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Simultaneous Estimation and Modeling of State-Space Systems
Using Multi-Gaussian Belief Fusion

John Josiah Steckenrider
ABSTRACT

This work describes a framework for simultaneous estimation and modeling
(SEAM) of dynamic systems using non-Gaussian belief fusion by first presenting the
relevant fundamental formulations, then building upon these formulations incrementally
towards a more general and ubiquitous framework. Multi-Gaussian belief fusion (MBF) is
introduced as a natural and effective method of fusing non-Gaussian probability
distribution functions (PDFs) in arbitrary dimensions efficiently and with no loss of
accuracy. Construction of some multi-Gaussian structures for potential use in MBF is
addressed. Furthermore, recursive Bayesian estimation (RBE) is developed for linearized
systems with uncertainty in model parameters, and a rudimentary motion model correction
stage is introduced. A subsequent improvement to motion model correction for arbitrarily
non-Gaussian belief is developed, followed by application to observation models. Finally,
SEAM is generalized to fully nonlinear and non-Gaussian systems. Several parametric
studies were performed on simulated experiments in order to assess the various
dependencies of the SEAM framework and validate its effectiveness in both estimation and
modeling. The results of these studies show that SEAM is capable of improving estimation
when uncertainty is present in motion and observation models as compared to existing
methods. Furthermore, uncertainty in model parameters is consistently reduced as these
parameters are updated throughout the estimation process. SEAM and its constituents have

potential uses in robotics, target tracking and localization, state estimation, and more.
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John Josiah Steckenrider
GENERAL AUDIENCE ABSTRACT

The simultaneous estimation and modeling (SEAM) framework and its constituents
described in this dissertation aim to improve estimation of signals where significant
uncertainty would normally introduce error. Such signals could be electrical (e.g. voltages,
currents, etc.), mechanical (e.g. accelerations, forces, etc.), or the like. Estimation is
accomplished by addressing the problem probabilistically through information fusion. The
proposed techniques not only improve state estimation, but also effectively “learn” about
the system of interest in order to further refine estimation. Potential uses of such methods
could be found in search-and-rescue robotics, robust control algorithms, and the like. The
proposed framework is well-suited for any context where traditional estimation methods

have difficulty handling heightened uncertainty.
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CHAPTER 1. Introduction

1.1 Development and Motivation

The various concepts, formulations, and ultimately overall framework discussed in this
dissertation began with an examination of belief fusion of Gaussian probability distribution
functions (PDFs). Because belief fusion can be accomplished at the PDF-level by multiplying and
normalizing the PDFs representing belief coming from different sources, fusion of two Gaussians
has a special property in that it yields another Gaussian. Though this is an elegant result, it is
restricted to Gaussian belief only. However, because methods exist for fitting Gaussian sums to
estimate non-Gaussian PDFs, it became evident that belief fusion of multi-Gaussian PDFs would
have a similarly elegant solution by means of linear superposition. These premises laid the
foundation of multi-Gaussian belief fusion (MBF).

Given the ubiquity of MBF, it became natural to investigate how to efficiently generate a
set of non-(multi-)Gaussian PDFs with useful characteristics. The formulation of two of these so-
called “multi-dimensional multi-Gaussian structures” was included in the work relevant to chapter
2. Upon examining potential uses of these structures in real-world applications, there arose a
question of accurately accounting for uncertainty in dynamic system modeling. At this juncture,
the use of MBF in the correction stage of recursive Bayesian estimation (RBE) was warranted, but
formulation of multi-Gaussian prediction had not been addressed. To this end, non-Gaussian
prediction for a linearized system was developed with allowance for uncertainty in not only states,
but also model parameters and inputs. Because this allowance increases sensitivity to observational
noise in the estimation process, a logical next step was to consider how uncertainty in a system

model might be continuously reduced.



The rudimentary solution to model-updating proposed in chapter 4 makes the assumption
that the mean and covariance of an arbitrary state of belief (whether Gaussian or non-Gaussian)
could be readily extracted and used to update the state matrix of a linearized system. This results
in an augmented least-squares solution for improving estimates of the elements of the state matrix
based on previous estimates of both system parameters and states. An additional outcome of this
approach to model-updating is a series of equations for updating the variances in system
parameters which are then used to re-initialize another iteration of estimation. Though this
approach tends to improve model estimates and therefore produce more accurate estimation, it
does not fully incorporate all available probabilistic information. For this reason, ground-truth
parameter values are not consistently converged upon.

To improve the model-updating step for multi-dimensional and multi-Gaussian belief, an
optimization approach was taken. Rather than pursue a closed-form solution for updating state
matrix elements, a state transition error minimization approach was considered. For the examples
given in chapter 5, this approach gives parameter estimates which more reliably converge upon
the ground-truth values. However, these formulations still make the assumption that a system is
linear or linearized. Furthermore, model-updating up to this stage addressed only the system-
intrinsic state matrix of a linear system without regard for the input matrix. Consequently, a more
general framework was formulated to comprehensively define non-Gaussian simultaneous
estimation and modeling (SEAM) for arbitrarily nonlinear systems.

In order to implement some of the tools developed here for special estimation contexts
where motion models are unobtainable, chapter 3 addresses recursive Bayesian classification
(RBC) using the Gaussian toroid as a prediction model. This chapter specifically addresses

probabilistic classification of stochastically evolving targets in a high-dimensional feature space.



Though not addressed in this dissertation, an outcome of this approach to classification led to real-
world improvement in road crack classification, a platform which fits the proposed framework
well. The information introduced by even a rudimentary prediction model such as the Gaussian
toroid yields better estimation and probabilistic classification with more accurate uncertainty

characterization for problems where such an approach is appropriate.
1.2 Primary Outcome: Simultaneous Estimation and Modeling

Though the research presented here covers a wide range of applications and its direction
branches off into various subdomains at a number of points, the primary outcome of this research
is the development of the SEAM framework for estimation and modeling of dynamic systems.
Chapter 2 lays the foundation for development of SEAM, chapter 4 introduces it, and chapters 5
and 6 progressively generalize and refine the framework. While the notion of overcoming system
model uncertainty in estimation is not new, existing techniques generally do not address estimation
and modeling as a recursively symbiotic process reminiscent of an active learning approach.
Furthermore, the use of MBF in the correction stage allows belief to be continuously represented
by potentially highly multi-modal non-Gaussian PDFs. This could have significant implications
for several kinds of robotics tracking problems; such applications are discussed in chapter 7, where
a summary of the framework can also be found.

The aim of SEAM as the outcome of this doctoral research is that properly equipped robots
and autonomous systems might be able to overcome challenging scenarios where uncertainty is
more complex and available information is sparser. In order to interact more naturally with humans
in real-world environments, robots need to be capable of perceiving the world and drawing
conclusions in a fashion that is more probabilistically similar to the way humans do. Simultaneous

estimation and modeling is an active online framework for accomplishing these tasks by means of



prediction, belief fusion, uncertainty propagation, and optimization. The SEAM technique could
eventually lead to higher-level characterization of the very kinds of targets being pursued and

estimated, a valuable extension for autonomy in environments with unknown agents.



CHAPTER 2. Multi-Gaussian Belief Fusion

2.1 Introduction

2.1.1 Motivation

Recent decades have seen an increased emphasis on probabilistic methods in the areas of
estimation, automation, information engineering, and the like [1]. Because humans think and act
probabilistically, it is important that human-designed systems be similarly equipped. Sensor fusion
has emerged as an effective tool to help overcome uncertainty in sensor measurements and belief
states, though existing approaches vary widely. With regards to probabilistic information-
handling, there is need for generalized representation of non-Gaussian belief and a correspondingly
inclusive fusion framework. One example of a scenario which could benefit from such a
framework is acoustic target tracking in complex environments, a difficult problem largely because
sound signals are noisy and often aliased by surface interactions. In order to address a wide range
of scenarios such as this, the work presented here investigates efficient generalized non-Gaussian
belief fusion in multiple dimensions and an approach to subsequent probabilistic decision-making.
2.1.2 Background and Related Work

Although the term “sensor fusion” is more widely recognized within the appropriate
scientific communities, the more general term “belief fusion” is used here to describe analogous
principles, where belief is defined by probability distribution functions (PDFs). Belief fusion
describes the joining of multiple estimates, each with a specified uncertainty characteristic, to
synthesize an estimate with improved certainty characteristics [1]. This definition can be more
broadly applied to scenarios where physical sensors are not required, making it more appropriate
for the theoretical formulations presented here. In the traditional sense, fusion has applications in

image processing and computer vision [2], IMU/GPS/accelerometer localization [3], [4], radar and



sonar [5], and more. However, this paper avoids direct association with any single application in
the effort to clarify the ubiquity of the formulations given.

Belief fusion problems are often formulated in terms of two or more state observations,
each described by a mean and uncertainty [6]. Obtaining a fused output mean and uncertainty is
approached in a number of ways. The most conventional method assigns the output mean as the
weighted average of contributing means, where each mean is weighted by the inverse of its
variance. The output uncertainty is then given as the inverse of the sum of the inverse variances.
Under the assumptions of Gaussian estimates, this is the direct result of dynamic system smoothing
formulations [7], as well as an outcome of the central limit theorem [8]. Furthermore, it can be
shown that the updating stage of the traditional Kalman filter also reduces to this result [6], [9].
Other variants arise under the optimal Kalman filter [10], [11], where the output belief bears
resemblance to the conventional form with the inclusion of optimized elements. Some approaches
to belief fusion employ Bayesian networks [12], [1] to enhance certainty about an estimated state.
Furthermore, Dempster-Shafer theory includes a rule for combination of belief, though this
framework generally does not employ probability distribution functions [13], [14], [15].

Recursive Bayesian estimation (RBE) is a widely implemented estimation framework
which addresses belief fusion in the updating, or correction, stage [16], [17]. It is worth noting that
the Kalman filter is one simplification of RBE. In general, though, belief fusion under RBE is
addressed from an arbitrary standpoint where the PDFs of contributing estimates are allowed to
take any form. One approach to belief fusion in RBE is the grid-based method [18], which
discretizes a belief space into sampled grid cells and performs element-wise operations on all cells.

Computation time for such non-parametric methods increases exponentially with dimensionality,



and the trade-off is low resolution in the belief space. This poses a problem with regards to
accurate, real-time belief fusion.

An additional category of probabilistic filtering towards RBE is the well-known particle
(or sequential Monte Carlo) filter [19], [20]. Developed for nonlinear/non-Gaussian applications,
the particle filter is predominantly used for contexts in which decisions are made from incomplete,
or “hidden”, observations. The particle filter is also used extensively in probability hypothesis
density (PHD) filtering, a similar process which requires a form of belief fusion [21]. Although
particle filters are capable of handling fusion of non-Gaussian PDFs, there is inherent imprecision
in the required weight-changing and resampling processes, and computation demand may be high
if many particles are dealt with for improved accuracy.

Sorenson, et al. [22], [23] employed Gaussian sums for belief fusion in RBE. Under this
approach, there arises an issue of inflating Gaussian components which was addressed by these
authors and, more recently, others [24]. This is also addressed, though to a lesser extent, in the
work presented here. Because past work has largely focused on this issue in addition to proving
the effectiveness of Gaussian sums in modeling non-Gaussian PDFs, a discussion of general multi-
dimensional, multi-Gaussian belief fusion is lacking. More importantly, past work does not address
the decision-making aspect of multi-Gaussian representation of belief, a matter which is given
substantial attention here.

2.1.3 Objectives and Outline

This paper describes the mathematical formulations developed for multi-dimensional,
multi-Gaussian belief fusion (MBF), in addition to original formulations of useful non-Gaussian
structures and probabilistic decision-making. MBF is achieved by exploiting the properties of

Gaussian multiplication and superposition in N-D. In order to make MBF a natural solution to



real-world information fusion applications, two useful non-Gaussian PDF structures are
formulated here. These include toroidal and linear PDFs, where the former leverages the
subtraction of two Gaussians with equal mean vectors, and the latter implements a “Gaussian train”
with context-specific periodicity. These PDFs efficiently represent structured belief for natural
integration into the formulations of MBF. High-level probabilistic decision-making additionally
proposed in this paper exploits the properties of multi-Gaussian distributions to integrate joint
PDFs for probabilistically modeled training data and give class probabilities with low
computational demand. These original contributions have potential applications in a wide range of
related scenarios demanding high-speed, multi-dimensional, non-Gaussian belief fusion.

The paper is organized as follows: the next section explains the fundamental concepts of
belief and belief fusion as they are used in this paper, which are essential for describing the
proposed MBF techniques. Section 3 presents the formulations of MBF and describes two kinds
of useful non-Gaussian structures which easily integrate into the framework. Probabilistic
decision-making is also addressed for multi-Gaussian belief. Numerical results are shown and
analyzed in Section 4, and Section 5 introduces applications of the proposed formulations.

Conclusions and ongoing work are summarized in Section 6.
2.2 Foundational Concepts

2.2.1 Belief: Gaussian vs. Non-Gaussian PDFs

While the term “belief” has various meanings and interpretations, some of which are
mathematical and others philosophical, it will be defined in this paper exclusively by probability
distribution functions (PDFs). A PDF is defined as a function whose integral over a specified
boundary gives the probability that an associated random variable falls within that boundary [25].

From the axioms of probability, it follows that any PDF must 1) be nonnegative over the entire



domain (or belief space) and 2) integrate to 1 over the entire

domain. The mathematical notation adopted here for a PDF ..
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particular PDF is useful for two reasons: 1) most random variables r
Figure 1. a) 1-D Gaussian PDF, b) 1-

. L . D non-Gaussian PDF example.
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described by the Gaussian, and 2) the Gaussian can be fully characterized by only two parameters,
a mean and a variance. However, some contexts require non-Gaussian representation of belief.
Examples can be found across many fields, from image segmentation to acoustic localization to
feature-based classification to biostatistics. Though non-Gaussian distributions tend to be fairly
context-specific and unstructured, certain structured non-Gaussian PDFs can often be useful. One
example is a symmetric-Gaussian distribution which may have use in electromagnetic sensing. A
sensed electric field at some point in space may be caused by a positive charge at one location or
a negative charge at a polar opposite location. If there is some Gaussian uncertainty in the sensor
reading, belief can be represented as shown in Fig. 1b. In this example, the random variable about
which belief is represented is the location of some charged particle being sensed. Although this
particular example is 1-D, the concept of structured non-Gaussian PDFs scales to N-D.
2.2.2 Belief Fusion

Belief fusion combines knowledge about a particular object from multiple different

sources, taking into account the parameters that describe each source’s certainty. For the sake of



development, let the vector x represent the state whose belief is being estimated and z; represent
the i*" observation of x. The belief that the observation z; has correctly estimated x is given by a
conditional PDF p(x|z;). The goal of belief fusion, as it is presented here, is to obtain
p(x|z,, 2,, ..., 2,) = p(x|z,.,), the fused PDF that describes belief about x, given all n available
observations. Given that the observations are independent, it can be shown that this PDF is given
by:

i=1p(x]2;)
i=1p(x|z) dx’

p(xlzl:n) = fXH €Y)

where each observation’s PDF p(x|z;) can be estimated by some characterization of the
uncertainty inherent in the sensor or source from which the observation came. Note that p(x|z;.,,)
is simply the normalized product of the constituent PDFs, a fundamentally useful property that is
leveraged below.

2.2.3 Product of Gaussians

In the simplest 1-D case where two observations have PDFs
characterized by Gaussian distributions, it can be shown that
belief fusion yields a third Gaussian PDF which is the

normalized product of the two constituents. This is shown in

Fig. 2. Note that the product of the distributions alone isnota A
Figure 2. Belief fusion in 1D with unimodal

L Gaussian PDFs.
PDF because it is not scaled such that the area enclosed by the

curve equals one. Once the curve has been normalized by dividing by the area, fx [12,p(x|z;) dx,
the result is a proper PDF p(x|z,.,).
As this example shows, the fusion of two Gaussians yields a third Gaussian with a

smaller variance than either constituent PDF. Furthermore, the mean of the fused PDF is
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influenced by both p(x|z,) and p(x|z,), with the latter having a weaker effect due to its higher

uncertainty. This natural result lends to the intuitiveness of belief fusion as described below.
2.3 Multi-Gaussian Belief Fusion

The multi-dimensional MBF technique formulated here handles complex PDFs by making
use of the concepts previewed thus far, as well as exploiting the linear superposition of Gaussian
products.

2.3.1 Linear Superposition of Gaussian Products
Non-Gaussian PDFs can be estimated by normalized sums of Gaussians, described by the

following formula:

I

Yo eV (6 py, 2
(x) = = = Z C"N(x; ,z) )
P fx Zle CiN(x; Hi, Zl-) dx < i Hi & (2)

Here, c; is some weighting coefficient and V' (x; u;, X;) is a Gaussian distribution in the x domain,

with mean vector p; and covariance matrix X;. Note the reduction to ¢;": this is done to simplify
notation, where it is understood that ¢; = ¢; ([, 2=y ;N (x; p, Z;) dx)_l. Because each Gaussian

alone by definition integrates to one, it becomes clear that ¢; = ¢;(3!_, ¢;)~. For unstructured
PDFs, the weighting coefficients c; are chosen to best fit a particular non-Gaussian PDF with a
sum of Gaussians (this is beyond the scope of this paper). For clarity of following derivations, the

general formula for a multivariate Gaussian is given below:

1
N(x;p, X)) = exp <— > (x—p)TE 7 (x — Hi))- 3)

My
It was shown by [22] that any non-Gaussian PDF can be constructed according to (2),
provided a sufficient number of terms with appropriate parameters. This point is critical to

propagation of belief via fusion using the proposed MBF method. Because 1) every component

11



PDF of belief fusion is a weighted linear superposition of Gaussians, 2) the fusion process involves
the normalized product of multiple PDFs, and 3) the product of two Gaussians yields a third
(unnormalized) Gaussian, the output of belief fusion can also therefore be represented as a
weighted linear superposition of Gaussians. This is the essence of MBF. The mean and covariance
of the product of two Gaussians can be written in terms of the constituent means and covariances
[26]:

N(x; u®, z(l))]\f(x; u®, 2(2)) = C(3)N(x; ”(3),2(3)), (4)
where

3 = [(z(l)) 14 (2(2)) 1]
p® = EAO[E®)- 1y 4 (z@)-1,4@)],

1 1 . |
3) = — (1 _ 42 (1) ) 1) _ (2
i VI2r(E® + 2@)| eXp( 2 (u® = @) (2® +2@) (u® —p )).

The scaling factor ¢ is equivalent to the area of the unnormalized curve.
The implementation of MBF for belief fusion with two multi-Gaussian PDFs is as follows.

Let the first PDF be denoted p( (x), and the second p® (x). The product of these distributions is

J

1
PP @) = [pP@][p® )] = [Z N (% ﬂf”'z@)l 2.5 (xu? 5?)
i=1

j=1
1]

ZZC 1 () (3)N(x #f) 2(3)), (5)
i=1 j=1

where

(3) 1 < 1 ) (2) (1) (2) -1 1 (2) )
Cij \/det(2n<2§1)+zj(2))>e)(p 2(”1 —H; ) (Zl +Z] ) (Ml ) 6)
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2(3) [(z(l)) 1+(z(2)) ] 1’ (7)

n =P|E®) e + &)1 (8)

Therefore, the output under MBF is an array of N X 1 mean vectors, N X N covariance
matrices, and scalar weighting coefficients, where N is the dimensionality of x; each output
channel contains I x J components. The required memory storage, then, goes as (N2 + N +

1)(I x J). If observations are available from M sources, this becomes (N? + N + 1)K, where K =

M_ i Iy, and I,,, is the number of Gaussians in the m‘" observation’s PDF.

| 1
p(x) = z c.mN(x; .uf’),):,m) p@(x z @y (x; i (2 z[z))
i=1 =
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Figure 3. MBF for two multi-Gaussian PDFs.
Figure 3 provides a block diagram of MBF, with variables explicitly shown for fusion of

two observations. As the figure shows, the three channels (for c, u, and X) from each constituent
PDF are input to the algorithm, which then outputs three new channels, each of which contains a
number of elements equal to the product of the numbers of Gaussian components in all
constituents. The actual output PDF can then be assembled according to (5). For fusion of multiple

PDFs, the same algorithm is executed recursively, where the output of a previous iteration is fused
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with the next PDF. Figure 4 illustrates this concept with a more MBF Diagram

abstracted diagram. Note that this diagram returns to the more P(x|za) p(x|Z1m1)

formal notation developed in Section 2.2. i I B e

Once the three output channels have been computed,

evaluating the fused PDF at any specific belief space location x = Belief Fusion

X is as simple as making the following substitution: Cn| Hin| B

1 ]
= — @D .2 .G prfz ,,3) 53
p(3)(x|Z1:2) = Z Z Ci Cj Cij N(x, ul] ’zij )

i=1 j=1 p(x|21.)

Figure 4. Recursive MBF for fusion of
In general, however, for a total number K of elements in each multiple belief sources.

output channel from fusion of M observations, a more appropriate algorithmic form is:

K

p(X|zy,) = Z iV (5 py, Zye). 9)
k=1

In this form, all three weighting coefficients are lumped into a single c,. The MBF algorithm does
this internally, so that the outputted array of weights in (9) is readily available.

Algorithm 1 provides pseudo-code for the MBF algorithm. To visualize the output, a
separate function must be implemented that evaluates p(x|z,.,) in a sufficiently densely sampled

multi-dimensional space. It should then be evident that MBF reduces computation because, rather

than store values of the fused PDF
Algorithm 1: MBF of Two Mixed Gaussians

ZJCX|Zln1) at regU|ar grid pOintS in inputs: C1,M1,S81,C2,M2,S2 // Three channel arrays per PDF
output: C,M,S // Three output channel arrays

multi_dimensional Space’ only the for i along length of first channels

for j along length of second channels

extract ith element of Cl, M1, and Sl
pararneters necessary to extract jth element of C2, M2, and S2

compute new C, M, and S

C = C*(ith element of C1l)*(jth element of C2)
reconstruct thIS PDF are Stored. dinsert new C, M, and S into output arrays

en
end

The former is O(RM) complex,
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while the latter is O(N?) complex, where R is the resolution of the sampled space and N is the
dimensionality of that space.
2.3.2 Construction of Non-Gaussian Structures

The usefulness of multi-Gaussian belief fusion is directly tied to how well belief is actually
represented by multi-Gaussian PDFs. Determining the composition of arbitrary unstructured PDFs
input to MBF is largely left to such methods as the Expectation-Maximization (EM) algorithm
[27] or other clustering algorithms [28]. However, certain types of structured non-Gaussian PDFs
have particular practicality in specific contexts, such as that given in Section 2.1. When belief in
some scenario is restricted by some fully or partially determined set of laws, the representative
PDF ought to be structured accordingly. Such circumstances mandate the intelligent construction
of multi-Gaussian PDFs for the sake of accuracy and efficiency, bypassing the need for the fitting
algorithms described above. This section describes the motivations and derivations of two types
of Gaussian mixtures which form structures that are of particular mathematical value. These
structures are proposed in order to supplement MBF as a platform for efficient and accurate belief

fusion in structured contexts.

2.3.2.1 Gaussian Toroid

In a multi-dimensional polar coordinate system where belief is only quantified in the radial
dimension, representation of belief in tangential directions ought to be unbiased. In two
dimensions, this can be visually likened to a torus, but will be more appropriately termed “toroidal”
here. The toroidal distribution is, needless to say, heavily non-Gaussian in the Cartesian coordinate
system. This structured PDF could, for instance, model prediction for an N-D random walk where
step size is approximately normally distributed and step direction is uniformly distributed. As Fig.

5 demonstrates, a Gaussian toroid can be achieved by simply taking the difference of two Gaussian
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Figure 5. Construction of a 2-D Gaussian toroid as the difference between two Gaussian distributions.
distributions with the same mean and different variances. An additional constraint is that each

constituent has no co-variance. Furthermore, for strictly circular toroidal distributions (excluding
elliptical toroids), the variance in all dimensions of each component must be equal. Therefore, the
form of a covariance matrix used to compose a Gaussian toroid is £ = o1y, . Although elliptical
toroids may be considered, their practical use is neither apparent nor ubiquitous, so the following
developments will be reserved specifically for circular toroids.

So that the center of the toroidal PDF has a value of zero, the scaling constant that must
multiply the “inner” Gaussian is the ratio of the maximum of the outer Gaussian to the maximum

of the inner Gaussian. Since the maximum occurs at the mean, evaluating (3) at x = u gives the

maximum value of the function, ———. Let X, denote the outer distribution, while X, describes the

J2rz|

inner distribution. The scaling ratio that must then be used is simply:

1
VI2rZi| |2mX, | _ ;"
1 B |27%, | B 0'1le

V21, |
Because the covariance matrices are restricted by the above stipulations, this simplifies to the ratio

of the scalar standard deviations raised to the power of N, the dimensionality of x. In total, then,

the formula for a Gaussian toroid is given as:

o N
r(x;u,r)=N(x;u,afl)—(a—2) N (x; 02 0). (10)

1
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Note the introduction of a new implicit variable, r. This is the radius

of the toroid, which will be shown to depend on the combination of

o? and o7. Consider the 1-D case shown in Fig. 6. The radius is the

distance from the center of the 1-D toroid to each maximum. This . AW .
Figure 6. A 1-D Gaussian toroid.

can be found symbolically, and then extrapolated to the N-D case, by taking the derivative of

T(x; u, ) to find local maxima. Explicitly, this can be stated as:

dx R T = 0y Wexp 202 01 /2162 exp 202 '

After differentiation, the following is obtained:

1

(x — )[iex __(x—u)z —iex _—(x—u)zl
Tz TP\ 207 ) T2 TP\ T 207 )]

This expression has one clear zero at x = u, corresponding to the minimum at the mean. Other

1 (x—w?\ 1 (x — w?
of exp 202 | of exp 202 )

Solving the above expression for the value of x that is of interest gives the following result,

zeros occur when:

s jzan@z) - In(o?))

= =2 -2
0," — 0y

where the radius is clearly then:

(11)

-2 -2
0," — 0y

\/Z(In(azz) — In(o2))

The above result is useful for predicting the radius of a toroid with specified variances.
However, creating a toroid of a particular desired radius means solving instead for a2 when given

r and o7. Therefore, rearranging (11) gives:
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2 rz 2 rz
0-2 eXp 27._22 = 0-1 eXp 27._12 )

a difficult expression to solve explicitly for either o2 or oZ. At this juncture, the Lambert W
function (also known as the product logarithm function) [29] is introduced. It is defined as follows:
W(x)e"® = x, W(xe*) = x.

The Lambert W function is double-valued on the interval —é < x < 0, and has two principle real,
single-valued branches denoted by W, (x) and W_;(x), where W, (x) is defined over the interval

X = —i and W_,(x) is defined over the interval —é < x < 0. It can be shown that the solution

for a2 is given by:

T'Z

ol = — 3 RARE (12)
2Wo (‘zT;exp (- 2722))

There are a few noteworthy observations. First, the upper bounds on the argument to the Lambert

W function is zero in the trivial case when r = 0. Furthermore, the particular branch chosen is the
W, branch because the W_, branch yields the meaningless result that a2 = ¢ (this is left to the

reader to prove without much effort). Due to the nature of the 0¢" branch of the function, the lower
bound of the argument which yields real values is —é. In order to satisfy this lower bound and

achieve an acceptable result, a2 must be chosen relative to r so that the following holds true:

.r2

200 <r?-> 02 < = (13)

Therefore, given a desired radius, the necessary variances of the inner and outer Gaussian
distributions forming a Gaussian toroid can be determined from equation (13) and then (12).

Algorithm 2 develops the function for creating a Gaussian toroid in more detail.
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In keeping with this paper’s Algorithm 2: Gaussian Toroid

input: r // Desired radius of toroid

eanhaSiS on efﬁCienCy, n iS Vvorth outputs: sl, s2 // Required outer and inner variances

s2 = (decimal between 0 and 1) (r"2/2)

noting that the function for Gl © era) (2 (—en2) (2%82) exp (—En2) (2552))))

function W(x)
implement Halley’s method for the Lambert W function
end

implementing the product logarithm

uses Halley’s iterative
approximation approach which was formulated specifically for the Lambert W function as
described in [29]. The solution converges quickly for as few as five iterations, even when seeded
poorly. Because the dimensionality of the covariance matrices does not appear in the final
expressions (12) and (13), and because of the restrictions placed on these matrices, Algorithm 2
can be used to construct the covariance matrices in any arbitrary number of dimensions according
to X; = o/ 1. The Gaussian toroid fits the form of a PDF given by (2) which allows it to readily
integrate into MBF. To satisfy that the function integrates over all dimensions to 1, the weighting
constants must sum to 1 while their ratio is held constant. Therefore, equation (10) can be reduced
a)

N
1 __G — — — — 42 — 42 H 2
to (2), where ¢ 1= ﬁ, Cé = m, w=Hy, = U, 2 = 0ofIyxn, and X, =05 Iyxn, with 0q

and a2 being determined by Algorithm 2. The primary advantage of this mathematical formulation
for the toroid is that it allows for a highly structured and yet non-Gaussian representation of belief
using only two Gaussian components. After several cycles of MBF, it becomes increasingly
important for the sake of computational efficiency that the number of component PDFs be kept to
a minimum, as verified in the results section.
2.3.2.2 Gaussian Line

In a Cartesian coordinate system where the PDF of belief in one dimension or direction is
unguantified, an appropriate representation of belief may be what is termed here a Gaussian line.

Sampling the probability distribution exclusively along a direction in which belief is unquantified
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ought to yield a constant value. This is visualized below in Fig. 7. Such a structured non-Gaussian
PDF could be used to probabilistically model a linear-predictive relationship between two
stochastic variables. Construction the Gaussian line is derived and explained here. In order to make
use of linear superposition of normal distributions, the essential exploitation of MBF, the Gaussian
line must fit the form of (2). This means that, although it is a valid way to extend a Gaussian along

a line, causing u to be a function of x is not allowable here.

——JAN

Figure 7. Cross-sectional characteristics of 2-D Gaussian line.
A finite sum of equally-spaced Gaussian PDFs with equal variances behaves differently

depending on the ratio of the spacing to the variance. If this ratio is sufficiently large, the Gaussians
are isolated. As the ratio decreases, they begin to interfere with one another, creating a nearly-

sinusoidal profile. Over a certain range, then, this profile flattens out before beginning to resemble

_— S

Figure 8. Profiles of Gaussian sum with equal variance and constant spacing. Colors serve only to show each PDF distinctly.

a single large Gaussian. These four cases are shown in Fig. 8. The third case is the one of interest.
The two-dimensional equivalent of this case is a Gaussian line, reminiscent of the convolution of

a finite linear segment and a Gaussian distribution. This holds true in higher dimensions as well.
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The problem, then, is to determine the critical spacing-to-variance ratio such that a flat profile is
just achieved in the center. Again, the 1-D case will be used to answer this question.
For the infinite case, a sum of Gaussians can be represented by the following:

y(x) = Z N(x; b, O 2)—N(x002)+Z]\f(xu+m602)+N(xy mé,o?)

m=—oo

where § is the desired spacing. By substitution of the formula for a 1-D Gaussian, this becomes:

1 2 > 5)2 —mS)?
00 = s e (= o ) + > o e )]_

To find the optimal spacing such that flatness is achieved, the convergence of y(x)|x=§ towards
2

y(x)|,=o is observed. By substitution, this requires the following:

1—exp —— - 11m [Z 2 exp m;)—exp( M)—exp(—%))l=0,

where a = g, the aforementioned ratio of the spacing to the standard deviation. Because this

expression is intractable, it was plotted for increasingly large values of M, yielding the graphs
shown in Fig. 9. As one can see, there is a range of values between @ = 1.5 and a = 0.5 that yields
consistent convergence as M increases, with the lower bound approaching zero as M approaches

infinity. This means that, even for a relatively small number of Gaussian components, near-perfect
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® N ® w©

YOO g - YOO

o
=

=
o

Lo s e R o & N m o -

o L4 v L B o N m o

Figure 9. Flatness as a function of the ratio between spacing and standard deviation of distributions.
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flatness in the center of the summed distribution can be achieved when 0.5 < a < 1.5. Choosing
a value for « in algorithmic implementation is then an efficiency-accuracy tradeoff.

The value of 1.15 was heuristically chosen to satisfy the desired condition of flatness. This
balances the assurance of flatness with the efficiency with which flatness can be achieved by using
as few Gaussians as possible. Because a = 1.15, the spacing must be chosen such that § < 1.15¢.
Let the vectors e; and e, denote two endpoints of a Gaussian line in N-D. The distance D that the

line spans, then, is given by D = |le; — e,||. To construct this line, the number of Gaussian

components required is M = 2> 2 _: this value is rounded to [L] The required spacing
1) 1.150 1.150

between each Gaussian in the nt* dimension, §™, is then given by:

m _
s =§ u )
D

Finally, then, the Gaussian line is defined by the following expression:

M
Ax; e, e,,0) = Z N(x; o, X) (14)

m=1

where

(12, +6©)]

m—

I
Hm :I‘u"%)_l-l_é‘(l)l

[, + 6]
and
T =02Iyun-
It should also be apparent that u, = e; and u, = e, so that the line is closed. The above
expressions inform a function which automatically produces the channels of mean vectors and

covariance matrices that compose a Gaussian line between two points, with a desired cross-
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sectional standard deviation o. Algorithm 3: Gaussian Line

A A input: el, e2, s // Endpoints and desired std. dev.
The channel of Vvelghtn1g outputs: M, S, C // Output array of means and covariances

.. . . Compute D
coefficients is S|n1p|y an array of Compute K (number of components, M in the text)
Compute delta

Values VVhiCh a|| equa| Aq—l_ for i along dimensionality of endpoints

Compute delta of ith dimension
Insert delta into vector ds at ith position

Algorithm 3 describes  the | ®n@
m = el
for i along K

proposed solution for creating an M= m 4+ ds

Insert m into array of means M at ith position
end

N-D Gaussian line according to | s
C

array of covariances, each of form s"2*I
array of weighting coefficients, each equal to 1/K

the above formulas. Note the slight

notation change of the number of components, M, to K: this is done to retain the variable name M
for the output array of means in keeping with other algorithms in the text. The outputs of this
algorithm can be used as inputs fed directly to the MBF algorithm.

