝒛1:𝑘) =
𝑙(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)

∫ 𝑙(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)𝑑𝒙𝑘
.(8) 

With some generalization and reduction, this can lead to the fusion of several state estimates, given 

by: 

𝑝(𝒙|𝒛1:𝑛) =
∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1

∫∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1 𝑑𝒙

.(9) 

Here 𝑛 describes the number of estimates at a given time step. This means that the belief fusion of 

𝑛 estimates of 𝒙 is simply the normalized product of the PDFs corresponding to each estimate. If 

the constituent PDFs of belief fusion are Gaussian or sums-of-Gaussians, the output will also be 

Gaussian-like or sum-of-Gaussian-like. The multi-Gaussian belief fusion (MBF) technique of [15] 

takes advantage of the linear superposition of Gaussians in executing belief fusion fast and in many 

dimensions. For the case where 𝑛 = 2, each PDF 𝑝(𝒙|𝒛𝑖) can be represented as a sum of Gaussians 

according to: 
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𝑝(𝒙|𝒛1) =∑𝑐𝑖
(1)𝒩(𝒙;𝝁𝑖

(1), 𝚺𝑖
(1))

𝐼

𝑖=1

(10) 

and 

𝑝(𝒙|𝒛2) = ∑𝑐𝑗
(2)𝒩(𝒙;𝝁𝑗

(2), 𝚺𝑗
(2))

𝐽

𝑗=1

.(11) 

 Belief fusion of these two PDFs, then, is given by: 

𝑝(𝒙|𝒛1:2) =∑∑𝑐𝑖
(1)𝑐𝑗

(2)𝑐𝑖𝑗
(1:2)𝒩(𝒙;𝝁𝑖𝑗

(1:2), 𝚺𝑖𝑗
(1:2))

𝐽

𝑗=1

𝐼

𝑖=1

(12) 

where  

𝚺𝑖𝑗
(1:2) = [(𝚺𝑖

(1))
−1

+ (𝚺𝑗
(2))

−1

]
−1

,(13) 

𝝁𝑖𝑗
(1:2) = 𝚺𝑖𝑗

(1:2) [(𝚺𝑖
(1))

−1

𝝁𝑖
(1) + (𝚺𝑗

(2))
−1

𝝁𝑗
(2)],(14) 

and 

𝑐𝑖𝑗
(1:2) =

1

√|2𝜋(𝑺𝑖𝑗)|

exp (−
1

2
(𝒎𝑖𝑗)

𝑇
(𝑺𝑖𝑗)

−1
(𝒎𝑖𝑗))(15) 

with 𝒎𝑖𝑗 = 𝝁𝑖
(1) − 𝝁𝑗

(2)
 and 𝑺𝑖𝑗 = 𝚺𝑖

(1) + 𝚺𝑗
(2)

. Correction using MBF is well-suited for a multi-

Gaussian predictive model such as the Gaussian toroid. 

3.2.4 Decision-Making 

 The final critical stage of the work presented here is classification. In general, this stage 

may be referred to as decision-making, but with regards to machine learning or robotic perception 

it is synonymous with classification. The goal of classification under the RBC scheme is to make 

full use of the probabilistic information available from prediction and correction. Consequently, a 

decision-making scheme is chosen such that class probabilities can be assigned to each test case 
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based on the output PDF of correction. These probabilities are simply the marginalized joint 

probability of the test PDF (denoted here by 𝑝(𝒙) which is really 𝑝(𝒙|𝒛1:𝑛), the output of MBF) 

with a training PDF 𝑝(𝑤𝑎|𝒙) corresponding to each class 𝑤𝑎: 

𝑃(𝑤𝑎) = ∫𝑝(𝑤𝑎|𝒙)𝑝(𝒙)𝑑𝒙

𝒳

.(16) 

Because this involves the integration of the product of two multi-Gaussian PDFs, the theory 

developed for MBF gives insight into computing the class probabilities quickly and easily. The 

scaling constants associated with each Gaussian in (12) correspond to the area beneath their PDFs. 

This means that the class probabilities are simply the weighting coefficients coming from belief 

fusion of a test PDF and the training PDFs for each class. Stated mathematically, 

𝑃(𝑤𝑎) =∑∑𝑐𝑖
(𝑝(𝑤𝑎|𝒙))𝑐𝑗

(𝑝(𝒙))
𝑐𝑖𝑗
(𝑝(𝑤𝑎|𝒙)𝑝(𝒙))

𝐽

𝑗=1

𝐼

𝑖=1

.(17) 

To enforce that these are proper probabilities such that they sum to one, they are normalized as 

follows: 

�̃�(𝑤𝑎) =
𝑃(𝑤𝑎)

∑ 𝑃(𝑤𝑎)
𝐴
𝑎=1

(18) 

so that the final probability that a test item belongs to class𝑤𝑎 is �̃�(𝑤𝑎). The vector of class 

probabilities can then be used to inform further action through use of a cost function matrix or the 

like. 

3.3 Recursive Bayesian Classification 

 This section describes the specifics of recursive Bayesian classification. Figure 2 provides 

a system diagram of RBC using a Gaussian toroid prediction model and generic multi-Gaussian 

observation model. The RBC framework follows the structure of recursive Bayesian estimation, 

but with some critical contributions specific to the perception of evolving targets. First, a multi-
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dimensional Gaussian toroid is used to model prediction of abstract features not governed by 

physical equations of motion. Second, RBC allows for non-Gaussian representation of belief in 

the high-dimensional feature spaces oftentimes needed for classification, while mitigating 

computational complexity and allowing for potentially real-time analysis. Finally, the 

classification technique given here yields probabilistic class information useful for high-level 

decision-making. 

3.3.1 Toroidal Prediction Model 

 RBC is formulated for any type of belief space which here is an abstract multi-dimensional 

feature space. Features can be extracted from classification targets by various means not addressed 

within the scope of this paper. For ease of visualization without loss of appreciation for the 

Figure 2. Recursive Bayesian classification diagram. Conceptual elements specifically related to this work's contribution are 
shaded. 
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potential complexity of PDFs handled by the approach, arbitrary two-dimensional feature spaces 

will be used in qualitative figures here. 

 A single observation of a target can be probabilistically represented in the feature space by 

a multi-Gaussian PDF. Oftentimes a single Gaussian is sufficient, but in general it may not be. 

How an observation is modeled as a mixture of Gaussians is beyond the scope of this work; 

methods exist for fitting a Gaussian mixture to a discrete data array or modeling a sensor's 

probability characteristics. The aim of observation modeling is simply that the Gaussian mixture 

representing an observation likelihood accurately represents belief of the target in the feature 

space. 

 To create a model of prediction for evolving targets, consider first the case where the 

target's state at 𝑘 − 1 has no uncertainty and is located at position �̅�𝑘−1 in the feature space. The 

linear Kalman filter would dictate that the mean at step 𝑘 would be simply �̅�𝑘 = 𝑨�̅�𝑘−1 + 𝑩𝒖𝑘−1. 

However, for non-physical classification targets, it is generally not possible to formulate matrices 

𝑨 and 𝑩. Nevertheless, it stands to reason that the feature space location at step 𝑘 might be a radial 

distance 𝑅 away from the location at step 𝑘 − 1. Since 𝑅 is only an estimate, it ought to be 

represented probabilistically. For this reason, a Gaussian toroid is well-suited for predictively 

modeling evolving targets in the feature space. As such, predicted belief is represented by a 

Gaussian toroid 𝜏(�̅�𝑘−1, 𝑅) centered at �̅�𝑘−1 with radius 𝑅. 

 Let 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) represent the PDF estimating the state at step 𝑘 − 1 given the 

observations 𝒛1:𝑘−1 up to that step. This can be estimated by a multi-Gaussian distribution 

according to: 

𝑝(𝒙𝑘−1|𝒛1:𝑘−1) = ∑𝑐𝑖
(𝑥𝑘−1)𝒩(𝒙; �̅�𝑖

(𝑘−1), 𝚺𝑖
(𝑥𝑘−1))

𝐼

𝑖=1

.(19) 
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 Considering the Kalman solution once more, (4) dictates that 𝚺𝑥𝑘 = 𝑨𝚺𝑥𝑘−1𝑨
𝑇 +𝚺𝑤𝑘−1 

where 𝚺𝑤𝑘−1 characterizes process noise. The Gaussian toroid prediction model 𝜏(�̅�𝑘−1, 𝑅) is 

simply the scaled linear superposition of two Gaussians with covariances given by 𝚺1
(𝑤𝑘−1) =

(𝜎1
(𝑤𝑘−1))

2

𝑰 and 𝚺2
(𝑤𝑘−1) = (𝜎2

(𝑤𝑘−1))
2

𝑰. This property of superposition is exploited in 

determining 𝑝(𝒙𝑘|𝒛1:𝑘−1), the PDF expressing predicted belief at step 𝑘. The Kalman rules are 

applied to each of the constituent Gaussians, and the output PDF is a reconstruction of the Gaussian 

toroid but with Gaussians whose means and covariances have been augmented. In other words, if 

𝜏(�̅�𝑘−1, 𝑅) is given by 

𝒩(�̅�𝑘−1, 𝚺1
(𝑤𝑘−1)) − (

𝜎2
(𝑤𝑘−1)

𝜎1
(𝑤𝑘−1)

)

𝑁

𝒩(�̅�𝑘−1, 𝚺2
(𝑤𝑘−1)),(20) 

then the predicted toroid is given by 

𝒩(�̅�𝑘, 𝚺1
(𝑥𝑘)) − √

|𝚺𝟐
(𝑥𝑘)|

|𝚺1
(𝑥𝑘)|

𝒩 (�̅�𝑘, 𝚺2
(𝑥𝑘))(21) 

where 

�̅�𝑘 = 𝑨�̅�𝑘−1 +𝑩�̅�𝑘−1 = �̅�𝑘−1,(22) 

𝚺1
(𝑥𝑘) = 𝑨𝚺𝑥𝑘−1𝑨

𝑇 +𝚺1
(𝑤𝑘−1) = 𝚺𝑥𝑘−1 + 𝚺1

(𝑤𝑘−1),(23) 

and 

𝚺2
(𝑥𝑘) = 𝑨𝚺𝑥𝑘−1𝑨

𝑇 +𝚺2
(𝑤𝑘−1) = 𝚺𝑥𝑘−1 + 𝚺2

(𝑤𝑘−1).(24) 

It is implicit that 𝑨 = 𝑰 and 𝑩 = 𝟎 in keeping with the Gaussian toroid prediction model. The new 

scaling coefficient accompanying the second term of (21) accounts for the introduction of 

covariance terms by 𝚺𝑥𝑘−1 in (23) and (24). 
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 Because 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) is generally multi-Gaussian, the above steps must be applied to 

each component. The PDF coming from the prediction stage is then: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∑∑𝑐𝑖𝑗
(𝑥𝑘)𝒩(�̅�𝑖𝑗

(𝑘), 𝚺𝑖𝑗
(𝑥𝑘))

2

𝑗=1

𝐼

𝑖=1

,(25) 

where 

𝑐𝑖𝑗
(𝑥𝑘) = 𝑐𝑖

(𝑥𝑘−1)

{
 
 

 
 
1,𝑗 = 1

−√
|𝚺𝒊𝟐
(𝑥𝑘)|

|𝚺𝑖1
(𝑥𝑘)|

,𝑗 = 2
,(26) 

�̅�𝑖𝑗
(𝑘) = �̅�𝑖

(𝑘−1),(27) 

and 

𝚺𝑖𝑗
(𝑥𝑘) = 𝚺𝑖

(𝑥𝑘−1) + 𝚺𝑗
(𝑤𝑘−1).(28) 

 Due to the potential introduction of covariance by 𝚺𝑖
(𝑥𝑘−1) terms, this distribution is no 

longer in general a true toroid; Fig. 3 illustrates this fact for a fictional example. The effect of 

prediction from a multi-Gaussian PDF is akin to the convolution of the PDF with a Gaussian toroid, 

as the figure shows. It can be seen in the figure that prediction increases uncertainty, consistent 

with Bayesian theory. 

Figure 3. Prediction from multi-Gaussian prior belief. a) Single Gaussian of the form given in (19), b) 
Gaussian toroid defined by (20), c) output of toroidal prediction as governed by (25)-(28). 



 56 

3.3.2 Correction and Classification 

 In order to accurately estimate the location of a target's state the feature space, predicted 

belief must be fused with observed belief via correction. As section 3.2.3 describes, correction can 

be executed quickly and in high dimensionality with non-Gaussian PDFs using multi-Gaussian 

belief fusion (MBF). The goal of this stage is to obtain 𝑝(𝒙𝑘|𝒛1:𝑘), the PDF corresponding to belief 

of the target state 𝒙𝑘 given all prior and current observations. Belief corresponding to the 𝑘𝑡ℎ 

observation is given by the observation likelihood 𝑙(𝒙𝑘|𝒛𝑘), which is an acceptable PDF and so is 

treated as 𝑝(𝒙𝑘|𝒛𝑘). It is given by the following: 

𝑝(𝒙𝑘|𝒛𝑘) =∑𝑐𝑖
(𝑥𝑘)𝒩(�̅�𝑖

(𝑘), 𝚺𝑖
(𝑥𝑘))

𝐼

𝑖=1

.(29) 

Fusing this belief with 𝑝(𝒙𝑘|𝒛1:𝑘−1) gives the desired 𝑝(𝒙𝑘|𝒛1:𝑘). This probability distribution 

may be highly non-Gaussian but is composed of a mixture of Gaussians whose means, covariances, 

and weights are tracked by the MBF algorithm. Correction is illustrated for a fictitious case in Fig. 

4. Just as the prediction stage increased uncertainty in belief, correction decreases uncertainty. 

 In order to classify the target, the decision-making algorithm of section 3.2.4 is 

implemented for fast probabilistic class assignment. The training set may consist of manually 

classified samples according to relevant categories and features; this data is used to establish the 

Figure 4. Correction as belief fusion of 𝑝(𝒙𝑘|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛𝑘). 
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PDFs 𝑝(𝑤𝑎|𝒙𝑘) corresponding to each class 𝑤𝑎. 𝑝(𝒙𝑘) is taken to simply be the output of 

correction, and 𝑃(𝑤𝑎) is given by (16) though implemented according to (17) and (18). 

 After each RBC iteration, the updated belief of the target 𝑝(𝒙𝑘|𝒛1:𝑘−1) is fed back to re-

initialize belief, and the process is repeated. Because belief at each stage is represented by a multi-

Gaussian distribution and each step is formulated for such PDFs, the loop is closed without loss of 

precision. Figure 5 demonstrates the second prediction step for the running example given in this 

paper. A disadvantage of the multi-Gaussian approach is that an exponentially increasing number 

of components is required to completely represent belief at each stage. This computational burden 

is mitigated by enforcing a pruning stage after each iteration, in which the most minimally-

contributing Gaussian components are removed. This can result in small approximation errors, but 

such issues are normally negligible. 

 After each RBC iteration, the toroidal radius's characteristics can be adjusted based on prior 

knowledge. For example, a running average or regression of past steps' change in location may be 

used to predict future radii. Furthermore, adjusting the relative covariances of the two toroidal 

Gaussians within the constraints of eqs. (6) and (7) changes the cross-sectional “thickness” of the 

resulting toroid without changing its radius. This attribute could be adjusted to better reflect the 

radial variance in observed data. 

Figure 5. Prediction in the second iteration of RBC for running example. 
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3.4 Results 

 The proposed recursive Bayesian classification framework was verified by means of 

simulated experiments in a 2-D feature space. These experiments were designed to be 

representative of the kinds of scenarios for which a Gaussian toroid prediction model would be 

most useful. For each experiment, 𝑁𝑐𝑙𝑎𝑠𝑠 = 10 training classes were generated in a feature space 

as uni-Gaussian PDFs with randomized means and covariances. Initial belief 𝑝(𝒙1|𝒛1) was given 

arbitrarily as a two-component multi-Gaussian distribution. For 100 iterations, ground truth was 

simulated as a sequence of feature space locations. Each ground truth location �̅�𝑘
𝑔𝑡

 was determined 

by randomly generating a radius 𝑅𝑘  with mean 𝑅 = 3.2 and standard deviation 𝜎𝑅, and then 

randomly choosing a location on the circle a distance 𝑅𝑘  from �̅�𝑘
𝑔𝑡

. Two simulation examples are 

given in Fig. 6. 

 Ground truth classification was carried out by eqs. (17) and (18) to make full use of all 

probabilistic information available. Because ground truth uncertainty is zero, the unnormalized 

probabilities 𝑃(𝑤𝑎) are obtained by evaluating each training class PDF at the ground truth location. 

Classes were assigned as 

Figure 6. Example simulations without and with directional bias in the evolution model. Blue dots indicate training class centers, 
black lines correspond to quadratic decision boundaries, green arrows are ground truth trajectories, and red arrows are noisy 
observations of ground truth. 
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𝑤 = argmax
𝑤𝑎

(�̃�𝑘(𝑤𝑎)),(30) 

and these assignments were used to evaluate the performance of the proposed technique. 

 Observations were simulated as zero-mean Gaussian white noise corruption on the ground 

truth sequence, though in general non-Gaussian noise is allowable by eq. (29). The covariance of 

this noise is denoted 𝚺𝑣. For each experiment, the performance of RBC in correctly classifying 

each observed target location was compared to two different naïve approaches. The first of these 

approaches, a nearest-neighbor method, simply evaluates the Euclidean distance between each 

observation mean and all the class means, assigning the class with the smallest distance. The 

second, more intelligent, approach probabilistically classifies observation likelihoods according to 

eqs. (17) and (18), without implementing prediction and correction. Classes are then assigned 

according to (30). 

 Each of the above three classification approaches, two being conventional methods and 

one being the proposed RBC technique, were compared to ground truth in each experiment by 

means of a confusion matrix. In order to synthesize these matrices into single comprehensive 

scores for each experiment, they were multiplied element-wise by a penalty matrix that penalizes 

off-diagonal elements proportionally to their distance from the diagonal. The resulting matrix was 

normalized by the number of observations, and the final score given as the sum of the elements in 

this matrix. One hundred experiments were executed for each combination of 𝚺𝑣 and 𝜎𝑅, and the 

percentage of wins for each method was recorded. This validation metric is necessary due to the 

randomness in generation of exact simulation variables reflective of inherent uncertainty. Figure 

7 shows the convergence of outcomes, justifying reporting the outcomes of experiments repeated 

100 times each. 



 60 

 Table 1 gives the results of the 

parametric study for each of the three 

processes being compared. NN 

corresponds to the nearest-neighbor 

classification approach, while PC 

represents the basic probabilistic 

classifier. Four arbitrary parameter 

values were chosen for both 𝚺𝑣 and 

𝜎𝑅, as the intent is simply to demonstrate general uncertainty-dependent trends for the success of 

the proposed approach over conventional methods. 

Table 1. Parametric Study Results 

 

𝚺𝑣  

[ 1
2 0.32

0.32 0.752
] [2.6

2 1.52

1.52 3.12
] 

NN PC RBC NN PC RBC 

𝜎𝑅 

0.1 0% 63% 37% 2% 24% 74% 

0.25 3% 53% 44% 8% 24% 68% 

0.5 2% 54% 44% 7% 29% 64% 

0.8 1% 55% 44% 4% 22% 74% 

 

𝚺𝑣  

[3.9
2 2.52

2.52 3.42
] [5.1

2 3.82

3.82 5.82
] 

NN PC RBC NN PC RBC 

𝜎𝑅 

0.1 2% 22% 76% 9% 12% 79% 

0.25 5% 19% 76% 4% 14% 82% 

0.5 7% 22% 71% 11% 17% 72% 

0.8 6% 19% 75% 7% 22% 71% 

 As the table indicates, there is no clear trend in the variation of performance as the 

parameter 𝜎𝑅 is varied. This shows that the uncertainty in the toroidal model does not predictably 

Figure 7. Convergence of outcomes corresponding to parameters given by 
the second primary column and third row of Table 1. 
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affect the proficiency of the proposed method, so long as the general toroidal shape adequately 

represents true target motion. However, as observational uncertainty increases, RBC outperforms 

conventional methods. In addition, for sufficiently high 𝚺𝑣, the nearest-neighbor classification 

approach begins to win more often, while the PC method wins less often due to the fact that the 

latter approach is heavily dependent on observational belief uncertainty. RBC continues to 

outperform even for high 𝚺𝑣 because it both adjusts the location of the belief of the state towards 

ground truth and decreases the uncertainty in this belief. 

 To assess the computational efficiency of the proposed approach, the previously described 

simulations were timed both with the core algorithm alone (CA), and with the pruning and 

decision-making steps (CA+P+DM). To show the multi-dimensional computational advantage, 

similar simulated experiments were executed in 3-D and 4-D. In Matlab 2018, on a non-dedicated 

Intel i7 processor running at 2.2 GHz with 12 GB of RAM, the results shown in Table 2 were 

obtained. Means and standard deviations are given, and each time corresponds to a single iteration 

of RBC. 

Table 2. Timing Study Results (milliseconds) 

 2-D 3-D 4-D 

CA 2.3±1.2 2.5±1.0 2.7±1.1 

CA+P+DM 20.4±3.0 23.2±2.4 25.7±3.0 

 As the table suggests, the computational requirements of many real-time processes are 

achievable for 4-D and lower feature spaces, and similar conclusions can be drawn about much 

higher-dimensional spaces by extrapolation. It is important to note that the RBC algorithm 

outperforms both of the described naïve classification techniques even more dominantly in higher 

dimensions, with similar parameter dependencies as were addressed for the 2-D case. Though 
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higher-dimensional parametric studies took place, they are not reported here in detail for lack of 

space. 

3.5 Conclusions and Applications 

 The implementation of a recursive Bayesian framework in classification contexts which do 

not traditionally exploit sequential probabilistic estimation via prediction and correction shows 

improved performance over conventional techniques, especially for scenarios with substantial 

uncertainty. Furthermore, the RBC technique introduced here shows strong potential for real-time 

processing in high-dimensional feature spaces without loss of resolution or inaccuracies introduced 

by other non-Gaussian estimation techniques. The toroidal prediction model upon which this work 

is formulated offers the ubiquity mandated by perception problems where only a rudimentary 

feature-space “motion model” is known. 

 Recursive Bayesian classification, as it has been formulated here, may have use in a variety 

of evolving-target perception contexts. For example, in continuous sequential acquisition of road 

pavement images from a moving vehicle, pavement condition can be estimated by evaluation of 

features consistent with disrepair. In another vehicular context, these techniques could be 

implemented in continuous classification, or sub-classification, of roadside objects upon approach. 

A similar application could be seen in the evaluation of similar but non-identical items moving 

along an assembly line past a sensor system capable of extracting useful features. The fundamental 

mathematical formulations for RBE using a Gaussian toroid prediction model could also be used 

in robotic target tracking, when a target has a poorly defined motion model. SDG 
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3.7 Appendix 

 This appendix did not appear in the original publication of this paper, but is included here 

to provide supplemental material regarding a more mathematically appropriate use of the Gaussian 

toroid in the prediction step of a recursive Bayesian process. The following material was adapted 

from a later publication entitled “Continuum Detection and Predictive-Corrective Classification of 

Crack Networks”, which was published in the proceedings of the 22nd International Conference on 

Information Fusion in July, 2019. This publication applied the concepts of RBC towards the real-

world problem of road crack classification, with an augmentation to the formulation of prediction 

via the Gaussian toroid. 

 In traditional RBE, general prediction is governed by the continuous Chapman-

Kolmogorov equation: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘|𝒙𝑘−1)𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑑𝒙𝑘−1
𝒳

. 
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For a Markovian process with independent increments, the transition PDF 𝑝(𝒙𝑘|𝒙𝑘−1) can be 

simplified as follows: 

𝑝(𝒙𝑘|𝒙𝑘−1) =
𝑝(𝒙𝑘, 𝒙𝑘−1)

𝑝(𝒙𝑘−1)
=
𝑝(𝒙𝑘−1)𝑝(𝒙𝑘 − 𝒙𝑘−1)

𝑝(𝒙𝑘−1)
= 𝑝(𝒙𝑘 − 𝒙𝑘−1). 

By substitution in the Chapman-Kolmogorov equation, it becomes clear that prediction under these 

constraints is simply the convolution of the PDF describing belief of the current state and the 

transition PDF 𝑝(𝒙𝑘 − 𝒙𝑘−1): 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘 − 𝒙𝑘−1)𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑑𝒙𝑘−1
𝒳

. 

 It can be shown that the convolution of two multivariate Gaussian PDFs is a third Gaussian 

with a mean vector equal to the sum of the constituent mean vectors and covariance matrix equal 

to the sum of the covariance matrices of the constituents. Therefore, by linear superposition, the 

convolution of a weighted sum of Gaussians can also be represented by a weighted sum of 

Gaussians. This is particularly advantageous with regards to prediction using a Gaussian toroid 

model as is appropriate for stochastic perception of evolving targets. 

 When belief is represented by multivariate PDFs in a belief space and sequential 

observations have some correlation that can modeled by an approximate Euclidean distance in that 

space, the Gaussian toroid becomes a good model for the transition PDF 𝑝(𝒙𝑘 − 𝒙𝑘−1). 

Consequently, if the belief space location of a target at step 𝑘 − 1 is represented by the PDF 

𝑝(𝒙𝑘−1|𝒛1:𝑘−1), predicted belief about the location of the next image 𝑘 can be given by 

𝑝(𝒙𝑘|𝒛1:𝑘−1) which is the convolution of𝑝(𝒙𝑘−1|𝒛1:𝑘−1) and a zero-mean Gaussian toroid, 

𝜏(𝟎, 𝑅). This PDF has the following multi-Gaussian form: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∑∑𝑐𝑖
(𝑥𝑘−1)𝑐𝑗

(𝜏)
𝒩(�̅�𝑖𝑗

(𝑘), 𝚺𝑖𝑗
(𝑥𝑘))

2

𝑗=1

𝐼

𝑖=1

, 
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where 

�̅�𝑖𝑗
(𝑘) = �̅�𝑖

(𝑘−1), 

𝚺𝑖𝑗
(𝑥𝑘) = 𝚺𝑖

(𝑥𝑘−1) + 𝚺𝑗
(𝜏), 

𝑐𝑗
(𝜏)
= {

1,𝑗 = 1

− (
𝜎1
𝜎2
)
𝑁

,𝑗 = 2
, 

and 𝜎2 and 𝜎1 are given in terms of 𝑅 by (6) and (7) of this chapter, respectively. This formulation 

is similar to that given for RBC in section 3.3.1, but with the notable distinction that the weighting 

coefficient is instead the product of two constituent weighting coefficients, one corresponding to 

the transition PDF and the other to the prior belief PDF. It is also noteworthy that, in order for this 

to be a true, normalized multi-Gaussian PDF, the array of weighting coefficients needed to 

reconstruct 𝑝(𝒙𝑘|𝒛1:𝑘−1) must be discretely normalized. RBC using convolution in the prediction 

step is illustrated in the figure below. 

Figure A3.1. Recursive Bayesian classification using convolution in the prediction step. 
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CHAPTER 4. Introduction to Simultaneous Estimation and Modeling 

4.1 Introduction 

4.1.1 Background 

 In probabilistic state estimation by an autonomous robot, from drone target tracking and 

pursuit to pose estimation of a mechatronic manipulator, existing filtration methods are well-suited 

to handle uncertainty. Some techniques are even capable of overcoming non-Gaussian and 

nonlinear processes. Probabilistically equipped autonomous robots often employ a form of 

recursive Bayesian estimation (RBE) to construct belief and estimate states with inherent 

uncertainties. State estimation falls apart when parameters informing a predictive model are 

inaccurately estimated [1]. The work presented here seeks to remedy this issue by incorporating 

model uncertainty in RBE prediction, as well as introducing a specially formulated model-updating 

step. This framework, termed Simultaneous Estimation and Modeling (SEAM), is developed in 

this paper for systems experiencing Gaussian or near-Gaussian state uncertainty. 

4.1.2 Related Work 

 RBE consists of the recursive iteration of three stages [2] which, while known by various 

terms in different communities, are referred to here as prediction, observation, and correction. 

Various simplifying approximations lead to different versions of RBE, of which the Kalman filter 

(KF) [3] and its variants [4,5] are a few. While these techniques handle exclusively Gaussian 

representation of belief, other approaches allow for non-Gaussian belief by sampling a probability 

distribution [6,7] or approximating it using Gaussian sums [2]. Furthermore, in order to more 

accurately enact prediction and correction, various adaptive approaches exist which estimate 

motion model variance [1] or attempt to handle non-constant system uncertainty [8,9]. Each 

method has its advantages and disadvantages, which will be discussed here. 
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 Under the linear Kalman filter (LKF) famously proposed by Kalman in 1960 [3], belief 

about a target or signal is represented by a Gaussian distribution with a mean vector and covariance 

matrix that are continuously updated. For nonlinear systems, the extended Kalman filter (EKF) 

linearizes a motion model before then propagating the mean and covariance [4]. The nonlinear 

unscented Kalman filter (UKF) relies on random sampling and propagation of sigma points around 

the mean [5], while highly nonlinear motion is addressed by techniques such as the cubature 

Kalman Filter (CKF) [10]. For data assimilation problems, the ensemble Kalman filter (EnKF) 

provides a Monte Carlo-type solution to efficient filtering [11]. Although the above methods each 

demonstrate their efficacy for a specific class of estimation problems, they generally do not address 

the heightened uncertainty coming from ill-defined model parameters. 

 Methods for estimation in which motion models do not match the physical system have 

been in existence for a number of years. One such approach, the joint EKF, assumes the presence 

of zero-mean Gaussian noise on each of the parameters constituting the motion model and derives 

the corresponding Kalman gain required to account for this uncertainty [1]. The adaptive Kalman 

filter (AKF) updates the covariance of assumed additive Gaussian process and/or sensor noise by 

rescaling it so as to account for uncertainty in the motion model [8,12]. A version of this filter was 

proposed in recent years which updates both the observation (sensor) and process uncertainty 

characteristics throughout UKF estimation [13]. Other advanced approaches incorporate error 

minimization over state transitions to augment traditional Kalman filtering [9,14]. Some 

frameworks have been proposed to address estimation of specific physical system attributes in 

real-time [15]. Each of these methods sufficiently minimizes estimation error as compared to naïve 

Kalman filtering, but because this is generally their sole objective, system parameters and their 

uncertainties are not improved over time. 
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 In an effort to address model uncertainty, most modern estimation and control techniques 

employ optimization or Monte Carlo solutions. One such modern technique known as model-

predictive control (MPC) is a framework which uses optimization to control dynamic systems with 

variable model parameters [16].  Robust control and estimation seeks to employ uncertainty 

characteristics to improve system prediction through MPC. This can be done by various system 

identification methods [17-19]. However, simple non-optimization model-uncertainty-handling 

methods are in relatively short supply when it comes to state-space dynamic systems. Some model-

estimating frameworks exist, including joint state-parameter estimators [20] and ensemble 

smoothers for inverse problems [21], though such approaches are designed to apply to more 

complex problems, using non-Gaussian and optimization methods respectively. Monte Carlo-

based approaches [22], sensitivity methods [23], and Bayesian methods [24] are handily capable 

of parametric model updating, though such processes often address finite-element models and 

therefore make use of summary statistics like natural frequencies and mode shapes. Composite 

adaptation approaches [25,26] have been shown to work well for nonlinear state-space model 

parameter updating, but these high-quality methods have correspondingly high computational 

demand. 

4.1.3 Objectives and Outline 

 The objectives of this work are twofold: 1) to introduce a more accurate formulation for 

covariance propagation in state prediction under RBE by incorporating uncertainty in model 

parameters, and 2) to leverage this uncertainty formulation by presenting a subsequent model 

correction step which adapts motion model parameters to improve estimation. These contributions 

are shown to improve estimation performance in comparison with conventional methods when 

uncertainty in model parameters and system inputs is high. To clarify these points, this paper is 
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organized as follows: first, the theoretical formulations relevant to the proposed approach are 

addressed. Following this, the original contributions are described in detail. Then, a results and 

validation section is given to provide support for these formulations in the context of a simulated 

parametric study. Finally, a conclusions and future work section summarizes the original 

contributions and potential future directions of the research. 

4.2 Probabilistic Motion Tracking 

4.2.1 Robotic Belief 

 Mathematically, robotic state belief can be defined by probability distribution functions 

(PDFs). While a PDF can generally take any form, the most common and useful form of a PDF is 

the Gaussian which is defined, in the general multivariate case, as: 

𝒩(𝒙; �̅�, 𝚺𝑥) =
1

√|2𝜋𝚺𝑥|
exp (−

1

2
(𝒙 − �̅�)𝑇𝚺𝑥

−1(𝒙 − �̅�)).(1) 

As Eq. (1) shows, the Gaussian (or normal) distribution is completely defined by its first and 

second moments, �̅� and 𝚺𝑥. This is a useful property that is leveraged by most estimation 

frameworks: rather than propagating belief by fully characterizing a PDF throughout estimation, 

only a mean vector and covariance matrix must be stored and operated upon. 

4.2.2 Prediction 

 The first stage of RBE, prediction, casts belief from step 𝑘 − 1to step 𝑘 according to a 

known motion model of the target or object of interest. Let 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) be the PDF representing 

belief of the estimated state, 𝒙, at step 𝑘 − 1, given all observations 𝒛 from step 1 to 𝑘 − 1. 

