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(ABSTRACT) 

A weak shock theory is developed which allows for dense gas effects when the fundamental deriv-

ative of gasdynarnics, r, becomes small and possibly negative. The nonclassical behavior in these 

negative r regions has potential applications in turbomachinery design. The weak shock develop-

ment results in a Burgers equation which is then solved numerically using the well-known 

MacCormack scheme. The results include the demonstration of many non-classical results such 

as expansion shocks, compression fans, shock-splitting and shock-fan combinations. Results are 

shown which could help improve turbine efficiency. 
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Chapter 1: Introduction 

In the design of supersonic aircraft and turbomachinery, shock waves play a critical role. In the 

standard gasdynamics theory, which assumes perfect gases, the only types of shock waves possible 

are compression shocks, that is, shocks in which the pressure of a fluid increases as it passes through 

the shock. If the pressure decreases, the theory states that such an expansion wave will not form 

a shock, instead it will spread out to form an expansion fan. 1 If we extend gasdynamics to include 

non-perfect gas effects we find that other types of phenomena are possible. The type of shocks 

possible in a fluid depends upon the fundamental derivative, r, which is a thermodynamic property 

defined as 

[1.l] 

where p = p(V, >?) is the pressure, V= is the specific volume, t/ is the entropy, and 

[1.2] 

is the thermodynamic sound speed. 2 It is the sign of r that determines the behavior of a particular 

fluid. In the ideal gas theory, r is always positive, and indeed this is the case for many fluids. If 

r < 0, however, the standard thermodynamic inequalities are reversed and compression shocks 
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become impossible. Instead, spreading compression fans are formed, and "negative" or expansion 

shocks become possible; these form instead of the expansion fans. The case where r < 0 is referred 

to as negative nonlinearity and r > 0 as positive nonlinearity. 

The behavior of flows with totally negative nonlinearities are similar to those with positive nonlin-

earity, providing the various sign changes are taken into account. However, when the sign of r 
changes in the flow, the situation can become very complicated. Some examples of the phenomena 

encountered include shock-splitting, collisions of expansion and compression shocks, partial shock 

disintegration and sonic shocks, i.e., shocks which have a Mach number equal to one just upstream 

or downstream of the shock.4•5 Cases such as these are referred to as mixed nonlinearity. 

Fluids which exhibit this behavior are referred to as Bethe-Zel'dovich-Thompson (BZT) fluids, af-

ter H.A. Bethe 6, Y.B. Zel'dovich7•8, and P.A. Thompson, 2•3 who performed pioneering work 

on these fluids. Although we will be using these non-classical BZT fluids, we will still be using the 

same assumptions of classical gasdynamics, that is, the fluids will be taken to be single phase gases 

in which relaxation, chemical reactions, dissociation, ionization, etc., play no role. 

The motivation behind this work is partially to develop a more complete understanding of classical 

fluids and the behavior of BZT fluids. Another important motivation comes from the possible 

applications of the non-classical effects, especially in the area of turbine dynamics for Rankine cycle 

power systems where BZT fluids may be able to increase the efficiency and life of the turbines. In 

these turbines, a major cause of inefficiency is the very large pressure gradient caused by com-

pression shocks striking adjacent blades.9 Figure I.la shows the problem with shock waves in a 

turbine cascade. As these shocks collide with a second blade, they can cause the boundary layer 

to detach, causing a large increase in drag. In BZT fluids, operating conditions can be set so that 

these compression shocks will not exist and will instead become compression fans, as sketched in 

Figure I.lb, spreading the pressure change over a much larger area causing the effect on the 

boundary layer to be minimal, thereby reducing drag. 
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We will keep these applications in mind as we set up our problem. We will solve a boundary value 

problem with a uniform upstream flow and a uniform downstream flow, as seen in Figure 1.2. The 

downstream conditions will be determined by the dynamics of the flow, but by the time the 

downstream boundary is reached the flow will be uniform once again. The lower boundary of our 

domain will be the shape we choose for the wing. We will look at both expansion and compression 

wedges, and a wing-shape defined as a sine wave. A sine wave wing with a small amplitude is a 

good approximation of a turbine blade. 
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Chapter 2: Theoretical Background 

2.1 General Equations 

We will limit our work to fluids which are governed by the standard Navier-Stokes equations. In 

addition we will assume the flows to be steady, supersonic, single-phase, inviscid, and two-

dimensional. The Navier-Stokes equations for this case can be reduced to, 

[2.1] 

PY.• Vy_+ Vp = 0 [2.2] 

[2.3] 

where p is the fluid density, T is the temperature, p = p(p, 1) is the pressure, >r = >r(P, 7) is the 

entropy and .l! is the particle velocity. These reduced equations are often referred to as the Euler 

equations, and are the equations most often used for supersonic flow calculations. 
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2.2 Shock-Jump Conditions 

If we assume that shock waves are a discontinuity in the flow, we must have expressions which 

relate the properties on either side of this discontinuity. This is done through the Rankine-

Hugoniot jump conditions 10• 11• 12, which all shocks must satisfy, and which can be written as 

[2.4] 

[2.5] 

[p] 2 --=-m 
[VJ 

[2.6] 

V2 + V1 
[h] = [p] 2 [2.7] 

where V=-¼-is the specific volume, Vn is the normal component of the relative velocity, v, is the 

component of velocity parallel to the shock, m is the mass flux through the shock, and h is the 

enthalpy, defined as 

[2.8] 

In this case e is the internal energy and the square brackets denote the jump in a quantity, for ex-

ample, 

where A is any quantity and the subscripts denote conditions on either side of the shock. Using 

(2.4) we can write m as 

[2.9] 
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Equation [2.4] or [2.9] represents conservation of mass, [2.5] and [2.6] represent the tangential and 

normal components of conservation of momentum, and equation (2.7] is the Hugoniot relationship 

for conservation of energy. 

