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Ab initio Calculations of Optical Rotation

Mary C. Tam

(ABSTRACT)

Coupled cluster (CC) and density functional theory (DFT) are highly regarded as robust quan-

tum chemical methods for accurately predicting a wide variety of properties, such as molecular

structures, thermochemical data, vibrational spectra, etc., but there has been little focus on the

theoretical prediction of optical rotation. This property, also referred to as circular birefringence, is

inherent to all chiral molecules and occurs because such samples exhibit different refractive indices

for left- and right- circularly polarized light. This thesis focuses on the theoretical prediction of

this chiroptic property using CC and DFT quantum chemical models. Several small chiral systems

have been studied, including (S )-methyloxirane, (R)-epichlorohydrin, (R)-methylthiirane, and the

conformationally flexible molecules, (R)-3-chloro-1-butene and (R)-2-chlorobutane. All predicted

results have been compared to recently published gas-phase cavity ringdown polarimetry data.

When applicable, well-converged Gibbs free energy differences among confomers were determined

using complete-basis-set extrapolations of CC energies in order to obtain Boltzmann-averaged spe-

cific rotations. The overall results indicate that the theoretical rotation is highly dependent on the

choice of optimized geometry and basis set (diffuse functions are shown to be extremely important),

and that there is a large difference between the CC and DFT predicted values, with DFT usually

predicting magnitudes that are larger than those of coupled cluster theory.
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Chapter 1

Introduction

1.1 Thesis Statement

The purpose of the research described in this manuscript is to develop a deeper understanding of how

the chiroptical property of optical rotation is computed using computational methods, specifically

within coupled cluster theory. The methods described within have been applied to several small

chiral systems to assess the quality of the theoretically computed optical rotation.

1.2 Introduction and Motivation

A molecule is chiral only if it has a non-superimposiable mirror image. This means that the molecule

and its mirror image are not identical, making up an enantiomeric pair. Each set of enantiomers

has identical physical properties, such as boiling point, melting point, and density, but the way in

1
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which they interact with other chiral molecules, e. g. active sites for enzymes in biological systems,

can be totally different. For example, the left-handed enantiomer of the chiral molecule carvone

smells like speariment, while its right-handed counterpart smells like caraway.1 (R)-limonene is

found in orange peels, while the (S ) enantiomer is present in lemons.2 Often, one enantiomer

produces a characteristic effect, while the other either produces no effect at all, or has a totally

different effect. An example of this is ibuprofen, where the therapeutic effect is due to only one of

its enantiomers, the (S ) isomer.3 Although this drug is administered in a racemic mixture, some of

the (R) enantiomer can be metabolically converted to its mirror image, increasing the therapeutic

effect of the racemate.

Understanding and predicting the molecular properties of chiral molecules is a primary goal

of organic chemistry. One of the focuses has been on the synthesis of these types of molecules,

along with the ability to predict and control their properties. Chiral molecules are predominantly

found in the pharmaceutical chemistry, where it is sometimes necessary to control the absolute

configuration of the molecule. Experimentally, reliable determination of the absolute configuration

of a chiral molecule is usually done by X-ray crystallography which can be very expensive and time

consuming, and is not guaranteed to be successful.

The goal of this research is not to determine the absolute configuration of a chiral molecule

through theoretical techniques, but to lay one small part of the foundation for doing so. Knowing

the optical rotation can aid in the task of absolute configuration determination, and experimentally

determining this property has become routine chemical technique. However, theoretical calculation

of optical rotation has proved to be more challenging. It is the hope that the correct calculation

of the optical rotation, along with the knowledge of other chiroptical properties and experimental
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data, will lead to a more feasible route in determining the absolute configuration.

1.3 The History of Optical Rotation

The effect of optical activity was discovered in the early 1800s and has since been recognized as

a useful tool in studying molecular structure. The first experiments relating to this phenomena

were performed by Arago, who observed optical activity in quartz crystals in 1811.4 A year later,

the French scientist, Biot passed polarized light through various concentrations of sucrose solutions

and noted that the degree of rotation of light was directly related to the concentration of the

solution, and inversely proportional to the square of the wavelength of light.5 Through his studies

regarding the nature of light waves, Fresnel, discovered in 1825 that the superposition of left- and

right-circularly polarized light with equal amplitudes and wavelength, resulted in linearly polarized

light. Following this discovery, he related the optical activity of a chiral medium to a difference in

velocities of the left- and right- components of the plane polarized light, causing a rotation of the

plane of polarization.5

In 1847, Pasteur, a student of Biot’s manually separated a sample of tartaric acid crystals, and

recognized that separate solutions, with equal concentrations, rotated light in equal but opposite

directions. Pasteur was also the first to suggest that a pair of enantiomers are mirror images of

each other, and that a racemic mixture is optically inactive.4 van’t Hoff and LeBel (1874) worked

independently of each other, but both suggested that optical activity was due to an asymmetric

arrangement of atoms in a molecule, and proposed the tetrahedral shape of some chiral molecules.6

Fisher’s ability to identify many of the stereoisomers of the aldohexoses led to his development of the
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Fischer projections, a cross figure representation used to distinguish the three dimensional structure

of chiral molecules.4 And in 1966, Cahn, Ingold, and Prelog worked together to develop the (R)

and (S ) stereochemical distinctions used to identify mirror image configurations for molecules with

stereogenic centers.4

Although the developmental understanding of optical activity has lasted over two hundred years,

there is still a yearning to learn the elementary connection between optical rotation and molecular

structure.

1.4 Circular Birefringence

Optical rotation, the rotation of plane-polarized light by chiral species, occurs because such samples

exhibit differing refractive indices for left- and right-circularly polarized light.5,6 This phenomena

is referred to as circular birefringence and is dependent on the propagation of plane polarized light

through a chiral medium. Mathematically, the electric field vector for left- and right- circularly po-

larized light of frequency ω passing through a medium with refractive index η along the propagation

direction (z) can be expressed by the following equations

EL = ε(̂i cosφL + ĵ sinφL) (1.1)

ER = ε(̂i cosφR − ĵ sinφR) (1.2)

where

φL = ω(t−
ηLz

c
) (1.3)

φR = ω(t−
ηRz

c
). (1.4)
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When the medium interacting with the light wave does not exhibit circular birefringence, the

refractive indices are identical for the left- and right-components, and the superposition of the left-

and right- circularly polarized waves results in the electric vector,

E = EL + ER = 2ε̂i cosφ (1.5)

giving a linear plane of polarized light, which oscillates in the plane along the unit vector î.

Because a chiral medium has different refractive indices for the left- and right- circular compo-

nents of plane polarized light, one of the components will propagate faster than the other, causing

a difference in their phases. When this happens, the superposition of the left- and right- circularly

polarized waves is given by the following electric field vector

E = EL + ER = 2ε{̂i cos(
zω∆η

2c
)− ĵ sin(

zω∆η

2c
)} cosφ (1.6)

where ∆η is the difference between the left- and right- refractive indices and the plane polarized

light has been rotated by a specific angle, ∆θ,

∆θ =
zω∆η

2c
. (1.7)

1.5 The Electromagnetic Theory of Light

The properties of an electromagetic field are described by Maxwell’s equations:7

∇ ·D = ρ (1.8)

∇ ·B = 0 (1.9)

∇×E = −
∂B

∂t
(1.10)
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∇×H = J +
∂D

∂t
(1.11)

where D, ρ, H, and J represent the electric displacement, charge density, magnetic field strength,

and current density, respectively.

When a chiral molecule is placed in an electromagnetic field, in the case of optical activity,

there is a change in the spatial variation of the medium, causing a difference in polarizabilites of

the electric field vectors, and in turn, different refractive indices for the left- and right- components

of plane polarized light.5 From Maxwell’s equation, Equation 1.10, where E and B represent the

electric and magnetic field, respectively, the electric field is dependent on the time variation in the

magnetic field. The spatial variation of the medium creates an induced electric dipole, or an electric

polarization, P , which is directly proportional to the change in the magnetic field with respect to

time. When the spatial variation of the medium is considered, the total electric polarization is

given by

P = NαE −Nβ
∂B

∂t
(1.12)

where N is equal to the number density of molecules in the medium, α represents the polarizability,

and β is a molecular characteristic unique to the medium.8 In an optically active medium, the

relationship between the electric displacement, D, and the polarization is expressed by:

D = ε0E + P (1.13)

and the magnetic flux density, B is directly related to the magnetic field strength H:

B = µ0H (1.14)

where ε0 is the permittivity and µ0 is the permeability of free space.
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These equations, along with Equation 1.12, can be used to derive a more compact expression

for the difference in refractive indices for the left- and right- circular components of plane polarized

light. Taking the curl of both sides of Equation 1.14, employing Maxwell’s equation (Equation

1.11), and substituting the basic expression for the electric displacement (Equation 1.13), leads to

∇×B = ε0µ0
∂E

∂t
+ µ0αN

∂E

∂t
− µ0βN

∂2B

∂t2
(1.15)

After taking the curl of both sides again, and using Maxwell’s equations (Equation 1.10)

∇2B = ε0µ0

[

1 +
αN

ε0

]

∂2B

∂t2
+ µ0βN

[

∇×
∂2B

∂t2

]

(1.16)

In an electromagnetic field, the magnetic component consists of left- and right- components which

depend on the electric field:8

BL =
εkL

ω

[

ĵ cosφL − î sinφL

]

(1.17)

BR =
εkR

ω

[

ĵ cosφR − î sinφR

]

(1.18)

where k is the wave vector, related to difference in refractive indices for left- and right- circular

components of the plane polarized light in a chiral medium,

∆k =
ωηL

c
−
ωηR

c
=
ω∆η

c
(1.19)

Using the previous form of B, it can be shown that

∇2BLR = −∆k2BLR (1.20)

∂2BLR

∂t2
= −ω2BLR (1.21)

and substituting these expressions into Equation 1.16, results in the final equation for ∆η,8

∆η = 1 +
αN

2ε0
±
ωβN

2cε0
=
ωβN

cε0
. (1.22)



Mary C. Tam Chapter 1. Introduction to Optical Rotation 8

Inserting this equation in Equation 1.7 gives a new expression for ∆θ, the angle of rotation of plane

polarized light through a chiral medium,

∆θ =
ω2βN

2c2ε0
. (1.23)

It is this final relationship, in conjunction with quantum chemical tecnhinques, that will be used

to determine the optical rotation of chiral molecules.



Chapter 2

General Electronic Structure Theory

This chapter discusses the background and theory of the Hartree-Fock method, the most basic ap-

proximate method used to solve the Schrödinger equation. Advanced quantum chemical techniques,

which aim to correct for the deficiencies of Hartree-Fock theory by taking into account electron

correlation, are also described.

2.1 The Schrödinger Equation

In 1926, Erwin Schrödinger introduced the most fundamental equation in quantum mechanics:

HΨ = EΨ. (2.1)

H is the Hamiltonian operator, Ψ is the wave function, whose square is a probablity amplitude, and

E is the energy. By finding a solution for the energy and wave functions (eigenvalues and eigen-

vectors of the Hamiltonian operator), it is possible to determine theoretically important molecular

9
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properties, including optimized geometries, electric and magnetic dipole moments, harmonic vi-

brational frequencies, magnetizabilites, etc. For many-electron systems, the Hamiltonian includes

terms that cause the Schrödinger equation to be completely inseparable for anything other than a

hydrogen atom; therefore, it is impossible to find an exact solution. The main focus of this chapter

is to describe Hartree-Fock theory the most basic route to determine approximate solutions to the

Schrödinger equation, and also advancd computational methods which aim to correctly describe

the electron correlation.

2.2 The Born-Oppenheimer Approximation

When considering a system that is composed of electrons and nuclei, the Hamiltonian (in atomic

units) can be represented by:

Ĥ = −
N
∑

i

1

2
∇i

2 −
M
∑

A

1

2MA
∇A

2 −
N
∑

i

M
∑

A

ZA

riA
+

N
∑

i

N
∑

i<j

1

rij
+

M
∑

A

M
∑

A<B

ZAZB

RAB
(2.2)

These terms include the kinetic energy of the electrons, the kinetic energy of the nuclei, the attrac-

tion between the electrons and the nuclei, the electron-electron repulsion and the nuclear-nuclear

repulsion, respectively. In 1927, Born and Oppenheimer, argued that the nuclei in the system move

much slower than the electrons because they are more massive.9 From this, they assumed that the

nuclei in the system are fixed, allowing the kinetic energy of the nuclei to be disregarded and the

nuclear-nuclear repulsion term to be constant, and therefore added at a later time.9 After applying

the Born-Oppenheimer approximation, the resulting Hamiltonian is referred to as the electronic

Hamiltonian.10

Ĥelec =
N
∑

i

hi(i) +
N
∑

i

N
∑

i<j

1

rij
= −

N
∑

i

1

2
∇i

2 −
N
∑

i

M
∑

A

ZA

riA
+

N
∑

i

N
∑

i<j

1

rij
(2.3)
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It is necessary to note that the total energy of the system must include the nuclear-nuclear repulsion.

εtot = εelec +
M
∑

A

M
∑

A<B

ZAZB

RAB
(2.4)

Hereafter, only the electronic Hamiltonian and the resulting electronic wave functions will be con-

sidered.

2.3 Hartree-Fock Theory

In 1928, Hartree introduced his method for finding solutions to the Schrödinger equation.11 Fock

modified Hartree’s method in 1930 by allowing the wave function to be represented by a Slater

determinant.12 This approach is commonly known as the Hartree-Fock (HF) method. The wave

function, Ψ, has restrictions such that it is well-behaved and that it is antisymmetric with respect to

the interchange of both spin and space coordinates of any two electrons. In the Slater determinant,

exhanging the coordinates of two electrons is the same as exchanging two rows, with a resulting

change in sign. Because of this property of a Slater determinant, the basic anntisymmetric property

of the wave function can be retained.

A Slater determinant for an N-electron system has the form13

|Ψ(x1, x2, . . . , xN )〉 =

(

1

N !

)
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χi(x1) χj(x1) . . . χN (x1)

χi(x2) χj(x2) . . . χN (x2)

...
...

. . .
...

χi(xN ) χj(xN ) . . . χN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.5)

The χi represent the spin orbitals (both spin and spatial distribution), the xN represent the co-

ordinates of the electrons and the factor of
(

1
N !

)
1
2 is included for normalization. The columns of
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the Slater determinant refer to the spin orbitals while the rows refer to the electrons. A shortened

version of writing the Slater determinant is with the normalization factor implied and only showing

the diagonal elements of the determinant.

|Ψ(x1, x2, . . . , xN )〉 =

∣

∣

∣

∣

∣

χi(x1) χj(x2) . . . χN (xN )

〉

(2.6)

The ground state Hartree-Fock energy is given by the energy expectation value,

EHF =
〈

Ψo|Ĥ|Ψo

〉

(2.7)

where Ψo is the ground state wave function and Ĥ is the electronic Hamiltonian, which can be

separated into its one-electron part, h(i), and its two-electron part, r−1
ij . The energy expression

can be simplified using Slater’s rules,13 an easy way to evaluate matrix elements between two

Slater determinants. These rules are dependent on the operators between the two determinants,

i.e. the one-electron part of the Hamiltonian or the two-electron part. Since the energy expression

is dependent on two identical determinants for both the one-electron part and the two- electron

part of the Hamiltonian, the energy expression for the ground state Hartree-Fock approximation is

evaluated to be

EHF =
N
∑

i

〈i|h|j〉+
1

2

N
∑

i

N
∑

j

〈ij||ij〉 (2.8)

where i and j represent occupied spin orbitals.

Using Lagrange’s method of undetermined multipliers, the energy can be minimized with respect

to a linear variation of the spin orbitals while ensuring that the spin orbitals stay orthonormal, to

find that the Hartree-Fock equations become an eigenvalue equation with the form:



h(x1) +
∑

j 6=i

(Ĵj(x1)− K̂j(x1))



χi(x1) = εiχi(x1) (2.9)
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where Ĵ is the coulomb operator which represents an average local potential at the position x1

resulting from the electron contained in χi and K̂ is the exchange operator that involves the

exchange of electron 1 and electron 2. The coulomb and exchange operators have the following

form:

Ĵj(x1)χi(x1) =

[∫

dx2χ
∗
j (x2)

1

r12
χj(x2)

]

χi(x1) (2.10)

K̂j(x1)χi(x1) =

[∫

dx2χ
∗
j (x2)

1

r12
χi(x2)

]

χj(x1) (2.11)

The result of applying Lagrange’s method is the left hand side of Equation 2.9, the Fock operator.

ε represents the orbital energies, the eigenvalues of the Fock operator.

The Hartree-Fock equations were usually solved numerically (only for atoms and simple di-

atomics) when this approximation was first developed. In 1951, Roothaan’s paper entitled New

Developments in Molecular Orbital Theory,14 suggested a method to solve these equations for gen-

eral molecular systems using matrix techniques. He introduced the linear combinations of atomic

orbitals to molecular orbitals (LCAO-MO) approximation. In Roothaan’s procedure, the molecular

orbitals have the form:

ψi =
K
∑

µ

Cµiφµ (2.12)

where i = 1, 2, 3 . . . K. Cµi is the matrix of the atomic orbital coefficients and φµ are the atomic

orbitals. The atomic orbitals are given by the rows, and the columns of the matrix give the molecular

orbitals. The final result is a set of matrix equations known as the Roothaan’s equations:14

FC = SCε (2.13)

F is the Fock matrix, C is the expansion coefficent matrix, S is the overlap matrix, and ε is the

diagonal matrix of the orbital energies. The overlap matrix consists of overlap integrals with the
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form:

Sµν =

∫

dr1φ
∗
µ(x1)φν(x1) (2.14)

They are a result of the fact that the basis functions are not orthogonal to each other and therefore

the overlap integrals have values between zero and one. The Roothaan equations are nonlinear and

therefore, must be solved iteratively until self-consistency is reached.

When implementing the Hartree-Fock theory approximation, the computational expense of the

method is on the order of N4, where N is the number of basis functions.15 Spin may be included

in Hartree-Fock theory by two common approaches: spin-restricted, which has closed-(RHF) and

open-shell (ROHF) variants, and spin-unrestricted (UHF). Restricted Hartree-Fock theory assumes

that each pair (α β) of spin orbitals has the same spatial orbitals associated with it. Unrestricted

Hartree-Fock (UHF) allows the spatial part of the spin orbitals to be different for the α spin type

and β spin type. The ROHF (restricted open-shell Hartree-Fock) wave function is an eigenfunction

of the Ŝ2 and Ŝz operator while UHF, on the other hand, is not an eigenfunction of Ŝ2 but is an

eigenfunction of the Ŝz operator.

At large internuclear separation, RHF does not correctly describe the fact that a molecule

should dissociate, while UHF gives a more accurate description. Bartlett and Stanton mention

that RHF is inadequate in this situation because “RHF uses equal orbitals for different spin at all

internuclear separations, which does not allow the orbitals to localize on the individual atoms”.16

Cory and Zerner, in their 1999 paper,17 describe that the energy obtained from a UHF method

is usually lower than the ROHF method because UHF allows for “greater variational freedom”

than ROHF because of its different α and β spatial orbitals. Although UHF generally predicts the

energy better, UHF sometimes has problems when predicting molecular properties. This is seen
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by considering the bond length of Cr2. ROHF predicts the correct bond length, 1.64 Å, while

UHF predicts the bond length to be 3.25 Å, which is consideraby larger than the experimentally

inferred value.17

2.4 Electron Correlation

In Hartree-Fock (HF) theory, the instantaneous coulombic interactions between the individual

electrons is neglected because the model considers an average field produced by the electrons as

a whole. This method disregards the fact that the motion of a single electron affects the motion

of all other electrons in the systems. Therefore we say that Hartree-Fock theory lacks electron

correlation, or the difference between the ‘real’ (total) energy of the system and the HF limit.

ECORR = Etotal − EHF (2.15)

Slater suggested that, in the Hartree-Fock approximation, the only electron correlation comes

from the antisymmetric property of the wave function.18 Ĵ , the coulomb operator accounts for

the repulsion between two electrons, while the exchange operator, K̂, only allows for correlation

between electrons of parallel spin (exchange correlation); the motions of electrons with opposite

spin are left uncorrelated.

Although Hartree-Fock theory can obtain approximately 95-98% of the total electronic energy,

the remaining energy, ECORR, is very important when predicting the properties of a molecule within

chemical accuracy. Even though this method lacks electron correlation, one of its main benefits

is its relative ease in providing a reference wave function for more advanced quantum chemical

techniques.
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2.5 Second Quantization

Second quantization, also known as occupation-number formalism, is an algebraic method that can

be used as an alternative to Slater determinants that still keeps up with the antisymetric nature of

the wave function.13 Creation operators are defined by the fact that they can add orbitals to the

determinant,

a†p |φq . . . φs〉 = |φpφq . . . φs〉 (2.16)

Annihilation operators, the adjoint of the creation operators, remove orbitals when acting to the

right

ap |φpφq . . . φs〉 = |φq . . . φs〉 (2.17)

A series of creation and annihilation operators can be used to add or delete orbitals and electrons,

in essence, to write Slater determinants. Pairs of creation and annihilation operators anticom-

munte with each other and the combined creation and annihilation product give the Kronecker

delta function. These relationships are useful when normal-ordering an operator. A more detailed

explanation of second quantization can be found in Harris, Monkhorst and Freeman.19

2.6 Coupled Cluster Theory

Coupled cluster theory is one of the most reliable and popular computational methods to approx-

imate the solutions to the Schrödinger equation in quantum chemistry. Developed in the 1960s

by Číz̆ek and Paldus,20,21 coupled cluster theory aims at correcting the problem of Hartree-Fock

theory–the lack of electron correlation, by expanding the wave function as a series of cluster oper-

ators.
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Cluster operators are used to represent the electronic correlation. A cluster operator involving

n number of orbitals is defined by

T̂n =

[

1

n!

