

Comparative Assessment of Network-Centric Software
Architectures

LIKHITA KRISHNAMURTHY

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

Dr. Osman Balci, Chair
Dr. James D. Arthur
Dr. Roger W. Ehrich

May 1, 2006

Blacksburg, Virginia

Keywords and phrases: architecture, architecture evaluation, comparative assessment, network-
centric, software architecture, software architecture comparison, system architecture

Comparative Assessment of Network-Centric Software
Architectures

LIKHITA KRISHNAMURTHY

Abstract

The purpose of this thesis is to characterize, compare and contrast four network-centric software
architectures, namely Client-Server Architecture (CSA), Distributed Objects Architecture
(DOA), Service-Oriented Architecture (SOA) and Peer-to-Peer Architecture (PPA) and seven
associated frameworks consisting of .NET, Java EE, CORBA, DCOM, Web Services, Jini and
JXTA with respect to a set of derived criteria. Network-centric systems are gaining in popularity
as they have the potential to solve more complex problems than we have been able to in the past.
However, with the rise of SOA, Web Services, a set of standards widely used for implementing
service-oriented solutions, is being touted as the “silver bullet” to all problems afflicting the
software engineering domain with the danger of making other architectures seem obsolete. Thus,
there is an urgent need to study the various architectures and frameworks in comparison to each
other and understand their relative merits and demerits for building network-centric systems.

The architectures studied here were selected on the basis of their fundamentality and generality.
The frameworks were chosen on the basis of their popularity and representativeness to build
solutions in a particular architecture. The criteria used for comparative assessment are derived
from a combination of two approaches – by a close examination of the unique characteristics and
requirements of network-centric systems and then by an examination of the constraints and
mechanisms present in the architectures and frameworks under consideration that may contribute
towards realizing the requirements of network-centric systems. Not all of the criteria are equally
relevant for the architectures and frameworks. Some, when relevant, are relevant in a different
sense from one architecture (or framework) to another.

One of the conclusions that can be drawn from this study is that the different architectures are
not completely different from each other. In fact, CSA, DOA and SOA are a natural evolution in
that order and share several characteristics. At the same time, significant differences do exist, so
it is clearly possible to judge/differentiate one from the other. All three architectures can coexist
in a single system or system of systems. However, the advantages of each architecture become
apparent only when they are used in their proper scope. At the same time, a sharp difference can
be perceived between these three architectures and the peer-to-peer architecture. This is because
PPA aims to solve a totally different class of problems than the other three architectures and
hence has certain unique characteristics not observed in the others. Further, all of the frameworks
have certain unique architectural features and mechanisms not found in the others that contribute
towards achieving network-centric quality characteristics. The two broad frameworks, .NET and
Java EE offer almost equivalent capabilities and features; what can be achieved in one can be
achieved in the other.

This thesis deals with the study of all the four architectures and their related frameworks. The
criteria used, while fairly comprehensive, are not exhaustive. Variants of the fundamental
architectures are not considered. However, system/software architects seeking an understanding
of the tradeoffs involved in using the various architectures and frameworks and their subtle
nuances should benefit considerably from this work.

 iii

Acknowledgments

First and foremost, I wish to express my heartfelt gratitude to my advisor, Dr. Osman Balci for
giving me the opportunity to work on this thesis. What I have learned from him while working
on this thesis, will, I believe, benefit me for a lifetime. I would also like to thank Dr. James D.
Arthur for his invaluable guidance and support.

On the personal front, I am grateful to my parents Krishnamurthy Hegde and Laxmi Hegde for
their unconditional support as always. Finally, I thank Swapneel Mehta for his constant
encouragement and assistance throughout this endeavor.

 iv

Table of Contents
Abstract ... ii
Acknowledgments...iv
List of Figures .. viii
List of Tables...ix
List of Acronyms..x
Chapter 1: Introduction..1

1.1 WHAT IS A NETWORK-CENTRIC SYSTEM? ...1
1.1.1 System of Systems ..2
1.1.2 Family of Systems ..3
1.1.3 Network-Centric Software ...3

1.2 NETWORK-CENTRIC ARCHITECTURES LITERATURE REVIEW...3
1.3 STATEMENT OF THE PROBLEM ...4
1.4 STATEMENT OF OBJECTIVES ..5
1.5 SCOPE ..5
1.6 OVERVIEW OF THESIS ..6

Chapter 2: Network-Centric Software Architectures..7
2.1 CLIENT-SERVER ARCHITECTURE ...7

2.1.1 The Microsoft .NET Framework ..9
2.1.1.1 Presentation.. 10
2.1.1.2 Business Logic... 10

2.1.1.2.1 Remoting .. 10
2.1.1.2.2 Enterprise Services (COM+) .. 10
2.1.1.2.3 Queued Components... 10

2.1.1.3 Persistence ... 11
2.1.1.4 Web Services ... 11

2.1.2 The Java Platform, Enterprise Edition (Java EE) Framework..11
2.1.2.1 Java EE Presentation.. 12
2.1.2.2 Java EE Business Logic ... 12