The direction of the jumps can be determined by examining these shock-jump equations. It is 

well-known that the sign of the jump of the density, enthalpy, and the internal energy is the same 

as that of the pressure.10 The change in the normal component of the flow velocity is however, 

opposite the pressure. For example in a compression shock, where the pressure increases, the flow 

is decelerated through the shock, and in an expansion shock the flow is accelerated. In an oblique 

shock such as that shown in Figure 2.1, the change in direction of the velocity through the shock 

can also easily be determined. In a compression shock the flow is turned away from the normal, 

while in an expansion shock it is turned toward the normal. The temperature jump is more com-

plicated, however it can be shown that with the assumption made in this case the temperature jump 

for all acceptable shocks will have the same sign as the pressure jump. Therefore compression 

shocks will heat the fluid, while expansion shocks will cool the fluid. 
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Chapter 3: Derivation 

3 .1 Foundations 

To simplify the calculations, we will use a coordinate system aligned with the freestream as shown 

in Figure 3.1. The quantity 0 is the flow deflection angle, s is the distance along the streamline in 

the direction of the flow, and n is the distance locally perpendicular to the streamline. Using these 

coordinates, the Euler equations, (2.1] - [2.3] can be rewritten as 5 

on the Mach lines 

and 
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P.,, 
d0 ± Cdp = + C- 2 dri 

a 

dn = ± 1 
ds JM2- l 

ri = constant 

[3.1] 

[3.2] 

[3.3] 
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a2M2 
h + - 2- = constant [3.4] 

ap 
on the streamlines, i.e., where dn = 0. Here A= ar, IP and 

[3.5] 

Equations [3.1] are referred to as the compatibility conditions. They give the relation between the 

flow deflection angle e and either M or p in our transformed coordinate system. 

Equations [3.2] give the slopes of the Mach lines in the n-s plane as shown in Figure 3.2, where, 

by definition, µ is the local Mach angle such that 

. 1 smw=M. [3.6] 

Using standard trigonometric identities we can also derive the following expressions 

and [3.7] 

Equation (3.3] sets the entropy constant along the particle path, i.e. along the streamline, and 

equation [3.4] is a form of the Bernoulli equation. Another, more useful, form of [3.4] can be ob-

tained by differentiating (3.4] and using (3.3] to get 5 

dM M pr I -=-(1----) dp P a M2 , [3.8] 

with r being the fundamental derivative given in equation [1.1]. Equation [1.1] can also be written 

in the alternate form 

[3.9] 
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3.2 Assumptions 

The Assumptions introduced in Section 2, Two-dimensional, steady, inviscid, supersonic flow will 
p-p 

still be used, in addition we assume that all disturbances, Poo 00 
, and 0 are small. In particular, 

P - Poo 
Poo = 0(0) = o(l), [3.10] 

where 0(0) means the same order of magnitude as 0, and o(l) means much less than 1. We will 

also only be considering fundamental derivatives which are small, so that 

- pr P - Poo r= -a-= 0( Poo ) = 0(0) = o(l), [3.11] 

which implies that P~ is the same order of magnitude as the change in density. The last as-

sumption assures disturbances caused by the wing, which will be of the order P ;: 00, will be ca-

pable of moving the flow into or out of the negative r region. 

3 .3 Preliminary Calculations 

The Hugoniot equation (2.7) may be expanded to show that when (p) is small 6 

[3.12] 

That is, the entropy jump is three orders of magnitude smaller than the density jump and is pro-

portional to f. Because of equations (3.3) and [3.11 ], the entropy change can be written 

[3.13] 
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everywhere in the flow. We can therefore substitute this into the right hand side of [3.1] to get 

4 d0 ± Cdp = 0(0 ). [3.14] 

In order to make a further approximation of [3.1], C(p, M) can be expanded in a Taylor series 

around the upstream value C(p1, M1) as follows 

ac ac 1 2 
C(p, M) = C1 + ap I M(P1, M1)(p - P1) + aM p(P1, M1)(M - M1) + O(p - P1) , [3.15] 

where, from [3.5), 

JM~-1 
C1= 2 

M1 
1 

P1 

2 ac I 2-Mi 
8M p(P1, M1) = 2 

P1M1 M 1 -1 

[3.16] 

[3.17] 

[3.18] 

In order to get an expression between Mand p, [3.8] can also be expanded around M1, p1 to get 

[3.19] 

Any errors due to the entropy variations, according to [3.12], are clearly an order of magnitude 

smaller than the error O(p - p1)2 already shown. Rewriting and rearranging [3.15] 

where C1 is given by [3.16] and 
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Pl 

[3.20] 
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[3.21] 

There are now two equations for the characteristic lines, one that represents upstream pointing 

waves, and one that represents downstream pointing waves. We will concentrate for the moment 

on the second equation in [3.14], i.e., that associated with the negative sign. Substituting [3.20] into 

this equation and integrating, assuming that 0 = 01 when p = p1 we find that 

- P - Pt B P - Pt 2 3 R =-0 - 01 - Pt C1( Pt ) - 2 ( Pt ) + O(p - p 1) = constant [3.22] 

on the upstream pointing Mach lines defined by 

[3.23] 

Figure 3.3 shows graphically what [3.221 and (3.231 represent, that the upstream pointing Mach lines 

are constant, even when shocks are present. If we can say that [R-]=Ri - R1~O then we can as-

sume that the reflected waves, i.e. waves which propagate upstream, can be neglected. This will 

be shown in later sections. 

3.4 Derivation of Shock Angle 

The physical definition of the shock angle u is shown in Figure 3.4. Using trigonometry to relate 

the velocity to the shock angle, the following equations are developed 

Vnl = Vt sin(u - 01) [3.24] 
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Vri = vi cos(CT - 01) [3.25] 

[3.26] 

where i = 1,2 represents the values on either side of the shock. We can use the above equations 

with the shock jump relations [2.4] and [2.6J to get 

Expanding p(p, >1) in a Taylor series about the point /JI= p(p1, >11) and rearranging, 

where 

2 
P1 ar 1 A=-a--;- (P1,>11). I up t'/ 

[3.27] 

[3.28] 

[3.29] 

We can now substitute [3.28] into the our shock jump relation [3.27]. A new variable, e, is now 

introduced 

[3.30] 

Using e1 with [3.27] and [3.28] and combining these expressions, the sine function can be expanded 

in a Taylor series about µ1 to get 

[3.31] 

This gives an approximation for CT in terms of the Mach angle µ1 , and the shock strength [:? . 
If we set 01 and the shock strength equal to zero we get that CT -+ µ1, that is, the shock angle is equal 

to the Mach angle. This is the correct result for a freestream steady flow. 
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3.5 Derivation of [ p] vs [0] Relation 

We will now need to get an expression which will give us p as a function of 0. We will start with 

(3.24] - [3.26] and use the shock-jump relations (2.4] and [2.5] to get 

[3.32] 

where 

[3.33] 

The expression tan(µ1 + e,) can be expanded in a Taylor series about µ1 and rearranged to get 

[0] [0]2 
2 + . 2 + 0([0]3). 

cos µ1 tan µ1 sm µ1 
[3.34] 

Going back to our defmition ofµ, (3.6], µ can be replaced with the Mach number, 

[3.35] 

Returning to our expression for R-, [3.22], and observing that R1 = R-(0 1, p1) = 0, we find that 

2 3 
[R-]=R-=[0]- C [p]_JL([p]) +o([p])· 

2 PI I P1 2 P1 Pl 
[3.36] 

where B and Care defmed in [3.21] and (3.20]. Substituting for B, C, and [:? it is easily shown 

that [R-J = 0([0] 3}. We may now conclude that R- is constant on all upstream pointing Mach 

lines, even when shock waves are present, that is, 

[3.37] 
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Substituting into 13.22] and solving for 0 we find that 

[3.38] 

which is valid at every point in the flow. The definitions of C and B, 13.20] and 13.21], can be used 

to get 

C1~c= - B p= Pi + 0([0]2) 
P1 

P1 - Po,:, 
B~B= + 0( Po,:, ). 