]2 n
∑

ij...ab...

tab...
ij... a

†b† . . . ji . . . (2.18)

The general wave function for formal coupled cluster theory, used to approximate the exact solution,

is expressed as the series exponential of T̂ ,22

ΨCC = eT̂ψo, (2.19)

where ψo is the ground state wave function. Applying this wave function to the Schrödinger

equation and multiplying on the left by the reference wave function, the coupled cluster energy can

be obtained,

ECC =
〈

ψo|Ĥe
T̂ |ψo

〉

, (2.20)

where T̂ is the cluster operator. The Hamiltonian in this energy expression is the basic electronic

Hamiltonian expressed in second quantization form which is derived in Corson’s 1946 paper23

Ĥ =
∑

pq

=
〈

p|ĥ|q
〉

p†q +
1

4

∑

pqrs

〈pq||rs〉 p†q†sr. (2.21)

Expanding the exponential and distributing terms, the energy gives:

ECC =
〈

ψo|Ĥ|ψo

〉

+
〈

ψo|ĤT̂ |ψo

〉

+

〈

ψo|Ĥ
T̂ 2

2!
|ψo

〉

+

〈

ψo|Ĥ
T̂ 3

3!
|ψo

〉

+ . . . (2.22)

From this expression, one can see that the coupled cluster energy is naturally truncated after the

third term, a direct result of Slater’s rules,13 and the fact that the Hamiltonian contains at most

two-electron operators. Therefore, the higher terms in the energy equation include determinants

that differ by more than two orbitals and have a zero result. The coupled cluster energy is thus:

ECC =
〈

ψo|Ĥ|ψo

〉

+
〈

ψo|ĤT̂ |ψo

〉

+

〈

ψo|Ĥ
T̂ 2

2!
|ψo

〉

(2.23)

no matter what the excitation level of T̂ is chosen to be.
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2.6.1 The Hausdorff Expansion

In order to find a suitable programmable expression for the coupled cluster energy, the Hausdorff

expansion may be used. This expansion multiplies the Schrödinger equation on the left by the

reference wave function and the inverse of the exponential to give the energy expression of

ECC =
〈

φo|e
−T̂ ĤeT̂ |φo

〉

(2.24)

Using the Campbell-Baker Hausdorff formula, e−T̂ ĤeT̂ , also known as the similarity-transformed

Hamiltonian, H̄, can be expanded as

e−T̂ ĤeT̂ = Ĥ+
[

Ĥ, T̂
]

+
1

2!

[[

Ĥ, T̂
]

, T̂
]

+
1

3!

[[[

Ĥ, T̂
]

, T̂
]

T̂
]

+
1

4!

[[[[

Ĥ, T̂
]

, T̂
]

, T̂
]

, T̂
]

+. . . (2.25)

Crawford and Schaefer explain that because the cluster operators commute with each other, and

not the Hamiltonian, and the fact that the Hamiltonian is at most a two-electron operator with

at most a total of four second quantization operators, this expansion will naturally truncate itself

after the first five terms.22

2.6.2 The Normal-Ordered Hamiltonian

Normal ordered second quantization operators can be used to evaluate each matrix element. This

technique requires that all annihilation operators be placed to the right of all creation operators,

relative to the Hartree-Fock determinant. Normal ordering of any operator is built so that its

reference expectation value is zero. The anticommutation relations between the creation and an-

nihilation operators can be applied to any operator to make it normal ordered. After each matrix

element is normal-ordered, Wick’s Theorem can be used. Wick’s theorem allows for any string
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of annihilation and creation operators to be written as the normal-ordered string plus all of the

possible pairwise contractions.24

After applying Wick’s theorem to the similarity transformed Hamiltonian, the expression for

the second quantized normally ordered electronic Hamiltonian22 is

Ĥ =
∑

pq

hpg{p
†q}+

∑

i

hii +
1

4

∑

pqrs

〈pq||rs〉 {p†q†sr}+
∑

ipq

〈pi||qi〉 {p†q}+
1

2

∑

ij

〈ij||ij〉 (2.26)

This equation shows that the total electronic Hamiltonian for coupled cluster theory contains the

Hartree-Fock energy (Equation 2.8). Therefore, the electronic Hamiltonian can be rewritten as the

sum of the ESCF and the normal ordered Hamiltonian, HN :

Ĥ = ESCF +
∑

pq

fpq{p
†q}+

1

4

∑

pqrs 〈pq||rs〉 {p†q†sr} (2.27)

The non-correlated energy, ESCF , has now been separated from the correlated part, HN . This

provides a way to find the coupled cluster correlation energy separately, and the Hartree-Fock

energy can be added on later to compute the total energy of the system.

2.6.3 Coupled Cluster Singles and Doubles

The energy and amplitude equations for the formal coupled cluster single and doubles (CCSD)

method are:

ECC =
〈

ψo|e
−T̂ ĤeT̂ |ψo

〉

(2.28)

〈

ψa
i |e

−T̂ ĤeT̂ |ψo

〉

= E
〈

ψa
i |e

−T̂ eT̂ |ψo

〉

= 0 (2.29)

〈

ψab
ij |e

−T̂ ĤeT̂ |ψo

〉

= E
〈

ψab
ij |e

−T̂ eT̂ |ψo

〉

= 0 (2.30)
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Using the CCSD case where the cluster operator is defined as T̂ = T̂1 + T̂2, the coupled cluster

wave function becomes:

ΨCC = {1 + T̂1 +
1

2!
T̂ 2

1 +
1

3!
T̂ 3

1 + T̂2 +
1

2!
T̂ 2

2 +
1

4!
T̂ 4

1 + T̂2T̂1 +
1

2!
T̂2T̂

2
1 }ψo (2.31)

where the definitions for the cluster operators are

T̂1 =
∑

ia

tai {a
†i} (2.32)

T̂2 =
1

4

∑

ijab

tab
ij {a

†b†ji} (2.33)

To find an expression for the CCSD energy, a generalized Wick’s theorem can be applied. This new

version of Wick’s theorem gives only a non-zero result for the terms in the energy expression that

have at least one contraction between the Hamiltonian operator and the cluster operator. This

is the idea of a “connected cluster”. Crawford and Schaefer derive the CCSD energy by using

the fact that “the Hamiltonian must share at least one index with every cluster operator”.22 The

Hamiltonian only has the possiblity of having no more than a total of four annihilation or creation

operators, which can only connect to a total of at most four cluster operators at one time. After

much tedious mathematics, the CCSD correlation energy is

ECCSD =
〈

ψo|H̄|ψo

〉

=
∑

ia

fiat
a
i +

1

4

∑

ijab

tab
ij 〈ij||ab〉+

1

2

∑

ijabtai t
b
j 〈ij||ab〉 (2.34)

This energy expression will hold true even for higher approximate methods of coupled cluster theory,

such as triples (CCSDT) and quadruples (CCSDTQ). The triple and quadruple excitations cannot

contribute anything directly to the energy because it is impossible for them to produce any fully

contracted terms with the Hamiltonian. T̂3 and T̂4, the higher cluster operators in CCSDT and

CCSDQ, can only contribue to the energy indirectly through their effect in the amplitude equations

of ta
i and tab

ij .
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To completely solve the energy equation, it is necessary to determine the amplitude equations.

For the CCSD method, there are only two types of cluster coefficents; one for the singles, the other

for the doubles. The two sets of amplitude equations can be written as reference expectation values

as follows:

〈

ψa
i |H̄|ψo

〉

=
〈

ψo|{i
†a}H̄|ψo

〉

= 0 (2.35)

〈

ψab
ij |H̄|ψo

〉

=
〈

ψo|{i
†j†ba}H̄|ψo

〉

= 0 (2.36)

This is done so that it is possible to have fully contracted terms between the cluster operators and

the Hamiltonian. After Wick’s theorem is applied, a set of programmable equations can be found

for both the singles cluster operator and the doubles cluster operator. These equations can be found

in a paper written by Stanton et al.25 and many others.22,26 This process is quite tedious and

introduces many chances for error because of the large number of possible contractions. Diagram-

matic techniques have been developed to avoid the mathematical tedium of Wick’s theory.22,27,28

Diagrams allow the energy and amplitude equations to be derived quite easily and rapidly.

2.6.4 Higher Orders of CC Theory

Even though CCSD is a computationally expensive method (N6) it has been shown that it is

necessary to use higher levels of excitation in the coupled cluster method to provide accurate

approximations of molecular properties. Full higher excitations such as triples, CCSDT (N8) and

quadruples, CCSDTQ (N10) are too computationally expensive (in both memory and CPU time)

to use for realistic systems. In an attempt to overcome this computational obstacle, Kucharski

and Bartlett showed that there is a connection between the many body perturbation theory and

coupled cluster theory through the use of diagrams.27 Stanton and Gauss described this connection
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by showing that the coupled cluster Hamiltonian can be expanded into small perturbations by the

Hausdoff expansion.29 The CCSD energy contains terms that are the same as MP2 and MP3, but

it does not include the triple contributions from MP4. Therefore, a pertubative triples correction

can be added to the CCSD energy. Although many different types of triples corrections have

been developed, the most widely used method is the CCSD(T) method. This approach, developed

by Raghavachari et al.,30 involves a non-iterative N7 computation. Stanton explained that the

CCSD(T) method approximates the triples correction by using fourth and fifth order perturbation

terms.31

2.7 Density Functional Theory

Density Functional Theory (DFT) was first used by solid-state physicists for the prediction of

properties of large-sized solid systems. In the late 1990s, density functional theory became one

of the more widely used quantum chemical techniques, and with W. Kohn’s developmental work

within DFT, for which he won the Nobel Prize in chemistry, this method can now be used to predict

the chemical properties of molecules.32

All of the wave function-based techniques described earlier are dependent on the spin and the

three spatial coordinates of every electron with in the system (a total of 4N coordinates for a N

electron system). Density functional theory, on the other hand, reduces the complexity of the wave

function methods by using the electron density to compute the energy,33 which is only dependent

on the number of electrons within the system. The mathematical expression for the energy in DFT

becomes a ‘function’ of the electron density (or probablity density), and contains the same terms
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that are found in the electronic Hamiltonian.

In 1964, the Hohenberg-Kohn theorem proved that by knowing the electron density, it is possible

to determine the ground-state energy and molecular properties for a given molecule.33 Although

this theorem confirmed that there is direct relationship between the two, the form of the functional

representing the electron density remained unclear. A year later, Kohn and Sham, expressed the

ground state energy in terms of the electron density, ρ, and a set of one-electron spatial orbitals,34

E(ρ) = −
h̄2

2

N
∑

i

∫

ψ∗
KS(r1)∇1

2ψKS(r1)dr1 −
M
∑

A

∫

ZA

riA
ρ(r1)dr1 +

1

2

∫

ρ(r1)ρ(r2)

r12
dr1dr2 + EXC(ρ) (2.37)

Here the first term represents the kinetic energy, followed by the electron-nuclei attraction, and the

coulombic interaction term, where the electron density is dependent on the Kohn-Sham orbitals,

ρ(r) =
N
∑

i

|ψKS(r)|2 (2.38)

When the Kohn-Sham orbitals are used to determine the total energy, the result is an eigenvalue-

like set of equations called the Kohn-Sham equations which are similar to Roothaan’s equations in

Hartree-Fock Theory. The last term, Exc(ρ), in Equation 2.37 is the exchange-correlation energy

that consists of the exchange interaction, or the nonclassical interaction, between the electrons.

The forms of the first three terms of the previous equation are known, but it is the form of final

term that is still unclear. Since the exact functional that makes up the exchange-correlation energy

is unknown, approximations must be made to compute it.

The main goal of density functional theory is to design “functionals”, or mathematical expres-

sions to correctly compute the electron density.35 One of the most basic ways to approach the

electron density is with the local density approximation (LDA) where the exchange correlation
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energy is,36

Exc =

∫

ρ(r)εxc [ρ(r)] dr (2.39)

which can be further separated into different contributions for exchange and correlation interactions,

εxc(ρ) = εx(ρ) + εc(ρ) (2.40)

This method is based on the assumption of a uniform gas, which is clearly not appropriate, because

it is unrealistic to consider the electronic charge of a molecule equally distributed. Although this

method provides a route to compute the energy of a molecule through the electron density, it tends

to overestimate the electron density, and therefore, does not provide results that are within chemical

accuracy.35

Other steps have been taken to rectify the problems associated with the uniform gas approxi-

mation of LDA, by accounting for the fluctuations in density. In the Generalized Gradient Approx-

imation (GGA), Exc is not only dependent on the electron density, but also its deriviatives which

considers the inhomogeneity of the real electron density.37 Most GGA functionals are developed

by adding a correction term to the LDA functional:

EGGA
xc (ρ) = ELDA

xc (ρ) + F

[

|∇ρ(r)|

ρ
4
3 (r)

]

(2.41)

where F is a functional of the gradient of the density, and can be divided into separate exchange

and correlation functionals.38 One of the most popular exchange functionals was developed in 1998

by Becke,39 to correctly describe the asympotic behavior of the electronic density. This functional,

often referred to as “B”, has the form:35

FB = −βρ
1
3

[

|∇ρ(r)|

ρ
4
3 (r)

]2

1 + 6β

[

|∇ρ(r)|

ρ
4
3 (r)

]

sinh−1
[

|∇ρ(r)|

ρ
4
3 (r)

] (2.42)
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where the β parameter is determined by an optimized fit of known exact exchange energies of

the noble gases. Although the Becke functional provides somewhat accurate results,40 improve-

ments have led to the hybrid functionals, such as the B3–Becke’s 3 parameter functional–which

takes into account the exact exchange energy, that can be calculated through the Hartree-Fock

technique.35 Becke determined the values of his three parameters by data fitting to atomization

energies, ionization potentials, proton affinites, and atomic energies of the G1 molecule set.40–42

While the B3 functional only focuses on the exchange contributions of the energy, it is also

necessary to account for the correlation effects, even though these effects are significantly smaller

than the exchange. The LYP correlation functional developed by Lee, Yang, and Parr,43 is based

on the work of Colle and Salvette,44 and has the form:

ELY P
xc = −a

γ

(1 + dρ−
1
3 )
−



ab
γe−cρ

−

1
3

9(1 + dρ−
1
3 )ρ

8
3



×

[

18(2
2
3 )(

3

10
)(3π2)

2
3 (ρ

8
3
α + ρ

8
3
β )− 18ρtW

]

−



ab
γe−cρ

−

1
3

9(1 + dρ−
1
3 )ρ

8
3



×
[

ρα(2tαW +∇2ρα) + ρβ(2tβW +∇2ρα)
]

(2.43)

where a, b, c, and d are parameters found by fitting to helium atom data, the γ factor is based on

the separate electron density for α and β spin, and tσW is a kinetic energy function, known as the

local Weizsacker density,35,45

γ = 2

[

1−
ρ2

α + ρ2
β

ρ2

]

(2.44)

tσW =
1

8

[

|∇ρσ|
2

ρσ
−∇2ρσ

]

(2.45)

When the B3 exchange functional is used in conjuction with the LYP correlation, the result is the

B3LYP functional, the most popular and (arguably) robust functional used in density functional

theory.
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There are many similarities between DFT and HF theory, but there is one extreme differ-

ence. With all wave function based techniques, there is a clear route to the exact solution of the

Schrödinger equation; express the wave function as a linear combination of all possible excited de-

terminants and choose an infinite basis set, and the exact energy of the system is obtainable. With

DFT, there is no clear cut path to the exact answer. If the exact form of the functional representing

the electron density was known, then DFT would provide the total energy of the system, including

electron correlation. Although there is some ambiguity surrounding the choice of “functional” for

the electron density, density functional theory is advantageous because it is has the possiblity of

predicting more accurate results than HF theory with a similar computational expense.

2.8 Basis Sets

Basis sets are a group of functions used to represent atomic orbitals in the LCAO-MO approach.

There are two main types of atomic orbitals used in basis sets: Slater type orbitals and Gaussian

type orbitals. A Slater type orbital has the form

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r(n−1)e−ζr (2.46)

while the form for a Gaussian type orbital is

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r(2n−2−l)e−ζr2
(2.47)

where N is the normalization constant and Yl.m are spherical harmonic functions. The major

difference between the two types of orbitals comes form their r-dependence. Because of the square

power of the Gaussian orbital, it decays much more quickly than the Slater function.13 Also, Slater
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functions have a finite slope (i.e. a cusp) while Gaussian functions have a zero slope at the nucleus.

Davidson and Feller explained that the Gaussian functions do not correctly approximate the exact

solution because they have the wrong behavior close and far away from the nucleus.46 Therefore, it

would take many more Gaussian functions to obtain correct solutions to the Schrödinger equation

than Slater functions. In spite of this, one is more likely to choose Gaussian functions over Slater

functions because the integral evalulation with Slater functions is much more difficult and also,

Slater functions are more computationally expensive.

Basis sets, such as 6-31G are split valence basis sets that use sums of Gaussian orbitals for each

core shell and multiple sums for each valence shell. Polarization functions, an additional set of

angular momentum functions for each atom, are represented by a *. These functions are important

when predicting the molecular properties because they account for the distortion of the orbital in a

molecular environment.47 For example, the 6-31G* basis set adds a set of d-type functions for first

row atoms and the 6-31G** basis set adds the d-type functions along with a set of uncontracted

p-type functions for hydrogen.

Dunning developed a set of Gaussian basis sets to be used in correlated methods, the correlation

consistent basis sets (cc-pVXZ), designed to contain “all of the correlating functions which lower

the correlation energy by similar amounts as well as all correlating functions which lower the energy

by larger amounts”.48 These basis sets can be used to add d, f , and g-type polarization functions.

Dunning’s calculations on the first row atoms showed that the correlation consistent basis sets

provide a set of functions that accurately describe the molecular correlation effects. Additional

diffuse functions can be added to these types of functions, giving the aug-cc-pVXZ basis sets. The

main advantage of the cc-pVXZ and aug-cc-pVXZ type basis sets is that they provide a series of
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basis sets which converge to the basis set limit.



Chapter 3

Computing Chiroptic Properties

3.1 Introduction to Computing Optical Rotation

Ab initio calculation of optical rotation is of relatively new interest, but since its implementation

in density functional theory in 2000,49–55 and more recently in coupled cluster theory,53,56–60 it has

been successfully used to determine the absolute configuration for a variety of molecules.54,61,62

When using the optical rotation to determine the absolute configuration of a chiral molecule, the

theory must correctly predict both the sign and magnitude of the specific rotation. These types

of calculations inherently contain several sources of error as a consequence of electron correlation

effects and basis set dependence.

In 1982, Amos developed the static limit electric-dipole magnetic-dipole linear response po-

larizability tensor which marked the pathway to the calculation of optical rotation.63 Ab initio

calculations for computing optical rotation were first implemented in the Hartree-Fock method by

29
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Polavarapu and Kondru.64–66 They were able to predict optical rotation values for small molecules

using the Hartree-Fock (HF) method with small basis sets. More recently, optical rotation cal-

culations were carried out using methods which include electron correlation. Stephens et al. has

examined the use of density functional theory (DFT) to compute optical rotation values for small

molecules, showing that there is a large deviation between theoretical and experimental values.51

The few coupled cluster (CC) calculations that have been reported show the same deviations, and

also, the theoretical values for CC and DFT theories are not consistent with each other.53,56

3.2 The Theory of Optical Rotation

An excellent resource describing the fundamental theory behind optical rotation can be found in

texts by Caldwell and Eyring67 and by Barron.5 Here, only a brief overview of the theory is

presented.

3.2.1 The Electromagnetic Hamiltonian

Before we can compute the optical rotation, it is necessary to derive the energy expression for

the chiral system in the presence of electric and magnetic fields. In an electromagnetic field, the

charged particle undergoes a Lorentz force:7

F = e

[

E + (
v

c
)×B

]

(3.1)
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where e is the charge of the electron, moving with a velocity, v. According to the Euler-Lagrange

equation,

∇L =
d

dt

∂L

∂v
(3.2)

which leads to the following Lagrangian, comprised of the kinetic and potential energy

L =
1

2
mv2 − eφ+

e

c
A · v (3.3)

where φ and A are scalar and vector potentials.5 The Hamiltonian is related to the Lagrangian

function through

Ĥ = v ·
∂L

∂v
− L (3.4)

which leads to the following form of the electromagnetic Hamiltonian, explicitly dependent on p

and r5

Ĥ =
1

2m

[

p−
e

c
A

]2

+ eφ (3.5)

By substituting −ih̄∇ for the momentum and assuming that the vector potential is unvarying,

Ĥ =
−h̄2∇2

2m
+

e2

2mc2
A2 + eφ (3.6)

The Hamiltonian describing a system in the presence of an electromagnetic field can be divided

into two terms, a reference Hamiltonian and a perturbed part, Ĥ = Ĥo + Ĥ ′(t) where

Ĥ ′(t) = −
e

mc

∑

i

A(r1) · pi (3.7)

When using the following form of the vector potential,

A(r) = A(0) + (r · ∇0)A(0) (3.8)
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the complete interaction Hamiltonian evaluated to the first order is67

Ĥ ′(t) = −
e

mc

[

∑

i

A(0) · pi +
1

2
(∇0 ×A(0)) · (ri × pi)

]

+

[

im

2h̄

] [

−
e

mc

]

{Ho(r · ∇0)(A(0) · r)− (r · ∇0)(A(0) · rHo} (3.9)

3.2.2 The Time-Dependent Schrödinger Equation

Because there is a realistic time dependence of the applied electromagnetic field (the perturbed

part of the total Hamiltonian is time dependent), the molecular wave functions cannot be solved

using the regular Schrödinger equation discussed in the first chapter. Instead, the perturbed wave

functions can be solved using the time- dependent Schrödinger equation:67

ĤΨ =
[

Ĥo + Ĥ ′(t)
]

= ih̄
∂Ψ

∂t
(3.10)

where the wave function has the following form

Ψ(t) = Ψoe
− iEot

h̄ +
∑

n

an(t)Ψne
iEnt

h̄ (3.11)

and the coefficents for the perturbed wave function are

an(t) =
1

ih̄

∫ t

o
H ′(t)eiωnotdt (3.12)

3.2.3 Response to a Changing Magnetic Component of the Elec-

tromagnetic Field

In order to calculate the optical rotation of a chiral molecule, it is neccessary to determine the

polarization of the medium, due to the changing magnetic component of the electromagnetic field.
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To do this, the perturbed Hamiltonian is expressed as:8

H ′(t) = −µ ·E(t)−m ·B(t) (3.13)

where µ and m are the electric-dipole and magnetic-dipole and E and B are dependent on the

separate left- and right- components of circularly polarized light (represented by ±)

E±(t) = ε(̂i cosωt± ĵ sinωt) (3.14)

B±(t) = β±î sinωt− ĵ cosωt (3.15)

After substituting the previous equations into Equation 3.13, along with the Euler’s identites for

sinωt and cosωt, and including the term, (1 − e
−t

τ ), for switching on the field, the perturbed

Hamiltonian has the form:8

Ĥ ′(t) = −
1

2
ε(1− e

−t

τ )
[

µx(eiωt + e−iωt)∓ µyi(e
iωt − e−iωt)

]

−
1

2
β(1− e

−t

τ )
[

−mx(eiωt + e−iωt)∓ imy(e
iωt − e−iωt)

]

(3.16)

The response of an observable quantity to the applied electromagnetic field is found by its

expectation value,67

〈Q〉nn =

∫

Ψ′∗
nQΨ′

ndτ (3.17)

For the electric-dipole (using Equation 3.11 for the wave function)

〈

µ±〉 = 〈0|µ|0〉+
∑

n

a±n (t) 〈0|µ|n〉 eiω0nt +
∑

n

a±∗
n (t) 〈n|µ|0〉 e−iω0nt (3.18)

This equation can be further simplified by using the previous expressions for the perturbed Hamil-

tonian and the coefficients for the perturbed wavefuction (Equations 3.13 and 3.12)

〈

µ±〉 =
2

h̄
Re
∑

n

[

ωn0

ω2
n0 − ω

2

]