2.1.2.2.1 Session EJBs... 12
2.1.2.2.1.1 Stateful Session Beans.. 13
2.1.2.2.1.2 Stateless Session Beans .. 13

2.1.2.2.2 Message-Driven Beans (MDB)... 13
2.1.2.3 Persistence ... 13
2.1.2.4 Web Services ... 13
2.1.2.5 Design Frameworks ... 14

2.1.2.5.1 The Spring Design Framework... 14
2.1.2.5.2 The Hibernate Design Framework.. 14
2.1.2.5.3 The Struts Design Framework .. 14
2.1.2.5.4 The Tiles Design Framework ... 15

2.2 DISTRIBUTED OBJECTS ARCHITECTURE...15
2.2.1 Distributed Component Model...16
2.2.2 Common Object Request Broker Architecture...17

2.2.2.1 Dynamic Invocation Interface.. 18
2.2.2.2 Dynamic Skeleton Interface (DSI)... 18
2.2.2.3 Object Adapter... 18
2.2.2.4 Implementation Repository.. 19
2.2.2.5 CORBA Architecture... 19
2.2.2.6 CORBA Component Model... 19

2.2.3 Distributed Component Object Model ...20
2.3 SERVICE-ORIENTED ARCHITECTURE ...21

2.3.1 Service ...22
2.3.2 Characteristics of a Service...22

 v

2.3.3 Web Services..24
2.3.3.1 Web Service Standards .. 25

2.3.3.1.1 SOAP.. 26
2.3.3.1.2 WSDL... 26
2.3.3.1.3 UDDI .. 26
2.3.3.1.4 Orchestration and Choreography .. 27

2.3.3.1.4.1 Web Services Orchestration ... 27
2.3.3.1.4.2 Web Services Choreography .. 27
2.3.3.1.4.3 Difference Between Orchestration and Choreography ... 27

2.3.4 Jini ...27
2.4 PEER-TO-PEER ARCHITECTURE..28

2.4.1 JXTA ..28
2.4.1.1 Core Specification Protocols.. 31
2.4.1.2 Standard Service Protocols .. 31

Chapter 3: Characteristics of Network-Centric Architectures ...33
3.1 QUALITIES ...35

3.1.1 Openness, Interoperability and Integration...35
3.1.2 Adaptability..37

3.1.2.1 Modifiability .. 37
3.1.2.2 Reconfigurability ... 38

3.1.3 Dependability...39
3.1.4 Scalability and Performance..40

3.1.4.1 Scalability .. 40
Chapter 4: Comparative Assessment ..41

4.1 COMPARISON BETWEEN ARCHITECTURES AND FRAMEWORKS BASED ON ARCHITECTURAL
CHARACTERISTICS ...41

4.1.1 Partitioning of Application Logic ..41
4.1.2 Operational Environment and Scope of Distribution ..46
4.1.3 Level of Abstraction ...46
4.1.4 Granularity and Nature of Software Computing Units..49

4.1.4.1 Granularity ... 49
4.1.4.2 Nature of the Components ... 50

4.1.4.2.1 State .. 50
4.1.4.2.2 Modes of communication ... 51
4.1.4.2.3 Autonomy... 52
4.1.4.2.4 Life Cycle ... 52

4.1.5 Intent of Usage and Usage of the Software Units ..52
4.1.6 Nature of the Interface...53

4.1.6.1 Nature of Interfaces in the Different Architectures .. 54
4.1.6.1.1 Component based Interface (IDL) vs. Service Contract (WSDL)... 55

4.1.6.1.1.1 Syntax... 55
4.1.6.1.1.2 Type System... 55
4.1.6.1.1.3 Service Endpoints... 55

4.1.7 Degree of Coupling..55
4.1.7.1 Coupling and the Different Architectural Paradigms ... 56
4.1.7.2 Coupling Summary .. 57

4.1.8 Dynamic Discovery (Discoverability) and Composability...57
4.1.8.1 Dynamic Discovery ... 57
4.1.8.2 Composability.. 57
4.1.8.3 Dynamic Discovery and Composition in the Various Architectures.. 58
4.1.8.4 P2P Discovery Process .. 59

4.1.8.4.1 The Concept of a Virtual Overlay Network.. 59
4.1.8.4.1.1 Dynamic Addressing .. 60
4.1.8.4.1.2 SOA vs. PPA for Creating an Application Composed of Services... 61

4.1.8.5 Dynamic discovery and composition summary ... 61
4.2 COMPARISON BETWEEN ARCHITECTURES AND FRAMEWORKS BASED ON QUALITY CHARACTERISTICS62

4.2.1 Openness..62

 vi

4.2.1.1 Evaluating Frameworks for Openness ... 62
4.2.1.2 CSA ... 62
4.2.1.3 .NET .. 62

4.2.1.3.1 Assembly Metadata .. 63
4.2.1.4 Java EE .. 63
4.2.1.5 DOA/CBA ... 63
4.2.1.6 CORBA ... 64
4.2.1.7 DCOM ... 64
4.2.1.8 Web Services ... 64
4.2.1.9 Jini ... 64
4.2.1.10 PPA.. 64
4.2.1.11 JXTA ... 64