Substitute back into [3.38] we get the final expression 

2 3 
p - Po,:, - (M= - l)T ( p - Po,:, )2 + 0( p - Po,:, )3' 

P = M4 P = . P = 
O<:) 

[3.39] 

which is valid at every point in the flow, even if shocks are present. Another form of [3.39] can be 

obtained by solving for P ;: 00 which yielding 

[3.40] 

We now have an expression for the density change in terms of the flow deflection angle. This ex-

pression will be important in the next section. 
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3.6 Mach Number and Mach angle 

We must now get a usable expression for the Mach number. Assume that M = M(p), we can ex-

pand M in a Taylor series around p 00 , and use [3.8), to get 

[3.41] 

-r 1 P - P = ) P - P = } + O( P - P = >3, 
- ( = + 2 A= P= P= P= 

where 

[3.42] 

Now [3.40) and [3.41] can be combined to get 

2 2 02 
M~ = M {1 +M - 1 0 + (2M - 1) - -

- CX) CX) CX) 2 [3.43] 

A M 2 
CX) CX) 

(r = + -2- 2 
M= - 1 

Note that this expression gives the Mach number in terms of the upstream conditions and 0, which 

is a function of the upstream conditions and p only. 

The same calculation can be performed to get an expression for the Mach angleµ= µ(M). After 

carrying out an expansion similar to [3.41] and substituting [3.40), 
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[3.44] 

Thus given the conditions upstream, the Mach number and the Mach angle at any point can be 

determined. 

The slope of the Mach line, as shown in Figure 3.2, is equal to 

dy 
dx =tan(µ+ 0) = tan(µ00 + µ - µ00 + 0). [3.45] 

Expanding this expression in a Taylor series, assuming 0 is small, and substituting [3.42] 

This equation will be used to show that the Mach lines are straight lines, i.e. : = constant. From 

[3.14] 

[3.47] 

on the Mach lines [3.45]. But from [3.39], a lowest order expression for 0 in terms of p can be 

formed. Substituting this into [3.47] 

p-poo 
Poo ~constant. [3.48] 

From this, it is seen that P ;:""' is to the lowest approximation equal to a constant. Therefore 

along the Mach line [3.45], p is a constant. Since 0 = 0(p ), 0 is also a constant along these Mach 

lines. Thus, : is also a constant and we may conclude that the Mach lines are straight. 
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3.7 Derivation of Shock Slope 

Another expression which we must have is the slope of the shock wave, which is given by the 

tangent of the shock angle, u. We can use (3.31], and solve for u to get 

The actual shock slope will be determined by the tangent of the shock angle 

[3.50] 

The above expansion is possible by observing from (3.49] that the quantity u - µ00 = 0(02). This 

allows us to expand the tangent around µ00 • The final expression for the shock slope is obtained 

by substituting (3.49] and (3.39] into (3.50] 

2 -
dy I ~ 1 + Moo 3 { r oo ( P2; Poo + Pt; Poo ) 
dx shock- J 2 2 

'\J M 00 - 1 (M!, - l)T 00 00 

[3.51] 
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3.8 Formation of a Burgers Equation 

To simplify our equations a non-dimensional u is defined to be 

p -poo 
U= 

If we take u = u(x,y), the change in u can be written 

OU OU dx du=-dy+- . 
oy ox 

[3.52] 

[3.53] 

We can see from equation [3.48] that p, and therefore u, is necessarily a constant on the Mach lines. 

We may therefore set du= 0 and rearrange [3.53] to get an equation whose form matches the 

standard Burgers equation 

[3.54] 

Upon substituting [3.52] into the 0 equation [3.38] it is seen that 

[3.55] 

when we ignore higher order terms. Converting the Mach lines [3.45] to this new variable we find 

dx =-l-=JM2 - l 
dy dy 00 

dx 

M2 A 
2 00 /\ 200 

-r. ----3-{r oou+u -2-} 
(M!,- l)T 

[3.56] 

where 

[3.57] 
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Now this expression is substituted into our Burgers equation, (3.541, and rearranged to get 

[3.58] 

where 

-1 Y L 00 L 

2 2 _ y e M00 
y=----;:====-

L JM':x,-1 
[3.59] 

From equation [3.55] our boundary condition at the wing can be written, to lowest order, as 

[3.60] 

where 0 has been approximated as a function, F '( ), which is valid for small values of 0. The 

function F ' is a mathematical description of the shape of the wing. Simplifying, our differential 

equation can be written 

[3.61] 

where 

[3.62] 

and r and Aoo are properties which are dependent upon the fluid and the upstream thermodynamic 

state. 
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3.9 Heuristic Proof 

In the previous few sections the expressions to determine the Burgers equation describing the flow 

were rigorously derived. If we now start with an isentropic flow with pure downstream pointing 

Mach lines, both of which have been shown to be true in the previous sections, it turns out that a 

heuristic approach can be used to achieve the same results. The local Mach angle 'I' is defined to 

be the Mach angle plus the flow deflection angle, i.e. 'I'=µ + 0. If we differentiate this equation 

with respect to 0, and use the chain rule we get: 

[3.63] 

Using [3.6), [3.8), and [3.14) to determine the derivatives on the right hand side, [3.63) simplifies to 

cf\¥ M2 ---r 
d0 - M2 - 1 

where r is defined by the first of equations [3.11). The slope of the Mach lines is defined as 

dy 1 - = tan 'I'~ tan 'I' + --- ('¥ - 'I' oo ). 
dx oo cos2'1' 

00 

[3.64] 

[3.65] 

By definition, at the upstream condition, 0 = 0 so 'I' 00 = µ00 • Now equations [3. 7) can be used in 

[3.65]. 'I' can be expanded in a Taylor series to get 

[3.66] 

This expression can be rewritten by substituting [3.63] and its derivative to get 

[3.67] 
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where A is defined in [3.29]. Equations [3.7], [3.39], and [3.67] can be used in equation (3.65] to get 

the final form of the expression 

dy 
dx 

1 M!, (f A00 P - Poo ) P - Poo + 0( P - Poo )3 [ 3 68] --;;===-+ 3 00 + 2 P P P ' • -v M!,- 1 (M!,- l)T 00 00 00 

which is the same as [3.46]. So we have derived the same expression with much less work, once it 

was known that the flow was isentropic and was comprised of simple right running waves. 