〈0|µ|n〉 〈n|µ|0〉E±(t)−

2

h̄
Im
∑

n

[

1

ω2
n0 − ω

2

]

〈0|µ|n〉 〈n|m|0〉B±(t) (3.19)
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(B±(t) is directly related to the vector potential, A, which in turn is related to the derivative of

the magnetic field through Maxwell’s equations)

Another approach to determining the response of the electric-dipole to the electromagnetic field

is through the Hellman-Feynman theorem8

dE

dP
=

〈

∂Ĥ

∂P

〉

(3.20)

where E is the energy and P is the chosen parameter (in this case, P is the electric field, ε). When

the partial derivative of the perturbed Hamiltonian (Equation 3.13) with respect to the electric

field is taken, the result is −µ which is equivalent to the derivative of the energy with respect to

the electric field. If the energy is be expressed as a Taylor series expansion, its connection to the

electric-dipole results in

〈µ〉 = −

[

dE

dε

]

∣

∣

∣

∣

∣

0

−

[

d2E

dε2

] ∣

∣

∣

∣

∣

0

ε−
1

2

[

d3E

dε3

] ∣

∣

∣

∣

∣

0

ε2 − . . . (3.21)

〈µ〉 = µ0 + αε +
1

2
βε2 + . . . (3.22)

where µ0 is the permanent dipole, and α and β are the polarizability and hyperpolarizability,

respectively (in Equation 3.22, β is not the same as the β tensor or the Rosenfeld polarizability

tensor, it is only used here as the hyperpolarizability). When the case of an electric field with an

induced magnetic field is considered, the previous equation can be compared to Equation 3.19, and

the result is an expression for the beta tensor8 (Rosenfeld Polarizability Tensor)67

β =
2

h̄
Im
∑

n

〈0|µ|n〉 〈n|m|0〉

ω2
n0 − ω

2
(3.23)

which consists of three components averaged in solution

βxx + βyy + βzz −→ β =
2

3h̄
Im
∑

n

〈0|µ|n〉 · 〈n|m|0〉

ω2
n0 − ω

2
(3.24)
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This leads us to our final expression of the angle of rotation of plane polarized light through a chiral

medium (from Equation 1.23):

∆θ =
ω2N

c2ε0h̄
Im
∑

n

〈0|µ|n〉 〈n|m|0〉

ω2
n0 − ω

2
(3.25)

3.3 Computing Optical Rotation with Coupled Cluster

Theory

Coupled cluster linear response theory allows for the calculation of molecular response properties,

such as optical rotation.68–73 This technique requires taking the second derivative of the time-

averaged coupled cluster Lagrangian function:72

βω ←−
d2LCC

dµdm
(3.26)

which leads to the following linear response function, which is essentially equivalent to the beta

tensor

〈〈µ;m〉〉ω =
1

2
Ĉ±ωP̂ (µ(−ω),m(ω))

[

〈0|Λ̂
[

µ̄, X̂ω
m

]

|0〉+
1

2
〈0|Λ̂

[[

H̄, X̂ω
µ

]

, X̂−ω
m

]

|0〉

]

(3.27)

where |0〉 is the Hartree-Fock reference state, the overbar denotes the similarity transformation of

the given operator [e.g., H̄ = exp(−T̂ )Ĥ exp(T̂ )], and Λ̂ is a cluster operator parametrizing the

coupled cluster “left-hand” ground-state wave function. The permutation operator Ĉ±ω simulta-

neously changes signs of the the chosen field frequency, ω, and takes the complex conjugate of the

equation, while P̂ (µ,m) permutes the property operators µ and m. This previous expression for

〈〈µ;m〉〉ω is analogous to the Rosenfeld polarizability tensor, where the specific rotation is directly
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related the trace of β:

[α]ω =
(7.20× 106)h2NAω

c2m2
eM

×

[

1

3
Tr(β)

]

(3.28)

In Equation 3.27, X̂µ and X̂m represent the perturbed wave functions, or the response of the wave

function to the applied electromagnetic field. These are determined by solving the following system

of linear equations, which is dependent on Φi, the excited determinants

〈Φi|(H̄ − ω)|Φj〉〈Φj |X̂
ω
µ|0〉 = −〈Φi|µ̄|0〉 (3.29)

〈Φi|(H̄ − ω)|Φj〉〈Φj |X̂
ω
m|0〉 = −〈Φi|m̄|0〉 (3.30)

The following sequence lists the steps needed for evaluation of the linear response function.74

1. Use ground state coupled cluster theory to determine the cluster operators, T̂ .

2. Compute H̄, µ and m.

3. Determine Λ̂, the left-hand ground-state wave function.

4. Solve the previous system of linear equations (Equation 3.29 and 3.30) to obtain the perturbed

wave functions.

5. Combine all parameters to solve for 〈〈µ;m〉〉ω.

3.4 Computing Optical Rotation with Density Func-

tional Theory

In density functional theory, the time-dependence of the applied electromagnetic field is treated

using time-dependent DFT (TD-DFT),75–77 where the linear response function that represents the
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beta tensor has the form78

〈〈µx;my〉〉ω = µ+
x (Γ− ω∆)−1my (3.31)

where Γ and ∆ are matrices that contain all the single excitations and de-excitations of the Kohn-

Sham orbitals,79

Γ =











A B

B A











(3.32)

∆ =











1 0

0 −1











, (3.33)

The A and B submatrices of Equation 3.32 contain the molecular orbitals, orbital energies and

antisymmetrized electron repulsion integrals.74

In actuality, density functional calculations of optical rotation do not explicitly compute the

inverse matrix in Equation 3.31. Instead, the perturbed wave function is determined from the

following system of linear equations:

(Γ− ω∆)Zx = µx (3.34)

(Γ− ω∆)Zx = mx (3.35)

The following sequence lists the steps required for a density functional theory calculation of optical

rotation.74

1. Use density functional theory to obtain the Kohn-Sham orbitals.

2. Use the previously described equations to compute the matrices A and B.

3. Use A and B to determine the form of Γ (Equation 3.32).
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4. Iteratively solve Equations 3.34 and 3.35.

5. Combine all previously solved items, to obtain an expression for the β tensor (Equation 3.31)

which can be used to calculate the specific rotation through Equation 3.28.

3.5 Origin Invariance in Optical Rotation Calculations

One of the main problems with optical rotation calculations is the result of origin dependence,

meaning that the computed value is contingent on the position of the molecule, which is clearly

unrealistic. This origin dependence is caused by translation of the coordinate origin along a vector,

a, which in turn causes a shift in the linear response function:

〈〈

r′; r′ × p′〉〉

ω
= 〈〈r; r × p〉〉ω − 〈〈r; a× p〉〉ω (3.36)

It is the last term that specifically causes the lack of origin independence through its relationship

to 〈〈r; p〉〉ω:

〈〈r; a× p〉〉ω = ax

[

〈〈rz; py〉〉ω − 〈〈ry; pz〉〉ω
]

+ ay [〈〈rx; pz〉〉ω − 〈〈rz; px〉〉ω] +

az

[

〈〈ry; px〉〉ω − 〈〈rx; py〉〉ω
]

(3.37)

When computing optical rotation with density functional theory and GIAOs (gauge invariant

atomic orbitals), the following equation-of-motion response function is satisfied74

ω 〈〈r; r〉〉ω = 〈ψ0| [r, r] |ψo〉+
〈〈

r;
[

r, Ĥ
]〉〉

ω
(3.38)

Since
[

r, Ĥ
]

= ip, through substitution Equation 3.38 becomes

ω 〈〈r; r〉〉ω = 〈ψ0| [r, r] |ψo〉+ 〈〈r; ip〉〉ω (3.39)
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When this relationship for 〈〈r; ip〉〉ω is used in Equation 3.37, it becomes zero through symmetry

relations, providing origin invariance in density functional theory optical rotation calculations.

When coupled cluster theory is used to calculate optical rotations, its equation-of-motion re-

sponse function does not satisfy the conditions of Equation 3.38, leading to origin dependent results

(length-gauge). An alternate method is to perform optical rotation calculations within coupled clus-

ter theory using the “velocity gauge” developed by Pedersen et al.58 In this method, an alternate

form of the Rosenfeld tensor is used, and with exact wave functions,

Tr 〈〈r; r × p〉〉ω =
1

ω
Tr 〈〈p; r × p〉〉ω (3.40)

which causes the last term in Equation 3.36 to go to zero, resulting in origin independence. One

major difference between “length-gauge” and “velocity-gauge” results, is that the response function

for the former decays to zero in the static limit, whereas the “velocity-gauge” response function

does not because of the factor of 1/ω, which cancels with the ω in the numerator of Equation 3.28.

Pedersen et al. account for this unrealistic result by shifting 〈〈p; r × p〉〉ω by the static limit value

〈〈p; r × p〉〉0.



Chapter 4

Coupled Cluster and Density

Functional Theory Calculations of

Optical Rotatory Dispersion of

(S)-Methyloxirane

Reproduced in part with permission from Mary C. Tam, Nicholas J. Russ and T. Daniel Crawford,

J. Chem. Phys. 112, 3550-3557, 2004.
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4.1 Introduction

A long-standing problem in natural products chemistry is the determination of the absolute con-

figuration of newly isolated compounds. Although the assessment of the enantiomeric purity of

such chiral species is routinely achieved by measuring optical rotation angles or integrating chiral

GC/HPLC traces, determining the absolute configuration is more difficult.6,80 The most convincing

analyses rely on X-ray crystallographic data of the compound itself (using anomalous dispersion) or

of a derivative that incorporates a known stereocenter. In the case of a non-crystalline compound,

asymmetric synthesis — or total synthesis from starting materials of known absolute configuration

— must be performed. When these methods fail, less secure chiroptical and NMR methods are

used. All of these approaches are time-consuming, and none are guaranteed to be successful.

An alternative approach is to compute directly the chiroptical properties of selected molecular

structures and compare the results with the associated properties [optical rotation angles, optical

rotatory dispersion (ORD) spectra, or circular dichroism (CD) spectra] of the original natural

product isolate.49,64,65,81–84 The quantum mechanical foundation for such computations has been

known since the work of Rosenfeld in 1928.85 Using time-dependent perturbation theory, one may

show that the angle of rotation, [α]ω, of plane-polarized light of frequency ω in a chiral medium is

related to the trace of the frequency-dependent electric-dipole magnetic-dipole polarizability tensor,

β(ω) =
c

3πh
Im
∑

n6=0

〈0|µ|n〉〈n|m|0〉

ω2
n0 − ω

2
, (4.1)

where µ and m are the electric and magnetic dipole operators, respectively, and the summation

runs over excited electronic (unperturbed) wave functions, |n〉. This tack has been taken with

both semiempirical86–88 and ab initio quantum chemical techniques,63,81,89,90 most recently with
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density functional theory49,84,91,92 and coupled cluster theory53,56,93 and several applications have

appeared in the literature.64,82,94–101 Unfortunately, the quality of such theoretical predictions is

often difficult to assess because fair comparisons with experimental data are not straightforward.

First, the theoretical approach may contain many sources of error, such as choice of one-electron

basis set, dynamic electron correlation effects, etc. Second, experimental data are often obtained

under widely varying conditions, and solvent and/or temperature effects, as well as conformational

averaging, may have a significant impact on measured chiroptical spectra.

A recent breakthrough in the development of cavity ring-down polarimetry (CRDP) by Müller,

Wiberg, and Vaccaro has allowed ultrasensitive gas-phase measurements of optical rotation of a

number of small chiral molecules, thus opening the door to more systematic comparisons between

theory and experiment.102,103 Müller et al. reported that, contrary to conventional wisdom, solvent

effects can indeed be significant, perhaps leading to dramatic differences in both magnitude and

sign of optical rotation angles relative to gas-phase results. For example, among the molecules

studied by Müller et al. is propylene oxide (also known as methyloxirane), a potentially ideal test

case for higher-level theoretical models because it is conformationally rigid and contains only four

non-hydrogen atoms. Müller et al. measured a 355 nm specific rotation of the (S) enantiomer of

methyloxirane of +10.2 deg dm−1 (g/mL)−1 in the gas-phase and -26.4 deg dm−1 (g/mL)−1 in

cyclohexane. These results agree qualitatively with those of Kumata et al., who reported a wide

variation of sodium D-line (589 nm) specific rotation of (S)-methyloxirane in benzene (−30.6 deg

dm−1 (g/mL)−1) vs water (+4.3 deg dm−1 (g/mL)−1).104

In the only theoretical comparison to these new experimental results to date, Giorgio et al.

recently reported density-functional theory (DFT) specific rotation data for (S)-methyloxirane using
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a variety of basis sets.105 They found that the B3LYP functional was capable of predicting the

correct sign for the optical rotation with the use of high-angular-momentum correlation-consistent

basis sets106 or specially tailored Sadlej basis sets,107,108 but the magnitude of the rotation was

overestimated by a factor of two. In addition, they reported that large-basis-set Hartree-Fock optical

rotation calculations disagreed qualitatively with the results of Müller et al., a point recently made

in several systematic studies by Cheeseman, Frisch, Devlin, and Stephens.49,84 Giorgio et al. also

indicated that the anomalously large frequency dispersion observed in (S)-methyloxirane is related

to the lowest energy Cotton effect, even though the corresponding absorption occurs at only 174.1

nm (7.12 eV)109 some distance from the wavelength of the CRDP radiation source at 355 nm (3.49

eV) used by Müller and co-workers.102

Given the apparent need for higher-level theoretical calculations of optical rotation in (S)-

methyloxirane, we have applied coupled cluster linear response theory to this problem. Coupled

cluster is widely regarded as the most reliable quantum chemical approach for computing a variety

of properties of small molecules, including molecular structure, vibrational spectra, NMR chemical

shieldings, UV/Vis spectra, and thermochemical properties.110–113 Thus, we seek to extend its

applicability to optical rotation and to benchmark its accuracy relative to experiment. In particular,

using a new implementation of the coupled cluster singles and doubles (CCSD) model for frequency-

dependent properties, described in the next section, we have considered the effect of basis set,

optimized geometry, and gauge origin on the computed rotation angles of (S)-methyloxirane for

comparison to both DFT data and the experimental results of Müller and co-workers. We find

that: (1) the quality of both the DFT and coupled cluster predictions vary widely with basis set

and choice of optimized structure; (2) DFT benefits from an incorrect prediction of the lowest energy
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Rydberg transition in methyloxirane; and (3) coupled cluster, while correct in its determination of

the energy of the lowest Rydberg state, instead fails to predict the width of the pole surrounding

the resonance.

4.2 Coupled Cluster Response Theory for Optical Ro-

tation

The Rosenfeld β tensor in Eq. (4.1) may be computed within the coupled cluster model using

response theory,114–118 in which β is related to the linear response function,

β(ω) = 〈〈µ;m〉〉ω =
d2{LCC}T
dµ dm

, (4.2)

where {LCC}T represents the time-averaged coupled cluster Lagrangian.117 Evaluating the deriva-

tive above leads to an operator form of the linear response function,

〈〈µ;m〉〉ω =
1

2
Ĉ±ωP̂ (µ(−ω),m(ω))

[

〈0|Λ̂
[

µ̄, X̂ω
m

]

|0〉+
1

2
〈0|Λ̂

[[

H̄, X̂ω
µ

]

, X̂−ω
m

]

|0〉

]

(4.3)

where |0〉 is the Hartree-Fock reference state, the overbar denotes the similarity transformation of

the given operator [e.g., H̄ = exp(−T̂ )Ĥ exp(T̂ )], and Λ̂ is a cluster operator parametrizing the

coupled cluster “left-hand” ground-state wave function (developed also in coupled cluster analytic

energy gradient theory).119–123 The permutation operator Ĉ±ω simultaneously changes signs on the

chosen field frequency, ω, and takes the complex conjugate of the equation, while P̂ (Â, B̂) permutes

the property operators Â and B̂. The perturbed wave functions, X̂ω
µ, are determined by solving

the system of linear equations

〈Φi|(H̄ − ω)|Φj〉〈Φj |X̂
ω
µ|0〉 = −〈Φi|µ̄|0〉, (4.4)



Mary C. Tam Chapter 4. (S)-Methyloxirane 45

where the Φi represent excited determinants. It is worth noting that the eigenvalues of the response

matrix on the left-hand side of the above equation (sometimes referred to in the literature as the

coupled cluster Jacobian matrix) are related to the excitation energies of the system, an approach

to UV/Vis spectra known as the equation-of-motion coupled cluster (EOM-CC) method.115,124

One may therefore evaluate the above linear response function by the following steps:

1. Solve the ground-state coupled cluster equations for the cluster operators, T̂ .125,126

2. Compute the similarity-transforms of the Hamiltonian, H̄, and other operators required for

the response function, i.e., µ̄ and m̄.124

3. Solve the left-hand ground-state wave function equations for Λ̂.123

4. Solve the system of linear equations in Eq. (4.4) for each component of each perturbation for

both positive and negative values of the field frequency, ω. For the optical rotation function,

this leads to twelve sets of perturbed wave function equations which must be solved.

5. Compute the contributions to the total linear response function given in Eq. (4.3).115,118

We have derived and implemented the linear response function for the Rosenfeld β tensor at the

coupled-cluster singles and doubles (CCSD) level of theory within the program package PSI3.127

We have adopted a factorization strategy of the many diagrams appearing implicitly in Eqs. (4.4)

and (4.3) similar to that used in efficient ground-state coupled cluster energy and analytic gradient

implementations, such that no single term scales worse than O(N 6).128,129 The program makes full

use of Abelian point-group symmetry when available for efficiency, though for (S)-methyloxirane,

no such symmetry is present.
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An important failing of the above approach to coupled cluster frequency-dependent proper-

ties, as noted by Pedersen and Koch,93,130–132 is its lack of origin independence for magnetic-

field-dependent properties, such as optical rotation. Although this problem can be circumvented

for Hartree-Fock and DFT response methods using gauge-including atomic orbitals (GIAOs, also

known as London orbitals),49,89,133–135 this technique will not ensure origin invariance for con-

ventional coupled cluster or perturbation methods due their lack of orbital optimization. On the

other hand, GIAOs can substantially improve the basis-set dependence of magnetic-field dependent

properties,136 a point we will address below.

4.3 Computational Details

The optimized geometry of (S)-methyloxirane was determined using analytic energy gradients at

the B3LYP137–139 and CCSD(T)122,125,140–143 levels of theory with two different basis sets: the

standard 6-31G* split-valence basis set of Pople et al.144 and the correlation-consistent triple-zeta

(cc-pVTZ) basis set of Dunning.106 These four optimized structures were confirmed to be minima

on the potential energy surface via harmonic vibrational frequency calculations, carried out using

analytic energy second derivative methods.145,146

Optical rotation calculations for a variety of wavelengths were carried out using the coupled

cluster singles and doubles (CCSD) linear response approach described in the previous section

and using time-dependent density-functional theory (TDDFT) with the B3LYP functional.49,82

The molecular center of mass was chosen as the origin for most of the calculations reported here,

though the coordinates of the oxygen atom were used for additional analysis. The B3LYP data
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were obtained both with and without GIAOs for comparison to the CCSD results (vide supra). In

addition, the positions of poles in the values of [α] (i.e., excitation energies) were computed using

EOM-CCSD124 and TDDFT/B3LYP approaches.147,148

In addition, several different basis sets were employed for the optical rotation calculations: (1)

the split-valence basis sets, 6-31G*, 6-31++G**, and 6-311++G(2d,2p);144 (2) the correlation-

consistent basis sets, cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, d-aug-cc-pVDZ, and a mixed basis con-

sisting of the aug-cc-pVTZ basis for carbon and oxygen and the aug-cc-pVDZ basis for hydrogen

(238 contracted Gaussian functions);106,149,150 and (2) the Sadlej-pVTZ basis set, which was de-

veloped specifically for computations of electric properties, including dipole polarizabilities.107,108

Pure angular momentum polarization functions were used for the 6-311++G(2d,2p), correlation-

consistent, and Sadlej basis sets, while Cartesian polarization functions were used with all other

basis sets. All electrons were correlated for the geometry and frequency calculations, but the core

electrons were held frozen for all of the CCSD optical rotation and excitation energy calculations.

(The only reason for this choice is a program limitation in the ACESII system, which was used

for the structural optimizations. Coupled cluster geometries determined using frozen core orbitals

differ negligibly — at most 0.001 Å in bond lengths and less than 0.1 degrees in bond and dihedral

angles at the CCSD(T)/6-31G* level — from the all-electron data used here.) Basis sets were

obtained from the Extensible Computational Chemistry Environment Basis Set Database.151

All coupled cluster optical rotation calculations were carried out with the PSI3 program pack-

age,127 while B3LYP optical rotation calculations were carried out using Gaussian03.152 Coupled

cluster geometry optimizations, harmonic vibrational frequency calculations, and excitation energy

calculations were carried out with the ACESII program package,153 while B3LYP optimized geome-
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tries, harmonic vibrational frequencies, and excitation energies were computed with the Gaussian

suite.152

4.4 Results and Discussion

Fig. 4.1 reports the optimized geometry of (S)-methyloxirane at the B3LYP/6-31G*, B3LYP/cc-

pVTZ, CCSD(T)/6-31G*, and CCSD(T)/cc-pVTZ levels of theory. Although the CCSD(T)/cc-

pVTZ results are reasonably expected to be the most accurate, the rigid structure of this molecule

depends very little on the choice of method, and all four structures agree very well with the

experimentally inferred geometry of Creswell and Schwendeman.154 Bond lengths vary among the

four methods only slightly — all within ca. 0.01 Å— and the variation in the bond angles is, at most,

a few tenths of a degree. Most importantly, the angle of the methyl group out of the plane formed

by the oxirane ring, which one might expect to be the most important structural feature influencing

the computed rotations,90,99 varies by less than a degree (54.95 degrees at the B3LYP/cc-pVTZ

level vs 55.89 degrees at the CCSD(T)/cc-pVTZ level). Nevertheless, as we show below, the choice

of optimized structure still has a significant impact on the computed optical rotation.