4.2.2 Interoperability ..65
4.2.2.1 .NET .. 65

4.2.2.1.1 Interoperability with Applications Developed Using the Same Platform ... 65
4.2.2.1.2 Interoperability with Applications Developed Using Other Platforms ... 65
4.2.2.1.3 .NET and Web Services.. 65

4.2.2.2 Java EE .. 65
4.2.2.2.1 Interoperability with Applications Using the Same Platform ... 65
4.2.2.2.2 Interoperability with Applications Using Other Platforms ... 66

4.2.2.3 CORBA ... 66
4.2.2.4 DCOM ... 66
4.2.2.5 Web Services ... 66
4.2.2.6 Jini ... 67
4.2.2.7 JXTA ... 67
4.2.2.8 Interoperability Summary .. 67
4.2.2.9 Legacy System Integration... 67

4.2.3 Adaptability..68
4.2.3.1 .NET .. 68

4.2.3.1.1 Modifiability... 68
4.2.3.1.2 .NET Attributes and Contexts... 68
4.2.3.1.3 .NET Versioning... 68
4.2.3.1.4 Reflection and Metadata ... 69

4.2.3.2 Java EE .. 69
4.2.3.2.1 Modifiability... 69
4.2.3.2.2 Session Beans ... 69
4.2.3.2.3 Entity Beans.. 70
4.2.3.2.4 Location Transparency ... 70
4.2.3.2.5 Annotations and Deployment Descriptors .. 70
4.2.3.2.6 Patterns ... 70
4.2.3.2.7 Versioning .. 70
4.2.3.2.8 Reflection and Metadata for Dynamic Reconfiguration ... 71

4.2.3.3 Web Services ... 71
4.2.3.3.1 Modifiability... 71
4.2.3.3.2 Versioning .. 71
4.2.3.3.3 Dynamic Reconfiguration... 71

4.2.3.4 CORBA ... 71
4.2.3.4.1 Modifiability... 71
4.2.3.4.2 Versioning .. 71
4.2.3.4.3 Reflection ... 72

4.2.3.5 DCOM ... 72
4.2.3.5.1 DCOM Versioning ... 72
4.2.3.5.2 Reflection and Metadata ... 72

4.2.3.6 Jini ... 72
4.2.3.7 JXTA ... 72

4.2.4 Security ..73
4.2.4.1 Web Services ... 74
4.2.4.2 .NET .. 74

4.2.4.2.1 Applications.. 74
4.2.4.2.2 Web Services .. 74

4.2.4.3 Java EE .. 75
4.2.4.3.1 Applications.. 75

 vii

4.2.4.3.2 Web Services .. 75
4.2.4.4 CORBA ... 75
4.2.4.5 DCOM ... 75
4.2.4.6 Jini ... 76
4.2.4.7 JXTA ... 76

4.2.5 Dependability...76
4.2.5.1 .NET and Java EE.. 76

4.2.5.1.1 Transactions.. 77
4.2.5.1.2 State Management and Failover Clustering .. 77
4.2.5.1.3 Support for Asynchronous Communication.. 77

4.2.5.2 CORBA ... 77
4.2.5.3 DCOM ... 77
4.2.5.4 Web Services ... 77
4.2.5.5 Jini ... 78
4.2.5.6 PPA Dependability... 78

4.2.5.6.1 JXTA .. 79
4.2.6 Scalability and Performance..79

4.2.6.1 .NET and Java EE.. 79
4.2.6.2 DCOM ... 80
4.2.6.3 CORBA ... 80
4.2.6.4 Web Services ... 81
4.2.6.5 Jini ... 81
4.2.6.6 JXTA ... 82

4.3 COMPARATIVE ASSESSMENT SUMMARY..82
Chapter 5: Concluding Remarks ...87
Bibliography...88
VITA...99

List of Figures

FIGURE 1 MAJOR COMPONENTS OF A NETWORK-CENTRIC SYSTEM..2
FIGURE 2 A THREE-LAYERED APPLICATION..8
FIGURE 3 .NET ARCHITECTURE ...9
FIGURE 4 JAVA EE ARCHITECTURE..12
FIGURE 5 .NET VS. JAVA EE ..15
FIGURE 6 CORBA ORB INTERFACES (IMAGE TAKEN FROM [OMG 2006])..18
FIGURE 7 CORBA ARCHITECTURE ..19
FIGURE 8 DCOM ARCHITECTURE ..20
FIGURE 9 SOA..22
FIGURE 10 WEB SERVICES PROTOCOLS STACK (IMAGE TAKEN FROM [W3C 2004]) ...25
FIGURE 11 JXTA (IMAGE TAKEN FROM [SUN 2004]) ...30
FIGURE 12 PROJECT JXTA PROTOCOLS..30
FIGURE 13 STRUCTURES IN A SYSTEM ...33
FIGURE 14 BUSINESS LOGIC ...42
FIGURE 15 STRUCTURE OF APPLICATIONS ARCHITECTED IN CSA, DOA AND SOA ..43
FIGURE 16 SOA USING ENTERPRISE SERVICE BUS ..45
FIGURE 17 APPLICATION BASED ON CSA...47
FIGURE 18 SOA ENCAPSULATING ENTIRE APPLICATIONS AND SYSTEMS ..48
FIGURE 19 GRANULARITY OF THE PROCESSING ELEMENTS IN THE VARIOUS ARCHITECTURES......................................49
FIGURE 20 PEER-TO-PEER OVERLAY NETWORK..60