It is worth noting that the described function creates a Gaussian line connecting two finite
points, while the case where belief in one dimension or direction is unquantified implies an infinite
line along this direction. Such a non-converging distribution is not a true PDF and it cannot be
represented in the form of (3), a finite summation. In order to make use of the advantages of MBF,
it is admittedly necessary to truncate belief in the unknown direction based on the boundaries of
a certain space. However, as nearly any conceivable problem will have some expected range
beyond which the true state of an estimated variable cannot possibly fall, the endpoints of the
Gaussian line can simply be chosen at the edges of this belief space.

Figure 10 gives a few examples of 2-D Gaussian lines of various thicknesses (¢’s), lengths,
and slopes. As the figure shows, the Gaussian line is a reasonable representation of belief that is
constant in one direction and Gaussian in all others. Because the covariance matrices used to

construct the Gaussian line are of the form o1y, the level curves of each component PDF are
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Figure 10. Four examples of Gaussian lines with varying attributes.

circular. This means that there is
no inherent bias towards a
“straight” line, which has
significant  implications  with
regards to the versatility of
Gaussian line-making. In fact,
any arbitrarily curved line in
multiple dimensions can be

transformed into a PDF via this

method, so long as the line is discretized such that the Euclidean distance between each mean and

the next is approximately 1.15¢. This fact can be useful when there is some known nonlinear

relationship between or amongst the dimensions of a belief space. Section 5.1 gives examples of

such a scenario.
2.3.3 Decision-Making

There are multiple potential approaches to
decision-making. One proposition is to simply
locate the modes (local maxima) of a distribution
[30]. However, this approach, known as maximum
likelihood estimation (MLE), neglects most of the
information-rich ~ PDF, and  multi-modal

distributions can yield contradictory results. Figure

1

Figure 11.MLE/decision boundary classification.

11 illustrates this concept in 2-D. Another possible approach is to integrate the output PDF over

decision boundaries in the multi-dimensional space to obtain the probability that belief
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corresponds to each region. These decision boundaries can be generated by various means, one of
which is the quadratic Bayesian classifier (QBC) [31] However, efficiently performing symbolic
multi-dimensional integration of a multi-Gaussian PDF over arbitrary decision boundaries is
effectively intractable.

The approach to decision-making proposed in this paper is one which fully exploits all
contributing components of the multi-Gaussian PDF without sampling the belief space. This can
be done by an operation which bears resemblance to the total-probability theorem of continuous
distributions. Let p(w,|x) represent the PDF corresponding to a class w, to which a target of
estimation may belong, given the estimate of x that is given by training observations. Furthermore,
recall that p(x|z,.,) is the PDF coming from MBF. Because the actual location being estimated
in the belief space x is independent of the observations made (although the converse is not true),
this becomes just p(x). Therefore, the probability that a location x being estimated belongs to

class w, is estimated by the marginalization of the joint probability function p(w,, x) as shown

below:
Pon) = [ pOvan)dx= [ pwal0pGodx. (15)

Figure 12 offers a valuable visualization of (15). The area under the joint probability curve
is largest for class 2, lending to the intuitive conclusion that the probability of the output PDF

belonging to this class is greatest. Because the product of the two PDFs p(w,|x) and p(x) is not

1 1r

p(x|21:0)

plwi|z)p(x)
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Figure 12. Decision-making by integration of the joint probability of training PDFs with the output of MBF.
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normalized, the values of P(w,) will not sumto one, though their relative proportions are accurate.
Therefore, a discrete normalization of these probabilities can be performed to provide probabilities
corresponding to each class in the standard sense.

Equation (15) involves an integration that can be achieved non-numerically since it is not
bounded by decision boundaries. According to theory developed in Section 3.1, p(w,, x) can be

found for the general case where both p(w,|x) and p(x) are multi-Gaussian PDFs,

p(wy, %) = [Z (PWalx)) 5 (x pPCval), z(zo(Wapc)) ”z () N x >, z(p(x)))

1]
p(Wqlx)) (P(X)) (P(W X)) (P(Wgx)) w(PWga.x))
ZZC ’ G N(x”ll L )

i=1j=1
where
1 1 -1
Ci(]gz(wa.x))= exp( Z(HEp(walx)) ”jp(x))) (ng(w“lx))+2;p(x))) (”l(p(walx)) u}(p(x))))
\/det(h (ZLFP(W“"‘” + z]gp(x))))

This is essentially a restatement of (5). Because each Gaussian distribution integrates to one, it

becomes apparent that the area under the PDF-product for each class w,, is given by:

° 1]
P(wy) = fp(wa,x)dx — Z (p(walx)) ](p(x)) l(]p(wax)) (16)
—co i=1j=1

The above formulations are implemented in Algorithm 4. The subsequent discrete normalization

that is necessary to yield : . N .
Algorithm 4: Classification-Based Decision-Making

appropriate prObabiIitieS foreaCh input: M1, S1, Cl, M2, S2, C2 // Parameters of testing PDF

and training PDF (class wa only)
outputs: Pwa // Unnormalized probability for class wa

class a of all A classes is then | pua = o

for i along length of first channels

. for j along length of second channels

SanpIy: extract ith element of C1, M1, and S1

extract jth element of C2, M2, and S2

compute C

~ I)(Mhl) Pwa = Pwa + C*(ith element of Cl)*(jth element of C2)

. end
a=1 P(Wa) end
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The final result is an array of probabilities, each of which corresponds to one of the classes
established in training, which sum to one. These probabilities can then be used in various ways to
inform action.
2.4 Results

It is insightful to include some practical examples of MBF working, and show how it
compares to discretization methods. This section will provide examples of multi-Gaussian belief
fusion for miscellaneous non-Gaussian PDFs (both structured and unstructured), including a
comparison between the proposed probabilistic decision-making scheme and other potential
approaches. In addition, several precision-efficiency trade-off studies will be presented here.
2.4.1 Belief Fusion and Decision-Making Examples

To confirm the correctness of the algorithms for constructing
Gaussian structures, executing MBF, and carrying out probabilistic

decision-making, eight arbitrary 2-D examples of fusion for two and

three combinations of different distributions were studied. A training set
consisting of three classes with uni-Gaussian PDFs was arbitrarily

constructed, as shown in Fig. 13. The decision boundaries shown were

established by a quadratic Bayesian classifier, though this only has direct Figure 13. Three training

. ) .. classes and their decision
value in terms of visualization. The results of MBF were compared to boundaries.

grid-based belief fusion, where a discretized 2-D grid containing values of the PDFs evaluated at
regular sample points was stored in memory and element-wise belief fusion operations were
executed. Since the discretization was conducted at high resolution, the result of the grid-based

belief fusion was considered ground truth. It should be noted that, although higher-dimensional
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examples could be used for validation, what could be an already expansive parametric study

needed to be restricted to the easily visualized 2-D examples.

Figure 14. Eight examples of MBF. A: two arbitrary Gaussian mixtures (AGM), B: AGM and Gaussian toroid (GT), C: two
GT, D: three GT, E: AGM and Gaussian line (GL), F: GL and GT, G: two GL, H: AGM, GT, and GL. Separated columns show
result of decision-making fusion corresponding to three training classes shown in Fig. 13. Class probabilities are directly
proportional to the volumes beneath the fused decision-making distributions.

As Fig. 14 shows, belief fusion of multiple non-Gaussian PDFs vyields results which are
also highly non-Gaussian and can be oftentimes multi-modal. The results of the MBF algorithm
are effectively indistinguishable from ground truth. Furthermore, since MBF is a lossless method
of belief fusion, any difference between it and the grid-based approach is in fact error in the latter.
Table | gives class probabilities obtained in each of the eight examples under the two simpler

decision-making schemes described in Section 3.3 (MLE and QBC) and the proposed technique.

Table 1. Class probabilities. Bold numbers denote winning classes; highlighted columns correspond to proposed approach.

A B © D E F G H
w o (S |Ww o (S W |lo | |w o (s Wwlo |5 W jo |5 |Wwjo |5 |bu o |s
- |m - |m ot 4 |m 4 |m 4 |m 4 @ - |m
S oclRIEclRIEcfIEIc|12I|IEIcIfIEoRI|IE|o|] | |o|f

o

Class 1 |0.367|0.371|0.385|0.999 | 0.509 | 0.464 | 0.002 | 0.282 | 0.161 | 0.003 | 0.079 | 0.004 | 0.999 | 0.436 | 0.648 | 0.000 | 0.002 | 0.000 | 0.000 | 0.006 | 0.004 | 0.001 | 0.106 | 0.086

Class 2 |0.000|0.276|0.384 | 0.000 | 0.325 | 0.380 | 0.000 | 0.301 | 0.315 | 0.931 | 0.562 | 0.792 | 0.000 | 0.326 | 0.213 | 0.000 | 0.106 | 0.061 | 0.142 | 0.326 | 0.113 | 0.000 | 0.260 | 0.305

Class 3 |0.633|0.353|0.231 | 0.001 | 0.166 | 0.156 | 0.998| 0.417 | 0.524 | 0.066 | 0.359 | 0.204 | 0.001 | 0.238 | 0.139 | 1.000 | 0.892 | 0.939 | 0.858| 0.668 | 0.883 | 0.999 | 0.634 | 0.609
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Figure 15 shows the information entropy corresponding to each classifier for each example. This
measure is employed to quantify the uncertainty present in a probabilistic decision that has been

made. The information entropy H (X) is calculated here as:

HX) = —z P;(X) log, (P, (X)),

where P;(X) is the probability that the 16

BElLE
i EQBC
EEroM

random variable X belongs to class i.

(]
T

Because the PDFs of Fig. 14 were

artificially generated, ground-truth

o
o

class probability information was

Information Entropy (bits)
2 &

nonexistent. Although the proposed

o
]

0

method cannot explicitly be shown to B c D E F
Examples
b for thi Figure 15. Information entropy for three classifiers across eight
€ more accurate for this reason, some examples of post-belief fusion decision-making.

important conclusions can be made. First, though all three methods yield the same class assignment
for all but one example, the MLE approach often yields vastly overconfident probabilities. This is
shown by the low MLE values in Fig. 15. Furthermore, the probabilities assigned by the proposed
probabilistic decision-making (PDM) and QBC methods correspond more naturally to a human’s
innate ability to probabilistically classify a target with significant uncertainty given sufficient
information. As Fig. 15 shows, information entropy is higher for both these classifiers to reflect
the uncertainty in decision-making under these approaches. Because these classification methods
avoid asserting an overconfident decision, it is more meaningful in cases where H(X) is low (for

example, in case G). In comparing the QBC and PDM methods, however, the PDM approach is
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much more efficient since the boundary-integration approach labeled by QBC requires belief-
space discretization which is to be avoided for reasons already given.
2.4.2 Gaussian Component Pruning

One drawback of MBF is that, for continuous belief fusion where the algorithm is
recursively implemented or when each constituent PDF has many Gaussian components, the length
of the output channels becomes quite large. However, in the vast majority of instances where this
situation occurs, most of the Gaussian components contribute very little. Generally, in fact, the
more Gaussian components are present, the less most of them contribute. This makes it possible
to simply “prune” out minimally-contributing components. This can be done by removing those
whose weighting coefficients’ absolute value is below a certain threshold. Alternatively, the
number of top contributors chosen can be specified. The effects of pruning on examples A, B, E,
F, G, and H are shown in Fig. 16 (examples C and D are excluded because they already contain

few components, and all contribute approximately equally).

Components: 16
Max error %: 0%
Mean error %: 0%

Components: 8
Max error %: 0%
Mean error %: 0%

Components: 28
Max error %: 0%
Mean error %: 0%

Components: 8
Max error %: 18.5%
Mean error %: 2.7%

Components: 7
Max error %: 23.6%
Mean error %: 2.5%

Components: 12
Max error %: 13.4%
Mean error %: 1.2%

Components: 22
Max error %: 0%
Mean error %: 0%

Components: 35
Max error %: 0%
Mean error %: 0%

Components: 64
Max error %: 0%
Mean error %: 0%

Components: 12
Max error %: 23.4%
Mean error %: 3.2%

Components: 11
Max error %: 12.2%
Mean error %: 1.0%

Components: 16
Max error %: 11.3%
Mean error %: 0.8%

Figure 16. Effect of pruning on examples A, B, E, F, G, and H with accompanying bar graphs of
constituent weighting coefficients. On average, over half the components can be removed with little overall

The accuracy of the pruned PDFs is quantified by two metrics: max error percent and mean
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value-error in each PDF (compared to the unpruned PDF) divided by the maximum value of the
pruned PDF. They are meant to show the max and mean error in proportion to the scale of the PDF
overall. As the figure details, the mean error percent is often only a few percent, and the max error
percent at times rises above 20%. However, considering the substantial computational benefit of
pruning in some cases (particularly example H), these small errors are often worth inducing.

For a more rigorous quantitative analysis of the effect of component pruning on the class
probabilities assigned in a probabilistic decision-making stage, the class probabilities were plotted
over the number of components M preserved in pruning for each example. Components were
added in descending order according to the absolute value of their weighting coefficients. Figure

17 shows these plots. If classes are assigned based on maximum probability, the highlighted
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Figure 17. Plots of output class probabilities vs. number of Gaussian components for examples A-H. Red = class 1, green = class
2, and blue = class 3.

regions correspond to values of M for which pruning to the M most contributing components yields

correct classification. The red region in example D indicates a condition where the particular
components retained causes instability in reconstructing the output of MBF. This is due to the

contribution of negative terms by the Gaussian toroid components. A more in-depth study of the
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causes of unstable partial-reconstructions due to negative terms is warranted, but extends beyond
the scope of this paper.

As the figure shows, removing the least-contributing half of the Gaussian components
coming from MBF results in the correct maximum-probability classification for examples B, C, E,
F, G, and H. In other cases, special selections of M yield correct classification. In example A,
although the highlighted regions cover less area, it is clear that classes 1 and 2 compete closely, so
misclassification in this case costs relatively little. It is important to note here that other methods
of component selection may be utilized to yield even better results with fewer components. Again,
while this warrants further scrutiny, it is beyond the scope of this paper.

2.4.3 Efficiency vs. Dimensionality

For the grid-based method, computation includes not only element-wise multiplication,
division, and summation involved in belief fusion, but also the operations involved in populating
a discrete space with the appropriate values corresponding to the distributions of each input PDF.
Though the latter procedure is not formally a part of the belief fusion operation, it must take place
for each observation contributing to belief fusion and therefore must be considered. Populating an
N-D belief space of resolution R with a single Gaussian requires the following operations (among
other smaller ones):

1) Evaluating the inverse of an N X N matrix, which involves:
a) Evaluating the determinant of an N X N matrix
b) Evaluating the adjoint of an N X N matrix

2) Subtracting two N x 1 vectors

3) Evaluating the transpose of an N x 1 vector

4) Looking up the value of an exponential function or approximating it numerically
The minimum computation, then, involved in this procedure is one iteration of the steps involved

in 1) and RY iterations of steps 2) - 4) (assuming each dimension has equal resolution). Assuming
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steps 2) - 4) require a constant amount of computation time y, the dominant characteristic of this
operation in high dimensions, assuming efficient execution of 1), is at best (Ry)". Carrying out
actual belief fusion, then, involves:

1) Multiplying the values of two input PDFs at each sampled cell through dimensions
my,my, ..., My:
3 €)) @

= X
pml,mz,...,mN pml,mz,...,mN pml,mz,...,mN

2) Summing over all locations of p,(:im v In N-D space:

25

My M,

My
_ 3
a = Z Z b Z pml,mz,...,ml\]

mi=1m,=1 my=1

3) Dividing each cell by a:

(3)
4) _ pml,mz,...,mN
pml,mz,...,mN - a

Though operations 1 and 3 are simple, they are done R times. Operation 2 is done once, but this
operation itself requires the addition of RY elements. Therefore, this procedure is also dominated
by a power law, as was described at the end of Section 3.1.

In order to rigorously compare MBF with the existing grid-based approach, belief fusion
was carried out for two arbitrary two-component PDFs in 1-, 2-, 3-, 4-, 5-, and 6-D. In each
successive dimension, the means and corresponding covariances were retained from the lower
dimension so as to maintain consistency across the trials. To cover the computationally worst-case
scenario, each covariance matrix was non-sparse. The algorithms were run in Matlab 2018a on a
non-dedicated Intel i7 processor with 12GB RAM running at 2.20 GHz. Figure 18 shows the

computation time plotted as a function of dimensionality, both in linear and logarithmic scales. In
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the study shown, the resolution of the sample spaces was extremely low, at only 10 grid cells per

Computation Time vs. Dimensionality Computation Time vs. Dimensionality
—Grid —MBF —Grid —MBF
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1.E-03

1 2 3 4 5 6
} . . 1.E-04 - — :
Number of Dimensions Number of Dimensions

Figure 18. Computation time as a function of dimensionality for uniform resolution of 10 grid cells per
dimension.

dimension.

As the figure shows, at low dimensionality (1- and 2-D), computation is fast enough that
processing speeds are negligible and therefore highly variable because other processor operations
on the non-dedicated machine fluctuate. However, as expected for the grid-based method, the
relationship becomes dominated by a power law at higher dimensionality. This is especially clear
in the near-linear form of the logarithmic plot past 2-D. The computation involved with MBF
remains so small that it is dominated by other processor operations. This expected benefit makes
MBF far more favorable than grid-based belief fusion of non-Gaussian PDFs in many dimensions.

Because the efficiency of the two methods is comparable in 2-D, an accuracy trade-off
study was conducted to compare the two at this dimensionality. Inaccuracy in the grid-based
approach comes at the discretization level, whereas it is introduced in MBF by component pruning.
As a representative case, example E from Sections 4.1 and 4.2 was chosen to carry out this study.
For ground-truth, a densely sampled 200-by-200 belief space was selected to evaluate the two
methods. Representation of the output from grid-based fusion was examined over twenty

resolutions from 5 to 100, and MBF output belief was reconstructed in the 200-by-200 belief space
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after incorporating each of the 28 components, ordered from most- to least- contributing. Root-
mean-squared-error (RMSE) was computed over all grid cells. The results are shown in Figure 19.

In order to make use of the Accuracy of Grid-Based Fusion vs. MBF
—MBF —Grid

figure, note that each approach’s

Grid Resolution
0 10 20 30 10 50 60 70 80 90 100

independent variable has its own
axis label. To compare the two, the

RMSE at a particular resolution or

RMSE of Single Gnd Ce

oS o
ST

number of components can be

0.1%

found and then related to the other 0.0%

o ——
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approach. For example, at _ X _ _
Figure 19. RMSE of grid cells in 200-by-200 belief space for example E under

two methods.

resolution of 30-by-30, the grid-
based representation of belief results in error comparable to that induced by pruning approximately
13 components after MBF. In other words, to achieve results with MBF that are more accurate
than the grid-based method at a resolution of 30 grid cells, one would be able to eliminate up to
half the Gaussian components representing output belief. For two further iterations of belief fusion
with arbitrary two-component PDFs, the average computation time required for MBF was 5.2 ms
(maintaining only 13 components) while grid-based fusion took an average of 23.4 ms (for 30-by-
30 resolution). This means that for the 2-D example E, MBF equals the accuracy of grid-based
fusion while quartering the required computation time.
2.4.3 Efficiency/Accuracy Tradeoff for Multiple MBF Iterations

To more comprehensively study the effect of Gaussian component pruning on efficiency

and accuracy, seven consecutive fusions were executed using both MBF and grid-based fusion for
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. ! /
Figure 20. Eight miscellaneous multi-Gaussian PDFs fused in consecutive iterations of MBF. From upper-left to lower-
right, the PDFs contain 4, 4, 3, 3, 7, 11, 5, and 4 components. The final PDF, therefore, contains 221,760 components.

the eight miscellaneous 2-D PDFs shown in Fig. 20. Between each fusion event, the cumulative
execution time and the RMSE were recorded, where ground-truth was established by a densely
sampled 500-by-500 cell space. These two metrics were assessed for varying resolutions under the

grid-based method and for varying component-pruning laws under MBF. The results of this study

are Shown in Flg 21 Grid-Based Fusion MBF
AS eXpeCtEd, there iS a r0ugh|y Cumulative Time Cumulative Time
100x100 50x50 =——25x25 10x10 = All Components = 50% of Components
03 =25 of Components ——10 Compenents
proportional trend between time and % J
fusion events for grid-based fusion since 1E03 1
l : )meun'h\ em; ’ ‘ : huiuu}E\rnh ’ ’
the memory needed to store PDF
Error Error
information is constant. Alternatively, ..~~~ " e iveotComprmets — 10 Compe
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needed to represent belief under MBF e T el T

F Figure 21. Timing and error as functions of the number of fusion events

follows a product law, many MB . { h
for various resolutions and pruning laws.

iterations become expensive under this approach. However, by simply eliminating half the
Gaussian components after each fusion event, computation time is drastically reduced.
Furthermore, restricting belief to be represented by a constant number of components (in this
example, 10) causes MBF computation time to be governed by a proportional law. At this level,

MBF is not much more expensive than grid-based fusion in 2-D, and the accuracy is also
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comparable. As the previous section shows, however, the advantage of MBF becomes much more
pronounced in higher dimensions. For any applications requiring the fusion of only a few PDFs,

MBF is both efficient and perfectly accurate without any pruning.
2.5 Applications

For completeness, this work requires some elaboration about the various potential
applications of MBF. Ultimately, in most contexts where human-like estimation and probabilistic
problem solving is desired, these methods could likely have some use. This section will focus on
three areas of particular interest: state variable estimation, target tracking, and classification.
2.5.1 Dynamics: State Variable Estimation

In the fields of dynamics and controls, state-space representations of complex systems are
often sought after in order to solve stability problems, provide appropriate actuation, and the like.
A state space is analogous to the concept of a belief space that was used to develop MBF. State
spaces are often many-dimensional, and state vectors are often accompanied with uncertainty. In
many cases, the Kalman filter and its variants are capable of state estimation in the time domain
under the assumption of Gaussian uncertainty. A proposed use of MBF in dynamics is instead in
the state domain where non-Gaussian models are appropriate.

Consider a simple system with state vector x = [y(t) y(t)]T. There is a deterministic

curve that could be drawn in the 2-D state space for different functions y(t) and their
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Figure 22. Time domain plot, state-space plot, and state-space PDF of decaying sinusoid of form Cexp(— f) sin(wt) where C =
25, 7=10,and w = 1.
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corresponding derivatives y(t). For the free-response of a spring-mass-damper system, these two
states are plotted in the time domain in Fig. 22. If the states are instead plotted in the state-space,
the resulting shape can be described as a spiral, as shown in the second part of the figure. An
observation at any time ought to fall somewhere along this path. Furthermore, if the uncertainty
with which this path is known can be estimated, the deterministic trajectory can be transformed
into a PDF by placing equally-spaced non-covariant Gaussians along the path according to the
theory developed in Section 3.2.2 (shown in the third part of Fig. 22). Because the curve describes
the dependency of y(t) on y(t), this PDF corresponds to the conditional distribution of y(t) given
y(t) at any time. A measurement of y(t) with Gaussian uncertainty would then be represented by
a vertical Gaussian line with a specified mean and variance. This structure is normally distributed
in the y(t) direction and uniformly distributed in the y(t)
direction to reflect 1-D belief in 2-D space. The fusion of

these two non-Gaussian 2-D PDFs would yield the joint

PDF of y(t) and y(t), which could then be used to extract

25 . T =
25 20 15 -10 5 0 5 10 15 20 25

the marginal distribution describing y(t). This fusion is Figure 23. Joint PDF of y(t) and y ().
demonstrated in Fig. 23.
A few examples of other potentially relevant or interesting state-space trajectories are given

in Fig. 24 as non-Gaussian PDFs. Although the primary relationship explored here is that of a

t
y(t) = at? + bt +c¢ y(t) =Ce 7 y(t) = Csin(wt) y(t) = Csin(wt) + bt
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Figure 24. Examples of four potential state-space PDFs where the states are the associated function and its derivative. Note how
the diverging first and fourth examples are unbounded in the state space in keeping with their instability.
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function and its derivative, any other set of states with some defined correlation can be used to
create a state-space conditional PDF.
2.5.2 Robotics: Target Tracking

Target tracking in the robotics community is perhaps the most physically intuitive
application of MBF. In this context, the belief space is limited to strictly low- dimensional physical
spaces. It is not difficult, therefore, to conceive of some examples where a complex multi-Gaussian
PDF would be appropriate for representing belief. For example, consider the case where an
assistive robot is being tracked as it moves through a one-story home. The belief space can be
reasonably represented in 2-D, with the confines of the home defining the boundaries on the space.
If, for instance, the robot is restricted to open areas only and cannot enter any rooms, prior belief
about the robot’s location could be represented by a PDF that is given by Gaussian lines along all
allowable paths through the home (Fig. 25). In this example, the uncertainty in the Gaussian lines
could be established based on known parameters with
regards to the robot or its observational sensor (i.e. robot
size, noise in motor encoders, quality of camera, etc.) and

therefore the spacing of each contributing mean (denoted

by black dots along the purple path) would be adjusted Figure 25. Allowable path-based non-Gaussian
PDF superimposed on floorplan.
accordingly. Despite the simplistic presentation of such a task in comparison with real-world
application, the concepts are sound and warrant further investigation.
2.5.3 Automation: Classification
In the fields of robotics and automation, a potential use of MBF is in perception and

classification. In such a scenario, the belief space would be a multi-dimensional feature space in

which multiple observations coming from a computer vision system, auditory processing unit, etc.
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are represented as PDFs. The uncertainty characteristics of potentially multi-Gaussian
distributions would be determined by the reliability of the sensing system, and MBF across
multiple sensors or observations would increase certainty in belief. Probabilistic classification
could then be achieved by the decision-making methods described in Section 3.3 and validated in

Section 4.1, where training data consists of manually assessed ground-truth instances.
2.6 Conclusion

In conclusion, the MBF technique described in this paper offers a fast and precise solution
to probabilistic belief fusion in a broad range of conceivable applications. The mathematical
formulations of MBF are capable of handling high-dimensional non-Gaussian belief when
mandated by the problem at hand. Because there is no need to store values in a discretely sampled
space or generate random particles to handle non-Gaussian belief, MBF is fast and accurate in
many dimensions as compared to existing methods. While a grid-based approach requires belief
space discretization and therefore reflects a power law in computational efficiency, MBF
computation is dominated by a square law, making it far more efficient in many dimensions.

This work also developed two useful Gaussian structures as tools for implementing MBF
in potentially common instances. In addition, a probabilistically robust decision-making scheme
was presented, enhancing the practicality of MBF as shown in the working examples. For eight
arbitrary 2-D examples, non-Gaussian belief fusion was executed with full precision, and it was
found that the computational advantage afforded by appropriate Gaussian component pruning had
little negative effect on classification outcomes. This was evidenced by the fact that, in most cases,
removing the least-contributing half of the Gaussian components resulted in the same maximum-
probability classification according to the classification scheme given. Considering the substantial

computational benefit of pruning, small errors are often worth inducing.
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Additional research is needed to investigate applications of this work to problems
mandating real-time agility and real-world complexity. Ongoing work includes implementation
of the developed algorithms into a Graphics Processor Unit (GPU) and the development of more
useful Gaussian structures, including the effect of pruning on such structures. The developed
algorithms have high compatibility with parallel computing and thus can be performed at
accelerated speeds on a GPU. Techniques for creating non-Gaussian PDFs by sums of Gaussian
with positive and negative weighting coefficients may substantially ease computational burden.
For example, the N-D Gaussian toroid could in theory be approximated by a different Gaussian
sum, but is instead much more efficiently modeled by the subtraction of only two Gaussians.
Finally, for contexts where decision-making requires a single location vector rather than a PDF,

multi-Gaussian-specific maximum likelihood estimation is being developed. SDG
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CHAPTER 3. The Gaussian Toroid as a Prediction Model

3.1 Introduction

3.1.1 Background

The fields of robotics and automation have become increasingly reliant on probabilistic
methods in recent decades. From state estimation in the feedback control of actuated systems to
the problem of target estimation, the importance of creating robots and automated systems that can
overcome uncertainty and noise is well recognized. Recursive Bayesian estimation (RBE) is a tool
that has been particularly influential in probabilistic robotics; it is often applied in the context of
spatial target estimation, though many other applications are within the realm of possibility. One
area in which the probabilistic benefits achieved by recursive Bayesian techniques have not been
fully realized is in automated classification and perception. This paper presents an augmentation
to RBE that is formulated specifically for classification problems. The proposed recursive
Bayesian classification (RBC) technique has potential for use in a wide variety of robotic
perception and machine learning problems.

In many conceivable scenarios, the class of a target of perception may evolve stochastically
over time or space. Such evolution must be addressed probabilistically in order to preserve inherent
uncertainties and their implications. This non-deterministic nature of class evolution is
compensated for in this work by the introduction of a Gaussian toroid prediction model.
Furthermore, with regards to automated perception contexts, computational efficiency and real-
time processing capabilities are often key objectives. As a result, the techniques proposed here aim
to specifically address the propagation of non-Gaussian belief in high-dimensional feature spaces

without computational burden that would compromise real-time analysis.
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3.1.2 Related Work

In traditional machine learning contexts, classification is foundational. Methods for
classification vary from neural networks to statistical clustering analysis [1] to Bayesian methods
[2] and the like. Various intelligent classification systems go beyond the simplest approaches to
make use of rich probabilistic information and reexamine the assumptions underlying traditional
methods [3], [4], [5]. However, well-established approaches do not implement the robust
prediction-observation-correction scheme of recursive Bayesian estimation, usually found in target
tracking or dynamics estimation problems [6], in the context of classification and robotic
perception. Although the machine learning community has seen advances in adaptive classification
where the classifier or underlying training classes are continuously evolving [7], [8], evaluation of
evolving targets is generally not addressed in existing literature. A partial form of RBE oriented
towards classification problems was investigated in [9], but this work was limited to correction
only, in a low-dimensional feature space.

Existing means of carrying out RBE are well known, and range from the Kalman filter and
its variants [10], [11] to the particle filter [12], to expensive discretization methods [13]. Most of
these approaches work well and are efficient for low-dimensional belief spaces, but they present
issues when high dimensionality and high accuracy are required. A multi-Gaussian approach to
estimating non-Gaussian belief was addressed in [14], and has since been expanded by [15] for
belief fusion in high-dimensional spaces. Due to the efficiency of the multi-Gaussian solution to
RBE, and its ability to handle high dimensionality without approximation, this approach is
leveraged in the work proposed here.

This paper is partitioned as follows: first the required fundamental formulations for RBC

will be introduced, followed by a more detailed development of the technique itself. Next, the
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results of recursive Bayesian classification as applied to simulated experiments will be compared
to the results obtained by naive classification. Finally, the relevant conclusions about this method

will be made and applications of RBC will be briefly discussed.
3.2 Prediction, Belief Fusion, and Decision-Making

This section is devoted to an overview of the concepts on which RBC is built. These include
prediction, belief fusion, and decision-making. Additionally, the formulation of the Gaussian
toroid is presented here.

3.2.1 Prediction
Under the RBE framework, prediction is governed by the continuous Chapman-

Kolmogorov equation given by:

P(xXp|Z1.4—1) = jp(xklxk—l)p(xk—l|lek—1)dxk—1- €Y)

The probability distribution function (PDF) p(x;|xj—1) corresponds to belief of the state x; based
on a prediction model, and p(x;_;|2z,.,_,) corresponds to belief based on previous observations.
Various simplifications arise from this formulation, one of the best-known of which is the Kalman
filter (KF). This method assumes that belief of a state can be well-represented by a Gaussian
distribution, so that only a mean vector and covariance matrix must be monitored through
prediction and correction stages. For linear dynamic systems with state-space motion models given
by

x=Ax+Bu+w, z=Cx+Du+v, (2)
the KF dictates that the mean in prediction at discrete time step k given the previous time step k —
1is

Xik—1 = AXp_q)k-1 + Buy_4. 3)
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Furthermore, the covariance X of the Gaussian representing belief at step k is given by

Xk|k—1

X = AX A+ X

Xk|k—1 Xk—1|k-1 Wg—-1" (4)
3.2.2 Gaussian Toroid Model

In recent work, formulation for a multi-dimensional Gaussian toroid was developed as a
general tool to be used in representing useful non-Gaussian probability distribution functions [15].
Because many rudimentary prediction schemes fit this particular model well, it is important to
introduce the Gaussian toroid in this section. A multi-dimensional Gaussian toroid is defined here
as an n-shell with Gaussian cross-sectional properties. Figure 1 gives an example of a Gaussian
toroid in 2-D belief space. As the figure illustrates, this shape is obtained as the difference between

two non-covariant Gaussian distributions with equal means and unequal variances, offering a

compact and efficient representation of the desired toroidal shape.