Tables 4.1 and 4.2 report the computed values of [α]λ (in deg dm−1 (g/mL)−1) at the B3LYP

and CCSD levels of theory using a variety of basis sets at the two key wavelengths: 589 and 355

nm, respectively. Nearly all choices of basis set and optimized geometry for both methods predict

a negative value of [α]589, in qualitative agreement with the CCl4-solvent-dependent experimental

result of -18.7 deg dm−1 (g/mL)−1 of Kumata et al.,104 though, as noted earlier, the influence
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Figure 4.1: Optimized geometries of (S)-methyloxirane using B3LYP and CCSD(T) methods

with the 6-31G* and cc-pVTZ basis sets. Bond lengths are given in Å and bond angles in

degrees.
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of solvent may be considerable. On the other hand, the variation of the results with respect to

basis set — even for the GIAO-based B3LYP method — is striking. We find that the effect of

diffuse functions in the basis set is particularly important, in agreement with previous studies by

Cheeseman et al.49,84 and by Wiberg et al.100 While the 6-31G*, cc-pVDZ, and cc-pVTZ basis

sets, which lack diffuse functions, give values of [α]589 that are too large in magnitude, even the

6-31++G** basis set, which includes diffuse s and p functions for the heavy atoms and diffuse

s functions on the hydrogens, produces angles around -35 deg dm−1 (g/mL)−1 for B3LYP and

near -50 deg dm−1 (g/mL)−1 for CCSD. The aug-cc-pVDZ basis set, which also includes diffuse d

functions on the heavy atoms and diffuse p functions on the hydrogens, performs well for B3LYP, but

poorly for CCSD, while the d-aug-cc-pVDZ basis set, which includes two sets of diffuse functions for

each atom, reverses this behavior. Finally, the Sadlej-pVTZ basis, which is optimized for computing

electrical response properties, gives essentially the same CCSD [α]589 as d-aug-cc-pVDZ, but B3LYP

values that are near zero (and even positive with the B3LYP/cc-pVTZ geometry).
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Table 4.1: B3LYP and CCSD specific rotation (deg dm−1 (g/mL)−1) for (S )-methyloxirane computed with various basis

sets and optimized geometries at 589 nm. The center of mass is chosen to be the gauge origin.
Geometry Type 6-31G* 6-31++G** 6-311++G(2d,2p) cc-pVDZ cc-pVTZ aug-cc-pVDZ d-aug-cc-pVDZ mixed-cc-pVTZ1 aug-cc-pVTZ Sadlej-pVTZ

B3LYP (GIAO)

B3LYP/6-31G* -22.6 -37.0 -14.9 -49.5 -24.5 -19.4 -11.8 -14.56 -12.7 -1.27

B3LYP/cc-pVTZ -23.8 -37.0 -13.1 -49.0 -23.3 -16.8 -9.26 -11.93 -10.0 2.17

CCSD(T)/6-31G* -27.8 -38.7 -16.7 -53.9 -27.5 -21.0 -12.9 -16.49 -14.2 -3.02

CCSD(T)/cc-pVTZ -30.4 -38.8 -14.2 -55.2 -26.7 -18.1 -9.07 -13.47 -11.1 0.58

B3LYP(non-GIAO)

B3LYP/6-31G* -29.3 -36.0 -3.83 -44.8 -28.1 -21.0 -9.19 -11.56 -11.3 -10.4

B3LYP/cc-pVTZ -28.1 -34.0 -1.94 -44.1 -27.4 -18.5 -6.58 -8.70 -8.49 -7.45

CCSD(T)/6-31G* -33.9 -37.2 -5.28 -48.9 -31.6 -22.6 -10.8 -13.14 -12.0 -12.0

CCSD(T)/cc-pVTZ -34.6 -34.8 -2.63 -49.7 -30.5 -19.5 -7.70 -9.74 -9.49 -8.69

CCSD

B3LYP/6-31G* -24.1 -49.8 -17.6 -38.2 -29.6 -29.2 -18.6 -20.02 — -18.8

B3LYP/cc-pVTZ -23.7 -47.4 -15.8 -37.4 -28.5 -26.9 -16.4 -17.56 — -16.4

CCSD(T)/6-31G* -28.5 -50.8 -19.0 -42.2 -32.6 -30.6 -20.1 -21.66 — -20.3

CCSD(T)/cc-pVTZ -28.9 -48.0 -16.5 -42.6 -31.5 -27.6 -17.3 -18.60 — -17.3

1aug-cc-pVTZ(C,O) + aug-cc-pVDZ(H)
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Table 4.2: B3LYP and CCSD specific rotation (deg dm−1 (g/mL)−1) for (S )-methyloxirane computed with various basis

sets and optimized geometries at 355 nm. The center of mass is chosen to be the gauge origin.
Geometry Type 6-31G* 6-31++G** 6-311++G(2d,2p) cc-pVDZ cc-pVTZ aug-cc-pVDZ d-aug-cc-pVDZ mixed-cc-pVTZ2 aug-cc-pVTZ Sadlej-pVTZ

B3LYP (GIAO)

B3LYP/6-31G* -51.9 -57.2 9.36 -122 -40.4 -5.19 20.3 6.29 11.4 46.8

B3LYP/cc-pVTZ -51.5 -56.7 14.8 -119 -36.1 2.80 27.8 14.28 19.5 57.1

CCSD(T)/6-31G* -67.7 -61.7 4.60 -135 -49.5 -9.87 17.3 0.68 6.97 41.8

CCSD(T)/cc-pVTZ -73.9 -61.3 12.5 -138 -46.4 -0.52 28.9 10.08 16.6 52.6

B3LYP (non-GIAO)

B3LYP/6-31G* -76.0 -53.2 41.7 -117 -59.1 -11.7 25.4 14.69 15.7 19.4

B3LYP/cc-pVTZ -74.1 -46.4 47.5 -114 -54.7 -4.01 33.2 23.44 24.1 25.5

CCSD(T)/6-31G* -90.0 -58.2 37.8 -129 -68.3 -15.9 20.9 10.23 11.2 15.1

CCSD(T)/cc-pVTZ -90.8 -47.9 46.3 -130 -63.9 -6.54 30.3 20.86 21.6 25.3

CCSD

B3LYP/6-31G* -65.0 -118 -22.4 -102 -71.0 -56.8 -24.3 -32.84 — -24.9

B3LYP/cc-pVTZ -63.1 -110 -17.0 -98.6 -67.4 -49.9 -17.8 -25.50 — -17.7

CCSD(T)/6-31G* -78.5 -120 -26.2 -114 -80.1 -60.6 -28.5 -37.59 — -29.0

CCSD(T)/cc-pVTZ -78.5 -111 -18.6 -114 -76.4 -51.4 -20.1 -28.17 — -20.0

2aug-cc-pVTZ(C,O) + aug-cc-pVDZ(H)
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The variation in the values of [α]355 (Table 4.2) with respect to basis set is even greater than that

of [α]589. For the basis sets lacking diffuse functions, strong negative rotation angles are computed

for all methods — even greater than 100 deg dm−1 (g/mL)−1 for CCSD/cc-pVDZ — in dramatic

disagreement with the gas-phase CRDP result of [α]355 = +10.2 deg dm−1 (g/mL)−1 of Müller

and co-workers. For the larger basis sets that include diffuse functions, the B3LYP predictions of

[α]355 are positive, in qualitative to semi-quantitative agreement with experiment, while the CCSD

results remain negative for all the basis sets used here. Furthermore, the B3LYP results show the

correct direction of the dispersion in [α]λ (more positive for 355 nm than for 589 nm) for several of

the more diffuse basis sets, while CCSD rotation angles are consistently more negative at 355 nm

than their 589 nm counterparts. In short, none of the coupled cluster calculations of [α]355 carried

out in this work are in even qualitative agreement with the experimental data by Müller et al.

In addition, Tables 4.1 and 4.2 also reveal a surprisingly strong dependence of the computed

values of [α]λ on the choice of optimized geometry. Although computed values of [α]589 vary with

structure by only a few deg dm−1 (g/mL)−1 for a given method and basis set, for the [α]355 data,

the variation can be greater than 15 deg dm−1 (g/mL)−1, as observed for the B3LYP/Sadlej-pVTZ

and CCSD/6-31G* levels of theory. This disparity occurs in spite of the rather small structural

differences among the four optimized geometries shown in Fig. 4.1.

Optical rotation calculations were also carried out to assess the origin dependence of the CCSD

results and the effect of using London orbitals/GIAOs with DFT. Tables 4.1 and 4.2 therefore

include B3LYP optical rotation data both with and without GIAOs for the 355 and 589 nm wave-

lengths. For most basis sets, the non-GIAO B3LYP results differ little (usually less than 5 deg dm−1

(g/mL)−1) from their GIAO-based counterparts. Two notable exceptions are the Sadlej-pVTZ and
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Table 4.3: CCSD specific rotation (deg dm−1 (g/mL)−1) for (S )-methyloxirane with the

gauge origin placed at the center-of-mass (COM) or at the coordinates of the oxygen atom

(O).

CCSD/aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

355 nm 589 nm 355 nm 589 nm

Geometry Type COM O COM O COM O COM O

B3LYP/6-31G* -56.8 -77.8 -29.2 -36.2 -24.4 -55.7 -18.6 -28.9

B3LYP/cc-pVTZ -49.9 -69.7 -26.9 -33.5 -17.8 -47.6 -16.4 -26.2

CCSD(T)/6-31G* -60.6 -81.5 -30.6 -37.6 -28.5 -60.1 -20.1 -30.4

CCSD(T)/cc-pVTZ -51.4 -71.1 -27.6 -34.2 -20.0 -50.0 -17.3 -27.1

the mixed aug-cc-pVTZ/aug-cc-pVDZ basis set results for [α]355: without GIAO’s the B3LYP data

shift by more than 25 deg dm−1 (g/mL)−1 towards the experimental result for the former and

nearly 20 deg dm−1 (g/mL)−1 away from the experimental result for the latter. Table 4.3 reports

CCSD/aug-cc-pVDZ and CCSD/d-aug-cc-pVDZ optical rotation data for 355 and 589 nm wave-

lengths for the four optimized structures computed at two choices of gauge origin: the molecular

center-of-mass and the coordinates of the oxygen atom. In every case, the rotation becomes more

negative as the origin shifts away from the center-of-mass — by as much as 30 deg dm−1 (g/mL)−1

for the d-aug-cc-pVDZ basis set — and the results are again much more sensitive for [α]355 than

for [α]589.
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The above results beg an important question: why does B3LYP appear to perform somewhat

better for the 355 nm optical rotation than CCSD, giving rotation angles that are at least in

qualitative agreement with the experimental result of Müller and co-workers? The answer lies in

the ability of each method, B3LYP and CCSD, to describe the first-order pole structure (the Cotton

effect) in [α]λ implied by Eq. (4.1) as the frequency of the incident radiation approaches resonance

with an electronic excitation. In CC response theory, the occurrence and shape of such a pole

depends both on the structure of the perturbed wave functions, X̂ω
µ, determined in Eq. (4.4), and

the dependence of the linear response function in Eq. (4.3) on these functions. The appearance

of the EOM-CC response matrix, 〈Φi|(H̄ − ω)|Φj〉 in Eq. (4.4) indicates that, as ω approaches

an eigenvalue of H̄ (an excitation energy) the perturbed wave function components will become

infinitely large (with variable sign). However, as noted previously by Christiansen et al.,117 although

the CC linear response function contains terms that depend quadratically on the perturbed wave

functions (i.e., the second term on the right-hand side of Eq. (4.3), this does not obviate the ability

of coupled cluster response theory to produce a correct first-order pole structure in [α]λ. (It is worth

noting that this point is closely related to the ability of coupled cluster methods to describe correctly

the first-order pole structure of vibrational force constants in pseudo-Jahn-Teller theory, a topic

pertinent to studies of real and artifactual symmetry-breaking in polyatomic molecules.155–157)

Density-functional response theory, on the other hand, benefits from variational optimization

of the component Kohn-Sham orbitals, and a linear response function that closely resembles that

of the random-phase approximation (RPA):92

〈〈µ;m〉〉ω =

(

µS µS+

)






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
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−1









mS

mS+











(4.5)
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where the submatrices A and B represent matrix elements of the Kohn-Sham effective Hamiltonian

between excited determinants, and the property vectors include single excitations (subscript S) and

single de-excitations (subscript S+). The eigenvalues of the inverted response matrix appearing in

Eq. (4.5) represent excitation energies, but because the TDDFT linear response function depends at

most linearly on the (implicit) perturbed wave functions, the method will give a correct first-order

pole at resonance.

Thus, two questions remain: (1) How well do CCSD and B3LYP methods predict the position of

the pole in [α]λ, i.e., the excitation energies of the system, and (2) how well do they reproduce the

shape of the pole? Fig. 4.2 plots the optical rotatory dispersion spectrum of (S)-methyloxirane for

the B3LYP/Sadlej-pVTZ, B3LYP/aug-cc-pVDZ, CCSD/Sadlej-pVTZ, and CCSD/aug-cc-pVDZ

methods at the CCSD(T)/cc-pVTZ optimized geometry. As the radiation wavelength becomes

shorter, all four methods predict an increase in [α]λ, as expected. However, the B3LYP method

clearly rises more rapidly than its CCSD counterpart, in apparent agreement with the experimental

data.

However, this behavior of the B3LYP linear response function stems from an incorrect prediction

of the position of the pole. Table 4.4 reports vertical excitation energies for the lowest two excited

states of (S )-methyloxirane — both of which are Rydberg transitions — using TDDFT/B3LYP and

the EOM-CCSD method with several different basis sets that include diffuse functions, all using

the CCSD(T)/cc-pVTZ optimized geometry. The corresponding experimental excitations reported

by Cohen et al. are 7.12 eV (174.1 nm) and 7.75 eV (160.0 nm).109 As can be seen from the

table, the B3LYP method is in error by 0.5-0.6 eV too low. (Such errors of TDDFT with current
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Figure 4.2: Calculated optical rotary dispersion curve for (S )-2-methyloxirane using B3LYP

and CCSD linear response methods with the Sadlej-pVTZ and aug-cc-pVDZ basis sets.
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functionals are common for Rydberg-type excitations.) Thus, the position of the B3LYP pole in

[α]λ is shifted closer to the 355 nm wavelength of the incident radiation, resulting in a faster rise in

the rotation angle, and apparently fortuitously agreement with the experimental result of Müller

and co-workers.
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Table 4.4: EOM-CCSD and B3LYP-TDDFT excitation energies for the two lowest Rydberg states of (S )-methyloxirane

computed with various basis sets and optimized geometries.

EOM-CCSD B3LYP/TDDFT

aug-cc-pVDZ d-aug-cc-pVDZ Sadlej-pVTZ aug-cc-pVDZ d-aug-cc-pVDZ Sadlej-pVTZ

Geometry Type eV nm eV nm eV nm eV nm eV nm eV nm

B3LYP/6-31G* 7.17 173 7.14 174 7.14 174 6.54 190 6.48 191 6.58 188

7.63 162 7.38 166 7.42 167 6.98 176 6.89 180 7.03 176

B3LYP/cc-pVTZ 7.18 173 7.14 174 7.14 174 6.54 190 6.48 191 6.58 188

7.48 166 7.39 168 7.60 163 6.99 178 6.89 180 7.03 176

CCSD(T)/6-31G* 7.16 173 7.13 174 7.13 174 6.53 190 6.48 191 6.57 189

7.43 167 7.56 164 7.39 168 6.97 178 6.88 180 7.01 177

CCSD(T)/cc-pVTZ 7.19 172 7.15 173 7.16 173 6.55 189 6.49 191 6.59 188

7.49 166 7.59 163 7.44 168 6.99 177 6.89 180 7.04 176
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On the other hand, Table 4.4 shows that the EOM-CCSD method gives a lowest-energy exci-

tation that is essentially identical to the experimental result (within only 0.05 eV). However, while

the CCSD method clearly predicts a correct position of the pole, the width and curvature of the

pole are clearly underestimated, resulting in poor agreement with the experimental value of [α]355

experimental value.

4.5 Conclusions

We have presented theoretical calculations of optical rotation angles for the difficult case of (S)-

methyloxirane using TDDFT/B3LYP and coupled cluster linear response theories. We find that

both methods are exquisitely sensitive to the choice of one-electron basis set and that diffuse

functions have a particularly large impact on the computed values of [α]λ. Furthermore, both

methods show a surprising sensitivity to the choice of optimized geometry, with [α]355 values varying

by as much as 15 deg dm−1 (g/mL)−1 among structures that appear to differ only negligibly.

At first glance, the DFT optical rotation angles appear to be superior to those of the CCSD

method. For example, the B3LYP [α]355 values computed with large, diffuse basis sets agree

reasonably well with the experimental gas-phase results of Müller and co-workers, while those from

CCSD are qualitatively incorrect. However, the success of DFT in this case may actually stem from

a cancellation of errors. Specifically, the B3LYP functional underestimates the lowest electronic

excitation energy of (S)-methyloxirane by 0.5-0.6 eV, thus shifting the first-order pole (the Cotton

effect) in [α]λ towards the experimentally chosen incident radiation lines, resulting in a fortuitous

positive shift in the value of [α]355 towards the experimental result. On the other hand, while the
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CCSD method correctly predicts the position of the pole, with a lowest excitation energy within

only 0.05 eV of experiment, the shape/curvature of the ORD region near λ = 355 nm is still

significantly in error.

We agree wholeheartedly with the assessment of Giorgio et al.105 that the optical rotation of

(S)-methyloxirane is one of the most difficult cases to be treated to date. In order to eventually

resolve these discrepancies between theory and experiment, we are working to extend our coupled

cluster response programs in two important directions: (1) implementation of GIAOs for CC optical

rotation in an effort improve the dramatic basis set dependence of the computed rotation angles;

and (2) inclusion of triple excitations in the CC ansatz [e.g., the CC3 or EOM-CCSD(T) methods]

to determine the importance of residual dynamic electron correlation effects. We will report on

these developments in future publications.



Chapter 5

Ab Initio Determination of Optical

Rotatory Dispersion in the

Conformationally Flexible Molecule

(R)-Epichlorohydrin

Reproduced in part with permission from Mary C. Tam and T. Daniel Crawford, J. Phys. Chem.

A., 110, 2290-2298, 2006.
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5.1 Introduction

Optical rotation — the rotation of plane-polarized light by samples of chiral species – occurs be-

cause such samples exhibit differing refractive indices for left- and right-circularly polarized light

due to the dissymmetric electronic distributions inherent in chiral structures.5,6 For decades organic

chemists have sought a deeper understanding of the various factors influencing optical rotation due

to its intimate connection to absolute configuration, a property of great interest to the pharmaceu-

tical industry, for example. Ab initio calculation of optical rotation158 is of relatively new interest,

beginning with the work of Polavarapu in 1997 at the Hartree-Fock level of theory,64 and since its

implementation in density functional theory (DFT)137 in 2000,49,53,55,84,91,159 and more recently

in coupled cluster (CC) theory,53,56,160–163 it has been used successfully to determine the absolute

configurations of a variety of molecules.61,62 The development of ever more advanced theoreti-

cal techniques will improve our fundamental understanding of the relationship between molecular

structure and optical rotation and help to design more robust tools for determining absolute con-

figuration.55,164,165

In order for theoretical predictions of properties such as optical rotation to be reliable in the

determination of the absolute configurations of chiral molecules, they must correctly predict both

the sign and magnitude of the specific rotation [i.e., the total rotation, normalized for path length

(dm) and concentration (g/mL)]. Such calculations naturally contain several “internal” sources

of error, including those arising from truncation of the N -electron and one-electron spaces —

electron correlation and basis set effects, respectively — as well as difficulties arising from zero-

point vibrational motion.53,166–168 The comparison to experiment is further complicated by the wide

variety of conditions under which optical rotation is measured in the laboratory, and “external”
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factors such as solvation and temperature provide strong perturbations in many cases.104

This work focuses specifically on the impact of conformational flexibility on theoretical deter-

minations of optical rotation.99,169–172 When several conformers are present in a given sample at a

specified temperature, the observed specific rotation may be approximated as a weighted average

of the rotations of the individual conformers. In 2003, Polavarapu et al. addressed this issue for

the small molecule, (R)-epichlorohydrin, both experimentally and using DFT,170 and obtained its

intrinsic rotation (i.e., the limiting value of the specific rotation at zero concentration) in several sol-

vents at 589 nm. Using the B3LYP138,139 functional and a variety of basis sets, they found that the

optical rotation varied greatly (and antagonistically) with the C−C−C−Cl dihedral angle among

the three minimum-energy conformations, referred to as cis, gauche-I and gauche-II (Fig. 5.1). Nev-

ertheless, using conformer populations in several solvents (determined in a previous study,173 where

theoretical infrared absorption spectra were compared to those of experiment) and the B3LYP [α]D

values, they reported population-weighted specific rotations that compared reasonably well with the

experimental solvent-phase data. For example, the observed intrinsic [α]D for (R)-epichlorohydrin

in CHCl3 was +3.2±1.5 deg dm−1 (g/mL)−1 as compared to the conformationally averaged B3LYP

value of +4±3 deg dm−1 (g/mL)−1. They further observed that corresponding shifts in conformer

populations with solvent led to changes in both the magnitude and sign of the intrinsic rotation.

In CH2Cl2, for example, the g-I conformer was found to be dominant with a mole fraction of 0.554

vs. 0.345 for the g-II conformer, while in CCl4 these values were reversed to 0.352 and 0.559,

respectively. The changes in confomer populations with solvent explain the dramatic difference in

intrinsic rotation: -22.4±0.1 deg dm−1 (g/mL)−1 in CH2Cl2 versus +38.4±0.3 deg dm−1 (g/mL)−1

in CCl4. Furthermore, the B3LYP values of [α]D agreed reasonably well with experiment for each
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liquid-phase environment, in spite of the fact that solvation effects were included only in the free

energy and conformer population analysis and were ignored in the specific rotation calculations

themselves.

The study by Polavarapu170 left open two fundamental questions: (1) Are comparisons between

the experimental condensed-phase data and (implicitly) gas-phase theoretical calculations robust?

(2) How reliable is the time-dependent DFT (TD-DFT) B3LYP approach for optical rotation?

That is, is the apparent success of DFT in the case of epichlorohydrin based on accurate rotations

of the individual conformers or a providential averaging of inaccurate rotations?

Müller, Wiberg, and Vaccaro recently reported significant progress towards the answer to the

first question with the development of the ultrasensitive cavity ring-down polarimetry (CRDP) tech-

nique, which has provided the first quantitative measurements of gas-phase optical rotation.102,103

Since their initial publication of the details of such measurements, they have applied the CRDP

approach to a number of small molecules, including epichlorohydrin, thus allowing more systematic

comparisons between experiment and state-of-the-art theoretical models.174,175 For the (S ) enan-

tiomer of epichlorohydrin, Wilson et al. recently reported specific rotations of -238.7±2.3 deg dm−1

(g/mL)−1 at 355 nm and -55.0±1.7 deg dm−1 (g/mL)−1 at 633 for a sample with 97% enantiomeric

excess.175 In addition, they carried out B3LYP-level DFT calculations in agreement with those re-

ported earlier by Polavarapu,170 and explained the shifts in conformer populations in polar solvents

such as acetonitrile on the basis of the widely differing dipole moments of the three conformers.

The purpose of this work is to address the second question regarding the reliability and accuracy

of theoretical models of optical rotation when applied to conformationally flexible molecules. Specif-

ically, we compare the new gas-phase CRDP data of Wilson et al. with results from both DFT and
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recently developed linear-response coupled cluster methods.53,56,160,162 Coupled cluster theory is

widely considered the most robust quantum chemical method for small molecules and has been used

for hyperaccurate predictions of a variety of properties including geometrical structures, thermo-

chemical data, vibrational spectra, UV/vis spectra, NMR spin-spin coupling constants, etc.110–112

However, the overall dependability of coupled cluster theory for response properties such as optical

rotation remains an open question. Epichlorohydrin is an excellent test case for such questions,

because it is small (with only five non-hydrogen atoms) and therefore allows the application of

state-of-the-art computational methods.