Furthermore, let 𝑝(𝒙𝑘|𝒙𝑘−1) denote the PDF mapping an estimate of the state at step 𝑘 − 1 to the 

estimate at step 𝑘. Prediction is governed by the continuous Chapman-Kolmogorov equation, 
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which reduces to the following form under the assumption that the process of interest is 

Markovian: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑝(𝒙𝑘|𝒙𝑘−1)𝑑𝒙𝑘−1. (2) 

 Under the LKF, in order to predict the mean and covariance at step 𝑘, a discrete linearized 

motion model is used: 

𝒙𝑘 = 𝑨𝑘−1𝒙𝑘−1 +𝑩𝑘−1𝒖𝑘−1 + 𝒘𝑘−1,(3𝑎) 

𝒛𝑘 = 𝑪𝑘𝒙𝑘 +𝑫𝑘𝒖𝑘 + 𝒗𝑘 ,(3𝑏) 

where 𝒘𝑘−1 is some Gaussian process noise with covariance 𝚺𝑤𝑘−1 corrupting the system, and 𝒗𝑘  

represents Gaussian sensor noise or observational uncertainty with covariance 𝚺𝑣𝑘. To obtain the 

state mean �̅�𝑘|1:𝑘−1 and covariance 𝚺𝑥𝑘|1:𝑘−1 in prediction, the Kalman filter dictates the following: 

�̅�𝑘|1:𝑘−1 = 𝑨𝑘−1�̅�𝑘−1|1:𝑘−1 +𝑩𝑘−1�̅�𝑘−1,(4𝑎) 

𝚺𝑥𝑘|1:𝑘−1 = 𝑨𝑘−1𝚺𝑥𝑘−1|1:𝑘−1𝑨𝑘−1
𝑇 + 𝚺𝑤𝑘−1.(4𝑏) 

4.2.3 Correction 

 The correction, or updating, stage of RBE fuses predicted belief, 𝑝(𝒙𝑘|𝒛1:𝑘−1), with the 

PDF coming from an observation, or measurement, 𝑝(𝒙𝑘|𝒛𝑘). This yields the output of a single 

RBE iteration, 𝑝(𝒙𝑘|𝒛1:𝑘), which is obtained by belief fusion, or Bayesian inference: 

𝑝(𝒙𝑘|𝒛1:𝑘) =
𝑙(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)

∫ 𝑙(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)𝑑𝒙𝑘
.(5) 

In Eq. (5), 𝑙(𝒙𝑘|𝒛𝑘) is the observation likelihood used in place of 𝑝(𝒙𝑘|𝒛𝑘). The Kalman solution 

yields the following state mean �̅�𝑘|1:𝑘 and covariance 𝚺𝑥𝑘|1:𝑘 in the updating step: 

�̅�𝑘|1:𝑘 = �̅�𝑘|1:𝑘−1 +𝑲𝑘(�̅�𝑘 − 𝑪𝑘�̅�𝑘|1:𝑘−1),(6𝑎) 

𝚺𝑥𝑘|1:𝑘 = (𝑰 − 𝑲𝑘𝑪𝑘)𝚺𝑥𝑘|1:𝑘−1,(6𝑏) 
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where the Kalman gain 𝑲𝑘  is given by: 

𝑲𝑘 = 𝚺𝑥𝑘|1:𝑘−1𝑪𝑘
𝑇 (𝑪𝑘𝚺𝑥𝑘|1:𝑘−1𝑪𝑘

𝑇 + 𝚺𝑣𝑘)
−1

.(7) 

4.2.4 Adaptive Kalman Filter 

 An AKF is broadly defined as a Kalman filter which updates the covariance of process and 

sensor noise, 𝚺𝑤𝑘 and 𝚺𝑣𝑘, at each time step in order to better capture uncertainty in the motion 

and sensor models. One of the most popular approaches [12] is summarized here for comparison 

in section 4.4. At each time step, following the correction stage, 𝚺𝑣𝑘 and 𝚺𝑤𝑘 are updated as 

follows: 

𝚺𝑣𝑘 = 𝑮𝑣 − 𝑪𝑘𝚺𝑥𝑘|1:𝑘−1𝑪𝑘
𝑇 ,(8𝑎) 

𝑮𝑣 =
1

𝑀
∑‖�̅�𝑘−𝑚 − 𝑪𝑘−𝑚�̅�𝑘−𝑚|1:𝑘−𝑚−1‖

2
𝑀

𝑚=1

,(8𝑏) 

𝚺𝑤𝑘 = √𝛼𝚺𝑤𝑘−1,(8𝑐) 

𝛼 =
tr(𝑮𝑣 − 𝚺𝑣𝑘−1)

tr (𝑪𝑘𝚺𝑥𝑘|1:𝑘−1𝑪𝑘
𝑇)
.(8𝑑) 

 As these equations show, the AKF only attempts to correct for uncertainties by adapting 

noise covariances; model uncertainty is not specifically addressed, and model parameters are not 

revised throughout estimation. The resulting overconfidence potentially degrades estimation 

performance when model uncertainty is considerable. 

4.3 Simultaneous Estimation and Modeling 

4.3.1 Overview 

 An overview of the SEAM framework proposed in this paper is given by the block diagram 

in Fig. 1. The system is designed to accommodate two distinct parts: RBE (composed of model-
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estimating prediction and correction) and model correction. The proposed SEAM framework 

incorporates model uncertainty in prediction, as well as a model correction stage to compensate 

for increased sensitivity to observational noise. The following sections describe and formulate 

each of these original contributions in detail. 

4.3.2 Model Uncertainty Estimation 

 A target's discretized motion can generally be described as a function of its previous state, 

any applied inputs, and various intrinsic parameters as follows: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝚽𝑘−1),(9) 

where 𝚽𝑘−1 represents all relevant system model parameters. Assuming such a system can be 

linearized, the state mean can be predicted by Eq. (4a). Because there may be non-negligible 

uncertainty in model parameters, estimation based on an assumption of complete confidence in 

these variables yields poor results. For this reason, a special formulation of covariance propagation 

Figure 1. SEAM diagram. Shaded blocks designate original contributions detailed in section 4.3. 
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through prediction is proposed. By the rules of error propagation, the mean and covariance of a 

function containing linear combinations of variables 𝒙𝑖 with uncertainties 𝚺𝑥𝑖 are given by: 

𝑓 =∑𝑨𝑖𝒙𝑖

𝐼

𝑖=1

→ 𝑓̅ =∑𝑨𝑖�̅�𝑖

𝐼

𝑖=1

, 𝚺𝑓 =∑𝑨𝑖𝚺𝑥𝑖𝑨𝑖
𝑇

𝐼

𝑖=1

.(10) 

By expanding a 2-D case (see Appendix A), an improved equation for uncertainty in prediction is 

given by: 

𝚺𝑥𝑘|1:𝑘−1 = 𝚺𝑤𝑘−1 + �̅�𝑘−1𝚺𝑥𝑘−1|1:𝑘−1�̅�𝑘−1
𝑇 + �̅�𝑘−1𝚺𝑢𝑘−1�̅�𝑘−1

𝑇  

+𝚺𝐴𝑘−1𝒟(�̅�𝑘−1|1:𝑘−1
∘2 )𝚺𝐴𝑘−1

𝑇 + 𝚺𝐵𝑘−1𝒟(�̅�𝑘−1
∘2 )𝚺𝐵𝑘−1

𝑇 .(11) 

 In the above expression, 𝚺𝐴𝑘−1 and 𝚺𝐵𝑘−1 refer to the matrices containing the standard 

deviations of each element in 𝑨𝑘−1 and 𝑩𝑘−1, and �̅�𝑘−1 and �̅�𝑘−1 are matrices containing the 

means. The notation �̅�𝑘−1|1:𝑘−1
∘2  represents the element-wise square. Lastly, the operation 𝒟(•) 

diagonalizes its vector argument. As can be seen in Eq. (11), the proposed approach includes three 

terms which do not appear in traditional Kalman filters, an inclusion which can potentially reduce 

state error in the prediction step. While KFs provide an optimal solution for Gaussian filtering 

accounting for uncertainty in the state and for process and sensor noise, this framework also 

accounts for uncertainty in the state-space model parameters and the input vector. The proposed 

formulation coincides with the KF when the last three terms of Eq. (11) are zero (i.e. model 

parameters and inputs are known with complete certainty). 

 A consequence of this method of covariance propagation, since it avoids overconfidence 

with regards to estimating predicted state uncertainty, is that observation noise can more strongly 

affect state tracking. This motivates an additional model-updating stage which can improve both 

the motion model and its uncertainty, thereby enhancing certainty in prediction without the risk of 

overconfidence. 
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4.3.3 State Matrix Updating 

 Although a linearized system can be generally described by the combination of the state 

matrix 𝑨 and the input matrix 𝑩, the intrinsic dynamics of the physical target are governed by the 

state matrix. Because uncertainty in 𝑨 can have the greatest effect on accurate system 

identification, this will be the focus of motion model correction. 

 The method proposed to better map a state 

from time step 𝑘 − 1 to step 𝑘 seeks to match the 

predicted maximum likelihood point (MLP) to the 

corrected MLP. This incorporates belief reinforcement 

coming from an observation of the state at the new 

time step. The principle behind state matrix updating 

is demonstrated in Fig. 2. For strictly Gaussian PDFs, such as those dealt with here, the MLP is 

equivalent to the mean of the distribution.  In order to update the estimate �̅�𝑘−1 to �̅�𝑘  such that 

�̅�𝑘|1:𝑘−1 and �̅�𝑘|1:𝑘 differ minimally, the prediction mean given in Eq. (4a) is augmented by 

substituting �̅�𝑘|1:𝑘−1 with �̅�𝑘|1:𝑘  since the latter represents updated belief. The estimated state 

matrix to be updated, �̅�𝑘 , is also substituted in place of �̅�𝑘−1, and the following rearrangement is 

made (the vector �̅�𝑘 is introduced for conciseness in following derivations): 

�̅�𝑘�̅�𝑘−1|1:𝑘−1 = �̅�𝑘|1:𝑘 − �̅�𝑘−1�̅�𝑘−1 ≡ �̅�𝑘.(12) 

 Because the state matrix is 𝑁 ×𝑁 and both �̅�𝑘−1|1:𝑘−1 and �̅�𝑘 are 𝑁 × 1, where 𝑁 is the 

dimensionality of the state space, �̅�𝑘  is under-determined. To offer additional constraints required 

to solve for �̅�𝑘 , it is imposed that �̅�𝑘must differ minimally from its predecessor, �̅�𝑘−1. This 

criterion is governed by the mean-squared-error of all elements in �̅� as compared between steps 

𝑘 − 1 and 𝑘: 

Figure 2. Mapping of 1-D MLP from step 𝑘 − 1 to 𝑘. 
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𝑀𝑆𝐸 =
1

𝑁2
∑∑(�̅�𝑖𝑗

𝑘 − �̅�𝑖𝑗
𝑘−1)

2
𝑁

𝑗=1

𝑁

𝑖=1

.(13) 

Equations (12) and (13) can be solved in representative 2-D and 3-D cases, and from these results 

the updating of an 𝑁-D state matrix is given by: 

�̅�𝑘 =
�̅�𝑘−1(�̅�𝑘−1|𝑘−1 − �̅�𝑘−1|𝑘−1(𝟏 − 𝑰)�̅�𝑘−1|𝑘−1) + �̅�𝑘�̅�𝑘−1|𝑘−1

�̅�𝑘−1|1:𝑘−1
𝑇 �̅�𝑘−1|1:𝑘−1

.(14) 

(See Appendix for this derivation in the 3-D case.) The variables introduced in Eq. (14) are given 

as follows: 

�̅�𝑘−1|𝑘−1 =

[
 
 
 
 �̅�
(1)𝑇�̅�(1) 0 ⋯ 0

0 �̅�(2)
𝑇
�̅�(2) 0 0

⋮ 0 ⋱ ⋮

0 0 ⋯ �̅�(𝑗)
𝑇
�̅�(𝑗)]

 
 
 
 

,(15𝑎) 

�̅�𝑘−1|𝑘−1 = 𝒟(�̅�𝑘−1|1:𝑘−1),(15𝑏) 

�̅�𝑘 = [�̅�𝑘 �̅�𝑘 ⋯ �̅�𝑘],(15𝑐) 

𝟏 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

], (15𝑑) 

and �̅�(𝑗) is �̅�𝑘−1|1:𝑘−1 with element 𝑗 removed. Each of the matrices in Eqs. (15) has dimensionality 

𝑁 × 𝑁. Note that the solution given in Eq. (14) yields the traditional least-squares solution for the 

case where�̅�𝑘−1 = 𝟎. 

 In addition to updating the state matrix, it is also necessary to update its standard deviation 

matrix 𝚺𝐴 according to Eq. (11). 𝚺𝐴𝑘 is derived by applying error propagation to Eq. (14): 

𝚺𝐴𝑘 = (𝚺𝐶1𝑪2
2 + 𝐶1

2𝚺𝐶2)
1/2
,(16𝑎) 

𝐶1 =
1

�̅�𝑘−1|1:𝑘−1
𝑇 �̅�𝑘−1|1:𝑘−1

,(16𝑏) 

𝑪2 = [�̅�𝑘−1(�̅�𝑘−1|𝑘−1 − �̅�𝑘−1|𝑘−1(𝟏 − 𝑰)�̅�𝑘−1|𝑘−1) + �̅�𝑘�̅�𝑘−1|𝑘−1],(16𝑐) 
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𝚺𝐶1 =
�̅�𝑘−1|1:𝑘−1
𝑇 𝚺𝑥𝑘−1|1:𝑘−1�̅�𝑘−1|1:𝑘−1

(�̅�𝑘−1|1:𝑘−1
𝑇 �̅�𝑘−1|1:𝑘−1)

4 , (16𝑑) 

𝚺𝐶2 =∑𝑪𝑖

10

𝑖=3

,(16𝑒) 

𝑪3 = 𝚺𝐴𝑘−1
2 �̅�𝑘−1|𝑘−1

2 ,(16𝑓) 

𝑪4 = �̅�𝑘−1
2 𝚺𝒳𝑘−1|𝑘−1,(16𝑔) 

𝑪5 = 𝚺𝐴𝑘−1
2 (�̅�𝑘−1|𝑘−1𝟏�̅�𝑘−1|𝑘−1)

2
,(16ℎ) 

𝑪6 = �̅�𝑘−1
2 (𝚺𝑋𝑘−1|𝑘−1(𝟏�̅�𝑘−1|𝑘−1)

2
+ �̅�𝑘−1|𝑘−1

2 𝟏𝚺𝑋𝑘−1|𝑘−1).(16𝑖) 

𝑪7 = 𝚺𝐴𝑘−1
2 (�̅�𝑘−1|𝑘−1�̅�𝑘−1|𝑘−1)

2
,(16𝑗) 

𝑪8 = �̅�𝑘−1
2 (𝚺𝑋𝑘−1|𝑘−1�̅�

2
𝑘−1|𝑘−1 + �̅�𝑘−1|𝑘−1

2 𝚺𝑋𝑘−1|𝑘−1).(16𝑘) 

𝑪9 = 𝚺𝑄𝑘�̅�𝑘−1|𝑘−1
2 ,(16𝑙) 

𝑪10 = �̅�𝑘
2𝚺𝑋𝑘−1|𝑘−1.(16𝑚) 

 With the exception of 𝚺𝐴𝑘−1 and 𝚺𝑥𝑘−1|1:𝑘−1, the elements in each 𝚺 matrix are the variances 

of the corresponding elements in the mean matrix. Furthermore, each instance of an exponent 

implies element-wise operation. The uncertainty in �̅�𝑘  is determined by error propagation of 

�̅�𝑘|1:𝑘 − �̅�𝑘−1�̅�𝑘−1 in a manner similar to the derivation of Eq. (11): 

𝚺𝑞𝑘 = 𝚺𝑥𝑘|1:𝑘 + �̅�𝑘−1𝚺𝑢𝑘−1�̅�𝑘−1
𝑇 + 𝚺𝐵𝒟(�̅�𝑘−1

∘2 )𝚺𝐵
𝑇 ,(17) 

and the matrix 𝚺𝑄𝑘  is populated by only the diagonal variance terms in 𝚺𝑞𝑘at their appropriate 

positions according to the assembly of �̅�𝑘. 

 To both prevent diverging values of the elements in �̅� and ensure that 𝚺𝐴 continually 

decreases, the state matrix estimates at steps 𝑘 − 1 and𝑘  are fused by taking their weighted 
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averages. The final state matrix and its uncertainty characteristic are denoted �̅�𝑘′ and 𝚺𝐴𝑘′, whose 

elements are given below: 

�̅�𝑖𝑗
𝑘 ′ =

�̅�𝑖𝑗
𝑘 𝜎

𝑎𝑖𝑗
𝑘−1
2 + �̅�𝑖𝑗

𝑘−1𝜎
𝑎𝑖𝑗
𝑘
2

𝜎
𝑎𝑖𝑗
𝑘−1
2 + 𝜎

𝑎𝑖𝑗
𝑘
2 ,(18𝑎) 

𝜎
𝑎𝑖𝑗
𝑘
′ = √

𝜎
𝑎𝑖𝑗
𝑘−1
2 𝜎

𝑎𝑖𝑗
𝑘
2

𝜎
𝑎𝑖𝑗
𝑘−1
2 + 𝜎

𝑎𝑖𝑗
𝑘
2 .(18𝑏) 

After prediction, observation, correction, and model correction, each of which occurs at every time 

step, the output parameters are fed back to initialize the next RBE step. 

 As several of the presented equations contain state vector norms in their denominators, it 

is important to note the behavior of the proposed estimator as a system's state approaches zero. 

Because Eqs. (18) cause �̅�𝑖𝑗
𝑘  to be weighted less heavily than �̅�𝑖𝑗

𝑘−1, the contribution of the model 

correction stage goes to zero as 𝑘 tends to infinity. Therefore, any numerically ill-posed 

computation is avoided. If a state is motionless (i.e. �̅�𝑘−1|1:𝑘−1 = 𝟎) at any time before 𝑘 becomes 

sufficiently large, the problem is trivial since obtaining improved model parameters would be 

impossible by any method. 

4.4 Results and Validation 

4.4.1 Simulated Experiment Description 

 In many dynamic systems composed of multiple moving parts, especially robotic devices, 

motion often exhibits damped oscillatory characteristics. For this reason, a simple mass-spring-

damper (MSD) model was used for simulation in evaluating the performance of SEAM. Fig. 3 
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illustrates an MSD with mass 𝑚, spring constant 𝑘, damping 

constant 𝑏, and an arbitrary input displacement 𝑢(𝑡). A 2-D 

continuous state equation describing this system is: 

[
�̇�1
�̇�2
] = [

0 1

−
𝑘

𝑚
−
𝑏

𝑚

] [
𝑥1
𝑥2
] + [

0 0
𝑘

𝑚

𝑏

𝑚

] [
𝑢1
𝑢2
] ,(19) 

where 𝑥1 = 𝑥(𝑡), 𝑥2 = �̇�(𝑡), 𝑢1 = 𝑢(𝑡), and 𝑢2 = �̇�(𝑡). From 

inspection of Eq. (19), the motion model parameters are given 

by 𝑨𝑡 = [
0 1

−
𝑘

𝑚
−

𝑏

𝑚

] and 𝑩𝑡 = [
0 0
𝑘

𝑚

𝑏

𝑚

]. The subscript 𝑡 

denotes that these are the continuous-time state space matrices, in this example constant for all 

time 𝑡. It is implicitly assumed that 𝑪 = 𝑰 and𝑫 = 𝟎. The mean state matrix 𝑨𝑡 and output matrix 

𝑩𝑡 are given by the equations above, using the means of the parameters that compose them. By 

error propagation of the formulas for 𝑨𝑡 and 𝑩𝑡, the standard deviation matrices 𝚺𝐴𝑡 and 𝚺𝐵𝑡 are 

found to be: 

𝚺𝐴𝑡 = 𝚺𝐵𝑡 = [

0 0

�̅�

�̅�
√(
𝜎𝑘

�̅�
)
2

+ (
𝜎𝑚
�̅�
)
2 �̅�

�̅�
√(
𝜎𝑏

�̅�
)
2

+ (
𝜎𝑚
�̅�
)
2].(20) 

 The continuous-time state space matrices are transformed into discrete-time for RBE using 

the relationships �̅�𝑘 = 𝑒
Δ𝑡�̅�𝑡 and �̅�𝑘 = (�̅�𝑘 − 𝑰)�̅�𝑡

−1�̅�𝑡. To determine the corresponding standard 

deviation matrices 𝚺𝐴 and 𝚺𝐵, the approximations  �̅�𝑘 ≅ 𝑰 + Δ𝑡�̅�𝑡  and �̅�𝑘 ≅ ∆𝑡�̅�𝑡 are exploited. 

Uncertainty propagation of these formulas yields, for sufficiently small Δ𝑡, 

𝚺𝐴𝑘 ≅ Δ𝑡𝚺𝐴𝑡 ,(21𝑎) 

𝚺𝐵𝑘 ≅ Δ𝑡𝚺𝐵𝑡 .                                                        (21b) 

 The elements of the ground-truth motion model matrices were chosen by a Gaussian 

random variable generator with means and standard deviations given by �̅�, �̅�, 𝚺𝐴 and 𝚺𝐵. The 

Figure 3. MSD model for validation 
simulation. 
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same was done for the initial conditions 𝒙0. The system was simulated with the parameter values 

given in Table 1. 

Table 1. Constant parameters 

�̅� �̅� �̅� Δ𝑡 �̅�0 𝚺𝑥0 𝚺𝑤𝑘 

10 2 5 0.05 [
10
0
] [ 0.7

2 0.112

0.112 0.92
] [ 0.011

2 0.00072

0.00072 0.0162
] 

 Noisy observations were simulated by adding zero-mean Gaussian noise to the ground truth 

signals, with constant covariance given by 𝚺𝑣. State motion 𝒙 = [𝑥(𝑡) �̇�(𝑡)]𝑇 was tracked from 

𝑡 = 0 to 10 seconds (𝑘 = 0 to 200) with an LKF, AKF, and SEAM both without and with model 

correction. Parameters were held constant across the three processes in each experiment. 

4.4.2 Initial-Value (Unforced Response) Comparisons 

 To first observe estimation performance on the system's initial value response, the input 

vector 𝒖𝑘  and its uncertainty 𝚺𝑢𝑘 were set to zero for all time. To concisely vary the model 

uncertainty metric, the ratio of the standard deviations 𝜎 of the three physical parameters 𝑘, 𝑏, and 

𝑚 to their means 𝜇 was varied from 5% to 25%. The sensor covariance matrix 𝚺𝑣 was varied over 

four arbitrarily chosen increasing values. State tracking was simulated for each pair of values 500 

times, and the RMSEs of the resulting state trajectories were used to determine a winner in each 

trial. Table 2 shows the percentage of wins for each estimator and each pair of parameter values. 

The four processes examined are labeled “LKF”, “AKF”, “S-” for SEAM without model correction 

(Eq. (11) only), and “S+” for SEAM with model updating according to Eqs. (12)-(18). 
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Table 2. Percentage of wins in 5,000 simulations for the Kalman filter, SEAM without model-updating, and SEAM with model-

updating across varied sensor and model uncertainty parameters 

 Sensor Uncertainty, 𝚺𝑣  

M
o
d
el

 U
n
ce

rt
ai

n
ty

, 
𝜎 𝜇

 

 [ 0. 1
2 0.042

0.042 0.082
] [ 0. 5

2 0.152

0.152 0.32
] [0. 7

2 0.42

0.42 0.632
] [ 1

2 0.62

0.62 1.22
] 

 LKF AKF S- S+ LKF AKF S- S+ LKF AKF S- S+ LKF AKF S- S+ 

5% 65% 6% 1% 28% 61% 0% 7% 32% 60% 1% 9% 30% 54% 1% 17% 28% 

10% 37% 5% 3% 55% 32% 1% 12% 55% 25% 1% 28% 46% 29% 1% 34% 36% 

15% 23% 4% 6% 67% 14% 1% 16% 69% 15% 1% 32% 53% 13% 0% 45% 42% 

20% 14% 2% 8% 76% 8% 0% 17% 75% 9% 1% 30% 60% 9% 1% 49% 41% 

25% 8% 3% 18% 71% 5% 1% 16% 78% 6% 0% 32% 62% 5% 1% 44% 50% 

 As the table shows, increasing model uncertainty such that the 
𝜎

𝜇
 ratio exceeds 

approximately 5% results in SEAM outperforming the LKF and AKF in the majority of cases. 

Furthermore, even removing the model-updating component of SEAM resulted in better 

performance than the LKF and AKF in each case where the 
𝜎

𝜇
 ratio was above 15% and sensor 

noise was appreciable. It is important to note that, as 
𝜎

𝜇
 increased, the performance of all estimators 

decreased; however, the decrease in performance of the SEAM estimators was less than that of the 

Kalman filters, as expected. The AKF often under-performed, likely due to poor conditioning of 

the covariance matrices. However, as expected, it did tend to outperform the LKF when sensor 

and process covariance converged in a reasonable fashion. The LKF tends to outperform when the 

state-space motion model happens to be accurately estimated at 𝑘 = 0, due to the overconfidence 

reflected in fast convergence of uncertainty under this technique. Representative plots from two 

simulations are given in figures 4 and 5. 
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 Another revealing characteristic of SEAM can be seen when the elements of the state 

matrix are plotted over time. Representative plots are shown in Fig. 6. Because the first two 

elements of the state matrix are constant properties coming from the choice of states and therefore 

have no uncertainty, only 𝑎21 and 𝑎22 are plotted. As the figure shows, the initial estimates of the 

state matrix elements stochastically improve towards the ground-truth value as a consequence of 

model updating. These corrected parameters yield better estimation when compared to the LKF 

and AKF which use a poor estimate of 𝑨. 

 

Figure 4. State-space and error plots of simulation where 
𝜎

𝜇
 and 𝜮𝑣 correspond to upper-left-most combination in Table 2. 

Figure 5. State-space and error plots of simulation where 
𝜎

𝜇
 and 𝜮𝑣 correspond to lower-right-most combination in Table 2. 
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4.4.3 Forced Response Comparisons 

 Because SEAM is designed to account for uncertainty not only in the state-space matrices 

𝑨 and 𝑩 but also the input vector 𝒖, validation would be incomplete without some forced response 

comparisons. The input displacement applied to the MSD system was a unity-amplitude sine wave 

with frequency of 1 Hz. 

 The above simulations were repeated with the same parameter values as those given in 

Table 1. This time, rather than varying sensor noise, input noise was arbitrarily varied for the same 

𝜎

𝜇
 ratios. 𝚺𝑣 was held constant at [ 0. 5

2 0.152

0.152 0.32
]. Table 3 shows the results of these experiments, 

Figure 6. State matrix elements' adjustments due to model correction. 

Figure 7. Simulation where 
𝜎

𝜇
= 5%, 𝜮𝑣 = [

0.12 0.042

0.042 0.082
], and 𝜮𝑢 = [

5.42 2.92

2.92 4.62
]. 
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where again 500 simulations were executed per combination of parameters. Fig. 7 is included for 

visualization of a sample simulation. 

Table 3. Percentage of wins in 500 simulations for LKF, AKF, and SEAM estimators across varied input and model uncertainty 

parameters 

 Input Uncertainty, 𝚺𝑢  

M
o
d
el

 U
n
ce

rt
ai

n
ty

, 
𝜎 𝜇

 

 [ 0. 1
2 0.042

0.042 0.082
] [ 0. 5

2 0.152

0.152 0.32
] [0. 7

2 0.42

0.42 0.632
] [ 1

2 0.62

0.62 1.22
] 

 LKF AKF S- S+ LKF AKF S- S+ LKF AKF S- S+ LKF AKF S- S+ 

5% 31% 1% 33% 35% 1% 1% 48% 50% 0% 0% 61% 39% 0% 0% 57% 43% 

10% 16% 1% 26% 57% 1% 1% 41% 57% 0% 0% 53% 47% 0% 0% 57% 43% 

15% 14% 1% 12% 73% 1% 1% 26% 72% 0% 0% 43% 57% 0% 0% 55% 45% 

20% 5% 0% 12% 83% 1% 0% 19% 80% 0% 0% 35% 65% 0% 0% 59% 41% 

25% 3% 1% 9% 87% 1% 1% 14% 84% 0% 0% 31% 69% 0% 0% 59% 41% 

 As the table shows, SEAM always outperforms the AKF and LKF when subject to 

substantial input uncertainty, as the latter two methods over-smooth the estimated signal. A 

noteworthy observation is that for high 𝚺𝑢, the average RMSEs of S- and S+ become identical 

since convergence of 𝚺𝐴 has a minimal effect in comparison with the much larger 𝚺𝑢. Therefore, 

adding the model correction stage does not compromise the quality of state estimation as compared 

to SEAM without model correction. 

 For completeness in assessing this framework, mention must be made of the computational 

demand associated with the proposed contributions. The computational burden of the first 

contribution of Eq. (11) relative to a traditional Kalman filter is negligible. The proposed model 

correction step of section 4.3.3 adds an average of only 98 microseconds per time step, as the 

closed-form matrix operations involved are done efficiently and without need for iteration or 

optimization. An average 500-simulation trial takes only 70 seconds to process on a non-dedicated 
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Intel i7 processor; considering that each trial covers 10 simulated seconds and a real-time 

simulation would break even at 5,000 seconds, SEAM can be easily applied online. 

 A limitation of the proposed framework as demonstrated by these experiments is the 

inefficiency of model parameter correction. Oftentimes, while model parameters can be improved, 

convergence to ground-truth does not happen quickly. Furthermore, any inaccuracies in the model 

parameters of the input matrix 𝑩 will not be rectified since the formulations of section 4.3.3 apply 

only to the state matrix. Finally, while SEAM improves estimation relative to conventional 

methods for high model parameter uncertainty, Table 2 makes it clear that KFs perform better when 

uncertainty is low, as these filters are more effective at signal smoothing. 

4.5 Conclusions and Future Work 

 This paper has presented a state tracking framework for handling Gaussian belief that 

properly accounts for uncertainty in the underlying motion model. Because this approach avoids 

overconfidence in prediction, there is greater sensitivity to sensor noise. As a result, this work 

proposed a second stage for state matrix correction, which both improves the estimate of motion 

model parameters and reduces their uncertainty. These two stages symbiotically integrate to 

comprise the SEAM framework presented and validated in this paper. 

 As expected in simulation, state tracking performance was considerably improved in 

circumstances with high system uncertainty. This is because the proposed approach effectively 

shifts dependence from prediction to observation in a way that accurately reflects a lack of 

confidence in the predictive model. Furthermore, incorporating a model correction stage resulted 

in even further improvement in estimation, as this allowed the estimated means of model 

parameters to be continuously adapted and the associated uncertainties reduced. 
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 The following future research topics arising from this work are currently being 

investigated. SEAM in the presented from requires Gaussian belief, which may not always be 

capable of adequately representing state belief [7]. As such, non-Gaussian methods are being 

developed. Additionally, state tracking may be improved to some extent by the development of an 

input-matrix correction stage. Further investigation of the capability of SEAM is warranted for 

highly nonlinear systems [25] where linearization is ineffective. In addition, we postulate that 

applying SEAM to the observation stage of RBE could improve both state estimation and sensor 

model parameter estimates. Advances in these areas could ultimately remove the need for initial 

models altogether, which would be a significant achievement towards a robotic system-learning 

platform. SDG 
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4.7 Appendix 

[Section 4.3.2] 

Consider the simplest multi-dimensional case where the state, input, and noise vectors are 2-D: 

[
𝑥1
𝑘|𝑘−1

𝑥2
𝑘|𝑘−1

] = [
𝑎11
𝑘−1 𝑎12

𝑘−1

𝑎21
𝑘−1 𝑎22

𝑘−1
] [
𝑥1
𝑘−1|𝑘−1

𝑥2
𝑘−1|𝑘−1

] + [
𝑏11
𝑘−1 𝑏12

𝑘−1

𝑏21
𝑘−1 𝑏22

𝑘−1
] [
𝑢1
𝑘−1

𝑢2
𝑘−1

] + [
𝑤1
𝑘−1

𝑤2
𝑘−1

]. 

By expanding the above equation, the following result is obtained: 

[
𝑥1
𝑘|𝑘−1

𝑥2
𝑘|𝑘−1

] = [
𝑎11
𝑘−1𝑥1

𝑘−1|𝑘−1
+ 𝑎12

𝑘−1𝑥2
𝑘−1|𝑘−1

+𝑏11
𝑘−1𝑢1

𝑘−1 + 𝑏12
𝑘−1𝑢2

𝑘−1 + 𝑤1
𝑘−1

𝑎21
𝑘−1𝑥1

𝑘−1|𝑘−1
+ 𝑎22

𝑘−1𝑥2
𝑘−1|𝑘−1

+𝑏21
𝑘−1𝑢1

𝑘−1 + 𝑏22
𝑘−1𝑢2

𝑘−1 + 𝑤2
𝑘−1

]. 

Following error propagation in 1-D, 
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[
𝜎
𝑥1
𝑘|𝑘−1
2

𝜎
𝑥2
𝑘|𝑘−1
2 ] =

[
 
 
 
 
 
𝜎
𝑤1
𝑘−1
2 +∑((�̅�1𝑖

𝑘−1)
2
𝜎
𝑥𝑖
𝑘−1|𝑘−1
2 + (�̅�1𝑖

𝑘−1)
2
𝜎
𝑢𝑖
𝑘−1
2 )

2

𝑖=1

+∑((�̅�𝑖
𝑘−1|𝑘−1

)
2

𝜎
𝑎1𝑖
𝑘−1
2 + (�̅�𝑖

𝑘−1)
2
𝜎
𝑏1𝑖
𝑘−1
2 )

2

𝑖=1

𝜎
𝑤2
𝑘−1
2 +∑((�̅�2𝑗

𝑘−1)
2
𝜎
𝑥𝑗
𝑘−1|𝑘−1
2 + (�̅�2𝑗

𝑘−1)
2
𝜎
𝑢𝑗
𝑘−1
2 )

2

𝑗=1

+∑((�̅�𝑗
𝑘−1|𝑘−1

)
2

𝜎
𝑎2𝑗
𝑘−1
2 + (�̅�𝑗

𝑘−1)
2
𝜎
𝑏2𝑗
𝑘−1
2 )

2

𝑗=1 ]
 
 
 
 
 

. 

With simplification to the matrix form, the above expression becomes: 

[
𝜎
𝑥1
𝑘|𝑘−1
2

𝜎
𝑥2
𝑘|𝑘−1
2 ] = [

𝜎
𝑤1
𝑘−1

2

𝜎
𝑤2
𝑘−1

2 ] + [
�̅�11
𝑘−12 �̅�12

𝑘−12

�̅�21
𝑘−12 �̅�22

𝑘−12
] [
𝜎
𝑥1
𝑘−1|𝑘−1
2

𝜎
𝑥2
𝑘−1|𝑘−1
2 ] + [

�̅�11
𝑘−12 �̅�12

𝑘−12

�̅�21
𝑘−12 �̅�22

𝑘−12
] [
𝜎
𝑢1
𝑘−1
2

𝜎
𝑢2
𝑘−1
2 ] 

+ [
𝜎
𝑎11
𝑘−1
2 𝜎

𝑎12
𝑘−1
2

𝜎
𝑎21
𝑘−1
2 𝜎

𝑎22
𝑘−1
2 ] [

�̅�1
𝑘−1|𝑘−12

�̅�2
𝑘−1|𝑘−12

] + [
𝜎
𝑏11
𝑘−1
2 𝜎

𝑏12
𝑘−1
2

𝜎
𝑏21
𝑘−1
2 𝜎

𝑏22
𝑘−1
2 ] [

�̅�1
𝑘−12

�̅�2
𝑘−12

]. 