A final quantity that must be found is the slope of the shock waves. The shock slope, in terms of 

our Q, defined in equation [3.62], is 18 

[3.69] 

If we substitute (3.62] for the Q's an expression for the shock is formed 

[3.70] 

which is, when the definition of u (3.52] is remembered, identical to our derived version (3.51]. 

3.10 Extension to Higher Order 

In order to capture the phenomenon of shock splitting, it has been shown that the approximation 

in the previous sections must be extended to a higher order. 13 We will use our simple derivation 

of the previous section to extend the theory to a higher order by replacing assumption (3.11) with 

- pr P - Poo 2 2 
r=-a-=0(--) =0(0 )=o(l) Poo [3.71] 
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2 
A= ..f_ ar I = 0( P - Poo ) = 0(0) = o(l). 

a op 11 Poo 

Following the same steps outlined in Section 3.9, the Taylor series expansions can all be expanded 

one step further, to derive a final expression for 

d M 2 A Y I oo oo p-poo T ----;===- + 3 (r 00 + -2- P oo 
x JM~-1 (M~- l)T 

[3.72] 

where 

-"'"'oo [3.73] 

and f 00 and Aoo are defined in (3.571 and (3.421. The technique described in Section 3.7 can now 

be used to create our Burgers equation (3.61I, except that now our Q (3.62] is replaced by a higher 

order expression 

[3.74] 

Now 

[3.75] 

and 2.00 is defined in [3.73]. We can use our higher order Q in the shock slope equation, (3.701, to 

get an expression for the slope of the shock wave 
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3.11 Existence Conditions 

A shock wave can satisfy the shock-jump relations and still not exist in actual physical flows. We 

must therefore impose some existence conditions to determine if a shock wave will exist. One of 

the most important of these conditions is found by analysis of the shock adiabat. The shock 

adiabat is a graphical representation of the Hugoniot equation [2.7). The curve produced is a plot 

of all the thermodynamic states which can be connected by a shock wave. Since our problem has 

been transformed into different quantities than the p and V used in [2. 7], and because it is nearly 

isentropic, we will use a "Q-curve", [3.74] as a direct analog to the adiabat. If we draw a line be-

tween the upstream and downstream conditions, called the Rayleigh line, we have a valuable tool 

to see if the shock with these end conditions can exist. There are two things, in general, which can 

be shown by looking at the Rayleigh line. The most important for our work is that this Rayleigh 

line must lie either totally above or totally below the Q-curve for a shock to exist between the two 

points. If it intersects anywhere between the proposed upstream and downstream points, the shock 

will only go the to nearest tangency point and the flow will follow the adiabat to the downstream 

conditions. For example, in Figure 3.5 a shock from 1 to 2 and from 3 to 4 is possible but a shock 

from 2 to 4 is not, since the Rayleigh line crosses the adiabat. If 2 and 4 are the upstream and 

downstream conditions, the flow will follow the adiabat in the form of a fan from 2 to point 5 where 

a shock will form to the final condition 4. 

If we have a Rayleigh line which lies totally above or below the Q-curve, we must have a second 

condition to determine which direction the shock will jump. For example, in Figure 3.5, which 

shock exists, the one from 3 to 4 or the one from 4 to 3? It can be shown that this second condition 

is the upstream normal Mach number must be supersonic, i.e. greater than 1, and the downstream 

normal Mach number must be subsonic, i.e. less than 1 13 . We can tell the magnitude of the Mach 

number at the end conditions by comparing the slope of the Rayleigh line to the slope of the 

adiabat at the intersection point. If the slope of the Rayleigh line is greater than that of the Q-curve, 
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the flow is supersonic, i.e., the normal Mach number is greater than one. If the slope of the 

Rayleigh line is less, the flow is subsonic. If the Rayleigh line is tangent to the Q-curve at either 

the upstream or downstream condition, we have what is called a sonic shock, a shock with the 

normal Mach number exactly equal to one at the upstream or downstream condition. We can 

translate this Mach number relation into simple rules for detennining if a shock can exist. If the 

shock is moving from right to left, i.e., from 1 to 2 in Figure 3.5, the Rayleigh line must lie below 

the Q-curve. If it is moving from left to right, i.e., from 3 to 4, the Rayleigh line must lie above 

the Q-curve. These, combined with the fact that the Rayleigh line must not cross the adiabat, gives 

us sufficient conditions to determine if a shock exists. 
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Chapter 4: Numerical Method 

After much mathematical manipulation in the previous section, we have shown that the fluid is 

governed by a relatively simple Burgers equation, [3.61). In effect, we have three different equations: 
A A A 

One where only r 00 is non-zero, one where both r 00 and A.x, are non-zero, and a third when all 

three constants f 00 , A.,.,, and .E:00 are non-zero. This is because for each case we have a different 

definition off 00 , due to differences in order. We will need to write a general expression which can 

take these differences into account. We will accomplish this through our definition of x and y. 

Equations [3.59) gave the definition for these quantities with only .E:00 equal to zero. We can write 

the extension of [3.59] as follows 

x=L- 1M 2 -1 y L '\J 00 L 
nM2 - y e oo 

y=----;::::===-
L )M!,-1 

[4.1] 

A 

where the exponent n is dependent upon the case we are running. If only r 00 is non-zero, i.e. 

classical theory, n = 1 and f oo = f oo• If both f 00 and A.,., are non-zero, i.e. the theory derived in 
A A 

Chapter 3, then n = 2 and r oo and A.x, are defined by (3.57] and [3.42] respectively. If all three 

constants are non-zero, i.e. the extended theory derived in Section 3.10, then n = 3 and f 00 , A.,.,, 
and .E:00 are defined by [3.75) and (3.73) respectively. 
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We will solve the Burgers equation using MacConnack's predictor-corrector scheme with artificial 

viscosity introduced to minimize oscillations 12 . This scheme is a very effective, and often used 

finite-difference technique for examining shock waves in supersonic inviscid flow. The first stage, 

the predictor, is 

[4.2] 

where j is the node number in the x direction, and n is the node number in the y direction, Q is 

defined by (3.74). We then use this value in the corrector stage 

[4.3] 