5.2 Computational Details

In 1928, Rosenfeld developed the quantum mechanical foundations for first-principles calculations

of optical rotation, and demonstrated that, for a non-absorbing field of plane-polarized light of

frequency ω, angle of rotation, [α]ω, of the light is related to the trace of the β tensor:5,85,176

β(ω) =
2

h̄
Im
∑

n6=0

〈0|µ|n〉〈n|m|0〉

ω2
n0 − ω

2
(5.1)

where µ and m represent the electric and magnetic dipole operators, respectively, and the summa-

tion runs over all excited electronic (unperturbed) wave functions. In this work, we have computed

β using the coupled cluster singles and doubles (CCSD) linear response approach115,160 in order to

predict the optical rotation of the conformationally flexible chiral molecule (R)-ephchlorohydrin.

For comparison, time-dependent density functional theory (B3LYP)137–139 with gauge invariant

atomic orbitals (GIAOs)134 was also used to calculate the optical rotation.49,55,82,159 CCSD and

B3LYP optical rotation calculations were carried out using several different basis sets: (1) the



Mary C. Tam Chapter 5. (R)-Epichlorohydrin 67

split valence basis sets 6-31++G* and 6-311++G(2d,2p);177 and (2) the correlation-consistent ba-

sis sets: aug-cc-pVDZ, aug-cc-pVTZ, and a mixed basis set denoted as “mixed-cc-pVTZ” which

used the aug-cc-pVTZ basis set for carbon, oxygen, and chlorine and the cc-pVDZ basis set for

hydrogen106,149,150,178 using wavelengths of 355, 589, and 633 nm for each conformer. The coupled

cluster optical rotation calculations used both the length gauge (using the center of mass as the

origin) and the “modified velocity gauge” (independent of origin) approach of Pedersen et al.161

for the electric-dipole operator.

To account for conformational flexibility, we assume that the specific rotation can be expressed

as a sum of the products of each individual conformer’s optical rotation αi and its corresponding

mole fraction Xi:

αAVG = αAXA + αBXB + αCXC + . . . (5.2)

where A refers to the lowest energy conformation and B, C, etc. refer to higher energy conforma-

tions. The Xis for each conformation of (R)-epichlorohydrin are dependent upon the Gibbs free

energies of the conformations

Xi = XAexp

(

−(Gi −GA)

RT

)

(5.3)

and XA may be determined from XA + XB + XC + . . .= 1.

The individual conformations were identified using density functional theory with the B3LYP

functional. Each geometry was optimized and harmonic vibrational frequencies were computed for

the cis, g-I, and g-II conformations of (R)-epichlorohydrin using Dunning’s correlation-consistent

cc-pVTZ basis set.106

Because the conformationally averaged theoretical optical rotation is highly dependent on the

accuracy of the corresponding free energies, we employed several methods for a systematic com-



Mary C. Tam Chapter 5. (R)-Epichlorohydrin 68

parison: B3LYP/cc-pVQZ, CCSD/cc-pVDZ, the composite methods, Gaussian-2 (G2)179,180 and

Gaussian-3 (G3)181,182 theory, as well as complete basis set (CBS) extrapolations of coupled cluster

energies.183,184 CBS extrapolations of the Hartree-Fock energy were carried out using the following

equation,

EHF
X = EHF

∞ +Ae−BX , (5.4)

where X is the cardinal number of the cc-pVXZ basis sets (X=2 for cc-pVDZ, 3 for cc-pVTZ, etc.).

The extrapolations of the correlation components of the frozen-core coupled cluster energies were

calculated using

ECC
X = ECC

∞ +AX−3. (5.5)

The Hartree-Fock CBS extrapolations were carried out using the cc-pVDZ, cc-pVTZ, and cc-pVQZ

basis sets while the coupled cluster extrapolations used the cc-pVTZ and cc-pVQZ basis sets, the lat-

ter of which contains a total of 429 functions. The extrapolations were performed at the B3LYP/cc-

pVTZ optimized geometry of each minimum-energy conformation. Harmonic vibrational frequen-

cies were computed at the CCSD(T)/6-31G* level (using the corresponding optimized structure)

to correct for zero point energy and thermal effects (assuming the ideal gas/rigid rotor model).185

Liquid-phase conformer populations were also obtained for several solvents (CH2Cl2, CHCl3, CCl4,

and cyclohexane) at the B3LYP/cc-pVQZ level of theory using the polarizable continuum model

(PCM)186 to obtain internal energies, with the same CCSD(T)/6-31G* vibrational/thermal correc-

tions used for the CBS-CC gas-phase populations.

Vertical electronic transition energies were computed using both equation-of-motion CCSD

(EOM-CCSD)124 and TD-DFT/B3LYP147,148,187 approaches. All electrons were correlated for the

geometry and vibrational frequency calculations, while core electrons (1s for C and Cl) were frozen
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for single point energies, excitation energies, and CCSD optical rotation calculations (except for the

CCSD/mixed-cc-pVTZ optical rotation calculations where the core electrons, 1s for C and 1s2s2p

for Cl, were frozen due to memory constraints). Both length gauge and velocity gauge CCSD

optical rotation calculations were carried out in order to test the significance of freezing the core

electrons. For each wavelength, our results indicate that freezing the 1s2s2p electrons for Cl has

little impact on the computed rotation. At the CCSD/aug-cc-pVDZ level of theory, the specific

rotations computed when freezing only the 1s electrons for Cl differ less than 0.5 deg dm−1 (g/mL)−1

from values computed at the same level of theory where the 1s2s2p core electrons of Cl were frozen.

Gaussian03152 was used for all B3LYP optimized geometries and optical rotation calculations. All

coupled cluster single point energies and optical rotation calculations were performed using the PSI3

program package.127 CCSD(T) geometry optimizations and vibrational frequency calculations were

carried out using Aces2.153

5.3 Results and Discussion

The B3LYP/cc-pVTZ optimized geometries of the three minimum-energy conformations of (R)-

epichlorohydrin are reported in Fig. 5.1. Apart from the C−C−C−Cl dihedral angle, most of the

structural parameters of the three conformations vary only slightly. The conformations are denoted

as cis, g-I, and g-II with dihedral angles of -20.6o, -151.1o, and 94.0o, respectively, in agreement

with earlier studies.173 The lowest energy gas-phase conformation is the g-II structure, with the g-I

and cis conformers somewhat higher in energy, at approximately 0.5 kcal/mol and 1.6 kcal/mol,

respectively.
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Figure 5.1: Optimized geometries of the three minimum-energy conformers — cis, gauche-

I, and gauche-II — of (R)-epichlorohydrin at the B3LYP/cc-pVTZ level of theory. Bond

lengths are given in Å and bond angles in degrees.
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Tables 5.1, 5.2, and 5.3 summarize the computed values of individual conformer specific rota-

tions in deg dm−1 (g/mL)−1 using a variety of basis sets at the B3LYP and CCSD levels of theory,

using wavelengths of plane-polarized light of 355, 589, and 633 nm, respectively. For each wave-

length, the cis and g-II conformations give positive values of [α]λ, while the g-I conformer gives a

negative rotation. The specific rotation of the cis conformer is the least dependent on the choice

of basis set, while the [α]λs for the g-I and g-II conformers show significant variation, especially

between the split valence and correlation consistent basis sets. We also see that the variation be-

tween basis sets decreases for each individual conformation as the choice of wavelength increases.

For each of the conformers, [α]λ deviates very little between the aug-cc-pVDZ and mixed-cc-pVTZ

basis sets for each method, suggesting that the smaller correlation consistent basis set is reasonably

well converged for this property. Also, the B3LYP calculations show almost no variation of [α]λ

between the mixed-cc-pVTZ and aug-cc-pVTZ basis sets, which suggests that the lack of diffuse

functions on hydrogen has a negligible effect on the computed optical rotation. It can also be seen

from Tables 5.1, 5.2, and 5.3, that B3LYP consistently predicts optical rotation values which are

much larger in magnitude than their CCSD counterparts for all of the basis sets and wavelengths

used in this study and that the value of [α]λ increases with decreasing wavelength.

Tables 5.1-5.3 report CCSD-level specific rotations for two choices of gauge for the electric-dipole

operator: the origin-dependent length-gauge representation and the origin-independent modified

velocity-gauge representation of Pedersen et al.161 For the latter, we have shifted the raw velocity-

gauge rotation by its zero-frequency counterpart to account for the fact that this choice of gauge

does not lead to the physically realistic result of [α]λ = 0 as λ → ∞. As can be seen from

the Tables, the choice of length- vs. velocity-gauge has a significant impact on the coupled cluster
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Table 5.1: Specific rotations (in deg/[dm (g/cm3)]) of (R)-epichlorohydrin conformers at 355

nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Conformation 6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

cis 301.7 282.3 277.0 279.2 278.8

g-II 625.5 633.1 608.4 608.5 600.3

g-I -659.7 -574.3 -513.6 -491.9 -493.2

CCSD (Length Gauge)

cis 123.8 177.6 165.5 164.8 -

g-II 520.0 559.4 499.6 508.3 -

g-I -563.5 -493.0 -436.1 -442.8 -

CCSD (Modified Velocity Gauge)

cis 203.6 176.7 171.0 177.1 -

g-II 422.5 504.5 438.0 473.3 -

g-I -481.7 -484.4 -392.3 -412.9 -
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Table 5.2: Specific rotations (in deg/[dm (g/cm3)]) of (R)-epichlorohydrin conformers at 589

nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Conformation 6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

cis 72.5 66.5 63.0 64.9 64.7

g-II 177.9 179.3 172.1 171.5 169.5

g-I -216.9 -187.3 -167.8 -159.7 -160.2

CCSD (Length Gauge)

cis 25.1 44.7 38.9 40.6 -

g-II 153.2 167.2 146.5 149.9 -

g-I -187.1 -163.9 -145.0 -146.0 -

CCSD (Modified Velocity Gauge)

cis 52.4 44.6 41.0 43.2 -

g-II 124.1 149.9 127.2 139.2 -

g-I -162.1 -162.4 -131.8 -137.3 -



Mary C. Tam Chapter 5. (R)-Epichlorohydrin 74

Table 5.3: Specific rotations (in deg/[dm (g/cm3)]) of (R)-epichlorohydrin conformers at 633

nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Conformation 6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

cis 60.9 55.8 52.7 54.4 54.2

g-II 151.2 152.5 146.4 145.9 144.1

g-I -186.4 -160.8 -144.0 -137.1 -137.5

CCSD (Length Gauge)

cis 20.7 37.7 32.5 34.2 -

g-II 130.8 142.7 124.9 127.9 -

g-I -160.9 -141.0 -124.6 -125.5 -

CCSD (Modified Velocity Gauge)

cis 44.2 37.6 34.4 36.3 -

g-II 105.8 128.0 108.4 118.7 -

g-I -139.6 -139.8 -113.4 -118.1 -
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specific rotations, particularly for shorter wavelengths. At 355 nm, the mixed-cc-pVTZ basis CCSD

rotation for g-II, for example, varies from 508.3 deg dm−1 (g/mL)−1 in the length gauge to 473.3

deg dm−1 (g/mL)−1 in the velocity gauge. This variation is much smaller for longer wavelengths,

but is nevertheless significant. The likely reason for this variation is the expected slower basis-set

convergence of the velocity-gauge representation of the electric-dipole operator, though we note

that, for coupled cluster methods, the two representations will not give identical results even in

the limit of a complete basis set.131,158 Though both length- and velocity-gauge CCSD specific

rotations are in semi-quantitative agreement with each other, both are significantly lower than the

corresponding B3LYP rotations. Further study of the comparative behavior of the length- and

velocity-gauge representations is clearly needed.

The differences between the B3LYP and CCSD specific rotations can be understood in terms

of the relative abilities of the two methods to predict accurately the lowest-lying excitation en-

ergies that implicitly influence the computed optical rotation via Eq. (1). Table 5.4 summarizes

the lowest vertical excitation energies for each of the three minimum-energy conformers of (R)-

epichlorohydrin using equation-of-motion CCSD (EOM-CCSD) and TD-DFT/B3LYP. The ener-

gies vary only slightly among the individual conformers, but comparison between the EOM-CCSD

and TD-DFT methods show more dramatic differences, with the latter falling below the former

by approximately 0.7 eV. According to the gas-phase electronic circular dichroism (CD) spectrum

measured by Basil et al. in 1991,188 the lowest electronic excitation produces a positive CD band

peaked at ca. 171.0 nm (7.25 eV), corresponding to a n(O) → 3s Rydberg excitation.
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Table 5.4: EOM-CCSD and B3LYP-TDDFT excitation energies for (R)-epichlorohydrin computed with various basis

sets at the B3LYP/cc-pVTZ optimized geometry.

Individual Conformer Vertical Excitation Energies

EOM-CCSD B3LYP/TDDFT

cc-pVTZ aug-cc-pVDZ 6-311++G(2d,2p) cc-pVTZ aug-cc-pVDZ 6-311++G(2d,2p)

Conformation eV nm eV nm eV nm eV nm eV nm eV nm

cis 7.55 164 7.38 168 7.34 169 6.91 179 6.63 187 6.62 187

g-II 7.53 167 7.35 169 7.33 169 6.90 180 6.68 186 6.66 186

g-I 7.46 166 7.30 170 7.28 170 6.85 181 6.84 181 6.57 189
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This peak falls 0.03-0.13 eV below the corresponding EOM-CCSD vertical excitation energy

(depending on the conformer and using the aug-cc-pVDZ and 6-311++G(2d,2p) basis-sets), but

0.41-0.68 eV above the B3LYP results (again depending on the conformer and with the same

basis sets). Given that the computed optical rotation is inversely proportional to the difference in

the squares of the excitation energy and chosen frequency of plane polarized light [cf. Eq. (1)],

the consistent underestimation of vertical excitation energies by the B3LYP method leads to a

concomitant overestimation of each conformer’s [α]λ. (In addition, we note that B3LYP/aug-cc-

pVDZ calculations indicate that this state is likely the major contributor to the measured gas-

phase specific rotation with a rotational strength of ca. 11.3 ×10−40 cgs units.) This effect was also

observed in (S )-methyloxirane160 and (P)-[4]triangulane.162 On the other hand, the agreement

between the EOM-CCSD excitation energies and experiment suggests greater reliability of the

CCSD optical rotation values. We note, however, the theoretical specific rotations reported here

are not yet converged in that the level of electron correlation remains limited to double-excitations

at most, and other effects such as zero-point vibrational motion have been ignored.166,167

An opposing example, however, is given by (1S,4S )-norbornenone, for which CCSD (length-

gauge) and B3LYP specific rotations differ dramatically at -741 and -1216 deg dm−1 (g/mL)−1,

respectively, with only the latter in reasonable agreement with the liquid-phase experimental value

of ca. -1150 deg dm−1 (g/mL)−1. As Ruud et al. demonstrated, the B3LYP values of both the

lowest excitation energy and its rotational strength agree well with experiment in this case, while the

corresponding CCSD values are too large and too small, respectively.56 However, the norbornenone

case differs from that of epichlorohydrin in that its lowest excited state arises from a valence n→ π∗

excitation, a type of transition often well-reproduced by the B3LYP functional, as opposed to the
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low-lying Rydberg transitions in epichlorohydrin. In addition, the comparison between theoretical

gas-phase and experimental liquid-phase specific rotations is problematic, as demonstrated below.

Table 5.5 reports conformer populations for the gas phase using B3LYP, G2, G3, and CBS-

extrapolated CC methods. In the gas phase the g-II conformation clearly dominates at 67-70%,

followed by the g-I conformer at 24-27%, and finally the cis conformer at only about 5-7%. Note,

however, that the gas-phase mole fractions vary only slightly with the level of theory, ±3% at most.

Table 5.6 reports conformer populations for liquid-phase environments, including the neat state,

methylenechloride, chloroform, carbon tetrachloride, and cyclohexane. The experimental data from

Polavarapu et al.170 were determined using comparisons between experimental infrared absorption

spectra in several solvent environments with their theoretical counterparts (B3LYP/aug-cc-pVTZ).

The theoretical liquid-phase populations were obtained at the B3LYP/cc-pVQZ level of theory,

including PCM-based solvent corrections. For each solvent in Table 5.6, the g-I conformation

clearly dominates with the exception of CCl4 and cyclohexane, for which conformer g-II lies lower

in energy, as in the gas phase. These data are also consistent with the more recent results of Wilson

et al., who observed a reversal of the sign of [α]D in acetonitrile relative to the gas phase.175 Clearly

the solvent introduces significant perturbations to the system. However, the theoretical (B3LYP)

populations are shifted significantly from the experimentally inferred values of Polavarapu et al.:170

B3LYP tends to underestimate the population of the cis conformer relative to experiment (up to

6.8% for methylene chloride), and simultaneously overestimate that of the g-I conformer (up to

9.3% for chloroform).

Tables 5.7, 5.8, and 5.9 summarize the B3LYP and CCSD specific rotations for (R)-epichlorohydrin

at 355, 589, and 633 nm, respectively, averaged using the populations reported in Tables 5.5 and
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Table 5.5: Gas-phase conformer populations of (R)-epichlorohydrin.

Conformation G2 G3 B3LYP/cc-pVQZ CBS CCSD CBS CCSD(T)

cis 0.055 0.073 0.034 0.059 0.064

g-II 0.708 0.682 0.648 0.670 0.676

g-I 0.237 0.245 0.318 0.271 0.259

Table 5.6: Liquid-phase conformer populations for (R)-epichlorohydrin.

neat CH2Cl2 CHCl3 CCl4 cyclohexane

Conformation Expt. B3LYP Expt. B3LYP Expt. B3LYP Expt. B3LYP

cis 0.114 0.043 0.111 0.041 0.108 0.044 0.089 0.038

g-II 0.330 0.342 0.345 0.406 0.432 0.515 0.559 0.529

g-I 0.556 0.615 0.544 0.553 0.460 0.441 0.352 0.433
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5.6. The gas-phase average [α]λ values exhibit the same trend as seen for the individual conformer

optical rotation results, with the B3LYP values always significantly larger than the CCSD values

(using both length- and velocity-gauge). For the liquid-phase results, however, this is no longer the

case. In fact, at 355 nm, CCSD predicts [α]s which are larger in magnitude than those of B3LYP,

and at 589 nm and 633 nm, B3LYP and CCSD give similar rotations. These data also indicate

that, at all wavelengths and basis sets used in this study, the CCSD length-gauge values for [α]λ

are somewhat larger than the CCSD velocity gauge values.

Just as for the individual conformer rotations in Tables 5.1-5.3, correlation-consistent basis

sets provide much more rapidly convergent rotations than the split-valence sets, suggesting that

the latter may not be well-suited to describe this property. Also, our calculations do not show

significant differences in [α]λ between the aug-cc-pVDZ and mixed-cc-pVTZ basis sets for the

B3LYP and CCSD (length gauge) methods individually. The velocity-gauge CCSD [α]λs appears

to be somewhat more sensitive to the choice of basis set than its length-gauge counterpart, especially

at 355 nm, where the difference in specific rotation between the two basis sets is approximately 20

deg dm−1 (g/mL)−1 for each of the methods used to compute the free energy. At all wavelengths,

the conformationally averaged B3LYP [α]λ determined using the mixed-cc-pVTZ and aug-cc-pVTZ

basis sets for both the gas and liquid phases are not significantly different, indicating that the use

of the larger basis set on the hydrogen atoms is not necessary in this case.

The best comparisons with experiment for all wavelengths in the gas phase are given by

the CCSD length-gauge data. At 355 nm, Wilson et al.’s gas phase experimental value175 of -

238.7±2.3 deg dm−1 (g/mL)−1 for the (S ) enantiomer agrees extremely well with the length-gauge

CCSD/mixed-cc-pVTZ specific rotation of +240.0 deg dm−1 (g/mL)−1 for the (R) enantiomer,
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computed with the populations obtained from complete basis set extrapolations of the CCSD(T)

correlation energy. B3LYP optical rotations at 355 nm do not agree as well with the experimental

value for any of the methods used, giving results that are too large by about 25%. The CCSD

modified velocity-gauge gives values of [α]λ that are closer to the experimental value than B3LYP,

but are still too low by about 15 deg dm−1 (g/mL)−1 (6%). The same trend is found at 633 nm,

where the length-gauge CCSD/mixed-cc-pVTZ specific rotation of +56.3 deg dm−1 (g/mL)−1 for

(R) compares well with the gas phase optical rotation of -55.0±1.7 deg dm−1 (g/mL)−1 of Wilson

et al. for (S ).175

At 589 nm, the experimental specific rotation for (R)-epichlorohydrin is -41.94 deg dm−1

(g/mL)−1 in neat liquid.175 The conformationally averaged results calculated using the theoretical

gas-phase conformer populations for every method and basis set fail to produce the correct sign of

the rotation and drastically overestimate its magnitude by a factor of more than two. Although

this is clearly an apples-to-oranges comparison of the experimental and theoretical optical rotation

data because of the lack of solvation modeling in the latter, the difference between the two serves

to emphasize the need to include the effect of the solvent at least in the determination of conformer

populations in order to obtain reasonable comparison with conventional polarimetry data in many

cases. In addition, it may be necessary to explicitly include the effect of the solvent on the response

function itself, though that does not appear to be the case for epichlorohydrin.