The consequence of this approach is that the output variance characteristic 𝝈
𝑥𝑘|𝑘−1
2 = [

𝜎
𝑥1
𝑘|𝑘−1
2

𝜎
𝑥2
𝑘|𝑘−1
2 ] is 

a 2-by-1 variance vector rather than a full 2-by-2 covariance matrix. Nevertheless, some insight is 

gained. In a more concise form, this expression can be written as: 

𝑑𝑖𝑎𝑔 (𝚺𝑥𝑘|𝑘−1) = �̅�𝑘−1 ∘ �̅�𝑘−1𝑑𝑖𝑎𝑔 (𝚺𝑥𝑘−1|𝑘−1) + �̅�𝑘−1 ∘ �̅�𝑘−1𝑑𝑖𝑎𝑔(𝚺𝑢𝑘−1) 

+(𝚺𝐴 ∘ 𝚺𝐴)(�̅�𝑘−1|𝑘−1 ∘ �̅�𝑘−1|𝑘−1) + (𝚺𝐵 ∘ 𝚺𝐵)(�̅�𝑘−1 ∘ �̅�𝑘−1) + 𝑑𝑖𝑎𝑔(𝚺𝑤𝑘−1) 

where the notation 𝑑𝑖𝑎𝑔(∙) denotes the extraction of the diagonal of a matrix and ∘ indicates the 

Hadamard element-wise matrix product. A critical note is that the matrices 𝚺𝐴 and 𝚺𝐵 now refer 

to the matrices containing the standard deviations of each element in 𝑨 and 𝑩. It was previously 

shown that the first two terms of this equation have a full-covariance form given by 

�̅�𝑘−1𝚺𝑥𝑘−1|𝑘−1�̅�𝑘−1
𝑇  and �̅�𝑘−1𝚺𝑢𝑘−1�̅�𝑘−1

𝑇 , respectively. The diagonal elements of the 2-by-2 

covariance matrices equal the corresponding values of the 2-by-1 variance vector above. With 

regards to the third and fourth term of the expression, a full-covariance form can be estimated by 

replacing �̅�𝑘−1|𝑘−1 ∘ �̅�𝑘−1|𝑘−1 and �̅�𝑘−1 ∘ �̅�𝑘−1 with diagonal matrices containing the squared 
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scalar values of the corresponding vectors at the appropriate diagonal locations. Stated 

mathematically, 

𝒟(�̅�𝑘−1|𝑘−1 ∘ �̅�𝑘−1|𝑘−1) = [

(�̅�𝑘−1|𝑘−1
1 )

2
0 0

0 (�̅�𝑘−1|𝑘−1
2 )

2
0

0 0 ⋱

] 

where the notation 𝒟(∙) casts the vector argument into a diagonal matrix. By doing this, covariance 

(off-diagonal) elements are introduced while the variance (diagonal) elements remain the same as 

in the 2-by-1 case. 

[Section 4.3.3] 

Consider the 3-D representation of equations (15) and (16). Explicitly written, these give: 

[

�̅�11
𝑘 �̅�12

𝑘 �̅�13
𝑘

�̅�21
𝑘 �̅�22

𝑘 �̅�23
𝑘

�̅�31
𝑘 �̅�32

𝑘 �̅�33
𝑘

] [

�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

] = [

�̅�1
𝑘

�̅�2
𝑘

�̅�3
𝑘

] ,

�̅�11
𝑘 =

�̅�1
𝑘

�̅�1
𝑘−1|𝑘−1

− �̅�12
𝑘
�̅�2
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

− �̅�13
𝑘
�̅�3
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

�̅�22
𝑘 =

�̅�2
𝑘

�̅�2
𝑘−1|𝑘−1

− �̅�21
𝑘
�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

− �̅�23
𝑘
�̅�3
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

�̅�33
𝑘 =

�̅�3
𝑘

�̅�3
𝑘−1|𝑘−1

− �̅�31
𝑘
�̅�1
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

− �̅�32
𝑘
�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

, 

𝑀𝑆𝐸 =
1

9
[(�̅�11

𝑘 − �̅�11
𝑘−1)

2
+ (�̅�12

𝑘 − �̅�12
𝑘−1)

2
+ (�̅�13

𝑘 − �̅�13
𝑘−1)

2
+ (�̅�21

𝑘 − �̅�21
𝑘−1)

2
+ (�̅�22

𝑘 − �̅�22
𝑘−1)

2

+ (�̅�23
𝑘 − �̅�23

𝑘−1)
2
+ (�̅�31

𝑘 − �̅�31
𝑘−1)

2
+ (�̅�32

𝑘 − �̅�32
𝑘−1)

2
+ (�̅�33

𝑘 − �̅�33
𝑘−1)

2
]. 

Substitution of the three first equations into the 𝑀𝑆𝐸 equation yields the following expression after 

grouping by powers of �̅�𝑖𝑗
𝑘 : 

𝑀𝑆𝐸 =
1

9
[𝐶1�̅�12

𝑘 2
+ 𝐶2�̅�12

𝑘 + 𝐶3�̅�12
𝑘 �̅�13

𝑘 + 𝐶4�̅�13
𝑘 + 𝐶5�̅�13

𝑘 2
+ 𝐶6�̅�21

𝑘 2
+ 𝐶7�̅�21

𝑘 + 𝐶8�̅�21
𝑘 �̅�23

𝑘

+ 𝐶9�̅�23
𝑘 + 𝐶10�̅�23

𝑘 2
+ 𝐶11�̅�31

𝑘 2
+ 𝐶12�̅�31

𝑘 + 𝐶13�̅�31
𝑘 �̅�32

𝑘 + 𝐶14�̅�32
𝑘 + 𝐶15�̅�32

𝑘 2

+ 𝐶16], 
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𝐶1 = ((
�̅�2
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶2 = 2(�̅�11
𝑘−1

�̅�2
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

− �̅�1
𝑘
�̅�2
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−12

− �̅�12
𝑘−1), 

𝐶5 = ((
�̅�3
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶4 = 2(�̅�11
𝑘−1

�̅�3
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−1

− �̅�1
𝑘
�̅�3
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−12

− �̅�13
𝑘−1), 

𝐶6 = ((
�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶7 = 2(�̅�22
𝑘−1

�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

− �̅�2
𝑘
�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−12

− �̅�21
𝑘−1), 

𝐶10 = ((
�̅�3
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶9 = 2(�̅�22
𝑘−1

�̅�3
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

− �̅�2
𝑘
�̅�3
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−12

− �̅�23
𝑘−1), 

𝐶11 = ((
�̅�1
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶12 = 2(�̅�33
𝑘−1

�̅�1
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

− �̅�3
𝑘
�̅�1
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−12

− �̅�31
𝑘−1), 

𝐶15 = ((
�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

)

2

+ 1) , 𝐶14 = 2(�̅�33
𝑘−1

�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

− �̅�3
𝑘
�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−12

− �̅�32
𝑘−1), 

𝐶3 = 2
�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

�̅�1
𝑘−1|𝑘−12

, 𝐶8 = 2
�̅�1
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−12

, 𝐶13 = 2
�̅�1
𝑘−1|𝑘−1

�̅�2
𝑘−1|𝑘−1

�̅�3
𝑘−1|𝑘−12

, 

𝐶16 = (
�̅�1
𝑘

�̅�1
𝑘−1|𝑘−1

− �̅�11
𝑘−1)

2

+ (
�̅�2
𝑘

�̅�2
𝑘−1|𝑘−1

− �̅�22
𝑘−1)

2

+ (
�̅�3
𝑘

�̅�3
𝑘−1|𝑘−1

− �̅�33
𝑘−1)

2

 

+�̅�12
𝑘−12 + �̅�13

𝑘−12 + �̅�21
𝑘−12 + �̅�23

𝑘−12 + �̅�31
𝑘−12 + �̅�32

𝑘−12. 

Setting these to zero yields the following sets of linear equations: 

[
2𝐶1 𝐶3
𝐶3 2𝐶5

] [
�̅�12
𝑘

�̅�13
𝑘
] = [

−𝐶2
−𝐶4

], 

[
2𝐶6 𝐶8
𝐶8 2𝐶10

] [
�̅�21
𝑘

�̅�23
𝑘
] = [

−𝐶7
−𝐶9

], 
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[
2𝐶11 𝐶13
𝐶13 2𝐶15

] [
�̅�31
𝑘

�̅�32
𝑘
] = [

−𝐶12
−𝐶14

]. 

Solving for the variables of interest, 

�̅�12
𝑘 =

−2𝐶2𝐶5 + 𝐶3𝐶4
4𝐶1𝐶5 − 𝐶3

2 , �̅�13
𝑘 =

−2𝐶1𝐶4 + 𝐶3𝐶2
4𝐶1𝐶5 − 𝐶3

2 , �̅�21
𝑘 =

−2𝐶10𝐶7 + 𝐶8𝐶9
4𝐶6𝐶10 − 𝐶8

2 , 

�̅�23
𝑘 =

−2𝐶6𝐶9 + 𝐶8𝐶7
4𝐶6𝐶10 − 𝐶8

2 , �̅�31
𝑘 =

−2𝐶15𝐶12 + 𝐶13𝐶14
4𝐶11𝐶15 − 𝐶13

2 , �̅�32
𝑘 =

−2𝐶11𝐶14 + 𝐶13𝐶12
4𝐶11𝐶15 − 𝐶13

2 . 

By substitution, cancellation, and grouping, these become: 

�̅�12
𝑘 =

(�̅�1
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

) �̅�12
𝑘−1 − �̅�1

𝑘−1|𝑘−1
�̅�2
𝑘−1|𝑘−1

�̅�11
𝑘−1 − �̅�3

𝑘−1|𝑘−1
�̅�2
𝑘−1|𝑘−1

�̅�13
𝑘−1 + �̅�2

𝑘−1|𝑘−1
𝑞1
𝑘

�̅�1
𝑘−1|𝑘−12

+�̅�2
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

, 

�̅�13
𝑘 =

(�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

) �̅�13
𝑘−1 − �̅�1

𝑘−1|𝑘−1
�̅�3
𝑘−1|𝑘−1

�̅�11
𝑘−1 − �̅�2

𝑘−1|𝑘−1
�̅�3
𝑘−1|𝑘−1

�̅�12
𝑘−1 + �̅�3

𝑘−1|𝑘−1
𝑞1
𝑘

�̅�1
𝑘−1|𝑘−12

+�̅�2
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

, 

�̅�21
𝑘 =

(�̅�2
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

) �̅�21
𝑘−1 − �̅�2

𝑘−1|𝑘−1
�̅�1
𝑘−1|𝑘−1

�̅�22
𝑘−1 − �̅�3

𝑘−1|𝑘−1
�̅�1
𝑘−1|𝑘−1

�̅�23
𝑘−1 + �̅�1

𝑘−1|𝑘−1
𝑞2
𝑘

�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

+�̅�3
𝑘−1|𝑘−12

, 

�̅�23
𝑘 =

(�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

) �̅�23
𝑘−1 − �̅�1

𝑘−1|𝑘−1
�̅�3
𝑘−1|𝑘−1

�̅�21
𝑘−1 − �̅�2

𝑘−1|𝑘−1
�̅�3
𝑘−1|𝑘−1

�̅�22
𝑘−1 + �̅�3

𝑘−1|𝑘−1
𝑞2
𝑘

�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

+�̅�3
𝑘−1|𝑘−12

, 

�̅�31
𝑘 =

(�̅�2
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

) �̅�31
𝑘−1 − �̅�2

𝑘−1|𝑘−1
�̅�1
𝑘−1|𝑘−1

�̅�32
𝑘−1 − �̅�3

𝑘−1|𝑘−1
�̅�1
𝑘−1|𝑘−1

�̅�33
𝑘−1 + �̅�1

𝑘−1|𝑘−1
𝑞3
𝑘

�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

+�̅�3
𝑘−1|𝑘−12

, 

�̅�32
𝑘 =

(�̅�1
𝑘−1|𝑘−12

+ �̅�3
𝑘−1|𝑘−12

) �̅�32
𝑘−1 − �̅�1

𝑘−1|𝑘−1
�̅�2
𝑘−1|𝑘−1

�̅�31
𝑘−1 − �̅�3

𝑘−1|𝑘−1
�̅�2
𝑘−1|𝑘−1

�̅�33
𝑘−1 + �̅�2

𝑘−1|𝑘−1
𝑞3
𝑘

�̅�1
𝑘−1|𝑘−12

+ �̅�2
𝑘−1|𝑘−12

+�̅�3
𝑘−1|𝑘−12

. 

In order to prove that the above solutions minimize the mean-squared-error, the multi-variable 

second derivative test is carried out. The Hessian matrix of the MSE is given as: 
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𝑯𝑀𝑆𝐸 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 2

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 𝜕�̅�12

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 𝜕�̅�12

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 𝜕�̅�12

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 𝜕�̅�12

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 𝜕�̅�12

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 𝜕�̅�13

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 2

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 𝜕�̅�13

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 𝜕�̅�13

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 𝜕�̅�13

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 𝜕�̅�13

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 𝜕�̅�21

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 𝜕�̅�21

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 2

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 𝜕�̅�21

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 𝜕�̅�21

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 𝜕�̅�21

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 𝜕�̅�23

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 𝜕�̅�23

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 𝜕�̅�23

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 2

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 𝜕�̅�23

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 𝜕�̅�23

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 𝜕�̅�31

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 𝜕�̅�31

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 𝜕�̅�31

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 𝜕�̅�31

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 2

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 𝜕�̅�31

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�12
𝑘 𝜕�̅�32

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�13
𝑘 𝜕�̅�32

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�21
𝑘 𝜕�̅�32

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�23
𝑘 𝜕�̅�32

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�31
𝑘 𝜕�̅�32

𝑘

𝜕2𝑀𝑆𝐸

𝜕�̅�32
𝑘 2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

evaluated at the values determined for �̅�12
𝑘 , �̅�13

𝑘 , �̅�21
𝑘 ,�̅�23

𝑘 , �̅�31
𝑘 , and �̅�32

𝑘 . This reduces to: 

𝑯𝑀𝑆𝐸 =

[
 
 
 
 
 
2𝐶1 𝐶3 0 0 0 0

𝐶3 2𝐶5 0 0 0 0

0 0 2𝐶6 𝐶8 0 0

0 0 𝐶8 2𝐶10 0 0

0 0 0 0 2𝐶11 𝐶13
0 0 0 0 𝐶13 2𝐶15]

 
 
 
 
 

. 

The eigenvalues of 𝑯𝑀𝑆𝐸  are found to be positive for all real �̅�𝑘−1|𝑘−1: 

𝝀𝐻𝑀𝑆𝐸 = 2

[
 
 
 
 
 
 
 
 
 
 
 

1
1
1

(
‖�̅�𝑘−1|𝑘−1‖2
�̅�1
𝑘−1|𝑘−1

)

2

(
‖�̅�𝑘−1|𝑘−1‖2
�̅�2
𝑘−1|𝑘−1

)

2

(
‖�̅�𝑘−1|𝑘−1‖2
�̅�3
𝑘−1|𝑘−1 )

2

]
 
 
 
 
 
 
 
 
 
 
 

, 

from which it is apparent that the Hessian matrix is positive definite and the values given for each 

of the elements of interest minimize the mean-square-error. The final three elements of �̅�𝑘  are then 

found. From observation of the 3-D trends, the general 𝑁-D formula is then given as: 
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�̅�𝑖𝑗
𝑘 =

(∑ �̅�𝑛
𝑘−1|𝑘−12𝑁

𝑛=1,𝑛≠𝑗 ) �̅�𝑖𝑗
𝑘−1 − (∑ �̅�𝑛

𝑘−1|𝑘−1�̅�𝑗
𝑘−1|𝑘−1

�̅�𝑖𝑛
𝑘−1𝑁

𝑛=1,𝑛≠𝑗 ) + �̅�𝑗
𝑘−1|𝑘−1

�̅�
𝑖
𝑘

‖�̅�𝑘−1|𝑘−1‖2
2 , 

 

and the matrix-form can be readily extracted as given in the text. 
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CHAPTER 5. Probabilistic Non-Gaussian Motion Model Correction 

5.1 Introduction 

5.1.1 Background 

 As technology has developed, the widening range of capabilities of autonomous systems 

has continued to impress and astonish. These developments are largely afforded by recent 

emphases on probabilistic estimation methods in engineering communities. Increasingly difficult 

problems facing the fields of robotics, automation, information fusion, and the like mandate 

accurate estimation in circumstances where sensor noise is complex and potentially non-Gaussian. 

Furthermore, because motion prediction is a valuable tool in many automation contexts, accurate 

probabilistic motion modeling has become progressively important for numerous estimation 

applications. 

5.1.2 Related Work 

 Traditional recursive Bayesian estimation (RBE) consists of a prediction stage, an 

observation stage, and a correction (or updating) stage [1], [2]. Prediction requires an adequate 

motion model of some target which could be as stochastic as a weather system [3] or a human 

being [4], or as deterministic as an automobile [5]. Observations require a sensor or equivalent 

data-acquirer with an associated uncertainty characteristic [6]. Correction, then, is essentially the 

fusion of a prediction and an observation [7] which results in an improved estimate of the target. 

 Several different RBE methods are available, each of which makes certain assumptions in 

order to handle a particular kind of problem. The most famous family of estimators consists of 

what are known as Kalman filters (KF) which assume state belief is Gaussian throughout 

estimation. The original linear KF (LKF) introduced in the 1960s assumes linear motion and 

observation models [8]. Other common variants of the Kalman filter include the extended Kalman 
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filter (EKF) [9] and the unscented Kalman filter (UKF), [10] which both deal with nonlinear 

systems. Other versions exist, including the ensemble Kalman filter (EnKF) which is a Monte-

Carlo method that can be used for non-Gaussian estimation [11], [12], the square-root cubature 

Kalman filter for highly nonlinear problems [13], the Schmidt-Kalman filter with polynomial 

chaos expansion for problems with increased uncertainty [14], and many more. 

 When the probability distribution functions (PDFs) describing state belief are non-

Gaussian, Kalman filters are generally not sufficient. The sequential Monte-Carlo (or particle) 

filter relies on random generation of thousands or even millions of particles to adequately represent 

non-Gaussian belief [15], [16], while the grid-based filter requires that a belief space be regularly 

sampled into cells and RBE operations carried out for each cell [17]. Though these methods have 

worked well within their required contexts, they begin to fall short for fast estimation in many 

dimensions. This drawback is largely remedied by the Gaussian sum approach, in which non-

Gaussian belief throughout RBE is represented by weighted Gaussian sums [18], [19]. It is this 

approach upon which the methods proposed here build. 

 When motion model parameters are not known to a sufficient degree of accuracy, the 

prediction stage of RBE will suffer, and so will estimation at large. A number of modern 

approaches have been put forward to address this issue. The adaptive Kalman filter (AKF) adjusts 

system and sensor noise covariance estimates to better reflect uncertainties in acquired state data 

[20]-[22]. Joint state-parameter estimation [23], [24] is a common solution for updating model 

parameters themselves; such methods have been shown to apply to even nonlinear and lightly non-

Gaussian problems [19], but they generally do not extract model parameters implicitly from only 

a sequence of observations. Sensitivity methods have also been used to build more accurate system 

models throughout estimation, though such approaches are usually aimed towards finite-element 



 98 

models [25]-[27]. Other advanced frameworks prove capable of controlling systems with 

uncertainty in the motion model [28], [29], but such work does not account for system or sensor 

noise and is therefore not estimation-oriented. Though established work is well-suited for specific 

kinds of advanced estimation problems, existing estimation techniques generally do not address 

parameter uncertainty and model correction when state belief is fully non-Gaussian. 

5.1.3 Objectives and Outline 

 This paper describes a technique for probabilistic motion model correction using non-

Gaussian belief fusion within the framework of simultaneous estimation and modeling (SEAM), 

which was previously proposed by the authors in [30]. In order to correct motion model 

parameters, the proposed method implements a gradient-descent approach, which solves the 

otherwise intractable minimization of a probabilistic error function. A means of subsequently 

estimating the uncertainty in these parameters is also presented for consistency within the SEAM 

framework. 

 Towards completing these objectives, this paper is organized as follows: first, a review of 

the relevant fundamental theory is given. Next, the original contributions of this work are 

addressed for both single and multiple state transition error minimization. In the fourth section, the 

results of these formulations as applied to several simulated scenarios are given and validative 

comparisons are made with conventional methods. Finally, a conclusions section summarizes this 

work's findings and briefly discusses future work in this area. 

5.2 Belief, Estimation, and Model Correction 

 Before addressing the original contributions of this work, it is important to establish the 

foundation on which the following formulations are built. This includes a mathematical summary 
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of RBE, a description of Kalman estimation, the derivations of multi-Gaussian belief fusion, and 

the theory and formulations behind the SEAM framework. 

5.2.1 Recursive Bayesian Estimation 

 In this paper, the term “belief” is used to characterize an agent's probabilistic estimate of a 

target or state. From this point forward, belief is defined mathematically by PDFs. Recursive 

Bayesian estimation propagates belief through three stages at every time step, making no 

assumptions about the specific forms of the PDFs at each stage. These stages are described below. 

 Prediction propagates belief from step 𝑘 − 1 to step 𝑘 by making use of a motion model of 

the system at hand. Let 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) be the PDF describing belief about a system's state 𝒙 ∈ 𝒳 

at step 𝑘 − 1 given observations of that state 𝒛 ∈ 𝒵 from time step 1 to 𝑘 − 1. Furthermore, let 

𝑝(𝒙𝑘|𝒙𝑘−1)  be a transition PDF describing belief about the state at 𝑘 given its previous state at 

𝑘 − 1. The continuous Chapman-Kolmogorov equation then gives the predicted PDF 

𝑝(𝒙𝑘|𝒛1:𝑘−1) as follows: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑝(𝒙𝑘|𝒙𝑘−1)𝑑𝒙𝑘−1.

𝒳

(1) 

 While the observation stage has no prescribed probabilistic formulations, its objective is to 

obtain an observation PDF 𝑝(𝒙𝑘|𝒛𝑘) coming from a measurement of the state at a new time step 

𝑘. Such a measurement, or observation, often comes from a sensor which itself may have a 

deterministic model. Obtaining 𝑝(𝒙𝑘|𝒛𝑘) is therefore context-specific. 

 State correction is accomplished by Bayesian inference. The predicted PDF and the 

observation PDF are fused to generate the corrected PDF 𝑝(𝒙𝑘|𝒛1:𝑘) given by: 

𝑝(𝒙𝑘|𝒛1:𝑘) =
𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)

∫ 𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)𝑑𝒙𝑘𝒳

.(2) 
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To satisfy the recursive nature of RBE, the Chapman-Kolmogorov equation is seeded with the 

corrected PDF by resetting 𝑘 to 𝑘 − 1. 

5.2.2 Kalman-type Estimation 

 Kalman filters are recursive Bayesian estimators, consisting of prediction, observation, and 

correction stages, which rely on assumed Gaussian belief. A multivariate Gaussian PDF is given 

by the following formula: 

𝒩(𝒙; �̅�, 𝚺𝑥) =
1

√|2𝜋𝚺𝑥|
exp (−

1

2
(𝒙 − �̅�)𝑇𝚺𝑥

−1(𝒙 − �̅�)).(3) 

As Eq. (3) shows, a multivariate Gaussian is fully defined by its mean vector and covariance 

matrix. As a result, Kalman filters are able to efficiently propagate belief by propagating only these 

parameters. 

5.2.2.1 The Linear Kalman Filter 

 Given a linear system motion model 𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝑩𝒖𝑘−1 +𝒘𝑘−1and sensor model 𝒛𝑘 =

𝑪𝒙𝑘 + 𝒗𝑘 , the LKF propagates the mean and covariance of Gaussian state belief from step 𝑘 − 1 

to step 𝑘 according to the following prediction formulas: 

�̅�𝑘|𝑘−1 = 𝑨�̅�𝑘−1|𝑘−1 + 𝑩𝒖𝑘−1,(4𝑎) 

𝚺𝑥𝑘|𝑘−1 = 𝑨𝚺𝑥𝑘−1|𝑘−1𝑨
𝑇 + 𝚺𝑤 .(4𝑏) 

where 𝚺𝑤 is the covariance of assumed additive zero-mean Gaussian noise in the system. State 

correction, then, is given in terms of an observation 𝒛𝑘 by: 

�̅�𝑘|𝑘 = �̅�𝑘|𝑘−1 +𝑲(𝒛𝑘 − 𝑪�̅�𝑘|𝑘−1),(5𝑎) 

𝚺𝑥𝑘|𝑘 = (𝑰 − 𝑲𝑪)𝚺𝑥𝑘|𝑘−1,(5𝑏) 

where 

𝑲 = 𝚺𝑥𝑘|𝑘−1𝑪
𝑇 (𝑪𝚺𝑥𝑘|𝑘−1𝑪

𝑇 + 𝚺𝑣)
−1

,(6) 
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and 𝚺𝑣 is the covariance of additive zero-mean Gaussian sensor noise. In addition to the 

assumption of Gaussian belief, the LKF makes the following two assumptions: 1) uncertainty in 

prediction and observation is caused only by additive noise, and 2) the model parameters 𝑨, 𝑩, 

and 𝑪 are known with complete confidence. 

5.2.2.2 The Adaptive Kalman Filter 

 The AKF seeks to improve traditional Kalman filtering, or estimation, by adapting 𝚺𝑤 and 

𝚺𝑣 to better reflect uncertainty in the underlying models. Because no effort is made to augment the 

model equations themselves, the AKF approach can apply to either linear or nonlinear systems. 

However, being a Kalman-type filter, it also assumes Gaussian belief. One of the most popular 

AKF variants [31] provides the following formulas: 

𝚺𝑣𝑘 = 𝑮𝑣 − 𝑪𝚺𝑥𝑘|𝑘−1𝑪
𝑇 ,(7𝑎) 

𝑮𝑣 =
1

𝑀
∑‖�̅�𝑘−𝑚 − 𝑪𝑘−𝑚�̅�𝑘−𝑚|𝑘−𝑚−1‖

2
𝑀

𝑚=1

,(7𝑏) 

𝚺𝑤𝑘 = √𝛼𝚺𝑤𝑘−1,(7𝑐) 

𝛼 =
tr(𝑮𝑣 − 𝚺𝑣𝑘−1)

tr (𝑪𝚺𝑥𝑘|𝑘−1𝑪
𝑇)
.(7𝑑) 

 Linear prediction, observation, and correction under the AKF follow Eqs. (4a)-(6). Though 

the AKF generally improves on the LKF by addressing additional potential sources of uncertainty, 

it does so observationally rather than analytically. Furthermore, model parameters are still assumed 

to be known with complete confidence. Consequently, it is generally not possible for an AKF 

estimator to achieve zero-mean error when model parameters are not correctly known. 
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5.2.3 Multi-Gaussian Belief Fusion 

 Where Gaussian assumptions fall short, non-Gaussian methods are critical. A PDF 

describing non-Gaussian state belief can be represented as a weighted sum of Gaussians with 

unique means, covariances, and weighting coefficients [1]. Such a PDF is henceforth described as 

a “multi-Gaussian” distribution. Multi-Gaussian belief fusion (MBF) addresses the correction 

stage of RBE for such multi-Gaussian belief. Let 𝑝(𝒙|𝒛𝑖) denote the PDF representing belief about 

a state given the 𝑖𝑡ℎ observation of that state. Following some development of Eq. (2), the 

probabilistic fusion of 𝑛 observations gives the PDF 𝑝(𝒙|𝒛1:𝑛), which is defined by the following 

formula: 

𝑝(𝒙|𝒛1:𝑛) =
∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1

∫ ∏ 𝑝(𝒙|𝒛𝑖)
𝑛
𝑖=1 𝑑𝒙

𝜒

(8) 

Because this is the normalized product of the PDFs corresponding to each observation, MBF 

makes use of the linear superposition of Gaussians to efficiently carry out belief fusion [7]. Let the 

belief corresponding to two observations, 𝑝(𝒙|𝒛1) and 𝑝(𝒙|𝒛2), be given by multi-Gaussian 

distributions containing 𝐼 and 𝐽 components, respectively, as follows: 

𝑝(𝒙|𝒛1) =∑𝑐𝑖
(1)
𝒩(𝒙; �̅�𝑖

(1)
, 𝚺𝑥𝑖

(1)
)

𝐼

𝑖=1

,(9𝑎) 

𝑝(𝒙|𝒛2) =∑𝑐𝑗
(2)
𝒩(𝒙; �̅�𝑗

(2)
, 𝚺𝑥𝑗

(2)
)

𝐽

𝑗=1

,(9𝑏) 

Then the PDF representing fused belief, 𝑝(𝒙|𝒛1:2), is given by the normalized product of the two 

constituents: 

𝑝(𝒙|𝒛1:2) =∑∑𝑐𝑖
(1)

𝐽

𝑗=1

𝑐𝑗
(2)

𝐼

𝑖=1

𝑐𝑖𝑗
(1:2)𝒩(𝒙; �̅�𝑖𝑗

(1:2)
, 𝚺𝑥𝑖𝑗

(1:2)
),(10) 
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where the new weighting coefficient 𝑐𝑖𝑗
(1:2)

 accounts for the normalization in the denominator of 

Eq. (8). The new variables introduced are given in terms of the constituent parameters by the 

following definitions: 

𝚺𝑥𝑖𝑗
(1:2)

= [(𝚺𝑥𝑖
(1))

−1

+ (𝚺𝑥𝑗
(2))

−1

]
−1

,(11𝑎) 

�̅�𝑖𝑗
(1:2)

= 𝚺𝑥𝑖𝑗
(1:2)

[(𝚺𝑥𝑖
(1))

−1

�̅�𝑖
(1)
+ (𝚺𝑥𝑗

(2))
−1

�̅�𝑗
(2)
],(11𝑏) 

𝑐𝑖𝑗
(1:2) = 𝒩 (�̅�𝑖

(1)
; �̅�𝑗

(2), (𝚺𝑥𝑖
(1) + 𝚺𝑥𝑗

(2))). (11𝑐) 

 In summary, the fusion of two multi-Gaussian PDFs yields a third multi-Gaussian PDF 

with a number of constituents equal to the product of the numbers of constituents in each original 

distribution. Belief fusion in this manner is associative, so that fusion of 𝑛 observations can be 

done sequentially, two-at-a-time. The advantage of MBF is that non-Gaussian belief can be 

represented in high dimensions efficiently and with full accuracy, without need for discretely 

sampling the belief space or randomly generating particles. The output of MBF is three parallel 

channels: one for mean vectors, one for covariance matrices, and one for weighting coefficients. 

5.2.4 Simultaneous Estimation and Modeling 

 The recently proposed SEAM framework [30] includes formulations which address 

uncertainty in linearized motion model parameters in the context of prediction within RBE. Figure 

1 summarizes this framework. 
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 Let a system of interest have motion in the belief space which can be described by the 

following discrete-time state-space formula, with stationary, zero-mean, white process noise: 

𝒙𝑘|𝑘−1 = 𝑨𝑘−1𝒙𝑘−1|𝑘−1 + 𝑩𝑘−1𝒖𝑘−1 +𝒘𝑘−1,(12) 

Here, 𝒘𝑘−1 is a zero-mean Gaussian random vector representing process noise, 𝑨𝑘−1 is the system 

state matrix, 𝑩𝑘−1 is the input matrix, and 𝒖𝑘−1 is an applied control effort. For Gaussian belief 

propagation, the mean at step 𝑘 given the state at 𝑘 − 1 is determined by the means of each 

variable: 

�̅�𝑘|𝑘−1 = �̅�𝑘−1�̅�𝑘−1|𝑘−1 + �̅�𝑘−1�̅�𝑘−1,(13) 

By propagation of uncertainty, the covariance corresponding to belief at step 𝑘 given step 𝑘 − 1 

is estimated as 

𝚺𝑥𝑘|𝑘−1 = 𝚺𝑤𝑘−1 + �̅�𝑘−1𝚺𝑥𝑘−1|𝑘−1�̅�𝑘−1
𝑇 + �̅�𝑘−1𝚺𝑢𝑘−1�̅�𝑘−1

𝑇  

+𝚺𝐴𝑘−1𝒟(�̅�𝑘−1|𝑘−1
∘2 )𝚺𝐴𝑘−1

𝑇 + 𝚺𝐵𝑘−1𝒟(�̅�𝑘−1
∘2 )𝚺𝐵𝑘−1

𝑇 .(14) 

where the operation 𝒟(•) diagonalizes its vector argument, (•)∘2 is the element-wise 

multiplication of a vector with itself, and both 𝚺𝐴𝑘−1 and 𝚺𝐵𝑘−1 are matrices whose elements are 

Figure 1. SEAM framework. 
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the standard deviation of the corresponding elements in �̅�𝑘−1 and �̅�𝑘−1. Because these parameters 

are not random processes but rather fixed constants which are not perfectly known, these “standard 

deviations” act more as error bounds which quantify the uncertainty of belief in their 

corresponding parameters. Equation (14) simplifies to the result of the LKF's prediction step under 

the assumption that there is no uncertainty in the input vector or either of the state-space matrices. 

 A model-correction step is then implemented to increase the accuracy of the state matrix 

estimate for the next step �̅�𝑘  and therefore decrease its estimated uncertainty 𝚺𝐴𝑘. This is done by 

minimizing the error between the maximum likelihood point (MLP), or mean, of the predicted 

PDF and the corrected PDF. The corrected �̅�𝑘  matrix is given in terms of the corrected state mean 

�̅�𝑘|𝑘, the prior state mean �̅�𝑘−1|𝑘−1, the prior state and input matrices �̅�𝑘−1 and �̅�𝑘−1, and the prior 

input vector �̅�𝑘−1 by 

�̅�𝑘 =
�̅�𝑘−1(�̅�𝑘−1 − �̅�𝑘−1(𝟏 − 𝑰)�̅�𝑘−1) + �̅�𝑘�̅�𝑘−1

�̅�𝑘−1|𝑘−1
𝑇 �̅�𝑘−1|𝑘−1

.(15) 

where �̅�𝑘−1 is a diagonal matrix with �̅�𝑗𝑘−1|𝑘−1
𝑇

�̅�𝑘−1|𝑘−1
𝑗

 at the 𝑖 = 𝑗 positions and �̅�𝑘−1|𝑘−1
𝑗

 is 

defined as �̅�𝑘−1|𝑘−1 with the 𝑗𝑡ℎ  element removed. Furthermore, �̅�𝑘−1 = 𝒟(�̅�𝑘−1|𝑘−1) and �̅�𝑘 is 

a row matrix where each element is the column vector �̅�𝑘 = �̅�𝑘|𝑘 − �̅�𝑘−1�̅�𝑘−1. The standard 

deviation of the corrected state matrix, 𝚺𝐴𝑘, is computed by error propagation on Eq. (15). For the 

sake of brevity, this formulation is not included here. 