 viii

List of Tables

TABLE 1 SUMMARY OF COMPARISON BETWEEN CSA, DOA/CBA, SOA AND PPA..83
TABLE 2 .NET VS. JAVA EE ...84
TABLE 3 CORBA VS. DCOM ..85
TABLE 4 WEB SERVICES VS. JINI VS. JXTA..86

 ix

List of Acronyms

 ADL Architecture Description Language
 ADO ActiveX Data Objects
 AOP Aspect-Oriented Programming
 API Application Programming Interface
 ASMX Active Server Methods
 ASP Active Server Pages
 AV All View

 C4ISR Command, Control, Communication, Computer, Information,
Surveillance and Reconnaissance

 CAS Code Access Control
 CBA Component-Based Architecture
 CCM CORBA Component Model
 CLI Common Language Infrastructure
 CLR Common Language Runtime
 COM Component Object Model
 CORBA Common Object Request Broker Architecture
 CSA Client-Server Architecture
 DCOM Distributed Component Object Model
 DODAF DoD Architecture Framework
 EJB Enterprise JavaBean
 FoS Family of Systems
 GUI Graphical User Interface
 HTTP HyperText Transfer Protocol
 IDL Interface Definition Language
 IIOP Internet Inter Orb Protocol
 IL Intermediate Language
 IoC Inversion of Control
 J2EE Java 2 Platform, Enterprise Edition
 JAAS Java Authentication and Authorization Service
 JAX-WS Java API for XML Web Services
 JAXB Java Architecture for XML Binding
 JCA Java Connector Architecture
 JCE Java Cryptography Extension
 JCP Java Community Process
 JDBC Java Database Connectivity
 JITA Just In Time Activation
 JMS Java Messaging Service
 JNDI Java Naming and Directory Interface
 JSF Java Server Faces
 JSP Java Server Pages
 JSTL JavaServer Pages Standard Tag Library
 JVM Java Virtual Machine
 JXTA Juxtapose

 x

 LAN Local Area Network
 LDAP Lightweight Directory Access Protocol
 MDB Message-Driven Bean
 MSMQ Microsoft Message Queueing
 MVC Model-View-Controller
 NCW Network-centric Warfare
 OMA Object Management Architecture
 OMG Object Management Group
 ORB Object Request Broker
 ORPC Object Remote Procedure Call
 OSJTF Open Systems Joint Task Force
 OV Operational View
 POJO Plain Old Java Object
 PPA Peer-to-Peer Architecture
 RFC Request For Comments
 RMI Remote Method Invocation
 RPC Remote Procedure Call
 SCSL Sun Community Source License
 SEI Software Engineering Institute
 SOA Service-Oriented Architecture
 SOAP Simple Object Access Protocol
 SoS System of Systems
 SSL Secure Socket Layer
 SV Systems View
 TCP/IP Transmission Control Protocol/Internet Protocol
 TV Technical Standards View
 UDDI Universal Description, Discovery and Integration
 URI Universal Resource Identifier
 VPN Virtual Private Network
 W3C World Wide Web Consortium
 WAN Wide Area Network
 WSDL Web Services Description Language
 WSE Web Services Extensions
 XML eXtensible Markup Language

 xi

Chapter 1: Introduction

The “Network” is everywhere. The omnipresence of the “network”, be it the Internet, wireless
networks or other kinds of networks like Virtual Private Networks (VPNs), is driving computing
towards a network-centric model where systems and applications are deployed over and accessed
through a network. Various forces are responsible for this paradigm shift. For single
applications, it could be the ease of application deployment, updating and maintenance.
Increased commodification of traditional services and the ease of building complex systems by
aggregating capabilities rather than constructing them from scratch as a monolithic system are
further contributing factors. Moreover, the systems of the future shall be more complex, catering
to larger groups of users. Most often than not, they will be System of Systems (SoS) that
aggregate the capabilities of many individual systems. The nature and intended function of these
complex systems could be inherently network-centric - requiring them to be deployed onto
various nodes that communicate and collaborate over a network. Examples of these classes of
systems are systems that disseminate/aggregate information and data from various
geographically distributed sources and help to form a coherent picture from this aggregated
information. For systems and applications that are not required to be geographically distributed,
considerations of various quality characteristics like scalability and resilience might require them
to be distributed onto different nodes connected by a network, and to collaborate over the
network to achieve some common function.