We then apply the artificial viscosity, v to get the final value of u at the next y value, 

[4.4] 

The artificial viscosity enters into the stability condition.12 This condition is 

[4.5] 

where 

I\ 

, " Aoo 2 .::.oo 3 Q =-r oou--2-u --6-u. [4.6] 

In other words, the value of v must remain small for the solution to be stable, and in our case this 

means we will never use a value of v > 1 

The program is set up so that the values of the upstream Mach number, along with r 00 , Aoo, and 

:E:oo, must be input in order to define the upstream conditions. The program then uses 

Chapter 4: Numerical Method 26 



MacCormack's scheme to march in the ji-direction, outputting the values for x and u at specified 

ji values. These values can then be plotted to give us the flow dynamics. If a physical picture is 

desired, the values of x and ji must be converted to physical x and y coordinates using the following 

equations derived from [4.1] 

[4.7] 

1'..__ .jM~-1 
L - 2 y M n 

O()E 

where the values of s are determined by the wedge or wing angle, and n is determined by the case 

we are running. 

Chapter 4: Numerical Method 27 



Chapter 5: Results 

5.1 Comparison to Classical Flows 

Our first goal will be to verify the program's accuracy by running two classical, well known cases. 

The first will be an ideal gas, such as air, over a wedge such as that in Figure 5.1. As shown in the 

figure, in such a configuration, with a gas such as air, ideal gas theory states that we will get a 

compression shock wave coming off the leading edge of the wedge, and a centered expansion fan 
A A 

off the rear shoulder. For a perfect gas, the equivalent flow in our system is r 00 = 1.2 , Aoo = Eco 

= 0, n = 1, a wedge angle e = .176 (tan(l0°) ), and we will use an upstream Mach number, Moo 

= 2. Figure 5.2 shows the program's output from the solution of our Burgers equation. Most of 

the output from the program will be in the form of Figure 5.2, a density, u, versus x plot, with the 

y coordinate fixed. Figure 5.3 is a sketch of the way the output is presented. In this case the output 

will start with the upstream values, intersect the shock and then pass through the fan ending up 

back at the freestream condition. Looking again at Figure 5.2, we see that the density takes a sharp 

rise, i.e. a compression shock and then slowly falls back to the freestream value through an expan-

sion fan. This is the correct qualitative result. If we take a larger y value we see that the expansion 

fan has collided with the shock and started to weaken it. Such a case has been plotted in Figure 
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5.4. The oscillations seen at the end of the shock are a common occurrence in MacCormack 

schemes when large shocks are encountered. The artificial viscosity keeps these oscillations small 

and confined to the region of the shock. In order to check the quantitative results, we will compare 

our results to an exact value for the shock slope obtained from equation [3.51]. If we substitute 

values into this equation, we see that for the 10 degree wedge used in this case, the x location of the 

shock will be 0.86 when f = 0.74. Figure 5.2, taken at this f value shows that, indeed, the center 

of the shock is around x = 0.86. Our artificial viscosity causes the shock to be a smooth profile 

rather than a discontinuity. 

We can run a second case with an ideal gas flow over a standard expansion wedge as seen in Figure 

5.5. In this case we first get an expansion fan followed by a compression shock at the trailing edge. 

In the program we will use the same values for f 00 , Aoo, 8 00 , and Mach number as we used above. 

Running the program we get the results shown in Figure 5.6. These are exactly reversed from our 

case in Figure 5.2. We can lay the plots on top of each other and verify that the results are identical, 

except for the sign. 

5.2 No11-Classical Cases 

We will now run several cases to show the results of mixed non-linearity. We will gradually 

progress into the more complicated flows by changing our values of f 00 , A.00 , and 8 00 • Our first 

non-classical case will be a purely negative r case. This type of situation was shown to exist in 

heavy heat transfer fluids such as PPlO and PPll and 3-M's FC-70 and FC-71.13 This type of flow 

results in the situation shown in Figure 5.7 and described in Section 1, a compression fan followed 
A 

by an expansion shock. We will again set Aoo = 0, 8 00 = 0, e = .176, and the Mach number, 
A 

Moo = 2, in our program and use r oo = -0.4, the lowest value for r in FC- 70. The results are 

shown in Figure 5.8 and 5.9. We see that the flow is qualitatively opposite that of Figure 5.2, a fan 
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in front and a shock on the rear. Since the density increases in the front, the fan can only be a 

compression fan, and the shock, since the density drops, can only be an expansion shock. Although 

there is no experimental data to confirm the numerical results, negative r flows are a relatively new 

area of study, the qualitative results agree with our theoretical prediction. In Figure 5.9, the fan and 

shock have collided and are in the process of weakening each other. 

Our next case will be a positive r 0 ,,, but now we will use our second constant A_ to make the flow 

equivalent to flows very near the negative r range. Recall that since we now have A_ non-zero, 

we will be scaling r 00 with our wedge angle e. This will give us an effective f 00 equal to a much 

smaller number. If we plot the Q-curve for this case, described in Section 3.11 and given by 

equation [3.74], we get Figure 5.10. We will take the upstream Mach number, M00 = 2 which will 

cause an initial disturbance, u, as defined by equation (3.60] to be approximately 2.3. If we look 

at Figure 5.10, condition A is the upstream, infinity, condition which is by definition always zero, 

and B is the initial disturbance at u = 2.3. If we draw the Rayleigh line connecting these two, we 

see that it lies totally below the curve. Since the flow starts at A, a shock wave will form from A 

to C and then the flow will form a compression fan connecting C to B, following the Q-curve. 

Once the flow gets to B it must return to A, it can do this by one shock since the Rayleigh line lies 

totally below the Q-curve. The output from the program is displayed in Figures 5.11 and 5.12. 

We see that indeed there is a small compression shock, followed by a compression fan and then, 

at the rear, a large expansion shock. The expansion shock and compression fan are possible in 

negative r flows only, so this flow started with a positive r and then moved into the negative r 

region. Note that the compression fan, as it collides with the expansion shock, in Figure 5.12, 

causes the expansion shock to weaken. Eventually, the expansion shock will collide with the for-

ward compression shock and we will be left with a picture similar to the classical flow in Figure 5.4. 

Figure 5.13 is a sketch of how this flow would look from a stationary viewpoint. 

In real flows, we can also get a flow where we start with positiver, dip into the negative r region 

for a small distance, then return to the positive r region. This can be accomplished using our third 

constant 2 00 • Once again, recall that for this case, with 2 00 not equal to zero, r 00 is scaled with e2 
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and Ax, is scaled with s, this will result in a much smaller value for these quantities in the real flow. 