 Because the above equations assume belief is Gaussian, only the means and covariances of 

the PDFs representing belief are used to correct 𝑨. Applying the same simplistic error 

minimization principle to non-Gaussian belief will result in the loss of much valuable probabilistic 

information. Furthermore, these existing formulations do not address correction of the input matrix 
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𝑩, a sometimes important component of signal estimation. The original contributions introduced 

in the following section aim to remedy these shortcomings. 

5.3 Multi-Gaussian Model Correction 

 

 Figure 2 shows the proposed probabilistic technique for generalizing SEAM to 

accommodate non-Gaussian motion model correction. The shaded block represents the proposed 

gradient-descent-based motion model correction technique, where belief is represented by multi-

Gaussian PDFs such as those in Eqs. (9). Multi-Gaussian prediction is accomplished by applying 

Eqs. (13) and (14) to each Gaussian component to arrive at a new set of mean vectors and 

covariance matrices, with weighting coefficients remaining the same. State belief correction then 

takes place by fusing the predicted PDF and an observation PDF via MBF. 

5.3.1 Single State Transition Error Minimization 

 The objective of the proposed approach to non-Gaussian motion model correction is to find 

the appropriate parameters in the state matrix �̅�𝑘  and input matrix �̅�𝑘  which yield a predicted PDF 

Figure 2. Proposed generalized SEAM with motion model correction employing non-Gaussian state belief. 



 107 

𝑝(𝒙𝑘|𝒛1:𝑘−1) that differs minimally from the corrected PDF 𝑝(𝒙𝑘|𝒛1:𝑘). Stated mathematically, 

the desired model parameters are those which minimize an objective function. The objective 

function chosen here is termed the “integrated-squared-error (ISE)” and is defined as: 

𝐼𝑆𝐸 = ∫(𝑝(𝒙𝑘|𝒛1:𝑘−1) − 𝑝(𝒙𝑘|𝒛1:𝑘))
2
𝑑𝒙

𝓧

.(16) 

Another potential intuitive choice of objective function may be the Kullback-Leibler (K-L) 

Divergence of 𝑝(𝒙𝑘|𝒛1:𝑘−1) from 𝑝(𝒙𝑘|𝒛1:𝑘). However, the ISE is instead chosen because the only 

required PDF operations are addition, subtraction, multiplication, and integration. A K-L 

Divergence approach would also necessitate dividing PDFs and taking their logarithms, increasing 

the complexity of later steps. Furthermore, the ISE is a symmetrical measure of the similarity 

between the two PDFs, unlike the K-L Divergence. 

 Let 𝑝(𝒙𝑘|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛1:𝑘) be written as multi-Gaussian PDFs, adopting a shorthand 

notation where the argument of the parenthetical superscript on each parameter corresponds to the 

time step of the most recent observation affecting that parameter. The ISE then can be written as: 

𝐼𝑆𝐸 = ∫(∑𝑐𝑖
(𝑘−1)

𝐼

𝑖=1

𝒩(𝒙; �̅�𝑖
(𝑘−1)

, 𝚺𝑥𝑖
(𝑘−1)

) −∑𝑐𝑗
(𝑘)

𝐽

𝑗=1

𝒩(𝒙; �̅�𝑗
(𝑘)
, 𝚺𝑥𝑗

(𝑘)
))

2

𝑑𝒙

𝓧

.(17) 

Expanding the square gives: 

𝐼𝑆𝐸 = ∫

(

 (∑𝑐𝑖
(𝑘−1)

𝐼

𝑖=1

𝒩(𝒙; �̅�𝑖
(𝑘−1), 𝚺𝑥𝑖

(𝑘−1)))

2

+ (∑𝑐𝑗
(𝑘)

𝐽

𝑗=1

𝒩(𝒙; �̅�𝑗
(𝑘), 𝚺𝑥𝑗

(𝑘)))

2

𝓧

− 2∑∑𝑐𝑖
(𝑘−1)𝑐𝑗

(𝑘)𝑐𝑖𝑗
(𝑘−1)(𝑘)

𝒩(𝒙; �̅�𝑖𝑗
(𝑘−1)(𝑘)

, 𝚺𝑥𝑖𝑗
(𝑘−1)(𝑘)

)

𝐽

𝑗=1

𝐼

𝑖=1
)

 𝑑𝒙.(18) 

Because ∫ 𝒩(𝒙; �̅�, 𝚺)𝑑𝒙
∞

−∞
= 1, this reduces to: 
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𝐼𝑆𝐸 =∑∑𝑐𝑖
(𝑘−1)𝑐𝑗

(𝑘−1)

𝐼

𝑗=1

𝐼

𝑖=1

𝑐𝑖𝑗
(𝑘−1)(𝑘−1) +∑∑𝑐𝑖

(𝑘)𝑐𝑗
(𝑘)𝑐𝑖𝑗

(𝑘)(𝑘)

𝐽

𝑗=1

𝐽

𝑖=1

 

−2∑∑𝑐𝑖
(𝑘−1)𝑐𝑗

(𝑘)𝑐𝑖𝑗
(𝑘−1)(𝑘)

𝐽

𝑗=1

𝐼

𝑖=1

(19) 

Both 𝑐𝑖𝑗
(𝑘−1)(𝑘−1)

 and 𝑐𝑖𝑗
(𝑘−1)(𝑘)

 are implicit functions of the model parameters in  �̅�𝑘−1 and �̅�𝑘−1. 

Since this relationship is complex, solving for the optimal parameters in closed form is not viable. 

 The proposed technique solves this complex optimization problem using a gradient-descent 

method. The gradient vector is defined by assembling the derivatives of the ISE with respect to 

each model parameter as follows (with “parameters” referring to the elements in the 𝑨 and 𝑩 

matrices): 

𝛻𝚽(𝐼𝑆𝐸) = [
𝜕(𝐼𝑆𝐸)

𝜕(𝑎11)
…

𝜕(𝐼𝑆𝐸)

𝜕(𝑎𝑝𝑞)
⋯

𝜕(𝐼𝑆𝐸)

𝜕(𝑏11)
⋯

𝜕(𝐼𝑆𝐸)

𝜕(𝑏𝑝𝑞)
⋯]

𝑇

(20) 

where 𝚽 represents the vector of model parameters. Because the second term of Eq. (19) does not 

have direct functional dependence on �̅�𝑘−1 or �̅�𝑘−1, the gradient becomes: 

𝛻𝚽(𝐼𝑆𝐸) =∑∑𝑐𝑖
(𝑘−1)

𝑐𝑗
(𝑘−1)

𝐼

𝑗=1

𝐼

𝑖=1

𝛻𝚽(𝑐𝑖𝑗
(𝑘−1)(𝑘−1)

) − 2∑∑𝑐𝑖
(𝑘−1)𝑐𝑗

(𝑘)𝛻𝚽(𝑐𝑖𝑗
(𝑘−1)(𝑘))

𝐽

𝑗=1

𝐼

𝑖=1

, (21) 

where 𝑐𝑖𝑗
(𝑘−1)(𝑘−1)

 and 𝑐𝑖𝑗
(𝑘−1)(𝑘)

 are expressed as Gaussians according to Eq. (11c). Following the 

chain rule on the derivative of a Gaussian, these gradients take the form: 

𝛻𝜱(𝑐𝑖𝑗
(𝑘−1)(𝑘−1)

) = exp(𝛽𝑖𝑗) (𝛻𝜱(𝛼𝑖𝑗) + 𝛼𝑖𝑗𝛻𝜱(𝛽𝑖𝑗)),(22𝑎) 

𝛻𝜱(𝑐𝑖𝑗
(𝑘−1)(𝑘)

) = exp(휁𝑖𝑗) (𝛻𝜱(𝜖𝑖𝑗) + 𝜖𝑖𝑗𝛻𝜱(휁𝑖𝑗)).(22𝑏) 

The four placeholder variables are given by: 

𝛼𝑖𝑗 = (|2𝜋𝜸𝑖𝑗|)
−
1
2, 𝛽𝑖𝑗 = −

1

2
 𝜹𝑖𝑗
𝑇 𝜸𝑖𝑗

−1𝜹𝑖𝑗 (23𝑎) 
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𝜖𝑖𝑗 = (|2𝜋𝜼𝑖𝑗|)
−
1
2, 휁𝑖𝑗 = −

1

2
 𝜽𝑖𝑗
𝑇 𝜼𝑖𝑗

−1𝜽𝑖𝑗 (23𝑏) 

where 𝜸𝑖𝑗, 𝜹𝑖𝑗,𝜼𝑖𝑗, and 𝜽𝑖𝑗  follow from the formulas for mean and covariance propagation in 

prediction given by Eqs. (13) and (14) 

𝜸𝑖𝑗 = 𝑨(𝚺𝑥𝑖
(𝑘−1) + 𝚺𝑥𝑗

(𝑘−1))𝑨𝑇 + 𝚺𝑨𝒟 (�̅�𝑖
(𝑘−1)∘2 + �̅�𝑗

(𝑘−1)∘2) 𝚺𝑨
𝑇 

+2(𝚺𝑩𝒟 (�̅�
(𝑘−1)∘2) 𝚺𝑩

𝑇 +𝑩(𝚺𝑢
(𝑘−1))𝑩𝑇 + 𝚺𝑤),(24𝑎) 

𝜹𝑖𝑗 = 𝑨(�̅�𝑖
(𝑘−1) − �̅�𝑗

(𝑘−1)),(24𝑏) 

휂𝑖𝑗 = 𝑨𝚺𝑥𝑖
(𝑘−1)

𝑨𝑇 + 𝑩𝚺𝑢𝑩
𝑇 + 𝚺𝑨𝒟 (�̅�𝑖

(𝑘−1)∘2
) 𝚺𝑨

𝑇 + 𝚺𝑩𝒟 (�̅�
(𝑘−1)∘2) 𝚺𝑩

𝑇 + 𝚺𝑤 + 𝚺𝑥𝑗
(𝑘)
, (24𝑐) 

𝜽𝑖𝑗 = 𝑨�̅�𝑖
(𝑘−1) + 𝑩�̅�(𝑘−1) − �̅�𝑗

(𝑘).(24𝑑) 

𝛻𝜱(𝛼𝑖𝑗), 𝛻𝜱(𝛽𝑖𝑗), 𝛻𝜱(𝜖𝑖𝑗), and 𝛻𝜱(휁𝑖𝑗) are each assembled from the gradients with respect to the 

state and input matrix elements as in Eq. (20). The elements of 𝛻𝜱(𝛼𝑖𝑗) and 𝛻𝜱(𝛽𝑖𝑗) are given as 

follows: 

𝜕𝛼𝑖𝑗
𝜕𝑎𝑝𝑞

= −
1

2
(|2𝜋𝜸𝑖𝑗|)

−
1
2tr (𝜸𝑖𝑗

−1
𝜕𝜸𝑖𝑗
𝜕𝑎𝑝𝑞

),(25𝑎) 

𝜕𝛽𝑖𝑗
𝜕𝑎𝑝𝑞

= −
1

2
(𝜹𝑖𝑗

𝑇 𝜸𝑖𝑗
−1 (

𝜕𝜹𝑖𝑗
𝜕𝑎𝑝𝑞

−
𝜕𝜸𝑖𝑗
𝜕𝑎𝑝𝑞

𝜸𝑖𝑗
−1𝜹𝑖𝑗) + (

𝜕𝜹𝑖𝑗
𝜕𝑎𝑝𝑞

)

𝑇

𝜸𝑖𝑗
−1𝜹𝑖𝑗),(25𝑏) 

where 

𝜕𝜸𝑖𝑗
𝜕𝑎𝑝𝑞

= (𝑨(𝚺𝑥𝑖
(𝑘−1) + 𝚺𝑥𝑗

(𝑘−1))𝑶𝑝𝑞
𝑇 + 𝑶𝑝𝑞 (𝚺𝑥𝑖

(𝑘−1) + 𝚺𝑥𝑗
(𝑘−1))𝑨𝑇),(26) 

and 

𝜕𝜹𝑖𝑗
𝜕𝑎𝑝𝑞

= 𝑶𝑝𝑞(�̅�𝑖
(𝑘−1) − �̅�𝑗

(𝑘−1)).(27) 
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Resulting from the chain and product rules, the derivatives of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 with respect to the input 

matrix elements 𝑏𝑝𝑞  have the same form as given by Eqs. (25a) and (25b), but with each 𝑎𝑝𝑞 

replaced by 𝑏𝑝𝑞 . For these, 

𝜕𝜸𝑖𝑗
𝜕𝑏𝑝𝑞

= 2(𝑩𝚺𝑢𝑶𝑝𝑞
𝑇 +𝑶𝑝𝑞𝚺𝑢𝑩

𝑇)(28) 

and 

𝜕𝜹𝑖𝑗
𝜕𝑏𝑝𝑞

= 𝟎.(29) 

In the expressions above where the partial derivative with respect to 𝑎𝑝𝑞 is taken, 𝑶𝑝𝑞 is a matrix 

the size of 𝑨. For the derivatives with respect to 𝑏𝑝𝑞 , it is a matrix the size of 𝑩. This matrix is 

defined as follows: 

𝑶𝑝𝑞 = {
1element𝑝, 𝑞
0elsewhere

(30) 

 The elements of 𝛻𝜱(𝜖𝑖𝑗), and 𝛻𝜱(휁𝑖𝑗) are given by the following partial derivatives: 

𝜕𝜖𝑖𝑗
𝜕𝑎𝑝𝑞

= −
1

2
(|2𝜋𝜼𝑖𝑗|)

−
1
2tr (𝜼𝑖𝑗

−1
𝜕𝜼𝑖𝑗
𝜕𝑎𝑝𝑞

),(31𝑎) 

𝜕휁𝑖𝑗
𝜕𝑎𝑝𝑞

= −
1

2
(𝜽𝑖𝑗

𝑇 𝜼𝑖𝑗
−1 (

𝜕𝜽𝑖𝑗
𝜕𝑎𝑝𝑞

−
𝜕𝜼𝑖𝑗
𝜕𝑎𝑝𝑞

𝜼𝑖𝑗
−1𝜽𝑖𝑗) + (

𝜕𝜽𝑖𝑗
𝜕𝑎𝑝𝑞

)

𝑇

𝜼𝑖𝑗
−1𝜽𝑖𝑗),(31𝑏) 

where 

𝜕𝜼𝑖𝑗
𝜕𝑎𝑝𝑞

= 𝑨𝚺𝑥𝑖
(𝑘−1)𝑶𝑝𝑞

𝑇 +𝑶𝑝𝑞𝚺𝑥𝑖
(𝑘−1)𝑨𝑇 ,(32) 

and 

𝜕𝜽𝑖𝑗
𝜕𝑎𝑝𝑞

= 𝑶𝑝𝑞�̅�𝑖
(𝑘−1).(33) 
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Again, the derivatives of 𝜖𝑖𝑗  and 휁𝑖𝑗 with respect to the input matrix elements 𝑏𝑝𝑞  are given by 

Eqs. (31a) and (31b), but with each 𝑎𝑝𝑞 replaced by 𝑏𝑝𝑞 . For these, 

𝜕𝜼𝑖𝑗
𝜕𝑏𝑝𝑞

= 𝑩𝚺𝑢𝑶𝑝𝑞
𝑇 + 𝑶𝑝𝑞𝚺𝑢𝑩

𝑇 (34) 

and 

𝜕𝜽𝑖𝑗
𝜕𝑏𝑝𝑞

= 𝑶𝑝𝑞�̅�
(𝑘−1).(35) 

The definition of 𝑶𝑝𝑞 given by (30) and the accompanying description holds for Eqs. (32)-(35). 

 The above equations are used to inform a function which returns the gradient of the ISE 

evaluated for a particular set of model parameters, taking the following inputs: 1) the parameters 

defining the multi-Gaussian PDFs 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛1:𝑘), 2) the motion model parameters 

from step 𝑘 − 1, 3) system inputs at step 𝑘, and 4) all parameter uncertainties. A gradient-descent 

algorithm is then implemented which locally minimizes the ISE by finding the optimal state and 

input matrix parameters assembled into the vector 𝚽. In this optimization process, the following 

expression is recursed over 𝑖 until the change in �̅�𝑘  is sufficiently small: 

(�̅�𝑘)𝑖+1 = (�̅�𝑘)𝑖 − 𝑑𝑖[∇�̅�(𝐼𝑆𝐸)]|𝚽=(�̅�𝑘)𝑖 .(36) 

Since this is generally a non-convex optimization problem, it is imperative that the local minimum 

found at step 𝑘 is nearest to that at step 𝑘 − 1 to achieve convergence of 𝚽 to a vector of constant 

values. An obvious seed for the gradient descent algorithm is �̅�𝑘−1. 

5.3.2 Multiple State Transition Mean Error Minimization 

 There is a unique set of parameters 𝚽 which describe a single state transition in one 

dimension if the motion model is linear and subject to no noise. However, in higher dimensions, 

the motion model correction may require ISE minimization over multiple state transitions. In order 

to address such multi-dimensional problems, the ISE is augmented as follows: 
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𝐼𝑆𝐸 = ∫ [
1

𝑀 + 1
∑ (𝑝(𝒙𝑖|𝒛1:𝑖−1) − 𝑝(𝒙𝑖|𝒛1:𝑖))

2
𝑘

𝑖=𝑘−𝑀

] 𝑑𝒙

𝓧

,(37) 

where 𝑀 ≤ 𝑘 is the number of recent observations used to update the parameter vector. Because 

of the linearity of integration, the gradient of the average ISE becomes the average of the individual 

gradients: 

𝛻𝚽(𝐼𝑆𝐸) =
1

𝑀 + 1
∑ 𝛻𝚽(𝐼𝑆𝐸𝑖)

𝑘

𝑖=𝑘−𝑀

,(38) 

where 𝛻𝚽(𝐼𝑆𝐸𝑖) is the gradient of the 𝑖𝑡ℎ transition. The factor 
1

𝑀+1
 in Eq. (38) can be lumped with 

the step size 𝑑𝑖 of Eq. (36), proving that the “direction” of the multi-transition ISE gradient comes 

from the summation of the ISE gradients of all transitions. 

5.3.3 Uncertainty Propagation 

 In keeping with Eq. (14) of the SEAM framework, the uncertainty in the model parameter 

vector must be updated in addition to its mean. However, because the value of �̅�𝑘 which minimizes 

the ISE cannot be found in closed form, 𝚺Φ𝑘  cannot be derived. Two approximation methods are 

given here: first, a more mathematically rigorous approach to estimating uncertainty through 

gradient descent propagation is presented, followed by a more implementation-oriented approach. 

 Consider a general error function 𝐸 = 𝑓(𝐴) that is sought to be minimized by adjustment 

of the variable 𝐴. The gradient, in a 1-D sense, is given by 
𝜕𝐸

𝜕𝐴
≡ 𝑔(𝐴). Assume the implementation 

of some “smart” gradient descent algorithm where the step size 𝑑𝑖 continually decreases as the 

local minimum is approached. Consider, then, the first three iterations: 

𝐴0 = 𝐴0,(39𝑎) 

𝐴1 = 𝐴0 − 𝑑1𝑔(𝐴0),(39𝑏) 

𝐴2 = 𝐴1 − 𝑑2𝑔(𝐴1) = (𝐴0 − 𝑑1𝑔(𝐴0)) − 𝑑2𝑔(𝐴0 − 𝑑1𝑔(𝐴0)).(39𝑐) 



 113 

By propagation of uncertainty, the variance at each step is given by: 

𝜎𝐴0
2 = 𝜎𝐴0

2 ,(40𝑎) 

𝜎𝐴1
2 = 𝜎𝐴0

2 + 𝑑1
2𝜎𝑔(𝐴0)

2 ,(40𝑏) 

𝜎𝐴2
2 = 𝜎𝐴0

2 + 𝑑1
2𝜎𝑔(𝐴0)

2 + 𝑑1
2𝜎𝑔(𝐴0−𝑑1𝑔(𝐴0))

2 .(40𝑐) 

and a pattern emerges. For the “smart” algorithm assumed here, as 𝑖 increases, 𝑑𝑖
2 decreases 

quickly. Furthermore, the gradient evaluated at each successive value of 𝐴 constantly decreases, 

as does the uncertainty 𝜎𝑔(𝐴)
2 . For these reasons, when convergence happens quickly (i.e. 𝐴0 is near 

the value which locally minimizes 𝐸), additional terms contribute negligibly so that Eqs. (40a), 

(40b), and (40c) all provide reasonable approximations with increasing accuracy for the 

uncertainty in 𝐴. Therefore, with regards to the applied context, one option for estimating 𝚺Φ𝑘  is 

to ignore all terms but the first, so that: 

𝚺Φ𝑘 ≈ 𝚺Φ𝑘−1 .(41) 

The more continuous the estimation process, the closer 𝚺Φ𝑘  will be to 𝚺Φ𝑘−1 , and the better the 

above approximation holds. 

 A more heuristic and implementation-oriented approach can be considered. If the model 

parameters are improved with each iteration of estimation, their estimated uncertainty should 

continually decrease. Let a parameter 𝜆 be defined such that 0 < 𝜆 < 1. The variance in 𝚽 at step 

𝑘 can be adjusted according to 𝚺Φ𝑘 = 𝜆𝚺Φ𝑘−1 in order to enforce that convergence of uncertainty 

follow a power law governed by𝜆𝑘 . 𝜆 can be tuned to best reflect the increasing accuracy of model 

parameters over time. 
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5.4 Results 

 Several randomly generated simulations were carried out under varying conditions for the 

purpose of validating the proposed techniques. The presented framework was assessed by 

examining the convergence of model parameters to ground truth, in addition to comparing 

estimation performance with three other estimators. The LKF serves as a baseline technique 

representing the simplest of estimation methods, while the improved estimation of the AKF 

handles the more complex uncertainties addressed by the proposed framework. The AKF is the 

most advanced established estimator which can be directly compared to the proposed approach 

with regards to improving prediction when substantial model parameter uncertainties are present. 

Finally, a SEAM estimator with the recently proposed MLP-based model correction [30] is 

implemented for comparative purposes. 

5.4.1 1-D Validation 

 While the formulations presented in section 5.3 apply to arbitrarily high-dimensional state 

vectors, this section and the next validate the proposed framework for only 1- and 2-D examples, 

for the sake of brevity. 

5.4.1.1 Gaussian Belief 

 First, single-transition model correction was assessed for 5-second 1-D Gaussian 

simulations. Table 1 gives all constant, unitless parameter values used. These values were chosen 

arbitrarily, since the SEAM framework has no context-specific bias. Σ𝐴0 and Σ𝐵0 were chosen to 

be a percentage 휀 of 𝐴𝐺𝑇 and 𝐵𝐺𝑇. To simulate an erroneous initial estimate of the motion model, 

𝐴0 and 𝐵0 were randomly generated from normal distributions with means 𝐴𝐺𝑇 and 𝐵𝐺𝑇, and 

standard deviations Σ𝐴0 and Σ𝐵0. The control effort 𝑢 used was a unit step function. The 1-D state-
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space dynamics under these conditions simulate the step response of a system governed by a first-

order differential equation. 

Table 1. Constant parameters 

𝐴𝐺𝑇 Σ𝐴0 𝐵𝐺𝑇 Σ𝐵0  Σ𝑤 𝑥0 Σ𝑥0 Δ𝑡 Σ𝑢 

0.98 휀𝐴𝐺𝑇 1.3 휀𝐴𝐺𝑇 0.01 2 0.09 0.025 0.01 

 

 Ground truth was simulated using 𝐴𝐺𝑇 and 𝐵𝐺𝑇, with zero-mean Gaussian process noise 

𝑤𝑘 . Sensor noise was simulated as zero-mean additive Gaussian noise 𝑣𝑘 on the ground-truth 

signal. A linear Kalman filter and more advanced adaptive Kalman filter were deployed based on 

the formulations given in section 5.2.2. Additionally, a SEAM estimator was implemented with 

MLP-based model correction according to Eq. (15). SEAM without model correction was also 

evaluated in order to isolate the effect of the formulations given here. Gradient descent was carried 

out according to Eq. (36) by using a constant step size of 𝑑𝑖 = 0.005 and threshold 𝑇 = 0.00001. 

Small values were chosen since the objective of these tests was proof-of-concept rather than fine-

tuned efficiency. Σ𝐴 and Σ𝐵  were updated according to the heuristic approach described in section 

5.3.3 with 𝜆 = 0.99. 

Figure 3. Example 1-D simulation with single-transition updating. In this example, 𝐴0 = 1.47 and 𝐵0 = −1.95. 



 116 

 Figure 3 shows an example trial under these simulation conditions, with 휀 = 0.1 and Σ𝑣 =

25. Because the LKF errs toward overconfidence with respect to the motion model, even a small 

deviation from ground truth tends to have a dramatic impact as time progresses. The AKF improves 

on this by incorporating additional uncertainty, effectively relying more heavily on observations 

to improve estimation. Basic MLP model-correcting SEAM (labeled SEAM0
+) further improves 

estimation by reducing the certainty of predictions even more, though SEAM without model 

correction (labeled SEAM1
-) performs even better due to poor convergence of 𝐴 by the MLP 

technique. SEAM with model correction according to ISE minimization (labeled SEAM1
+) 

outperforms all other methods because it reliably adjusts model parameters towards ground-truth. 

Figure 4 plots the state and input matrices (scalars, in this case) over time. 

 In Fig. 4, the dashed lines represent the margin around ground-truth that represents 95% 

improvement from the initial parameter estimate. As the figure shows, 𝐴 approaches ground-truth 

much more readily than 𝐵 under ISE minimizing model correction. This is likely due to a number 

of factors, the chief of which is that the magnitude of the gradient 𝛻𝚽(𝐼𝑆𝐸) is larger with respect 

to 𝐴 than to 𝐵 (i.e. the system is more sensitive to change in the state matrix than the input matrix). 

Figure 4. State and input matrices over time, for experiment corresponding to previous figure. 
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MLP-based model correction yields erroneous state matrix convergence, likely due to the 

forsaking of richer probabilistic information consistent with this approach. 

 The raw observation signal (O), LKF estimator (L), AKF estimator (A), MLP SEAM 

estimator (S0
+), and ISE SEAM estimator without and with model correction (S1

- and S1
+) were 

each evaluated by computing their root-mean-squared-error (RMSE) scores for each of 25 trials. 

This was repeated for different combinations of 휀 and Σ𝑣, and the percentages of trials for which 

each signal had the lowest RMSE are given in Table 2. 

 As the table shows, the SEAM estimator with model correction as presented in this paper 

outperforms all other estimators the majority of the time for all combinations of noise variance and 

model parameter uncertainty. The AKF generally performed second-best overall. This is likely 

because this estimator has a greater smoothing effect, reducing RMSE in the occasional instances 

where the motion model is well estimated to begin with. Examining the proposed approach (S1
+), 

there is a slight trend of decreasing relative performance as noise variance increases and a slight 

trend of increasing relative performance with increasing model uncertainty. The former result can 

be explained by the very poor signal-to-noise ratio in observations which negatively affects model 

correction. The latter result validates the hypothesized effectiveness of model correction in 

estimation to handle motion model mismatch. 
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Table 2. Sensitivity study in uncertainty parameters for 1-D Gaussian estimation 

  

휀 
0.1 0.15 0.2 0.25 

Σ𝑣 

12 

O 0% O 0% O 0% O 0% 

L 0% L 0% L 0% L 0% 

A 0% A 0% A 4% A 8% 

S0+ 0% S0+ 0% S0+ 0% S0+ 0% 

S1- 4% S1- 0% S1- 0% S1- 0% 

S1+ 96% S1+ 100% S1+ 96% S1+ 92% 

52 

O 0% O 0% O 0% O 4% 

L 0% L 0% L 0% L 0% 

A 12% A 8% A 8% A 8% 

S0+ 0% S0+ 0% S0+ 0% S0+ 0% 

S1- 0% S1- 0% S1- 0% S1- 0% 

S1+ 88% S1+ 92% S1+ 92% S1+ 88% 

102 

O 0% O 0% O 0% O 0% 

L 0% L 0% L 0% L 0% 

A 28% A 8% A 8% A 0% 

S0+ 0% S0+ 0% S0+ 0% S0+ 0% 

S1- 8% S1- 0% S1- 0% S1- 0% 

S1+ 64% S1+ 92% S1+ 92% S1+ 100% 

152 

O 0% O 0% O 0% O 0% 

L 0% L 0% L 0% L 0% 

A 16% A 28% A 20% A 20% 

S0+ 0% S0+ 0% S0+ 0% S0+ 0% 

S1- 8% S1- 4% S1- 4% S1- 4% 

S1+ 76% S1+ 68% S1+ 76% S1+ 76% 

202 

O 8% O 4% O 0% O 4% 

L 0% L 4% L 4% L 0% 

A 4% A 12% A 28% A 12% 

S0+ 0% S0+ 0% S0+ 0% S0+ 0% 

S1- 4% S1- 8% S1- 4% S1- 8% 

S1+ 84% S1+ 72% S1+ 64% S1+ 76% 

 In order to gain a better understanding of the convergence of model parameters given an 

inadequate initial estimate, model parameters and estimation error were plotted for a series of 

simulations in which the error in 𝐴0 varied. Σ𝑣 was held constant at 25, and all other parameters 
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remained unchanged. The starting values 𝐴0 were plotted along with the updating values 𝐴𝑘, as 

shown in Fig. 5. Also included is the family of error curves coming from these experiments. 

 As the figure shows, model parameter convergence breaks down due to the non-convexity 

of the ISE with respect to 𝐴 when the initial model parameter estimate is around +4.5 to −2.5 

times the ground-truth value. It takes more time for the model parameter estimate to settle around 

�̅�𝐺𝑇 when 𝐴 is significantly underestimated than when it is overestimated. The error accumulated 

early in simulation is another cause of high RMSE values which leads to occasional under-

performance of SEAM as shown in Table 2. 

 A second uni-Gaussian 1-D validation was done to assess the performance of model-

updating using multiple state transitions according to section 5.3.2. A sample simulation is plotted 

in Fig. 6 for 휀 = 0.1 and Σ𝑣 = 25. The model parameters are plotted over time in Fig. 7. For this 

example, the 25 most recent state transitions were retained for adjusting the state matrix at each 

step. As the figure shows, there is less oscillation in the SEAM signal due to the reinforcement 

made possible by additional information from past observations. Again, while the input matrix 

Figure 5. Convergence of state matrix estimate for varying initial guesses; corresponding error curves for each estimator. 
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estimate does not converge to ground truth, it is nonetheless improved by the model correction 

step. 

5.4.1.2 Multi-Gaussian Belief 

 To validate model correction for multi-Gaussian belief, the above multi-transition model 

updating experiments were repeated where observations at each step were represented by the 

superposition of two Gaussians randomly placed in the vicinity of ground-truth at that step. 

Because no existing methods incorporate non-Gaussian model updating and the RMSE score 

Figure 6. Example 1-D simulation with model-updating using the 25 most recent observed state transitions. 

Figure 7. State and input parameters plotted over time. 
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cannot be readily obtained since a single Gaussian mean is not available for comparison to ground 

truth, performance is quantified by the quality of motion model convergence. 

 Twenty-five experiments were conducted under the same conditions as in the previous 

section. The input matrix parameter 𝐵 was held constant at ground-truth and not addressed because 

of its relatively low impact on estimation for these experiments. Furthermore, because MBF at the 

correction stage continually increases the number of Gaussian components, belief at each stage 

was pruned so that only the four strongest-contributing components were retained. Figure 8 plots 

�̅�𝑘 for each of these experiments over time with the corresponding seed values �̅�0 and the ground-

truth value �̅�𝐺𝑇. Also included in the figure is a visual demonstration of a single iteration of 

estimation using multi-Gaussian belief. 

 As the figure shows, the range of initial values 𝐴0 that converge to ground truth over a 

given observation period is smaller than for the uni-Gaussian experiments presented in the 

previous section. It is also important to note that the total observation time was doubled, showing 

that under these conditions, convergence occurs more slowly. It is also clear from the plots that 

the true parameter 𝐴𝐺𝑇 is approached faster from a higher initial estimate than a lower one. 

Regarding the second part of the figure, ISE minimization as defined in Eq. (16) seeks to find 

Figure 8. 1-D non-Gaussian state matrix updating for normally distributed random initial estimates; a single iteration under the 
estimation framework. 
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model parameters 𝚽 which minimize the squared difference between the green and black curves 

(corresponding to the predicted and corrected PDFs, respectively). 

5.4.2 2-D Validation 

 Next, a series of 2-D simulated experiments were carried out which address estimation of 

a second-order linear homogeneous ordinary differential equation (ODE). Many physical systems 

are described by decaying oscillatory motion, so simulation of such a scenario has real-world 

implications. 𝑁𝑡ℎ-order ODEs can be modeled by first-order linear state-space equations in 𝑁-D 

whose time-domain solutions also contain periodicity and decay. 

 In order to generate a discrete-time state-space equation describing a decaying sinusoid, 

three physical parameters of a mass-spring-damper (MSD) system were defined in both mean and 

standard deviation: mass (𝑚), spring constant (𝑘), and damping coefficient (𝑏). For a displacement 

input 𝑢(𝑡) to the MSD system, the continuous-time state-space matrices are given by: 

�̅�𝐶 = [
0 1

−
�̅�

�̅�
−
�̅�

�̅�

],(42𝑎) 

�̅�𝐶 = [
0 0
�̅�

�̅�

�̅�

�̅�

],(42𝑏) 

where the state and input vectors are defined as: 

�̅� = [�̅� �̇̅�]𝑇 ,(43𝑎) 

�̅� = [�̅� �̇̅�]𝑇 ,(43𝑏) 

and 𝑥 and 𝑢 are the positions of the output and input in meters, respectively. The standard deviation 

matrices 𝚺𝐴𝐶 and 𝚺𝐵𝐶 can be determined in terms of their constituent parameters by appropriate 

propagation of uncertainty. The discrete-time matrices �̅� and �̅� can then be computed for a given 
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sampling time Δ𝑡 by standard discretization formulas. The corresponding discrete-time standard 

deviation matrices can also then be determined. 