Figure 1. Visual construction of a 2-D Gaussian toroid [15].

The mathematical formulation of the Gaussian toroid is given as follows:

N
() = N, Ey) — (j—z) N (X 1, E,) (5)

where 7 is the radius of the toroid (an implicit function of o; and o), p is the location of the center
of the toroid, and N is the dimensionality of the belief space. Furthermore, it is required that X, =
oZI and £, = 1. The relationship between the toroidal radius and the two variances o2 and o2

can be established so that a radius is specified in the creation of a toroid. It can be shown that
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0; <—= (6)

and

of = — 72 72 (7)
2Wo (_27226"’” (- 2722))

where W, (x) denotes the zeroth branch of the Lambert W function. This branch is defined forx >
—e ™1, which gives rise to the constraint of (6).
3.2.3 Belief Fusion

The second stage of recursive Bayesian classification, namely correction, is the fusion of
belief from prediction with belief from an observation. The traditional formula for correction in

traditional RBE is

_ Uxelzidp (il z1g-1)
pixilzii) = fl(xklzk)p(xklzlzk—l)dxk. ®)

With some generalization and reduction, this can lead to the fusion of several state estimates, given
by:

_ Lip(x|zy)
p(xlzl:n) - fl—[?=1p(x|zi) dx- (9)

Here n describes the number of estimates at a given time step. This means that the belief fusion of
n estimates of x is simply the normalized product of the PDFs corresponding to each estimate. If
the constituent PDFs of belief fusion are Gaussian or sums-of-Gaussians, the output will also be
Gaussian-like or sum-of-Gaussian-like. The multi-Gaussian belief fusion (MBF) technique of [15]
takes advantage of the linear superposition of Gaussians in executing belief fusion fast and in many
dimensions. For the case where n = 2, each PDF p(x|z;) can be represented as a sum of Gaussians

according to:
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I

p(xlz) = ) (%, 2P) (10)

i=1
and
]
p(xlz) = ) w1 u,2?). (1)
=1
Belief fusion of these two PDFs, then, is given by:
1]
p@lzn) = Y D PPN (x 2, 25?) (12)
i=1j=1
where
2 _ [(s@Y" L (g@)7'] 1
T ORI CHR (3)
1:2) _ y2) [(z0)7 0 | (5@ ,@ (14)
Hij ij i K j ”J 2
and
_ 1 1 T -1
e = ——=exp <—§(ml-,-) (54 (mij)> (15)
|2n(sy,))]
with m;; = pt” — p? and 5;; = =Y + £, Correction using MBF is well-suited for a multi-

Gaussian predictive model such as the Gaussian toroid.
3.2.4 Decision-Making

The final critical stage of the work presented here is classification. In general, this stage
may be referred to as decision-making, but with regards to machine learning or robotic perception
it is synonymous with classification. The goal of classification under the RBC scheme is to make
full use of the probabilistic information available from prediction and correction. Consequently, a

decision-making scheme is chosen such that class probabilities can be assigned to each test case
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based on the output PDF of correction. These probabilities are simply the marginalized joint
probability of the test PDF (denoted here by p(x) which is really p(x|z,.,,), the output of MBF)

with a training PDF p(w,|x) corresponding to each class w,:

POw) = [ pwalop()dx. (16)
X

Because this involves the integration of the product of two multi-Gaussian PDFs, the theory
developed for MBF gives insight into computing the class probabilities quickly and easily. The
scaling constants associated with each Gaussian in (12) correspond to the area beneath their PDFs.
This means that the class probabilities are simply the weighting coefficients coming from belief

fusion of a test PDF and the training PDFs for each class. Stated mathematically,

1]
P(w,) = Z Z (POl PCO) (POalPC). a7

i=1j=1
To enforce that these are proper probabilities such that they sum to one, they are normalized as
follows:

P(wa)

Plwa) = 3=1P(Wa)

(18)

so that the final probability that a test item belongs to classw, is P(w,). The vector of class
probabilities can then be used to inform further action through use of a cost function matrix or the

like.
3.3 Recursive Bayesian Classification

This section describes the specifics of recursive Bayesian classification. Figure 2 provides
a system diagram of RBC using a Gaussian toroid prediction model and generic multi-Gaussian
observation model. The RBC framework follows the structure of recursive Bayesian estimation,

but with some critical contributions specific to the perception of evolving targets. First, a multi-
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dimensional Gaussian toroid is used to model prediction of abstract features not governed by
physical equations of motion. Second, RBC allows for non-Gaussian representation of belief in
the high-dimensional feature spaces oftentimes needed for classification, while mitigating
computational complexity and allowing for potentially real-time analysis. Finally, the
classification technique given here yields probabilistic class information useful for high-level

decision-making.

p(xq|21)
M
k=k—1 v
*» Prior belief
P (Xk-1|21:k-1) Radius updater
rr——-7Jt - -"-—"—-—"-—-"""""""—""" q R l
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B.(w,
k(Wa) | Observational data

Figure 2. Recursive Bayesian classification diagram. Conceptual elements specifically related to this work's contribution are
shaded.
3.3.1 Toroidal Prediction Model

RBC is formulated for any type of belief space which here is an abstract multi-dimensional

feature space. Features can be extracted from classification targets by various means not addressed

within the scope of this paper. For ease of visualization without loss of appreciation for the
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potential complexity of PDFs handled by the approach, arbitrary two-dimensional feature spaces
will be used in qualitative figures here.

A single observation of a target can be probabilistically represented in the feature space by
a multi-Gaussian PDF. Oftentimes a single Gaussian is sufficient, but in general it may not be.
How an observation is modeled as a mixture of Gaussians is beyond the scope of this work;
methods exist for fitting a Gaussian mixture to a discrete data array or modeling a sensor's
probability characteristics. The aim of observation modeling is simply that the Gaussian mixture
representing an observation likelihood accurately represents belief of the target in the feature
space.

To create a model of prediction for evolving targets, consider first the case where the
target's state at k — 1 has no uncertainty and is located at position x;_, in the feature space. The
linear Kalman filter would dictate that the mean at step k would be simply X, = Ax,_; + Buy_,.
However, for non-physical classification targets, it is generally not possible to formulate matrices
A and B. Nevertheless, it stands to reason that the feature space location at step k might be a radial
distance R away from the location at step k — 1. Since R is only an estimate, it ought to be
represented probabilistically. For this reason, a Gaussian toroid is well-suited for predictively
modeling evolving targets in the feature space. As such, predicted belief is represented by a
Gaussian toroid t(x,_4, R) centered at x,_, with radius R.

Let p(xx_1lZ1.k—1) represent the PDF estimating the state at step k —1 given the
observations z,.,_, up to that step. This can be estimated by a multi-Gaussian distribution

according to:

I
p(Xy—1lZ1.4—1) = Z Ci(xk_l)N (xi TE"_D,ZE’C"*))- (19)
i=1
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Considering the Kalman solution once more, (4) dictates that X, = AZ,, A" + Z

Xk—-1 Wi-1

where X,,  characterizes process noise. The Gaussian toroid prediction model 7(Xy_4,R) is

simply the scaled linear superposition of two Gaussians with covariances given by Ziw"‘l) =
We-)) (Wk—1) Wi-1) : TR TP

(01 ) I and X, =(a2 ) I. This property of superposition is exploited in

determining p(xy|z,.x-1), the PDF expressing predicted belief at step k. The Kalman rules are
applied to each of the constituent Gaussians, and the output PDF is a reconstruction of the Gaussian
toroid but with Gaussians whose means and covariances have been augmented. In other words, if

T(X—1, R) is given by

Wr-D\ Y
_ (Wg—1) 0, = (Wg-1)
(i at) () o (), @

then the predicted toroid is given by

N (%, 20%) (21)
where
Xk = AXp_ + BUy_1 = Xp_q, (22)
2 =45, AT+ 2V =3, 4B, (23)
and
R = a5, AT+ 2V =3, + B, (24)

It is implicit that A = I and B = 0 in keeping with the Gaussian toroid prediction model. The new
scaling coefficient accompanying the second term of (21) accounts for the introduction of

covariance terms by X,, _in (23) and (24).
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Because p(xy_1|21.x—1) 1S generally multi-Gaussian, the above steps must be applied to

each component. The PDF coming from the prediction stage is then:

1 2
—(k
(X |Z14—1) = ZZ Ci(;Ck)N (xl(j)’zi(;'ck))’ (25)
i=1 j=1
where
(1, j=1
I
(0 = (| S (26)
=
—(k —(k-1
0 =7, (27)
and
(k) _ (xk—1) (Wk-1)
Zijk _zikl +z} kl. (28)

Due to the potential introduction of covariance by Zl.(x"‘l) terms, this distribution is no
longer in general a true toroid; Fig. 3 illustrates this fact for a fictional example. The effect of
prediction from a multi-Gaussian PDF is akin to the convolution of the PDF with a Gaussian toroid,
as the figure shows. It can be seen in the figure that prediction increases uncertainty, consistent

with Bayesian theory.

P(Xk-1121.k-1) T(Xk-1|Z1.k-1, R) P(Xk|Z1.x-1)

Figure 3. Prediction from multi-Gaussian prior belief. a) Single Gaussian of the form given in (19), b)
Gaussian toroid defined by (20), c) output of toroidal prediction as governed by (25)-(28).
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3.3.2 Correction and Classification

In order to accurately estimate the location of a target's state the feature space, predicted
belief must be fused with observed belief via correction. As section 3.2.3 describes, correction can
be executed quickly and in high dimensionality with non-Gaussian PDFs using multi-Gaussian
belief fusion (MBF). The goal of this stage is to obtain p(x;|z,.), the PDF corresponding to belief
of the target state x, given all prior and current observations. Belief corresponding to the k"
observation is given by the observation likelihood (x;|z;), which is an acceptable PDF and so is

treated as p(x, |z ). It is given by the following:

I

p(xel2) = Z v (%09, £09)). (29)

i=1
Fusing this belief with p(x;|z,.,_1) gives the desired p(x,|z,.,). This probability distribution
may be highly non-Gaussian but is composed of a mixture of Gaussians whose means, covariances,
and weights are tracked by the MBF algorithm. Correction is illustrated for a fictitious case in Fig.

4. Just as the prediction stage increased uncertainty in belief, correction decreases uncertainty.

P (Xk|Z1.k-1) p(xk|zyk) P (Xk|Z1.x)

Figure 4. Correction as belief fusion of p(x,|2;.,—1) and p(xx|zy).
In order to classify the target, the decision-making algorithm of section 3.2.4 is

implemented for fast probabilistic class assignment. The training set may consist of manually

classified samples according to relevant categories and features; this data is used to establish the
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PDFs p(w,|x;) corresponding to each class w,. p(x;) is taken to simply be the output of
correction, and P (w,) is given by (16) though implemented according to (17) and (18).

After each RBC iteration, the updated belief of the target p(xy|z;.,_,) is fed back to re-
initialize belief, and the process is repeated. Because belief at each stage is represented by a multi-
Gaussian distribution and each step is formulated for such PDFs, the loop is closed without loss of
precision. Figure 5 demonstrates the second prediction step for the running example given in this
paper. A disadvantage of the multi-Gaussian approach is that an exponentially increasing number
of components is required to completely represent belief at each stage. This computational burden
is mitigated by enforcing a pruning stage after each iteration, in which the most minimally-
contributing Gaussian components are removed. This can result in small approximation errors, but
such issues are normally negligible.

p(xklzl:k)

P(Xk-1121.k—1) T(Xk-1|Z1.x-1,R) P(Xk|21.5-1)

Figure 5. Prediction in the second iteration of RBC for running example.

After each RBC iteration, the toroidal radius's characteristics can be adjusted based on prior
knowledge. For example, a running average or regression of past steps' change in location may be
used to predict future radii. Furthermore, adjusting the relative covariances of the two toroidal
Gaussians within the constraints of egs. (6) and (7) changes the cross-sectional “thickness” of the
resulting toroid without changing its radius. This attribute could be adjusted to better reflect the

radial variance in observed data.
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3.4 Results

The proposed recursive Bayesian classification framework was verified by means of
simulated experiments in a 2-D feature space. These experiments were designed to be
representative of the kinds of scenarios for which a Gaussian toroid prediction model would be
most useful. For each experiment, N_;,ss = 10 training classes were generated in a feature space
as uni-Gaussian PDFs with randomized means and covariances. Initial belief p(x;|z,) was given
arbitrarily as a two-component multi-Gaussian distribution. For 100 iterations, ground truth was
simulated as a sequence of feature space locations. Each ground truth location E‘,ft was determined
by randomly generating a radius R, with mean R = 3.2 and standard deviation o, and then
randomly choosing a location on the circle a distance R, from E‘,ﬁt. Two simulation examples are

given in Fig. 6.

Figure 6. Example simulations without and with directional bias in the evolution model. Blue dots indicate training class centers,
black lines correspond to quadratic decision boundaries, green arrows are ground truth trajectories, and red arrows are noisy
observations of ground truth.

Ground truth classification was carried out by egs. (17) and (18) to make full use of all
probabilistic information available. Because ground truth uncertainty is zero, the unnormalized
probabilities P(w,) are obtained by evaluating each training class PDF at the ground truth location.

Classes were assigned as

58



W = argmax (ﬁk(wa)), (30)

Wa
and these assignments were used to evaluate the performance of the proposed technique.

Observations were simulated as zero-mean Gaussian white noise corruption on the ground
truth sequence, though in general non-Gaussian noise is allowable by eq. (29). The covariance of
this noise is denoted X,,. For each experiment, the performance of RBC in correctly classifying
each observed target location was compared to two different naive approaches. The first of these
approaches, a nearest-neighbor method, simply evaluates the Euclidean distance between each
observation mean and all the class means, assigning the class with the smallest distance. The
second, more intelligent, approach probabilistically classifies observation likelihoods according to
egs. (17) and (18), without implementing prediction and correction. Classes are then assigned
according to (30).

Each of the above three classification approaches, two being conventional methods and
one being the proposed RBC technique, were compared to ground truth in each experiment by
means of a confusion matrix. In order to synthesize these matrices into single comprehensive
scores for each experiment, they were multiplied element-wise by a penalty matrix that penalizes
off-diagonal elements proportionally to their distance from the diagonal. The resulting matrix was
normalized by the number of observations, and the final score given as the sum of the elements in
this matrix. One hundred experiments were executed for each combination of X,, and o, and the
percentage of wins for each method was recorded. This validation metric is necessary due to the
randomness in generation of exact simulation variables reflective of inherent uncertainty. Figure
7 shows the convergence of outcomes, justifying reporting the outcomes of experiments repeated

100 times each.
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Table 1 gives the results of the

parametric study for each of the three

processes being

corresponds to the nearest-neighbor

classification approach, while PC

compared.

NN

Percent Wins

represents the basic probabilistic

classifier. Four arbitrary parameter

values were chosen for both X, and
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— —PC

===NN

Number of Simulations

Figure 7. Convergence of outcomes corresponding to parameters given by
the second primary column and third row of Table 1.

Og, as the intent is simply to demonstrate general uncertainty-dependent trends for the success of

the proposed approach over conventional methods.

Table 1. Parametric Study Results

Z,
5 7
NN PC RBC NN PC RBC
0.1 0% 63% 3% 2% 24% 74%
0.25 3% 53% 44% 8% 24% 68%
R 05 2% 54% 44% 7% 29% 64%
0.8 1% 55% 44% 4% 22% 74%
Z,
397 z.si] 5.1 3.82]
252 3.4 382 58
NN PC RBC NN PC RBC
0.1 2% 22% 76% 9% 12% 79%
0.25 5% 19% 76% 4% 14% 82%
R 05 % 22% 71% 11% 17% 2%
0.8 6% 19% 75% 7% 22% 71%

As the table indicates, there is no clear trend in the variation of performance as the

parameter oy is varied. This shows that the uncertainty in the toroidal model does not predictably
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affect the proficiency of the proposed method, so long as the general toroidal shape adequately
represents true target motion. However, as observational uncertainty increases, RBC outperforms
conventional methods. In addition, for sufficiently high X,, the nearest-neighbor classification
approach begins to win more often, while the PC method wins less often due to the fact that the
latter approach is heavily dependent on observational belief uncertainty. RBC continues to
outperform even for high X,, because it both adjusts the location of the belief of the state towards
ground truth and decreases the uncertainty in this belief.

To assess the computational efficiency of the proposed approach, the previously described
simulations were timed both with the core algorithm alone (CA), and with the pruning and
decision-making steps (CA+P+DM). To show the multi-dimensional computational advantage,
similar simulated experiments were executed in 3-D and 4-D. In Matlab 2018, on a non-dedicated
Intel i7 processor running at 2.2 GHz with 12 GB of RAM, the results shown in Table 2 were
obtained. Means and standard deviations are given, and each time corresponds to a single iteration

of RBC.

Table 2. Timing Study Results (milliseconds)

2-D 3-D 4-D
CA 2.3+1.2 2.541.0 2.7+1.1
CA+P+DM 20.4£3.0 23.2+2.4 25.713.0

As the table suggests, the computational requirements of many real-time processes are
achievable for 4-D and lower feature spaces, and similar conclusions can be drawn about much
higher-dimensional spaces by extrapolation. It is important to note that the RBC algorithm
outperforms both of the described naive classification techniques even more dominantly in higher

dimensions, with similar parameter dependencies as were addressed for the 2-D case. Though
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higher-dimensional parametric studies took place, they are not reported here in detail for lack of

space.
3.5 Conclusions and Applications

The implementation of a recursive Bayesian framework in classification contexts which do
not traditionally exploit sequential probabilistic estimation via prediction and correction shows
improved performance over conventional techniques, especially for scenarios with substantial
uncertainty. Furthermore, the RBC technique introduced here shows strong potential for real-time
processing in high-dimensional feature spaces without loss of resolution or inaccuracies introduced
by other non-Gaussian estimation techniques. The toroidal prediction model upon which this work
is formulated offers the ubiquity mandated by perception problems where only a rudimentary
feature-space “motion model” is known.

Recursive Bayesian classification, as it has been formulated here, may have use in a variety
of evolving-target perception contexts. For example, in continuous sequential acquisition of road
pavement images from a moving vehicle, pavement condition can be estimated by evaluation of
features consistent with disrepair. In another vehicular context, these techniques could be
implemented in continuous classification, or sub-classification, of roadside objects upon approach.
A similar application could be seen in the evaluation of similar but non-identical items moving
along an assembly line past a sensor system capable of extracting useful features. The fundamental
mathematical formulations for RBE using a Gaussian toroid prediction model could also be used

in robotic target tracking, when a target has a poorly defined motion model. SDG
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3.7 Appendix

This appendix did not appear in the original publication of this paper, but is included here
to provide supplemental material regarding a more mathematically appropriate use of the Gaussian
toroid in the prediction step of a recursive Bayesian process. The following material was adapted
from a later publication entitled “Continuum Detection and Predictive-Corrective Classification of
Crack Networks”, which was published in the proceedings of the 22" International Conference on
Information Fusion in July, 2019. This publication applied the concepts of RBC towards the real-
world problem of road crack classification, with an augmentation to the formulation of prediction
via the Gaussian toroid.

In traditional RBE, general prediction is governed by the continuous Chapman-

Kolmogorov equation:

pOrelzre ) = | POttt PG 210 D
X
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For a Markovian process with independent increments, the transition PDF p(x;|x;_;) can be

simplified as follows:

P(Xk, Xje—1) _ P (xXp—1)p(X) — X 1)
p(Xk-1) p(Xk-1)

(x| xp—1) = p(xy — Xj_1).

By substitution in the Chapman-Kolmogorov equation, it becomes clear that prediction under these
constraints is simply the convolution of the PDF describing belief of the current state and the

transition PDF p(x;, — x;_1):

p(xplzyp—1) = fp(xk — X )P (Xg—1 |21 1) dxp 4.
X

It can be shown that the convolution of two multivariate Gaussian PDFs is a third Gaussian
with a mean vector equal to the sum of the constituent mean vectors and covariance matrix equal
to the sum of the covariance matrices of the constituents. Therefore, by linear superposition, the
convolution of a weighted sum of Gaussians can also be represented by a weighted sum of
Gaussians. This is particularly advantageous with regards to prediction using a Gaussian toroid
model as is appropriate for stochastic perception of evolving targets.

When belief is represented by multivariate PDFs in a belief space and sequential
observations have some correlation that can modeled by an approximate Euclidean distance in that
space, the Gaussian toroid becomes a good model for the transition PDF p(x; — xx_1).
Consequently, if the belief space location of a target at step kK — 1 is represented by the PDF
p(x,_11z1.4—1), predicted belief about the location of the next image k can be given by
p(xy|z,.—1) wWhich is the convolution of p(x,_;|z,.4_;) and a zero-mean Gaussian toroid,
7(0, R). This PDF has the following multi-Gaussian form:

I 2
p(xy |2y 4-1) ch"k -1) (T)N E]k),z(xk)),

i=1 j=1
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where

I S i

1, j=1
Cj(r) — _(ﬁ)N' j= 5

03

and o, and g, are given in terms of R by (6) and (7) of this chapter, respectively. This formulation
is similar to that given for RBC in section 3.3.1, but with the notable distinction that the weighting
coefficient is instead the product of two constituent weighting coefficients, one corresponding to
the transition PDF and the other to the prior belief PDF. It is also noteworthy that, in order for this
to be a true, normalized multi-Gaussian PDF, the array of weighting coefficients needed to

reconstruct p(x,|z,.,_,) must be discretely normalized. RBC using convolution in the prediction

step is illustrated in the figure below.

P(xXk—1]21:5—1)

AL

% (k—1=K

Probabilistic classification

Figure A3.1. Recursive Bayesian classification using convolution in the prediction step.
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CHAPTER 4. Introduction to Simultaneous Estimation and Modeling

4.1 Introduction

4.1.1 Background

In probabilistic state estimation by an autonomous robot, from drone target tracking and
pursuit to pose estimation of a mechatronic manipulator, existing filtration methods are well-suited
to handle uncertainty. Some techniques are even capable of overcoming non-Gaussian and
nonlinear processes. Probabilistically equipped autonomous robots often employ a form of
recursive Bayesian estimation (RBE) to construct belief and estimate states with inherent
uncertainties. State estimation falls apart when parameters informing a predictive model are
inaccurately estimated [1]. The work presented here seeks to remedy this issue by incorporating
model uncertainty in RBE prediction, as well as introducing a specially formulated model-updating
step. This framework, termed Simultaneous Estimation and Modeling (SEAM), is developed in
this paper for systems experiencing Gaussian or near-Gaussian state uncertainty.
4.1.2 Related Work

RBE consists of the recursive iteration of three stages [2] which, while known by various
terms in different communities, are referred to here as prediction, observation, and correction.
Various simplifying approximations lead to different versions of RBE, of which the Kalman filter
(KF) [3] and its variants [4,5] are a few. While these techniques handle exclusively Gaussian
representation of belief, other approaches allow for non-Gaussian belief by sampling a probability
distribution [6,7] or approximating it using Gaussian sums [2]. Furthermore, in order to more
accurately enact prediction and correction, various adaptive approaches exist which estimate
motion model variance [1] or attempt to handle non-constant system uncertainty [8,9]. Each

method has its advantages and disadvantages, which will be discussed here.
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Under the linear Kalman filter (LKF) famously proposed by Kalman in 1960 [3], belief
about a target or signal is represented by a Gaussian distribution with a mean vector and covariance
matrix that are continuously updated. For nonlinear systems, the extended Kalman filter (EKF)
linearizes a motion model before then propagating the mean and covariance [4]. The nonlinear
unscented Kalman filter (UKF) relies on random sampling and propagation of sigma points around
the mean [5], while highly nonlinear motion is addressed by techniques such as the cubature
Kalman Filter (CKF) [10]. For data assimilation problems, the ensemble Kalman filter (EnKF)
provides a Monte Carlo-type solution to efficient filtering [11]. Although the above methods each
demonstrate their efficacy for a specific class of estimation problems, they generally do not address
the heightened uncertainty coming from ill-defined model parameters.

Methods for estimation in which motion models do not match the physical system have
been in existence for a number of years. One such approach, the joint EKF, assumes the presence
of zero-mean Gaussian noise on each of the parameters constituting the motion model and derives
the corresponding Kalman gain required to account for this uncertainty [1]. The adaptive Kalman
filter (AKF) updates the covariance of assumed additive Gaussian process and/or sensor noise by
rescaling it so as to account for uncertainty in the motion model [8,12]. A version of this filter was
proposed in recent years which updates both the observation (sensor) and process uncertainty
characteristics throughout UKF estimation [13]. Other advanced approaches incorporate error
minimization over state transitions to augment traditional Kalman filtering [9,14]. Some
frameworks have been proposed to address estimation of specific physical system attributes in
real-time [15]. Each of these methods sufficiently minimizes estimation error as compared to naive
Kalman filtering, but because this is generally their sole objective, system parameters and their

uncertainties are not improved over time.
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In an effort to address model uncertainty, most modern estimation and control techniques
employ optimization or Monte Carlo solutions. One such modern technique known as model-
predictive control (MPC) is a framework which uses optimization to control dynamic systems with
variable model parameters [16]. Robust control and estimation seeks to employ uncertainty
characteristics to improve system prediction through MPC. This can be done by various system
identification methods [17-19]. However, simple non-optimization model-uncertainty-handling
methods are in relatively short supply when it comes to state-space dynamic systems. Some model-
estimating frameworks exist, including joint state-parameter estimators [20] and ensemble
smoothers for inverse problems [21], though such approaches are designed to apply to more
complex problems, using non-Gaussian and optimization methods respectively. Monte Carlo-
based approaches [22], sensitivity methods [23], and Bayesian methods [24] are handily capable
of parametric model updating, though such processes often address finite-element models and
therefore make use of summary statistics like natural frequencies and mode shapes. Composite
adaptation approaches [25,26] have been shown to work well for nonlinear state-space model
parameter updating, but these high-quality methods have correspondingly high computational
demand.

4.1.3 Objectives and Outline

The objectives of this work are twofold: 1) to introduce a more accurate formulation for
covariance propagation in state prediction under RBE by incorporating uncertainty in model
parameters, and 2) to leverage this uncertainty formulation by presenting a subsequent model
correction step which adapts motion model parameters to improve estimation. These contributions
are shown to improve estimation performance in comparison with conventional methods when

uncertainty in model parameters and system inputs is high. To clarify these points, this paper is
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organized as follows: first, the theoretical formulations relevant to the proposed approach are
addressed. Following this, the original contributions are described in detail. Then, a results and
validation section is given to provide support for these formulations in the context of a simulated
parametric study. Finally, a conclusions and future work section summarizes the original

contributions and potential future directions of the research.
4.2 Probabilistic Motion Tracking

4.2.1 Robotic Belief
Mathematically, robotic state belief can be defined by probability distribution functions
(PDFs). While a PDF can generally take any form, the most common and useful form of a PDF is

the Gaussian which is defined, in the general multivariate case, as:
B 1 1 _ _
N(x;x,X,) = ———exp <——(x—x)TZ;1(x— x)>. (D
127X, | 2

As Eqg. (1) shows, the Gaussian (or normal) distribution is completely defined by its first and
second moments, x and X,. This is a useful property that is leveraged by most estimation
frameworks: rather than propagating belief by fully characterizing a PDF throughout estimation,
only a mean vector and covariance matrix must be stored and operated upon.
4.2.2 Prediction

The first stage of RBE, prediction, casts belief from step k — 1 to step k according to a
known motion model of the target or object of interest. Let p(xj_1|2;1.x—1) be the PDF representing
belief of the estimated state, x, at step k — 1, given all observations z from step 1 to k — 1.
Furthermore, let p(x;|x)_,) denote the PDF mapping an estimate of the state at step k — 1 to the

estimate at step k. Prediction is governed by the continuous Chapman-Kolmogorov equation,
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which reduces to the following form under the assumption that the process of interest is

Markovian:

P(xXy|Z1.k—1) = fp(xk—llzl:k—l)p(xk|xk—1)dxk—1- (2)

Under the LKF, in order to predict the mean and covariance at step k, a discrete linearized
motion model is used:

X =Ap_1Xp—1 + Br_qUy_1 + Wy, (Ba)

z, = Cyxy + Dyuy + vy, (3b)

where w_; is some Gaussian process noise with covariance Z,,, . corrupting the system, and v

represents Gaussian sensor noise or observational uncertainty with covariance X, . To obtain the

state mean Xy;.x—, and covariance X in prediction, the Kalman filter dictates the following:

Xk|1:k-1
Xj1k—1 = Ar—1Xp_1j1:k-1 + Br_1Uk_1, (4a)

— T
zxk|1:k—1 - Ak_lzxk—1|1:k—1Ak—1 + sz—:L' (4b)

4.2.3 Correction
The correction, or updating, stage of RBE fuses predicted belief, p(xy|z;.5_,), with the
PDF coming from an observation, or measurement, p(x;|z;). This yields the output of a single

RBE iteration, p(xy|z;.,), which is obtained by belief fusion, or Bayesian inference:

_ L(xi |z ) p(xpc|21.40-1)
POl21) = e T p Genl 2 A ®)

In Eq. (5), I(x|z}) is the observation likelihood used in place of p(x;|z,). The Kalman solution

yields the following state mean Xy ., and covariance Z in the updating step:

Xk|1:k
X1k = Xkj1:k—1 T K (Z, — Ck7k|1:k—1), (6a)
zxk|1:k =~ chk)zxku:k—l’ (6b)
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where the Kalman gain K, is given by:

-1
K,=% ¢k (cex Ch+3,,) - 7)

Xk|1:k—1 Xk|1:k—1

4.2.4 Adaptive Kalman Filter
An AKF is broadly defined as a Kalman filter which updates the covariance of process and

sensor noise, X, and Z,,, at each time step in order to better capture uncertainty in the motion

V!

and sensor models. One of the most popular approaches [12] is summarized here for comparison

in section 4.4. At each time step, following the correction stage, X, and X,, are updated as

follows:
ka =G, — Ckzxkll:k—1CT‘ (8a)
M
1 ~ . 2
G, = M Z ”Zk—m - Ck—mxk—m|11k_m_1” ! (Bb)
m=1
sz = \/azwk—f (86)

(6, —Z,,_,)
tr (€. CF )

a= (8d)

As these equations show, the AKF only attempts to correct for uncertainties by adapting
noise covariances; model uncertainty is not specifically addressed, and model parameters are not
revised throughout estimation. The resulting overconfidence potentially degrades estimation

performance when model uncertainty is considerable.
4.3 Simultaneous Estimation and Modeling

4.3.1 Overview
An overview of the SEAM framework proposed in this paper is given by the block diagram

in Fig. 1. The system is designed to accommodate two distinct parts: RBE (composed of model-
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Figure 1. SEAM diagram. Shaded blocks designate original contributions detailed in section 4.3.

estimating prediction and correction) and model correction. The proposed SEAM framework
incorporates model uncertainty in prediction, as well as a model correction stage to compensate
for increased sensitivity to observational noise. The following sections describe and formulate
each of these original contributions in detail.
4.3.2 Model Uncertainty Estimation

A target's discretized motion can generally be described as a function of its previous state,
any applied inputs, and various intrinsic parameters as follows:

X = (X, Ug—1, Pr—1), €))
where @, _, represents all relevant system model parameters. Assuming such a system can be
linearized, the state mean can be predicted by Eq. (4a). Because there may be non-negligible
uncertainty in model parameters, estimation based on an assumption of complete confidence in

these variables yields poor results. For this reason, a special formulation of covariance propagation
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through prediction is proposed. By the rules of error propagation, the mean and covariance of a
function containing linear combinations of variables x; with uncertainties X, are given by:
I I I
f= ZAixi - f= ZAifi,zf = ZAiniAiT. (10)
i=1 i=1 i=1
By expanding a 2-D case (see Appendix A), an improved equation for uncertainty in prediction is
given by:

X =X

Xk|1:k—1 Wk-1

+ 71k—1zxk_1|1:k_171£—1 + Ek—1zuk_1§£—1
+Z4,  D(X:2 1j1-1) %k, _, + Z5, DA DL, . (11)
In the above expression, X,, , and Xg  refer to the matrices containing the standard
deviations of each element in A,_, and B,_,, and 4,_, and B,_, are matrices containing the
means. The notation f3’<2—1|1:k—1 represents the element-wise square. Lastly, the operation D(e)

diagonalizes its vector argument. As can be seen in Eq. (11), the proposed approach includes three
terms which do not appear in traditional Kalman filters, an inclusion which can potentially reduce
state error in the prediction step. While KFs provide an optimal solution for Gaussian filtering
accounting for uncertainty in the state and for process and sensor noise, this framework also
accounts for uncertainty in the state-space model parameters and the input vector. The proposed
formulation coincides with the KF when the last three terms of Eq. (11) are zero (i.e. model
parameters and inputs are known with complete certainty).