If we expand upon the above case, with f 00 = 0.8, Ax, = -2.1, and now set :E:oo = 1.6 we get the 

Q-curve seen in Figure 5.14. We will run the two cases seen in Figure 5.14, a Mach number of 3.3 

and then a Mach number of 3.7. Looking at our Q-curve in Figure 5.14 we see that the Rayleigh 

line connecting the first flow, at Mach number 3.3 crosses the curve twice. This is going to result 

in a very complex flow. 

In Figure 5.15, the flow for M = 3.3 has been depicted. It will start at the upstream condition, u 

= 0, and shock to the tangency point 1, it will then follow the Q-curve, forming a fan until it hits 

a second tangency point 2, such that it can then form a sonic shock over to our final condition A. 

In order to return to the initial condition, the flow will follow the curve to a third tangency point, 

3, and then form an expansion shock returning to u = 0. Figures 5.16-19 show the evolution of 

this flow as the y value increases. In 5.16, we see the initial compression shock, the small com-

pression fan and then the second compression shock. This phenomena of two shocks forming from 

the same initial discontinuity is called shock-splitting and occurs only in BZT fluids, if the flow is 

single phase.4 Once the flow reaches the final condition it then forms a small expansion fan and a 

larger expansion shock. Because both expansion and compression shocks are present, the flow 

must be dipping into the negative r region somewhere over the wedge. Figure 5.17 shows the flow 

at a higher y value. We see that the compression fan has become wider and the second compression 

shock is catching up to the rear expansion shock. Figure 5.18 shows that at an even greater y value, 

the second shock has collided with the rear expansion shock, weakening it considerably. Such a 

collision demonstrates the reason that expansion shocks are sometimes referred to as nnegative" 

shock waves. A collision between a compression shock and an expansion shock results in the 

shocks canceling each other out, eliminating the weaker shock and weakening the stronger shock. 

Figure 5.18 looks very similar to the case where :E:00 equals zero and the flow has clearly moved into 

this simpler region. Figure 5.19 shows what happens at an even greater y value, as the flow moves 

out of the negative r region the rear expansion shock starts to break up into an expansion fan. If 

we could run this case out far enough, we would eventually get a picture that looked similar to 
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Figure 5.4, a totally classical flow. The shock collisions are shown more vividly in Figure 5.20, 

which is a contour plot produced from the output of the program. It clearly shows the shock col-

lision and the resulting weakening of the rear expansion shock. The contour plot is in our x,y 

coordinates which is a system moving along with the Mach lines. Figure 5.21 is a sketch which 

shows how the flow would look from a stationary viewpoint. 

We will now look at the second case shown in Figure 5.14, a Mach number of 3.7. We can see that 

initially the Rayleigh line lies totally above the Q-curve. This means that a compression shock will 

exist initially in the flow, and the rear flow will be the same, an expansion fan followed by an ex-

pansion shock. This is shown in Figure 5.22. However as the expansion shock or fan collides with 

the compression shock it will weaken it until the situation shown in Figure 5.23 exists. The 

Rayleigh line now crosses the Q-curve, which means the large compression shock is no longer 

possible. The flow has now developed into the case we talked about previously, i.e. the case of 

M00 = 3.3 in Figure 5.14. 

In order to be sure that the phenomena demonstrated above are a result of our theory and not some 

type of numerical creation, an exact solution to the flow over an infinite wedge has been has been 

developed in Appendix A. The results of the exact solution can be superimposed over the data 

created by the program to demonstrate the accuracy of our numerical scheme. Looking at Figure 

5.24 we can see that the agreement is good, and we can be confident that the program is producing 

results in agreement with our theory. 

5.3 Flows Over Wing Shapes 

All of the flows discussed in the previous section used a wedge as the disturbance shape. Obviously 

this is not a good representation of real turbine blades. We will use a sine wave to represent our 
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turbine blade. This provides for the smooth curvature and the pointed leading edge, which must 

be present to keep the shocks from detaching. The flow over such a shape will be more complex 

because it has both a positive and negative slope along its length, thereby setting up both com-

pressions and expansions. Once again we will first look at the classical flow of a perfect gas, such 

as air, where f co = 1.2, Aco =Eco= 0. Classical theory says we will get a compression shock at the 

leading edge, and a compression shock at the trailing edge, with a smooth expansion fan along the 

rest of the wing, as seen in Figure 5.25. Figure 5.26 shows the output from the program which is 

exactly as we expected, two compression shocks with an expansion wedge connecting them. 

Looking at Figure 5.26 we once again see one of the major problems facing supersonic turbine 

designers, the compression shock from the leading edge of the wing will collide with a second blade 

above, it possibly causing losses to occur. If we run a case with purely negative r we will get the 

flows shown in Figures 5.27 and 5.28. The major difference we have in this flow is that the two 

compression shocks of the previous case have been replaced by a single expansion shock in the 

center of the wing and a compression fan at both the leading and trailing edges. These compression 

fans, upon striking the expansion shock, cause it to weaken quickly. This makes this type of flow 

much more efficient, the compression is spread out over a much larger area, and the expansion 

shock has no adverse effect on the upper wing. Indeed it thins the boundary layer and may even 

reduce drag. We will discuss this in more detail in the next section. 

' ' A more complex flow is encountered with a slightly positiver co and a negative A,,,,. We will use 

the same conditions used in Section 5.2, f co= 0.8, A.co = -2.1, Eco = 0, and M00 = 2. The output 

from the program run for this case is shown in Figures 5.29 and 5.30. We can use these plots to 

generate a sketch, 5.31, of how this flow will look. The front part of the flow is similar to the case 

of these conditions over a wedge, while the second part of the flow is a simple expansion fan and 

compression shock. As the flow progresses, the compression fan and expansion shock slowly 

eliminate each other. Eventually the expansion shock will collide with the compression shock and 

the flow will look like our classical case in Figure 5.26. 
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A final possibility is the case where all three of our constants are non-zero. We will use a similar 

case to the one we used in Section 5.2, r 00 = 0.8, A.,., = -2.1, 200 = 1.6, and Moo = 3.0. The 

results are shown in Figures 5.32-5.35. We can then sketch how this flow will look in Figure 5.36. 