 Ground-truth values �̅�𝐺𝑇 and �̅�𝐺𝑇 were randomly generated from normal distributions with 

means and standard deviations coming from the above steps. The initial value of the state matrix 

was chosen to be �̅�0 = �̅� + 0.15𝜉, where 𝜉 is a matrix of random variables uniformly distributed 

between 0 and 1. Ground-truth was simulated with zero-mean Gaussian process noise having 

covariance 𝚺𝑤, and Gaussian observation noise was simulated with covariance 𝚺𝑣 on the ground-

truth signal. Parameter values are given in Table 3. Standard deviations in 𝑘, 𝑚, and 𝑏 were 35% 

of their means. 

Table 3. Constant parameters 

Δ𝑡 �̅� �̅� �̅� �̅�0 𝚺𝑥0 

0.05s 10 N/m 2 kg 5 Ns/m [
10
0
] [1

2 0
0 0.32

] 

𝚺𝑢 𝚺𝑣 𝚺𝑤 

[ 0.05
2 0.0072

0.0072 0.0032
] [ 0.6

2 0.232

0.232 0.572
] [

0.001 0
0 0.002

] 

 A 50-second sample simulation for which the control effort was a unit-amplitude sinusoidal 

displacement with frequency 0.125 Hz and covariance 𝚺𝑢 is shown in Fig. 9 below. The figure 

includes plots of the output position and velocity and the corresponding RMSE errors for the same 

estimators as were described in section 5.4. Figure 10 shows the four elements of the state and 

input matrices �̅�𝑘  and �̅�𝑘   over time. Because SEAM with MLP-based model correction offers 

updated state matrix values, these are also plotted in Fig. 10a. 
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 For this simulation, 𝑀 = 𝑘. While the four elements of the state matrix converge early and 

accurately under the proposed ISE-based model correction approach, only 𝐴21 and 𝐴22 begin to 

approach ground-truth under MLP-based model correction. Even then, convergence does not occur 

in the allotted 50 seconds of simulation. As the figure also shows, input matrix parameters take 

longer to approach ground-truth under the proposed approach. Admittedly, elements of 𝑩 

sometimes take even longer to converge or do not converge to ground-truth at all; this is again 

Figure 9. Sample simulation for 2-D uni-Gaussian validation. 

Figure 10. Convergence of model parameters for 2-D uni-Gaussian validation. 
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likely due to the fact that the system dynamics are largely governed by the state matrix and the ISE 

is relatively insensitive to change in 𝑩. 

 For a more quantitative assessment, simulation under the previously specified conditions 

was carried out 100 times. Each simulation spanned ten seconds, and the unforced response was 

observed. In order to assess the efficacy of the proposed ISE-based model correction, the means 

of the percent errors in state matrix elements were recorded both at the first time step (𝑘 = 0) and 

the last time step (𝑘 = 200), and the percent of the trials for which 𝐴𝑖𝑗200  gave lower percent error 

than 𝐴𝑖𝑗0 was recorded. To assess the quality of estimation, the median RMSEs of the various 

estimated signals were computed, in addition to the percent of trials for which each method 

outperformed the others. The results are given in Tables 4 and 5 below: 

Table 4. Percent errors in state matrix elements for 100 trials 

 %𝐴11 %𝐴12 %𝐴21 %𝐴22 

𝑘 = 0 7.80 170.92 95.08 7.97 

𝑘 = 200 2.83 19.34 15.75 2.51 

% Improvement 64 89 83 69 

 

Table 5. Median root-mean-squared-errors and percent wins over 100 simulations for all estimators 

 LKF AKF SEAM0
+ SEAM1

- SEAM1
+ 

RMSE 2.899 3.596 2.065 1.683 1.202 

% Wins 0% 1% 2% 14% 83% 

 As Table 4 shows, under the proposed approach, state matrix parameters are improved 

60%-90% of the time, resulting in a clear overall advantage with regards to estimation. The 

proposed framework results in an average of over 500% improvement in estimated state matrix 
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element error. According to Table 5, each estimator successively improves upon the last, with the 

unexpected exception of the AKF. Upon closer examination, the likely cause for occasional higher 

estimation error coming from the AKF was poor conditioning of the covariance matrices coming 

from the randomness in parameter setting required for this Monte Carlo type validation study. In 

specific simulations where this was not an issue, the AKF generally outperformed the LKF as 

expected. 

5.5 Conclusions, Applications, and Future Work 

 The probabilistic model correction approach formulated here has proven capable of 

handling uncertainty in state-space motion model parameters by continuously updating these 

parameters and their uncertainties. The fundamental formulations allow for arbitrary non-Gaussian 

representation of belief in 𝑁-D with the only assumption being that belief can be reasonably 

modeled by a sum of Gaussians. Even amidst appreciable sensor noise, the proposed approach 

builds an improved estimate of motion model parameters which tend to converge efficiently given 

sufficient time. This leads to superior state estimation in comparison with traditional methods 

which do not account for model uncertainty or correct model parameter estimates. The proposed 

technique accomplishes its intended purpose in multiple dimensions, for both uni- and multi-

Gaussian belief. 

 There is a wide range of future work that could stem from the research presented here. A 

study on the effect of active control on system identification via model correction would lend 

insight into how these techniques could be used in various control contexts. Furthermore, the 

application of these formulations to heavily nonlinear systems would greatly enhance their 

ubiquity. A more comprehensive framework would address observation model correction in 

addition to motion model correction, since the two play dual roles in estimation. The parameter 
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space for fully investigating the capabilities of probabilistic model correction is unwieldy, so only 

a limited study of the effect of certain parameters was undertaken here. It would be informative to 

further study the effect of dimensionality on the required number of state transitions in error 

minimization to robustly update the motion model. Finally, an investigation into efficient gradient-

descent algorithms would further improve the real-time capabilities of these methods. SDG 
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CHAPTER 6. Probabilistic Non-Gaussian Sensor Model Correction 

6.1 Introduction 

6.1.1 Background 

 Today's technologically advanced world is rich with sensors and sensing agents. The 

advanced engineering systems which provide the services, entertainment, and conveniences of 

modern-day life rely heavily on their ability to acquire observations about their surroundings or 

their own state [1]. Because sensor imperfections are inevitable, uncertainty is often introduced in 

the measurement of a target signal or state. This mandates the use of probabilistic methods to 

overcome noise and bias in more robustly estimating an underlying target [2], [3]. Several 

estimation frameworks have been put forward in recent years which account for observation model 

uncertainties and sensor noise, the most prominent of which will be summarized here. 

6.1.2 Related Work 

 State estimation has most famously been achieved in recent decades by an ever-expanding 

family of Kalman filters (KFs). Some of the more common KFs are the linear Kalman filter (LKF) 

for linear problems [4], extended and unscented Kalman filters (EKFs and UKFs) for standard 

nonlinear problems [5], [6], the square-root cubature KF (SRCKF) for highly nonlinear problems 

[7], the ensemble KF (EnKF) for certain non-Gaussian problems [8], and the adaptive KF (AKF) 

for problems with ill-defined uncertainty [9]. Each of these estimators generally tracks the first 

and second moments of the Gaussian probability distribution functions (PDFs) which 

probabilistically represent the state of interest, accounting for additive noise in both motion models 

and observation (or sensor) models. Because of the ubiquity of these estimators, they can be used 

in a wide range of contexts, varying from robotics applications [5] to battery life estimation [7]. 
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 A more general approach to both nonlinear and non-Gaussian problems is achieved by 

recursive Bayesian estimation (RBE) [10], [11]. RBE makes no assumptions about the form of a 

PDF used to probabilistically represent a state being estimated. (For generality, the estimate of a 

state is referred to here as “state belief''.)  The formulas of RBE can be implemented in a number 

of ways to accommodate various assumptions, computational demands, or accuracy requirements. 

While the basic KFs described above assume that the estimated state is Gaussian, the more difficult 

problem of non-Gaussian RBE is achieved in three primary ways. 

 The first approach to non-Gaussian RBE, known as the grid-based filter, regularly samples 

the state belief space with a resolution determined by an accuracy/efficiency trade-off and predicts 

and updates state belief by performing operations on each grid cell [12]. A similar but more well-

known approach is known as the particle, or sequential Monte Carlo, filter. Under this framework, 

particles representing state belief are randomly generated, weighted, and propagated according to 

the formulas of RBE [13], [14]. The final RBE method reviewed here approximates non-Gaussian 

state belief as a weighted sum of Gaussian PDFs and leverages the properties of Gaussians to 

efficiently carry out RBE [15]. The Simultaneous Estimation and Modeling (SEAM) framework 

proposed by Steckenrider, et al. in [11] and further developed in [16] uses the weighted-Gaussian-

sum approach and further introduces a motion model correction stage. However, this has not yet 

been accomplished for observation models. 

 In order to effectively capture and remove the biasing characteristics of a sensor in state 

observation, having an accurate mathematical sensor or observation model is critical. Prior 

characterization experiments or calibration steps are often needed to estimate various sensor-

intrinsic parameters [17]. While all the aforementioned KF and RBE variants are effective 

estimators of systems subject to additive observational noise, none actually address uncertainty in 
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observation model parameters themselves. Work by Liu, et al. seeks to estimate sensor faults in 

estimation and control problems [18], [19], and similar work by Youssef, et al. addresses the 

simultaneous estimation of system states and sensor faults [20]. These faults take the form of 

additive time-varying signals in a linear observation model. Though poor estimation of the output 

matrix may be compensated for by this inclusion, uncertainty in the output matrix is not 

specifically addressed. Furthermore, states are not handled probabilistically under these 

frameworks. While output matrix uncertainty is addressed by Sani, et al. [21], the predictive 

advantage of the RBE framework is not leveraged. There is a shortage of techniques for addressing 

uncertainty in observation model parameters within generally non-Gaussian RBE, a topic which 

this paper addresses. 

6.1.3 Objectives and Outline 

 This paper proposes a framework which 1) formulates observational uncertainty by 

incorporating both sensor noise and observation model1 parameter uncertainty, and 2) corrects the 

estimates of these model parameters by using an enhanced state estimate coming from belief 

fusion. These original contributions are clarified by presenting novel probabilistic formulations for 

observations, observation inversions, and artificial re-observations. Non-Gaussian state belief is 

approximated by multi-Gaussian PDFs in order to preserve both accuracy and efficiency. Complex 

optimization of a multi-Gaussian objective function is handled by a gradient-descent approach to 

observation model correction. Furthermore, in keeping with the presented observation 

formulations, an approach to updating the variance in observation model parameters is also given. 

 To clarify these objectives, the paper is organized as follows: first, section 2 establishes 

essential concepts and formulations related to the original contributions of this paper. Next, section 

                                                
1 Henceforth, the term “observation model” can be taken synonymously with the term “sensor model”. 
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3 details the proposed approach, including observation formulations, gradient-descent model 

correction, and uncertainty updating. Some results of the presented framework are given in section 

4, followed by conclusions and future work in section 5. 

6.2 Simultaneous Estimation and Modeling 

6.2.1 Recursive Bayesian Estimation 

 Let 𝒙 represent a state being estimated. A PDF describing that state's belief is generally 

given the notation 𝑝(𝒙). RBE consists of three stages: prediction, observation, and correction. At 

each stage, state belief PDFs are propagated in such a way as to properly account for the state's 

probabilistic characteristics. 

6.2.1.1 Prediction 

 Prediction is given by the continuous Chapman-Kolmogorov equation governing a 

Markovian process: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑝(𝒙𝑘|𝒙𝑘−1)𝑑𝒙𝑘−1.

𝒳

(1) 

The resulting predicted PDF describes belief about the state 𝒙 at step 𝑘 resulting from: 1) a priori 

belief about the state at 𝑘 − 1 (given by 𝑝(𝒙𝑘−1|𝒛1:𝑘−1)), and 2) a transition PDF 𝑝(𝒙𝑘|𝒙𝑘−1) 

which can be obtained from a deterministic motion model describing the system. Such a motion 

model can be generally described as a function of the previous state, external inputs 𝒖, certain 

intrinsic parameters (represented by a vector 𝚽), and process noise 𝒘: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝚽) + 𝒘𝑘−1.(2) 

Sometimes, these PDFs can be assumed to be Gaussian. A multivariate Gaussian PDF representing 

belief about 𝒙 has the following definition: 
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𝒩(𝒙; �̅�, 𝚺𝑥) =
1

√|2𝜋𝚺𝑥|
exp (−

1

2
(𝒙 − �̅�)𝑇𝚺𝑥

−1(𝒙 − �̅�)),(3) 

where �̅� is the mean vector and 𝚺𝑥 is the covariance matrix. When a priori state belief is generally 

non-Gaussian, it can often be reasonably approximated by a finite sum of weighted Gaussian 

distributions [10]: 

𝑝(𝒙𝑘−1|𝒛1:𝑘−1) =∑𝑐𝑖
(𝑘−1|1:𝑘−1)

𝒩(𝒙; �̅�𝑖
(𝑘−1|1:𝑘−1)

, 𝚺𝑥𝑖
(𝑘−1|1:𝑘−1)

)

𝐼

𝑖=1

,(4) 

where the superscripts in the means, covariances, and weighting coefficients signify the PDF to 

which they belong and the subscripts index the Gaussian components within the PDF. Having a 

priori state belief as a multi-Gaussian PDF, predicted belief is also given by a multi-Gaussian 

distribution: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) =∑𝑐𝑖
(𝑘|1:𝑘−1)

𝒩(𝒙; �̅�𝑖
(𝑘|1:𝑘−1)

, 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)

𝐼

𝑖=1

,(5) 

where the parameters describing this PDF are given in terms of the parameters describing the a 

priori PDF and the motion model by 

𝑐𝑖
(𝑘|1:𝑘−1)

= 𝑐𝑖
(𝑘−1|1:𝑘−1)

,(6𝑎) 

�̅�𝑖
(𝑘|1:𝑘−1)

= 𝑓 (�̅�𝑖
(𝑘−1|1:𝑘−1)

, 𝒖𝑘−1, 𝚽),(6𝑏) 

𝚺𝑥𝑖
(𝑘|1:𝑘−1)

≈ (
𝜕𝑓(•)

𝜕𝒙𝑘−1
)

2

𝚺𝑥𝑖
(𝑘−1|1:𝑘−1)

+ (
𝜕𝑓(•)

𝜕𝒖𝑘−1
)

2

𝚺𝑢𝑘−1 + (
𝜕𝑓(•)

𝜕𝚽
)

2

𝚺Φ + 𝚺𝑤 .(6𝑐) 

Equation (6c) arises from error propagation of Eq. (2). 
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6.2.1.2 Observation 

 The second stage of RBE, observation, supplements the prediction stage with additional 

information about the state at step 𝑘. A deterministic observation model can be generally defined 

as a function of the state, various intrinsic parameters 𝚿, and sensor noise 𝒗 by: 

𝒛𝑘 = ℎ(𝒙𝑘, 𝚿) + 𝒗𝑘 ,(7) 

where 𝒛𝑘 is the observation at step 𝑘. The manner in which a deterministic observation can be cast 

into a probabilistic belief space to obtain an observation PDF 𝑝(𝒛𝑘|𝒙𝑘) is largely context-

dependent. 

6.2.1.3 Correction 

 If prediction was not accompanied by some uncertainty, the system of interest would be 

purely deterministic and observation would be unnecessary. However, since system uncertainty is 

inevitable, the correction stage of RBE reinforces belief by fusing the predicted and observation 

PDFs: 

𝑝(𝒙𝑘|𝒛1:𝑘) =
𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)

∫ 𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)𝑑𝒙𝑘𝒳

.(8) 

Here, 𝑝(𝒙𝑘|𝒛1:𝑘) may be referred to as the corrected PDF. To compute Eq. (8), 𝑝(𝒙𝑘|𝒛𝑘) must be 

derived from the observation PDF 𝑝(𝒛𝑘|𝒙𝑘). In the multi-Gaussian case, this distribution can be 

given by: 

𝑝(𝒙𝑘|𝒛𝑘) =∑𝑐𝑗
(𝑘|𝑘)

𝒩(𝒙; �̅�𝑗
(𝑘|𝑘)

, 𝚺𝑥𝑗
(𝑘|𝑘)

)

𝐽

𝑗=1

.(9) 

For such a PDF, correction is accomplished by multi-Gaussian Belief Fusion (MBF) [23]. This 

results in the following corrected PDF: 
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𝑝(𝒙𝑘|𝒛1:𝑘) =∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑗
(𝑘|𝑘)

𝑐𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

𝒩(𝒙; �̅�𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

, 𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

)

𝐽

𝑗=1

𝐼

𝑖=1

 

= ∑𝑐𝑛
(𝑘|1:𝑘)

𝒩(𝒙; �̅�𝑛
(𝑘|1:𝑘)

, 𝚺𝑥𝑛
(𝑘|1:𝑘)

)

𝐼𝐽

𝑛=1

,(10) 

where 

𝑐𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= 𝒩(�̅�𝑖
(𝑘|1:𝑘−1)

; �̅�𝑗
(𝑘|𝑘)

, 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

+ 𝚺𝑥𝑗
(𝑘|𝑘)

),(11𝑎) 

𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= [(𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)
−1

+ (𝚺𝑥𝑗
(𝑘|𝑘)

)
−1

]
−1

,(11𝑏) 

�̅�𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= 𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

[(𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)
−1

�̅�𝑖
(𝑘|1:𝑘−1)

+ (𝚺𝑥𝑗
(𝑘|𝑘)

)
−1

�̅�𝑗
(𝑘|𝑘)

]. (11𝑐) 

6.2.2 Kalman Estimation 

 Most KFs assume belief is strictly Gaussian and therefore propagate only the mean vectors 

and covariance matrices describing Gaussian belief. The linear and adaptive Kalman filters are 

described here. 

6.2.2.1 Linear Kalman Filter 

 The LKF predicts the mean and covariance describing Gaussian belief about a state 

according to a system's linear motion model as: 

�̅�𝑘|1:𝑘−1 = 𝑨�̅�𝑘−1|1:𝑘−1 +𝑩𝒖𝑘−1,(12𝑎) 

𝚺𝑥𝑘|1:𝑘−1 = 𝑨𝚺𝑥𝑘−1|1:𝑘−1𝑨
𝑇 + 𝚺𝑤 .(12𝑏) 

with 𝚺𝑤 being the covariance of additive Gaussian system disturbance noise. Observation is also 

a linear process governed by: 

𝒛𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘.(13) 

Once an observation is received, belief is improved by correction, given in terms of the linear 

observation model 𝑪 and Kalman gain 𝑲: 
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�̅�𝑘|1:𝑘 = �̅�𝑘|1:𝑘−1 + 𝑲(𝒛𝑘 − 𝑪�̅�𝑘|1:𝑘−1),(14𝑎) 

𝚺𝑥𝑘|1:𝑘 = (𝑰 − 𝑲𝑪)𝚺𝑥𝑘|1:𝑘−1,(14𝑏) 

with 

𝑲 = 𝚺𝑥𝑘|1:𝑘−1𝑪
𝑇 (𝑪𝚺𝑥𝑘|1:𝑘−1𝑪

𝑇 + 𝚺𝑣)
−1

.(15) 

The variable 𝚺𝑣 represents the covariance of additive Gaussian sensor noise. 

6.2.2.2 Adaptive Kalman Filter 

 The AKF predicts and corrects according to the appropriate motion and observation 

models, as in equations (12a)-(15) for a linear system and sensor, but accounts for increased 

uncertainty by updating 𝚺𝑤 and 𝚺𝑣. One of the more popular approaches is described in [22] by 

the following equations: 

𝚺𝑣𝑘 = 𝑮𝑣 − 𝑪𝚺𝑥𝑘|1:𝑘−1𝑪
𝑇 ,(16𝑎) 

𝑮𝑣 =
1

𝑀
∑‖�̅�𝑘−𝑚 − 𝑪𝑘−𝑚�̅�𝑘−𝑚|1:𝑘−𝑚−1‖

2
𝑀

𝑚=1

,(16𝑏) 

𝚺𝑤𝑘 = √𝛼𝚺𝑤𝑘−1,(16𝑐) 

𝛼 =
tr(𝑮𝑣 − 𝚺𝑣𝑘−1)

tr (𝑪𝚺𝑥𝑘|1:𝑘−1𝑪
𝑇)
. (16𝑑) 

 As the above formulas show, while the LKF and AKF account for uncertainty in the form 

of additive noise in both prediction and observation, there is no allowance for uncertainty in the 

model parameters 𝑨, 𝑩, and 𝑪 themselves. This can result in non-zero estimation error when the 

motion and/or observation model does not match the physical system and/or sensor. 
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6.2.3 Multi-Gaussian Motion Model Correction 

 Estimation accuracy is increased under the SEAM framework [16] because uncertainty in 

the motion model is incorporated in the prediction stage by introducing the 
𝜕𝑓(•)

𝜕𝚽
 term of Eq. (6c). 

Because this also increases sensitivity to observational noise, a model correction stage then 

improves the estimated motion model parameters and consequently decreases their uncertainty to 

make prediction more reliable. This is accomplished in [16] by means of a gradient-descent 

approach which adjusts model parameters to minimize the integrated-squared-error (𝐼𝑆𝐸𝑓) 

between 𝑝(𝒙𝑘|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛1:𝑘) as shown below: 

𝐼𝑆𝐸𝑓 = ∫(𝑝(𝒙𝑘|𝒛1:𝑘−1) − 𝑝(𝒙𝑘|𝒛1:𝑘))
2
𝑑𝒙𝑘

𝓧

.(17) 

The subscript 𝑓 is introduced here to emphasize that the past SEAM framework only handled 

motion model parameters. Because each of these PDFs is generally multi-Gaussian, 𝐼𝑆𝐸𝑓  

simplifies to an expression containing only weighting coefficients, some of which implicitly 

depend on motion model parameters 𝚽. Since a closed-form solution for the optimal motion model 

parameters 𝚽𝑘  at step 𝑘 is intractable, the gradient ∇𝚽(𝐼𝑆𝐸𝑓) is instead extracted and used in 

gradient-descent algorithms to solve for these optimal parameters: 

𝚽𝑘 = argmin
𝚽

(𝐼𝑆𝐸𝑓).(18) 

 Although previous work addresses motion model correction for non-Gaussian belief, 

congruous correction formulations for the observation model have not been addressed. Because 

the motion and observation models have duality in the context of RBE, it is a natural extension to 

apply similar derivations in obtaining an observation model correction stage within SEAM. 
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6.3 Multi-Gaussian Observation Model Correction 

 The major contributions of this paper are described here within the context of SEAM. First, 

formulations for Gaussian and multi-Gaussian observational belief are proposed for problems 

where model parameters are not well known. Included are equations for observation inversion and 

artificial re-observation. Next, model parameter correction is addressed for single and then 

multiple re-observation error minimization. Finally, a method of model parameter uncertainty 

propagation is introduced for consistency within SEAM. 

 The proposed framework is summarized by the diagram of Fig. 1. Shaded blocks are the 

particular original contributions which are described in the following subsections. 

6.3.1 Observation Formulations 

 Consider a linearized observation model of the following form: 

𝒛𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘.(19) 

Figure 1. System diagram (SEAM with observation model correction). 
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where the zero-mean noise process 𝒗𝑘  has covariance 𝚺𝑣. Although the concepts of this section 

could apply to observation matrices 𝑪 of varying dimensionality and rank, 𝒛𝑘 is assumed here to 

have the same dimensionality as 𝒙𝑘 so that 𝑪 is square. The expected value of a reading from a 

sensor for which Eq. (19) holds is �̅�𝑘 = 𝑪�̂�𝑘, where �̂�𝑘 represents the ground-truth state. When 

observational belief is Gaussian, 𝑝(𝒛𝑘|�̂�𝑘) is first proposed to be given by the following normal 

distribution: 

𝑝(𝒛𝑘|�̂�𝑘) = 𝒩(𝒛; �̅�𝑘, 𝚺𝑧𝑘),(20) 

where 

�̅�𝑘 = �̅��̂�𝑘(21) 

and 

𝚺𝑧𝑘 = 𝚺𝑣 + 𝚺𝐶𝒟(�̂�𝑘 ∘ �̂�𝑘)𝚺𝐶
𝑇 .(22) 

In Eq. (22), 𝚺𝐶  is a matrix the size of �̅� with each element equal to the standard deviation of the 

corresponding element in �̅�, the matrix of estimated means. In addition, the notation 𝒟(•) 

diagonalizes its vector argument and ∘ represents the Hadamard element-wise product. This 

equation follows from error propagation on Eq. (19). It is important to note here the difference 

between “sensor noise” and “observational uncertainty”. The former is characterized by only 𝚺𝑣, 

while the latter is characterized by 𝚺𝑧𝑘, which incorporates both sensor noise and model 

uncertainty. When model uncertainty is assumed to be zero, as is the case with the vast majority 

of Kalman filters, observational uncertainty and sensor noise become equivalent and 

interchangeable. 

 In cases where observational belief is more accurately modeled by a zero-mean non-

Gaussian PDF, the above formulations are insufficient. The proposed method models non-
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Gaussian observational belief such that the linear observation model is still employed. Let 

𝑝(𝒛𝑘|�̂�𝑘) be approximated by a Gaussian sum: 

𝑝(𝒛𝑘|�̂�𝑘) =∑𝑐𝑗
(𝑘|�̂�)

𝒩(𝒛; �̅�𝑗
(𝑘|�̂�)

, 𝚺𝑧𝑗
(𝑘|�̂�)

)

𝐽

𝑗=1

,(23) 

with overall mean �̅�𝑘 equal to �̅��̂�𝑘  and ∑ 𝑐𝑗
(𝑘|�̂�)

= 1𝐽
𝑗=1 . In order to incorporate the observation 

model in defining �̅�𝑗
(𝑘|�̂�)

 and 𝚺𝑧𝑗
(𝑘|�̂�)

, the linear mean equation is augmented as follows: 

�̅�𝑗
(𝑘|�̂�)

= �̅�(�̂�𝑘 + 𝜹𝑗),(24) 

while the covariance of each Gaussian component becomes 

𝚺𝑧𝑗
(𝑘|�̂�)

= 𝚺𝑣 + 𝚺𝐶𝒟 ((�̂�𝑘 + 𝜹𝑗) ∘ (�̂�𝑘 + 𝜹𝑗)) 𝚺𝐶
𝑇 .(25) 

The centroid of the delta points 𝜹𝑗 is restricted to be zero so that the mean of 𝑝(𝒛𝑘|�̂�𝑘) remains 

equal to �̅��̂�𝑘. Furthermore, the weighting coefficients 𝑐𝑗
(𝑘|�̂�)

 must be balanced for the same reason. 

The variables 𝚺𝑣, 𝜹𝑗, and 𝑐𝑗
(𝑘|�̂�)

 are sensor-intrinsic properties to be determined by off-line 

characterization in addition to the intrinsic parameter matrix �̅�. Figure 2 demonstrates Gaussian 

and non-Gaussian observation modeling for an arbitrary one-dimensional (1-D) example. 

Figure 2. Gaussian and multi-Gaussian observation models where �̅� = 2. This arbitrary multi-Gaussian model for which 

𝑐𝑗
(𝑘|�̂�)

= 1/6∀𝑗 and 𝜹𝑗 = [0.8,−0.8, 1.2,−1.2, 2,−2] displays bimodal characteristics. 
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 Observations are associated with some level of uncertainty, and so are treated as random 

vectors drawn from the distribution 𝑝(𝒛𝑘|�̂�𝑘). Accurately characterizing the uncertainty in such 

observations as given by Eqs. (22) and (25) depends on knowledge of the “hidden” ground-truth 

state �̂�𝑘 as these formulas show. Because this is the target of estimation and is therefore unknown, 

an approximation must be made. The component means �̅�𝑗
(𝑘|�̂�)

 are estimated by assuming that a 

received observation �̂�𝑘 has the expected value �̅�𝑘. This means: 

�̅�𝑗
(𝑘|�̂�)

= �̅�(�̂�𝑘 + 𝜹𝑗) = �̅�𝑘 + �̅�𝜹𝑗 ≅ �̂�𝑘 + �̅�𝜹𝑗,(26) 

and so 

𝚺𝑧𝑗
(𝑘|�̂�)

= 𝚺𝑣 + 𝚺𝐶𝒟 ((�̅�
−1�̅�𝑗

(𝑘|�̂�)
) ∘ (�̅�−1�̅�𝑗

(𝑘|�̂�)
))𝚺𝐶

𝑇 .(27) 

6.3.1.1 Observation Inversion 

 SEAM is concerned with estimating the state of a system, so vectors in the observation 

domain cannot be directly fused with predicted states (with the exception of the trivial case where 

𝑪 = 𝑰. As a result, an observation must be inverted to obtain 𝑝(𝒙𝑘|𝒛𝑘) from 𝑝(𝒛𝑘|𝒙𝑘). This stage 

is termed “observation inversion” here. Inverting a multi-Gaussian observation can be thought of 

as applying another linear propagation to the PDF coming from an observation, 𝑝(𝒛𝑘|�̂�𝑘). This 

propagation is applied to each component of the distribution to yield another Gaussian sum: 

𝑝(𝒙𝑘|𝒛𝑘) =∑𝑐𝑗
(𝑘|𝑘)

𝒩(𝒙; �̅�𝑗
(𝑘|𝑘)

, 𝚺𝑥𝑗
(𝑘|𝑘)

)

𝐽

𝑗=1

,(28) 

where 

𝑐𝑗
(𝑘|𝑘)

= 𝑐𝑗
(𝑘|�̂�)

,(29𝑎) 

�̅�𝑗
(𝑘|𝑘)

= �̅�−1�̅�𝑗
(𝑘|�̂�)

,(29𝑏) 
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𝚺𝑥𝑗
(𝑘|𝑘)

= 𝚺𝐶−1𝒟 (�̅�𝑗
(𝑘|�̂�)

∘2

) 𝚺𝐶−1
𝑇 + �̅�−1 (𝚺𝑧𝑗

(𝑘|�̂�)
+ 𝚺𝑣) �̅�

−1𝑇 ,(29𝑐) 

and the power notation “∘ 2” more concisely denotes the element-wise square of the corresponding 

vector. Again, the covariance formula is derived from error propagation. 

 Inspection of Eq. (29c) reveals the need for 𝚺𝐶−1, the matrix containing standard deviations 

of corresponding elements in the mean inverse matrix �̅�−1. In general, this matrix cannot be 

obtained; however, it can be approximated by Monte Carlo methods or other techniques [24]. In 

practice, however, 𝚺𝐶−1 is approximated using some effective heuristic, as the primary objective 

is to broadly capture the inflation of uncertainty consistent with the inverting of a stochastic 

observation to the underlying state. 

6.3.1.2 Artificial Re-Observation 

 The aim of “artificial re-observation” is to simulate an observation of the corrected state 

under the assumption that it is more accurately estimated than the inverse-observed state alone. 

The PDF describing the re-observed state is denoted𝑝(𝒛𝑘|(𝒙𝑘|𝒛1:𝑘)). Again, this is given by a 

multi-Gaussian distribution: 

𝑝(𝒛𝑘|(𝒙𝑘|𝒛1:𝑘)) = ∑ 𝑐𝑛
(𝑘|𝑘|1:𝑘)

𝒩(𝒛; �̅�𝑛
(𝑘|𝑘|1:𝑘)

, 𝚺𝑧𝑛
(𝑘|𝑘|1:𝑘)

)

𝐼𝐽

𝑛=1

,(30) 

where 

𝑐𝑛
(𝑘|𝑘|1:𝑘)

= 𝑐𝑛
(𝑘|1:𝑘)

,(31𝑎) 

�̅�𝑛
(𝑘|𝑘|1:𝑘)

= �̅��̅�𝑛
(𝑘|1:𝑘)

,(31𝑏) 

𝚺𝑧𝑛
(𝑘|𝑘|1:𝑘)

= 𝚺𝐶𝒟 (�̅�𝑛
(𝑘|1:𝑘)∘2

) 𝚺𝐶
𝑇 + �̅�𝚺𝑥𝑛

(𝑘|1:𝑘)
�̅�𝑇 + 𝚺𝑣 .(31𝑐) 

Recall that the parameters with superscripts (𝑘|1: 𝑘) define 𝑝(𝒙𝑘|𝒛1:𝑘) as given by Eq. (10). 
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6.3.2 Single Re-observation Error Minimization 

 In order to effectively correct observation model parameter estimates, the proposed 

technique compares observed and re-observed belief and adjusts observation model parameters 

such that the two PDFs match optimally. Mathematically, this is accomplished by minimizing an 

objective function 𝐼𝑆𝐸ℎ . The optimal parameter vector 𝚿𝑘  at step 𝑘 is found by 

𝚿𝑘 = argmin
𝚿

(𝐼𝑆𝐸ℎ).(32) 

where 𝐼𝑆𝐸ℎ  is defined as 

𝐼𝑆𝐸ℎ = ∫(𝑝(𝒛𝑘|�̂�𝑘) − 𝑝(𝒛𝑘|(𝒙𝑘|𝒛1:𝑘)))
2
𝑑𝒛

𝓩

.(33) 

Because each of these PDFs is generally given by a Gaussian sum, a closed-form solution for 

model parameters which minimize 𝐼𝑆𝐸ℎ is unattainable. However, since 𝑝(𝒛𝑘|(𝒙𝑘|𝒛1:𝑘)) is a 

function of the estimated parameter vector 𝚿, a gradient descent approach can be used. 