A consequence of this method of covariance propagation, since it avoids overconfidence
with regards to estimating predicted state uncertainty, is that observation noise can more strongly
affect state tracking. This motivates an additional model-updating stage which can improve both
the motion model and its uncertainty, thereby enhancing certainty in prediction without the risk of

overconfidence.
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4.3.3 State Matrix Updating

Although a linearized system can be generally described by the combination of the state
matrix A and the input matrix B, the intrinsic dynamics of the physical target are governed by the
state matrix. Because uncertainty in A can have the greatest effect on accurate system

identification, this will be the focus of motion model correction.

p(:l'j;_l |31:i.'—1) ]

\ ——p(xg|z1)

The method proposed to better map a state ‘ Z'k_l?' ; ,\\ :

| Xk—1]Tk—1" Xk|1:k/

from time step k — 1 to step k seeks to match the

predicted maximum likelihood point (MLP) to the | f

coming from an observation of the state at the new - /

o
corrected MLP. This incorporates belief reinforcement | / : \

time step. The principle behind state matrix updating _Figure2. Maﬁof D LP fom a0 110k
is demonstrated in Fig. 2. For strictly Gaussian PDFs, such as those dealt with here, the MLP is
equivalent to the mean of the distribution. In order to update the estimate A,_, to A, such that
Xi1:k—1 and Xy g, differ minimally, the prediction mean given in Eq. (4a) is augmented by
substituting X ;.x—1 With X, since the latter represents updated belief. The estimated state
matrix to be updated, A, is also substituted in place of 4,_,, and the following rearrangement is
made (the vector q, is introduced for conciseness in following derivations):
Ay X_1j16-1 = X1k — Bro1lg—1 = Q. (12)
Because the state matrix is N X N and both Xy _11.,—; and q are N x 1, where N is the
dimensionality of the state space, 4, is under-determined. To offer additional constraints required
to solve for A, it is imposed that A, must differ minimally from its predecessor, A,_;. This

criterion is governed by the mean-squared-error of all elements in A as compared between steps

k—1and k:
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1 N N
_ C5_1\2
MSE=WZZ(61£‘]-— k-1)? (13)

i=1 j=1
Equations (12) and (13) can be solved in representative 2-D and 3-D cases, and from these results

the updating of an N-D state matrix is given by:

o Ay (X g1 = Xpm1po1 (A= DXp—ji—1) + Qi Xm1ji—1
k - .

(14)

Ezc1—1|1:k—1fk—1|1:k—1
(See Appendix for this derivation in the 3-D case.) The variables introduced in Eq. (14) are given

as follows:
I[y(l)Tj(l) 0 0 ]I
- O
X =| 7 FT X0 (15a)
| 0 0 y(i)Ty(j)J
Xi-1jk-1 = D(Ek—lu:k—l): (15b)
Qr=1ar ax - qxl, (15¢)
1 - 1
1=[: -~ (15d)
1 - 1

and x) is Xy-1)1:k—1 With element j removed. Each of the matrices in Egs. (15) has dimensionality
N X N. Note that the solution given in Eq. (14) yields the traditional least-squares solution for the
case whered,_, = 0.

In addition to updating the state matrix, it is also necessary to update its standard deviation

matrix X, according to Eq. (11). X4, is derived by applying error propagation to Eq. (14):

1/2
X4, = (T, €3+ C2xe,) 7, (16a)
C, = ! (16b)
' 7£—1|1:k—17k—1|1:k—1’
C, = [Aoi(Xi—ajp-1 = Ximap-1(X = DXo_ 1) + QueXie—1ji-1), (16¢)
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_T —
xk—l|1:k—1zxk_1|1:k_1xk—1|1:k—1

T, =—— 2 — (16d)
' (x£—1|1:k—1xk—1|1:k—1)
10
Lo, = z C;, (16e)
i=3
C; = zflk_lxi—ﬂk—l! (161)
Cy = Zli_lzxk—uk—l’ (169)
= - 2
Cs =25, (Xe-1k-11Xp—1k-1) (16h)
i _ 2 _ )
Co = A2 (Zx_ypos (Xietiims)” + Xeoppoa 18, ) (160)
— p— 2 .
C; = 2:,?1,6_1(1’(k—1|k—11"’k—1|k—1) ) (16))
Co = A2_; (Ex s X emtiims + X > ). (16k)
- k—1lk-1 [k—1 k—1|k—1%X_1|k-1
Co = 2o, Xi—1k-1, (1610)
Cio = Qizxk_”k_l- (16m)

With the exception of £,,  and X the elements in each X matrix are the variances

Xg—1|1:k—1"
of the corresponding elements in the mean matrix. Furthermore, each instance of an exponent
implies element-wise operation. The uncertainty in q, is determined by error propagation of
X1k — B,_,1,_, in a manner similar to the derivation of Eq. (11):

X, =%, +B, X

Ak Xk|1:k

uk—lﬁz_l + zBD(ﬁ;cz_l)zg, (17)
and the matrix X, is populated by only the diagonal variance terms in X, at their appropriate
positions according to the assembly of Q.

To both prevent diverging values of the elements in A and ensure that £, continually

decreases, the state matrix estimates at steps k — 1 andk are fused by taking their weighted

77



averages. The final state matrix and its uncertainty characteristic are denoted 4, and X 4, » Whose

elements are given below:

(18a)

(18b)

After prediction, observation, correction, and model correction, each of which occurs at every time
step, the output parameters are fed back to initialize the next RBE step.

As several of the presented equations contain state vector norms in their denominators, it
is important to note the behavior of the proposed estimator as a system's state approaches zero.

Because Egs. (18) cause af‘j to be weighted less heavily than a{‘j‘l, the contribution of the model
correction stage goes to zero as k tends to infinity. Therefore, any numerically ill-posed
computation is avoided. If a state is motionless (i.e. X,_11.k—1 = 0) at any time before k becomes
sufficiently large, the problem is trivial since obtaining improved model parameters would be

impossible by any method.
4.4 Results and Validation

4.4.1 Simulated Experiment Description
In many dynamic systems composed of multiple moving parts, especially robotic devices,
motion often exhibits damped oscillatory characteristics. For this reason, a simple mass-spring-

damper (MSD) model was used for simulation in evaluating the performance of SEAM. Fig. 3

78



illustrates an MSD with mass m, spring constant k, damping

x(t)
constant b, and an arbitrary input displacement u(t). A 2-D m J.

continuous state equation describing this system is:
X1
[xz] +

where x; = x(t), x, = x(t), u; = u(t),and u, = u(t). From u(t)

inspection of Eq. (19), the motion model parameters are given )-‘[K_/
0 1 0 O

by A, = l_g _gl and B, = [5 g]. The subscript ¢ Figure 3. MSD model for validation
m m m m simulation.

1

E E] L a9
m m

denotes that these are the continuous-time state space matrices, in this example constant for all
time ¢. It is implicitly assumed that € = I andD = 0. The mean state matrix A, and output matrix
B, are given by the equations above, using the means of the parameters that compose them. By
error propagation of the formulas for A, and B,, the standard deviation matrices X,, and X, are

found to be:

0 0

O R ] R0

The continuous-time state space matrices are transformed into discrete-time for RBE using

the relationships 4, = 24t and B, = (4, — I)A;'B,. To determine the corresponding standard
deviation matrices £, and X5, the approximations A, = I + AtA, and B, = AtB, are exploited.
Uncertainty propagation of these formulas yields, for sufficiently small At,
%, = AtE,, (21a)
35, = AtZg,. (21b)

The elements of the ground-truth motion model matrices were chosen by a Gaussian

random variable generator with means and standard deviations given by 4, B, £, and 5. The
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same was done for the initial conditions x,. The system was simulated with the parameter values

given in Table 1.

Table 1. Constant parameters

k b m At X, s, T,

101 [0.7%2 0.112 0.0112 0.00072
10 2 5 0.05

[0] 0.112 0.92] 0.00072 0.0162]

Noisy observations were simulated by adding zero-mean Gaussian noise to the ground truth
signals, with constant covariance given by X,,. State motion x = [x(¢t) x(t)]” was tracked from
t = 0to 10 seconds (k = 0 to 200) with an LKF, AKF, and SEAM both without and with model
correction. Parameters were held constant across the three processes in each experiment.

4.4.2 Initial-Value (Unforced Response) Comparisons
To first observe estimation performance on the system's initial value response, the input

vector u; and its uncertainty X, were set to zero for all time. To concisely vary the model

uncertainty metric, the ratio of the standard deviations o of the three physical parameters k, b, and
m to their means u was varied from 5% to 25%. The sensor covariance matrix X,, was varied over
four arbitrarily chosen increasing values. State tracking was simulated for each pair of values 500
times, and the RMSEs of the resulting state trajectories were used to determine a winner in each
trial. Table 2 shows the percentage of wins for each estimator and each pair of parameter values.
The four processes examined are labeled “LKF”, “AKF”, “S-" for SEAM without model correction

(Eg. (11) only), and “S+” for SEAM with model updating according to Egs. (12)-(18).
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Table 2. Percentage of wins in 5,000 simulations for the Kalman filter, SEAM without model-updating, and SEAM with model-
updating across varied sensor and model uncertainty parameters

Sensor Uncertainty, X,,
0.12 0.042 0.5% 0.152] 0.7% 0.42] 12 0.62]
0.042 0.082] 0.15% 0.32 0.4%2 0.632 0.62 1.2
ol 2 LKF [AKF| S- | S+ |LKF[AKF| S- | S+ |LKF|AKF| s- | S+ |LKF|AKF| s- | s+
>
2 | 5% [65% | 6% | 1% |28% [61% | 0% | 7% |32% | 60% | 1% | 9% |30% [54% | 1% |17% | 28%
=
(]
2 | 10% | 37% | 5% | 3% [55% |32% | 1% |12% [55% | 25% | 1% |28% |46% | 29% | 1% | 34% |36%
)
S | 15% [ 23% | 4% | 6% |67% [ 14% | 1% | 16% |69% | 15% | 1% | 32% |53% [ 13% | 0% |45% | 42%
]
= | 200 [ 149 | 2% | 89 |76% | 8% | 0% |17% |75% | 9% | 1% |30% |60% | 9% | 19 |499 | a1%
25% | 8% | 3% |18% |71% | 5% | 1% | 16% | 78%| 6% | 0% [32% |62% | 5% | 1% | 44% [50%
As the table shows, increasing model uncertainty such that the % ratio exceeds

approximately 5% results in SEAM outperforming the LKF and AKF in the majority of cases.

Furthermore, even removing the model-updating component of SEAM resulted in better

performance than the LKF and AKF in each case where the % ratio was above 15% and sensor

noise was appreciable. It is important to note that, as % increased, the performance of all estimators

decreased; however, the decrease in performance of the SEAM estimators was less than that of the

Kalman filters, as expected. The AKF often under-performed, likely due to poor conditioning of

the covariance matrices. However, as expected, it did tend to outperform the LKF when sensor

and process covariance converged in a reasonable fashion. The LKF tends to outperform when the

state-space motion model happens to be accurately estimated at k = 0, due to the overconfidence

reflected in fast convergence of uncertainty under this technique. Representative plots from two

simulations are given in figures 4 and 5.
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Figure 4. State-space and error plots of simulation where % and X, correspond to upper-left-most combination in Table 2.
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Figure 5. State-space and error plots of simulation where % and X, correspond to lower-right-most combination in Table 2.

Another revealing characteristic of SEAM can be seen when the elements of the state
matrix are plotted over time. Representative plots are shown in Fig. 6. Because the first two
elements of the state matrix are constant properties coming from the choice of states and therefore
have no uncertainty, only a,; and a,, are plotted. As the figure shows, the initial estimates of the
state matrix elements stochastically improve towards the ground-truth value as a consequence of

model updating. These corrected parameters yield better estimation when compared to the LKF

and AKF which use a poor estimate of A.
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Figure 6. State matrix elements’ adjustments due to model correction.

4.4.3 Forced Response Comparisons

Because SEAM is designed to account for uncertainty not only in the state-space matrices
A and B but also the input vector u, validation would be incomplete without some forced response
comparisons. The input displacement applied to the MSD system was a unity-amplitude sine wave
with frequency of 1 Hz.

The above simulations were repeated with the same parameter values as those given in
Table 1. This time, rather than varying sensor noise, input noise was arbitrarily varied for the same

0.52  0.152

) 5 ] Table 3 shows the results of these experiments,
0.15 0.3

% ratios. X,, was held constant at

State_s ace State Transition Matrix Parameter as; over Time
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Figure 7. Simulation where < = 5%, £, = [0'1 0.04 ] andz, = |4 29 ]
g u A) v 0042 0082 u 292 462
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where again 500 simulations were executed per combination of parameters. Fig. 7 is included for

visualization of a sample simulation.

Table 3. Percentage of wins in 500 simulations for LKF, AKF, and SEAM estimators across varied input and model uncertainty
parameters

Input Uncertainty, Z,,

0.12 0.042] 0. 522 0.1522] 0. 722 0.422] 12 , 0.621
0.042 0.082 0.15- 0.3 0.4¢ 0.63 0.6° 1.2
b|>‘;3- LKF | AKF | S- S+ | LKF | AKF | S- S+ | LKF | AKF | S- S+ | LKF | AKF | S- S+
-% 5% | 31% | 1% [33% |35% | 1% | 1% | 48% |50% | 0% | 0% |61% [39% | 0% | 0% |57% | 43%
g 10% | 16% | 1% | 26% [57% | 1% | 1% | 41% |57% | 0% | 0% [53% | 47% | 0% | 0% |57% | 43%
% 15% | 14% | 1% [ 12% | 73% | 1% | 1% | 26% [72% | 0% | 0% [ 43% |57% | 0% | 0% [55% | 45%
]
= 20% | 5% | 0% | 12% [83% | 1% | 0% [ 19% |80% | 0% | 0% | 35% |65% | 0% | 0% |59% | 41%
25% | 3% [ 1% | 9% [87% | 1% | 1% | 14% |84%| 0% | 0% |[31% |69% | 0% | 0% |59% | 41%

As the table shows, SEAM always outperforms the AKF and LKF when subject to
substantial input uncertainty, as the latter two methods over-smooth the estimated signal. A
noteworthy observation is that for high X,,, the average RMSEs of S- and S+ become identical
since convergence of X, has a minimal effect in comparison with the much larger X,,. Therefore,
adding the model correction stage does not compromise the quality of state estimation as compared
to SEAM without model correction.

For completeness in assessing this framework, mention must be made of the computational
demand associated with the proposed contributions. The computational burden of the first
contribution of Eq. (11) relative to a traditional Kalman filter is negligible. The proposed model
correction step of section 4.3.3 adds an average of only 98 microseconds per time step, as the
closed-form matrix operations involved are done efficiently and without need for iteration or

optimization. An average 500-simulation trial takes only 70 seconds to process on a non-dedicated
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Intel 17 processor; considering that each trial covers 10 simulated seconds and a real-time
simulation would break even at 5,000 seconds, SEAM can be easily applied online.

A limitation of the proposed framework as demonstrated by these experiments is the
inefficiency of model parameter correction. Oftentimes, while model parameters can be improved,
convergence to ground-truth does not happen quickly. Furthermore, any inaccuracies in the model
parameters of the input matrix B will not be rectified since the formulations of section 4.3.3 apply
only to the state matrix. Finally, while SEAM improves estimation relative to conventional
methods for high model parameter uncertainty, Table 2 makes it clear that KFs perform better when

uncertainty is low, as these filters are more effective at signal smoothing.
4.5 Conclusions and Future Work

This paper has presented a state tracking framework for handling Gaussian belief that
properly accounts for uncertainty in the underlying motion model. Because this approach avoids
overconfidence in prediction, there is greater sensitivity to sensor noise. As a result, this work
proposed a second stage for state matrix correction, which both improves the estimate of motion
model parameters and reduces their uncertainty. These two stages symbiotically integrate to
comprise the SEAM framework presented and validated in this paper.

As expected in simulation, state tracking performance was considerably improved in
circumstances with high system uncertainty. This is because the proposed approach effectively
shifts dependence from prediction to observation in a way that accurately reflects a lack of
confidence in the predictive model. Furthermore, incorporating a model correction stage resulted
in even further improvement in estimation, as this allowed the estimated means of model

parameters to be continuously adapted and the associated uncertainties reduced.
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The following future research topics arising from this work are currently being
investigated. SEAM in the presented from requires Gaussian belief, which may not always be
capable of adequately representing state belief [7]. As such, non-Gaussian methods are being
developed. Additionally, state tracking may be improved to some extent by the development of an
input-matrix correction stage. Further investigation of the capability of SEAM is warranted for
highly nonlinear systems [25] where linearization is ineffective. In addition, we postulate that
applying SEAM to the observation stage of RBE could improve both state estimation and sensor
model parameter estimates. Advances in these areas could ultimately remove the need for initial
models altogether, which would be a significant achievement towards a robotic system-learning

platform. SDG
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4.7 Appendix

[Section 4.3.2]

Consider the simplest multi-dimensional case where the state, input, and noise vectors are 2-D:

k|k 1 k 1|k—1 _
a12 bfll biy | uf ™ n wi!
k|k 1 a21 azz k 1|k-1 bécll b§21 k 1 Wéc 1
By expanding the above equation, the following result is obtained:

klk-1 ko1y k k=1 4 k=1 =1]k-1

Klk—1 Kotk gl keTiket
I ! l I Tlxkt + a¥stx, =1 4 photiyk=1 4 pholyk=1 4 k= 1]
+ af'x, + bXTuk Tt 4 pilukTt 4wkt

Following error propagation in 1-D,
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X1 _ i=1 i=1
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k|k—1
x 2 k-1 —k—-1]k—-1 k-1
2 lawéc_l + <(a2] ) O' k 1|k-1 + (b ) O' k 1) + Z ((x] ) O' k 1+ (u ) O-bé(] 1 J
j=1 j=1
With simplification to the matrix form, the above expression becomes:
02k|k 1 ~k-12 —k-12 -O-Zk—llk 1 ke 12 7k-121[0%s
Xy [ a11 ass Xy [b bi7 l [ uj ]
2 2 2 2 2 - 2 2
=k—1 =k—1 k-1 k-1
Ux;"k 1 a21 az; _Ux;“l”‘ 1 b3, Oyke-1
0' k-1 O k-1 ||k 1K 12 Uzk—1 0 -1 | [57k—12
+ ai a + b11 b1 lul l
2 2 2 2 2
—k—1|k-1 —k—-1
Oakrt %aly ! %ot Opkzrl L
2
ka|k—1
The consequence of this approach is that the output variance characteristic ai k-1 = | is
O klk-1
X2

a 2-by-1 variance vector rather than a full 2-by-2 covariance matrix. Nevertheless, some insight is

gained. In a more concise form, this expression can be written as:
diag (zxk|k—1) = Ay_, o Ay_,diag (zxk—1|k—1) + By_q © By_ydiag(Z,, )

+(Z4 0 ) Kp—1jk-1 ° Xi—1jk-1) + (Bp © L) (U1 o Up_1) + diag(ZWk_l)
where the notation diag(-) denotes the extraction of the diagonal of a matrix and o indicates the
Hadamard element-wise matrix product. A critical note is that the matrices £, and Xz now refer
to the matrices containing the standard deviations of each element in 4 and B. It was previously
shown that the first two terms of this equation have a full-covariance form given by
Ay, X

AT_, and B,_,X, BT_,, respectively. The diagonal elements of the 2-by-2

Xk—1|k-1 Up—1
covariance matrices equal the corresponding values of the 2-by-1 variance vector above. With
regards to the third and fourth term of the expression, a full-covariance form can be estimated by

replacing Xy_qjxk-1 © Xx—1jk-1 and u,_; o u,_; with diagonal matrices containing the squared
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scalar values of the corresponding vectors at the appropriate diagonal locations. Stated

mathematically,

(9?;%_1|k—1)2 0 0
D(Fk-1jk-1 © Xe-1je-1) = 0 (Fape-)” 0
0 0

where the notation D(+) casts the vector argument into a diagonal matrix. By doing this, covariance
(off-diagonal) elements are introduced while the variance (diagonal) elements remain the same as
in the 2-by-1 case.

[Section 4.3.3]

Consider the 3-D representation of equations (15) and (16). Explicitly written, these give:

_Kk g1 gl
ak = - S gk, =2 ______ gk 3
117 _k-1]k-1 12 _k-1]k-1 13 _k-1]k-1
%k k=g 1 [ek-1lk-1 _k X1 Xy Xy
ay,  Grp  ags||*1 q1 —k —k-1|k-1 _k-1|k-1
=k =k =k ||-k-1]k-1 k| Fk ) —k X1 —k X3
21 Q22 Q23| |X; =192 | %22 = P 421 a1 23 Py
ak ak ak _k-1]k-1 gk 2 2 2
a a a
31 32 334 [ x5 qs q" k11 e-1li-1
gk —__ 18 _Zk 71 ok T2
33 = -qe—1 431 oqpe—1 . 432 _k—1jk-1
X5 X5 X5

1, 182 _ N2 _ PN _ N2 _ 122
MSE = 9 [(a}ﬂ — a5 1) + (afz — a5 1) + (afs — a3 1) + (alzcl — aj; 1) + (alzcz — as; 1)
=k _ =k=1\% o (ak _ zk=-1\2 | (ak _ zk=1)? | (7k _ =k-1)?
+(aks —ags) + (ah - @)+ (ak, —adt)” + (ak —asst) ]
Substitution of the three first equations into the MSE equation yields the following expression after

grouping by powers of dﬁ‘j:

1 2 2 2
MSE = 6 I:Clallcz + Czallcz + Cgalfzalfg + C4alf3 + C56_11f3 + C66_121 + C7C_l’2(1 + C8512€1(712€3

— _ 2 _ 2 _ 1 — _ 1, 2
+ Coliss + Croals™ + Ciqah,” + Cipa%, + Cizak,a%, + Craal, + Cisalk,

+ Cio)
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X
X
h-Llk=1 2 _k—1]k-1 _k—1]k—1
— 1 =k-17"1 —k "1 _ =k-1
(e = 21 +1),6;,=2]|ay et 2 S 21 |
2 2 X,
k-1 2 _k—1]k—1 _k-1]k-1
— 3 — =k-173 ~k 3 ~k—1
ClO - _k—-1|k-1 +1 JC9 =2 az; _k—1lk—1 q; 2 Y23
k-1|k—1
X Xy
2
gl 2 _k—1]k-1 g1
— 1 _ —k—-17"1 —k 1 k—1
€11 = _k—1|k—1 +1[,0, =2 az; _k—1|k—-1 as 2 %31 )
7 7 _k—1|k—1
3 3 X3
gl 2 -tk k-1
— 2 — =k—-1"2 ~k "2 ~k—1
C15 - —k—llk—l + 1 ) C14_ - 2 a33 —k—1|k—1 - q:g _k—llk—lz — U32 )
X3 X3 Xq
_k—1|k—1 _k—1|k—1 _k—1]k-1 _k—1|k—1 _k—1]k—1 _k—1|k-1
X3 X3 X X3 Xq X2
C3 =2 2 ) CS =2 2 ) C13 =2 2
_k—1]k-1 _k—1]k-1 _k—1|k—1
X1 X2 X3
~k 2 ~k 2 ~k 2
C.. = 91 —gk1] 4+ 92 —gks1] 4+ g3 ~k—1
16 _k—1lk-1 11 _k—1lk-1 22 _k—-1|k-1 33
X1 X2 X3

_12 _1,_12 _1,_12 _1,_12
+akt +aktt +akitt v akitt +

gh-1% 4 gk-1?

asz,

Setting these to zero yields the following sets of linear equations:

13

2C, 63] ak, _[—C
C; 2Cs||gk. |~ |—-C

2
)
4

2Cs Cg] az| _ [—67]
Cs 2Ciol|ak,|  [=Col

23
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2Cy, C13] a31 [ C12
Ciz  2Cis C14

as,
Solving for the variables of interest,

kK _ —2C2C5 + C3C4 —k _ _2C1C4 + C3CZ —Kk _261067 + CgCg

Cl - ) a - ) a = )
12 4C,Cs — C? 137 40,05 - C? 21 4C4Cyo — CE

ak _ —266C9 + CSC7 a — _2C15C12 + 613614 ak _ _2611614 + 613612
UG-G T T 4G =Gy T T 4G — G

By substitution, cancellation, and grouping, these become:

2 2
_k-1lk=12 | _k-1/k=12\ ~j—1  —k—1lk=1_k-1k-1-—1 <k-1lk=1_k—1|k-1—k—1 _k 11k=1 ~k
. (x1 + %5 )a12 - X, X, akyt —x, X, arzt+x qx
a =
12 _k—1|k—12+ _k—1|k—12 + _k-1]k—12 ’
X X, Xy
2 2
_k-1lk=12 | _k—-1/k=12\ ~j—1  —k—1lk=1_k-1k=1-k—1 k-1lk=1 _k—1|k-1—k—1 _k 11k=1
L (x1 +x, )a13 - X, Xy agt—x, Xy at+x qx
a =
13 _k—1|k—12+ _k—1|k—12 + _k-1]k—12 ’
Xq X X3
2 2
ko1lk-1? | gho1lk-1%) g1 ghotlkolghotle-lgey _ gk-1lk-1gk-1k-1gk-1 _k k=1~
. (x2 + X5 ) az;; - — X, X, ay; X3 X, +Xx q;
a =
21 _k—1|k—12+ _k—1|k—12+ _k—1|k—12 ’
X1 Xy X3
2 2
ghotli=1? | gho1lk=12) ge-q _ ghotlk-1gh-le-lge-y _ gh=1lk-1gk-1lk=1zk-1 _k k=1~
. (x1 + X, ) az3~ —X; X3 az;; - — X, x3 +Xx q;
a =
23 _k—1|k—12+ _k—1|k—12+ _k—1|k—12 ’
X1 Xy X3
2 2
ghotli=1? | gho1lk-1%) ge-q _ ghotlkolghle-lge _ gh=1lk-1gk-1lk=1zk-1 _k k=1~
. (x2 + X5 ) aszq Xy X, as; X3 X, +Xx q3
a =
31 _k—1|k—12+ _k—1|k—12+ _k—1|k—12 ’
X1 Xy X3
2 2
ghotlik=1? | gho1lk-1%) gie-q _ ghotlkolghle-lge-y _ gh=1lk-1gk-1lk=1zk-1 _k k=1~
. (x1 + X )a32 - X X, az; -~ — X3 x2 +Xx q3
a =
32 _k—1|k—12+ _k—1|k—12+ _k—1|k—12
X1 Xy X3

In order to prove that the above solutions minimize the mean-squared-error, the multi-variable

second derivative test is carried out. The Hessian matrix of the MSE is given as:
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[ 02MSE 0*MSE 0*MSE 0*MSE 0*MSE 0*MSE 1
aafzz oay;oay, oay,0ay, oasday, dayday, 0as,oar,
0*MSE 0*MSE 0*MSE 0*MSE 0*MSE 0*MSE
0as,dass aa’;f oay,0ay; o0as,0ay, 0ayd0ay, 0as,0ay;
0°MSE 0°MSE 0°MSE 0°MSE 0°MSE 0°MSE

H _ oay,0ay, 0ay;0a;, 6&’2‘12 daj,0ay, day,0ay, 0as,0as,
MSE| 02MSE 9*MSE ~ 9°MSE  0°MSE  9°MSE  0*MSE |
oay,0ay; 0ai;0ay; 0ay,0as, 0(7'2‘32 0ay,0as; 0as,0as;

0°MSE 0°MSE 0°MSE 0°MSE 0°MSE 0°MSE
oaf,0ay, Oday;0ay, 0az0as, 0ay;0as, 86_1512 0as,0as,

0°MSE 0°MSE 0°MSE 0°MSE 0°MSE 0°MSE
0ay,0af, oaf;0ay, oazda;, 0a;,0a;, 043 0ay, 851';22 |

evaluated at the values determined for af,, af;, as,, a%s, a%;, and a%,. This reduces to:

Hygp =

—2C1
c

w

o © © O

c; 0 0

26 0 0
0 2C, Cg
0 Cg 2Cy
0 0 0
0 0 0

0 0 1

0 0

0 0

0 0
2C;; Cy3
Ciz  2Cysd

The eigenvalues of H s are found to be positive for all real X _qx—1:

)'HMSE =2

1
1

3

<||fk—1|k—1||2
k11
X1
<||fk—1|k—1||2
k11
0
<||7k—1|k—1||2
—k—1Jk—1
[\ x

from which it is apparent that the Hessian matrix is positive definite and the values given for each

of the elements of interest minimize the mean-square-error. The final three elements of 4, are then

found. From observation of the 3-D trends, the general N-D formula is then given as:
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N —k—1]k—12 —k1|k1k1|k1k1 —k1|k1k
—x (Zn=1,n¢] Xn ) (Zn 1nzj X Xj ) +x q;
a.. = )

! ||7k—1|k—1||2

and the matrix-form can be readily extracted as given in the text.
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CHAPTER 5. Probabilistic Non-Gaussian Motion Model Correction

5.1 Introduction

5.1.1 Background

As technology has developed, the widening range of capabilities of autonomous systems
has continued to impress and astonish. These developments are largely afforded by recent
emphases on probabilistic estimation methods in engineering communities. Increasingly difficult
problems facing the fields of robotics, automation, information fusion, and the like mandate
accurate estimation in circumstances where sensor noise is complex and potentially non-Gaussian.
Furthermore, because motion prediction is a valuable tool in many automation contexts, accurate
probabilistic motion modeling has become progressively important for numerous estimation
applications.
5.1.2 Related Work

Traditional recursive Bayesian estimation (RBE) consists of a prediction stage, an
observation stage, and a correction (or updating) stage [1], [2]. Prediction requires an adequate
motion model of some target which could be as stochastic as a weather system [3] or a human
being [4], or as deterministic as an automobile [5]. Observations require a sensor or equivalent
data-acquirer with an associated uncertainty characteristic [6]. Correction, then, is essentially the
fusion of a prediction and an observation [7] which results in an improved estimate of the target.

Several different RBE methods are available, each of which makes certain assumptions in
order to handle a particular kind of problem. The most famous family of estimators consists of
what are known as Kalman filters (KF) which assume state belief is Gaussian throughout
estimation. The original linear KF (LKF) introduced in the 1960s assumes linear motion and

observation models [8]. Other common variants of the Kalman filter include the extended Kalman
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filter (EKF) [9] and the unscented Kalman filter (UKF), [10] which both deal with nonlinear
systems. Other versions exist, including the ensemble Kalman filter (EnKF) which is a Monte-
Carlo method that can be used for non-Gaussian estimation [11], [12], the square-root cubature
Kalman filter for highly nonlinear problems [13], the Schmidt-Kalman filter with polynomial
chaos expansion for problems with increased uncertainty [14], and many more.

When the probability distribution functions (PDFs) describing state belief are non-
Gaussian, Kalman filters are generally not sufficient. The sequential Monte-Carlo (or particle)
filter relies on random generation of thousands or even millions of particles to adequately represent
non-Gaussian belief [15], [16], while the grid-based filter requires that a belief space be regularly
sampled into cells and RBE operations carried out for each cell [17]. Though these methods have
worked well within their required contexts, they begin to fall short for fast estimation in many
dimensions. This drawback is largely remedied by the Gaussian sum approach, in which non-
Gaussian belief throughout RBE is represented by weighted Gaussian sums [18], [19]. It is this
approach upon which the methods proposed here build.

When motion model parameters are not known to a sufficient degree of accuracy, the
prediction stage of RBE will suffer, and so will estimation at large. A number of modern
approaches have been put forward to address this issue. The adaptive Kalman filter (AKF) adjusts
system and sensor noise covariance estimates to better reflect uncertainties in acquired state data
[20]-[22]. Joint state-parameter estimation [23], [24] is a common solution for updating model
parameters themselves; such methods have been shown to apply to even nonlinear and lightly non-
Gaussian problems [19], but they generally do not extract model parameters implicitly from only
a sequence of observations. Sensitivity methods have also been used to build more accurate system

models throughout estimation, though such approaches are usually aimed towards finite-element
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models [25]-[27]. Other advanced frameworks prove capable of controlling systems with
uncertainty in the motion model [28], [29], but such work does not account for system or sensor
noise and is therefore not estimation-oriented. Though established work is well-suited for specific
kinds of advanced estimation problems, existing estimation techniques generally do not address
parameter uncertainty and model correction when state belief is fully non-Gaussian.

5.1.3 Objectives and Outline

This paper describes a technique for probabilistic motion model correction using non-
Gaussian belief fusion within the framework of simultaneous estimation and modeling (SEAM),
which was previously proposed by the authors in [30]. In order to correct motion model
parameters, the proposed method implements a gradient-descent approach, which solves the
otherwise intractable minimization of a probabilistic error function. A means of subsequently
estimating the uncertainty in these parameters is also presented for consistency within the SEAM
framework.

Towards completing these objectives, this paper is organized as follows: first, a review of
the relevant fundamental theory is given. Next, the original contributions of this work are
addressed for both single and multiple state transition error minimization. In the fourth section, the
results of these formulations as applied to several simulated scenarios are given and validative
comparisons are made with conventional methods. Finally, a conclusions section summarizes this

work's findings and briefly discusses future work in this area.
5.2 Belief, Estimation, and Model Correction

Before addressing the original contributions of this work, it is important to establish the

foundation on which the following formulations are built. This includes a mathematical summary
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of RBE, a description of Kalman estimation, the derivations of multi-Gaussian belief fusion, and
the theory and formulations behind the SEAM framework.
5.2.1 Recursive Bayesian Estimation
In this paper, the term “belief” is used to characterize an agent's probabilistic estimate of a
target or state. From this point forward, belief is defined mathematically by PDFs. Recursive
Bayesian estimation propagates belief through three stages at every time step, making no
assumptions about the specific forms of the PDFs at each stage. These stages are described below.
Prediction propagates belief from step k — 1 to step k by making use of a motion model of
the system at hand. Let p(x4_1|21.,—1) be the PDF describing belief about a system'’s state x € X
at step k — 1 given observations of that state z € Z from time step 1 to k — 1. Furthermore, let
p(xy|x,—-,) be atransition PDF describing belief about the state at k given its previous state at
k —1. The continuous Chapman-Kolmogorov equation then gives the predicted PDF

p(Xy|21.—1) as follows:

p(xxlzyp—1) = fP(xk—1|Z1:k—1)P(xk|xk—1)dxk—1- (1)
X

While the observation stage has no prescribed probabilistic formulations, its objective is to
obtain an observation PDF p(x;|z,) coming from a measurement of the state at a new time step
k. Such a measurement, or observation, often comes from a sensor which itself may have a
deterministic model. Obtaining p(x,|z;) is therefore context-specific.