The conformationally averaged B3LYP and CCSD optical rotation values for the various liquid-

phase environments shown in Tables 5.7-5.9 were calculated using the theoretical individual con-

former optical rotations and the conformer populations given in Table 5.6, as determined both

by PCM-corrected theoretical calculations and by Polavarapu et al.170 Polavarapu et al. reported
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Table 5.7: Specific rotations (in deg/[dm (g/cm3)]) for (R)-epichlorohydrin at 355 nm in gas-

and liquid-phase environments. Computed at the B3LYP/cc-pVTZ optimized geometry.
6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 303.0 327.5 324.1 329.5 323.3

Gas-Phase G3 286.8 311.5 309.1 314.7 308.7

CBS CCSD(T) 272.1 298.0 296.7 302.5 296.6

neat -126.0 -78.2 -53.2 -40.9 -44.4

Expt. -109.6 -62.7 -38.8 -26.7 -30.3

CH2Cl2
B3LYP -179.2 -124.9 -96.2 -86.4 -82.7

Expt. -0.65 39.8 56.5 66.8 62.5

Liquid-Phase CHCl3
B3LYP -98.0 -48.5 -25.2 -17.2 -13.1

Expt. 144.3 176.9 184.0 191.9 186.8

CCl4
B3LYP 44.5 85.2 99.0 103.9 108.7

cyclohexane 56.1 96.4 109.4 114.0 119.0

CCSD (Length Gauge)

G2 241.3 288.8 259.4 263.9 -

Gas-Phase G3 225.4 273.4 245.8 250.0 -

CBS CCSD(T) 214.0 262.3 235.9 240.0 -

neat -127.6 -76.1 -58.7 -59.7 -

Expt. -113.4 -62.2 -46.5 -47.2 -

CH2Cl2
B3LYP -163.7 -104.6 -90.5 -91.7 -

Expt. -21.2 27.6 33.1 33.7 -

Liquid-Phase CHCl3
B3LYP -95.0 -37.9 -31.2 -31.3 -

Expt. 103.3 149.6 140.5 143.0 -

CCl4
B3LYP 24.7 78.4 72.2 73.7 -

cyclohexane 35.2 88.7 81.3 83.0 -

CCSD (Modified Velocity Gauge)

G2 196.0 251.7 226.4 246.9 -

Gas-Phase G3 184.8 237.8 214.9 234.4 -

CBS CCSD(T) 174.4 227.2 205.9 224.8 -

neat -105.2 -82.8 -54.1 -53.2 -

Expt. -93.7 -70.0 -43.3 -41.7 -

CH2Cl2
B3LYP -143.3 -118.2 -84.3 -84.7 -

Expt. -17.1 14.0 27.2 33.7 -

Liquid-Phase CHCl3
B3LYP -86.1 -55.6 -31.8 -28.6 -

Expt. 84.7 127.0 122.0 135.0 -

CCl4
B3LYP 14.1 53.7 60.1 69.4 -

cyclohexane 22.2 63.2 67.9 77.9 -
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Table 5.8: Specific rotations (in deg/[dm (g/cm3)]) for (R)-epichlorohydrin at 589 nm in gas-

and liquid-phase environments. Computed at the B3LYP/cc-pVTZ optimized geometry.
6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 78.5 86.1 85.5 87.1 85.5

Gas-Phase G3 73.4 81.1 80.8 82.5 81.0

CBS CCSD(T) 68.9 77.1 77.1 78.9 77.4

neat -53.6 -37.4 -29.3 -24.8 -25.8

Expt. -48.6 -32.7 -24.9 -20.5 -21.5

CH2Cl2
B3LYP -69.6 -51.2 -41.7 -37.9 -36.9

Expt. -15.1 -1.6 4.0 7.6 6.5

Liquid-Phase CHCl3
B3LYP -44.6 -27.9 -20.2 -17.0 -15.9

Expt. 29.5 40.2 42.7 45.4 44.1

CCl4
B3LYP -0.9 12.6 17.4 19.4 20.7

cyclohexane 2.7 16.1 20.6 22.6 23.9

CCSD (Length Gauge)

G2 65.5 81.9 71.4 73.8 -

Gas-Phase G3 60.4 77.0 67.1 69.4 -

CBS CCSD(T) 56.9 73.6 64.1 66.3 -

neat -50.6 -30.9 -27.8 -27.1 -

Expt. -46.1 -26.5 -24.0 -23.2 -

CH2Cl2
B3LYP -61.7 -41.8 -37.5 -36.9 -

Expt. -17.2 1.7 0.8 2.0 -

Liquid-Phase CHCl3
B3LYP -40.1 -20.8 -19.0 -18.1 -

Expt. 22.0 39.7 34.3 36.0 -

CCl4
B3LYP -2.5 15.8 13.2 14.6 -

cyclohexane 0.8 19.0 16.0 17.5 -

CCSD (Modified Velocity Gauge)

G2 52.3 70.0 61.0 68.4 -

Gas-Phase G3 48.7 65.6 57.4 64.4 -

CBS CCSD(T) 45.4 62.3 54.6 61.5 -

neat -43.2 -35.8 -26.6 -25.5 -

Expt. -39.6 -31.7 -23.3 -21.9 -

CH2Cl2
B3LYP -55.1 -46.8 -35.9 -35.0 -

Expt. -15.3 -5.1 -1.3 1.7 -

Liquid-Phase CHCl3
B3LYP -37.0 -27.0 -19.5 -17.5 -

Expt. 16.9 30.6 28.4 33.4 -

CCl4
B3LYP -5.3 7.5 9.2 13.1 -

cyclohexane -2.7 10.5 11.6 15.7 -
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Table 5.9: Specific rotations (in deg/[dm (g/cm3)]) for (R)-epichlorohydrin at 633 nm in gas-

and liquid-phase environments. Computed at the B3LYP/cc-pVTZ optimized geometry.
6-31++G* 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 66.2 72.9 72.4 73.6 72.4

Gas-Phase G3 61.9 68.6 68.3 69.6 68.5

CBS CCSD(T) 58.0 65.2 65.2 66.6 65.4

neat -46.8 -32.7 -25.8 -22.3 -22.7

Expt. -42.4 -28.7 -22.0 -18.6 -19.1

CH2Cl2
B3LYP -60.4 -44.4 -36.3 -33.0 -32.7

Expt. -13.8 -2.1 2.7 5.5 4.9

Liquid-Phase CHCl3
B3LYP -39.0 -24.6 -18.0 -15.2 -14.7

Expt. 24.4 33.6 35.8 37.9 37.0

CCl4
B3LYP -1.6 10.1 14.2 16.0 16.7

cyclohexane 1.5 13.0 16.9 18.6 19.4

CCSD (Length Gauge)

G2 55.6 69.7 60.6 62.7 -

Gas-Phase G3 51.3 65.5 57.0 58.9 -

CBS CCSD(T) 48.2 62.5 54.3 56.3 -

neat -43.9 -27.0 -24.4 -23.7 -

Expt. -40.1 -23.3 -21.1 -20.4 -

CH2Cl2
B3LYP -53.4 -36.3 -32.6 -32.1 -

Expt. -15.3 0.9 0.1 1.2 -

Liquid-Phase CHCl3
B3LYP -34.9 -18.3 -16.8 -16.0 -

Expt. 18.43 33.5 28.8 30.4 -

CCl4
B3LYP -2.7 13.0 10.8 12.0 -

cyclohexane 0.2 15.8 13.2 14.5 -

CCSD (Modified Velocity Gauge)

G2 44.3 59.5 51.7 58.1 -

Gas-Phase G3 41.2 55.7 48.6 54.7 -

CBS CCSD(T) 38.4 52.8 46.2 52.1 -

neat -37.6 -31.2 -23.4 -22.3 -

Expt. -34.5 -27.7 -20.5 -19.2 -

CH2Cl2
B3LYP -47.8 -40.7 -31.3 -30.5 -

Expt. -13.7 -5.0 -1.6 0.9 -

Liquid-Phase CHCl3
B3LYP -32.3 -23.7 -17.2 -15.5 -

Expt. 14.0 25.7 23.7 28.0 -

CCl4
B3LYP -5.1 5.9 7.3 10.7 -

cyclohexane -2.9 8.5 9.4 12.9 -
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intrinsic optical rotations of (R)-epichlorohydrin of -22.4 deg dm−1 (g/mL)−1in CH2Cl2, +3.2 deg

dm−1 (g/mL)−1 in CHCl3, and +38.5 deg dm−1 (g/mL)−1 in CCl4 at 589 nm for the (R) enan-

tiomer.170 Using the experimentally inferred populations, the length-gauge CCSD results from

Table 5.8 reproduce these values to within ±2.0 deg dm−1 (g/mL)−1. The velocity-gauge CCSD

results are similar in quality, while B3LYP brackets the experimental results vs. CCSD, but never-

theless gives a reasonable comparison. This indicates that, although the B3LYP specific rotations

for the individual conformers may, in fact, be too large, the statistically averaged rotations can

still agree well with experiment. In spite of the fact that the solvent was not considered in the

calculation of the Rosenfeld tensors for the individual conformers, the averaged specific rotations

compare extremely well to experiment.

On the other hand, conformer populations based on the PCM-corrected B3LYP/cc-pVQZ Gibbs

free energies compare very poorly to experiment. In every case, the PCM-based average rotations

are shifted towards more negative values, leading to underestimation of the positive CCl4 rotation

(e.g., by approximately a factor of two at 355 nm with CCSD), overestimation of the negative

CH2Cl2 rotation (again, by approximately a factor of two at 355 nm with CCSD), and the incorrect

sign of the CHCl3 rotation. This failure appears to result primarily from the overestimation of the

g-I conformer population by the PCM-based free energies in Table 5.6 noted above.

Wilson et al. have also reported extrapolated cyclohexane solution phase data — obtained

from the experimental optical rotatory dispersion curve ranging from 365 nm to 589 nm and then

extrapolating to 355 nm and 633 nm — giving specific rotations of -167.7 deg dm−1 (g/mL)−1

at 355 nm and -30.4 deg dm−1 (g/mL)−1 at 633 nm for the (S ) enantiomer of epichlorohydrin.

The PCM-based rotations of the (R) enantiomer in cyclohexane given in Tables 5.1 and 5.3 are



Mary C. Tam Chapter 5. (R)-Epichlorohydrin 86

too small by a factor of two at the CCSD/mix-cc-pVTZ level of theory. By comparison to the

chlorine-based solvents above, this most likely occurs because of overestimation of the contribution

of the g-I conformer’s negative rotation.

5.4 Conclusions

In this study, we have reported theoretical conformationally averaged values of the optical rotation

at several polarized-field wavelengths for (R)-epichlorohydrin using coupled cluster and density

functional theory. At 355 and 633 nm, the CCSD/aug-cc-pVTZ level of theory (using the length-

gauge representation of the electric dipole operator and the cc-pVDZ basis set for hydrogen) does

a remarkable job reproducing the gas-phase specific rotation reported by Wilson et al.175 The cor-

responding velocity-gauge values underestimate the experimental gas-phase results at 355 and 633

nm by approximately 14 deg dm−1 (g/mL)−1 (6%) and 3 deg dm−1 (g/mL)−1 (5%), respectively. It

remains unclear whether this is an instrinsic shortcoming of the “modified” velocity-gauge formu-

lation161 or simply the result of slower basis-set convergence relative to the length-gauge approach.

The B3LYP method overestimates the specific rotation for both wavelengths: approximately 58

deg dm−1 (g/mL)−1 (24%) at 355 nm and 10 deg dm−1 (g/mL)−1 (19%) at 633 nm. As for our

earlier studies of the conformationally rigid molecules (S)-methyloxirane and (P)-[4]triangulane, we

have rationalized these errors based on the concomitant underestimation of the lowest excitation

energies of (R)-epichlorohydrin by the TD-DFT/B3LYP approach.

Comparison to the solution-phase experimental data of Polavarapu et al.170 requires that

solvent effects be considered in the Boltzmann averaging of the individual conformers. If this
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factor is ignored, then both B3LYP and coupled cluster theories overestimate the magnitude of the

conformationally averaged optical rotation by more than a factor of two, and even fail to reproduce

the correct sign at 589 nm. However, when solvent effects are incorporated via experimental

estimates of the conformer populations, both CCSD and B3LYP give reasonable comparison to

experimental sodium D-line specific (intrinsic) rotations, in spite of the rather large differences in

rotations for each conformer between the two methods. On the other hand, PCM-based estimates

of the conformer populations compare poorly to experiment in this case.
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6.1 Introduction

In the last several years, correctly predicting the optical rotation of chiral molecules has proven

to be a challenge to computational chemists. Although the theoretical background for calculating

optical rotation has been known since 1928,85 it was more than 50 years later when Amos developed

the static limit electric-dipole magnetic-dipole linear response polarizability tensor,63 that marked

the pathway for calculations of this property. Only recently has it been implemented in density

functional theory49–54 and in coupled cluster theory.53,56–60

Because of the limited number of small rigid chiral molecules, this work focuses on benchmarking

the calculated optical rotation of conformationally flexible molecules. When the optical rotation is

experimentally determined, several conformations may be present in the sample at the experimental

temperature. When predicting a theoretical value that is directly comparable to that of experiment,

the optical rotation of each conformer must be computed and then statistically weighed to determine

an averaged optical rotation.

Wiberg on et al. addressed this issue by examining several different 3-substituted 1-butene

using density functional theory (DFT) and demonstrated that, although replacing the substituent

had little impact, the calculated specific rotation values varied significantly as a function of the

dihedral angle of the carbon backbone.189 For one specific case, 3-chloro-1-butene, the 0o dihedral

angle conformation had a specific rotation value, [α]D, of +244 deg dm−1 (g/mL)−1 whereas the

180o conformation had an [α]D value of -526 deg dm−1 (g/mL)−1. Their conformationally averaged

results for this molecule, -112 deg dm−1 (g/mL)−1, overestimated the (liquid-phase) experimental

value of -57.3 deg dm−1 (g/mL)−1 by a factor of two. In an effort to reconcile this discrepancy, they
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also considered the impact of vibrational motion on the calculated rotations. After excluding the

torsional motion of the carbon backbone, they reported a room-temperature vibrational correction

of +7.95 deg dm−1 (g/mL)−1, not enough to account for the difference between the experimental

and theoretical optical rotation.

In 2005, Wiberg et al. continued with a similar study, in which the specific rotation of several

2-substituted butanes was addressed.190 Their results indicated that even though each molecule

exhibits significantly different electronic transitions, they have similar specific rotations. Since

their results for 2-chlorobutane were similar to those previously described for 3-chloro-1-butene,

they concluded that the double bond does not have a significant effect on the [α]D. However,

unlike their earlier results for 3-chloro-1-butene,189 the DFT specific rotation of -37.1 deg dm−1

(g/mL)−1 agreed fairly well with the experimental value -33.8 deg dm−1 (g/mL)−1.

The discrepancies in the the specific rotation for these two structurally similar molecules poses

the question: Why is the B3LYP method capable of correctly predicting the specific rotation of

(R)-2-chlorobutane and why does it overestimate the value for (R)-3-chloro-1-butene by a factor

of two? It is also curious to compare density functional theory results to that of coupled cluster

theory and see if this method is able to predict specific rotations which agree with the experimental

values.

Previously, we reported theoretical conformationally averaged values of optical rotation for (R)-

epichlorohydrin using coupled cluster theory and density functional theory.191 When comparing

to experimental gas phase data at 355 and 633 nm, coupled cluster theory (length gauge) does a

remarkable job reproducing the specific rotation, giving values which agree superbly with experi-

mental CRDP gas phase results. Since it has been shown that coupled cluster theory is capable
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of correctly predicting the specific rotation of conformationally flexible molecules at several wave-

lengths, it is hopeful that this method will succeed when applied to both (R)-3-chloro-1-butene and

(R)-2-chlorobutane.

Most experimental optical rotation data is obtained using a specific solvent while theoretical

predictions of this property refers to the gas phase. Previously, it has been shown that solvation

effects can drastically influence the experimental optical rotation, making comparison with theory

unreliable. Recently, Müller, Wiberg, and Vaccaro developed a new technique, cavity ring-down

polarimetry (CRDP), which has eliminated this problem.103,192 This method allows direct compar-

ison between theory and experiment by providing ultrasensitive measurements of optical rotation in

the gas phase. CRDP gas phase data provided by Wilson, Vaccaro and Wiberg for (S )-3-chloro-1-

butene gives optical rotation values of +259.4±1.0 deg dm−1 (g/mL)−1 at 355 nm and +53.3±1.0

deg dm−1 (g/mL)−1 at 633 nm.175 For (R)-2-chlorobutane, the experimental gas phase specific

rotation is -121.4±1.2 deg dm−1 (g/mL)−1 at 355 nm and -32.3±1.0 deg dm−1 (g/mL)−1 at 633

nm.175 They also report neat liquid sodium D-line (589 nm) specific rotation values of +51.6 deg

dm−1 (g/mL)−1 and -31.5 deg dm−1 (g/mL)−1 for (S )-3-chloro-1-butene and (R)-2-chlorobutane,

respectively.

Since the previously published data indicate that the value of the theoretical optical rotation for

the conformationally flexible molecules, (R)-3-chloro-1-butene and (R)-2-chlorobutane, is largely

dependent on their respective dihedral angles along the carbon backbone, an effort has been made to

assess these conformational effects on optical rotation using the coupled cluster level of theory, along

with density functional theory (B3LYP) for comparison. Concomitantly, we have also calculated

the differences in free energy among the three conformers of using several high levels of theory,
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including complete-basis-set extrapolations. Since this pair of molecules are structurally similar

(same heavy atoms, same connectivity, only differing by hydrogen saturation of double bond),

they are an excellent test case to establish how conformational flexibility and structure affect the

theoretical calculation of optical rotation.

6.2 Computational Details

Rosenfeld set the foundation for computing optical rotation when he showed that at a non-absorbing

frequency, the angle of rotation, [α]ω, can be computed using the β tensor:85

β(ω) =
2

h̄
Im
∑

n6=0

〈0|µ|n〉〈n|m|0〉

ω2
n0 − ω

2
(6.1)

where ω is the frequency of plane-polarized light, µ and m represent the electric and magnetic

dipole operators, respectively, and the summation runs over the excited electronic (unperturbed)

wave functions. For this research, the β tensor was implemented using the coupled cluster singles

and doubles (CCSD) linear response theory.57,193 CCSD specific rotations for both (R)-3-chloro-

1-butene and (R)-2-chlorobutane were computed, along with time-dependent density functional

theory (B3LYP)36,194,195 values using gauge invariant atomic orbitals (GIAOs).49,52,55,82 Optical

rotation calculations were carried out at 355, 589, and 633 nm wavelengths, using the following basis

sets: (1) the split valence basis set 6-311++G(2d,2p)177 and (2) the correlation consistent basis sets:

aug-cc-pVDZ, aug-cc-pVTZ, and a mixed basis set denoted as “mixed-cc-pVTZ” which used the

aug-cc-pVTZ basis set for carbon and chlorine, and the cc-pVDZ basis set for hydrogen.106,196,197

The coupled cluster optical rotation calculations used both the length gauge (using the center of

mass as the origin) and the modified velocity gauge (independent of origin) for the electric dipole
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operator.58

Earlier work on (R)-epichlorohydrin191 describes in detail how the specific rotation is computed

for conformationally flexible molecules. The observed specific rotation can be expressed as the sum

of the products of the optical rotation for each individual conformer and its corresponding mole

fraction. This paper also describes the methods used in this work to compute the free energies of

each conformer, the Gaussian-2 (G2)198–200 and Gaussian-3 (G3)201,202 composite methods, along

with complete basis set (CBS) extrapolations of Hartree-Fock and coupled cluster energies.203,204

The Hartree-Fock CBS extrapolations were carried out using the cc-pVDZ, cc-pVTZ, and cc-pVQZ

basis sets while the coupled cluster extrapolations used only the cc-pVDZ and cc-pVTZ basis sets.

(Earlier work for (R)- epichlorohydrin191 showed that the averaged optical rotation computed using

CBS coupled cluster extrapolations carried out with the cc-pVDZ and cc-pVTZ basis sets were only

slightly different (less than two deg dm−1 (g/mL)−1 at 355, 589 and 633 nm wavelengths) than the

averaged optical rotation computed using extrapolated free energies computed with the cc-pVTZ

and cc-pVQZ basis sets.)

The individual conformers for (R)-3-chloro-1-butene and (R)-2-chlorobutane were identified

using density functional theory with the B3LYP functional36,194,195 and Dunning’s correlation-

consistent cc-pVTZ basis set.106 In order to correct for zero point energy and thermal effects (as-

suming the ideal gas/rigid rotor model), vibrational frequencies were computed at the CCSD(T)/6-

31G* level of theory. Vertical electronic transition energies were computed using the EOM-CCSD124

and TD-DFT/B3LYP75,76 methods. All electrons were correlated for the geometry and vibrational

frequency calculations, while core electrons (1s for C and Cl) were frozen for single point energies,

excitation energies, and CCSD optical rotation calculations (except for the CCSD/mixed-cc-pVTZ
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optical rotation calculations where the core electrons, 1s for C and 1s2s2p for Cl, were frozen due to

memory constraints). All calculations were carried out using the B3LYP/cc-pVTZ optimized struc-

ture for each conformer using the (R)-enantiomer for both 3-chloro-1-butene and 2-chlorobutane.

Gaussian03205 was used for all B3LYP optimized geometries, TD-DFT/B3LYP excitation energies,

and optical rotation calculations. All coupled cluster single point energies, EOM/CCSD excitation

energies, and optical rotation calculations were performed using the PSI3 program package.127

6.3 Results and Discussion

6.3.1 (R)− 3− chloro− 1− butene

The B3LYP/cc-pVTZ optimized geometries of the three minimum-energy conformers of (R)-3-

chloro-1-butene are reported in Fig. 6.1. Most of the structural parameters of each conformation,

such as the bond angles and bond lengths, vary only slightly, but each conformer has a different

C=C-C-C dihedral angle. The conformations are labeled as 0o, 120o, and 240o, in reference to

their dihedral angle. The lowest energy conformation is the 120o structure, with the 0o and 240o

conformers approximately 0.9 kcal/mole and 1.4 kcal/mole higher in energy, respectively.

Tables 6.1, 6.2, and 6.3 report the CCSD and B3LYP computed values of individual conformer

specific rotations in deg dm−1 (g/mL)−1 using several basis sets at 355, 589, and 633 nm wave-

lengths. For each wavelength, the 120o and 240o conformers both have negative values of [α]λ, while

the 0o conformer gives a positive specific rotation. With respect to basis set, the B3LYP method

predicts consistent optical rotations values at 589 and 633 nm for each of the conformers. There
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Figure 6.1: Optimized geometries of the three minimum-energy conformers of (R)-3-chloro-

1-butene at the B3LYP/cc-pVTZ level of theory. Bond lengths are given in Å and bond

angles in degrees.
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is very little variation with its prediction at 355 nm. The B3LYP optical rotation results for the

mixed-cc-pVTZ and aug-cc-pVTZ are not significantly different, indicating that the lack of aug-

mented basis functions for hydrogen does not effect the computed rotation. On the other hand, both

the CCSD length gauge and CCSD modified velocity gauge show somewhat significant variation

between the split valence and correlation consistent basis sets, but the two correlation consistent

basis sets, aug-cc-pVDZ and mixed-cc-pVTZ predict very similar results. These CCSD variants

differ significantly when predicting the optical rotation of each individual confomer, with the length

gauge always predicting larger [α]λs than the modified velocity gauge. The large difference between

the two methods is especially emphasized at 355 nm, for the 0o and 120o conformations. For all the

methods, the variation between basis sets decreases for each conformer as the wavelength increases.

Also, B3LYP consistently predicts optical rotation values which are larger than those of CCSD,

both length and modified velocity gauge.

Table 6.4 reports the gas-phase conformer populations computed using G2, G3, and complete

basis set extrapolated CCSD and CCSD(T) energies. The 120o conformer dominates, while the

other two conformers are present in almost equal amounts. The conformer populations vary only

slightly with regards to the level of theory, with the exception of the Gaussian-2 method.