1.1 What is a Network-Centric System?

A network-centric system is an interconnection of hardware, software, and humans that operate
together over a network (e.g., Internet, virtual private network, local area network, intranet) to
accomplish a set of goals.

The adjective “network-centric” has been coined in the Department of Defense (DoD) to refer to
a class of systems, which is mandated for DoD components to build/use for transforming their
operations and warfare capabilities to be network-centric. The terms “Network-centric
Operations”, “Network-centric Warfare”, and FORCEnet currently constitute a common
terminology in DoD. The Navy has its own flagship organization called NETWARCOM (Naval
Network Warfare Command). The major distinguishing characteristic of this class of systems is
the fact that the components (or subsystems or modules) of this type of system communicate
with each other over a network. For example, the space shuttle or an aircraft is a complex
system, but it is not a network-centric system as its components do not communicate over a
network. A supply chain system operating over a company’s virtual private network with
geographically dispersed employees using the system with their PDAs, cell phones, laptops, and
PCs is a network-centric system. The adjective “network-centric” is not just for DoD systems,
but for any kind of system, which possess characteristics of this class of systems.

While Network-centric systems share many characteristics with Distributed systems, they are not
another name for distributed systems. The term “distributed systems” typically implies that the
system operation is distributed for performance improvement reasons. It also implies that the
system is engineered to have distributed components. The terms “distributed processing” and

 1

https://ekm.netwarcom.navy.mil/netwarcom/nnwc-nipr/index.htm
https://ekm.netwarcom.navy.mil/netwarcom/nnwc-nipr/index.htm

“parallel processing” are used purely for performance improvement. On the other hand, the term
“network-centric” implies that the system can be composed by way of reuse of already existing
systems or subsystems over a network. The term “Distributed Systems” refers to the old local
area or wide area networks. Thus, in the new era of the Internet with which we have witnessed
many paradigm changes, the new term is “Network-centric” is more appropriate.

A network-centric system consists of hardware, software, and humans as depicted in Figure 1.

Hardware

Software

Humans

Network-centric System

Figure 1 Major components of a Network-Centric system

The term “Network-centric System” refers to a class of systems. Example systems that belong to
this class include the following:

1.1.1 System of Systems
A system of systems (SoS) is an interconnection of interdependent systems through a network to
provide a given capability. A SoS may be a single platform or consist of a collection of separate,
but interdependent, interconnected platforms performing different functions. A military aircraft,
for example, is a single platform operating with different systems on board, such as propulsion,
weapons, navigation, and communications systems. A ground station dependent on a satellite is
an example of interconnected platforms performing different functions. A distinguishing factor
for a SoS is that it depends on all of its elements working interactively and continuously within a
network to accomplish a pre-specified capability. The loss of any SoS element degrades the
performance or capabilities of the entire SoS. A SoS provides a capability not possible with any
of the individual elements acting alone. [OUSDATL 2005]

 2

1.1.2 Family of Systems
A family of systems (FoS) is a collection of independent (not interdependent) systems that can
be interconnected over a network in various ways to provide different capabilities needed
depending on a particular situation. Interoperability of the independent systems is a key
consideration in the ad hoc deployment of a FoS. [OUSDATL 2005]

An enterprise-wide system is a system that covers the entire operation of an enterprise such as
the U.S. Navy over a network.

1.1.3 Network-Centric Software
From the preceding discussion, we can characterize software components that interact with each
other over a network (e.g. Internet, VPN, Local Area Networks, Wireless networks, etc) as
network-centric software. This characterization leads us to the following definition of Network-
centric software architecture:
“A Network-centric Software Architecture is software architecture with characteristics and
organization that make it suitable for building applications and systems that are deployed over
networks. Network-centric Software Architecture Frameworks have mechanisms and tactics that
support building Network-centric systems”.

1.2 Network-Centric Architectures Literature Review

As early as in 2000, the gradual paradigm shift towards Network-centric computing was
observed by Garlan [2000]. Garlan also identified challenges and opportunities for research in
software architecture due to this paradigm shift.

The term “network-centric” was first used in the military domain in the context of network-
centric warfare [DoD 2006a]. As such, a substantial section of the literature on network-centric
systems is related to the military domain. Cook [2001] gives a fairly detailed description of SoS
and discusses characteristics that differentiate SoS from monolithic systems. This
characterization, though primarily from a military perspective, is also applicable to SoS in
general. Openness, adaptability, interface-based, loose organization and evolvability are some of
the identified characteristics. Fuzak et al. [2001] describe five capabilities required of network-
centric architectures based on the seven C4ISR (command, control, communications, computers,
intelligence, surveillance, reconnaissance) imperatives [SSC San Diego 2006] that represent
command capabilities required by military forces. These include dynamic interoperable
connectivity, universal information access, focused sensing and data collection, information
operations-assurance and resource planning and management. Fuzak et al. [2001] also envision
network-centric systems as a “confederation of pieces” that can evolve through “parts upgrade”.
Several companies like Oracle [Oracle 2004] and Boeing [Logan 2003, Boeing 2005] have also
come up with their own “network-centric” reference architectures.