State correction is accomplished by Bayesian inference. The predicted PDF and the

observation PDF are fused to generate the corrected PDF p(xy|z,.,) given by:

p (x| Z1y) = f p(xilzi ) p (x| 21.5—1) @)

xp(xklzk)p(xklzlzk—l)dxk.
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To satisfy the recursive nature of RBE, the Chapman-Kolmogorov equation is seeded with the
corrected PDF by resetting k to k — 1.
5.2.2 Kalman-type Estimation

Kalman filters are recursive Bayesian estimators, consisting of prediction, observation, and
correction stages, which rely on assumed Gaussian belief. A multivariate Gaussian PDF is given

by the following formula:
N(EE,) = —— ( (- DTE( —>> 3)
X, X, = ——eX —=—X—X X—X)|.
g [27Z, | P\72 *

As Eq. (3) shows, a multivariate Gaussian is fully defined by its mean vector and covariance
matrix. As a result, Kalman filters are able to efficiently propagate belief by propagating only these
parameters.
5.2.2.1 The Linear Kalman Filter
Given a linear system motion model x,, = Axy_,; + Bu,_; + w;_,and sensor model z;,, =
Cx, + v,, the LKF propagates the mean and covariance of Gaussian state belief from step k — 1
to step k according to the following prediction formulas:
Xyjk—1 = AXg_q)k-1 + Buy_q, (4a)
)

= AZ AT +3,. (4b)

Xk|lk—1 Xk—1|k-1
where X, is the covariance of assumed additive zero-mean Gaussian noise in the system. State

correction, then, is given in terms of an observation z; by:

Xk = i1 + K(2j — Cxyp-r), (5a)
B = U~ KOZ,,, , (5b)

where
K=%,, C(Cy, C"+ zv)_l, (6)
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and X, is the covariance of additive zero-mean Gaussian sensor noise. In addition to the
assumption of Gaussian belief, the LKF makes the following two assumptions: 1) uncertainty in
prediction and observation is caused only by additive noise, and 2) the model parameters A, B,

and € are known with complete confidence.

5.2.2.2 The Adaptive Kalman Filter

The AKF seeks to improve traditional Kalman filtering, or estimation, by adapting X,, and
X, to better reflect uncertainty in the underlying models. Because no effort is made to augment the
model equations themselves, the AKF approach can apply to either linear or nonlinear systems.
However, being a Kalman-type filter, it also assumes Gaussian belief. One of the most popular

AKEF variants [31] provides the following formulas:

zvk =G, — szk|k—1CT’ (7a)
M
1 _ _ 2
G, = M z ”Zk—m - Ck—mxk—m|k—m—1|| ) (7b)
m=1
Zy, = VaZy,, (7¢)

_ (6, - %y, )
tr (szk|k_1CT)

(7d)

Linear prediction, observation, and correction under the AKF follow Egs. (4a)-(6). Though
the AKF generally improves on the LKF by addressing additional potential sources of uncertainty,
it does so observationally rather than analytically. Furthermore, model parameters are still assumed
to be known with complete confidence. Consequently, it is generally not possible for an AKF

estimator to achieve zero-mean error when model parameters are not correctly known.
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5.2.3 Multi-Gaussian Belief Fusion

Where Gaussian assumptions fall short, non-Gaussian methods are critical. A PDF
describing non-Gaussian state belief can be represented as a weighted sum of Gaussians with
unique means, covariances, and weighting coefficients [1]. Such a PDF is henceforth described as
a “multi-Gaussian” distribution. Multi-Gaussian belief fusion (MBF) addresses the correction
stage of RBE for such multi-Gaussian belief. Let p(x|z;) denote the PDF representing belief about
a state given the i*" observation of that state. Following some development of Eq. (2), the
probabilistic fusion of n observations gives the PDF p(x|z,.,,), which is defined by the following

formula;

i=1P(x]2;)
J 1 p(xlz;) dx

p(x|z15) = )

Because this is the normalized product of the PDFs corresponding to each observation, MBF
makes use of the linear superposition of Gaussians to efficiently carry out belief fusion [7]. Let the
belief corresponding to two observations, p(x|z;) and p(x|z,), be given by multi-Gaussian

distributions containing I and / components, respectively, as follows:

I

p(xriz) = ) (%%, 2), (9a)
i=1
]

p(xlz) = ) P (122,22, (9b)
j=1

Then the PDF representing fused belief, p(x|z;.,), is given by the normalized product of the two

constituents:

]
p(x|z,,) = ZZC 2 .(2) (1 Z)N( x 2),2;1]2)) (10)

i=1 j=1
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(1:2) accounts for the normalization in the denominator of

where the new weighting coefficient Cij
Eq. (8). The new variables introduced are given in terms of the constituent parameters by the

following definitions:

-1 -17171
12 _ [(s@® @
£ [(z ) +(=92) ] , (11a)
1 _ 30 [(30) 750 4 (5@) 7 5@
;P =2 [(zxi) +(z8 ) % ] (11b)
(02 _ o (0. 5® (50 4 5@
¢ N( @, (50 4 50 )) (11¢)

In summary, the fusion of two multi-Gaussian PDFs yields a third multi-Gaussian PDF
with a number of constituents equal to the product of the numbers of constituents in each original
distribution. Belief fusion in this manner is associative, so that fusion of n observations can be
done sequentially, two-at-a-time. The advantage of MBF is that non-Gaussian belief can be
represented in high dimensions efficiently and with full accuracy, without need for discretely
sampling the belief space or randomly generating particles. The output of MBF is three parallel
channels: one for mean vectors, one for covariance matrices, and one for weighting coefficients.
5.2.4 Simultaneous Estimation and Modeling

The recently proposed SEAM framework [30] includes formulations which address
uncertainty in linearized motion model parameters in the context of prediction within RBE. Figure

1 summarizes this framework.
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P(X—11Z1:k-1)

k—-k—-1
Prediction b,
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Model Uncertainty !
ry |
P(xmmzl:k—ﬂ: i |
State P(X|Z11) | Motion Model
Correction ! Correction
| Dy |
L= = J

P(xelz1)
Figure 1. SEAM framework.
Let a system of interest have motion in the belief space which can be described by the
following discrete-time state-space formula, with stationary, zero-mean, white process noise:
Xijk—1 = Ap-1Xp—1k—1 + Br_1Up_1 + Wi _4, (12)
Here, w;._, is a zero-mean Gaussian random vector representing process noise, A,_; is the system
state matrix, Bj_, is the input matrix, and u;_, is an applied control effort. For Gaussian belief
propagation, the mean at step k given the state at k — 1 is determined by the means of each
variable:
Xijk—1 = Ax—1Xk—1jk—1 T Br—1lx_1, (13)
By propagation of uncertainty, the covariance corresponding to belief at step k given step k — 1
is estimated as
zxk|k—1 = sz-l + Zk—lzxk_1|k_171£—1 + Ek—lzuk_1§£—1
+24,_ D(®2 1 _1)2h,_, +Zp,  D@EDEL, . (14)
where the operation D(e) diagonalizes its vector argument, (¢)°? is the element-wise

multiplication of a vector with itself, and both X, _ and X5 are matrices whose elements are
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the standard deviation of the corresponding elements in 4,,_; and B,,_,. Because these parameters
are not random processes but rather fixed constants which are not perfectly known, these “standard
deviations” act more as error bounds which quantify the uncertainty of belief in their
corresponding parameters. Equation (14) simplifies to the result of the LKF's prediction step under
the assumption that there is no uncertainty in the input vector or either of the state-space matrices.

A model-correction step is then implemented to increase the accuracy of the state matrix
estimate for the next step 4, and therefore decrease its estimated uncertainty Z 4, This is done by
minimizing the error between the maximum likelihood point (MLP), or mean, of the predicted
PDF and the corrected PDF. The corrected A, matrix is given in terms of the corrected state mean
Xk, the prior state mean X _;x—1, the prior state and input matrices A, _; and B,_,, and the prior
input vector u,_, by

- Ay (Xpoq = X1 (1= DXpe_p) + Qi Xy
k -_ .

(15)

_T —

Xg—1k-1Xk-1]k-1

= . . . . ;T —j .- —j .
j Jj L. Jj

where X,_; is a diagonal matrix with x k—1lk—1%k_1)k—1 & the i = j positions and Xy—1jk—1 1S

defined as X;_1x—, with the j** element removed. Furthermore, X,_; = D(X_1x—1) and Qy is
a row matrix where each element is the column vector q; = Xy x — B _,U;,_,. The standard

deviation of the corrected state matrix, X4, is computed by error propagation on Eg. (15). For the

sake of brevity, this formulation is not included here.

Because the above equations assume belief is Gaussian, only the means and covariances of
the PDFs representing belief are used to correct A. Applying the same simplistic error
minimization principle to non-Gaussian belief will result in the loss of much valuable probabilistic

information. Furthermore, these existing formulations do not address correction of the input matrix
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B, a sometimes important component of signal estimation. The original contributions introduced

in the following section aim to remedy these shortcomings.

5.3 Multi-Gaussian Model Correction

P(Xk—1|Z1:—1)

k->k—-1
~ Prediction @,
Xk~ Observation Incorporating
Model Uncertaint ;_ ——————— —-_———
3 | y
p(xm%zm_l) : Predict
I '
State P (X |Z1.1) I
: » Compute Error
Correction |
| !
,I\ Adjust @
Py | :
I
p(Xk|Z1:1) | Motion Model Correction

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
—

Figure 2. Proposed generalized SEAM with motion model correction employing non-Gaussian state belief.

Figure 2 shows the proposed probabilistic technique for generalizing SEAM to

accommodate non-Gaussian motion model correction. The shaded block represents the proposed

gradient-descent-based motion model correction technique, where belief is represented by multi-

Gaussian PDFs such as those in Egs. (9). Multi-Gaussian prediction is accomplished by applying

Egs. (13) and (14) to each Gaussian component to arrive at a new set of mean vectors and

covariance matrices, with weighting coefficients remaining the same. State belief correction then

takes place by fusing the predicted PDF and an observation PDF via MBF.

5.3.1 Single State Transition Error Minimization

The objective of the proposed approach to non-Gaussian motion model correction is to find

the appropriate parameters in the state matrix 4, and input matrix B, which yield a predicted PDF
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p(xy|24.—1) that differs minimally from the corrected PDF p(x|z,.,). Stated mathematically,
the desired model parameters are those which minimize an objective function. The objective

function chosen here is termed the “integrated-squared-error (ISE)” and is defined as:

ISE = f(p(xklzl:k—l) —P(xk|z1;k))2dx- (16)
X

Another potential intuitive choice of objective function may be the Kullback-Leibler (K-L)
Divergence of p(xy|z;.,_1) from p(x,|z,.,). However, the ISE is instead chosen because the only
required PDF operations are addition, subtraction, multiplication, and integration. A K-L
Divergence approach would also necessitate dividing PDFs and taking their logarithms, increasing
the complexity of later steps. Furthermore, the ISE is a symmetrical measure of the similarity
between the two PDFs, unlike the K-L Divergence.

Let p(xy|Z,.4—1) and p(xy|z;.,) be written as multi-Gaussian PDFs, adopting a shorthand
notation where the argument of the parenthetical superscript on each parameter corresponds to the

time step of the most recent observation affecting that parameter. The ISE then can be written as:

2

J
56 = [ St w(entonat ) S exat) | ae.

j=1
Expanding the square gives:
/ I 2 J
ISE =f DNz |+ D P (17, 20)
X \ i=1 j=1
1]
k k k 1)(k k 1)(k k-1)(k

i=1 j=1

Because ffooo]\f (x;x,X)dx = 1, this reduces to:
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I I
ISE:ZZCR D k) oDk 1)+zzck) (90000

i=1j=1 i=1j=1
1 ]
ZZZC (e=1) 10 (=1 (19)
i=1j=1
Both ¢/ P“™" and ¢{f """ are implicit functions of the model parameters in A,_, and Bj_;.

Since this relationship is complex, solving for the optimal parameters in closed form is not viable.

The proposed technique solves this complex optimization problem using a gradient-descent
method. The gradient vector is defined by assembling the derivatives of the ISE with respect to
each model parameter as follows (with “parameters” referring to the elements in the A and B

matrices):

d(ISE) d(ISE) 9 (ISE) OUSE) l (20)

Vo(SE) = | == ..
olISE) Ia(an) T BT BT
where @ represents the vector of model parameters. Because the second term of Eq. (19) does not
have direct functional dependence on A4,_, or B,_, the gradient becomes:

11 o
Ve (ISE) :ZZC (et (-1 ( el 1) ZZZC (k-1) (k)V e 1)(k)) 21

i=1 j=1 i=1j=1

(k=1)(k-1) (k=1) (k)

where Cij and ¢;; are expressed as Gaussians according to Eq. (11c). Following the

chain rule on the derivative of a Gaussian, these gradients take the form:
(k_l)(k_l) = . . .. ..

V¢(Cl~j ) exp(,b’u) (Vq,(au) + a;; Vd,(ﬁl])), (22a)

V¢< l(]k 1)(k)) = exp({l—j) (V¢(6ij) + El]Vd)(Zl])) (ZZb)

The four placeholder variables are given by:

21 1
a; = (2nyyl) 2 By = 3 81vij 6y (23a)
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1 1
€ij = (|27T71ij|) 2’ (i] 9;]77;] Blj (23b)

where y;j, 8;;,m;;, and @;; follow from the formulas for mean and covariance propagation in

prediction given by Egs. (13) and (14)

vy = A (40 4+ 200) A7 45D (35707 4+ 2607 ]

+2 (25D (7%") 2 + B(27V)B" + 5,.), (24a)
5 = A(x D -z D), (24b)

ny; = ALS VAT + BE,BT +5,D (2 )zg + 25D (aD7) 5] + 5, + 2, (240)

0, = A%,V + puk-v — 5", (24d)

Vo(ai;), Vo(Bij), Vo(€i;), and V4(¢;;) are each assembled from the gradients with respect to the

state and input matrix elements as in Eq. (20). The elements of Vi (a;;) and Ve (B;;) are given as

follows:

where

and

aaij 1 1 _ aYU
Bapg ~ 2 mrsl) P (Y 9a (250)
dB;; Vor (98 0V _, 05,\" _,
e L (e e N e R
Yij (k=1) | w(k=1\ AT (k=1) | ¢(k=D) 4T
T~ (4 (357 + ZU) 05, + 0, (3470 + 24 70) 7). 26)
04 —(k=1) _ —(k=1)
0ay, = 0pq (xi X ) 27)
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Resulting from the chain and product rules, the derivatives of «;; and ;; with respect to the input
matrix elements b,, have the same form as given by Egs. (25a) and (25b), but with each a,,

replaced by b,,,. For these,

v -
Yy _ 2(Bx,07, +0,,5,B7) (28)
3byq
and
05,
=0 (29)

In the expressions above where the partial derivative with respect to a,, is taken, 0, is a matrix
the size of A. For the derivatives with respect to b, it is a matrix the size of B. This matrix is

defined as follows:

1 elementp,q
0,, = 30
pa {0 elsewhere (30)

The elements of Vg (€;;), and Ve (;;) are given by the following partial derivatives:

aEl’j 1 1 anl
—_— = - 2 .. 2 _—.1 ]
0ay, 2(| ;) tr("u da,, )’ (31a)
ud Lpr 199 _0my _, 00\ _,
0ay, _§<9ij71ij 0ay, - da, N 0 )+ —aapq N 0y |, (31b)
where
on.
iU Aza(cl-c_l) 0pq + Opqz;(cl-c_l)AT, (32)
dap, : i
and
6911 —(k=1)
dapg Ovati™ (33)
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Again, the derivatives of ¢;; and {;; with respect to the input matrix elements b,, are given by

Egs. (31a) and (31b), but with each a,, replaced by b,,. For these,

an.
2N _ By,07, +0,,5,B (34)
3byq
and
_— = 2ik—1)
5, = 0T (35)

The definition of 0,,, given by (30) and the accompanying description holds for Egs. (32)-(35).

The above equations are used to inform a function which returns the gradient of the ISE
evaluated for a particular set of model parameters, taking the following inputs: 1) the parameters
defining the multi-Gaussian PDFs p(x4_1|21.x—1) and p(xy|z;.;), 2) the motion model parameters
from step k — 1, 3) system inputs at step k, and 4) all parameter uncertainties. A gradient-descent
algorithm is then implemented which locally minimizes the ISE by finding the optimal state and
input matrix parameters assembled into the vector ®. In this optimization process, the following
expression is recursed over i until the change in ®,, is sufficiently small:

(@)i+1 = (®r); — di[VaUSE)]|o=(3,);- (36)

Since this is generally a non-convex optimization problem, it is imperative that the local minimum
found at step k is nearest to that at step k — 1 to achieve convergence of & to a vector of constant
values. An obvious seed for the gradient descent algorithm is @®;,_; .
5.3.2 Multiple State Transition Mean Error Minimization

There is a unique set of parameters @ which describe a single state transition in one
dimension if the motion model is linear and subject to no noise. However, in higher dimensions,
the motion model correction may require ISE minimization over multiple state transitions. In order

to address such multi-dimensional problems, the ISE is augmented as follows:
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k

ML z (P(xi|z1;i—1)—P(xi|Z1:i))2 dx, (37)

i=k—

ISE=f

v

where M < k is the number of recent observations used to update the parameter vector. Because
of the linearity of integration, the gradient of the average ISE becomes the average of the individual

gradients:

k
Vo (ISE) = Mfr - Z Ve (ISE,), (38)

i=k—M

where Vg (ISE;) is the gradient of the i*" transition. The factor M%l in Eq. (38) can be lumped with

the step size d; of Eq. (36), proving that the “direction” of the multi-transition ISE gradient comes
from the summation of the ISE gradients of all transitions.
5.3.3 Uncertainty Propagation

In keeping with Eq. (14) of the SEAM framework, the uncertainty in the model parameter
vector must be updated in addition to its mean. However, because the value of &, which minimizes
the ISE cannot be found in closed form, X4, cannot be derived. Two approximation methods are
given here: first, a more mathematically rigorous approach to estimating uncertainty through
gradient descent propagation is presented, followed by a more implementation-oriented approach.

Consider a general error function E = f(A) that is sought to be minimized by adjustment
of the variable A. The gradient, ina 1-D sense, is given by z—i = g(A). Assume the implementation

of some “smart” gradient descent algorithm where the step size d; continually decreases as the

local minimum is approached. Consider, then, the first three iterations:

Ag = Ay, (39a)
Ay = Ag —dig(4y), (39h)
Ay = Ay —dyg(4y) = (Ao - dlg(AO)) - dzg(Ao - d1g(A0))- (39¢)

112



By propagation of uncertainty, the variance at each step is given by:
05 =04, (40a)
oi =04 +dioj,., (40b)
04, = 04 +diog, + d%o-gz(Ao—dlg(Ao))' (40¢)
and a pattern emerges. For the “smart” algorithm assumed here, as i increases, d? decreases
quickly. Furthermore, the gradient evaluated at each successive value of A constantly decreases,
as does the uncertainty agz( 4)- For these reasons, when convergence happens quickly (i.e. A, is near
the value which locally minimizes E), additional terms contribute negligibly so that Eqgs. (40a),
(40b), and (40c) all provide reasonable approximations with increasing accuracy for the
uncertainty in A. Therefore, with regards to the applied context, one option for estimating X4, is
to ignore all terms but the first, so that:
Lo, * Lo,_,. (41)
The more continuous the estimation process, the closer X4, will be to X4, , and the better the
above approximation holds.

A more heuristic and implementation-oriented approach can be considered. If the model
parameters are improved with each iteration of estimation, their estimated uncertainty should
continually decrease. Let a parameter A be defined such that 0 < A < 1. The variance in @ at step
k can be adjusted according to X4, = AX4, _, in order to enforce that convergence of uncertainty

follow a power law governed byA¥. A can be tuned to best reflect the increasing accuracy of model

parameters over time.
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5.4 Results

Several randomly generated simulations were carried out under varying conditions for the
purpose of validating the proposed techniques. The presented framework was assessed by
examining the convergence of model parameters to ground truth, in addition to comparing
estimation performance with three other estimators. The LKF serves as a baseline technique
representing the simplest of estimation methods, while the improved estimation of the AKF
handles the more complex uncertainties addressed by the proposed framework. The AKF is the
most advanced established estimator which can be directly compared to the proposed approach
with regards to improving prediction when substantial model parameter uncertainties are present.
Finally, a SEAM estimator with the recently proposed MLP-based model correction [30] is
implemented for comparative purposes.

5.4.1 1-D Validation

While the formulations presented in section 5.3 apply to arbitrarily high-dimensional state
vectors, this section and the next validate the proposed framework for only 1- and 2-D examples,
for the sake of brevity.
5.4.1.1 Gaussian Belief

First, single-transition model correction was assessed for 5-second 1-D Gaussian
simulations. Table 1 gives all constant, unitless parameter values used. These values were chosen
arbitrarily, since the SEAM framework has no context-specific bias. £, and Xz were chosen to
be a percentage ¢ of Az and Bgy. To simulate an erroneous initial estimate of the motion model,
A, and B, were randomly generated from normal distributions with means A, and B, and

standard deviations X,, and X . The control effort u used was a unit step function. The 1-D state-
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space dynamics under these conditions simulate the step response of a system governed by a first-

order differential equation.

Table 1. Constant parameters
Agr 24, Ber g, Zw Xo X, At Ly
098  dgr 1.3 gdgr 001 2 0.09 0025 0.01

Ground truth was simulated using A, and By, with zero-mean Gaussian process noise
wy. Sensor noise was simulated as zero-mean additive Gaussian noise v, on the ground-truth
signal. A linear Kalman filter and more advanced adaptive Kalman filter were deployed based on
the formulations given in section 5.2.2. Additionally, a SEAM estimator was implemented with
MLP-based model correction according to Eq. (15). SEAM without model correction was also
evaluated in order to isolate the effect of the formulations given here. Gradient descent was carried
out according to Eqg. (36) by using a constant step size of d; = 0.005 and threshold T = 0.00001.
Small values were chosen since the objective of these tests was proof-of-concept rather than fine-
tuned efficiency. £, and £z were updated according to the heuristic approach described in section

5.3.3with 1 = 0.99.

State vs. Time ~Error vs. Time

120 %
100 ]
| 0
8ot w9
o |8
s 60f ] :
N |
40 ] |
1 E‘ +
——Ground Truth SEAM Q‘} Ground Tl‘uth SEAM(l
20 Observations SEAM;| | IE‘Z =30 Observations SEAML
. LKF —SEAM;| | 7 || LKF — SEAM{
AKF AKF
20 o5 1 15 2 25 3 35 4 45 5 o 05 1 15 2 25 3 35 4 45 5
Time Time

Figure 3. Example 1-D simulation with single-transition updating. In this example, A, = 1.47 and B, = —1.95.
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Figure 3 shows an example trial under these simulation conditions, with e = 0.1 and £, =
25. Because the LKF errs toward overconfidence with respect to the motion model, even a small
deviation from ground truth tends to have a dramatic impact as time progresses. The AKF improves
on this by incorporating additional uncertainty, effectively relying more heavily on observations
to improve estimation. Basic MLP model-correcting SEAM (labeled SEAMo") further improves
estimation by reducing the certainty of predictions even more, though SEAM without model
correction (labeled SEAM;") performs even better due to poor convergence of A by the MLP
technique. SEAM with model correction according to ISE minimization (labeled SEAM;")
outperforms all other methods because it reliably adjusts model parameters towards ground-truth.
Figure 4 plots the state and input matrices (scalars, in this case) over time.

In Fig. 4, the dashed lines represent the margin around ground-truth that represents 95%
improvement from the initial parameter estimate. As the figure shows, A approaches ground-truth
much more readily than B under ISE minimizing model correction. This is likely due to a number
of factors, the chief of which is that the magnitude of the gradient V4 (ISE) is larger with respect

to A than to B (i.e. the system is more sensitive to change in the state matrix than the input matrix).

State Matrix vs. Time Input Matrix vs. Time

________________ By I
3.5 ¢ 1r J—
— B
3F 0.5 ) T+
— — By (SEAMY)
25+ — Ay ol
<< | Ay (SEAM) |Q3_05_
I — A, (SEAMY)
1.5 -1
e
1 == :\‘_YE\:{E“_‘“:A_"‘;I\_A ________________ = SN 15
0.5 + . : . L . L - : -2 . . . . . ! * r :
0 0.5 1 15 2 25 3 35 4 45 5 0 0.5 1 1.5 2 25 3 35 4 45 5
Time Time

Figure 4. State and input matrices over time, for experiment corresponding to previous figure.
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MLP-based model correction yields erroneous state matrix convergence, likely due to the
forsaking of richer probabilistic information consistent with this approach.

The raw observation signal (O), LKF estimator (L), AKF estimator (A), MLP SEAM
estimator (So*), and ISE SEAM estimator without and with model correction (S;” and S1*) were
each evaluated by computing their root-mean-squared-error (RMSE) scores for each of 25 trials.
This was repeated for different combinations of € and Z,,, and the percentages of trials for which
each signal had the lowest RMSE are given in Table 2.

As the table shows, the SEAM estimator with model correction as presented in this paper
outperforms all other estimators the majority of the time for all combinations of noise variance and
model parameter uncertainty. The AKF generally performed second-best overall. This is likely
because this estimator has a greater smoothing effect, reducing RMSE in the occasional instances
where the motion model is well estimated to begin with. Examining the proposed approach (S1%),
there is a slight trend of decreasing relative performance as noise variance increases and a slight
trend of increasing relative performance with increasing model uncertainty. The former result can
be explained by the very poor signal-to-noise ratio in observations which negatively affects model
correction. The latter result validates the hypothesized effectiveness of model correction in

estimation to handle motion model mismatch.
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Table 2. Sensitivity study in uncertainty parameters for 1-D Gaussian estimation

&
0.1 0.15 0.2 0.25

0] 0% | O 0% | O 0% | O 0%

L 0% | L 0% | L 0% | L 0%

12 A 0% | A 0% | A 4% | A 8%
SO0+ 0% | SO+ 0% | SO+ 0% | SO+ 0%

S1- 4% | S1- 0% | S1- 0% | S1- 0%

S1+ 96% | S1+ 100% | S1+ 96% | S1+ 92%

O 0% | O 0% | O 0% | O 4%

L 0% | L 0% | L 0% | L 0%

52 A 12% | A 8% | A 8% | A 8%
SO0+ 0% | SO+ 0% | SO+ 0% | SO+ 0%

S1- 0% | S1- 0% | S1- 0% | S1- 0%

S1+ 88% | S1+ 92% | S1+ 92% | S1+ 88%

O 0% | O 0% | O 0% | O 0%

L 0% | L 0% | L 0% | L 0%

5 102 A 28% | A 8% | A 8% | A 0%
v S0+ 0% | SO+ 0% | SO+ 0% | SO+ 0%
S1- 8% | S1- 0% | S1- 0% | S1- 0%

S1+ 649% | S1+ 92% | S1+ 92% | S1+ 100%

O 0% | O 0% | O 0% | O 0%

L 0% | L 0% | L 0% | L 0%

152 A 16% | A 28% | A 20% | A 20%
SO+ 0% | SO+ 0% | SO+ 0% | SO+ 0%

S1- 8% | S1- 4% | S1- 4% | S1- 4%

S1+ 76% | S1+ 68% | S1+ 76% | S1+ 76%

O 8% | O 4% | O 0% | O 4%

L 0% | L 4% | L 4% | L 0%

202 A 4% | A 12% | A 28% | A 12%
SO+ 0% | SO+ 0% | SO+ 0% | SO+ 0%

S1- 4% | S1- 8% | S1- 4% | S1- 8%

S1+ 84% | S1+ 72% | S1+ 64% | S1+ 76%

In order to gain a better understanding of the convergence of model parameters given an
inadequate initial estimate, model parameters and estimation error were plotted for a series of

simulations in which the error in A, varied. Z,, was held constant at 25, and all other parameters
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State Matrix vs. Time Error vs. Time
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Figure 5. Convergence of state matrix estimate for varying initial guesses; corresponding error curves for each estimator.

remained unchanged. The starting values A, were plotted along with the updating values Ay, as
shown in Fig. 5. Also included is the family of error curves coming from these experiments.

As the figure shows, model parameter convergence breaks down due to the non-convexity
of the ISE with respect to A when the initial model parameter estimate is around +4.5 to —2.5
times the ground-truth value. It takes more time for the model parameter estimate to settle around
Agr when A is significantly underestimated than when it is overestimated. The error accumulated
early in simulation is another cause of high RMSE values which leads to occasional under-
performance of SEAM as shown in Table 2.

A second uni-Gaussian 1-D validation was done to assess the performance of model-
updating using multiple state transitions according to section 5.3.2. A sample simulation is plotted
in Fig. 6 for e = 0.1 and £, = 25. The model parameters are plotted over time in Fig. 7. For this
example, the 25 most recent state transitions were retained for adjusting the state matrix at each
step. As the figure shows, there is less oscillation in the SEAM signal due to the reinforcement

made possible by additional information from past observations. Again, while the input matrix
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estimate does not converge to ground truth, it is nonetheless improved by the model correction

step.
_State vs. Time  Error vs. Time
. ——Ground Truth
120 ﬂ;, Observations |]
© LKF -
100 |&'3 AKF *{
s 8O SEAM
"-‘=6 | NN TN NINALEYY. | 201 SEAM;
|H 0 M ' Y T Y ‘ E\l a0l ——SEAM;,
ar Ground Truth SEAM; 1 @_40 I
ol ——Observations ——SEAM] ||
LKF —SEAM; |33 07
0 AKF 1 -60
-20 — — ; — 70 — — —
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Time Time

Figure 6. Example 1-D simulation with model-updating using the 25 most recent observed state transitions.

State Matrix vs. Time Input Matrix vs. Time
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Figure 7. State and input parameters plotted over time.
5.4.1.2 Multi-Gaussian Belief
To validate model correction for multi-Gaussian belief, the above multi-transition model
updating experiments were repeated where observations at each step were represented by the

superposition of two Gaussians randomly placed in the vicinity of ground-truth at that step.

Because no existing methods incorporate non-Gaussian model updating and the RMSE score
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cannot be readily obtained since a single Gaussian mean is not available for comparison to ground
truth, performance is quantified by the quality of motion model convergence.

Twenty-five experiments were conducted under the same conditions as in the previous
section. The input matrix parameter B was held constant at ground-truth and not addressed because
of its relatively low impact on estimation for these experiments. Furthermore, because MBF at the
correction stage continually increases the number of Gaussian components, belief at each stage
was pruned so that only the four strongest-contributing components were retained. Figure 8 plots
A, for each of these experiments over time with the corresponding seed values 4, and the ground-
truth value A;;. Also included in the figure is a visual demonstration of a single iteration of

estimation using multi-Gaussian belief.

State Matrix vs. Time Single Estimation Iteration
1.1 . T J ‘ 5 ' ' :
S 7%" 45 IE‘*l | )_p(sz"") 1
\\\ —Aa u I — P\ Tp-1|21:%— 1 — ]
1.05 p———y = 4
—— Ay (SEAM; ) p(er|zii-1)  —p(|z1)|]

b

Figure 8. 1-D non-Gaussian state matrix updating for normally distributed random initial estimates; a single iteration under the
estimation framework.

0.85 T n T T T T i T n 0

Time

As the figure shows, the range of initial values A, that converge to ground truth over a
given observation period is smaller than for the uni-Gaussian experiments presented in the
previous section. It is also important to note that the total observation time was doubled, showing
that under these conditions, convergence occurs more slowly. It is also clear from the plots that
the true parameter A is approached faster from a higher initial estimate than a lower one.

Regarding the second part of the figure, ISE minimization as defined in Eq. (16) seeks to find
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model parameters @ which minimize the squared difference between the green and black curves
(corresponding to the predicted and corrected PDFs, respectively).
5.4.2 2-D Validation

Next, a series of 2-D simulated experiments were carried out which address estimation of
a second-order linear homogeneous ordinary differential equation (ODE). Many physical systems
are described by decaying oscillatory motion, so simulation of such a scenario has real-world
implications. Nt"-order ODEs can be modeled by first-order linear state-space equations in N-D
whose time-domain solutions also contain periodicity and decay.