Tables 6.5, 6.6, and 6.7 report the B3LYP and CCSD specific rotations for (R)-3-chloro-1-

butene averaged using the populations given in Table 6.4. Just like the results for the individual

conformers, the B3LYP method consistently predicts larger [α]λs than both length gauge and

modified velocity gauge CCSD methods for 355, 589, and 633 nm. Also, the CCSD modified

velocity gauge results are always significantly smaller than those of CCSD length gauge. These

trends, along with the fact that the correlation consistent basis sets are much more stable than the
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Table 6.1: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-3-

chloro-1-butene at 355 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

0 1356.2 1330.0 1342.6 1352.3

120 -874.9 -853.2 -862.9 -859.8

240 -485.9 -477.9 -481.6 -484.0

CCSD (Length Gauge)

0 929.6 933.7 935.3 -

120 -649.5 -609.6 -614.9 -

240 -230.4 -330.4 -328.3 -

CCSD (Modified Velocity Gauge)

0 808.2 769.5 783.3 -

120 -497.1 -445.2 -453.3 -

240 -328.9 -348.6 -346.9 -
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Table 6.2: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-3-

chloro-1-butene at 589 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

0 316.5 315.2 316.8 319.5

120 -190.5 -189.4 -190.1 -189.1

240 -130.0 -127.0 -128.4 -129.1

CCSD (Length Gauge)

0 241.3 245.6 246.1 -

120 -165.8 -155.3 -157.0 -

240 -85.8 -92.4 -92.3 -

CCSD (Modified Velocity Gauge)

0 209.5 199.7 203.9 -

120 -122.3 -108.6 -110.8 -

240 -91.3 -97.9 -97.9 -
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Table 6.3: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-3-

chloro-1-butene at 633 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

0 265.9 265.1 266.3 268.6

120 -159.1 -158.5 -159.0 -158.1

240 -110.2 -107.6 -108.7 -109.4

CCSD (Length Gauge)

0 204.0 207.9 208.3 -

120 -140.0 -131.2 -132.6 -

240 -72.4 -78.5 -78.4 -

CCSD (Modified Velocity Gauge)

0 177.2 168.8 172.5 -

120 -103.0 -91.4 -93.3 -

240 -77.5 -83.2 -83.2 -
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Table 6.4: Gas-Phase Conformer Populations

Computational Method

Conformation G2 G3 CBS CCSD CBS CCSD(T)

(R)-3-chloro-1-butene

0 0.129 0.148 0.142 0.154

120 0.754 0.698 0.718 0.705

240 0.117 0.154 0.140 0.141

(R)-2-chlorobutane

60 0.245 0.209 0.222 0.218

180 0.597 0.632 0.622 0.618

300 0.157 0.159 0.156 0.164
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split valence basis sets, are similar to the ones previously discussed for the individual conformers

of (R)-3-chloro-1-butene. There is little difference between the B3LYP results for the aug-cc-pVTZ

and the mixed-cc-pVTZ basis sets, indicating that the augmented functions for hydrogen are not

necessary for proper prediction of specific rotation values. The difference between the aug-cc-pVDZ

and mixed-cc-pVTZ is more interesting: B3LYP predicts averaged [α]λs which are similar for both

basis sets, and the same for the CCSD length gauge results. However, the CCSD modified velocity

gauge variant is much more sensitive, especially at 355 nm, where the difference between averaged

[α]λs for the aug-cc-pVDZ and mixed-cc-pVTZ basis sets is approximately 25 deg dm−1 (g/mL)−1

or more for each of the energy methods.

These basic trends for both the individual conformers and the averaged [α]λs for (R)-3-chloro-

1-butene are consistent with a previous study on the conformationally flexible molecule, (R)-

epichlorohydrin.191 While the predicted averaged specific rotation for epichlorohydrin matched spot

on with experimental gas-phase results at 355 and 633 nm, this is not the case for 3-chloro-1-butene.

As mentioned previously, Wiberg et al. used density functional theory (B3LYP/6-311++G**) to

predict a specific rotation for (R)-3-chloro-1-butene of -112 deg dm−1 (g/mL)−1 which overesti-

mated the experimental value by more than a factor of two, for 589 nm. Using the same wavelength,

our best B3LYP value is -102.4 deg dm−1 (g/mL)−1 computed using the aug-cc-pVTZ basis set and

the CBS CCSD(T) energetic method; a value which still overestimates the experimental solution

phase result. Even with better basis set and energetics, we were still unable to predict an accurate

averaged specific rotation using density functional theory. However, CCSD length gauge does a

much better job, coming in at -85.9 deg dm−1 (g/mL)−1, while the modified velocity gauge variant

produces the best result of -60.6 deg dm−1 (g/mL)−1. Even though CCSD modified velocity gauge
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Table 6.5: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-3-chloro-1-butene at 355 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -541.8 -527.9 -534.0 -530.7

G3 -484.3 -471.9 -477.3 -474.1

CBS CCSD -503.8 -490.9 -496.5 -493.3

CBS CCSD(T) -476.9 -464.5 -469.9 -466.6

CCSD (Length Gauge)

G2 -396.9 -378.0 -381.6 -

G3 -351.0 -337.9 -341.1 -

CBS CCSD -366.7 -351.5 -354.8 -

CBS CCSD(T) -347.5 -332.9 -336.1 -

CCSD (Modified Velocity Gauge)

G2 -309.2 -277.4 -281.5 -

G3 -277.8 -250.3 -253.6 -

CBS CCSD -288.3 -259.3 -262.9 -

CBS CCSD(T) -272.7 -244.8 -248.1 -
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Table 6.6: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-3-chloro-1-butene at 589 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -118.1 -117.1 -117.6 -116.5

G3 -106.0 -105.0 -105.5 -104.5

CBS CCSD -110.1 -109.1 -109.6 -108.5

CBS CCSD(T) -104.0 -103.0 -103.5 -102.4

CCSD (Length Gauge)

G2 -91.1 -96.3 -97.5 -

G3 -78.3 -86.2 -87.3 -

CBS CCSD -82.6 -89.6 -90.7 -

CBS CCSD(T) -76.5 -84.8 -85.9 -

CCSD (Modified Velocity Gauge)

G2 -75.9 -61.7 -68.8 -

G3 -68.4 -61.3 -62.2 -

CBS CCSD -70.9 -63.4 -64.4 -

CBS CCSD(T) -66.9 -59.7 -60.6 -
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Table 6.7: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-3-chloro-1-butene at 633 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -98.6 -97.9 -98.3 -97.4

G3 -88.6 -87.9 -88.2 -87.4

CBS CCSD -92.0 -91.2 -91.6 -90.7

CBS CCSD(T) -86.9 -86.2 -86.5 -85.6

CCSD (Length Gauge)

G2 -87.8 -81.3 -82.3 -

G3 -78.6 -72.8 -73.7 -

CBS CCSD -81.7 -75.7 -76.6 -

CBS CCSD(T) -77.6 -71.6 -72.5 -

CCSD (Modified Velocity Gauge)

G2 -63.9 -56.9 -57.9 -

G3 -57.6 -51.6 -52.3 -

CBS CCSD -59.7 -53.3 -54.2 -

CBS CCSD(T) -56.3 -50.2 -51.0 -
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does better than B3LYP or CCSD length gauge, it is still off by approximately 17%, a factor which

could be attributed to unaccounted solvent preturbations.

The best comparison with experimental data for 355 and 633 nm in the gas phase is given by

the CCSD modified velocity gauge calculations. The B3LYP predicted values that are extremely

overestimated by 80%, while the CCSD length gauge [α]355 is a little better, off by 30%, still not

acceptable. Wilson et al.’s gas phase experimental value of +259.4±1.0 deg dm−1 (g/mL)−1 agrees

reasonable well with the CCSD/mixed-cc-pVTZ (modified velocity gauge) specific rotation of -248.1

deg dm−1 (g/mL)−1, only off by approximately 4%. Comparing the experimental gas phase result

of +53.3±1.0 deg dm−1 (g/mL)−1 at 633 nm with the results from this study, we see that the trend

is similar to that of 355 nm. The B3LYP values are significantly overestimated, along with the

CCSD length gauge results. The best comparison is with the CCSD modified velocity gauge results

of -51.0 deg dm−1 (g/mL)−1.

The overestimation of the B3LYP method can be attributed to its poor prediction of the excited

energies which are inherently related to the computed specific rotation. The vertical excitation

energies for each of the conformers of (R)-3-chloro-1-butene and averaged excitations are given in

Table 6.8. The results only vary slightly between basis set and conformer among each method.

From Equation 6.1, we see that the computed optical rotation is inversely proportional to the

difference in the squares of the excitation energy and chosen frequency of plane polarized light.

Since the B3LYP method consistently predicts vertical excitation energies which are underestimated

by approximately 0.7 eV, there is an inherent increase in [α]λ for all wavelengths, therefore causing

B3LYP to predict optical rotation values which are significanty larger in magnitude than coupled

cluster theory.
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Table 6.8: EOM-CCSD and B3LYP-TDDFT Excitation Energies Computed with Various

Basis Sets at the B3LYP/cc-pVTZ Optimized Geometry.

individual conformer vertical excitation energies: (R)-3-chloro-1-butene

EOM-CCSD B3LYP/TDDFT

aug-cc-pVDZ 6-311++G(2d,2p) aug-cc-pVDZ 6-311++G(2d,2p)

Conformation eV nm eV nm eV nm eV nm

120 6.93 179 6.82 182 6.14 202 6.11 203

0 6.87 180 6.88 180 6.11 203 6.08 204

240 7.13 174 7.20 172 6.38 194 6.41 194

conformationally averaged vertical excitation energies: (R)-3-chloro-1-butene

G2 6.94 179 6.87 180 6.16 201 6.14 202

G3 6.95 178 6.89 180 6.17 201 6.15 202

CBS CCSD 6.95 178 6.88 180 6.17 201 6.15 202

CBS CCSD(T) 6.95 178 6.88 180 6.17 201 6.15 202

individual conformer vertical excitation energies: (R)-2-chlorobutane

EOM-CCSD B3LYP/TDDFT

aug-cc-pVDZ 6-311++G(2d,2p) aug-cc-pVDZ 6-311++G(2d,2p)

Conformation eV nm eV nm eV nm eV nm

180 7.37 168 7.32 170 6.92 179 6.86 181

60 7.35 169 7.28 170 6.78 183 6.74 184

300 7.37 168 7.31 170 6.89 180 6.85 181

conformationally averaged vertical excitation energies: (R)-2-chlorobutane

G2 7.37 168 7.31 170 6.88 180 6.83 182

G3 7.37 168 7.31 170 6.89 180 6.83 182

CBS CCSD 7.37 168 7.31 170 6.89 180 6.83 182

CBS CCSD(T) 7.37 168 7.31 170 6.89 180 6.83 182
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6.3.2 (R)− 2− chlorobutane

Fig. 6.2 gives the three minimum-energy B3LYP/cc-pVTZ optimized geometries of (R)-2-chlorobutane.

The dihedral angle of the carbon backbone is the only structure parameter of significant difference

between each conformer. The three conformations of 2-chlorobutane are denoted as 60o, 180o, and

300o, according to the appropriate dihedral angle. The lowest energy conformation is the 180o

structure, with the 60o and 300o conformers approximately 0.6 kcal/mole and 0.9 kcal/mole higher

in energy, respectively.

The CCSD and B3LYP specific rotation values at 355, 589, and 633 nm are reported in deg dm−1

(g/mL)−1 in Tables 6.9, 6.10, and 6.11. Just like our results for (R)-3-chloro-1-butene, at 589 and

633 nm, the B3LYP method for (R)-2-chlorobutane predicts consistent optical rotation values with

regard to basis set, while the results for 355 nm are much more sensitive. Again, the insignificance

of augmented basis functions for hydrogen is confirmed because the B3LYP mixed-cc-pVTZ and

aug-cc-pVTZ results differ only slightly. The basis set dependence between the split-valence and the

correlation consistent basis sets is much more pronounced in both the CCSD length and modified

velocity gauge methods, especially at 355 nm where the difference between [α]λs can be larger than

20 deg dm−1 (g/mL)−1. Futhermore, the difference between the aug-cc-pVDZ and mixed-aug-cc-

pVTZ basis sets is much more pronounced for (R)-2-chlorobutane especially for the CCSD method

at 355 nm. For example, the CCSD length gauge predicts [α]355s which vary by approximately 20

deg dm−1 (g/mL)−1 between the two basis sets for the 180o conformation.

The gas-phase conformer populations can be found in Table 6.4. Values were computed using

the G2, G3, and CBS CCSD and CBS CCSD(T) energies. Results show that for all methods,

the 180o dominates, while the 60o and 300o conformers are only present in small amounts. The
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Figure 6.2: Optimized geometries of the three minimum-energy conformers of (R)-2-

chlorobutane at the B3LYP/cc-pVTZ level of theory. Bond lengths are given in Å and

bond angles in degrees.
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Table 6.9: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-2-

chlorobutane at 355 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

60 48.1 51.6 43.1 46.4

180 -290.8 -284.3 -273.5 -274.4

300 176.5 157.4 167.5 169.0

CCSD (Length Gauge)

60 25.9 41.6 30.1 -

180 -248.1 -222.4 -242.8 -

300 148.6 129.1 144.4 -

CCSD (Modified Velocity Gauge)

60 20.4 41.0 44.7 -

180 -234.5 -212.0 -231.2 -

300 169.1 124.2 152.2 -
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Table 6.10: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-2-

chlorobutane at 589 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

60 16.5 17.5 14.9 15.8

180 -90.8 -88.8 -85.0 -85.2

300 58.2 52.2 55.6 55.2

CCSD (Length Gauge)

60 9.6 14.6 10.5 -

180 -80.0 -70.9 -77.4 -

300 49.8 43.2 47.2 -

CCSD (Modified Velocity Gauge)

60 7.8 14.3 15.3 -

180 -75.8 -67.8 -63.3 -

300 57.1 41.9 49.9 -
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Table 6.11: Specific Rotations (in deg/[dm (g/cm3)]) of the individual conformers of (R)-2-

chlorobutane at 633 nm. Computed at the B3LYP/cc-pVTZ optimized geometry.

Dihedral Angle 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

60 14.3 15.1 13.6 12.9

180 -77.7 -76.1 -72.9 -72.8

300 50.0 44.9 47.4 47.8

CCSD (Length Gauge)

60 8.4 12.6 9.0 -

180 -68.0 -60.8 -66.4 -

300 42.8 37.1 40.5 -

CCSD (Modified Velocity Gauge)

60 6.8 12.3 13.2 -

180 -65.0 -58.2 -63.3 -

300 49.2 36.0 42.9 -
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conformer populations are consistent throughout each method used, except for the G2 method.

Using the conformer populations given in Table 6.4, we then predicted averaged specific rotation

values for (R)-2-chlorobutane. The B3LYP and CCSD computed averaged rotations are reported in

Tables 6.12, 6.13, and 6.14. The results are similar to those previously discussed for (R)-3-chloro-

1-butene: the correlation consistent basis sets are again more stable than the split-valence basis

sets, and the B3LYP method predicts averaged [α]Ds that are larger in magnitude than both of

the CCSD methods. The vertical excitation energies for each conformer of (R)-2-chlorobutane and

the corresponding averaged values are reported in Table 6.8. Again we see that B3LYP predicts

smaller excitation energies than the EOM-CCSD method, by approximately 0.5 eV, causing B3LYPs

overestimation of specific rotation.

When comparing to the gas experimental data, both CCSD and B3LYP do a reasonable job

predicting the specific rotation of (R)-2-chlorobutane. At 355 nm, the most sensitive wavelength,

the CCSD length gauge variant predicts a value of -119.9 deg dm−1 (g/mL)−1, which agrees re-

markably well with the CRDP gas phase result of -121.4 ±1.2 deg dm−1 (g/mL)−1. The B3LYP

values of -132.1 deg dm−1 (g/mL)−1 only overestimates the experimental value by 9%. The CCSD

modified velocity gauge does the poorest job at 355 nm, underestimating by 11%.

At 633 nm, predicted specific rotation values are in much better agreement for each method

used in this study. Averaged B3LYP and CCSD length gauge [α]633 are only overestimated by 2 deg

dm−1 (g/mL)−1 from the gas phase experimental value of -32.3 ±1.0 deg dm−1 (g/mL)−1. CCSD

modified velocity gauge also does a remarkable job predicting an [α]633 of -29.2 deg dm−1 (g/mL)−1,

which is under the gas phase number by only 4 deg dm−1 (g/mL)−1. At 589 nm, the [α]D for (R)-

2-chlorobutane is -31.5 deg dm−1 (g/mL)−1 in neat liquid. Although comparison between theory
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Table 6.12: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-2-chlorobutane at 355 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -134.0 -132.3 -126.1 -126.1

G3 -145.5 -143.7 -136.8 -136.9

CBS CCSD -142.7 -140.9 -134.3 -134.2

CBS CCSD(T) -140.3 -138.7 -132.1 -132.0

CCSD (Length Gauge)

G2 -118.4 -102.3 -114.9 -

G3 -127.6 -111.2 -124.1 -

CBS CCSD -125.5 -109.0 -121.9 -

CBS CCSD(T) -123.4 -107.2 -119.9 -

CCSD (Modified Velocity Gauge)

G2 -108.4 -97.0 -103.1 -

G3 -116.9 -105.6 -112.4 -

CBS CCSD -115.0 -103.5 -110.2 -

CBS CCSD(T) -112.8 -101.8 -108.2 -
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Table 6.13: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-2-chlorobutane at 589 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -41.0 -40.5 -38.3 -38.3

G3 -44.6 -44.1 -41.7 -41.7

CBS CCSD -43.8 -43.2 -40.9 -40.9

CBS CCSD(T) -43.0 -42.5 -40.2 -40.2

CCSD (Length Gauge)

G2 -37.6 -32.0 -36.2 -

G3 -40.6 -34.9 -39.2 -

CBS CCSD -39.9 -34.2 -38.5 -

CBS CCSD(T) -39.2 -33.6 -37.9 -

CCSD (Modified Velocity Gauge)

G2 -34.4 -30.4 -26.2 -

G3 -37.1 -33.2 -28.8 -

CBS CCSD -36.5 -32.5 -28.2 -

CBS CCSD(T) -35.8 -31.9 -27.6 -
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Table 6.14: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-2-chlorobutane at 633 nm.

Computed at the B3LYP/cc-pVTZ optimized geometry.

Method 6-311++G(2d,2p) aug-cc-pVDZ mixed-cc-pVTZ aug-cc-pVTZ

B3LYP

G2 -35.1 -34.7 -32.8 -32.8

G3 -38.2 -37.7 -35.7 -35.7

CBS CCSD -37.4 -37.0 -35.0 -35.0

CBS CCSD(T) -36.8 -36.4 -34.3 -34.4

CCSD (Length Gauge)

G2 -31.8 -27.4 -31.1 -

G3 -34.4 -29.9 -33.6 -

CBS CCSD -33.8 -29.3 -33.0 -

CBS CCSD(T) -33.2 -28.8 -32.4 -

CCSD (Modified Velocity Gauge)

G2 -29.4 -26.0 -27.8 -

G3 -31.8 -28.4 -30.4 -

CBS CCSD -31.3 -27.8 -29.8 -

CBS CCSD(T) -30.7 -27.4 -29.2 -
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and experiment is unfair at this wavelength because there is no consideration of solvent effects, the

CCSD method for both length and modified velocity gauges correctly predicts the specific rotation.

B3LYP’s averaged specifc rotation is comparable to experiment but still slightly overestimated.

6.3.3 Comparison

One of the purposes of this research was to see if coupled cluster theory was capable of predicting the

specific rotation of the structurally similar molecules (R)-3-chloro-1-butene and (R)-2-chlorobutane.

From our calculations, we see that for both molecules, overall, coupled cluster theory predicts val-

ues which are comparable with gas-phase experimental data. Specifically for the butene, it is the

coupled cluster modified velocity gauge that does the best job, understimating the magnitude by

only 4%, for both the 355 and 633 nm. On the other hand, the coupled cluster length gauge variant

performs the best for (R)-2-chlorobutane matching spot on with experimental specific rotations in

the gas-phase. Like Wiberg et al., we see the same discrepancies in the B3LYP method, which

overestimates the rotations by 80% (355 nm) and 61% (633 nm) for the butene, but does a reason-

ably good job for the butane, only overestimating by 9% (355 nm) and 7% (633 nm). Why does

this occur? The answer lies in the calculated rotations of the individual conformers. The B3LYP

method predicts values which are significantly larger than both CCSD variants for the individual

conformers of (R)-3-chloro-1-butene. Although the same trend is seen with (R)-2-chlorobutane,

B3LYPs overestimation of the individual confomers’ specific rotations is not as apparant. In fact,

there is only a slight variation in the confomers’ calculated rotations for all the methods.
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6.4 Conclusions

In this study, we have reported theoretical values of optical rotation for the conformationally flexible

molecules (R)-3-chloro-1-butene and (R)-2-chlorobutane at 355, 589, and 633 nm. Our results

indicate that for (R)-3-chlorobutene, at all wavelengths, the CCSD modified velocity gauge variant

does the best job reproducing experimental values, especially at 355 nm, where our CCSD/mixed-

cc-pVTZ results are only off by approximately 4%. As the wavelength increases, so does the

overestimation of all theoretical results. Also, our results show that the B3LYP method consistently

predicts specific rotation values that are significantly greater in magnitude than their coupled

cluster counterparts. This method fails to correctly predict [α]D at all wavelengths, drastically

overestimating by 80% and 61%, for 355 nm and 633 nm, respectively. The same trends with

regard to basis set and method are reproduced for (R)-2-chlorobutane, but in this case, each method

predicts the averaged rotation for each wavelength reasonably well. These results are comparable

to gas phase value at 355 nm and 633 nm, and also with 589 nm neat liquid experimental data.

Since (R)-3-chloro-1-butene and (R)-2-chlorobutane are both conformationally flexible and very

similar in structure, it is very interesting to compare the averaged specific rotation results for the

two molecules. We see the same types of errors when computing specific rotation using both the

CCSD and B3LYP methods for the individual conformations, and the sames trends for basis set

and wavelength dependence. After averaging the individual rotations, the CCSD method is the

most comparable with experiment of all the methods studied for both molecules. Even though

B3LYP does a better job for (R)-2-chlorobutane, this is not the case for (R)-3-chloro-1-butene. Its

success with (R)-2-chlorobutane results from a cancellation of errors.
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7.1 Introduction

Accurately predicting the optical rotation (OR) of a chiral molecule allows for the determination

of its absolute configuration, a task that is experimentally difficult to accomplish through total

molecular synthesis and x-ray crystallography. Using ab initio calculations of optical rotation

as a pathway to determine the absolute configuration has recently become a popular focus of

computational chemistry. Since its implementation in density functional theory49–55 and in coupled

cluster theory,53,56–60 this computational technique has been used to successfully determine the

absolute configuration for a variety of molecules.54,61,62

Recently, there has been a considerable focus in this area surrounding the difficulties in calculat-

ing the optical rotation of the small, conformationally rigid molecule, (S )-methyloxirane.57,60,166,206,207

In 2004, coupled cluster and density functional theory calculations of optical rotation for this

molecule were computed at 355, 589, and 633 nm, and compared to experimental gas-phase cav-

ity ringdown polarimetry values.57 The results of this studied showed that B3LYP values of [α]355

agreed reasonably well with the experimental, while CCSD predicted qualitatively incorrect results.