The four network-centric architectures considered in this thesis, Client-Server Architecture
(CSA), Distributed Objects Architecture (DOA), Service-Oriented Architecture (SOA) and Peer-
to-Peer Architecture (PPA) have been treated extensively in the literature. Lewandowski [1998]
describes CSA in considerable detail. Pressman [2004] describes CSA, DOA, SOA and PPA.
Dogac, Dengi, and Öszu [1998] discuss Distributed Objects Architecture in the context of

 3

CORBA. Szyperski [2003] examines components and component characteristics in depth. The
benefits and challenges of using components are also discussed. Reiss [2005] recognizes the
importance of component Interfaces for building network-based systems and presents an
enhanced component model into which semantics for specifying non-functional properties are
incorporated. An explosion in literature on SOA can be observed in recent years. Papazoglou and
Georgakopoulos [2003], Patrick [2005], Perrey and Lycett [2003], Anand, Padmanabhuni, and
Ganesh [2005] and Chung [2005] all deal with various aspects of SOA. Singh [2001] provides an
overview of peer-to-peer computing and its main variants. Androutsellis-Theotokis and Spinellis
[2004] survey different peer-to-peer content distribution technologies.

For the frameworks considered in this thesis, the primary sources of information are their
specifications. Complete specifications for Java EE [Sun Microsystems 2006], CORBA [OMG
2005] (Common Object Request Broker Architecture), Web Services [W3C 2006, OASIS 2006],
JXTA [JXTA 2006], and Jini [Jini 2006] are available online and form the definitive sources of
information. Microsoft [2005] describes the DCOM architecture in detail. While portions of the
.NET framework are standards and specifications are available online, the primary source of
information is MSDN (Microsoft Developer Network). [MSDN 2006]

Substantial work has been done on quality attributes by the Carnegie Mellon University Software
Engineering Institute. Barbacci et al. [2000] provide a reasoning framework for quality
characteristics such as modifiability, scalability, performance, and dependability and discuss
architectural tactics for achieving the same. Ellison et al. [2004] provides a similar treatment of
the security and survivability quality characteristics. Maeir [2006] and Meyers et al. [2004]
highlight the importance of interoperability for building system-of-systems. Acton [2003]
highlights the importance of high availability to network-centric systems and elaborates on
architectural mechanisms like failover and redundancy that can be used to achieve it.

1.3 Statement of the Problem

To begin with, while substantial research has been done on several quality characteristics, there
is a need to identify a fairly comprehensive set of quality characteristics and common capabilities
and services that are important to network-centric systems and architectures and characterize
them from a network-centric architectural and framework perspective.

Requirements drive the architecture of a software system. The architecture and framework of a
system influence its quality attributes and determine its capabilities. Network-centric systems
place more emphasis on a certain set of quality characteristics and capabilities than other
traditional systems and applications. Identification and characterization of these qualities and
capabilities help system designers and architects make more informed decisions about the
architecture of the particular system that they are building. Thus, to build network-centric
systems that meet expectations, an understanding of the capabilities and deficiencies of the
various network-centric architectures in comparison to each other and with respect to network-
centric quality characteristics is required.

Several architectures are available currently that can be used to build network-centric systems.
Also, whenever a new technology begins to gain momentum in the industry, it is touted as the

 4

“silver bullet” to all problems afflicting the discipline. For example, the current trend is to
portray SOA as the silver bullet to every problem in enterprise software development. It is often
necessary to place this new architecture in context with respect to the other architectures. Thus,
choosing the right architecture to satisfy the requirements of a particular network-centric system
requires an understanding of the tradeoffs involved in choosing one architecture over another.
Therefore, a comparative analysis of these architectures with respect to each other is required for
identifying and making these tradeoffs explicit.

Frameworks should be studied in conjunction with their related architectures because software
architecture as a discipline has not reached a level of maturity where it can be specified purely in
abstract terms without any reference to the underlying platform/framework it is built on. The
characteristics of the implementation frameworks influence the architecture in many ways. Their
capabilities in the form of implementation support for various abstractions, mechanisms and
services can direct the architectural process. Choice of framework dictates many elements of the
overall architecture like its structure and nature of components. It also influences the operational
environment and often constrains or expands the design choices available. Thus, frameworks add
information that is relevant architecturally. Further, the mechanisms and services provided in a
framework may be unique or they may be replicated, refined upon and provided in one form or
the other in other frameworks. Thus, a comparative study of frameworks in association with their
respective network-centric architectures helps to put them in perspective and aids architectural
choices.

1.4 Statement of Objectives

The objectives of the research described herein are to identify, compare and contrast various
network-centric software architectures and frameworks. A set of network-centric quality
characteristics and common capabilities and services are identified and characterized. Following
that, four network-centric architectures – CSA, DOA, SOA and PPA are identified, characterized
and compared and contrasted with respect to each other from an architectural perspective. For
every architecture considered, a set of corresponding frameworks are identified, characterized
and compared. Finally, all the architectures and frameworks are evaluated against the identified
network-centric qualities, capabilities and services.