In order to generate a discrete-time state-space equation describing a decaying sinusoid,
three physical parameters of a mass-spring-damper (MSD) system were defined in both mean and
standard deviation: mass (m), spring constant (k), and damping coefficient (b). For a displacement

input u(t) to the MSD system, the continuous-time state-space matrices are given by:

0 1
Ac=|_k _g], (42a)
m m
00
Bc=|k b ] (42b)
m m
where the state and input vectors are defined as:
x=[x xI" (43a)
u=[z ul” (43b)

and x and u are the positions of the output and input in meters, respectively. The standard deviation

matrices X, and X can be determined in terms of their constituent parameters by appropriate

propagation of uncertainty. The discrete-time matrices A and B can then be computed for a given
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sampling time At by standard discretization formulas. The corresponding discrete-time standard
deviation matrices can also then be determined.

Ground-truth values A;r and B were randomly generated from normal distributions with
means and standard deviations coming from the above steps. The initial value of the state matrix
was chosen to be 4, = 4 + 0.15&, where ¢ is a matrix of random variables uniformly distributed
between 0 and 1. Ground-truth was simulated with zero-mean Gaussian process noise having
covariance X,,, and Gaussian observation noise was simulated with covariance X,, on the ground-
truth signal. Parameter values are given in Table 3. Standard deviations in k, m, and b were 35%

of their means.

Table 3. Constant parameters

At k m b %, Z,,
10] [z o
0055 10N/m  2kg  5Ns/m | 0 ] [0 e
Z, z, Z,
[0.052 0.0072] 0.62 0.232] [0.001 0 ]
0.0072  0.0032 0232 0.572 0 0.002

A 50-second sample simulation for which the control effort was a unit-amplitude sinusoidal
displacement with frequency 0.125 Hz and covariance X,, is shown in Fig. 9 below. The figure
includes plots of the output position and velocity and the corresponding RMSE errors for the same
estimators as were described in section 5.4. Figure 10 shows the four elements of the state and
input matrices A4, and B, over time. Because SEAM with MLP-based model correction offers

updated state matrix values, these are also plotted in Fig. 10a.
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Time Domain Signals Error vs. Time
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Figure 9. Sample simulation for 2-D uni-Gaussian validation.
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Figure 10. Convergence of model parameters for 2-D uni-Gaussian validation.

For this simulation, M = k. While the four elements of the state matrix converge early and
accurately under the proposed ISE-based model correction approach, only A,; and A,, begin to
approach ground-truth under MLP-based model correction. Even then, convergence does not occur
in the allotted 50 seconds of simulation. As the figure also shows, input matrix parameters take
longer to approach ground-truth under the proposed approach. Admittedly, elements of B

sometimes take even longer to converge or do not converge to ground-truth at all; this is again
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likely due to the fact that the system dynamics are largely governed by the state matrix and the ISE
is relatively insensitive to change in B.

For a more quantitative assessment, simulation under the previously specified conditions
was carried out 100 times. Each simulation spanned ten seconds, and the unforced response was
observed. In order to assess the efficacy of the proposed ISE-based model correction, the means
of the percent errors in state matrix elements were recorded both at the first time step (k = 0) and

the last time step (k = 200), and the percent of the trials for which A;;  gave lower percent error

J200
than A;;, was recorded. To assess the quality of estimation, the median RMSEs of the various
estimated signals were computed, in addition to the percent of trials for which each method

outperformed the others. The results are given in Tables 4 and 5 below:

Table 4. Percent errors in state matrix elements for 100 trials

%A1 %A1z %A21 %Az
k=0 7.80 170.92 95.08 7.97
k =200 2.83 19.34 15.75 251
% Improvement 64 89 83 69

Table 5. Median root-mean-squared-errors and percent wins over 100 simulations for all estimators

LKF AKF  SEAM¢"* SEAM:” SEAM:*

RMSE 2.899 3.596 2.065 1.683 1.202

% Wins 0% 1% 2% 14% 83%

As Table 4 shows, under the proposed approach, state matrix parameters are improved
60%-90% of the time, resulting in a clear overall advantage with regards to estimation. The

proposed framework results in an average of over 500% improvement in estimated state matrix
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element error. According to Table 5, each estimator successively improves upon the last, with the
unexpected exception of the AKF. Upon closer examination, the likely cause for occasional higher
estimation error coming from the AKF was poor conditioning of the covariance matrices coming
from the randomness in parameter setting required for this Monte Carlo type validation study. In
specific simulations where this was not an issue, the AKF generally outperformed the LKF as

expected.
5.5 Conclusions, Applications, and Future Work

The probabilistic model correction approach formulated here has proven capable of
handling uncertainty in state-space motion model parameters by continuously updating these
parameters and their uncertainties. The fundamental formulations allow for arbitrary non-Gaussian
representation of belief in N-D with the only assumption being that belief can be reasonably
modeled by a sum of Gaussians. Even amidst appreciable sensor noise, the proposed approach
builds an improved estimate of motion model parameters which tend to converge efficiently given
sufficient time. This leads to superior state estimation in comparison with traditional methods
which do not account for model uncertainty or correct model parameter estimates. The proposed
technique accomplishes its intended purpose in multiple dimensions, for both uni- and multi-
Gaussian belief.

There is a wide range of future work that could stem from the research presented here. A
study on the effect of active control on system identification via model correction would lend
insight into how these techniques could be used in various control contexts. Furthermore, the
application of these formulations to heavily nonlinear systems would greatly enhance their
ubiquity. A more comprehensive framework would address observation model correction in

addition to motion model correction, since the two play dual roles in estimation. The parameter
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space for fully investigating the capabilities of probabilistic model correction is unwieldy, so only
a limited study of the effect of certain parameters was undertaken here. It would be informative to
further study the effect of dimensionality on the required number of state transitions in error
minimization to robustly update the motion model. Finally, an investigation into efficient gradient-

descent algorithms would further improve the real-time capabilities of these methods. SDG
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CHAPTER 6. Probabilistic Non-Gaussian Sensor Model Correction

6.1 Introduction

6.1.1 Background

Today's technologically advanced world is rich with sensors and sensing agents. The
advanced engineering systems which provide the services, entertainment, and conveniences of
modern-day life rely heavily on their ability to acquire observations about their surroundings or
their own state [1]. Because sensor imperfections are inevitable, uncertainty is often introduced in
the measurement of a target signal or state. This mandates the use of probabilistic methods to
overcome noise and bias in more robustly estimating an underlying target [2], [3]. Several
estimation frameworks have been put forward in recent years which account for observation model
uncertainties and sensor noise, the most prominent of which will be summarized here.
6.1.2 Related Work

State estimation has most famously been achieved in recent decades by an ever-expanding
family of Kalman filters (KFs). Some of the more common KFs are the linear Kalman filter (LKF)
for linear problems [4], extended and unscented Kalman filters (EKFs and UKFs) for standard
nonlinear problems [5], [6], the square-root cubature KF (SRCKF) for highly nonlinear problems
[7], the ensemble KF (EnKF) for certain non-Gaussian problems [8], and the adaptive KF (AKF)
for problems with ill-defined uncertainty [9]. Each of these estimators generally tracks the first
and second moments of the Gaussian probability distribution functions (PDFs) which
probabilistically represent the state of interest, accounting for additive noise in both motion models
and observation (or sensor) models. Because of the ubiquity of these estimators, they can be used

in a wide range of contexts, varying from robotics applications [5] to battery life estimation [7].
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A more general approach to both nonlinear and non-Gaussian problems is achieved by
recursive Bayesian estimation (RBE) [10], [11]. RBE makes no assumptions about the form of a
PDF used to probabilistically represent a state being estimated. (For generality, the estimate of a
state is referred to here as “state belief".) The formulas of RBE can be implemented in a number
of ways to accommodate various assumptions, computational demands, or accuracy requirements.
While the basic KFs described above assume that the estimated state is Gaussian, the more difficult
problem of non-Gaussian RBE is achieved in three primary ways.

The first approach to non-Gaussian RBE, known as the grid-based filter, regularly samples
the state belief space with a resolution determined by an accuracy/efficiency trade-off and predicts
and updates state belief by performing operations on each grid cell [12]. A similar but more well-
known approach is known as the particle, or sequential Monte Carlo, filter. Under this framework,
particles representing state belief are randomly generated, weighted, and propagated according to
the formulas of RBE [13], [14]. The final RBE method reviewed here approximates non-Gaussian
state belief as a weighted sum of Gaussian PDFs and leverages the properties of Gaussians to
efficiently carry out RBE [15]. The Simultaneous Estimation and Modeling (SEAM) framework
proposed by Steckenrider, et al. in [11] and further developed in [16] uses the weighted-Gaussian-
sum approach and further introduces a motion model correction stage. However, this has not yet
been accomplished for observation models.

In order to effectively capture and remove the biasing characteristics of a sensor in state
observation, having an accurate mathematical sensor or observation model is critical. Prior
characterization experiments or calibration steps are often needed to estimate various sensor-
intrinsic parameters [17]. While all the aforementioned KF and RBE variants are effective

estimators of systems subject to additive observational noise, none actually address uncertainty in
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observation model parameters themselves. Work by Liu, et al. seeks to estimate sensor faults in
estimation and control problems [18], [19], and similar work by Youssef, et al. addresses the
simultaneous estimation of system states and sensor faults [20]. These faults take the form of
additive time-varying signals in a linear observation model. Though poor estimation of the output
matrix may be compensated for by this inclusion, uncertainty in the output matrix is not
specifically addressed. Furthermore, states are not handled probabilistically under these
frameworks. While output matrix uncertainty is addressed by Sani, et al. [21], the predictive
advantage of the RBE framework is not leveraged. There is a shortage of techniques for addressing
uncertainty in observation model parameters within generally non-Gaussian RBE, a topic which
this paper addresses.
6.1.3 Objectives and Outline

This paper proposes a framework which 1) formulates observational uncertainty by
incorporating both sensor noise and observation model® parameter uncertainty, and 2) corrects the
estimates of these model parameters by using an enhanced state estimate coming from belief
fusion. These original contributions are clarified by presenting novel probabilistic formulations for
observations, observation inversions, and artificial re-observations. Non-Gaussian state belief is
approximated by multi-Gaussian PDFs in order to preserve both accuracy and efficiency. Complex
optimization of a multi-Gaussian objective function is handled by a gradient-descent approach to
observation model correction. Furthermore, in keeping with the presented observation
formulations, an approach to updating the variance in observation model parameters is also given.

To clarify these objectives, the paper is organized as follows: first, section 2 establishes

essential concepts and formulations related to the original contributions of this paper. Next, section

! Henceforth, the term “observation model” can be taken synonymously with the term “sensor model”.

133



3 details the proposed approach, including observation formulations, gradient-descent model
correction, and uncertainty updating. Some results of the presented framework are given in section

4, followed by conclusions and future work in section 5.
6.2 Simultaneous Estimation and Modeling

6.2.1 Recursive Bayesian Estimation

Let x represent a state being estimated. A PDF describing that state's belief is generally
given the notation p(x). RBE consists of three stages: prediction, observation, and correction. At
each stage, state belief PDFs are propagated in such a way as to properly account for the state's
probabilistic characteristics.
6.2.1.1 Prediction

Prediction is given by the continuous Chapman-Kolmogorov equation governing a

Markovian process:
(x| Z11-1) = fP(xk—1|Z1:k—1)P(xk|xk—1)dxk—1- €Y
X

The resulting predicted PDF describes belief about the state x at step k resulting from: 1) a priori
belief about the state at k — 1 (given by p(xx_,|2z;.x_1)), and 2) a transition PDF p(x; |x,_,)
which can be obtained from a deterministic motion model describing the system. Such a motion
model can be generally described as a function of the previous state, external inputs u, certain
intrinsic parameters (represented by a vector @), and process noise w:

X = f(Xpo1, U1, P) + Wy (2)
Sometimes, these PDFs can be assumed to be Gaussian. A multivariate Gaussian PDF representing

belief about x has the following definition:
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Nx;X,X%,) = |27szlexp( 2(x )2 (x x)>, 3)

where x is the mean vector and X, is the covariance matrix. When a priori state belief is generally
non-Gaussian, it can often be reasonably approximated by a finite sum of weighted Gaussian
distributions [10]:
eI _Z (k=1|1:k— DN( —(k 1|1:k— 1))29(: 1|1:k— 1))’ 4)
i=1
where the superscripts in the means, covariances, and weighting coefficients signify the PDF to
which they belong and the subscripts index the Gaussian components within the PDF. Having a
priori state belief as a multi-Gaussian PDF, predicted belief is also given by a multi-Gaussian
distribution:
(| Zpr) = Z (kl1:k— DN( —(k|1k 1) z(k|1k 1))’ (5)
i=1
where the parameters describing this PDF are given in terms of the parameters describing the a

priori PDF and the motion model by

Cl-(k|1:k_1) — Cl-(k_1|1:k_1), (661)
flgk|1:k—1) _ f (El(k—1|1:k—1),uk_1, cp), (6b)
9f () af(+) af )\
(k|1:k-1) _ (k=1|1:k—1)
le <—6xk_1> X, x; + <6uk ) Zuk_1 + 3D o +2,. (60)

Equation (6c) arises from error propagation of Eq. (2).
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6.2.1.2 Observation

The second stage of RBE, observation, supplements the prediction stage with additional
information about the state at step k. A deterministic observation model can be generally defined
as a function of the state, various intrinsic parameters ¥, and sensor noise v by:

z, = h(xy, P) + vy, (7)
where z,, is the observation at step k. The manner in which a deterministic observation can be cast
into a probabilistic belief space to obtain an observation PDF p(z,|x,) is largely context-
dependent.
6.2.1.3 Correction

If prediction was not accompanied by some uncertainty, the system of interest would be
purely deterministic and observation would be unnecessary. However, since system uncertainty is
inevitable, the correction stage of RBE reinforces belief by fusing the predicted and observation

PDFs:

p(xilzi)p (x| Z14—1)
[ p(ilzi)p (x| 21001 ) dxye”

(8)

p(xplzyy) =

Here, p(x,|z,.,) may be referred to as the corrected PDF. To compute Eq. (8), p(xx|z,) must be
derived from the observation PDF p(z;|x,). In the multi-Gaussian case, this distribution can be

given by:

~

p (x| i) :Z klk)N (k|k) z(’"")) o

For such a PDF, correction is accomplished by multi-Gaussian Belief Fusion (MBF) [23]. This

results in the following corrected PDF:

136



l] l] P X

1 ]
p(xklzlk — Z (k|1k 1) (klk) (k|1k 1k)N( —(k|1k 1,k) z(k|1:k—1,k))
=1 j=1

i

E' (k|1 ")J\f g g ki k)) (10)
where
k|1:k—1,k —(k|1:k—-1) —(k|k k|1:k—-1 k|k
ct! ) = N(x§ ), () 5 )+>:fcj' )), (11a)
k|1k=1)) _ [(wl1-1))"1 o)1 "
¥ [(in )+ (z49) ] , (11b)
-1 -1

—(k|Lk=1,k) _ w(k|1:k=1,k) klL:k-1)\ " —(k|1:k—-1) &I\ =(k|K)

X =z [(zxi ) = +(249) = ] (11c)

6.2.2 Kalman Estimation
Most KFs assume belief is strictly Gaussian and therefore propagate only the mean vectors
and covariance matrices describing Gaussian belief. The linear and adaptive Kalman filters are

described here.

6.2.2.1 Linear Kalman Filter

The LKF predicts the mean and covariance describing Gaussian belief about a state
according to a system's linear motion model as:

Xij1:k—1 = AXp_qj1:k—1 + Buy_4, (12a)

)

= Az AT +3,. (12b)

Xk|1:k—1 Xk—1|1:k—1
with X, being the covariance of additive Gaussian system disturbance noise. Observation is also
a linear process governed by:

z, = Cx) + vy (13)

Once an observation is received, belief is improved by correction, given in terms of the linear

observation model € and Kalman gain K:

137



Tk = Xrjrn—1 + K(Zx — Cxyj1-1), (14a)

X,  =(I-KOZX

Xk|1:k

(14b)

Xk|1:k—1’

with

K=% cr(cz cT + z,,)_l. (15)

Xk|1:k—-1 Xk|1:k—1

The variable X, represents the covariance of additive Gaussian sensor noise.
6.2.2.2 Adaptive Kalman Filter

The AKF predicts and corrects according to the appropriate motion and observation
models, as in equations (12a)-(15) for a linear system and sensor, but accounts for increased
uncertainty by updating X, and X,,. One of the more popular approaches is described in [22] by

the following equations:

Z,, =G, — szk|1:k—1cT‘ (16a)

M

1 _ _ 2
G, = M z ”Zk—m - Ck—mxk—m|1:k—m—1|| ) (16b)
m=1
Zy, =VaZ,, (160)
tr(G, — X

_ o6y =2y ) (16d)

tr(CEyy . C7)

As the above formulas show, while the LKF and AKF account for uncertainty in the form

of additive noise in both prediction and observation, there is no allowance for uncertainty in the
model parameters A, B, and € themselves. This can result in non-zero estimation error when the

motion and/or observation model does not match the physical system and/or sensor.
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6.2.3 Multi-Gaussian Motion Model Correction

Estimation accuracy is increased under the SEAM framework [16] because uncertainty in
the motion model is incorporated in the prediction stage by introducing the % term of Eq. (6c).

Because this also increases sensitivity to observational noise, a model correction stage then
improves the estimated motion model parameters and consequently decreases their uncertainty to
make prediction more reliable. This is accomplished in [16] by means of a gradient-descent

approach which adjusts model parameters to minimize the integrated-squared-error (ISEy)

between p(xy|zy.—1) and p(xy|2zy.) as shown below:
2
ISEp = j(p(xklzl:k—l) _p(xklzl:k)) dxy. (17)
X

The subscript f is introduced here to emphasize that the past SEAM framework only handled
motion model parameters. Because each of these PDFs is generally multi-Gaussian, ISEf
simplifies to an expression containing only weighting coefficients, some of which implicitly
depend on motion model parameters ®. Since a closed-form solution for the optimal motion model
parameters &, at step k is intractable, the gradient Vq)(ISEf) is instead extracted and used in
gradient-descent algorithms to solve for these optimal parameters:

@, = argmin(ISE;). (18)
P

Although previous work addresses motion model correction for non-Gaussian belief,
congruous correction formulations for the observation model have not been addressed. Because
the motion and observation models have duality in the context of RBE, it is a natural extension to

apply similar derivations in obtaining an observation model correction stage within SEAM.
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6.3 Multi-Gaussian Observation Model Correction

The major contributions of this paper are described here within the context of SEAM. First,
formulations for Gaussian and multi-Gaussian observational belief are proposed for problems
where model parameters are not well known. Included are equations for observation inversion and
artificial re-observation. Next, model parameter correction is addressed for single and then
multiple re-observation error minimization. Finally, a method of model parameter uncertainty

propagation is introduced for consistency within SEAM.

X

1

Observe according to

— P(Xk—1|Z1:x-1)

h(Ek! Uy, ‘T’)
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|
. |
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Figure 1. System diagram (SEAM with observation model correction).

The proposed framework is summarized by the diagram of Fig. 1. Shaded blocks are the
particular original contributions which are described in the following subsections.
6.3.1 Observation Formulations

Consider a linearized observation model of the following form:

Z, = ka + V. (19)
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where the zero-mean noise process v, has covariance X,,. Although the concepts of this section
could apply to observation matrices C of varying dimensionality and rank, z,, is assumed here to
have the same dimensionality as x; so that C is square. The expected value of a reading from a
sensor for which Eqg. (19) holds is z, = Cx,,, where X, represents the ground-truth state. When

observational belief is Gaussian, p(z,|x}) is first proposed to be given by the following normal

distribution:
p(zi|%y) = N(Z; zy,%y,) (20)
where
Zx = Cxy (21)
and
2., =Zy + ZcD(Ry 0 % )EL. (22)

In Eq. (22), X, is a matrix the size of C with each element equal to the standard deviation of the
corresponding element in C, the matrix of estimated means. In addition, the notation D(e)
diagonalizes its vector argument and o represents the Hadamard element-wise product. This
equation follows from error propagation on Eq. (19). It is important to note here the difference
between “sensor noise” and “observational uncertainty”. The former is characterized by only X,,,
while the latter is characterized by X, , which incorporates both sensor noise and model
uncertainty. When model uncertainty is assumed to be zero, as is the case with the vast majority
of Kalman filters, observational uncertainty and sensor noise become equivalent and
interchangeable.

In cases where observational belief is more accurately modeled by a zero-mean non-

Gaussian PDF, the above formulations are insufficient. The proposed method models non-
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Gaussian observational belief such that the linear observation model is still employed. Let

p(z,|x;) be approximated by a Gaussian sum:

J
(2 |R) = ch(kuoN —(k|k> z(klk)) (23)
j=1
with overall mean z, equal to Cx;, and Z (k'k) = 1. In order to incorporate the observation

model in defining z(k'k) and Zg_"k), the linear mean equation is augmented as follows:

2 =T (%, + ), (24)

while the covariance of each Gaussian component becomes
k|k ~ ~
Zg}' ) = Zv + ZCD ((xk + 6]) o (xk + 61)) Eg (25)
The centroid of the delta points §; is restricted to be zero so that the mean of p(z,|X,) remains

equal to Cx,,. Furthermore, the weighting coefficients cj(klk) must be balanced for the same reason.

The variables X, §;, and cj(k'k) are sensor-intrinsic properties to be determined by off-line

characterization in addition to the intrinsic parameter matrix C. Figure 2 demonstrates Gaussian

and non-Gaussian observation modeling for an arbitrary one-dimensional (1-D) example.

Gaussian Observation Model Multi-Gaussian Observation Model
035 . . r : "

0.12

o
8

PDF Value

o
8

/ \ 002
/ \
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Figure 2. Gaussian and multi-Gaussian observation models where C = 2. This arbitrary multi-Gaussian model for which
cj("“‘) =1/6Vjand 8 = [0.8,—0.8,1.2,—1.2,2,—2] displays bimodal characteristics.
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Observations are associated with some level of uncertainty, and so are treated as random
vectors drawn from the distribution p(z,|x,). Accurately characterizing the uncertainty in such
observations as given by Egs. (22) and (25) depends on knowledge of the “hidden” ground-truth
state X, as these formulas show. Because this is the target of estimation and is therefore unknown,

—(I)

an approximation must be made. The component means z are estimated by assuming that a

received observation 2z, has the expected value Z. This means:

‘“‘"‘) =C(% +8;) =7, +C8; = 2, + C§;, (26)

and so
k|k —_1=(k|k —_1=(k|k
10 = 2, + 2D ((c 1z19) o (T2 )))zg. 27)

6.3.1.1 Observation Inversion

SEAM is concerned with estimating the state of a system, so vectors in the observation
domain cannot be directly fused with predicted states (with the exception of the trivial case where
C = I. As a result, an observation must be inverted to obtain p(x|z,) from p(z,|x). This stage
is termed “observation inversion” here. Inverting a multi-Gaussian observation can be thought of
as applying another linear propagation to the PDF coming from an observation, p(z,|X;). This

propagation is applied to each component of the distribution to yield another Gaussian sum:

J
p(x,lz)) = Z klk)N —(klk) z(klk)) (28)
where
(00 = D) (290)
7](kuc) _ Z._lzjgklfc)' (29b)
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2019 = £ (z}"'f‘)oz) Il 4+ ¢t (zg’j“}) +3,)C, (29¢)
and the power notation “o 2”” more concisely denotes the element-wise square of the corresponding
vector. Again, the covariance formula is derived from error propagation.

Inspection of Eq. (29c¢) reveals the need for X -1, the matrix containing standard deviations
of corresponding elements in the mean inverse matrix €. In general, this matrix cannot be
obtained; however, it can be approximated by Monte Carlo methods or other techniques [24]. In
practice, however, X.-1 is approximated using some effective heuristic, as the primary objective
is to broadly capture the inflation of uncertainty consistent with the inverting of a stochastic
observation to the underlying state.
6.3.1.2 Artificial Re-Observation

The aim of “artificial re-observation” is to simulate an observation of the corrected state
under the assumption that it is more accurately estimated than the inverse-observed state alone.

The PDF describing the re-observed state is denoted p(z,|(x)|z;.,)). Again, this is given by a

multi-Gaussian distribution:

1]

klk|1:k _(k|k|1:k k|k|1:k

p(Zi| (xk|Z14)) = Zcél | W (Z;Zgzl ! )'z§n| ! ))’ (30)

n=1

where
C£k|k|1:k) _ C1(1k|1:k), (31a)
21(1k|k|1:k) _ ﬁ%kllrk), (31b)
. . 02 _ . —

B 3 (573 + VT 4, @19

Recall that the parameters with superscripts (k|1: k) define p(xy|z,.) as given by Eq. (10).
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6.3.2 Single Re-observation Error Minimization

In order to effectively correct observation model parameter estimates, the proposed
technique compares observed and re-observed belief and adjusts observation model parameters
such that the two PDFs match optimally. Mathematically, this is accomplished by minimizing an
objective function ISE;. The optimal parameter vector W, at step k is found by

Y, = argmin(ISE}). (32)
y
where ISE), is defined as

ISE, = j(P(Zka) - P(Zk|(xk|z1:k)))2dz- (33)
z

Because each of these PDFs is generally given by a Gaussian sum, a closed-form solution for
model parameters which minimize ISE, is unattainable. However, since p(z,|(xx|z..x)) is a
function of the estimated parameter vector W, a gradient descent approach can be used.

The integrated-squared-error simplifies under the Gaussian sum approximation to:
Iy 2

/ 2
ISEn—f\ Z (klk)J\f —(k|k) z(kuc)) n Z (k|k|1k)N( , Z eIl z(k|k|1k))

n=1

jn Zjn

J 1 \
_ZZZ k|k) (k|k|1 k)c(k|kk|1 k)N( (k|kk|1 k) z(k|kk|1 k)) dz. (34)
j: :

With further expansion, and because each Gaussian integrates to one, this becomes:

J ] 1j 1
ISE, = chjmk)cz(klk) CLONN Z Z (klk|1:k) (k|k|1 k)cr(lI:rllkll kk|1:K)
j=11=1 n=1ms=
J 1
_ZZZCJ(klk) (klkel1: k)cj(flkkll k) (35)

j=1n=1
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(k|k|1 k.k|1:k)

In this expression, only c, and cjgi"k'k'l:k) depend directly on W, as parameters with

(k|k) superscripts are taken to be constant since they define the reference PDF coming from an

observation p(z,|x,). Therefore, the gradient of ISE,, with respect to ¥ is given by:

J 1

Ve(ISE,) = Z Z (klk|1:k) (k|k|1 k)V ( (klk|1:k k|1: k))

n=1ms=

J

1] ~
k|k . el
—2 Z Z cj( | )cfl"""“‘)v\p (c].(,i""""“‘)). (36)

j=1n=1

1:kk|1: k|k.k|1:k
(kIKI Lk kI g o Vel k| 1:k)

Because they come from MBF of two multi-Gaussian PDFs, c, are

given by normal distributions according to Eq. (11a). By the chain rule, their gradients can be

expressed as follows:

Vy c ( Gtk k)) = exp(Bnm) (V‘P(anm) + anmv‘l’(ﬁnm))' (37a)
k|kk|1:k
Vo (W) = exp(Gm) (Y (enm) + €nm Voo o)), (37b)
where
_1
m = (|27TYnm|) 2, (3861)
1 T 1
.Bnm = _Eanm),nmanm: (38b)
_1
n = ([2mm;n]) 2, (38¢)
1 T
{jn 29]n71] e]n: (38d)
and
Yo = z;iIkIl:k) + z;gkll:k)
02 .1\ °2 _ . . —
= £cD (F1M07 + 2G1HOT) 2T 4+ (2EY 4 s UHONET 4 23, (39q)
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5. = 21(1k|k|1:k) . Zg:ucu:k) — E(EE{"“‘) + y_cgrl:u:k))’ (39h)

Mjn = 00 4 g0 = 3000 43 op (FO7) 2L 4+ CEET 18, (390)
=(klk)  =(klk|1:k) _ =(klk) F=(k|1:k)

0., =12 z; lkl1:k) z; " —Cx, . (394d)
Because the vector W is assembled from the observation model parameters (i.e. the indexed

elements C,, of C, the four gradients of Egs. (37a) and (37b) must be assembled from the partial

derivatives of their arguments with respect to each parameter. For example,

Ve (anm) =

0 pm 0pm  0Qpm 0 pm 0 anml T (40)

aC, 7 0C, 0Cy G, 3Gy,
Each placeholder variable's gradient is found accordingly. Evaluating the partial derivatives of

Egs. (37a) and (37b) gives the following:

aanm 1 1 aynm
= — > (12nYnml) 2tr<y (41a)
dCypq 2 nm " 3Gy,
0B 1( (aanm Y nm 08\
=—=| &7 yii - Yol & + Yrr8nm | (41b)
acpq 2 nmisnm anq anq mnm¥nm anq nmvnm
aejn 1 - aan
= Y2 ) P <n—1 @10
dCpq 2 in 3Gy,
O n 1 (06, om, o (m T
0Cpq B _§<9}Tnn]nl (anq - acpq n 0 aC n 19]71 ’ (41d)
and the final derivatives are given by:
]
a’;’”” C(zlmo +z(’"“‘))oT +0, (z(’"“‘) +z("'“‘))c , (42a)
G
aCnm _ Opq( (el1:k) | _(k|1 k))’ (42b)
rq
]
% =cziM0T + 0,28, (420)
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00;

J —(k|1:Kk)
= — . 42d
anq OPCI n ( )
In the above equations, the matrix 0, is defined as follows:
1 elementp,q
= 4
Opq {0 elsewhere (43)

These formulations are used to implement gradient descent and find the parameter vector
W, which minimizes the observation model objective function ISE; for observation k. While the
focus of this paper is not on particularly effective gradient-descent algorithms, the general process
is governed by the following recurrence relation:

(W) ir1 = (Wi — di[VeUSE)] lw=(w,),- (44)
The intuitive choice for seeding the algorithm is (¥,); = W,_,, as this has the best chance of
avoiding any anticipated non-convexities in the objective function which may result in
convergence to an erroneous local minimum.

Figure 3 demonstrates the principle of observation model correction via ISE)
minimization. The relevant Gaussian PDFs of an arbitrary 1-D example are shown and ISE), is
plotted as a function of the 1-D observation model parameter C. In this example, the ground-truth
state at step 2, X,, is identified by a delta function? at 5. This particular observation model with
linear bias C;r = 1.93 yields an observation whose PDF is given by the red Gaussian curve with
mean 1.93 X 5 = 9.65. Inverting this observation yields belief about x, which is shown by the
green Gaussian PDF. Note that in each of these steps, uncertainty has increased in keeping with
Egs. (25) and (29c). The PDF coming from prediction, p(x,|z,), is plotted in blue, while the
corrected state belief given by the fusion of p(x,|z,) and p(x,|z,) is given by the magenta curve,

p(x,|z1.2). Applying the principle of artificial re-observation to this PDF yields the cyan PDF.

2 The Dirac delta can also be thought of as a Gaussian with infinitesimal variance.
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Figure 3. a) Belief through multiple stages of SEAM represented as 1-D Gaussian PDFs; b) The objective function ISE}, plotted
over a range of observation model parameters C.

Model correction attempts to match the cyan PDF with the red PDF as was expressed
mathematically in Eq. (33). This objective function is plotted in green in the second part of the
figure, showing a minimum (blue) which improves the initial estimate of C (red) towards the
ground-truth value (black). The minimum of ISE; does not lie on C¢; as a result of the additive
noise introduced in the observation step. However, over several time steps, the observation model
parameter estimate tends to approach ground-truth because of the zero-mean-stationarity of sensor
noise.
6.3.3 Multiple Re-observation Error Minimization

As the dimensionality N of C increases, the length of the parameter vector W increases
byN2. Therefore, moderately high-dimensional problems mandate the optimization of much
higher-dimensional parameter vectors. For cases where N > 1, the previously formulated
objective function does not provide sufficient power to constrain unique convergence of all the
parameter estimates to ground-truth. For this reason, ISEj, is redefined to average the re-

observation error over multiple time steps:
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ISEh == f

Z

k

1 2

M+ 1 z (P(Zilfi) - p(zil(xilzl:i))) ]dz. (45)
i=k—M

The linearity of integration allows for the following simplification:
1 < ~ 2 1 <
ISEy = M—Hizzmjzf (P(Zi|xi) - P(Zil(xi|z1;i))) dz = M—HizzM(ISEh)i- (46)
The gradient of the multiple-time-step ISE), objective function is then given by the average of the

individual gradients coming from M past time steps:

k

1

P (ISEx) = 77 Z Vw(ISE,);. (47)
i=k—-M

6.3.4 Uncertainty Propagation

As presented in Egs. (22), (25), and (31c) of section 3.1, an estimate of the uncertainty X
in observation model parameters is required to accurately obtain observational belief. After the
mean sensor matrix C, is made available via gradient descent model correction, the corresponding
standard-deviation matrix is updated according to the following heuristic:

I, ®AZ¢,_, 0<A<1. (48)
This guarantees that the estimated uncertainty in observation model parameters continually

decreases following the power law A¥ to reflect the increasing accuracy with which €|, is estimated.
6.4 Results

In order to assess the ubiquity of the proposed framework and avoid the selection of only
special cases where it works, simulated experiments with randomly generated parameters were
conducted. Under this Monte-Carlo validation study, both 1-D and 2-D experiments were

simulated, including scenarios with both Gaussian and non-Gaussian belief.
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6.4.1 1-D Validation

A 1-D linear system was simulated with constant parameter values assigned as shown in
Table 1. C, is the initial estimate of the observation model parameter, with associated standard
deviation X, . d; is the gradient-descent step size (held constant here), and T is the gradient-descent
threshold parameter. The ground-truth parameter C; is randomly generated by sampling a normal
distribution: Csr ~ NV'(Co,Zc,). The 1-D linear discrete-time system has an exponential solution

which converges for A < 1. The system's step response is observed by setting u;, =1V k > 0.