The success of the B3LYP method was attributed to density functional theory’s underestimation of

the lowest excitation energy of (S )-methyloxirane which causes a fortuitous shift in the computed

rotation. Kongsted et al. reported coupled cluster specific rotations, including those computed

with the highly correlated CC3 method.60 Still, they were unable to predict the correct sign of the

gas-phase experimental rotation, and attributed this failure to significant vibrational effects which

are not taken into account in their ab initio calculations.

Ruud and Zanasi focused on the importance of molecular vibrations to the calculation of optical
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rotation in their 2005 study of (S )-methyloxirane.166 At 355 nm, they presented B3LYP zero-point

vibrational corrections of 18.6 and 48.1 deg dm−1 (g/mL)−1 using the aug-cc-pVDZ and aug-cc-

pVTZ basis sets, respectively, which led to a vibrationally averaged optical rotation that correctly

predicted the sign of the experimental value. The most recent study on the optical rotation of this

molecule was presented by Kongsted et al. in which coupled cluster and density functional theory

vibrational contributions were addressed at 355, 589, and 633 nm.207 They showed that there is a

large dependence of optical rotation on the torsional motion of the methyl group and that at 355

nm, zero-point vibrational corrections substantially improve the CCSD results,60 predicting the

correct sign of rotation for (S )-methyloxirane and a magnitude which agrees remarkably well with

experiment.

Although the story of methyloxriane is a great testiment to the difficulties surrounding the

calculations of optical rotation, the focus has only surrounded this particular molecule. It has

yet to be determined whether other molecules behave in the same manner. (R)-methylthiirane

is a great test case for investigation of this. It is a small, rigid molecule, similar in structure

to methyloxirane, but there has been little focus on its theoretical specific rotation. In 2005,

Wilson et al. experimentally determined the specific rotation of (R)-methylthiirane in the gas

phase using the ultrasensitive cavity ring-down polarimetry method.175 They reported an [α]355 and

[α]633 of 64.7±2.3 deg dm−1 (g/mL)−1 and 36.5±1.7 deg dm−1 (g/mL)−1, respectively. They also

determined a 48.79 deg dm−1 (g/mL)−1 rotation in neat liquid at 589 nm. The circular dichroism

spectrum of this molecule was studied experimentally,208 and theoretically with multireference

configuration interaction209 in 1994, but since then, this molecule has received little attention.

Because of the shortage of high level calculations of optical rotation for (R)-methylthiirane, we
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have computed these values using coupled cluster and density functional theory. The purpose of

this work is to address the case of methylthiirane and compare our results for this molecule with

those previously discussed for (S )-methyloxirane.57,60,166,206,207 It is particularly interesting to

see whether the effects of molecular vibrations are as apparent for methylthiirane as it was was

methyloxirane, and also to assess the effects that sulfur may have on the computed rotation.

7.2 Computational Details

Rosenfeld set the foundation for computing optical rotation when he showed that at a non-absorbing

frequency, the angle of rotation, [α]ω, can be computed using the β tensor:85

β(ω) =
2

h̄
Im
∑

n6=0

〈0|µ|n〉〈n|m|0〉

ω2
n0 − ω

2
(7.1)

where ω is the frequency of plane-polarized light, µ and m represent the electric and magnetic

dipole operators, respectively, and the summation runs over the excited electronic (unperturbed)

wave functions. For this reseach, the β tensor was implemented using the coupled cluster singles

and doubles (CCSD) linear response theory.57,193 CCSD specific rotations for (R)-methylthiirane

were computed, along with time-dependent density functional theory (B3LYP)36,194,195 values using

gauge invariant atomic orbitals (GIAOs).49,52,55,82 Optical rotation calculations were carried out

at 355, 589, and 633 nm wavelengths, using the following basis sets: (1) the split valence basis set

6-311++G(2d,2p)177 and (2) the correlation consistent basis sets: aug-cc-pVDZ, d-aug-cc-pVDZ,

aug-cc-pVTZ, d-aug-cc-pVTZ, aug-cc-pVQZ, and d-aug-cc-pVQZ..106,196,197 In order to account

for the errors in the standard correlation consistent basis sets for sulfur, the aug-cc-pV(D+d)Z, d-

aug-cc-pV(D+d)Z, aug-cc-pV(T+d)Z, d-aug-cc-pV(T+d)Z, and aug-cc-pV(Q+d)Z were also used
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to compute the optical rotation. These basis sets contain high exponent functions in addition to

the standard correlation consistent basis functions which allow for a reduction in basis set error.

The coupled cluster optical rotation calculations used both the length gauge (using the center of

mass as the origin) and the modified-velocity gauge (independent of origin) for the electric dipole

operator.58

The optimized structure of (R)-methylthiirane was identified using density functional theory,

with the B3LYP functional36,194,195 and Dunning’s correlation-consistent cc-pVTZ basis set.106

Vertical electronic transition energies were computed using the EOM-CCSD124 and TD-DFT/B3LYP75,76

methods. All electrons were correlated for the geometry calculations, while core electrons (1s for

C and S) were frozen for excitation energies and CCSD optical rotation calculations (except for

the CCSD/aug-cc-pVTZ and CCSD/aug-cc-pV(T+d)Z optical rotation calculations where the core

electrons, 1s for C and 1s2s2p for S, were frozed due to memory constraints). All calculations were

carried out using the B3LYP/cc-pVTZ optimized structure of (R)-enantiomer for methylthiirane.

Gaussian03205 was used for the B3LYP optimized geometry, TD-DFT/B3LYP excitation energies,

and B3LYP optical rotation calculations. All EOM/CCSD excitation energies, and CCSD optical

rotation calculations were performed using the PSI3 program package.127

7.3 Results and Discussion

Fig 7.1 gives the B3LYP/cc-pVTZ optimized geometry of (R)- methylthiirane. In Table 7.1, we

report the B3LYP and CCSD specific rotations in deg dm−1 (g/mL)−1 computed with various

basis sets at 355, 589, and 633 nm. From this data, we see that there is a tremendous amount
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of basis set dependence at all levels of theory, but especially for the B3LYP method. At 355 nm,

the most sensitive wavelength, the B3LYP values vary by 23 deg dm−1 (g/mL)−1, when using the

aug-cc-pVDZ and aug-cc-pV(D+d)Z basis sets, indicating that the five extra diffuse functions for

sulfur have a significant effect on the computed rotation. There is an even larger variation in [α]355

when comparing the B3LYP values for aug-cc-pVDZ and d-aug-cc-pVDZ. The doubly augmented

functions added in the bigger basis set, account for an approximate 100 deg dm−1 (g/mL)−1 shift.

At 355 nm, the B3LYP method only seems to converge when the incredibly large basis sets, aug-cc-

pVQZ (600 basis functions) and d-aug-cc-pVQZ (771 basis functions) are used. At 589 and 633 nm,

the basis set dependence is not as emphasized, the +d functions for sulfur are neglible where the

variation between aug-cc-pTZ and aug-cc-pV(T+d)Z is approximately one deg dm−1 (g/mL)−1.

Also, there is a more rapid basis set convergence at these two wavelengths.

Both CCSD length gauge and CCSD modified-velocity gauge specific rotations also show the

extreme basis set dependence that was seen with B3LYP, especially at 355 nm. For the length

gauge variant, there is a 92 deg dm−1 (g/mL)−1 difference between the aug-cc-pVDZ and d-aug-

cc-pVDZ basis sets. The effect of the +d basis functions for sulfur is not as pronounced for the

CCSD method, as it was for B3LYP. At 355 nm, the difference between the aug-cc-pVDZ and

aug-cc-pV(D+d)Z basis sets is 14 deg dm−1 (g/mL)−1 for CCSD length gauge and 18 deg dm−1

(g/mL)−1 for CCSD modified-velocity gauge. As the wavelength increases, the variation between

these two basis sets decreases dramatically for both CCSD variants. With the exception of Pople’s

split-valence basis set, both CCSD length and modified-velocity gauge predict similar values of [α]λ

when the same basis set is used. It is also interesting to note that at 589 nm and 633 nm, both

CCSD variants are consistently predicting specific rotations that are larger than those of B3LYP.
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Figure 7.1: Optimized geometry of (R)-methylthiirane at the B3LYP/cc-pVTZ level of the-

ory. Bond lengths are given in Å and bond angles in degrees.
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This is not the case at 355 nm; the B3LYP and CCSD methods predict opposite signs for [α]λ for

(R)-methylthiirane.

At 355 nm, the experimental CRDP gas phase result is 64.7±2.3 deg dm−1 (g/mL)−1 for (R)-

methylthiirane. The best theoretical comparison is with the CCSD length gauge result (using the

aug-cc-pV(T+d)Z basis set), which is underestimating the gas phase value by just 3 deg dm−1

(g/mL)−1. The B3LYP method fails to predict the correct sign of [α]355 with all basis sets. In

this case, the predicted B3LYP specific rotation underestimates the experimental value by about a

factor of three. Also, as the size of the basis set grows, B3LYP predicts values which are increasingly

overestimated in magnitude. The largest B3LYP calculation was computed with the d-aug-cc-pVQZ

(771 basis functions) and gave a [α]355 of -158.9 deg dm−1 (g/mL)−1, a result that is incorrect in

sign and overestimated by a factor of 2.5.

For the 633 nm results, again we see that both CCSD variants are predicting the specific rotation

of (R)-methylthiirane remarkable well, giving results that are only slightly off of the experimental

value when using the the d-aug-cc-pVDZ and aug-cc-pVTZ basis sets. The aug-cc-pVDZ and aug-

cc-pV(D+d)Z basis sets do not seem to contain significant diffuse functions; both CCSD methods

predict [α]633s which are overestimated by approximately 20 deg dm−1 (g/mL)−1. When using

the B3LYP functional, our best comparison with the experimental gas phase data of 36.5±1.7 deg

dm−1 (g/mL)−1, is a specific rotation of 45.4 deg dm−1 (g/mL)−1, computed with the aug-cc-pVDZ

basis set. For this wavelength, B3LYP is able to correctly predict the sign of the rotation, but as

the size of the basis set increases, there is a larger deviation from the experimental value.

At 589 nm, there is no gas phase experimental data, but in neat liquid, the [α]D is 48.79 deg

dm−1 (g/mL)−1. Although comparison between theory and experiment is unfair at this wavelength,
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Table 7.1: Specific Rotations (in deg/[dm (g/cm3)]) for (R)-Methylthiirane at 355, 589, and

633 nm.

B3LYP CCSD (length) CCSD (velocity)

basis set 355 589 633 355 589 633 355 589 633

6-311++G(2d,2p) -73.0 49.8 44.7 119.1 65.2 56.8 153.1 76.3 66.4

aug-cc-pVDZ -57.0 50.7 45.4 139.1 67.3 58.4 138.9 68.3 59.3

aug-cc-pV(D+d)Z -80.4 49.0 44.1 125.6 64.5 56.1 120.3 63.9 55.6

d-aug-cc-pVDZ -158.8 19.5 18.8 47.0 39.0 34.3 48.4 39.2 34.4

d-aug-cc-pV(D+d)Z -183.3 17.6 17.3 32.8 36.0 31.7 30.0 34.8 30.7

aug-cc-pVTZ -140.8 25.5 23.9 77.6 45.3 39.4 90.2 48.4 42.1

aug-cc-pV(T+d)Z -157.0 24.4 23.0 68.0 43.4 37.9 80.5 46.1 40.2

d-aug-cc-pVTZ -149.8 24.3 22.9 - - - - - -

d-aug-cc-pV(T+d)Z -166.5 23.0 22.0 - - - - - -

aug-cc-pVQZ -160.5 21.7 20.8 - - - - - -

aug-cc-pV(Q+d)Z -170.5 21.0 20.2 - - - - - -

d-aug-cc-pVQZ -158.9 22.7 21.7 - - - - - -
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it is interesting to note that the B3LYP method correctly predicts this value when using the 6-

311++G(2d,2p), aug-cc-pVDZ, and aug-cc-pV(D+d)Z basis sets. On the other hand, both CCSD

length and modified-velocity gauge methods do good jobs predicting the [α]D with only the aug-

cc-pVTZ and aug-cc-pV(T+d)Z basis sets.

It has been previously shown with many chiral molecules that B3LYP usually predicts specific

rotations that are much larger in magnitude than those of coupled cluster theory.57,59,191 This

trend, which is not seen with (R)-methylthiirane, has been attributed to B3LYP’s poor ability to

accurately calculate excitation energies which are inherently related to the calculation of optical

rotation (Equ. 7.1). The TD-DFT and EOM-CCSD vertical excitation energy for the lowest-lying

excited state for (R)-methylthiirane are reported in Table 7.2. There is little varation for each

method with regard to basis set, but there are dramatic differences between the two methods.

B3LYP/TD-DFT predicts excitations which are significantly lower than those of EOM-CCSD by

more than 0.5 eV. The experimentally determined excitation energy is 5.85 eV (212.1 nm),208

which coincides extremely well with our EOM-CCSD calculations. Since B3LYP predicts vertical

excitation energies which are underestimated, we would expect an inherent increase in [α]λ, which

is surprisingly not seen in this case.

7.4 Conclusions

In this study, we have reported CC and DFT theoretical values of optical rotation for (R)-

methylthiirane, computed with various basis sets at 355, 589, and 633 nm. All methods show

significant basis set dependence, especially at 355 nm. Coupled cluster theory predicts similar
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Table 7.2: EOM-CCSD and B3LYP-TDDFT excitation energies for (R)-methylthiirane com-

puted with various basis sets at the B3LYP/cc-pVTZ optimized geometry.

6-311++G(2d,2p) aug-cc-pVDZ aug-cc-pV(D+d)Z

eV nm eV nm eV nm

EOM-CCSD 5.88 211 5.83 213 5.85 212

TD-DFT 5.29 234 5.27 235 5.26 236

rotations when using the length and modified-velocity gauges, and these [α]λs are larger in mag-

nitude than those of B3LYP. At 355 nm, B3LYP fails to predict the correct sign of rotation and

significally overestimates the experimental value. Coupled cluster theory does a better job, but still

underestimates by approximately 24% when the d-aug-cc-pVDZ basis set is used. With the aug-

cc-pV(T+d)Z basis set, coupled cluster length gauge values match spot on with the experimental

results. At 633 nm, both variants of coupled cluster theory do a remarkable job predicting the spe-

cific rotation, giving values which agree superbly with gas-phase results, while B3LYP significantly

underestimates the observed optical rotation with most basis sets.



Chapter 8

Conclusions

8.1 General Comments

Coupled cluster and density functional theory calculations of optical rotation have been presented

for five small chiral molecules including (S )-methyloxirane, (R)-epichlorohydrin, (R)-3-chloro-1-

butene, (R)-2-chlorobutane, and (R)-methylthiirane. These calculations have been carried out

using either the coupled cluster linear response formalism with both the length- and velocity- gauge,

or with time-dependent density functional theory. Our predicted results have been compared to

published ultrasensitive gas-phase cavity ringdown polarimetry data.

129
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8.2 (S)-Methyloxirane

Theoretical optical rotation calculations, [α]λ, have been carried out for the difficult case of (S)-

methyloxirane for comparison to recently published gas-phase cavity ring-down polarimetry data.

Both coupled cluster and density functional theoretical methods are exquisitely sensitive to the

choice of one-electron basis set, and diffuse functions have a particularly large impact on the

computed values of [α]λ. Furthermore, both methods show a surprising sensitivity to the choice

of optimized geometry, with [α]355 values varying by as much as 15 deg dm−1 (g/mL)−1 among

molecular structures that differ only negligibly. Although at first glance the DFT/B3LYP values

of [α]355 appear to be superior to those from CC theory, the success of DFT in this case appears to

stem from a significant underestimation of the lowest (Rydberg) excitation energy in methyloxirane,

resulting in a shift of the first-order pole in [α]λ (the Cotton effect) towards the experimentally

chosen incident radiation lines. This leads to a fortuitous positive shift in the value of [α]355 towards

the experimental result. The coupled cluster singles and doubles (CCSD) model, on the other hand,

correctly predicts the position of the absorption pole (to within 0.05 eV of the experimental result),

but fails to describe correctly the shape/curvature of the ORD region λ = 355, resulting in an

incorrect prediction of both the magnitude and the sign of the optical rotation.

8.3 (R)-Epichlorohydrin

Ab initio optical rotation data from linear-response coupled cluster and density-functional meth-

ods were compared to both gas-phase and liquid-phase polarimetry data for the small, confor-

mationally flexible molecule epichlorohydrin. Three energy minima exist along the C−C−C−Cl
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dihedral angle, each with strong, antagonistic specific rotations ranging from ca. -450 to +500

deg dm−1 (g/mL)−1at 355 nm. Density-functional theory (specifically the B3LYP functional)

consistently overestimates the optical rotations of each conformer relative to coupled cluster the-

ory (in agreement with our earlier observations for conformationally rigid species), and we at-

tribute this to density-functional theory’s underestimation of the lowest-lying excitation energies of

epichlorohydrin. Length- and velocity-gauge formulations of the coupled cluster response function

lead to slightly different specific rotations (ca. 7% at short wavelengths). We have determined

well-converged Gibbs free energy differences among the conformers using complete-basis-set ex-

trapolations of coupled cluster energies including triple excitations in order to obtain Boltzmann-

averaged specific rotations for comparison to the gas-phase results. The length-gauge coupled

cluster data agree remarkably well with experiment, with the velocity-gauge coupled-cluster and

density-functional data bracketing the experimental results from below and above, respectively.

Liquid-phase conformer populations reported earlier by Polavarapu and co-workers from combined

infrared absorption and theoretical analyses differ markedly from the gas-phase populations, par-

ticularly for polar solvents. Nevertheless, Boltzmann-averaged specific rotations from both coupled

cluster and density-functional calculations agree well with the corresponding experimental intrinsic

rotations, in spite of the fact that the theoretical specific rotations for the individual conformers do

not take solvent effects into account. PCM-based estimates of conformer populations lead to poor

agreement with experiment.
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8.4 (R)-3-chloro-1-butene and (R)-2-chlorobutane

Coupled cluster (CC) and density functional theory (B3LYP) optical rotation calculations have been

carried out for two structurally similar conformationally flexible molecules, (R)-3-chloro-1-butene

and (R)-2-chlorobutane. Since previously published data indicate that the specific rotations for both

molecules are largely dependent on the dihedral angle of the carbon chain, an effort has been made

to assess the conformational affects on optical rotation. The difference in free energy between the

conformations of each molecule was investigated using several high level theories, including G2 and

G3 methods, and coupled cluster energies extrapolated to the complete basis set limit. Averaged

rotations have been compared to experimental gas-phase cavity ring-down polarimetry values. Our

results indicate that even though the two molecules are structurally similar, they produce drastically

different specific rotations. Of the methods used, the CCSD modified velocity gauge variant does

the best job predicting the [α]D for (R)-3-chloro-1-butene, while the B3LYP method fails to predict

comparable results with that of experiment, overestimating by 80% and 61%, for 355 nm and 633

nm. Although the trends with regard to basis set and method for (R)-2-chlorobutane are similar to

those of (R)-3-chloro-1-butene, each method is able to predict values which are comparable to those

of gas-phase data. For 2-chlorobutane, the CCSD length gauge [α]λs compare extremely well with

experimental gas-phase values, while the B3LYP method overestimates by no more than 9% for

each wavelength. These results indicate that since B3LYP does a terrible job predicting the specific

rotation for (R)-3-chloro-1-butene, but yet compares well for the case of (R)-2-chlorobutane, the

success of this method can only be contributed to a cancellation of errors and is unreliable.
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8.5 (R)-Methylthiirane

Because of the recent popularity surrounding the difficulties in calculating the optical rotation of

(S )-methyloxirane, (R)-methylthiirane, a small, rigid molecule, similar in structure to the oxirane

is studied using coupled cluster (CC) and density functional theory (DFT/B3LYP). Theoretical

specific rotation values have been compared with recently published gas-phase cavity ringdown

polarimetry experimental data. Both DFT and CC theory are extremely dependent on choice of

basis set, especially at 355 nm. For this most sensitive wavelength, the B3LYP method only seems

to converge when incredibly large basis sets, such as aug-cc-pVQZ and d-aug-cc-pVQZ are used.

Although the results at 589 nm and 633 nm are dependent on basis set, the effects are not as

pronounced. Surprisingly, both CCSD length and modified-velocity gauge variants predict similar

specific rotations, which are larger in magnitude larger than those of B3LYP. At 355 nm, B3LYP is

unable to predict the correct sign of the rotation and significantly underestimates the experimental

value by a factor of three, while the CCSD length gauge method is only 3 deg dm−1 (g/mL)−1 higher

than the gas-phase value. At 633 nm, CCSD/d-aug-cc-pVDZ calculations compare extremely well

with experiment, while B3LYP with the same basis set underestimates by 9 deg dm−1 (g/mL)−1.

8.6 Concluding Remarks

Ab initio calculations of optical rotation provide a route for the assignment of the absolute confi-

gruation of chiral systems. For this technique to be reliable, the calculated result must correctly

predict both the sign and magnitude of the specific rotation. The research presented here focused

on this particular point. By benchmarking the optical rotation of several small chiral molecules,
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our overall results indicate that theoretical specific rotations are highly dependent on the method

used for computation along with gauge selection, and the choice of optimized geometry and basis

set. We have shown that there is a large difference between coupled cluster specific rotations and

density functional theory’s counterparts, with the latter predicting magnitudes that are usually

larger than the former.

Of the methods used, the coupled cluster length gauge variant predicts results that are in

good agreement for most of the molecules studied. The velocity gauge variant predicts values

which are slightly underestimated relative to the length gauge results. This study shows that

the B3LYP method predicts values that are significantly larger than either variant of the coupled

cluster method, due to its underestimation of the excited state energies. Although one might be

more inclined to use the velocity gauge variant over length gauge because of its origin invariance,

even in the limit of a complete basis set, when a truncated form of the coupled cluster method

is used, the length gauge variant is not expected to give equivalent results to its velocity gauge

counterpart. This arises because of the lack of variational optimization of the underlying molecular

orbitals. In the future, the optimized orbital coupled cluster (OCC) approach may be implemented

to allow for origin independent results.

The conclusions and trends taken from this research are only based on a small sampling of chiral

molecules. Before the ultimate predictive power of ab initio determination of optical rotation can be

reached, more widespread studies on larger chiral systems must be completed. Also, in some cases

where the effects of molecular vibrations on optical rotation are substantial, it may be necessary to

account for the these vibrational effects in order to achieve qualitiative agreement between theory

and experiment. With the development of more sophisticated theoretical techniques comes the
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possiblity of a better understanding of optical rotation and its relationship to molecular structure.

Therefore, with continued research, the reliable determination of absolute configuration through

theoretical prediction of optical rotation is within reach.
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