 The integrated-squared-error simplifies under the Gaussian sum approximation to: 

𝐼𝑆𝐸ℎ = ∫

(

 (∑𝑐𝑗
(𝑘|�̂�)

𝐽

𝑗=1

𝒩(𝒛; �̅�𝑗
(𝑘|�̂�)

, 𝚺𝑧𝑗
(𝑘|�̂�)

))

2

+ (∑𝑐𝑛
(𝑘|𝑘|1:𝑘)

𝒩(𝒛; �̅�𝑛
(𝑘|𝑘|1:𝑘)

, 𝚺𝑧𝑛
(𝑘|𝑘|1:𝑘)

)

𝐼𝐽

𝑛=1

)

2

𝓩

− 2∑∑𝑐𝑗
(𝑘|�̂�)

𝑐𝑛
(𝑘|𝑘|1:𝑘)

𝑐𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

𝒩(𝒛; �̅�𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

, 𝚺𝑧𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

)

𝐼𝐽

𝑛=1

𝐽

𝑗=1
)

 𝑑𝒛. (34) 

With further expansion, and because each Gaussian integrates to one, this becomes: 

𝐼𝑆𝐸ℎ =∑∑𝑐𝑗
(𝑘|�̂�)

𝑐𝑙
(𝑘|�̂�)

𝐽

𝑙=1

𝐽

𝑗=1

𝑐𝑗𝑙
(𝑘|�̂�, �̂�)

+∑∑ 𝑐𝑛
(𝑘|𝑘|1:𝑘)

𝑐𝑚
(𝑘|𝑘|1:𝑘)

𝑐𝑛𝑚
(𝑘|𝑘|1:𝑘,𝑘|1:𝑘)

𝐼𝐽

𝑚=1

𝐼𝐽

𝑛=1

 

−2∑∑𝑐𝑗
(𝑘|�̂�)

𝑐𝑛
(𝑘|𝑘|1:𝑘)𝑐𝑗𝑛

(𝑘|�̂�,𝑘|1:𝑘)

𝐼𝐽

𝑛=1

𝐽

𝑗=1

.(35) 
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In this expression, only 𝑐𝑛𝑚
(𝑘|𝑘|1:𝑘,𝑘|1:𝑘)

 and 𝑐𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

 depend directly on 𝚿, as parameters with 

(𝑘|�̂�) superscripts are taken to be constant since they define the reference PDF coming from an 

observation 𝑝(𝒛𝑘|�̂�𝑘). Therefore, the gradient of 𝐼𝑆𝐸ℎ with respect to 𝚿 is given by: 

∇𝚿(𝐼𝑆𝐸ℎ) = ∑∑ 𝑐𝑛
(𝑘|𝑘|1:𝑘)𝑐𝑚

(𝑘|𝑘|1:𝑘)∇𝚿 (𝑐𝑛𝑚
(𝑘|𝑘|1:𝑘,𝑘|1:𝑘)

)

𝐼𝐽

𝑚=1

𝐼𝐽

𝑛=1

 

−2∑∑𝑐
𝑗

(𝑘|�̂�)
𝑐𝑛
(𝑘|𝑘|1:𝑘)∇𝚿 (𝑐𝑗𝑛

(𝑘|�̂�,𝑘|1:𝑘)
)

𝐼𝐽

𝑛=1

𝐽

𝑗=1

.(36) 

Because they come from MBF of two multi-Gaussian PDFs, 𝑐𝑛𝑚
(𝑘|𝑘|1:𝑘,𝑘|1:𝑘)

 and 𝑐𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

 are 

given by normal distributions according to Eq. (11a). By the chain rule, their gradients can be 

expressed as follows: 

∇𝚿 (𝑐𝑛𝑚
(𝑘|𝑘|1:𝑘,𝑘|1:𝑘)

) = exp(𝛽𝑛𝑚) (∇𝚿(𝛼𝑛𝑚) + 𝛼𝑛𝑚∇𝚿(𝛽𝑛𝑚)),(37𝑎) 

∇𝚿 (𝑐𝑗𝑛
(𝑘|�̂�,𝑘|1:𝑘)

) = exp(휁𝑛𝑚) (∇𝚿(𝜖𝑛𝑚) + 𝜖𝑛𝑚∇𝚿(휁𝑛𝑚)),(37𝑏) 

where 

𝛼𝑛𝑚 = (|2𝜋𝜸𝑛𝑚|)
−
1
2,(38𝑎) 

𝛽𝑛𝑚 = −
1

2
𝜹𝑛𝑚
𝑇 𝜸𝑛𝑚

−1 𝜹𝑛𝑚 ,(38𝑏) 

𝜖𝑗𝑛 = (|2𝜋𝜼𝑗𝑛|)
−
1
2,(38𝑐) 

휁𝑗𝑛 = −
1

2
𝜽𝑗𝑛
𝑇 𝜼𝑗𝑛

−1𝜽𝑗𝑛 ,(38𝑑) 

and 

𝜸𝑛𝑚 = 𝚺𝑧𝑛
(𝑘|𝑘|1:𝑘) + 𝚺𝑧𝑚

(𝑘|𝑘|1:𝑘)
 

= 𝚺𝐶𝒟 (�̅�𝑛
(𝑘|1:𝑘)∘2

+ �̅�𝑚
(𝑘|1:𝑘)∘2

)𝚺𝐶
𝑇 + �̅�(𝚺𝑥𝑛

(𝑘|1:𝑘)
+ 𝚺𝑥𝑚

(𝑘|1:𝑘)
)�̅�𝑇 + 2𝚺𝑣 ,(39𝑎) 
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𝜹𝑛𝑚 = �̅�𝑛
(𝑘|𝑘|1:𝑘)

− �̅�𝑚
(𝑘|𝑘|1:𝑘) = �̅�(�̅�𝑛

(𝑘|1:𝑘)
+ �̅�𝑚

(𝑘|1:𝑘)
),(39𝑏) 

𝜼𝑗𝑛 = 𝚺𝑧𝑗
(𝑘|�̂�)

+ 𝚺𝑧𝑛
(𝑘|𝑘|1:𝑘)

= 𝚺𝑧𝑗
(𝑘|�̂�)

+ 𝚺𝐶𝒟 (�̅�𝑛
(𝑘|1:𝑘)∘2

) 𝚺𝐶
𝑇 + �̅�𝚺𝑥𝑛

(𝑘|1:𝑘)
�̅�𝑇 + 𝚺𝑣 ,(39𝑐) 

𝜽𝑗𝑛 = �̅�𝑗
(𝑘|�̂�)

− �̅�𝑛
(𝑘|𝑘|1:𝑘) = �̅�𝑗

(𝑘|�̂�)
− �̅��̅�𝑛

(𝑘|1:𝑘)
.(39𝑑) 

 Because the vector 𝚿 is assembled from the observation model parameters (i.e. the indexed 

elements 𝐶𝑝𝑞  of 𝑪, the four gradients of Eqs. (37a) and (37b) must be assembled from the partial 

derivatives of their arguments with respect to each parameter. For example, 

𝛻𝚿(𝛼𝑛𝑚) = [
𝜕𝛼𝑛𝑚
𝜕𝐶11

…
𝜕𝛼𝑛𝑚
𝜕𝐶1𝑞

𝜕𝛼𝑛𝑚
𝜕𝐶21

⋯
𝜕𝛼𝑛𝑚
𝜕𝐶2𝑞

⋯
𝜕𝛼𝑛𝑚
𝜕𝐶𝑝𝑞

]

𝑇

.(40) 

Each placeholder variable's gradient is found accordingly. Evaluating the partial derivatives of 

Eqs. (37a) and (37b) gives the following: 

𝜕𝛼𝑛𝑚
𝜕𝐶𝑝𝑞

= −
1

2
(|2𝜋𝜸𝑛𝑚|)

−
1
2tr (𝜸𝑛𝑚

−1
𝜕𝜸𝑛𝑚
𝜕𝐶𝑝𝑞

),(41𝑎) 

𝜕𝛽𝑛𝑚
𝜕𝐶𝑝𝑞

= −
1

2
(𝜹𝑛𝑚

𝑇 𝜸𝑛𝑚
−1 (

𝜕𝜹𝑛𝑚
𝜕𝐶𝑝𝑞

−
𝜕𝜸𝑛𝑚
𝜕𝐶𝑝𝑞

𝜸𝑛𝑚
−1 𝜹𝑛𝑚) + (

𝜕𝜹𝑛𝑚
𝜕𝐶𝑝𝑞

)

𝑇

𝜸𝑛𝑚
−1 𝜹𝑛𝑚),(41𝑏) 

𝜕𝜖𝑗𝑛
𝜕𝐶𝑝𝑞

= −
1

2
(|2𝜋𝜼𝑗𝑛|)

−
1
2tr (𝜼𝑗𝑛

−1
𝜕𝜼𝑗𝑛
𝜕𝐶𝑝𝑞

), (41𝑐) 

𝜕휁𝑗𝑛
𝜕𝐶𝑝𝑞

= −
1

2
(𝜽𝑗𝑛

𝑇 𝜼𝑗𝑛
−1 (

𝜕𝜽𝑗𝑛
𝜕𝐶𝑝𝑞

−
𝜕𝜼𝑗𝑛
𝜕𝐶𝑝𝑞

𝜼𝑗𝑛
−1𝜽𝑗𝑛) + (

𝜕𝜽𝑗𝑛
𝜕𝐶𝑝𝑞

)

𝑇

𝜼𝑗𝑛
−1𝜽𝑗𝑛), (41𝑑) 

and the final derivatives are given by: 

𝜕𝜸𝑛𝑚
𝜕𝐶𝑝𝑞

= �̅�(𝚺𝑥𝑛
(𝑘|1:𝑘)

+ 𝚺𝑥𝑚
(𝑘|1:𝑘)

)𝑶𝑝𝑞
𝑇 + 𝑶𝑝𝑞(𝚺𝑥𝑛

(𝑘|1:𝑘)
+ 𝚺𝑥𝑚

(𝑘|1:𝑘)
)�̅�𝑇 ,(42𝑎) 

𝜕𝜹𝑛𝑚
𝜕𝐶𝑝𝑞

= 𝑶𝑝𝑞(�̅�𝑛
(𝑘|1:𝑘)

+ �̅�𝑚
(𝑘|1:𝑘)

),(42𝑏) 

𝜕𝜼𝑗𝑛
𝜕𝐶𝑝𝑞

= �̅�𝚺𝑥𝑛
(𝑘|1:𝑘)

𝑶𝑝𝑞
𝑇 +𝑶𝑝𝑞𝚺𝑥𝑛

(𝑘|1:𝑘)
�̅�𝑇 ,(42𝑐) 
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𝜕𝜽𝑗𝑛
𝜕𝐶𝑝𝑞

= −𝑶𝑝𝑞�̅�𝑛
(𝑘|1:𝑘)

.(42𝑑) 

In the above equations, the matrix 𝑶𝑝𝑞 is defined as follows: 

𝑶𝑝𝑞 = {
1element𝑝, 𝑞
0elsewhere

(43) 

 These formulations are used to implement gradient descent and find the parameter vector 

𝚿𝑘  which minimizes the observation model objective function 𝐼𝑆𝐸ℎ for observation 𝑘. While the 

focus of this paper is not on particularly effective gradient-descent algorithms, the general process 

is governed by the following recurrence relation: 

(�̅�𝑘)𝑖+1 = (�̅�𝑘)𝑖 − 𝑑𝑖[∇𝚿(𝐼𝑆𝐸ℎ)]|𝚿=(�̅�𝑘)𝑖 .(44) 

The intuitive choice for seeding the algorithm is (�̅�𝑘)𝑖 = �̅�𝑘−1, as this has the best chance of 

avoiding any anticipated non-convexities in the objective function which may result in 

convergence to an erroneous local minimum. 

 Figure 3 demonstrates the principle of observation model correction via 𝐼𝑆𝐸ℎ  

minimization. The relevant Gaussian PDFs of an arbitrary 1-D example are shown and 𝐼𝑆𝐸ℎ  is 

plotted as a function of the 1-D observation model parameter C. In this example, the ground-truth 

state at step 2, �̂�2, is identified by a delta function2 at 5. This particular observation model with 

linear bias 𝐶𝐺𝑇 = 1.93 yields an observation whose PDF is given by the red Gaussian curve with 

mean 1.93 × 5 = 9.65. Inverting this observation yields belief about 𝑥2 which is shown by the 

green Gaussian PDF. Note that in each of these steps, uncertainty has increased in keeping with 

Eqs. (25) and (29c). The PDF coming from prediction, 𝑝(𝑥2|𝑧1), is plotted in blue, while the 

corrected state belief given by the fusion of 𝑝(𝑥2|𝑧2) and 𝑝(𝑥2|𝑧1) is given by the magenta curve, 

𝑝(𝑥2|𝑧1:2). Applying the principle of artificial re-observation to this PDF yields the cyan PDF. 

                                                
2 The Dirac delta can also be thought of as a Gaussian with infinitesimal variance. 
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Model correction attempts to match the cyan PDF with the red PDF as was expressed 

mathematically in Eq. (33). This objective function is plotted in green in the second part of the 

figure, showing a minimum (blue) which improves the initial estimate of 𝐶 (red) towards the 

ground-truth value (black). The minimum of 𝐼𝑆𝐸ℎ  does not lie on 𝐶𝐺𝑇 as a result of the additive 

noise introduced in the observation step. However, over several time steps, the observation model 

parameter estimate tends to approach ground-truth because of the zero-mean-stationarity of sensor 

noise. 

6.3.3 Multiple Re-observation Error Minimization 

 As the dimensionality 𝑁 of 𝑪 increases, the length of the parameter vector 𝚿 increases 

by𝑁2. Therefore, moderately high-dimensional problems mandate the optimization of much 

higher-dimensional parameter vectors. For cases where 𝑁 > 1, the previously formulated 

objective function does not provide sufficient power to constrain unique convergence of all the 

parameter estimates to ground-truth. For this reason, 𝐼𝑆𝐸ℎ is redefined to average the re-

observation error over multiple time steps: 

Figure 3. a) Belief through multiple stages of SEAM represented as 1-D Gaussian PDFs; b) The objective function 𝐼𝑆𝐸ℎ plotted 

over a range of observation model parameters 𝐶. 
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𝐼𝑆𝐸ℎ = ∫[
1

𝑀 + 1
∑ (𝑝(𝒛𝑖|�̂�𝑖) − 𝑝(𝒛𝑖|(𝒙𝑖|𝒛1:𝑖)))

2
𝑘

𝑖=𝑘−𝑀

] 𝑑𝒛

𝑍

.(45) 

The linearity of integration allows for the following simplification: 

𝐼𝑆𝐸ℎ =
1

𝑀 + 1
∑ ∫(𝑝(𝒛𝑖|�̂�𝑖) − 𝑝(𝒛𝑖|(𝒙𝑖|𝒛1:𝑖)))

2

𝑑𝒛

𝒵

𝑘

𝑖=𝑘−𝑀

=
1

𝑀 + 1
∑ (𝐼𝑆𝐸ℎ)𝑖

𝑘

𝑖=𝑘−𝑀

.(46) 

The gradient of the multiple-time-step 𝐼𝑆𝐸ℎ objective function is then given by the average of the 

individual gradients coming from 𝑀 past time steps: 

𝛻𝚿(𝐼𝑆𝐸ℎ) =
1

𝑀 + 1
∑ 𝛻𝚿(𝐼𝑆𝐸ℎ)𝑖

𝑘

𝑖=𝑘−𝑀

.(47) 

6.3.4 Uncertainty Propagation 

 As presented in Eqs. (22), (25), and (31c) of section 3.1, an estimate of the uncertainty 𝚺𝐶  

in observation model parameters is required to accurately obtain observational belief. After the 

mean sensor matrix �̅�𝑘  is made available via gradient descent model correction, the corresponding 

standard-deviation matrix is updated according to the following heuristic: 

𝚺𝐶𝑘 ≈ 𝜆𝚺𝐶𝑘−1,0 < 𝜆 < 1.(48) 

This guarantees that the estimated uncertainty in observation model parameters continually 

decreases following the power law 𝜆𝑘  to reflect the increasing accuracy with which �̅�𝑘 is estimated. 

6.4 Results 

 In order to assess the ubiquity of the proposed framework and avoid the selection of only 

special cases where it works, simulated experiments with randomly generated parameters were 

conducted. Under this Monte-Carlo validation study, both 1-D and 2-D experiments were 

simulated, including scenarios with both Gaussian and non-Gaussian belief. 
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6.4.1 1-D Validation 

 A 1-D linear system was simulated with constant parameter values assigned as shown in 

Table 1. 𝐶0 is the initial estimate of the observation model parameter, with associated standard 

deviation Σ𝐶0 . 𝑑𝑖  is the gradient-descent step size (held constant here), and 𝑇 is the gradient-descent 

threshold parameter. The ground-truth parameter 𝐶𝐺𝑇 is randomly generated by sampling a normal 

distribution: 𝐶𝐺𝑇 ∼ 𝒩(𝐶0, Σ𝐶0). The 1-D linear discrete-time system has an exponential solution 

which converges for 𝐴 < 1. The system's step response is observed by setting 𝑢𝑘 = 1∀𝑘 > 0. 

Table 1. Constant parameters (1-D validation) 

𝐴𝐺𝑇 𝐵𝐺𝑇 𝐶0 Σ𝐶0   Σ𝑤 𝑥0 Σ𝑥0 Δ𝑡 Σ𝑢 𝑑𝑖 𝑇 

0.98 1.3 1 휀𝐶0 0.01 2 0.09 0.025 0.01 0.001 0.0001 

 

6.4.1.1 Uni-Gaussian Belief 

 For the simplest scenario where observational belief is represented by single Gaussians, 

the proposed framework was compared with both the LKF and the AKF. These provide examples 

of state estimation in which observation model uncertainty is not incorporated. In order to 

demonstrate the performance of SEAM with observation model correction, two estimators were 

deployed: the first incorporated observation model uncertainty but did not correct 𝐶 (represented 

by SEAM-, while the second both accounted for model uncertainty and corrected 𝐶 (represented 

by SEAM+). Model correction was implemented using all available observations (𝑀 = 𝑘). Figure 

4 gives a sample simulation (Σ𝑣 = 1, 휀 = 0.1, and 𝜆 = 0.99). 

 In these plots, the red trace corresponds to the inverted observations (the means of 

𝑝(𝑥𝑘|𝑧𝑘)) coming from the SEAM+ estimator. While all the estimators have a smoothing effect on 

the noisy sensor signal, all but SEAM+ have non-zero estimation error due to their inability to 

invert observations based on a correct observation model. Although the sensor signal shown here 
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remains centered on ground-truth, strong fluctuations result in high root-mean-squared-error 

(RMSE) and make any subsequent decision-making unreliable. 

 Figure 5 shows the trajectory of 𝐶 

for the same experiment of Fig. 4 as it is 

corrected over time. The model parameter 

estimate quickly improves, overshoots, and 

is gradually refined as more observations 

become available. This improvement is 

reflected by the performance of the SEAM+ 

estimator in the previous figure. For this 

particular example, 𝐶𝐺𝑇 = 0.8683, and the estimated observation model parameter was improved 

180% from an initial estimate of 𝐶0 = 1 to a final estimate of 𝐶𝑆𝐸𝐴𝑀 = 0.8690. 

 For a more comprehensive and quantitative assessment, 50 simulations were executed for 

different combinations of model uncertainty Σ𝐶0  and noise variance Σ𝑣. Table 2 shows the percent 

of trials each estimator won (L = LKF, A = AKF, S- = SEAM-, and S+ = SEAM+. A few noteworthy 

trends can be observed. First, as 휀 increases, the SEAM estimators tend to outperform the Kalman 

Figure 4. State and error of noisy observations and estimated signals over time. 

Figure 5. Observation model correction over time. 
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filters as expected, because they account for the increased model uncertainty. This trend is 

especially noticeable for high sensor noise. Furthermore, as the variance in sensor noise increases, 

the estimators begin to perform fairly similarly, causing more spread in the distribution of winners. 

Because the estimators have similar performance under strong sensor noise, a “win” becomes less 

meaningful. For example, in a simulation where Σ𝑣 =  7.5
2, the RMSEs are 

[1.071.320.791.22], whereas a sample simulation with Σ𝑣 =  1
2 gives 

[11.0911.192.701.11]. The average RMSE values of the KF estimators are sometimes actually 

lower under high sensor noise because Σ𝑣 begins to dominate observational uncertainty, making 

overconfidence in the observation model parameters less penalizing. 

Table 2. Parametric sensitivity study for 1-D Gaussian estimation 

 
휀 

0.1 0.15 0.2 0.25 

Σ𝑣 

0.52 

L 0% L 0% L 0% L 0% 

A 0% A 0% A 0% A 0% 

S- 16% S- 28% S- 26% S- 26% 

S+ 84% S+ 72% S+ 74% S+ 74% 

12 

L 2% L 0% L 0% L 2% 

A 0% A 0% A 0% A 0% 

S- 8% S- 22% S- 16% S- 24% 

S+ 90% S+ 78% S+ 84% S+ 74% 

2.52 

L 2% L 2% L 4% L 0% 

A 2% A 0% A 0% A 2% 

S- 12% S- 14% S- 12% S- 26% 

S+ 84% S+ 84% S+ 84% S+ 72% 

52 

L 30% L 22% L 10% L 6% 

A 0% A 2% A 0% A 0% 

S- 6% S- 20% S- 30% S- 38% 

S+ 64% S+ 56% S+ 60% S+ 56% 

7.52 

L 74% L 60% L 36% L 34% 

A 2% A 0% A 4% A 2% 

S- 6% S- 16% S- 44% S- 58% 

S+ 18% S+ 24% S+ 16% S+ 6% 
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 A final important comment regarding Table 2 explains the unexpected phenomenon that 

the performance of the proposed approach actually tends to decrease as model uncertainty 

increases. Because the initial model parameter estimates are further from ground-truth under this 

condition, it takes more time for the parameter estimate to converge. As a result, the first few 

seconds of simulation yield higher RMSE values which tend to overshadow the improved RMSE 

of the latter portion of simulation. This is demonstrated by Fig. 6 in the plot of a sample simulation 

for the severe scenario where Σ𝑣 =  7.5
2 and 휀 = 0.25. (As a side-note, the AKF sometimes 

performs worse than the LKF due to poor conditioning of the randomly generated covariances. In 

cases where this is not an issue, estimation is improved as expected.) 

 To further demonstrate the ability of the proposed framework to correct observation model 

parameters, a series of ensemble curves were generated to show estimation subject to initial 

estimates of 𝐶𝐺𝑇 with varying levels of error. The error plots and model parameter plots are shown 

in Fig. 7. As the figure shows, initial estimates within approximately ±50% of ground truth 

converge quickly, in about 7 seconds. Larger initial errors tend to take much more time, generally 

longer than the 15 seconds afforded in simulation, to begin to approach an improved observation 

model estimate. This is likely due to a combination of sub-optimal gradient-descent parameter 

Figure 6. Estimation using SEAM+ improves over time, while other estimators generally yield constant error. 



 155 

tuning and the general non-convexity of even Gaussian model correction based on 𝐼𝑆𝐸ℎ  

minimization. Nevertheless, the efficacy of the proposed model correction approach is clearly 

demonstrated by the plots. 

6.4.1.2 Multi-Gaussian Belief 

 In order to avoid potential problems of severe non-convexity in 𝐼𝑆𝐸ℎ minimization for 

multi-Gaussian validation, 𝛿𝑗 and 𝑐𝑗
(𝑘|�̂�)

 were chosen so that 𝑝(𝑧𝑘|�̂�𝑘) was near-Gaussian for the 

majority of these validative tests. Figure 8 shows the PDFs corresponding to the first time step of 

two different simulated experiments. The first employs a more strongly non-Gaussian observation 

Figure 7. Ensemble curves demonstrating the convergence of observation model parameters for several initial estimates of 𝐶. 

Note the failure of six simulations to converge 𝐶 in both plots due to particularly poor initial estimates. 

Figure 8. PDFs of different stages of belief for one time step. The first plot models multi-Gaussian observations using 𝑐𝑗
(𝑘|�̂�)

 =

[0.6, 0.1, 0.3] and 𝜹𝑗 = [−2.5, 0, 2.5], while the second plot uses using 𝑐𝑗
(𝑘|�̂�)

=  [1/3, 1/3,1/3] and 𝜹𝑗 = [−1.5, 0, 1.5]. Both 

use 𝐶𝐺𝑇 ∼ 𝒩(1,0.1
2) in this example. 
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model, while model used for validation in this section. In simulation, a generated observation �̂�𝑘 

is drawn from its multi-Gaussian distribution by using its inverse cumulative distribution function 

(CDF). The estimated uncertainty in that observation is characterized by covariances 𝚺𝑧𝑗
(𝑘|�̂�)

, given 

by Eq. (25) and implemented according to Eq. (27). The means of the Gaussian components are 

approximated by Eq. (26). Obtaining the weighting coefficients 𝑐𝑗
(𝑘|�̂�)

 is trivial, as these come 

directly from off-line model characterization. 

 The nature of non-Gaussian belief is such that the estimated state cannot be adequately 

summarized by a single state vector. For this reason, state-time and error-time plots are 

unobtainable in such problems. Also, non-Gaussian estimation cannot be compared with KF 

approaches because the latter require Gaussian belief. However, the primary aim of this paper is 

to prove the efficacy of observation model parameter correction; comparing estimation 

performance is only secondary. For several Monte-Carlo simulated non-Gaussian experiments, 

ensemble curves were generated to show the convergence of the 1-D observation model parameter 

𝐶 toward ground-truth, as in the second plot of Fig. 7. Again, the constants of Table 1 were used, 

with time spanning from 0 to 15 

seconds, Σ𝑣 = 1, 𝑀 = 𝑘, and 

𝜆 = 0.98. These curves are 

shown in Fig. 9 below. 

 In similar fashion to the 

Gaussian example of Fig. 7, 

convergence occurs quickly for 

relatively low initial parameter 

estimate error, but takes more 
Figure 9. Non-Gaussian observation model correction over time. 
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time for more severe initial error.  In fact, non-Gaussian convergence appears to be, on average, 

more efficient. This is likely due only to improved parameter tuning (i.e. 𝜆 was decreased to 0.98 

which can have a substantial effect over 600 time steps). This implies that improved performance 

could be achieved in general with more attention to parameter tuning. 

 In order to test the limits of the proposed method of non-Gaussian observation model 

correction on a 1-D system, the ability of the framework to improve 𝐶 was assessed for 

combinations of two extreme cases: highly non-Gaussian PDFs and highly inaccurate initial 

estimates 𝐶0. While not fully quantitative due to the vastness of the potential parameter space over 

which model correction might be assessed, this study gives valuable insight into the sensitivities 

of the framework. Figure 10 summarizes these findings. Model correction was impressively 

capable of handling even a tri-modal observation PDF 𝑝(𝑧𝑘|�̂�𝑘) when 휀 was low, though 

Figure 10. Dependency of model correction on model inaccuracy and non-Gaussian severity. 
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improvements in the estimate of 𝐶 were slow and did not completely converge in the simulation 

time allotted. However, neither Gaussian nor non-Gaussian model correction succeeded for high 

휀. As is generally true with non-convex gradient-based optimization, success is highly dependent 

on a good initial parameter estimate. 

6.4.2 2-D Validation 

 In order to study the multi-dimensionality of the proposed framework, the four 

aforementioned estimators were applied in two dimensions. The simulation consisted of a linear 

mass-spring-damper (MSD) system which can be represented as a first-order 2-D ordinary 

differential equation (ODE). For this arbitrary system, the continuous-time motion model matrices 

𝑨 and 𝑩 were assigned the following parameter values: 

𝑨 = [
0 1

−
𝑘

𝑚
−
𝑏

𝑚

] , 𝑩 = [
0 0
𝑘

𝑚

𝑏

𝑚

],(49) 

where 𝑘 is a stiffness coefficient, 𝑏 is a damping coefficient, and 𝑚 is a mass. These linear motion 

model matrices can then be converted to discrete-time by use of the matrix exponential. 

 The unforced response of the system to initial conditions 𝒙0 was observed and estimated 

for 100 different trials where the ground-truth observation model matrix 𝑪𝐺𝑇 was randomly 

generated according to 𝒩(𝑪0, 𝚺𝐶0). Again, 𝑪0 is the initial model estimate with element-wise 

standard deviations given by 𝚺𝐶0 . For the sake of simplicity, a Gaussian observation model was 

used here. Table 3 gives all arbitrarily chosen parameter values used in these experiments. 

 Results of a sample simulation are given in Figs. 11 and 12. As Fig. 11 demonstrates, the 

error in the two SEAM estimator’ signals is low compared to unfiltered observations and Kalman-

filtered signals. Specifically, SEAM with observation model correction outperforms all other 

estimators in this simulation simply because model parameter estimates are improved over time. 
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This is also particularly evident in the first plot of Fig. 12. Though 𝑪𝑆𝐸𝐴𝑀  approaches 𝑪𝐺𝑇 more 

slowly and stochastically than in the 1-D examples, likely due to the fourfold increase in degrees 

of freedom, there is clear improvement by the end of the ten-second simulation. This is also 

reflected in the average reduction in 𝐼𝑆𝐸ℎ  over time, as shown in the second plot. 

Table 3. Constant parameters 

𝑘 𝑏 𝑚 𝜆 𝑀 Δ𝑡 𝑑𝑖  𝑇 

10 N/m 5 Ns/m 2kg 0.99 50 0.03s 0.05 5 · 10−6  

𝒙0 𝚺𝑥0  𝑪0 𝚺𝐶0  

[
10
0
] [1

2 02

02 0.32
] [

1 2
3 4

] [0.5 0.5
0.5 0.5

] 

𝚺𝑤  𝚺𝑣 

[ 0.01
2 0.0022

0.0022 0.0152
] 0.1 · [0.6

2 0.12

0.12 0.572
] 

 

 For the 100 randomly generated simulations, the median percent error at 𝑡 = 0 and 𝑡 = 10 

(𝑘 = 334) in the elements of 𝑪𝑆𝐸𝐴𝑀  was recorded, as well as the percent of trials for which there 

was improvement by the end of simulation. These findings are recorded in Table 4 below. In 

Figure 11. 2-D time domain signal and error plots. 
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addition, the median RMSE scores and percentage of wins corresponding to each of the four 

estimators are reported in Table 5. 

Table 4. Percent errors in observation model parameters for 100 trials 

 %𝐶11 %𝐶12 %𝐶21 %𝐶22 

𝑘 = 0 32.38 16.21 11.64 7.36 

𝑘 = 334 21.10 12.38 16.30 10.88 

% Improvement 61 57 38 39 

 As evidenced by Table 4, model correction tends to improve parameter estimates more 

reliably when initial error is not too small. Parameters 𝐶11 and 𝐶12 were often improved due to 

their substantial average initial inaccuracy, while improvement in 𝐶21 and 𝐶22 was less reliable 

because those parameters were not as inaccurate on average. This supports an intuitive 

understanding of gradient-descent error minimization, in that gradient sensitivity is lower with 

respect to variables with less error than those with greater error. Furthermore, in reference to Table 

5, it is apparent that SEAM-plus-model-correction handily outperforms traditional estimators. 

Though model correction may not always improve a model estimate towards ground-truth in a 

Figure 12. 2-D observation model matrix and 𝐼𝑆𝐸ℎ over time. 
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timely fashion, this evidence suggests that model correction does reliably yield a set of parameters 

that reduces estimation error, satisfying the overall objective of SEAM. 

 The above observations are further supported by the plots in Fig. 13 below. As the first plot 

shows, there is a clear proportional relationship between the error in 𝑪 at the end of each trial and 

the RMSE estimation error. This is the motivating factor in model correction and is, of course, to 

be expected. In the second plot, note that the majority of points lie above the x-axis, indicating that 

estimation was improved for the majority of trials by implementing model correction. 

Furthermore, because most of these points lie in the upper-right quadrant, it is clear that estimation 

improves most often when the percent-error in 𝑪 reduces. 

6.5 Conclusions and Future Work 

 This paper has developed a framework for simultaneous estimation and observation model 

correction, allowing for non-Gaussian belief in multiple dimensions. The approach demonstrates 

effectiveness in the various proof-of-concept simulations detailed above, consisting of Gaussian 

and non-Gaussian trials in 1 and 2 dimensions. The proposed technique formulates observational 

uncertainty by incorporating uncertainties in model parameters, in addition to recursively updating 

those parameter estimates. According to the results obtained through Monte Carlo simulations, 

Figure 13. Error plots representing data acquired over 100 stochastic 2-D simulations. 
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even just accounting for increased uncertainty resulted in improved state estimation as compared 

to more traditional Kalman-based approaches. By incorporating model correction, estimation was 

improved even further, in keeping with the hypothesized advantages of the proposed framework. 

 Though this work shows promise, current limitations warrant future efforts to refine and 

develop the efficiency, accuracy, and ubiquity of the framework. The linear observation model 

considered here, though common in real-world problems, does not apply to all potentially useful 

contexts. As such, derivations for belief propagation under generally nonlinear observation models 

are warranted. Even for a linear observation model, only a square and invertible 𝑪 matrix was 

addressed here; inverse observation for non-square observation matrices has yet to be formulated 

under this framework. Furthermore, the implications of state observability are not yet well known 

with regards to this work. Finally, major improvements can be made in gradient-descent algorithms 

for fast 𝐼𝑆𝐸ℎ minimization as presented in this paper. The proof-of-concept simulations carried 

out in the results section employed the most basic form of linear gradient-descent to minimize state 

re-observation error. More advanced methods hold promise for improved efficiency in the model 

correction stage. SDG 
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CHAPTER 7. Generalized Simultaneous Estimation and Modeling 

7.1 Introduction 

7.1.1 Background 

 In real-world science and engineering systems, nothing can be known with complete 

certainty. Even for highly deterministic processes, randomness is injected by compounding factors 

that cannot be isolated from a system of interest. Furthermore, our ability to measure a system's 

states is impaired by the intrinsic limitations of our physical sensors. State estimation techniques 

have emerged in recent decades with the goal of overcoming these fundamental barriers. The 

abilities of probabilistic methods to accomplish state estimation are ever-growing, yet 

comprehensive frameworks for solving some of the most complex problems are still elusive. 

7.1.2 Related Work 

 One of the most general probabilistic estimation frameworks is known as recursive 

Bayesian estimation (RBE), or often just Bayesian estimation [1]. RBE leverages predictions and 

observations of a system’s state to provide a corrected probabilistic estimate of that state. State 

estimates are propagated through RBE by probability distribution functions (PDFs) which are used 

to mathematically represent what is termed here state belief. Predictions rely on a mathematical 

model of the system at hand [2], while observations come from some sensor or observer [3] which 

can also be modeled mathematically [4]. These models are usually derived from governing 

differential equations, which are commonly nonlinear [5]. Oftentimes, these models or the 

parameters composing them are not well known [6]. Furthermore, state belief can sometimes be 

highly non-Gaussian, and even multi-modal [7]. The following review of literature addresses 

related works which have investigated each of these complexities in RBE. 
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 State belief is commonly represented by the Gaussian, or normal, distribution [8]. Under 

the Gaussian assumption, a family of popular estimators arises, known as Kalman filters (KFs). 