Table 1. Constant parameters (1-D validation)

Agr Bgr  Co  Zo Iy Xo I, At %, d; T

0

0.98 1.3 1 eCy 0.01 2 0.09 0.025 0.01 0.001 0.0001

6.4.1.1 Uni-Gaussian Belief

For the simplest scenario where observational belief is represented by single Gaussians,
the proposed framework was compared with both the LKF and the AKF. These provide examples
of state estimation in which observation model uncertainty is not incorporated. In order to
demonstrate the performance of SEAM with observation model correction, two estimators were
deployed: the first incorporated observation model uncertainty but did not correct C (represented
by SEAM", while the second both accounted for model uncertainty and corrected C (represented
by SEAM™). Model correction was implemented using all available observations (M = k). Figure
4 gives a sample simulation (£, = 1, = 0.1,and A = 0.99).

In these plots, the red trace corresponds to the inverted observations (the means of
p(xk|zi)) coming from the SEAM™ estimator. While all the estimators have a smoothing effect on
the noisy sensor signal, all but SEAM™ have non-zero estimation error due to their inability to

invert observations based on a correct observation model. Although the sensor signal shown here
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Figure 4. State and error of noisy observations and estimated signals over time.

remains centered on ground-truth, strong fluctuations result in high root-mean-squared-error
(RMSE) and make any subsequent decision-making unreliable.
Figure 5 shows the trajectory of C Observation Model Parameter vs Time

for the same experiment of Fig. 4 as it is

corrected over time. The model parameter 095 |
estimate quickly improves, overshoots, and ©

is gradually refined as more observations 09t

become available. This improvement is w ——

0.85

reflected by the performance of the SEAM™ o 1 2 3 4 s & 7 8 o 10
estimator in the previous figure. For this F9ure 5. Observation model correction over time.
particular example, C;r = 0.8683, and the estimated observation model parameter was improved
180% from an initial estimate of C, = 1 to a final estimate of Cgz4y = 0.8690.

For a more comprehensive and quantitative assessment, 50 simulations were executed for
different combinations of model uncertainty X, and noise variance Z,,. Table 2 shows the percent
of trials each estimator won (L = LKF, A= AKF, S"=SEAM", and S* = SEAM". A few noteworthy

trends can be observed. First, as € increases, the SEAM estimators tend to outperform the Kalman
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filters as expected, because they account for the increased model uncertainty. This trend is
especially noticeable for high sensor noise. Furthermore, as the variance in sensor noise increases,
the estimators begin to perform fairly similarly, causing more spread in the distribution of winners.
Because the estimators have similar performance under strong sensor noise, a “win” becomes less

meaningful. For example, in a simulation where X, = 7.5, the RMSEs are

[1.07 1.32 0.79 1.22], whereas a sample simulation with X, = 12  gives

[11.09 11.19 2.70 1.11]. The average RMSE values of the KF estimators are sometimes actually

lower under high sensor noise because X,, begins to dominate observational uncertainty, making

overconfidence in the observation model parameters less penalizing.

Table 2. Parametric sensitivity study for 1-D Gaussian estimation

&
0.1 0.15 0.2 0.25

L 0% | L 0% L 0% | L 0%

0.52 A 0% | A 0% [ A 0% | A 0%
' S 16% | S 28% | S 26% | S 26%
S" 84% | ST T72% | S* 74% | ST 74%

L 2% | L 0% L 0% | L 2%

12 A 0% | A 0% | A 0% | A 0%
S 8% | S 22% | S 16% | S 24%

S" 90% | ST 78% | ST 84% | ST 74%

L 2% | L 2% L 4% | L 0%

5 5 52 A 2% | A 0% [ A 0% | A 2%
v ' S 12% | S 14% | S 12% | S 26%
S* 84% | ST 84% | ST 84% | ST T72%

L 30%| L 22% | L 10% | L 6%

52 A 0% | A 2% | A 0% | A 0%
S 6% | S 2% | S 30%| S 38%

S* 64% | ST 56% | S° 60% | ST 56%

L 74% | L 60% | L 36% | L 34%

752 A 2% | A 0% | A 4% | A 2%
' S 6% | S 16% | S 44% | S 58%
S* 18% | ST 24% | ST 16% | ST 6%
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A final important comment regarding Table 2 explains the unexpected phenomenon that
the performance of the proposed approach actually tends to decrease as model uncertainty
increases. Because the initial model parameter estimates are further from ground-truth under this
condition, it takes more time for the parameter estimate to converge. As a result, the first few
seconds of simulation yield higher RMSE values which tend to overshadow the improved RMSE
of the latter portion of simulation. This is demonstrated by Fig. 6 in the plot of a sample simulation
for the severe scenario where X, = 7.5% and & = 0.25. (As a side-note, the AKF sometimes
performs worse than the LKF due to poor conditioning of the randomly generated covariances. In

cases where this is not an issue, estimation is improved as expected.)
Estimation Error vs Time
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Figure 6. Estimation using SEAM* improves over time, while other estimators generally yield constant error.

To further demonstrate the ability of the proposed framework to correct observation model
parameters, a series of ensemble curves were generated to show estimation subject to initial
estimates of C; with varying levels of error. The error plots and model parameter plots are shown
in Fig. 7. As the figure shows, initial estimates within approximately +50% of ground truth
converge quickly, in about 7 seconds. Larger initial errors tend to take much more time, generally
longer than the 15 seconds afforded in simulation, to begin to approach an improved observation

model estimate. This is likely due to a combination of sub-optimal gradient-descent parameter
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tuning and the general non-convexity of even Gaussian model correction based on ISE,
minimization. Nevertheless, the efficacy of the proposed model correction approach is clearly

demonstrated by the plots.
Estimation Error vs Time Observation Model Parameter vs Time
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Figure 7. Ensemble curves demonstrating the convergence of observation model parameters for several initial estimates of C.
Note the failure of six simulations to converge C in both plots due to particularly poor initial estimates.

6.4.1.2 Multi-Gaussian Belief

In order to avoid potential problems of severe non-convexity in ISE; minimization for
multi-Gaussian validation, §; and cj(k'k) were chosen so that p(z,|x;) was near-Gaussian for the

majority of these validative tests. Figure 8 shows the PDFs corresponding to the first time step of

two different simulated experiments. The first employs a more strongly non-Gaussian observation

| 35 | _
35 — Ty
| f plz2|#2)
3 3r ‘ p(xa|22)
o I - | p(zal1)
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g a5l E 25| | ‘P(-’fz 31.2)h
i |‘ o ‘ p(z2|(z2]z12))|
A [SE
B 20 | oy |
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Figure 8. PDFs of different stages of belief for one time step. The first plot models multi-Gaussian observations using cj(k'f‘) =

0.6,0.1,0.3]and §; = [—2.5,0, 2.5], while the second plot uses using c.(k'f‘) = [1/3,1/3,1/3]and §; = [—1.5,0, 1.5]. Both
J j J
use Cgr ~ N (1,0.12) in this example.
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model, while model used for validation in this section. In simulation, a generated observation Z,,

is drawn from its multi-Gaussian distribution by using its inverse cumulative distribution function
(CDF). The estimated uncertainty in that observation is characterized by covariances Zg‘ Ik, given

by Eg. (25) and implemented according to Eq. (27). The means of the Gaussian components are

(klk)

approximated by Eg. (26). Obtaining the weighting coefficients cjk is trivial, as these come

directly from off-line model characterization.

The nature of non-Gaussian belief is such that the estimated state cannot be adequately
summarized by a single state vector. For this reason, state-time and error-time plots are
unobtainable in such problems. Also, non-Gaussian estimation cannot be compared with KF
approaches because the latter require Gaussian belief. However, the primary aim of this paper is
to prove the efficacy of observation model parameter correction; comparing estimation
performance is only secondary. For several Monte-Carlo simulated non-Gaussian experiments,
ensemble curves were generated to show the convergence of the 1-D observation model parameter

C toward ground-truth, as in the second plot of Fig. 7. Again, the constants of Table 1 were used,

Observation Model Parameter vs Time

with time spanning from 0 to 15 16 -

seconds, X, = 1, M =k, and

A = 0.98. These curves are

shown in Fig. 9 below.

In similar fashion to the
Gaussian example of Fig. 7,

convergence occurs quickly for

relatively low initial parameter

estimate error, but takes more Figure 9. Non-Gaussian observation model correction over time.
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time for more severe initial error. In fact, non-Gaussian convergence appears to be, on average,
more efficient. This is likely due only to improved parameter tuning (i.e. 1 was decreased to 0.98
which can have a substantial effect over 600 time steps). This implies that improved performance
could be achieved in general with more attention to parameter tuning.

In order to test the limits of the proposed method of non-Gaussian observation model
correction on a 1-D system, the ability of the framework to improve C was assessed for
combinations of two extreme cases: highly non-Gaussian PDFs and highly inaccurate initial
estimates C,. While not fully quantitative due to the vastness of the potential parameter space over
which model correction might be assessed, this study gives valuable insight into the sensitivities
of the framework. Figure 10 summarizes these findings. Model correction was impressively

capable of handling even a tri-modal observation PDF p(z;|x;) when & was low, though

[ 1\ . WA
“ — s ; " p — SNV

>
Non-Gaussian Observation

Figure 10. Dependency of model correction on model inaccuracy and non-Gaussian severity.
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improvements in the estimate of C were slow and did not completely converge in the simulation
time allotted. However, neither Gaussian nor non-Gaussian model correction succeeded for high
€. As is generally true with non-convex gradient-based optimization, success is highly dependent
on a good initial parameter estimate.
6.4.2 2-D Validation

In order to study the multi-dimensionality of the proposed framework, the four

aforementioned estimators were applied in two dimensions. The simulation consisted of a linear
mass-spring-damper (MSD) system which can be represented as a first-order 2-D ordinary
differential equation (ODE). For this arbitrary system, the continuous-time motion model matrices
A and B were assigned the following parameter values:
0 1

k b ] B =

A=

0 0
kbl )

m m m m

where k is a stiffness coefficient, b is a damping coefficient, and m is a mass. These linear motion
model matrices can then be converted to discrete-time by use of the matrix exponential.

The unforced response of the system to initial conditions x, was observed and estimated
for 100 different trials where the ground-truth observation model matrix C;r was randomly
generated according to N(CO,ZCO). Again, C, is the initial model estimate with element-wise
standard deviations given by Z. . For the sake of simplicity, a Gaussian observation model was
used here. Table 3 gives all arbitrarily chosen parameter values used in these experiments.

Results of a sample simulation are given in Figs. 11 and 12. As Fig. 11 demonstrates, the
error in the two SEAM estimator’ signals is low compared to unfiltered observations and Kalman-
filtered signals. Specifically, SEAM with observation model correction outperforms all other

estimators in this simulation simply because model parameter estimates are improved over time.
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This is also particularly evident in the first plot of Fig. 12. Though Csg4p approaches C;r more
slowly and stochastically than in the 1-D examples, likely due to the fourfold increase in degrees
of freedom, there is clear improvement by the end of the ten-second simulation. This is also

reflected in the average reduction in ISE; over time, as shown in the second plot.

Table 3. Constant parameters

k b m A M At d; T
10 N/m 5 Ns/m 2 kg 0.99 50 0.03s 0.05 5-107°
xo Z.X'O CO zCO
[10] 12 02 ] 1 2] [0.5 0.5
0 02 0.32 3 4 0.5 0.5

Iy z,
[ 0.012 0.0022] 0.1- 0.62 0.12 ]
0.0022 0.0152 . 0.12 0.572
Time-domain Signals Estimation Error vs Time
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Figure 11. 2-D time domain signal and error plots.

For the 100 randomly generated simulations, the median percent erroratt = 0 and t = 10
(k = 334) in the elements of Csz 4, Was recorded, as well as the percent of trials for which there

was improvement by the end of simulation. These findings are recorded in Table 4 below. In
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Figure 12. 2-D observation model matrix and ISE}, over time.

addition, the median RMSE scores and percentage of wins corresponding to each of the four

estimators are reported in Table 5.

Table 4. Percent errors in observation model parameters for 100 trials

%C14 %C12 %C>1 %C>2
k=0 32.38 16.21 11.64 7.36
k =334 21.10 12.38 16.30 10.88
% Improvement 61 57 38 39

As evidenced by Table 4, model correction tends to improve parameter estimates more
reliably when initial error is not too small. Parameters C,; and C,;, were often improved due to
their substantial average initial inaccuracy, while improvement in C,, and C,, was less reliable
because those parameters were not as inaccurate on average. This supports an intuitive
understanding of gradient-descent error minimization, in that gradient sensitivity is lower with
respect to variables with less error than those with greater error. Furthermore, in reference to Table
5, it is apparent that SEAM-plus-model-correction handily outperforms traditional estimators.

Though model correction may not always improve a model estimate towards ground-truth in a
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timely fashion, this evidence suggests that model correction does reliably yield a set of parameters
that reduces estimation error, satisfying the overall objective of SEAM.

The above observations are further supported by the plots in Fig. 13 below. As the first plot
shows, there is a clear proportional relationship between the error in C at the end of each trial and
the RMSE estimation error. This is the motivating factor in model correction and is, of course, to
be expected. In the second plot, note that the majority of points lie above the x-axis, indicating that
estimation was improved for the majority of trials by implementing model correction.
Furthermore, because most of these points lie in the upper-right quadrant, it is clear that estimation

improves most often when the percent-error in C reduces.
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Figure 13. Error plots representing data acquired over 100 stochastic 2-D simulations.
6.5 Conclusions and Future Work

This paper has developed a framework for simultaneous estimation and observation model
correction, allowing for non-Gaussian belief in multiple dimensions. The approach demonstrates
effectiveness in the various proof-of-concept simulations detailed above, consisting of Gaussian
and non-Gaussian trials in 1 and 2 dimensions. The proposed technique formulates observational
uncertainty by incorporating uncertainties in model parameters, in addition to recursively updating

those parameter estimates. According to the results obtained through Monte Carlo simulations,
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even just accounting for increased uncertainty resulted in improved state estimation as compared
to more traditional Kalman-based approaches. By incorporating model correction, estimation was
improved even further, in keeping with the hypothesized advantages of the proposed framework.
Though this work shows promise, current limitations warrant future efforts to refine and
develop the efficiency, accuracy, and ubiquity of the framework. The linear observation model
considered here, though common in real-world problems, does not apply to all potentially useful
contexts. As such, derivations for belief propagation under generally nonlinear observation models
are warranted. Even for a linear observation model, only a square and invertible € matrix was
addressed here; inverse observation for non-square observation matrices has yet to be formulated
under this framework. Furthermore, the implications of state observability are not yet well known
with regards to this work. Finally, major improvements can be made in gradient-descent algorithms
for fast ISE;, minimization as presented in this paper. The proof-of-concept simulations carried
out in the results section employed the most basic form of linear gradient-descent to minimize state
re-observation error. More advanced methods hold promise for improved efficiency in the model

correction stage. SDG
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CHAPTER 7. Generalized Simultaneous Estimation and Modeling

7.1 Introduction

7.1.1 Background

In real-world science and engineering systems, nothing can be known with complete
certainty. Even for highly deterministic processes, randomness is injected by compounding factors
that cannot be isolated from a system of interest. Furthermore, our ability to measure a system's
states is impaired by the intrinsic limitations of our physical sensors. State estimation techniques
have emerged in recent decades with the goal of overcoming these fundamental barriers. The
abilities of probabilistic methods to accomplish state estimation are ever-growing, Yyet
comprehensive frameworks for solving some of the most complex problems are still elusive.
7.1.2 Related Work

One of the most general probabilistic estimation frameworks is known as recursive
Bayesian estimation (RBE), or often just Bayesian estimation [1]. RBE leverages predictions and
observations of a system’s state to provide a corrected probabilistic estimate of that state. State
estimates are propagated through RBE by probability distribution functions (PDFs) which are used
to mathematically represent what is termed here state belief. Predictions rely on a mathematical
model of the system at hand [2], while observations come from some sensor or observer [3] which
can also be modeled mathematically [4]. These models are usually derived from governing
differential equations, which are commonly nonlinear [5]. Oftentimes, these models or the
parameters composing them are not well known [6]. Furthermore, state belief can sometimes be
highly non-Gaussian, and even multi-modal [7]. The following review of literature addresses

related works which have investigated each of these complexities in RBE.
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State belief is commonly represented by the Gaussian, or normal, distribution [8]. Under
the Gaussian assumption, a family of popular estimators arises, known as Kalman filters (KFs).
The original linear Kalman filter (LKF) was first proposed in 1960 by R. E. Kalman [9]. For
nonlinear problems, other variants began to arise, such as the extended KF (EKF) [10], unscented
KF (UKF) [11], and the square-root cubature Kalman filter (SRCKF) [12]. Other versions
including the ensemble KF (EnKF) [13] and Schmidt-Kalman filter [14] have been proposed to
handle increased uncertainty. While these filters successfully handle estimation in their designed
contexts, most rely on Gaussian assumptions. Furthermore, there is a general assumption that
predictive model parameters are known with complete confidence, an assumption which may not
always be correct.

Non-Gaussian RBE is primarily accomplished by sampling techniques. The first of such
approaches is the well-known sequential Monte-Carlo, or particle, filter [15], [16]. This non-
Gaussian approximator relies on belief propagation through randomly generated weighted
particles. A similar approach, often known as the grid-based filter [17], implements the equations
of RBE for grid cells in a discretized belief space. Another approach employs a bootstrap filter to
sample a non-Gaussian PDF and propagate nonlinear belief according to the rules of RBE [18].
Finally, the multi-Gaussian approach proposed by Alspach, et al. [8] and expanded upon by
Steckenrider, et al. [7] approximates non-Gaussian PDFs with weighted Gaussian sums and applies
the equations of RBE to each Gaussian. This technique both reduces computational demand and
increases accuracy, allowing for lossless non-Gaussian belief propagation. A similar approach
proposed for handling non-Gaussian outliers in nonlinear estimation was proposed by Stojanovic
[19], but this framework is only shown to handle uni-modal belief and does not address non-

Gaussian prediction.
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Because RBE is highly dependent on the accuracy of the equations and parameters used to
model a system, system identification is a critical component of state estimation. This is usually
done offline, either theoretically from first principles [20], or experimentally using frequency-
response methods [21] or the like. Some techniques are also capable of estimation when there is
uncertainty in model parameters [22]; the adaptive extended KF (AEKF) [23], [24] was developed
to address ill-defined uncertainties in nonlinear contexts. However, only a few methods [25], [26]
actually incorporate parametric uncertainties in state estimation. Sensitivity methods have proven
capable of online system identification [27], [28], [29], but these frameworks usually aim to
characterize finite-element models by leveraging summary characteristics like mode shapes and
natural frequencies. Adaptive parameter estimation is accomplished by Oh, et al. [30], though this
work relies on linear and Gaussian assumptions. Algorithms proposed by Liu [5] and Pan [31] are
capable of controlling systems with uncertainty in nonlinear models, but these frameworks are not
estimation-oriented, as they do not incorporate sensor or process noise. Other recent achievements
have been made in both functional and parametric real-time model estimation [32], [33], but such
approaches do not incorporate non-Gaussian belief. Similar techniques have been developed for
joint state and parameter estimation [6], allowing for lightly non-Gaussian sensor noise. However,
these methods do not implicitly extract model parameter estimates from state observations alone.
This is accomplished by a non-Gaussian variant [7] of the Simultaneous Estimation and Modeling
(SEAM) framework proposed by Steckenrider, et al. [34] which accounts for parametric
uncertainty but does not allow for nonlinear motion models. In general, most existing methods
assume a system is linear, state belief is Gaussian, motion models are accurate, or some

combination of these.
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7.1.3 Objectives and Outline

In light of the limitations of established work, this paper presents a generalization of non-
Gaussian SEAM for nonlinear state-space problems. The two primary original contributions of the
proposed framework include: 1) formulations for nonlinear estimation which incorporate model
uncertainty, and 2) a nonlinear model correction stage. The paper is organized as follows: section
7.2 reviews fundamental concepts essential to the original contributions, which are developed in
section 7.3. Results are given in section 7.4, and section 7.5 presents some conclusions and future
work related to these efforts.
7.2 Estimation and Motion Model Correction
7.2.1 Recursive Bayesian Estimation

RBE consists of prediction, observation, and correction stages. In the following
developments, the term belief is used to describe the PDF of a stochastic state vector x € X. The
formulations of RBE make no assumptions about the forms of PDFs describing state belief.
7.2.1.1 Prediction

The prediction stage propagates state belief from step k — 1 to step k according to a motion
model describing the underlying system whose state is being estimated. Let p(x,_;|2;.,_,) be the
a priori PDF describing belief about the state given all prior observations z;._,. Furthermore, let
p(x,|x,_,) be a PDF which governs the transition of the state from one step to the next. The

continuous Chapman-Kolmogorov equation gives p(x|z,.x—1), the predicted PDF, by:

p(xlzip-1) = fp(xk—1|Z1:k—1)p(xk|xk—1)dxk—1- (1)
X

Note that, for Markovian processes with independent increments, p(xy|xx-1) = p(X) — Xk—1),

and Eq. (1) becomes a convolution integral.
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7.2.1.2 Observation

The observation stage is responsible for deriving the observed PDF, p(x,|z;), given an
observation or measurement z,. Such an observation often comes from a physical sensor which
may be characterized by some model with certain intrinsic parameters. Obtaining p(x,|z;), then,
requires some context-specific manipulation of such an observation model.
7.2.1.3 Correction

The correction stage fuses predicted and observed belief, resulting in a PDF with less
uncertainty than either p(x;|z;.,_1) or p(xx|z,). The corrected, or a posteriori, PDF p(x)|2;.;)
is given by

p(xklzi)p(xi|Z1.4—1)
fx P (il 2 )p (x| 211 ) d Xy

(2)

p(xilzy) =

The most common form of a PDF composing belief in RBE is the Gaussian distribution. A
multivariate Gaussian PDF is defined by only two parameters, a mean vector x and a covariance

matrix X,.:
B 1 1 _ _
Nx;x,2,) = ———exp| —=(x—-0)TZ 1 (x—X) |, 3)
|27, | 2

It is well known that the product of two Gaussians yields a third unnormalized Gaussian.
Therefore, if the predicted and observed PDFs are given by weighted Gaussian sums (or multi-

Gaussian distributions) of the following form:

I
(i |Zr1) :Z (k|1:k— 1)]\/'( (k|1k 1) z(k|1k 1)), (4a)

i=1

@Mzk:: MO (a7, 281), (4b)

||'M\.

the corrected PDF will also be multi-Gaussian:
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k|1:k—1) (k|k)  (k|1:k—-1,k . =(k|1:k—-1k k|l:k—-1,k
p(x|z1.) = z (kftik=) (el . & )N( % ), ))
=1 j=1

i

Z (’"“‘)N K11 z(kuk)), (5)
where
cklik=1k) _ —(k|1:k=1) , —(k|k) (k|1:k—1) (k|k)
c! = (% ;0 g +2U19), (6a)
(kltk=1)) _ [(w1-1))"1 o 1"
£ [(zxi )+ (z89) ] , (6b)
-1 -1
—(k|Lk-1k) _ «(k|1:k—1,k) (k|1:k—1) —(k|1:k—1) (k|k) —(k|k)
X =Xy, [(in ) X + (ij ) X ] (60)

7.2.2 Kalman Estimation
Kalman filters take advantage of the properties of Gaussian PDFs by propagating only the
mean vectors and covariance matrices through the stages of RBE.
7.2.2.1 The Extended Kalman Filter
Let a system be represented by a generally nonlinear state-space motion model:
X = f(Xpoq, Up—1) + Wiy (7

where w;,_, is a zero-mean Gaussian random vector with covariance X and uy_, is an input.

Wk-1

The mean and covariance are given in prediction by the EKF as:
Xij1:k-1 = f(fk—1|1:k—1:uk—1): (8a)
zxk|1:k—1 =]f2xk_1|1:k_1]§ +2y, (8b)
where J ¢ is the following Jacobian matrix:

Of (Xp—1, Up—1)
0Xj—1

]f = (9)

Xk-1|1:k-1Uk—-1
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Let the sensor or observer be modeled according to the following generally nonlinear
equation:

z; = h(xy) + vy, (10)

where v, is a zero-mean Gaussian random vector with covariance Z,, . Correction is given by the

following formulas:
X1k = Xij1:k—1 + Ki (Zk - h(7k|1:k—1)): (11a)
2:xk|1:k =~ Kk]h)zxku:k—l’ (11b)

where the Kalman gain K, is given by:

-1
Ky = zxk|1:k—1 ;l (]hzxk|1:k—1 le + zvk) ’ (12)
and
oh(xy)
= 13
= om | (13)
|1:k—1

As these equations demonstrate, though the EKF may effectively reduce sensitivity to
sensor and system (process) noise by incorporating their covariances, it does not account for
uncertainties in intrinsic model parameters. If such parameters are in reality random variables but
are treated as well-defined constants, state estimation will suffer.
7.2.2.2 The Adaptive Extended Kalman Filter

The adaptive extended Kalman filter (AEKF) aims to improve on the EKF in cases where
uncertainty in prediction and observation is underestimated. This is accomplished by adapting the
covariances X, and X, over the course of estimation. One common formulation for adapting

these matrix parameters is given as follows:

zvk = Gv _]hzxk|1:k_1 Z' (14(1)
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1

Gv = M ”Zk—m - h(jk—mu:k—m—l)”z' (14b)
m=1

Z,, =Vaz,, (14¢)

L (T ) (14d)

tr (JnEnyun b))
Propagation of the state mean and covariance still follows Eqgs. (8) and (11). Though the AEKF
captures potentially increased uncertainty in estimation, it does not specifically address the
uncertainty coming from a potentially inadequate estimate of model parameters. Consequently,
any model mismatch will cause non-zero-mean estimation error.
7.2.3 Linear Motion Model Correction
In order to rectify the problem of model mismatch in estimation, SEAM both incorporates
parameter uncertainty and corrects parameter estimates during the course of estimation. Under a
generalized SEAM framework, non-Gaussian PDFs are approximated by multi-Gaussian
distributions. Belief is then propagated by applying the stages of RBE to channels of mean vectors,
covariance matrices, and weighting coefficients.
A linear system is generally represented by the following state-space motion and
observation models:
Xy = Axy_1 + Bu_, +wy_4, (15a)
z, = Cxp + vy (15b)
The mean in prediction is given by the means of all involved variables as shown in Eg. (16a)
below. Uncertainties in the motion model parameters A and B and xj_,, u,_;, and w;_, are
incorporated in prediction by the covariance formula of Eqg. (16b) below.

Xj1k—1 = Zk—lfk—lu:k—l + By_1 Uy, (16a)
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2:xk|1:k—1 - sz—1 + Ak—lzxk—1|1:k—1Ak—1 + Bk—lzuk—1Bk—1
+2a0  D(F1ja-1)Zh,, + 25, DAL DIE, . (16b)

Here, X,,_, and Zp _ are matrices containing the standard deviations of the corresponding
elements in the mean matrices A,_, and B,_,, the operation D(e) diagonalizes its vector
argument, and (¢)°2 denotes the element-wise multiplication of a vector with itself. Under a multi-
Gaussian representation of belief, Eqgs. (16) are applied to each Gaussian component in the
distribution.

The motion model correction approach of [7] applies to non-Gaussian belief and addresses
correction of the linear motion model parameters A and B. This is accomplished by minimizing

an objective function, defined as the integrated-squared-error (ISE):
2
ISE = [ (p(telzis) — pOxilzs) d (17)
X

Under this approach, model correction becomes an optimization problem which is solved using
gradient-descent. The gradient of the ISE is taken with respect to all involved motion model
parameters and used to iteratively improve these parameters.

Because existing SEAM formulations apply only to linear estimation problems, a
comprehensive nonlinear/non-Gaussian SEAM framework has not yet been established. The
following section describes the original contributions of this work in generalizing SEAM to such

contexts.

174



7.3 Nonlinear Estimation and Motion Model Correction
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Figure 1. Nonlinear SEAM framework.

Figure 1 summarizes the SEAM framework as proposed for application to generally nonlinear
problems. The original contributions detailed in this section include formulations for extended
uncertainty propagation and nonlinear motion model correction.
7.3.1 Nonlinear Estimation with Extended Uncertainty Propagation

Let a nonlinear system be described by the following state-space model:

X = f(Xpo1, ey, Preog) + Wiy, (18)
where @, _, is a vector of motion model parameters determined by the system at hand. In contrast
with Eq. (7), it is critical here to explicitly consider the functional dependence of a system on its
model parameters. Because additive noise is assumed to be zero-mean, the mean in prediction can
be given by:

7k|1:k—1 = f(fk—1|1:k—1:ﬁk—1:i’k—1)- (19)
The covariance is then:
)

=% +3 (20)

Xk|1:k—1 Wg—1*
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By error propagation, the covariance matrix X corresponding to f (xj_q, Uy_1, ®x_1) requires
three terms in order to address uncertainty in xj,_,, u;_,, and @, _;:
L, =% 2Ty gu ul 4 jx, Jo7 21
r = Exapwedf TR Jf Y5 e Jf (21)
where

_ af(xk—b Uy, Pp_1)
0Xp—1

J ) (22a)

Xk—11:k-1Uk-1.Pr-1

_ Of (Xp—1, Up—q, P—1)
ouy_y

I , (22b)

Xk—11:k-1Uk-1.Pr-1

Je = Of (Xp—1, Up—1, Ppe—1)
! 0@y

(22¢)

X—1|1:k-18k—1Pr—1
It can be shown that Eq. (16b) is a simpler linear result of this formulation that assumes the co-
variance between individual model parameters is zero. Furthermore, Kalman filters assume

X = 0 and Z4 = 0. In cases where there is some uncertainty in the control effort and/or model

Uk—1
parameters, the second two terms of Eq. (21) are non-negligible and prediction under a Kalman
filter becomes overconfident.

When belief is multi-Gaussian, the mean and covariance propagation of Egs. (19)-(22) are
applied to each Gaussian component in the a priori PDF. An observation PDF may also have a
multi-Gaussian form, depending on specific sensor characteristics. Correction then consists of the
fusion of the predicted and observed PDFs according to Egs. (5) and (6) to yield a multi-Gaussian
a posteriori PDF.

7.3.2 Nonlinear Motion Model Correction

In order to correct nonlinear motion model parameters @, at step k, we seek to minimize

an integrated-squared-error objective function:
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@, = argmin(ISE). (23)
@

Let the ISE be defined as in Eq. (17). This objective function is chosen over other potential
functions (e.g. the Kullback-Leibler Divergence of p(x|z;.,—,) from p(x,|z,.)) because 1) it
provides a symmetrical assessment of the similarity between the two PDFs, and 2) it requires only
addition, subtraction, multiplication, and integration of PDFs. In order to handle non-Gaussian
belief, let p(x;|z1.4—1) and p(xy|z,.,) be given by the general multi-Gaussian distributions of

Egs. (4a) and (5). The ISE then becomes:

ISE = j Z (el 1k 1)N —(k|1k 1),z§1:|1k 1))

2

z (k|1: k)N _(k|1 k) 2.‘(k|1 k)) dx. (24)

(k|1:k) —(k|1:k) and 2,‘(k|1 k)

In the above expression, the variables c,, , X, which define corrected belief

are treated as constants obtained by the correction stage of RBE. This is because p(xy|z,.) is a
better estimate of x; which acts as a reference PDF to which p(x|z;.,_;) must be matched by
adjusting ®.

By 1) expanding the square, 2) leveraging the fact that the products of each Gaussian sum

is another Gaussian sum, and 3) reducing integrals of Gaussians because fx]\f (x;x,2,)dx =1,

the ISE becomes:

I 1 I
ISE :zzc k|1:k—1) (k|1k 1) L(lk|1k 1,1:k—-1) ZZ (k|1k 1) r(zkllk)cz(r’fllk 1,1:k)

i=11=1 i=1n=
1J 1
_I_z Z (k| 1:k) (k|1k)c151;|11k1k) (25)
n=1m=
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The mixed weighting coefficients c;;, c¢;,, and c,,, are given as Gaussians by Eq. 6a). These
coefficients arise from the product of p (xy|z,.,—1) with itself, p(xy|z1.x—1) With p(x)|z;.,), and
p(xy|z.) with itself, respectively. Finding motion model parameters which minimize the ISE

requires taking its gradient with respect to &:

I
k|1:k—1) (k|1:k—1 k|1:k—1,1:k—-1
Ve (ISE) = ZC(I ) )V(fz| ))

1
i=11=1

1
_ZZZ (k|1:k—1) (k|1k)‘7 ( (k|1:k— 11k)) (26)

i=1n=

Because only p(x,|z,.,_,) depends directly on the motion model via prediction, the coefficient
Cnm 1S NOt functionally dependent on & and so the third term of the ISE does not contribute to the
gradient.