Again we see the shock splitting taking place off the leading edge. This happens for the same reason 

as over the wedge, the Rayleigh line is intersecting the Q-curve. Again the split compression shock 

is weakened by the expansion fan until it collides with the expansion shock, causing the expansion 

shock to be weakened considerably. We now have a picture, in Figure 5.35 which is similar to our 

previous case, i.e. the shock has traveled into the simpler region. Eventually, as in the case with 

the wedge, the expansion shock will collide with the compression shock and we will have a classical 

flow similar to that of Figure 5.26. 

5.4 Application to Turbine Design 

We will now see how we can use the phenomena discussed above to produce advantages over ideal 

gases in turbine design. Unfortunately, for the cases where 2 00 was non-zero, when we transform 

them into real coordinates, the beneficial non-classical effects like shock disintegration, take place 

at distances much too far from the wing to be used in a turbine, where the blades are relatively close 

together. We can, however, still have a much more efficient flow by using a BZT fluid at a 

thermodynamic state with negative r. Figure 5.37 is a plot comparing two identical flows over a 

wing, the only difference being one case is an ideal gas, steam, with positive r, the other is a BZT 

fluid, PP24, with negative r. The output is given at a physical coordinate of 1 which is rea-

sonable for a turbine design, i.e., the upper wing is one chord length away from the lower wing. 

Looking at the figure we see the n-shaped classical picture for steam, with the compression shocks 

at the leading and trailing edges, and the PP24 with its one expansion shock and two compression 

fans. The compression caused by the PP24 is a little larger than the steam, the compression shocks 

were slightly weakened by the expansion fan in the steam, but it is spread over an area of almost 

Chapter 5: Results 34 



half a chord length, where the shock is spread over a very small area, theoretically, zero area. This 

means that the steam is much more likely to cause the boundary layer on the upper wing to sepa-

rate. The PP24 also contains an expansion shock, which has the opposite effect on the boundary 

layer than a compression shock; it makes the boundary layer thinner, making it even less likely that 

the PP24 flow will have the excessive drag the steam flow has. Although, this simple picture is a 

strong demonstration of the potential for BZT fluids in this application, we can however have an-

other situation which may even more desirable. If we take the same two fluids and reduce the Mach 

number to M00 = 1.2, we can produce a flow in the PP24 which has no shock waves at all. Figure 

5.38 is a plot at = .75, i.e., of a chord length away. The stream flow still contains large 

compression shocks. The PP24 however, contains only fans, two compression fans and a large 

expansion fan. Eventually the expansion fan would steepen to form an expansion shock, but, for 

these relatively short distances, this will not happen. 
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Chapter 6: Conclusions and Recommendations 

In the previous section we have used our theory to show many types of non-classical behaviors in 

BZT fluids. Expansion shocks, compression fans, shock-splitting, shock-fan combinations, and 

collisions of expansion and compression shocks were all demonstrated. When we transformed our 

results into physical coordinates, we saw that most of the non-classical effects happened a very large 

distance from the wing. So when we looked at possible uses for BZT fluids in turbines, we had to 

discount most of the higher order effects and concentrate on the very simplest of non-classical flows, 

the r < 0 flow. By looking at the two cases in Section 5.4 we saw that a BZT fluid could dra-

matically reduce the likelihood of a compression shock causing the boundary layer of an adjacent 

blade to separate. Indeed, if our operating conditions are set right, it appears that a totally shock 

free flow can be produced in a turbine cascade. 

This study has left much room for future study. One of the major drawbacks of our approach is 

that it ignores reflected waves. In order to incorporate reflected waves, we could solve the Euler 

equations, [2.1]-[2.3] directly. In this case we could have both the top and bottom blade present 

and look at how the reflected waves interact. 

There is also much work to be done to experimentally verify the results and to determine effects 

of BZT fluid effects on boundary layers and exactly how boundary layers interact with non-
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classical flows such as expansion shocks and compression fans. As is the case with most new 

technologies there may be unforseen effects which can be found only through experiments. Al-

though this study shows that BZT fluids are feasible and indeed, more desirable than classical fluids, 

there is much engineering work left to be done before a BZT turbine system can become reality. 
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Figure 1.1. Comparison of the turbine cascade flow of a (a) classical fluid to a (b) BZT fluid. 
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Figure 1.2. Solution domain for the numerical problem. 
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Figure 2.1. Comparison of an (a) oblique compression shock to an (b) oblique expansion shock 
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Figure 3.1. Coordinate system for the characteristic lines 
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Figure 3.2. Slopes of the Mach lines in the n-s Plane 
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Figure 3.4. Breakdown of the components of velocity in an oblique shock. 
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Figure 3.5. Existence conditions with a sample shock adiabat. 
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Figure 5.1. Sketch of classical flow over a compression wedge. 
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Figure 5.2. x-u plot for r 00 = 1.2, A00 = E00 = 0, M 00 = 2 over a compression wedge at y/L = 0.74 
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Figure 5.3. Form of output from the shock solver program. 
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Figure 5.4. x-u plot for f 00 = 1.2, A00 = :::00 = O, M 00 = 2 over a compression wedge at y /L = 2.46 
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Figure 5.5. Sketch of classical flow over a expansion corner. 
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Figure 5.6. x-u plot for r 00 = 1.2, A00 =:::00 = O, M 00 = 2 over an expansion corner at y/L = 0.49 
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Figure 5.7. Sketch of purely r < 0 flow over a wedge. 
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Figure 5.8. x-u plot for r 00 = -0.4, Aoo = Eoo = o, Moo = 2 over a wedge at y/L = 0.74 
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Figure 5.9. x-u plot for f 00 = -0.4, A00 = ::'.:00 = O, M 00 = 2 over a wedge at y/L = 4.9 
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Figure 5.10. Q-curve for r 00 = 0.8, Aoo= -2.1, Eoo= 0 
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Figure 5.11. x-uplotforf 00 = 0.8,A 00 = -2.1,E: 00 = O,M 00 = 2overawedgeaty/L = 2.79 
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Figure 5.12. x-u plot for f 00 = 0.8, A00 = -2. 1, 2 00 = 0, M00 = 2 over a wedge at y /L = 7 .0 
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Figure 5.13. Sketch of the flow for f 00 = 0.8, A00 = -2.1, E00 = O, M00 = 2 over a wedge 
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Figure 5.14. Q-curve for f 00 = 0.8, A00 = -2.1, E00 = 1.6 with Rayleigh line for M 00 = 3.3 and M 00 