The original linear Kalman filter (LKF) was first proposed in 1960 by R. E. Kalman [9]. For 

nonlinear problems, other variants began to arise, such as the extended KF (EKF) [10], unscented 

KF (UKF) [11], and the square-root cubature Kalman filter (SRCKF) [12]. Other versions 

including the ensemble KF (EnKF) [13] and Schmidt-Kalman filter [14] have been proposed to 

handle increased uncertainty.  While these filters successfully handle estimation in their designed 

contexts, most rely on Gaussian assumptions. Furthermore, there is a general assumption that 

predictive model parameters are known with complete confidence, an assumption which may not 

always be correct. 

 Non-Gaussian RBE is primarily accomplished by sampling techniques. The first of such 

approaches is the well-known sequential Monte-Carlo, or particle, filter [15], [16]. This non-

Gaussian approximator relies on belief propagation through randomly generated weighted 

particles. A similar approach, often known as the grid-based filter [17], implements the equations 

of RBE for grid cells in a discretized belief space. Another approach employs a bootstrap filter to 

sample a non-Gaussian PDF and propagate nonlinear belief according to the rules of RBE [18]. 

Finally, the multi-Gaussian approach proposed by Alspach, et al. [8] and expanded upon by 

Steckenrider, et al. [7] approximates non-Gaussian PDFs with weighted Gaussian sums and applies 

the equations of RBE to each Gaussian. This technique both reduces computational demand and 

increases accuracy, allowing for lossless non-Gaussian belief propagation. A similar approach 

proposed for handling non-Gaussian outliers in nonlinear estimation was proposed by Stojanovic 

[19], but this framework is only shown to handle uni-modal belief and does not address non-

Gaussian prediction. 
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 Because RBE is highly dependent on the accuracy of the equations and parameters used to 

model a system, system identification is a critical component of state estimation. This is usually 

done offline, either theoretically from first principles [20], or experimentally using frequency-

response methods [21] or the like. Some techniques are also capable of estimation when there is 

uncertainty in model parameters [22]; the adaptive extended KF (AEKF) [23], [24] was developed 

to address ill-defined uncertainties in nonlinear contexts. However, only a few methods [25], [26] 

actually incorporate parametric uncertainties in state estimation. Sensitivity methods have proven 

capable of online system identification [27], [28], [29], but these frameworks usually aim to 

characterize finite-element models by leveraging summary characteristics like mode shapes and 

natural frequencies. Adaptive parameter estimation is accomplished by Oh, et al. [30], though this 

work relies on linear and Gaussian assumptions. Algorithms proposed by Liu [5] and Pan [31] are 

capable of controlling systems with uncertainty in nonlinear models, but these frameworks are not 

estimation-oriented, as they do not incorporate sensor or process noise. Other recent achievements 

have been made in both functional and parametric real-time model estimation [32], [33], but such 

approaches do not incorporate non-Gaussian belief. Similar techniques have been developed for 

joint state and parameter estimation [6], allowing for lightly non-Gaussian sensor noise. However, 

these methods do not implicitly extract model parameter estimates from state observations alone. 

This is accomplished by a non-Gaussian variant [7] of the Simultaneous Estimation and Modeling 

(SEAM) framework proposed by Steckenrider, et al. [34] which accounts for parametric 

uncertainty but does not allow for nonlinear motion models. In general, most existing methods 

assume a system is linear, state belief is Gaussian, motion models are accurate, or some 

combination of these. 



 169 

7.1.3 Objectives and Outline 

 In light of the limitations of established work, this paper presents a generalization of non-

Gaussian SEAM for nonlinear state-space problems. The two primary original contributions of the 

proposed framework include: 1) formulations for nonlinear estimation which incorporate model 

uncertainty, and 2) a nonlinear model correction stage. The paper is organized as follows: section 

7.2 reviews fundamental concepts essential to the original contributions, which are developed in 

section 7.3. Results are given in section 7.4, and section 7.5 presents some conclusions and future 

work related to these efforts. 

7.2 Estimation and Motion Model Correction 

7.2.1 Recursive Bayesian Estimation 

 RBE consists of prediction, observation, and correction stages. In the following 

developments, the term belief is used to describe the PDF of a stochastic state vector 𝑥 ∈ 𝒳. The 

formulations of RBE make no assumptions about the forms of PDFs describing state belief. 

7.2.1.1 Prediction 

 The prediction stage propagates state belief from step 𝑘 − 1 to step 𝑘 according to a motion 

model describing the underlying system whose state is being estimated. Let 𝑝(𝒙𝑘−1|𝒛1:𝑘−1) be the 

a priori PDF describing belief about the state given all prior observations 𝒛1:𝑘−1. Furthermore, let 

𝑝(𝒙𝑘|𝒙𝑘−1) be a PDF which governs the transition of the state from one step to the next. The 

continuous Chapman-Kolmogorov equation gives 𝑝(𝒙𝑘|𝒛1:𝑘−1), the predicted PDF, by: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) = ∫𝑝(𝒙𝑘−1|𝒛1:𝑘−1)𝑝(𝒙𝑘|𝒙𝑘−1)𝑑𝒙𝑘−1.

𝒳

(1) 

Note that, for Markovian processes with independent increments, 𝑝(𝒙𝑘|𝒙𝑘−1) = 𝑝(𝒙𝑘 − 𝒙𝑘−1), 

and Eq. (1) becomes a convolution integral. 
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7.2.1.2 Observation 

 The observation stage is responsible for deriving the observed PDF, 𝑝(𝒙𝑘|𝒛𝑘), given an 

observation or measurement 𝒛𝑘. Such an observation often comes from a physical sensor which 

may be characterized by some model with certain intrinsic parameters. Obtaining 𝑝(𝒙𝑘|𝒛𝑘), then, 

requires some context-specific manipulation of such an observation model. 

7.2.1.3 Correction 

 The correction stage fuses predicted and observed belief, resulting in a PDF with less 

uncertainty than either 𝑝(𝒙𝑘|𝒛1:𝑘−1) or 𝑝(𝒙𝑘|𝒛𝑘). The corrected, or a posteriori, PDF 𝑝(𝒙𝑘|𝒛1:𝑘) 

is given by 

𝑝(𝒙𝑘|𝒛1:𝑘) =
𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)

∫ 𝑝(𝒙𝑘|𝒛𝑘)𝑝(𝒙𝑘|𝒛1:𝑘−1)𝑑𝒙𝑘𝒳

.(2) 

The most common form of a PDF composing belief in RBE is the Gaussian distribution. A 

multivariate Gaussian PDF is defined by only two parameters, a mean vector �̅� and a covariance 

matrix 𝚺𝑥: 

𝒩(𝒙; �̅�, 𝚺𝑥) =
1

√|2𝜋𝚺𝑥|
exp (−

1

2
(𝒙 − �̅�)𝑇𝚺𝑥

−1(𝒙 − �̅�)),(3) 

It is well known that the product of two Gaussians yields a third unnormalized Gaussian. 

Therefore, if the predicted and observed PDFs are given by weighted Gaussian sums (or multi-

Gaussian distributions) of the following form: 

𝑝(𝒙𝑘|𝒛1:𝑘−1) =∑𝑐𝑖
(𝑘|1:𝑘−1)

𝒩(𝒙; �̅�𝑖
(𝑘|1:𝑘−1)

, 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)

𝐼

𝑖=1

,(4𝑎) 

𝑝(𝒙𝑘|𝒛𝑘) =∑𝑐𝑗
(𝑘|𝑘)

𝒩(𝒙; �̅�𝑗
(𝑘|𝑘)

, 𝚺𝑥𝑗
(𝑘|𝑘)

)

𝐽

𝑗=1

,(4𝑏) 

the corrected PDF will also be multi-Gaussian: 
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𝑝(𝒙𝑘|𝒛1:𝑘) =∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑗
(𝑘|𝑘)

𝑐𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

𝒩(𝒙; �̅�𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

, 𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

)

𝐽

𝑗=1

𝐼

𝑖=1

 

= ∑𝑐𝑛
(𝑘|1:𝑘)

𝒩(𝒙; �̅�𝑛
(𝑘|1:𝑘)

, 𝚺𝑥𝑛
(𝑘|1:𝑘)

)

𝐼𝐽

𝑛=1

,(5) 

where 

𝑐𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= 𝒩 (�̅�𝑖
(𝑘|1:𝑘−1)

; �̅�𝑗
(𝑘|𝑘)

, 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

+ 𝚺𝑥𝑗
(𝑘|𝑘)

),(6𝑎) 

𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= [(𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)
−1

+ (𝚺𝑥𝑗
(𝑘|𝑘)

)
−1

]
−1

,(6𝑏) 

�̅�𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

= 𝚺𝑥𝑖𝑗
(𝑘|1:𝑘−1,𝑘)

[(𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)
−1

�̅�𝑖
(𝑘|1:𝑘−1)

+ (𝚺𝑥𝑗
(𝑘|𝑘)

)
−1

�̅�𝑗
(𝑘|𝑘)

].(6𝑐) 

7.2.2 Kalman Estimation 

 Kalman filters take advantage of the properties of Gaussian PDFs by propagating only the 

mean vectors and covariance matrices through the stages of RBE. 

7.2.2.1 The Extended Kalman Filter 

 Let a system be represented by a generally nonlinear state-space motion model: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘−1.(7) 

where 𝒘𝑘−1 is a zero-mean Gaussian random vector with covariance 𝚺𝑤𝑘−1 and 𝒖𝑘−1 is an input. 

The mean and covariance are given in prediction by the EKF as: 

�̅�𝑘|1:𝑘−1 = 𝑓(�̅�𝑘−1|1:𝑘−1, 𝒖𝑘−1),(8𝑎) 

𝚺𝑥𝑘|1:𝑘−1 = 𝑱𝑓𝚺𝑥𝑘−1|1:𝑘−1𝑱𝑓
𝑇 + 𝚺𝑤𝑘−1,(8𝑏) 

where 𝑱𝑓 is the following Jacobian matrix: 

𝑱𝑓 =
𝜕𝑓(𝒙𝑘−1, 𝒖𝑘−1)

𝜕𝒙𝑘−1
|
�̅�𝑘−1|1:𝑘−1,𝒖𝑘−1

.(9) 
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 Let the sensor or observer be modeled according to the following generally nonlinear 

equation: 

𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘,(10) 

where 𝒗𝑘  is a zero-mean Gaussian random vector with covariance 𝚺𝑣𝑘. Correction is given by the 

following formulas: 

�̅�𝑘|1:𝑘 = �̅�𝑘|1:𝑘−1 +𝑲𝑘 (𝒛𝑘 − ℎ(�̅�𝑘|1:𝑘−1)),(11𝑎) 

𝚺𝑥𝑘|1:𝑘 = (𝑰 − 𝑲𝑘𝑱ℎ)𝚺𝑥𝑘|1:𝑘−1,(11𝑏) 

where the Kalman gain 𝑲𝑘  is given by: 

𝑲𝑘 = 𝚺𝑥𝑘|1:𝑘−1𝑱ℎ
𝑇 (𝑱ℎ𝚺𝑥𝑘|1:𝑘−1𝑱ℎ

𝑇 + 𝚺𝑣𝑘)
−1

,(12) 

and 

𝑱ℎ =
𝜕ℎ(𝒙𝑘)

𝜕𝒙𝑘
|
�̅�𝑘|1:𝑘−1

.(13) 

 As these equations demonstrate, though the EKF may effectively reduce sensitivity to 

sensor and system (process) noise by incorporating their covariances, it does not account for 

uncertainties in intrinsic model parameters. If such parameters are in reality random variables but 

are treated as well-defined constants, state estimation will suffer. 

7.2.2.2 The Adaptive Extended Kalman Filter 

 The adaptive extended Kalman filter (AEKF) aims to improve on the EKF in cases where 

uncertainty in prediction and observation is underestimated. This is accomplished by adapting the 

covariances 𝚺𝑤𝑘 and 𝚺𝑣𝑘 over the course of estimation. One common formulation for adapting 

these matrix parameters is given as follows: 

𝚺𝑣𝑘 = 𝑮𝑣 − 𝑱ℎ𝚺𝑥𝑘|1:𝑘−1𝑱ℎ
𝑇 ,(14𝑎) 
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𝑮𝑣 =
1

𝑀
∑‖�̅�𝑘−𝑚 − ℎ(�̅�𝑘−𝑚|1:𝑘−𝑚−1)‖

2
𝑀

𝑚=1

,(14𝑏) 

𝚺𝑤𝑘 = √𝛼𝚺𝑤𝑘−1,(14𝑐) 

𝛼 =
tr(𝑮𝑣 − 𝚺𝑣𝑘−1)

tr (𝑱ℎ𝚺𝑥𝑘|1:𝑘−1𝑱ℎ
𝑇)
. (14𝑑) 

Propagation of the state mean and covariance still follows Eqs. (8) and (11). Though the AEKF 

captures potentially increased uncertainty in estimation, it does not specifically address the 

uncertainty coming from a potentially inadequate estimate of model parameters. Consequently, 

any model mismatch will cause non-zero-mean estimation error. 

7.2.3 Linear Motion Model Correction 

 In order to rectify the problem of model mismatch in estimation, SEAM both incorporates 

parameter uncertainty and corrects parameter estimates during the course of estimation. Under a 

generalized SEAM framework, non-Gaussian PDFs are approximated by multi-Gaussian 

distributions. Belief is then propagated by applying the stages of RBE to channels of mean vectors, 

covariance matrices, and weighting coefficients. 

 A linear system is generally represented by the following state-space motion and 

observation models: 

𝒙𝑘 = 𝑨𝒙𝑘−1 +𝑩𝒖𝑘−1 +𝒘𝑘−1,(15𝑎) 

𝒛𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘.(15𝑏) 

The mean in prediction is given by the means of all involved variables as shown in Eq. (16a) 

below. Uncertainties in the motion model parameters 𝑨 and 𝑩 and 𝒙𝑘−1, 𝒖𝑘−1, and 𝒘𝑘−1 are 

incorporated in prediction by the covariance formula of Eq. (16b) below. 

�̅�𝑘|1:𝑘−1 = �̅�𝑘−1�̅�𝑘−1|1:𝑘−1 + �̅�𝑘−1�̅�𝑘−1,(16𝑎) 
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𝚺𝑥𝑘|1:𝑘−1 = 𝚺𝑤𝑘−1 + �̅�𝑘−1𝚺𝑥𝑘−1|1:𝑘−1�̅�𝑘−1
𝑇 + �̅�𝑘−1𝚺𝑢𝑘−1�̅�𝑘−1

𝑇  

+𝚺𝐴𝑘−1𝒟(�̅�𝑘−1|1:𝑘−1
∘2 )𝚺𝐴𝑘−1

𝑇 + 𝚺𝐵𝑘−1𝒟(�̅�𝑘−1
∘2 )𝚺𝐵𝑘−1

𝑇 .(16𝑏) 

Here, 𝚺𝐴𝑘−1 and 𝚺𝐵𝑘−1 are matrices containing the standard deviations of the corresponding 

elements in the mean matrices �̅�𝑘−1 and �̅�𝑘−1, the operation 𝒟(•) diagonalizes its vector 

argument, and (•)∘2 denotes the element-wise multiplication of a vector with itself. Under a multi-

Gaussian representation of belief, Eqs. (16) are applied to each Gaussian component in the 

distribution. 

 The motion model correction approach of [7] applies to non-Gaussian belief and addresses 

correction of the linear motion model parameters 𝑨 and 𝑩. This is accomplished by minimizing 

an objective function, defined as the integrated-squared-error (ISE): 

𝐼𝑆𝐸 = ∫(𝑝(𝒙𝑘|𝒛1:𝑘−1) − 𝑝(𝒙𝑘|𝒛1:𝑘))
2
𝑑𝒙𝑘

𝓧

.(17) 

Under this approach, model correction becomes an optimization problem which is solved using 

gradient-descent. The gradient of the ISE is taken with respect to all involved motion model 

parameters and used to iteratively improve these parameters. 

 Because existing SEAM formulations apply only to linear estimation problems, a 

comprehensive nonlinear/non-Gaussian SEAM framework has not yet been established. The 

following section describes the original contributions of this work in generalizing SEAM to such 

contexts. 
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7.3 Nonlinear Estimation and Motion Model Correction 

Figure 1 summarizes the SEAM framework as proposed for application to generally nonlinear 

problems. The original contributions detailed in this section include formulations for extended 

uncertainty propagation and nonlinear motion model correction. 

7.3.1 Nonlinear Estimation with Extended Uncertainty Propagation 

 Let a nonlinear system be described by the following state-space model: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1,𝚽𝑘−1) + 𝒘𝑘−1,(18) 

where 𝚽𝑘−1 is a vector of motion model parameters determined by the system at hand. In contrast 

with Eq. (7), it is critical here to explicitly consider the functional dependence of a system on its 

model parameters. Because additive noise is assumed to be zero-mean, the mean in prediction can 

be given by: 

�̅�𝑘|1:𝑘−1 = 𝑓(�̅�𝑘−1|1:𝑘−1, �̅�𝑘−1, �̅�𝑘−1).(19) 

The covariance is then: 

𝚺𝑥𝑘|1:𝑘−1 = 𝚺𝑓 + 𝚺𝑤𝑘−1.(20) 

Figure 1. Nonlinear SEAM framework. 
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By error propagation, the covariance matrix 𝚺𝑓 corresponding to 𝑓(𝒙𝑘−1, 𝒖𝑘−1,𝚽𝑘−1) requires 

three terms in order to address uncertainty in 𝒙𝑘−1, 𝒖𝑘−1, and 𝚽𝑘−1: 

𝚺𝑓 = 𝑱𝑓
𝑥𝚺𝑥𝑘−1|1:𝑘−1𝑱𝑓

𝑥𝑇 + 𝑱𝑓
𝑢𝚺𝑢𝑘−1𝑱𝑓

𝑢𝑇 + 𝑱𝑓
Φ𝚺Φ𝑘−1𝑱𝑓

Φ𝑇 ,(21) 

where 

𝑱𝑓
𝑥 =

𝜕𝑓(𝒙𝑘−1, 𝒖𝑘−1,𝚽𝑘−1)

𝜕𝒙𝑘−1
|
�̅�𝑘−1|1:𝑘−1,�̅�𝑘−1,�̅�𝑘−1

,(22𝑎) 

𝑱𝑓
𝑢 =

𝜕𝑓(𝒙𝑘−1, 𝒖𝑘−1,𝚽𝑘−1)

𝜕𝒖𝑘−1
|
�̅�𝑘−1|1:𝑘−1,�̅�𝑘−1,�̅�𝑘−1

,(22𝑏) 

𝑱𝑓
Φ =

𝜕𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝚽𝑘−1)

𝜕𝚽𝑘−1

|
�̅�𝑘−1|1:𝑘−1,�̅�𝑘−1,�̅�𝑘−1

. (22𝑐) 

It can be shown that Eq. (16b) is a simpler linear result of this formulation that assumes the co-

variance between individual model parameters is zero. Furthermore, Kalman filters assume 

𝚺𝑢𝑘−1 = 𝟎 and 𝚺Φ = 𝟎. In cases where there is some uncertainty in the control effort and/or model 

parameters, the second two terms of Eq. (21) are non-negligible and prediction under a Kalman 

filter becomes overconfident. 

 When belief is multi-Gaussian, the mean and covariance propagation of Eqs. (19)-(22) are 

applied to each Gaussian component in the a priori PDF. An observation PDF may also have a 

multi-Gaussian form, depending on specific sensor characteristics. Correction then consists of the 

fusion of the predicted and observed PDFs according to Eqs. (5) and (6) to yield a multi-Gaussian 

a posteriori PDF. 

7.3.2 Nonlinear Motion Model Correction 

 In order to correct nonlinear motion model parameters 𝚽𝑘  at step 𝑘, we seek to minimize 

an integrated-squared-error objective function: 
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𝚽𝑘 = argmin
𝚽

(𝐼𝑆𝐸).(23) 

Let the ISE be defined as in Eq. (17). This objective function is chosen over other potential 

functions (e.g. the Kullback-Leibler Divergence of 𝑝(𝒙𝑘|𝒛1:𝑘−1) from 𝑝(𝒙𝑘|𝒛1:𝑘)) because 1) it 

provides a symmetrical assessment of the similarity between the two PDFs, and 2) it requires only 

addition, subtraction, multiplication, and integration of PDFs. In order to handle non-Gaussian 

belief, let 𝑝(𝒙𝑘|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛1:𝑘) be given by the general multi-Gaussian distributions of 

Eqs. (4a) and (5). The ISE then becomes: 

𝐼𝑆𝐸 = ∫(∑𝑐𝑖
(𝑘|1:𝑘−1)

𝐼

𝑖=1

𝒩(𝒙; �̅�𝑖
(𝑘|1:𝑘−1)

, 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

)

𝓧

−∑𝑐𝑛
(𝑘|1:𝑘)

𝐼𝐽

𝑛=1

𝒩(𝒙; �̅�𝑛
(𝑘|1:𝑘)

, 𝚺𝑥𝑛
(𝑘|1:𝑘)

))

2

𝑑𝒙.(24) 

In the above expression, the variables 𝑐𝑛
(𝑘|1:𝑘)

, �̅�𝑛
(𝑘|1:𝑘)

, and 𝚺𝑥𝑛
(𝑘|1:𝑘)

 which define corrected belief 

are treated as constants obtained by the correction stage of RBE. This is because 𝑝(𝒙𝑘|𝒛1:𝑘) is a 

better estimate of 𝒙𝑘 which acts as a reference PDF to which 𝑝(𝒙𝑘|𝒛1:𝑘−1) must be matched by 

adjusting 𝚽. 

 By 1) expanding the square, 2) leveraging the fact that the products of each Gaussian sum 

is another Gaussian sum, and 3) reducing integrals of Gaussians because ∫ 𝒩(𝒙; �̅�, 𝚺𝑥)𝑑𝒙 = 1𝒳
, 

the ISE becomes: 

𝐼𝑆𝐸 =∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑙
(𝑘|1:𝑘−1)

𝐼

𝑙=1

𝐼

𝑖=1

𝑐𝑖𝑙
(𝑘|1:𝑘−1,1:𝑘−1)

− 2∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑛
(𝑘|1:𝑘)

𝑐𝑖𝑛
(𝑘|1:𝑘−1,1:𝑘)

𝐼𝐽

𝑛=1

𝐼

𝑖=1

 

+∑ ∑ 𝑐𝑛
(𝑘|1:𝑘)

𝑐𝑚
(𝑘|1:𝑘)

𝑐𝑛𝑚
(𝑘|1:𝑘,1:𝑘)

𝐼𝐽

𝑚=1

𝐼𝐽

𝑛=1

.(25) 
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The mixed weighting coefficients 𝑐𝑖𝑙, 𝑐𝑖𝑛, and 𝑐𝑛𝑚 are given as Gaussians by Eq. 6a). These 

coefficients arise from the product of 𝑝(𝒙𝑘|𝒛1:𝑘−1) with itself, 𝑝(𝒙𝑘|𝒛1:𝑘−1) with 𝑝(𝒙𝑘|𝒛1:𝑘), and 

𝑝(𝒙𝑘|𝒛1:𝑘) with itself, respectively. Finding motion model parameters which minimize the ISE 

requires taking its gradient with respect to 𝚽: 

𝛻𝚽(𝐼𝑆𝐸) = ∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑙
(𝑘|1:𝑘−1)

𝐼

𝑙=1

𝐼

𝑖=1

𝛻𝚽 (𝑐𝑖𝑙
(𝑘|1:𝑘−1,1:𝑘−1)

) 

−2∑∑𝑐𝑖
(𝑘|1:𝑘−1)

𝑐𝑛
(𝑘|1:𝑘)

𝛻𝚽 (𝑐𝑖𝑛
(𝑘|1:𝑘−1,1:𝑘)

)

𝐼𝐽

𝑛=1

𝐼

𝑖=1

.(26) 

Because only 𝑝(𝒙𝑘|𝒛1:𝑘−1) depends directly on the motion model via prediction, the coefficient 

𝑐𝑛𝑚 is not functionally dependent on 𝚽 and so the third term of the ISE does not contribute to the 

gradient. 

 As Eq. (26) shows, the gradient of the ISE contains many terms, each of which is a complex 

function of 𝚽. For this reason, a closed-form solution for the model parameters which minimize 

the ISE is intractable and a gradient-descent approach is instead considered. Because 𝑐𝑖𝑙 and 𝑐𝑖𝑛 

are given by Gaussians of the form 𝛼𝑖𝑙exp(𝛽𝑖𝑙) and 𝜖𝑖𝑙exp(휁𝑖𝑙), respectively, their gradients are 

given by the chain rule as follows: 

𝛻𝜱 (𝑐𝑖𝑙
(𝑘|1:𝑘−1,1:𝑘−1)

) = exp(𝛽𝑖𝑙) (𝛻𝜱(𝛼𝑖𝑙) + 𝛼𝑖𝑙𝛻𝜱(𝛽𝑖𝑙)),(27𝑎) 

𝛻𝜱 (𝑐𝑖𝑛
(𝑘|1:𝑘−1,1:𝑘)

) = exp(휁𝑖𝑛) (𝛻𝜱(𝜖𝑖𝑛) + 𝜖𝑖𝑛𝛻𝜱(휁𝑖𝑛)).(27𝑏) 

where 

𝛼𝑖𝑙 = (|2𝜋𝜸𝑖𝑙|)
−
1
2, 𝛽𝑖𝑙 = −

1

2
 𝜹𝑖𝑙
𝑇𝜸𝑖𝑙

−1𝜹𝑖𝑙 ,(28𝑎) 

𝜖𝑖𝑛 = (|2𝜋𝜼𝑖𝑛|)
−
1
2, 휁𝑖𝑛 = −

1

2
 𝜽𝑖𝑛
𝑇 𝜼𝑖𝑛

−1𝜽𝑖𝑛 ,(28𝑏) 

and 
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𝜸𝑖𝑙 = 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

+ 𝚺𝑥𝑙
(𝑘|1:𝑘−1)

,(29𝑎) 

𝜹𝑖𝑙 = �̅�𝑖
(𝑘|1:𝑘−1)

− �̅�𝑙
(𝑘|1:𝑘−1)

,(29𝑏) 

𝜼𝑖𝑛 = 𝚺𝑥𝑖
(𝑘|1:𝑘−1)

+ 𝚺𝑥𝑛
(𝑘|1:𝑘)

,(29𝑐) 

𝜽𝑖𝑛 = �̅�𝑖
(𝑘|1:𝑘−1)

− �̅�𝑛
(𝑘|1:𝑘)

.(29𝑑) 

In Eqs. (29), only variables with 𝑖 and 𝑗 subscripts are implicit functions of the motion model. 

These functional relationships are given by prediction according to Eqs. (19)-(22). 

 The four gradients of Eqs. (27) are assembled from the partial derivatives with respect to 

each model parameter. For example, 

𝛻𝚽(𝛼𝑖𝑙) = [
𝜕𝛼𝑖𝑙
𝜕𝚽(1)

𝜕𝛼𝑖𝑙
𝜕𝚽(2)

⋯
𝜕𝛼𝑖𝑙
𝜕𝚽(𝑞)

⋯
𝜕𝛼𝑖𝑙
𝜕𝚽(𝑄)

]

𝑇

,(30) 

where 𝚽 is a 𝑄 × 1 vector and 𝚽(𝑞) is the 𝑞𝑡ℎ element. These partial derivatives are given by the 

chain and product rules as follows: 

𝜕𝛼𝑖𝑙
𝜕𝚽(𝑞)

= −
1

2
(|2𝜋𝜸𝑖𝑙|)

−
1
2tr (𝜸𝑖𝑙

−1
𝜕𝜸𝑖𝑙
𝜕𝚽(𝑞)

),(31𝑎) 

𝜕𝛽𝑖𝑙
𝜕𝚽(𝑞)

= −
1

2
(𝜹𝑖𝑙

𝑇𝜸𝑖𝑙
−1 (

𝜕𝜹𝑖𝑙
𝜕𝚽(𝑞)

−
𝜕𝜸𝑖𝑙
𝜕𝚽(𝑞)

𝜸𝑖𝑙
−1𝜹𝑖𝑙) + (

𝜕𝜹𝑖𝑙
𝜕𝚽(𝑞)

)

𝑇

𝜸𝑖𝑙
−1𝜹𝑖𝑙),(31𝑏) 

𝜕𝜖𝑖𝑛
𝜕𝚽(𝑞)

= −
1

2
(|2𝜋𝜼𝑖𝑛|)

−
1
2tr (𝜼𝑖𝑛

−1
𝜕𝜼𝑖𝑛
𝜕𝚽(𝑞)

), (31𝑐) 

𝜕휁𝑖𝑛
𝜕𝚽(𝑞)

= −
1

2
(𝜽𝑖𝑛

𝑇 𝜼𝑖𝑛
−1 (

𝜕𝜽𝑖𝑛
𝜕𝚽(𝑞)

−
𝜕𝜼𝑖𝑛
𝜕𝚽(𝑞)

𝜼𝑖𝑛
−1𝜽𝑖𝑛) + (

𝜕𝜽𝑖𝑛
𝜕𝚽(𝑞)

)

𝑇

𝜼𝑖𝑛
−1𝜽𝑖𝑛). (31𝑑) 

The remaining partial derivatives depend on the particular motion model at hand. 

 The gradient of the ISE informs a gradient-descent algorithm which is governed by the 

following recurrence relation: 

(�̅�𝑘)𝑖+1 = (�̅�𝑘)𝑖 − 𝑑𝑖[∇�̅�(𝐼𝑆𝐸)]|𝚽=(�̅�𝑘)𝑖 .(32) 
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This recurrence is repeated until the gradient vector becomes sufficiently small, as specified by 

some threshold. The step size 𝑑𝑖 can be determined by any number of existing gradient-descent 

algorithms. Because the objective function is generally non-convex, it is critical to initialize 

gradient-descent with a good starting estimate. In practice, letting (�̅�𝑘)0 = �̅�𝑘−1 often works 

well. 

 In multi-dimensional problems, minimization of the ISE corresponding to the single most 

recent state transition is generally not sufficient to guarantee convergence of estimated motion 

model parameters to ground-truth. For this reason, the objective function is redefined as the 

average of the 𝑀 most recent state transitions: 

𝐼𝑆𝐸 = ∫ [
1

𝑀 + 1
∑ (𝑝(𝒙𝑖|𝒛1:𝑖−1) − 𝑝(𝒙𝑖|𝒛1:𝑖))

2
𝑘

𝑖=𝑘−𝑀

] 𝑑𝒙

𝒳

.(33) 

After some simplification, it can be shown that the gradient of the average ISE is the average of 

the ISEs of the 𝑀 most recent state transitions: 

𝛻𝚽(𝐼𝑆𝐸) =
1

𝑀 + 1
∑ 𝛻𝚽(𝐼𝑆𝐸𝑖)

𝑘

𝑖=𝑘−𝑀

.(34) 

The value of 𝑀 used in motion model correction can be determined for a given context, but it is 

generally necessary to increase 𝑀 as the dimensionality of the problem increases. 

 As the third term of Eq. (21) shows, having an estimate of the uncertainty in motion model 

parameters (𝚺Φ) is a critical part of the SEAM framework. Because these parameters are constantly 

being improved in the course of estimation, 𝚺Φ ought to continuously reflect this increasing 

certainty. While a number of approximations may be considered, a heuristic one is described here 

for implementation. By letting 𝚺Φ𝑘 = 𝜆𝚺Φ𝑘−1 with 0 < 𝜆 < 1, motion model parameter 

uncertainty is guaranteed to decrease over time, with a rate determined by the power law 𝜆𝑘 . 
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7.3.3 Representative Nonlinear System Derivation 

 Thus far, enhanced estimation and motion model 

correction of nonlinear state-space systems have been formulated. 

The equations presented until this point apply to any general 

nonlinear system subject to non-Gaussian belief. Without entering 

into a specific context, derivations cannot develop further. For the 

purpose of validating this framework in the results section, this 

sub-section derives the common instructive nonlinear system of a 

pendulum in the large-angle regime. Figure 2 shows the free-body diagram (FBD) of a pendulum, 

where 𝑚 is the mass of the hanging object, 𝑙 is the length of the string, and𝑏 is a coefficient 

accounting for frictional losses at the point of attachment and due to drag. By summing the 

moments about the point of attachment, the following continuous-time unforced equation of 

motion is obtained: 

𝑚𝑙2휃̈(𝑡) + 𝑏휃̇(𝑡) + 𝑚𝑔𝑙sin휃(𝑡) = 0.(35) 

In order to apply the SEAM framework to such a system, this differential equation must be 

discretized. 

 Let the continuous-time variables 휃(𝑡), 휃̇(𝑡), and 휃̈(𝑡) at a time step 𝑘 be approximated 

by the following: 

휃(𝑘) = 휃𝑘 , 휃̇(𝑘) =
휃𝑘+1 − 휃𝑘

Δ𝑡
, 휃̈(𝑘) =

휃𝑘+2 − 2휃𝑘+1 + 휃𝑘
Δ𝑡2

.(36) 

By substitution and rearrangement, Eq. (35) becomes: 

(
𝑚𝑙2

Δ𝑡2
)휃𝑘+2 − (2

𝑚𝑙2

Δ𝑡2
−
𝑏

Δ𝑡
)휃𝑘+1 + (

𝑚𝑙2

Δ𝑡2
−
𝑏

Δ𝑡
) 휃𝑘 +𝑚𝑔𝑙sin휃𝑘 = 0.(37) 

Figure 2. Pendulum FBD. 
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Let 𝑥3,𝑘 ≡ 휃𝑘+2, 𝑥2,𝑘 ≡ 휃𝑘+1 = 𝑥3,𝑘−1, and 𝑥1,𝑘 ≡ 휃𝑘 = 𝑥2,𝑘−1. After solving Eq. (37) for 휃𝑘+2 

and substituting, this system of equations can be written in matrix form as: 

[

𝑥1,𝑘
𝑥2,𝑘
𝑥3,𝑘

] = [

0 1 0
0 0 1

0 (
𝑏Δ𝑡

𝑚𝑙2
− 1) (2 −

𝑏Δ𝑡

𝑚𝑙2
)
] [

𝑥1,𝑘−1
𝑥2,𝑘−1
𝑥3,𝑘−1

] + [

0
0

−
𝑔Δ𝑡

𝑙
sin(𝑥2,𝑘−1)

] .(38) 

In order to eliminate redundancies in this equation, the first state is eliminated and the states are 

renamed: 

[
𝑥1,𝑘
𝑥2,𝑘

] = [
0 1

(
𝑏Δ𝑡

𝑚𝑙2
− 1) (2 −

𝑏Δ𝑡

𝑚𝑙2
)
] [
𝑥1,𝑘−1
𝑥2,𝑘−1

] + [
0

−
𝑔Δ𝑡

𝑙
sin(𝑥2,𝑘−1)

] .(39) 

This state-space equation governing the discretized nonlinear pendulum system can be represented 

more efficiently as: 

𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝒃(𝒙𝑘−1).(40) 

 Let the angular position and velocity be the outputs of interest. From the first two equations 

of (36), the output equation is given by: 

[
𝑧1,𝑘
𝑧2,𝑘

] = [
1 0

−
1

Δ𝑡

1

Δ𝑡

] [
𝑥1,𝑘
𝑥2,𝑘

],(41) 

or more succinctly, 

𝒛𝑘 = 𝑪𝒙𝑘.(42) 

 Because 𝑥1,𝑘 is just a time-shifted version of 𝑥2,𝑘, estimation of these signals is ill-posed. 