As Eq. (26) shows, the gradient of the ISE contains many terms, each of which is a complex
function of &. For this reason, a closed-form solution for the model parameters which minimize
the ISE is intractable and a gradient-descent approach is instead considered. Because c; and c;,
are given by Gaussians of the form a;exp(B;;) and €;exp({;;), respectively, their gradients are

given by the chain rule as follows:

Vo  C ( (el ikt 1k 1)) = exp(Bu) (Vo (ay) + @y Vo (Bi)), (27a)
Vo (e %) = exp(Gin) (Vo (i) + €mVa Gin)). (27b)
where
1 1
ay = (12my, )72, B = ) 8, vu ‘o, (28a)
1 1
n = (|27T71m|) 2, (in = 2 emnm em' (28b)
and
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Yi _z(k|1k 1) +z(k|1k n (29a)

5, = 7(k|1k 1) fl(ku:k_l)’ (29b)
i = 2:g(czic|1;k—1) n 2:J(lelll:k), (29¢)
0, = Y5k|1:k—1) _ Y;kll:k)_ (294d)

In Egs. (29), only variables with i and j subscripts are implicit functions of the motion model.
These functional relationships are given by prediction according to Egs. (19)-(22).
The four gradients of Egs. (27) are assembled from the partial derivatives with respect to

each model parameter. For example,

aau aau aail aail ]T

Vo (ay) = 30
) = (5o, G0, 0®(q) 0% (o) GO

where @ is a Q X 1 vector and @, is the q*" element. These partial derivatives are given by the

chain and product rules as follows:

aaqc:(ié) = ——(|2nylz|) 2r <Yu aaq):(i;)) (31a)
aaqf(i;) = —%(65)@1 (aaqii;) - a?,,(i;) Y{ll&-z> + < af(i;)Ty{zl&u), (31b)
aaqiz) = — 2 (12mm ) 2 <nm :g:)) (310)
o =2 (ns gy ton) + () o). 10

The remaining partial derivatives depend on the particular motion model at hand.
The gradient of the ISE informs a gradient-descent algorithm which is governed by the

following recurrence relation:

((T)k)i+1 = (q_’k)i —d; [VcB(ISE)“cp:(cT)k)i- (32)

179



This recurrence is repeated until the gradient vector becomes sufficiently small, as specified by
some threshold. The step size d; can be determined by any number of existing gradient-descent
algorithms. Because the objective function is generally non-convex, it is critical to initialize
gradient-descent with a good starting estimate. In practice, letting (®,), = ®;_, often works
well.

In multi-dimensional problems, minimization of the ISE corresponding to the single most
recent state transition is generally not sufficient to guarantee convergence of estimated motion
model parameters to ground-truth. For this reason, the objective function is redefined as the
average of the M most recent state transitions:

ISE=]

X

k
%4.1 Z (P(xi|Z1:i—1) - P(xi|Z1;i))2] dx. (33)

i=k—-M

After some simplification, it can be shown that the gradient of the average ISE is the average of

the ISEs of the M most recent state transitions:

k

1

Vo(SE) = 7~ Z Vo (ISE)). (34)
i=k—M

The value of M used in motion model correction can be determined for a given context, but it is
generally necessary to increase M as the dimensionality of the problem increases.

As the third term of Eq. (21) shows, having an estimate of the uncertainty in motion model
parameters (X4) is a critical part of the SEAM framework. Because these parameters are constantly
being improved in the course of estimation, X4 ought to continuously reflect this increasing
certainty. While a number of approximations may be considered, a heuristic one is described here

for implementation. By letting X4, = AZg, . With 0 <A <1, motion model parameter

uncertainty is guaranteed to decrease over time, with a rate determined by the power law A*.
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7.3.3 Representative Nonlinear System Derivation
Thus far, enhanced estimation and motion model éib/
correction of nonlinear state-space systems have been formulated. 9

The equations presented until this point apply to any general l

nonlinear system subject to non-Gaussian belief. Without entering
into a specific context, derivations cannot develop further. For the :
mgsing

purpose of validating this framework in the results section, this mgcosf

sub-section derives the common instructive nonlinear system of a igure 2. Pendulumn:sn
pendulum in the large-angle regime. Figure 2 shows the free-body diagram (FBD) of a pendulum,
where m is the mass of the hanging object, [ is the length of the string, and b is a coefficient
accounting for frictional losses at the point of attachment and due to drag. By summing the
moments about the point of attachment, the following continuous-time unforced equation of
motion is obtained:

mi?0(t) + bO(t) + mglsinf(t) = 0. (35)
In order to apply the SEAM framework to such a system, this differential equation must be
discretized.

Let the continuous-time variables 8(t), 8(t), and 8(t) at a time step k be approximated

by the following:

_ T ooy Oren — 20,41 + 0
6U) =6, 60 =T, 6 =2 (36)
By substitution and rearrangement, Eq. (35) becomes:
ml? ml? b ml? b _
F 0k+2 - ZF - E 9k+1 + F - E 9k + mngll’le = 0. (37)
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Let X35 = Opi2, Xok = Oky1 = X3x—1, aNd X1, = O = x5 4. After solving Eq. (37) for 6.,

and substituting, this system of equations can be written in matrix form as:

0 1 0
X X
xl,k o 0 1,k—1 0 ”
xz,k = bAt xzzc 1 gAt . (38)
3k 0 (W_ mlz 3k-1 —Tsm(ka 1

In order to eliminate redundancies in this equation, the first state is eliminated and the states are

renamed:

bAt bAt Lk 1
RS TES YR s Y PO R
This state-space equation governing the discretized nonlinear pendulum system can be represented
more efficiently as:

Xk = Axk_1 + b(xk_l). (40)

Let the angular position and velocity be the outputs of interest. From the first two equations

of (36), the output equation is given by:

1 0
Zl,k] [ 1 1 [xl k]
] = (41)
Z _— X
2k At At E
or more succinctly,
zZ, = ka. (42)

Because x ; is just a time-shifted version of x, , estimation of these signals is ill-posed.
In order to directly estimate the angular position and velocity, Egs. (40) and (42) can be combined:
z; = C(Axp_, + b(xy_1)) = CAxy_; + Cb(x;_,). (43)

Next, substitute x,_, = C~1z,_, into Eq. (43):

Z, = CAC_lzk_l + Cb(C_lzk_l). (44)
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Finally, in order to give this a more compact state equation appearance as in Eq. (40), variables
are redefined as follows: x;, = z;,, x;,_; = Z4_1, A = CAC™ %, and b(x,_,;) = Cb(C™1z,_,). In
full matrix form, this nonlinear state-space equation is now:

0
xlk 1,k-1
bAt
x2 k] [O 1-— —] Zk—l] + [— %Sin(xllk_l + Atxz'k_l)l ) (45)

In terms of placeholder variables,

_ %11 Q12
_'[a21 azz], (46a)
b(xi—y) o 46b
Th-1) = bysin(xyg_q + Atxy_q)| (46b)
bAt g
Whel’e a1 = 1 a1 = At a1 = 0 ayy = 1-— 12, b1 = 0, aﬂd bz = _7
For this nonlinear system, the Jacobians of Egs. (22) are given by:
Jf = A+ The_ (47a)
JF =0, (47b)
xl_ 0 1 0
J} = ’;) o (47¢)
X._, 0 ﬂn(ka 1+ Atxy g 1)
where
]bu% D —-bzcos(xlk 1+ Atxy 1)[1 At] (48)

In order to compute the gradient of the ISE, the partial derivatives of y;;, 6;;, B, and @;,, must be
obtained. By combination of Egs. (19)-(21) and (29), and following the product rule, these four

derivatives are obtained as:

X
Vi ]xl (k 1]1:k-1) 6] n 6] 2;(k 1|1:k— 1)]
0P (g 0Py 0P ™
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xlz(k 1|1:k-1) 8] + 8] 2:(k 1|1:k—1) yx
a(I)(q) a(I)(q) xl

+J¢ ] , (49a)

26 _ 0A (x(k|1k 1) _§k|1:k—1))+L(b(fgk|1:k—1))_b(fgkll:k—l))), (49b)

0D 0P 0P (g
X
Min ]xl (k 1|1:k—1) 6] a]f 3 (k=1|1:k~ 1)] (49¢)
0P, 0Py 0P ™
00;, 04 [ _(k1:k-1) 0 ( _(k|1:k=1)
- % + -2 (p(zt ) (494)
0P (g 5¢m)( ) 0P (g (l )

Several of the terms which would arise from Eq. (21) do not appear in Eqgs. (49) because they are
not functionally dependent on model parameters @ .

For the pendulum example, the parameter vector is given by ® =
a1 ai, ay; ay, by b,]T. Obtaining the six corresponding partial derivatives for each of the four

variables of Egs. (49) is straightforward. For instance,

A 11 0] (50)

aq)(an) ~looof
The overall gradient of the ISE can then be computed by cascading the formulas presented in

section 7.3.2.
7.4 Results

7.4.1 Description of Monte-Carlo Simulations

In order to validate the proposed nonlinear SEAM framework, a Monte-Carlo simulation
approach was taken. By conducting simulated experiments with randomly generated parameters,
three things are accomplished: 1) the ubiquity of the framework can be demonstrated since it can
be shown to work for more than just specially-chosen combinations of parameters, 2) performance

evaluations can be made since ground-truth information is available for comparison, and 3) more
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meaningful statistical summaries of the proposed methods can be acquired since data is aggregated
from many experiments.

The ground-truth state of the pendulum's free-response was simulated for six seconds with
the parameter values given in Table 1. The initial angle was chosen to be slightly less than =
(vertical) to emphasize the nonlinearity of motion in large-angle simulation. Gaussian process

noise with covariance X, was added at each step in keeping with Eq. (18).

Table 1. Ground-truth parameters

l m b At 6, 6, z,
100 0015 15 002 3141 0  10-7[1,0;0,17]

In order to simulate sensor noise, a zero-mean Gaussian random signal with covariance
X, was added to the ground-truth signal. Furthermore, the uncertainty in each physical model
parameter was given as a proportion ¢ of its mean. From this, the uncertainties in the model
parameters were derived. The initial parameter estimates used for signal estimation were then
randomly generated from a normal distribution with means given by the ground-truth value and
standard deviations given by the values in Table 2. This table also contains the standard deviations

in initial conditions used to seed the estimators.

Table 2. Parameter uncertainties

9] Om Op 0-90 0-90
el sm b 0.2 0.08

For comparison in validation, the EKF and AEKF were implemented in addition to
nonlinear SEAM. In order to isolate the effect of model parameter correction, SEAM was
implemented both without (SEAM") and with (SEAM") model correction. The following two

subsections demonstrate the results of these simulations both qualitatively and quantitatively.
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7.4.2 Qualitative Assessment
Figure 3 shows plots of angular position and velocity for the ground-truth, observed, and
estimated signals of a sample simulation. For this experiment, baseline parameters are given by

Tables 1 and 2 and other simulation-specific parameters are given in Table 3 below.

Table 3. Qualitative example parameter values

M A di & ZU
50 0.97 0.0005 0.8 [0.075, -0.008; -0.008, 0.06]

Angle vs. Time

Angular Velocity vs. Time

f (rad)
0 (rad/s)

Time (sec) Time (sec)

Figure 3. Time domain plots.

As the figure shows, the KF-based approaches fail to adequately estimate the state of the
pendulum due to high uncertainty in model parameters. Without incorporating this uncertainty in
estimation, the prediction stage of RBE becomes overconfident and the more accurate sensor
observations are essentially ignored. This problem is overcome by the inclusion of model
parameter uncertainty (i.e. the third term of Eq. (21)). Even without model correction, this addition
allows the estimator to rely more heavily on observations and thereby weight erroneous predictions
less. However, without the reinforcing information provided by an accurate prediction model, the

SEAM estimator without model correction is heavily influenced by sensor noise. This is

particularly apparent in the fluctuations of the magenta 6 vs. t plot of Fig. 3.
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Model parameter correction is introduced in order to increase the robustness of SEAM
estimation to sensor noise. By correcting model parameters and their uncertainties, the smoothing
effect of a Kalman filter is achieved simultaneously with the zero-mean-error estimation of SEAM.
The blue plots in Fig. 3 show how, as model parameters are corrected and their uncertainties
reduced, the SEAM™ signal deviates from the SEAM" signal towards a smoother estimate of the
ground-truth state. This smoothing is largely a result of the convergence of Z4, by the power law
A¥ as described at the end of section 7.3.2. However, it is only because @ becomes more accurate

that the error in this signal is zero-mean. Figure 4 shows the convergence of model parameters

towards ground-truth.

Motion Model Parameter as vs Time Motion Model Parameter by vs Time
1.5 0.25
! b,
ﬁﬁﬁ-t;,.:_‘ X 02t - == by
] 2e(FEAN) ——— i (SEAM)
015 |
051 0.1
0.05 |
a 9 o
© 0
-05 -0.05
DI = == 7 ——
-1
.................. -015
. . ‘ ‘ s : . EE— ‘
0 1 3 4 5 6 0 1 2 3 4 5 6

2
Time (sec) Time (sec)

Figure 4. Model correction over time.

Of the six presented model parameters, only a,, and b, can be corrected for the nonlinear
pendulum because they depend on the physical parameters of the system according to Eq. (45). As
Fig. 4 demonstrates, these two parameters converge to ground-truth over the course of the six-
second simulation. The speed and constancy of convergence are largely dependent on the fine-
tuning of gradient-descent parameters. A more thorough performance optimization study is

warranted, but extends beyond the scope of this work. Furthermore, a rigorous mathematical
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justification of convergence and stability is not possible because the presented solution can only
be implemented in open-form via gradient-descent.

Finally, Fig. 5 contains error plots for the sample simulation. The first part of the figure
shows the time-domain errors of all the signals, while the second part of the figure plots the ISE
for all time steps using the initial model parameter vector estimate @, the ground-truth parameter
vector @, and the continuously corrected ®,,. As is apparent from the figure, SEAM"and SEAM*
provide comparable performance, with the exception being that SEAM™ outperforms in the second
half of simulation when the model estimate is improved. Average estimation errors are
summarized for this sample simulation in Table 4.

Estimation Error vs. Time Integrated-Squared-Error vs Time

»
o

I

w
o

ISE

|[Xer — Kest| [
N
[4,]

LS I R

oiacdibin o doge pal g
ANt e
2 3 5 6
Time (sec) Time (sec)

Figure 5. State estimation error and ISE for sequential time steps corresponding to estimates of ®.

Table 4. Root-mean-squared-errors (RMSEs) for each signal

Observations EKF AEKF SEAM- SEAM*
0.252 1.824 2.033 0.171 0.140

According to the second part of Fig. 5, while continuing to use a poor initial estimate of
model parameters ®, causes the ISE to increase, updating these parameters yields an ISE that is

often below even that given by the ground-truth parameters. It is this proven ability of the proposed
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technique to minimize the ISE that results in such effective estimation in comparison with other
methods.
7.4.3 Quantitative Assessment

In order to quantitatively assess nonlinear SEAM, 50 simulated experiments were carried
out for each of 16 combinations of parameters ¢ and X,. For each experimental configuration,
various outcomes were measured and reported in Tables 5 through 7 below. For all trials, the
parameters M, 4, and d; were set to the values specified in Table 3. Other baseline parameters
were given by Tables 1 and 2. Because the proposed framework accommodates non-Gaussian
belief, it is important that non-Gaussian SEAM be validated. However, since this was done in
previous work [7], the simulations of this section are implemented for Gaussian belief.

Table 5 summarizes the performance of each estimator in the aforementioned simulations.
The percent of trials for which each estimator won is reported, where an estimator “wins” when it
yields an RMSE lower than the rest. As the table shows, the SEAM estimators outperform the KFs
handily for all but a select few cases. For relatively low sensor noise, motion model correction is
most successful and the SEAM™* estimator wins in the majority of simulations. However, as X,
increases, corrected model estimates under SEAM™* do not converge sufficiently to outperform
SEAM- in the time allotted. Furthermore, there is a slight negative trend in SEAM™ performance
for increasing &; this can be explained by the fact that initial model estimates are more likely to be
further from ground-truth as € increases. This means model convergence will take longer, and for

this reason SEAM" is less successful over such short time periods.
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Table 5. Percent of wins in 50 trials for each estimator. E = EKF, A = AEKF, S- = SEAM

-, and S+ = SEAM*

€
0.2 0.4 0.6 0.8

E 0% E 0% E 0% E 0%

[ 0.075 —0.008] A 0% | A 0% | A 0% | A 0%

—0.008 0.06 S1- 8% | S1- 2% |S1- 2% | S1- 14%

S1+ 929% | S1+ 98% | S1+ 98% | S1+ 86%

E 0% E 0% E 0% E 0%

0.1 0 A 0% | A 0% | A 8% | A 0%

[ 0 0.08] S1- 12% | S1- 8% | S1- 10% | S1- 36%

5 S1+ 88% | S1+ 92% | S1+ 90% | S1+ 64%

v E 0% E 0% E 0% E 0%

[ 0.2 0.01] A 2% | A 0% | A 0% | A 0%

0.01 0.32 S1- 26% | S1- 44% | S1- 66% | S1- 70%

S1+ 72% | S1+ 56% | S1+ 34% | S1+ 30%

E 0% E 0% E 2% E 0%

[()_25 ()_()1] A 0% | A 2% | A 0% | A 0%

0.01 0.56 S1- 44% | S1- 54% | S1- 38% | S1- 54%

S1+ 56% | S1+ 44% | S1+ 60% | S1+ 46%

Table 6 summarizes the average ISE found for each of the 50-simulation trials calculated
with the initial model parameters ®,, the ground-truth parameters @, and the updated parameters
@,.. In all but two of the most extreme cases where both ¢ and £, are high, using the corrected
model parameters successfully reduces the ISE even below what is obtained using ®;. This
verifies the efficacy of the formulas presented for V4 (ISE) and shows that the gradient-descent
algorithm of Eq. (32) effectively minimizes the ISE. In simulations where the ISE is successfully
minimized but SEAM™ does not win, the most likely explanation is that the randomness arising
from noise processes causes the ISE-minimizing parameter vector to deviate from the ground-truth

parameter vector.
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Table 6. Average ISEs given by @, @, and @,

&

0.2 0.4 0.6 0.8
®, 171|®, 133|®, 125|®, 116
[_0(-)00758 ‘8'828] ®, 30 |d, 32 |d, 36 |d, 39
' 1o, 25 @, 28 |®, 32 |® 35
1 o ®, 126|®, 102|®, 91 |®, 84
[(') 008] ®, 20 | @, 23|®, 25| @, 28
: ' ® 18 |®, 20 @ 22|®, 24
v ®, 52 |®, 43 |®, 38 |®, 32
[00(')21 835] ®, 08 |®, 08 |®, 09 |d, 27
O 0 ® 05|®, 06|® 06|d 30
®, 38 |®, 28 |®, 23 |®, 20
[8-(2)513 8-(5’2] ®;, 07 |®, 15 |®, 07 |d, 14
o1 0. ® 04 |®, 06| ® 05|d, 17

Table 7 is given for a quantitative summary of the ability of SEAM* to improve model

parameters a,, and b,. The table shows the average percent of the time during each simulation

that model parameters were improved. The number of time steps for which a,, and b,, were

closer to @, than to &, were divided by the total number of time steps. As the table shows, there

is a strong correlation between improvement in @ and minimization of the ISE. The fact that a,,

is more often successfully corrected suggests that the ISE objective function is more sensitive to

change in a,, than to change in b,.

Table 7. Average percent of time model parameters were improved

&
0.2 0.4 0.6 0.8

[0,075 20.008]| @y, 963%| ay, 921%| a,, 924% | a,, 78.2%
—0.008  0.06 b, 651%| b, 668%| b, 648%| b, 54.9%
[0,1 0] a,, 90.1% | a,, 88.4% | a,, 845%| a,, 59.5%

5 0 0.8 b, 622%| b, 619%| b, 647%| b, 53.8%
v 02 001 a,, 685% | a, 57.0%| a, 426%| a,, 26.8%
0.01 032 b, A446% | b, 452% | b, 264%| b, 29.3%

025 0.01 a,, 60.9% | a,, 444% | a,, 492% | a,, 32.7%

0.01 0.56 b, 409% | b, 296% | b, 301%| b, 28.1%
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7.5 Conclusions and Future Work

Several conclusions can be drawn about the proposed nonlinear/non-Gaussian SEAM
framework. First, the inclusion of motion model uncertainty in state prediction is demonstrated to
significantly improve the quality of nonlinear state estimation as compared to conventional
Kalman filters when model parameters are poorly estimated. Second, because this approach results
in higher sensitivity to observation noise, the addition of a model correction stage further refines
the quality of estimation. This is accomplished by both improving model parameters and reducing
their estimated uncertainty. For hundreds of randomly generated Monte-Carlo simulations, the
proposed technigques are shown to work well under moderate sensor noise when model uncertainty
is appreciable.

In providing a fair assessment of the proposed framework, a summary of its limitations is
necessary. Because gradient-descent is required for model correction, updating model parameters
at each time step can be computationally costly and ineffective for real-time applications. This can
be rectified by choosing to employ model correction only every Y time steps, where Y would be
adjusted according to an accuracy/efficiency trade-off. Furthermore, because the framework is
intended to handle some of the more difficult estimation problems, it is not always a good “out-
of-the-box solution. While the general approach is ubiquitous, certain elements must be tuned
according to the context at hand.

The future work related to this research is ample. First, correcting the physical pendulum
parameters [, m, and b rather than the abstracted model parameters a,, and b, may improve the
quality of the framework. Second, this work could benefit from a closer examination of effective
gradient-descent techniques to improve the efficiency of model correction. Finally, the ubiquity of

the approach would be further clarified if it was validated for a wider range of nonlinear state-
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space systems with varying dimensionalities and complexities. Nevertheless, as a proof-of-
concept, this paper shows that nonlinear/non-Gaussian SEAM holds potential for handling

complex estimation problems in a variety of contexts. SDG
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CHAPTER 8. Framework Unification and Applications

8.1 Framework Unification

In order to further unify the concepts presented throughout this dissertation, a concluding
summary of this doctoral work is appropriate. The chief problem which is addressed by the
formulations and frameworks of this research is summarized as follows: what can be done to
improve the knowledge about a set of variables when the ability to know them becomes
increasingly obscured? Information fusion is the foundation upon which answers to this problem
are built, and various estimation frameworks solve this problem by leveraging the concept of
information fusion in different ways. This dissertation has addressed two estimation frameworks.
The first, recursive Bayesian classification (RBC), implements a Gaussian toroid prediction model
for contexts where motion is highly stochastic but can be modeled by an N-D random walk. The
second and more thoroughly investigated framework, simultaneous estimation and modeling
(SEAM), addresses estimation where model parameters are not accurately known. The
applications such estimation approaches are explored in section 8.2.

The SEAM framework upon which chapters 4-7 build is shown to improve state estimation
when there is uncertainty in parameters of either motion or observation models. Furthermore, the
ubiquity of the framework is extended to the more general case where state belief is non-Gaussian.
What is not addressed in the above chapters, however, is a unification of the framework where
both observation and motion model parameters are improved over time. The diagram of Fig. 1
shows what such a technique would look like. As the diagram demonstrates, both & and ¥ would
be corrected by the ISE-optimization methods discussed in the text using corrected, predicted, and

observed state belief.
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Corrected belief
Figure 1. Unified SEAM diagram.

Though it would be an elegant and comprehensive approach to solving the kinds of difficult
estimation problems posed here, a conceptual evaluation of such a unified framework casts doubt
on its actual efficacy. In the contexts already studied, when a prediction is erroneous due to poor
knowledge of the parameter vector @, an accurate observation will improve the state estimate. The
converse is true when W is poorly known. In each of these cases, there is an assumption that
corrected belief p(x,|z,.,) is more accurate than predicted belief p(x|z,.,—,) or observed belief
p(xy|z;), respectively. This assumption underlies the use of ISE minimization as an effective
means of model correction. However, suppose both & and W are poorly known. In this case, both
p(x|Z1.—1) and p(x|z;) will be bad estimates of the true state x;,. Therefore, when these PDFs
are fused, it cannot be known if the resulting corrected PDF p(x|z,.;) iS an improvement for the

predictor or the observer. This is visually demonstrated in Fig. 2 below.
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As the figure shows, while neither PDF 1

0.9r — Tk 1
is a particularly good estimate of x; since both | —p(k|z10-1)|]
ol p(r|2k)
@ and W are poorly known, state belief fusion —p(zr|21:)

0.6

happens to result in an improved estimate from 05/
0.4 r

the perspective of the predictor. Therefore, .|

0.2

valid approach. However, since p(x;|z...) isa % > 3 4 s & 7 8 s

correcting @ by minimizing ISE; would be a

. . Figure 2. Insufficiency of simultaneous predictor-observer
worse estimate of x,, than p(x,|z,), correcting correction.

¥ by minimizing ISE;, would cause observation model parameters to deviate from ground-truth.
At any time step, the opposite may be true; in general, ® and W cannot both be corrected for this
reason. However, it is possible to solve this issue by adding information to the estimator.

If a second observer (or sensor) is incorporated in estimation, for which model parameters
Y, are known with sufficient accuracy, the state belief coming from the fusion of both sensors
should allow for correction of ¥; by minimization of ISE;,. Similarly, the fusion of belief coming
from prediction with that coming from the second sensor should allow for correction of & by
minimization of ISE. This is because it can be confidently asserted that the corrected state belief
p(xx|z,.,) is more accurate than either p(xy|z1..—1) Or p(x|2i). If, however, ¥, is also poorly
known, yet another more accurate source of information is required to correct model parameters.
This leads to the generalization that, if motion and observation model parameters are to be reliably
and simultaneously corrected under a unified SEAM framework, corrected state belief must always
be more accurate than all of the predicted and observed PDFs. This can be accomplished, in theory,
by either 1) adding an accurate observer o which gives observed state belief p(x;|z;), that has

extremely low uncertainty, or 2) deploying a suite of O observers for which each parameter vector

199



Y, may be poorly known, but for which all observed PDFs p(xy|z,), cluster around the true state
x. This principle is illustrated in Fig. 3.

As the figure shows, while each individual sensor may provide an inaccurate estimate of
the state, their fusion offers a much better estimate. Using this fused PDF to then obtain the
corrected state belief p(x|z,.,) will allow for motion and observation model correction using ISE

minimization, despite the fact that

14

—_—T

all model parameters may be
poorly known. An analogy that

may be considered is as follows:
08

consider a jury which has been

06

tasked with ascertaining the truth

0.4 -

about a criminal case based only on
0.2

the evidence submitted in court. It

o

can be reasonably expected that the Figure 3. Multi-sensor fusion.
prosecution and defense have both presented evidence and statements that are a skewed version of
the truth. The ground-truth is known only by the defendant, but it will never be made public
knowledge since a confession would incriminate him. It is the responsibility of the jury to work
out what most likely happened based on what they’ve been given, but each member will naturally
bring a slightly different perspective and line of reasoning to the deliberation. Though each juror
alone would likely do a poor job of working out the truth due to their own imperfect detective
skills, the combined effort of the group will inevitably yield a result that is more accurate than any

individuals’. In analogy to the idea of model correction, the final decision of the jury could then

be used to improve each juror’s reasoning and truth-finding skills.
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In summary, a unified SEAM framework in which motion and observation model
parameters are all simultaneously corrected is only possible if the fusion of all observed and
predicted state belief yields a PDF which is a better estimate of the state as compared to each
individual prediction or observation. Investigating and validating this assertion is an aim of future
work, as is extending SEAM to nonlinear observation models. It is worth noting that, as this
research becomes increasingly theoretical and ubiquitous, the domain of actual contexts for which
extended formulations are justified becomes smaller. Nevertheless, the foundational SEAM
framework presented in this dissertation has several potential applications which are addressed in

the following section.
8.2 Applications

To conclude this work, it is appropriate to summarize the various potential applications of
the research presented in this dissertation. The theoretical formulations developed in the first seven
chapters have merit of their own, but without considering applied contexts, the relevance and
usefulness of this work is unclear. The following two subsections explore applications related to
state estimation and target tracking.

8.2.1 Signal Processing and State Estimation

The area of state estimation is concerned with actively filtering sensor signals coming from
primarily dynamic, electric, or kinematic systems. Measuring such signals is challenging when
sensors are corrupted with noise; when state feedback is employed to control the system,
discontinuities such noisy signals can become problematic. This mandates the use of an active
filter which leverages deterministic knowledge of the mathematics of the system at hand to

improve state estimates.
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Below are a few examples of deterministic physical systems across many domains for
which state estimation may be necessary in order to overcome sensor noise. In some cases, this is
to allow for smooth feedback control, while in other cases there may be some alternative decision-
making effort employed. Some of these are directly addressed in the chapters above. For
thoroughness, the governing discrete- or continuous-time state-space equations are also given for

each example.

Resistance-Capacitance Circuit R
T v
(0] = [~ | ) ©
+ VO —
I
c Il

Figure 4. RC circuit.

()
i J-xt

] [u(t) k =] b

Mass-Spring-Damper

x(t)] x(t)
x(t) —— = (t) u(t)

u(t)

Figure 5. MSD oscillator.
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Resistance-Inductance-Capacitance Circuit

()
i(i)] [ ] (t)] [o L] (3)

Figure 6. RLC circuit.
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Figure 7. Nonlinear pendulum.

Gravitational Kinematics
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Figure 8. Gravitational kinematic path.
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8.2.2 Robotics, Localization, and Target Tracking

A field analogous to that of state estimation is target localization and tracking. Within this
area, the location of a physical target (whether that be a robot, vehicle, human, or the like) is
tracked rather than the state of a system. While problems in state estimation consist largely of
physical systems responding to natural inputs or initial conditions, target tracking and localization
problems almost exclusively deal with position (whether 1-, 2-, or 3-D) and/or pose (which may
also be represented by a 1-3 dimensional vector). Like state estimation, the location and pose of a
target may be measured by a physical sensor (for example, a gyroscope, inertial measurement unit,
or global positioning system), but other methods may also become available. For instance, a
robotic field agent may track a target by implementing a computer vision algorithm, where
observational uncertainty comes from any number of more abstract confounding factors beyond
simple sensor noise.

For tracking and localization problems, y
mathematical models rely heavily on user input. While
the plant dynamics of, say, an unmanned ground vehicle
(UGV) may be governed by a discrete-time state-space

equation, the macroscopic movement of interest is

dominated by the control effort used to direct the vehicle.

For example, consider the differential-drive UGV of Fig. Figure 9. Differential drive mechanism

9. This system is governed by the following 2-D kinematic state-space equation:

l(vr + Ul) .
() (O] o (| =325 o

Xk
= _ _ (v, + 1)
1 [ T RS s I e
v, — V)AL
l

0 0 1 Or-1
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As this equation shows, the position and heading [x, v, 6x]7 at step k depend much more

heavily on system inputs (the wheel speeds v; and v,.) than on the prior “system state” (position

and heading). Even if the dynamics of the vehicle and the mechatronics of the motors were

included in the model, the large-scale motion of the UGV would dominate in most non-trivial

circumstances. For this reason, it is important that user input and its uncertainty be well known for

SEAM estimation to work well in most localization and tracking scenarios.

A special kind of motion where plant dynamics need not be modeled
and user inputs can be unknown is when targets follow a well-defined path.
One such example is the figure-8 pattern; such a path may be found in
search-and-rescue contexts, among others (see Fig. 10). The proper
mathematical term for a figure-8 is a lemniscate, which has a few strict
mathematical definitions. One form of a lemniscate also belongs to a family
of 2-D curves known as the Lissajous curves. Such a curve arises when the
x- and y-components of a path follow simple harmonic motion. Because
harmonic oscillation is easily described by a two dimensional state-space
equation, the 2-D position a target following a Lissajous lemniscate can be

obtained by the following state and output equations:

Vi —wi 0 |Yk-1

xk 0 0 0 xk_l

Y[ _|-wx 0 0 Offtey [xk]:[1 000

Yk 0 0 0 If(yk-1|"yk 0 010
0 0

Figure 10. A lemniscate.

Xk
X
Yk

For the lemniscate of Fig. 10, w, =2w, and [xo %, Yo Yol =[0 wx 0 wy]".

However, any Lissajous curve can in fact be described by the above equation, with the ratio of the

x- and y-angular frequencies and initial conditions taking on different values. The dynamics and
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inputs of a target following such a path can be eliminated by modeling and estimating only this
deterministic linear macroscopic motion.

In the field of robotics, simultaneous localization and mapping (SLAM) is a well-known
framework often used for localization problems. This framework accomplishes self-localization
and environment mapping simultaneously by employing recursive Bayesian estimation (RBE) to
overcome uncertainties in sensing and 3-D reconstruction. Because RBE is the basis for the
estimation component of SEAM, integrating SEAM and SLAM is a natural extension of the work
developed in this dissertation. Such a SLAM-SEAM framework would allow the location of a
target or agent within an unfamiliar environment to be estimated with more accuracy than
traditional methods if the model parameters pertaining to the target are not well known.
Furthermore, because the accuracy of mapping is highly dependent on the accuracy of localization,
the improvements afforded by SLAM-SEAM would also extend to mapping.

8.2.3 Conclusion

The research presented in this dissertation has a wide range of applications from state
estimation and signal processing to target localization and tracking. If any discrete-time state-space
model can be obtained which describes a system’s state trajectory or the characteristics of a sensor
used to observe it, the SEAM framework offers a robust solution for estimation when model
parameters are poorly known and state belief may be non-Gaussian. Future work in this area is
warranted, especially with regards to real-world validation of the framework in the field.
Nevertheless, the extensive studies investigated in this dissertation offer strong support for the

efficacy and promise of this research. SDG
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