= 3.7 
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Figure 5.15. Q-curve for f 00 = 0.8, A00 = -2.1, E00 = 1.6 with actual flow for M00 = 3.3 
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Figure 5.16. x-u plot for f 00 = 0.8, A00 = -2.I, E00 = 1.6, M 00 = 3.3, over a wedge at y/L = 52.7 
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Figure 5.17. x-u plot for f 00 = 0.8, A00 = -2.1, E:00 = 1.6, M 00 = 3.3 over a wedge at y/L = 211 
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Figure 5.18. x-u plot for r 00 = 0.8, Aoo= -2.1, Eoo= 1.6, Moo= 3.3 over a wedge at y/L = 421 
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Figure 5.19. x-u plot for f 00 = 0.8, A00 = -2.1, E 00 = 1.6, M 00 = 3.3 over a wedge at y/L = 632 
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Figure 5.20. Contour plot for r 00 = 0.8, A00 = -2.I, E 00 = 1.6. M 00 = 3.3 over a wedge 
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Figure 5.21. Sketch of flow for f 00 = 0.8, A00 = -2.l, :E:00 = 1.6. M00 = 3.3 over a wedge 
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Figure 5.22. x-u plot for f 00 = 0.8, A00 = -2.1, E 00 = 1.6, M 00 = 3.7 over a wedge at y/L = 19.0 
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Figure 5.23. Q-curve for f 00 = 0.8, A00 = -2.1, E00 = 1.6. M00 = 3.7 
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Figure 5.24. Comparison to Appendix A for f 00 = 0.8, A00 = -2.l, E00 = 1.6., M 00 = 3.3 over a wedge 
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Figure 5.25. Sketch of classical flow over a wing shape. 
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Figure 5.26. x-u plot for r 00 = 1.2, Aoo= :::00= o., Moo = 2 over a wing shape at y/L = 0.49 
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Figure 5.27. Sketch off< 0 flow over a wing shape. 
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Figure 5.28. x-u plot for f 00 = -0.4, A00 = 3 00 = 0., M 00 = 2 over a wing shape at y/L = 2.45 
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Figure 5.29. x-u plot for r 00 = 0.8, Aoo= -2.1, Eoo= o, Moo = 2 over a wing at y/L = 6.97 
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Figure 5.30. x-u plot for f 00 = 0.8, A00 = -2. 1, 2:00 = O, M 00 = 2 over a wing at y /L = 27 .9 
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Figure 5.31. Sketch off 00 > 0 and Aco < 0 flow over a wing shape 
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Figure 5.32. x-u plot for f co = 0.8, Aco = -2. 1, Eco= 1.6, M co = 3.0 over a wing at y /L = 17 .2 
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Figure 5.33. x-u plot for f 00 = 0.8, A00 = -2.1, E00 = 1.6, M 00 = 3.0 over a wing at y/L = 57.3 
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Figure 5.34. x-u plot for f 00 = 0.8, A00 = -2. I, 3 00 = 1.6, M 00 = 3.0 over a wing at y /L = 229 
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Figure 5.35. x-u plot for f 00 = 0.8, A00 = -2.1, 2 00 = 1.6, M 00 = 3.0 over a wing at y/L = 401 
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Figure 5.37. Comparison of r > 0 and r < 0 flows over a wing at M 00 = 2, y/L = I 
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Appendix A. Exact Solution for Shock Splitting 

We will solve the equations [3.51] to exactly, at least to our order of approximation, describe the 

flow over an infinite wedge. Since this exact solution will include all the constants, r 00! Aoo, and 

2 00 , we will be able to describe the flow for any of our cases: compression and expansion shocks, 

fans, and shock splitting. 

We will first find the speed of a shock. This was determined in Section 3.10 by equation (3.76] 

which is written again here. 

I\ I\ 

ax I [QJ r oo Aoo 2 2 
dy shock= [u] = - -2- (U;z + U1) - -6- (U;z + U1 Ui + U1 ). [A.1] 

With this equation we can determine the x position of the shock at any y value. The speed of 

non-shock disturbances such as fans will be determined by: 

ax I I\ I\ U2 ,_, UJ 
cJy I char. = Q = - r oou - Aoo 2 - -=-oo 6 [A.2] 
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The above two expressions will allow us to find the location for any shock or fan in the flow. In 

order to include shock-splitting in our exact solution, we must be able to determine the strength 

of the sonic shocks and determine their starting and ending points. We will do this by setting our 

shock slope [A.l) equal to the slope of the characteristic line, [A.2], and solving for the downstream 

density u2 as a function of u1. We get 

which is good for a shock which is sonic at the 2 condition. The results for a shock which is sonic 

at the 1 condition is obtained by simply interchanging the subscripts 1 and 2 in [A.3] to obtain 

UI = 

We can now use [A.l) - [A.4] to piece together the case of shock splitting, as was done in Figure 

5.25. Staring with the upstream flow, u = 0, we use equation [A.3] to get the downstream value 

for the first sonic shock. We can compute the second sonic shock by using our final downstream 

u, u2, in equation [A.4] to get the upstream value for the second shock. We can compute the fan 

by using the following expression, derived by integrating [A.2), assuming u is constant on the Mach 

lines 

- I\ I\ u2 - u3 -x = < - r u - A - - - ),,, oo oo 2 """'oo 6 J • 
[A.5] 

Equation [A.5] gives us the fan which will connect the tti of the first sonic shock to the u1 of the 

second shock. It should be recalled that this solution only holds near the leading edge of a wing. 
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Appendix B. Determination of r and A for Real 

Fluids 

The values of r 00 , Aoo, and 8 00 used in our calculations in Chapter 5, with the exception of the 

classical flow calculations, were approximations of the values for particular fluids. Values for f, 

given by equation [3.42] have been calculated using state of the art equations of state.1 7 Since A is 

a function of the derivative of r we can estimate A, evaluated at the zero of r, in the following 

way 

where f1 is a slightly positive value at Pt, and f2 is a slightly negative value at p2. Since 8 00 in-

volves the second derivative of r, such a simple formula cannot be obtained for it. 

The following chart shows some values of A for several fluids of interest. The values were com-

puted by taking an isentrope and using [A.6] at the points where r changed sign. Since r changes 

sign at two points, there are two values of A produced for each fluid. 
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Table I. Values for A for some BZT Fluids. 

Fluid At T,(K) P1(Atm.) A2 Ti(K) P2(Atm.) 
FC-70 2.75 609 10.1 -1.14 606 9.1 
FC-71 3.53 648 9.3 -1.25 645 8.37 
PP-9 1.34 585 15.7 -0.795 581 14.7 
PP-10 2.68 632 15.7 -1.15 627 14.2 
PP-11 2.81 651 14.3 -1.14 647 12.9 
PP-24 4.25 704 15.2 -1.38 699 13.5 
PP-25 1.08 689 11.0 -1.07 685 9.83 
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