1.5 Scope

In this thesis, we consider the software architecture of network-centric systems at the application
level. We discuss application-level architectural concerns and protocols. We assume that the
underlying network communication fabric (the lower layers comprising the hardware
infrastructure used to build the network and the network software and protocols like TCP/IP)
provides a certain base-level quality of service. While, as discussed in Chapter 3, certain
characteristics associated with network-centricity are often concerns of the communication fabric
and less influenced by the architecture at the application layer, we limit our discussion to the
application layer. Further, only generic network-centric architectures are considered. Domain
specific application architectures, like for military systems, are excluded.

 5

1.6 Overview of Thesis

The remainder of this thesis is organized as follows: Chapter 2 gives a brief description of the
identified network-centric architectures: CSA, DOA, SOA and PPA and their associated
frameworks: .NET, Java EE, CORBA, DCOM, Web Services, Jini and JXTA. A set of network-
centric quality characteristics and common capabilities and services are identified and
characterized in Chapter 3. In Chapter 4, the architectures and frameworks are evaluated with
respect to architectural and network-centric qualities. Chapter 5 provides concluding remarks.

 6

Chapter 2: Network-Centric Software Architectures

Among the different architectures that are used to build most network-centric systems, there are
four dominant architectures, namely, Client-Server Architecture (CSA), Distributed Objects
Architecture (DOA), Service-Oriented Architecture (SOA) and Peer-to-Peer Architecture (PPA).
Other architectures can be built as variants by composition/combination of these architectures.

2.1 Client-Server Architecture

CSA consists of two kinds of logical entities – clients and servers. “Client/Server” is primarily a
relationship between processes running on separate machines where the client is the consumer of
the services provided by the server process [Orfali, Harkey, and Edwards 1999]. In CSA, there
is a many-to-one relationship between clients and servers. The servers are passive entities that
await requests from the clients. The clients always initiate the dialog by requesting a service
(Exceptions to this scenario include cases where the client passes a reference to a callback object
when it invokes a service).

Different types of CSAs can be distinguished depending on how the application logic is split
between the client and the server. In a “fat client” model, more of the application functionality is
placed on the client side. Examples for this type of CSA include file servers and database
servers. In a “fat server” model or “thin client” model the reverse occurs; most of the application
functionality is pushed onto the server side.

Another way of differentiating between different types of CSAs is using the notion of a “Tier”.
The idea of “fat clients” and “fat servers” gives an indication of how application logic is
partitioned. The notion of a CSA application being N-Tiered is similar, except that it gives more
precise information, i.e., how the application logic is partitioned into functional units and the
maximum number of machines the application can be distributed onto. The idea of “Tiers” tells
us about the physical distribution of logic. The ability to distribute an application onto different
machines is achieved by partitioning application logic into distinct logical layers, where each
layer performs a set of related functionality. In a 2-tier architecture, most of the application logic
is either on the client or on the server. Currently architectures with N usually being three or four
are the most popular forms of CSA [SEI 2000]. Examples of 3-Tier applications include Web
applications and other kinds of enterprise applications like banking systems. In a 3-tier CSA, the
most common functional units are presentation, business/application logic and persistence/data
as shown in Figure 2.

 7

Presentation

Business Logic

Persistence/Data
Access

Database

Figure 2 A three-layered application

• Presentation Layer

The presentation tier is responsible for handling the interaction between the user and the
application. It displays information to the user and interprets requests from the user into
actions upon the business logic and data source.

• Business/Application Logic Layer

This layer includes logic for all the business rules, data validation, manipulation, input/output
processing and security for the application. Thus, the bulk of the application logic is in this
tier.

• Persistence Layer

This layer is primarily concerned with retrieving, deleting, changing and adding data.

Most early client-server applications were implemented using low-level, conversational peer-to-
peer protocols such as sockets, NetBIOS or Named Pipes [Orfali, Harkey, and Edwards 1999].
Currently, communication between the distributed tiers is carried out mainly by using
synchronous RPCs (Remote Procedure Calls). Asynchronous communication is also possible

 8

using MOM (Message-Oriented Middleware) like MSMQ (Microsoft Message Queuing) or JMS
(Java Messaging Service) [SEI 2006g].

The two most popular frameworks used to build CSA applications are the .NET and Java EE
frameworks.

2.1.1 The Microsoft .NET Framework
The Microsoft .NET Framework [Microsoft 2006] is a software development platform developed
by Microsoft Corporation. As such, it consists of a runtime environment, called the Common
Language Runtime (CLR), on which programs developed for .NET run, and a set of types
(classes) in the form of libraries. There are two main libraries required for a minimum
implementation of .NET: the Base Class Library (BCL), which provides a simple runtime library
for modern programming languages, and the Runtime Infrastructure Library, which provides the
services needed by a compiler to target the CLR and the facilities needed to dynamically load
types from a stream in the file format specified. A hallmark of the .NET framework is its support
for multiple languages. Figure 3 provides an overview of the .NET framework architecture.