In order to directly estimate the angular position and velocity, Eqs. (40) and (42) can be combined: 

𝒛𝑘 = 𝑪(𝑨𝒙𝑘−1 + 𝒃(𝒙𝑘−1)) = 𝑪𝑨𝒙𝑘−1 + 𝑪𝒃(𝒙𝑘−1).(43) 

Next, substitute 𝒙𝑘−1 = 𝑪
−1𝒛𝑘−1 into Eq. (43): 

𝒛𝑘 = 𝑪𝑨𝑪−1𝒛𝑘−1 + 𝑪𝒃(𝑪
−1𝒛𝑘−1).(44) 
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Finally, in order to give this a more compact state equation appearance as in Eq. (40), variables 

are redefined as follows: 𝒙𝑘 ≡ 𝒛𝑘, 𝒙𝑘−1 ≡ 𝒛𝑘−1,𝑨 ≡ 𝑪𝑨𝑪−1, and 𝒃(𝒙𝑘−1) ≡ 𝑪𝒃(𝑪
−1𝒛𝑘−1). In 

full matrix form, this nonlinear state-space equation is now: 

[
𝑥1,𝑘
𝑥2,𝑘

] = [
1 Δ𝑡

0 1 −
𝑏Δ𝑡

𝑚𝑙2
] [
𝑥1,𝑘−1
𝑥2,𝑘−1

] + [
0

−
𝑔

𝑙
sin(𝑥1,𝑘−1 + Δ𝑡𝑥2,𝑘−1)

] .(45) 

In terms of placeholder variables, 

𝑨 = [
𝑎11 𝑎12
𝑎21 𝑎22

],(46𝑎) 

𝒃(𝒙𝑘−1) = [
𝑏1

𝑏2sin(𝑥1,𝑘−1 + Δ𝑡𝑥2,𝑘−1)
],(46𝑏) 

where 𝑎11 = 1, 𝑎12 = Δ𝑡, 𝑎21 = 0, 𝑎22 = 1−
𝑏Δ𝑡

𝑚𝑙2
, 𝑏1 = 0, and 𝑏2 = −

𝑔

𝑙
. 

 For this nonlinear system, the Jacobians of Eqs. (22) are given by: 

𝑱𝑓
𝑥 = 𝑨 + 𝑱𝒃(𝒙𝑘−1)

𝑥 ,(47𝑎) 

𝑱𝑓
𝑢 = 𝟎,(47𝑏) 

𝑱𝑓
Φ = [

𝒙𝑘−1
𝑇 𝟎 1 0

𝟎 𝒙𝑘−1
𝑇 0 sin(𝑥1,𝑘−1 + Δ𝑡𝑥2,𝑘−1)

] , (47𝑐) 

where 

𝑱𝒃(𝒙𝑘−1)
𝑥 = 𝑏2cos(𝑥1,𝑘−1 + Δ𝑡𝑥2,𝑘−1) [

0 0
1 Δ𝑡

].(48) 

In order to compute the gradient of the ISE, the partial derivatives of 𝜸𝑖𝑙, 𝜹𝑖𝑙, 𝜼𝑖𝑛, and 𝜽𝑖𝑛 must be 

obtained. By combination of Eqs. (19)-(21) and (29), and following the product rule, these four 

derivatives are obtained as: 

𝜕𝜸𝑖𝑙
𝜕𝚽(𝑞)

= 𝑱𝑓
𝑥𝑖𝚺𝑥𝑖

(𝑘−1|1:𝑘−1)
𝜕𝑱𝑓

𝑥𝑖𝑇

𝜕𝚽(𝑞)
+
𝜕𝑱𝑓

𝑥𝑖

𝜕𝚽(𝑞)
𝚺𝑥𝑖
(𝑘−1|1:𝑘−1)

𝑱𝑓
𝑥𝑖𝑇 
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+𝑱𝑓
𝑥𝑙𝚺𝑥𝑙

(𝑘−1|1:𝑘−1)
𝜕𝑱𝑓

𝑥𝑙𝑇

𝜕𝚽(𝑞)
+
𝜕𝑱𝑓

𝑥𝑙

𝜕𝚽(𝑞)
𝚺𝑥𝑙
(𝑘−1|1:𝑘−1)

𝑱𝑓
𝑥𝑙𝑇 ,(49𝑎) 

𝜕𝜹𝑖𝑙
𝜕𝚽(𝑞)

=
𝜕𝑨

𝜕𝚽(𝑞)
(�̅�𝑖

(𝑘|1:𝑘−1)
− �̅�𝑙

(𝑘|1:𝑘−1)
) +

𝜕

𝜕𝚽(𝑞)
(𝒃(�̅�𝑖

(𝑘|1:𝑘−1)
) − 𝒃(�̅�𝑙

(𝑘|1:𝑘−1)
)),(49𝑏) 

𝜕𝜼𝑖𝑛
𝜕𝚽(𝑞)

= 𝑱𝑓
𝑥𝑖𝚺𝑥𝑖

(𝑘−1|1:𝑘−1)
𝜕𝑱𝑓

𝑥𝑖𝑇

𝜕𝚽(𝑞)
+
𝜕𝑱𝑓

𝑥𝑖

𝜕𝚽(𝑞)
𝚺𝑥𝑖
(𝑘−1|1:𝑘−1)

𝑱𝑓
𝑥𝑖𝑇 ,(49𝑐) 

𝜕𝜽𝑖𝑛
𝜕𝚽(𝑞)

=
𝜕𝑨

𝜕𝚽(𝑞)
(�̅�𝑖

(𝑘|1:𝑘−1)
) +

𝜕

𝜕𝚽(𝑞)
(𝒃(�̅�𝑖

(𝑘|1:𝑘−1)
)). (49𝑑) 

Several of the terms which would arise from Eq. (21) do not appear in Eqs. (49) because they are 

not functionally dependent on model parameters 𝚽(𝑞). 

 For the pendulum example, the parameter vector is given by Φ =

[𝑎11𝑎12𝑎21𝑎22𝑏1𝑏2]
𝑇. Obtaining the six corresponding partial derivatives for each of the four 

variables of Eqs. (49) is straightforward. For instance, 

𝜕𝑨

𝜕𝚽(𝑎11)
= [

1 0
0 0

].(50) 

The overall gradient of the ISE can then be computed by cascading the formulas presented in 

section 7.3.2. 

7.4 Results 

7.4.1 Description of Monte-Carlo Simulations 

 In order to validate the proposed nonlinear SEAM framework, a Monte-Carlo simulation 

approach was taken. By conducting simulated experiments with randomly generated parameters, 

three things are accomplished: 1) the ubiquity of the framework can be demonstrated since it can 

be shown to work for more than just specially-chosen combinations of parameters, 2) performance 

evaluations can be made since ground-truth information is available for comparison, and 3) more 
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meaningful statistical summaries of the proposed methods can be acquired since data is aggregated 

from many experiments. 

 The ground-truth state of the pendulum's free-response was simulated for six seconds with 

the parameter values given in Table 1. The initial angle was chosen to be slightly less than 𝜋 

(vertical) to emphasize the nonlinearity of motion in large-angle simulation. Gaussian process 

noise with covariance 𝚺𝑤 was added at each step in keeping with Eq. (18). 

Table 1. Ground-truth parameters 

𝑙 𝑚 𝑏 Δ𝑡 휃0 휃̇0 𝚺𝑤 

100 0.015 15 0.02 3.141 0 10−7[1, 0; 0, 1.7] 

 In order to simulate sensor noise, a zero-mean Gaussian random signal with covariance  

𝚺𝑣 was added to the ground-truth signal. Furthermore, the uncertainty in each physical model 

parameter was given as a proportion 휀 of its mean. From this, the uncertainties in the model 

parameters were derived. The initial parameter estimates used for signal estimation were then 

randomly generated from a normal distribution with means given by the ground-truth value and 

standard deviations given by the values in Table 2. This table also contains the standard deviations 

in initial conditions used to seed the estimators. 

Table 2. Parameter uncertainties 

𝜎𝑙 𝜎𝑚 𝜎𝑏 𝜎𝜃0 𝜎�̇�0 

휀𝑙 휀𝑚 휀𝑏 0.2 0.08 

 For comparison in validation, the EKF and AEKF were implemented in addition to 

nonlinear SEAM. In order to isolate the effect of model parameter correction, SEAM was 

implemented both without (SEAM-) and with (SEAM+) model correction. The following two 

subsections demonstrate the results of these simulations both qualitatively and quantitatively. 
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7.4.2 Qualitative Assessment 

 Figure 3 shows plots of angular position and velocity for the ground-truth, observed, and 

estimated signals of a sample simulation. For this experiment, baseline parameters are given by 

Tables 1 and 2 and other simulation-specific parameters are given in Table 3 below. 

Table 3. Qualitative example parameter values 

𝑀 𝜆 𝑑𝑖 휀 𝚺𝑣 

50 0.97 0.0005 0.8 [0.075, -0.008; -0.008, 0.06] 

 

 As the figure shows, the KF-based approaches fail to adequately estimate the state of the 

pendulum due to high uncertainty in model parameters. Without incorporating this uncertainty in 

estimation, the prediction stage of RBE becomes overconfident and the more accurate sensor 

observations are essentially ignored. This problem is overcome by the inclusion of model 

parameter uncertainty (i.e. the third term of Eq. (21)). Even without model correction, this addition 

allows the estimator to rely more heavily on observations and thereby weight erroneous predictions 

less. However, without the reinforcing information provided by an accurate prediction model, the 

SEAM estimator without model correction is heavily influenced by sensor noise. This is 

particularly apparent in the fluctuations of the magenta 휃̇ vs. 𝑡 plot of Fig. 3. 

Figure 3. Time domain plots. 
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 Model parameter correction is introduced in order to increase the robustness of SEAM 

estimation to sensor noise. By correcting model parameters and their uncertainties, the smoothing 

effect of a Kalman filter is achieved simultaneously with the zero-mean-error estimation of SEAM. 

The blue plots in Fig. 3 show how, as model parameters are corrected and their uncertainties 

reduced, the SEAM+ signal deviates from the SEAM- signal towards a smoother estimate of the 

ground-truth state. This smoothing is largely a result of the convergence of 𝚺Φ𝑘  by the power law 

𝜆𝑘  as described at the end of section 7.3.2. However, it is only because �̅� becomes more accurate 

that the error in this signal is zero-mean. Figure 4 shows the convergence of model parameters 

towards ground-truth. 

 Of the six presented model parameters, only 𝑎22 and 𝑏2 can be corrected for the nonlinear 

pendulum because they depend on the physical parameters of the system according to Eq. (45). As 

Fig. 4 demonstrates, these two parameters converge to ground-truth over the course of the six-

second simulation. The speed and constancy of convergence are largely dependent on the fine-

tuning of gradient-descent parameters. A more thorough performance optimization study is 

warranted, but extends beyond the scope of this work. Furthermore, a rigorous mathematical 

Figure 4. Model correction over time. 
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justification of convergence and stability is not possible because the presented solution can only 

be implemented in open-form via gradient-descent. 

 Finally, Fig. 5 contains error plots for the sample simulation. The first part of the figure 

shows the time-domain errors of all the signals, while the second part of the figure plots the ISE 

for all time steps usingthe initial model parameter vector estimate 𝚽0, the ground-truth parameter 

vector 𝚽𝐺 , and the continuously corrected 𝚽𝑘 . As is apparent from the figure, SEAM- and SEAM+ 

provide comparable performance, with the exception being that SEAM+ outperforms in the second 

half of simulation when the model estimate is improved. Average estimation errors are 

summarized for this sample simulation in Table 4. 

Table 4. Root-mean-squared-errors (RMSEs) for each signal 

Observations EKF AEKF SEAM- SEAM+ 

0.252 1.824 2.033 0.171 0.140 

 According to the second part of Fig. 5, while continuing to use a poor initial estimate of 

model parameters 𝚽0 causes the ISE to increase, updating these parameters yields an ISE that is 

often below even that given by the ground-truth parameters. It is this proven ability of the proposed 

Figure 5. State estimation error and ISE for sequential time steps corresponding to estimates of 𝚽. 
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technique to minimize the ISE that results in such effective estimation in comparison with other 

methods. 

7.4.3 Quantitative Assessment 

 In order to quantitatively assess nonlinear SEAM, 50 simulated experiments were carried 

out for each of 16 combinations of parameters 휀 and 𝚺𝑣. For each experimental configuration, 

various outcomes were measured and reported in Tables 5 through 7 below. For all trials, the 

parameters 𝑀, 𝜆, and 𝑑𝑖 were set to the values specified in Table 3. Other baseline parameters 

were given by Tables 1 and 2. Because the proposed framework accommodates non-Gaussian 

belief, it is important that non-Gaussian SEAM be validated. However, since this was done in 

previous work [7], the simulations of this section are implemented for Gaussian belief. 

 Table 5 summarizes the performance of each estimator in the aforementioned simulations. 

The percent of trials for which each estimator won is reported, where an estimator “wins” when it 

yields an RMSE lower than the rest. As the table shows, the SEAM estimators outperform the KFs 

handily for all but a select few cases. For relatively low sensor noise, motion model correction is 

most successful and the SEAM+ estimator wins in the majority of simulations. However, as 𝚺𝑣 

increases, corrected model estimates under SEAM+ do not converge sufficiently to outperform 

SEAM- in the time allotted. Furthermore, there is a slight negative trend in SEAM+ performance 

for increasing 휀; this can be explained by the fact that initial model estimates are more likely to be 

further from ground-truth as 휀 increases. This means model convergence will take longer, and for 

this reason SEAM+ is less successful over such short time periods. 
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Table 5. Percent of wins in 50 trials for each estimator. E = EKF, A = AEKF, S- = SEAM-, and S+ = SEAM+ 

 
휀 

0.2 0.4 0.6 0.8 

𝚺𝑣 

[ 0.075 −0.008
−0.008 0.06

] 

E 0% E 0% E 0% E 0% 

A 0% A 0% A 0% A 0% 

S1- 8% S1- 2% S1- 2% S1- 14% 

S1+ 92% S1+ 98% S1+ 98% S1+ 86% 

[
0.1 0
0 0.08

] 

E 0% E 0% E 0% E 0% 

A 0% A 0% A 8% A 0% 

S1- 12% S1- 8% S1- 10% S1- 36% 

S1+ 88% S1+ 92% S1+ 90% S1+ 64% 

[
0.2 0.01
0.01 0.32

] 

E 0% E 0% E 0% E 0% 

A 2% A 0% A 0% A 0% 

S1- 26% S1- 44% S1- 66% S1- 70% 

S1+ 72% S1+ 56% S1+ 34% S1+ 30% 

[0.25 0.01
0.01 0.56

] 

E 0% E 0% E 2% E 0% 

A 0% A 2% A 0% A 0% 

S1- 44% S1- 54% S1- 38% S1- 54% 

S1+ 56% S1+ 44% S1+ 60% S1+ 46% 

 Table 6 summarizes the average ISE found for each of the 50-simulation trials calculated 

with the initial model parameters 𝚽0, the ground-truth parameters 𝚽𝐺 , and the updated parameters 

𝚽𝑘 . In all but two of the most extreme cases where both 휀 and 𝚺𝑣 are high, using the corrected 

model parameters successfully reduces the ISE even below what is obtained using 𝚽𝐺 . This 

verifies the efficacy of the formulas presented for ∇𝚽(𝐼𝑆𝐸) and shows that the gradient-descent 

algorithm of Eq. (32) effectively minimizes the ISE. In simulations where the ISE is successfully 

minimized but SEAM+ does not win, the most likely explanation is that the randomness arising 

from noise processes causes the ISE-minimizing parameter vector to deviate from the ground-truth 

parameter vector. 
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Table 6. Average ISEs given by 𝜱0, 𝜱𝐺, and 𝜱𝑘 

 
휀 

0.2 0.4 0.6 0.8 

Σ𝑣 

[ 0.075 −0.008
−0.008 0.06

] 

𝚽0 17.1 𝚽0 13.3 𝚽0 12.5 𝚽0 11.6 

𝚽𝐺  3.0 𝚽𝐺  3.2 𝚽𝐺  3.6 𝚽𝐺  3.9 

𝚽𝑘  2.5 𝚽𝑘  2.8 𝚽𝑘  3.2 𝚽𝑘  3.5 

[
0.1 0
0 0.08

] 

𝚽0 12.6 𝚽0 10.2 𝚽0 9.1 𝚽0 8.4 

𝚽𝐺  2.0 𝚽𝐺  2.3 𝚽𝐺  2.5 𝚽𝐺  2.8 

𝚽𝑘  1.8 𝚽𝑘  2.0 𝚽𝑘  2.2 𝚽𝑘  2.4 

[
0.2 0.01
0.01 0.32

] 
𝚽0 5.2 𝚽0 4.3 𝚽0 3.8 𝚽0 3.2 

𝚽𝐺  0.8 𝚽𝐺  0.8 𝚽𝐺  0.9 𝚽𝐺  2.7 

𝚽𝑘  0.5 𝚽𝑘  0.6 𝚽𝑘  0.6 𝚽𝑘  3.0 

[0.25 0.01
0.01 0.56

] 

𝚽0 3.8 𝚽0 2.8 𝚽0 2.3 𝚽0 2.0 

𝚽𝐺  0.7 𝚽𝐺  1.5 𝚽𝐺  0.7 𝚽𝐺  1.4 

𝚽𝑘  0.4 𝚽𝑘  0.6 𝚽𝑘  0.5 𝚽𝑘  1.7 

 Table 7 is given for a quantitative summary of the ability of SEAM+ to improve model 

parameters 𝑎22 and 𝑏2. The table shows the average percent of the time during each simulation 

that model parameters were improved. The number of time steps for which 𝑎22𝑘  and 𝑏2𝑘 were 

closer to 𝚽𝐺  than to 𝚽0  were divided by the total number of time steps. As the table shows, there 

is a strong correlation between improvement in 𝚽 and minimization of the ISE. The fact that 𝑎22 

is more often successfully corrected suggests that the ISE objective function is more sensitive to 

change in 𝑎22 than to change in 𝑏2. 

Table 7. Average percent of time model parameters were improved 

 
휀 

0.2 0.4 0.6 0.8 

Σ𝑣 

[ 0.075 −0.008
−0.008 0.06

] 
𝑎22 96.3% 𝑎22 92.1% 𝑎22 92.4% 𝑎22 78.2% 

𝑏2 65.1% 𝑏2 66.8% 𝑏2 64.8% 𝑏2 54.9% 

[
0.1 0
0 0.08

] 
𝑎22 90.1% 𝑎22 88.4% 𝑎22 84.5% 𝑎22 59.5% 

𝑏2 62.2% 𝑏2 61.9% 𝑏2 64.7% 𝑏2 53.8% 

[
0.2 0.01
0.01 0.32

] 
𝑎22 68.5% 𝑎22 57.0% 𝑎22 42.6% 𝑎22 26.8% 

𝑏2 44.6% 𝑏2 45.2% 𝑏2 26.4% 𝑏2 29.3% 

[0.25 0.01
0.01 0.56

] 
𝑎22 60.9% 𝑎22 44.4% 𝑎22 49.2% 𝑎22 32.7% 

𝑏2 40.9% 𝑏2 29.6% 𝑏2 30.1% 𝑏2 28.1% 
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7.5 Conclusions and Future Work 

 Several conclusions can be drawn about the proposed nonlinear/non-Gaussian SEAM 

framework. First, the inclusion of motion model uncertainty in state prediction is demonstrated to 

significantly improve the quality of nonlinear state estimation as compared to conventional 

Kalman filters when model parameters are poorly estimated. Second, because this approach results 

in higher sensitivity to observation noise, the addition of a model correction stage further refines 

the quality of estimation. This is accomplished by both improving model parameters and reducing 

their estimated uncertainty. For hundreds of randomly generated Monte-Carlo simulations, the 

proposed techniques are shown to work well under moderate sensor noise when model uncertainty 

is appreciable. 

 In providing a fair assessment of the proposed framework, a summary of its limitations is 

necessary. Because gradient-descent is required for model correction, updating model parameters 

at each time step can be computationally costly and ineffective for real-time applications. This can 

be rectified by choosing to employ model correction only every 𝑌 time steps, where 𝑌 would be 

adjusted according to an accuracy/efficiency trade-off. Furthermore, because the framework is 

intended to handle some of the more difficult estimation problems, it is not always a good “out-

of-the-box” solution. While the general approach is ubiquitous, certain elements must be tuned 

according to the context at hand. 

 The future work related to this research is ample. First, correcting the physical pendulum 

parameters 𝑙, 𝑚, and 𝑏 rather than the abstracted model parameters 𝑎22 and 𝑏2 may improve the 

quality of the framework. Second, this work could benefit from a closer examination of effective 

gradient-descent techniques to improve the efficiency of model correction. Finally, the ubiquity of 

the approach would be further clarified if it was validated for a wider range of nonlinear state-
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space systems with varying dimensionalities and complexities. Nevertheless, as a proof-of-

concept, this paper shows that nonlinear/non-Gaussian SEAM holds potential for handling 

complex estimation problems in a variety of contexts. SDG 
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CHAPTER 8. Framework Unification and Applications 

8.1 Framework Unification 

 In order to further unify the concepts presented throughout this dissertation, a concluding 

summary of this doctoral work is appropriate. The chief problem which is addressed by the 

formulations and frameworks of this research is summarized as follows: what can be done to 

improve the knowledge about a set of variables when the ability to know them becomes 

increasingly obscured? Information fusion is the foundation upon which answers to this problem 

are built, and various estimation frameworks solve this problem by leveraging the concept of 

information fusion in different ways. This dissertation has addressed two estimation frameworks. 

The first, recursive Bayesian classification (RBC), implements a Gaussian toroid prediction model 

for contexts where motion is highly stochastic but can be modeled by an 𝑁-D random walk. The 

second and more thoroughly investigated framework, simultaneous estimation and modeling 

(SEAM), addresses estimation where model parameters are not accurately known. The 

applications such estimation approaches are explored in section 8.2. 

 The SEAM framework upon which chapters 4-7 build is shown to improve state estimation 

when there is uncertainty in parameters of either motion or observation models. Furthermore, the 

ubiquity of the framework is extended to the more general case where state belief is non-Gaussian. 

What is not addressed in the above chapters, however, is a unification of the framework where 

both observation and motion model parameters are improved over time. The diagram of Fig. 1 

shows what such a technique would look like. As the diagram demonstrates, both 𝚽 and 𝚿 would 

be corrected by the ISE-optimization methods discussed in the text using corrected, predicted, and 

observed state belief. 
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 Though it would be an elegant and comprehensive approach to solving the kinds of difficult 

estimation problems posed here, a conceptual evaluation of such a unified framework casts doubt 

on its actual efficacy. In the contexts already studied, when a prediction is erroneous due to poor 

knowledge of the parameter vector 𝚽, an accurate observation will improve the state estimate. The 

converse is true when 𝚿 is poorly known. In each of these cases, there is an assumption that 

corrected belief 𝑝(𝒙𝑘|𝒛1:𝑘) is more accurate than predicted belief 𝑝(𝒙𝑘|𝒛1:𝑘−1) or observed belief 

𝑝(𝒙𝑘|𝒛𝑘), respectively. This assumption underlies the use of ISE minimization as an effective 

means of model correction. However, suppose both 𝚽 and 𝚿 are poorly known. In this case, both 

𝑝(𝒙𝑘|𝒛1:𝑘−1) and 𝑝(𝒙𝑘|𝒛𝑘) will be bad estimates of the true state 𝒙𝑘. Therefore, when these PDFs 

are fused, it cannot be known if the resulting corrected PDF 𝑝(𝒙𝑘|𝒛1:𝑘) is an improvement for the 

predictor or the observer. This is visually demonstrated in Fig. 2 below. 

Figure 1. Unified SEAM diagram. 
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 As the figure shows, while neither PDF 

is a particularly good estimate of 𝒙𝑘 since both 

𝚽 and 𝚿 are poorly known, state belief fusion 

happens to result in an improved estimate from 

the perspective of the predictor. Therefore, 

correcting 𝚽 by minimizing 𝐼𝑆𝐸𝑓  would be a 

valid approach. However, since 𝑝(𝒙𝑘|𝒛1:𝑘) is a 

worse estimate of 𝒙𝑘 than 𝑝(𝒙𝑘|𝒛𝑘), correcting 

𝚿 by minimizing 𝐼𝑆𝐸ℎ would cause observation model parameters to deviate from ground-truth. 

At any time step, the opposite may be true; in general, 𝚽 and 𝚿 cannot both be corrected for this 

reason. However, it is possible to solve this issue by adding information to the estimator. 

 If a second observer (or sensor) is incorporated in estimation, for which model parameters 

𝚿2 are known with sufficient accuracy, the state belief coming from the fusion of both sensors 

should allow for correction of 𝚿1 by minimization of 𝐼𝑆𝐸ℎ. Similarly, the fusion of belief coming 

from prediction with that coming from the second sensor should allow for correction of 𝚽 by 

minimization of 𝐼𝑆𝐸𝑓. This is because it can be confidently asserted that the corrected state belief 

𝑝(𝒙𝑘|𝒛1:𝑘) is more accurate than either 𝑝(𝒙𝑘|𝒛1:𝑘−1) or 𝑝(𝒙𝑘|𝒛𝑘). If, however, 𝚿2 is also poorly 

known, yet another more accurate source of information is required to correct model parameters. 

This leads to the generalization that, if motion and observation model parameters are to be reliably 

and simultaneously corrected under a unified SEAM framework, corrected state belief must always 

be more accurate than all of the predicted and observed PDFs. This can be accomplished, in theory, 

by either 1) adding an accurate observer 𝑜 which gives observed state belief 𝑝(𝒙𝑘|𝒛𝑘)𝑜 that has 

extremely low uncertainty, or 2) deploying a suite of 𝑂 observers for which each parameter vector 

Figure 2. Insufficiency of simultaneous predictor-observer 
correction. 
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𝚿𝑜 may be poorly known, but for which all observed PDFs 𝑝(𝒙𝑘|𝒛𝑘)𝑜 cluster around the true state 

𝒙𝑘. This principle is illustrated in Fig. 3. 

 As the figure shows, while each individual sensor may provide an inaccurate estimate of 

the state, their fusion offers a much better estimate. Using this fused PDF to then obtain the 

corrected state belief 𝑝(𝒙𝑘|𝒛1:𝑘) will allow for motion and observation model correction using ISE 

minimization, despite the fact that 

all model parameters may be 

poorly known. An analogy that 

may be considered is as follows: 

consider a jury which has been 

tasked with ascertaining the truth 

about a criminal case based only on 

the evidence submitted in court. It 

can be reasonably expected that the 

prosecution and defense have both presented evidence and statements that are a skewed version of 

the truth. The ground-truth is known only by the defendant, but it will never be made public 

knowledge since a confession would incriminate him. It is the responsibility of the jury to work 

out what most likely happened based on what they’ve been given, but each member will naturally 

bring a slightly different perspective and line of reasoning to the deliberation. Though each juror 

alone would likely do a poor job of working out the truth due to their own imperfect detective 

skills, the combined effort of the group will inevitably yield a result that is more accurate than any 

individuals’. In analogy to the idea of model correction, the final decision of the jury could then 

be used to improve each juror’s reasoning and truth-finding skills. 

Figure 3. Multi-sensor fusion. 
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 In summary, a unified SEAM framework in which motion and observation model 

parameters are all simultaneously corrected is only possible if the fusion of all observed and 

predicted state belief yields a PDF which is a better estimate of the state as compared to each 

individual prediction or observation. Investigating and validating this assertion is an aim of future 

work, as is extending SEAM to nonlinear observation models. It is worth noting that, as this 

research becomes increasingly theoretical and ubiquitous, the domain of actual contexts for which 

extended formulations are justified becomes smaller. Nevertheless, the foundational SEAM 

framework presented in this dissertation has several potential applications which are addressed in 

the following section. 

8.2 Applications 

 To conclude this work, it is appropriate to summarize the various potential applications of 

the research presented in this dissertation. The theoretical formulations developed in the first seven 

chapters have merit of their own, but without considering applied contexts, the relevance and 

usefulness of this work is unclear. The following two subsections explore applications related to 

state estimation and target tracking. 

8.2.1 Signal Processing and State Estimation 

 The area of state estimation is concerned with actively filtering sensor signals coming from 

primarily dynamic, electric, or kinematic systems. Measuring such signals is challenging when 

sensors are corrupted with noise; when state feedback is employed to control the system, 

discontinuities such noisy signals can become problematic. This mandates the use of an active 

filter which leverages deterministic knowledge of the mathematics of the system at hand to 

improve state estimates. 
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 Below are a few examples of deterministic physical systems across many domains for 

which state estimation may be necessary in order to overcome sensor noise. In some cases, this is 

to allow for smooth feedback control, while in other cases there may be some alternative decision-

making effort employed. Some of these are directly addressed in the chapters above. For 

thoroughness, the governing discrete- or continuous-time state-space equations are also given for 

each example. 
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Figure 4. RC circuit. 

Figure 5. MSD oscillator. 
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Resistance-Inductance-Capacitance Circuit 
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Figure 6. RLC circuit. 

Figure 7. Nonlinear pendulum. 

Figure 8. Gravitational kinematic path. 
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8.2.2 Robotics, Localization, and Target Tracking 

 A field analogous to that of state estimation is target localization and tracking. Within this 

area, the location of a physical target (whether that be a robot, vehicle, human, or the like) is 

tracked rather than the state of a system. While problems in state estimation consist largely of 

physical systems responding to natural inputs or initial conditions, target tracking and localization 

problems almost exclusively deal with position (whether 1-, 2-, or 3-D) and/or pose (which may 

also be represented by a 1-3 dimensional vector). Like state estimation, the location and pose of a 

target may be measured by a physical sensor (for example, a gyroscope, inertial measurement unit, 

or global positioning system), but other methods may also become available. For instance, a 

robotic field agent may track a target by implementing a computer vision algorithm, where 

observational uncertainty comes from any number of more abstract confounding factors beyond 

simple sensor noise. 

 For tracking and localization problems, 

mathematical models rely heavily on user input. While 

the plant dynamics of, say, an unmanned ground vehicle 

(UGV) may be governed by a discrete-time state-space 

equation, the macroscopic movement of interest is 

dominated by the control effort used to direct the vehicle. 

For example, consider the differential-drive UGV of Fig. 

9. This system is governed by the following 2-D kinematic state-space equation: 

[
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Figure 9. Differential drive mechanism. 
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As this equation shows, the position and heading [𝑥𝑘 𝑦𝑘 휃𝑘]
𝑇 at step 𝑘 depend much more 

heavily on system inputs (the wheel speeds 𝑣𝑙 and 𝑣𝑟) than on the prior “system state” (position 

and heading). Even if the dynamics of the vehicle and the mechatronics of the motors were 

included in the model, the large-scale motion of the UGV would dominate in most non-trivial 

circumstances. For this reason, it is important that user input and its uncertainty be well known for 

SEAM estimation to work well in most localization and tracking scenarios. 

 A special kind of motion where plant dynamics need not be modeled 

and user inputs can be unknown is when targets follow a well-defined path. 

One such example is the figure-8 pattern; such a path may be found in 

search-and-rescue contexts, among others (see Fig. 10). The proper 

mathematical term for a figure-8 is a lemniscate, which has a few strict 

mathematical definitions. One form of a lemniscate also belongs to a family 

of 2-D curves known as the Lissajous curves. Such a curve arises when the 

x- and y-components of a path follow simple harmonic motion. Because 

harmonic oscillation is easily described by a two dimensional state-space 

equation, the 2-D position a target following a Lissajous lemniscate can be 

obtained by the following state and output equations: 

[
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For the lemniscate of Fig. 10, 𝜔𝑥 = 2𝜔𝑦  and [𝑥0 �̇�0 𝑦0 �̇�0]𝑇 = [0 𝜔𝑥 0 𝜔𝑦]𝑇. 

However, any Lissajous curve can in fact be described by the above equation, with the ratio of the 

x- and y-angular frequencies and initial conditions taking on different values. The dynamics and 

Figure 10. A lemniscate. 
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inputs of a target following such a path can be eliminated by modeling and estimating only this 

deterministic linear macroscopic motion. 

 In the field of robotics, simultaneous localization and mapping (SLAM) is a well-known 

framework often used for localization problems. This framework accomplishes self-localization 

and environment mapping simultaneously by employing recursive Bayesian estimation (RBE) to 

overcome uncertainties in sensing and 3-D reconstruction. Because RBE is the basis for the 

estimation component of SEAM, integrating SEAM and SLAM is a natural extension of the work 

developed in this dissertation. Such a SLAM-SEAM framework would allow the location of a 

target or agent within an unfamiliar environment to be estimated with more accuracy than 

traditional methods if the model parameters pertaining to the target are not well known. 

Furthermore, because the accuracy of mapping is highly dependent on the accuracy of localization, 

the improvements afforded by SLAM-SEAM would also extend to mapping. 

8.2.3 Conclusion 

 The research presented in this dissertation has a wide range of applications from state 

estimation and signal processing to target localization and tracking. If any discrete-time state-space 

model can be obtained which describes a system’s state trajectory or the characteristics of a sensor 

used to observe it, the SEAM framework offers a robust solution for estimation when model 

parameters are poorly known and state belief may be non-Gaussian. Future work in this area is 

warranted, especially with regards to real-world validation of the framework in the field. 

Nevertheless, the extensive studies investigated in this dissertation offer strong support for the 

efficacy and promise of this research. SDG 