ASP .NET
Forms

Windows
Forms

Web
Services

.NET
Managed

components

COM+
queued

components

ADO .NET SOAP

Common Language Runtime (CLR)
(Intermediate Language Byte Code)

Presentation

Business
Logic

Persistence

Runtime

Figure 3 .NET Architecture

The .NET framework is targeted at building two major kinds of applications – 3-tier enterprise
applications and service-oriented systems using web services. Therefore, it makes sense to study
it in terms of the support it provides for building the tiers of a 3-tier application and Web
Services.

 9

2.1.1.1 Presentation
In the .NET framework, the presentation layer for an application is built using either ASP .NET
or Windows Forms. ASP .NET is used for thin client web interfaces whereas Windows forms are
used for rich client interfaces.

An important feature of ASP .NET is the separation of code and content by using Code-behind
files. “Code-behind” means that the code for an ASP.NET page is contained within a separate
class file. This permits a clean separation of the HTML from the presentation logic. Another
major feature of ASP .NET is its support for data binding through the use of server-side controls.
Server-side controls are components that are placed on ASP .NET web forms. When a client
requests a page containing these controls, the ASP .NET processor loads and executes them on
the server. Data binding is the process of retrieving data from a source and dynamically
associating with a property of a visual element [Esposito 2002]. Depending on the context in
which the element will be displayed, you can map the element to either an HTML tag or a ASP
.NET server side control. Data bound server side controls represent a powerful mechanism for
associating rows of data with graphical HTML elements such as drop-down lists or tables.

2.1.1.2 Business Logic
.NET provides the following main services required to build business objects:

2.1.1.2.1 Remoting
The .NET framework includes the remoting subsystem [MSDN 2006f] which allows .NET
applications to interact with each other. This includes both cross-process communication and
communication across the network from machine to machine.

2.1.1.2.2 Enterprise Services (COM+)
Business logic can be implemented in .NET using classes that leverage COM+ services. When
used from .NET, COM+ services are referred to as Enterprise Services. Enterprise Services
provides the kind of services provided by an EJB (Enterprise Java Bean) container to
components deployed in it. Some of the most commonly used services include:

• Two-phase distributed transactions
• Object pooling
• Queued components
• Role-based security

A .NET component that takes advantage of COM+ services needs to derive from the .NET base
class ServicedComponent defined in the System.EnterpriseServices namespace and use various
custom attributes to specify the actual services required.

2.1.1.2.3 Queued Components
COM+ Queued Components (QC) service provides a way to invoke and execute components
asynchronously using Microsoft Message Queuing (MSMQ).

 10

2.1.1.3 Persistence
In the .NET framework, ADO .NET is used for accessing relational databases and other data
sources. ADO.NET includes .NET Framework data providers for connecting to a database,
executing commands, and retrieving results. Those results are either processed directly, or placed
in an ADO.NET DataSet object in order to be exposed to the user in an ad-hoc manner,
combined with data from multiple sources, or remoted between tiers. The ADO.NET DataSet
object can also be used independently of a .NET Framework data provider to manage data local
to the application or sourced from XML and it provides deep integration with XML.

2.1.1.4 Web Services
.NET provides built-in support for Web Services through ASMX (Active Server Methods)
[Skonnard 2006] and WSE (Web Services Extensions) [MSDN 2006j].

2.1.2 The Java Platform, Enterprise Edition (Java EE) Framework
The Java Enterprise Edition (Java EE) Framework is a set of coordinated technologies developed
by Sun Microsystems for building multi-tier server side Java-based applications and services.
Java Platform, Enterprise Edition 5 (Java EE 5) was earlier known as Java 2 Platform, Enterprise
Edition (J2EE). In the latest version Java EE 5, the 2 has been dropped from the platform name
in order to simplify it. The Java EE Framework is not an implementation; it is a set of
specifications. The technologies covered under the Java EE specification are implemented by
various vendors. Like .NET, it includes infrastructure for building Web Services. The new Java
EE 5 platform includes the newly redesigned annotations-driven EJB 3 specification as well as
JavaServer Faces (JSF), integrated into the platform for the first time. Figure 4 provides a
simplified view of the Java EE architecture.

The technologies that comprise the Java EE Framework include:

• Web Services Technologies for implementing Enterprise Web Services
• Component Model technologies

Component Model Technologies can be considered as the heart of the JEE Framework. It
consists of specifications for

o Enterprise Java Beans 3.0 (EJB 3.0),
o J2EE Connector Architecture 1.5 (JCA)
o Servlets
o Java Server Pages (JSP)
o Java Server Faces (JSF)
o Java Standard Tag Library (JSTL).

• Management Technologies
• Other Java EE Technologies

 11

Like RFCs for Internet Standards, each Java EE technology is described in a JSR (Java
Specification Request) document. Java Specification Requests (JSRs) are the actual descriptions
of proposed and final specifications for the Java platform. For example, JSR-220 describes the
Enterprise Java Beans 3.0 (EJB 3.0) technology. Java EE specifications are approved and
maintained by the JCP (Java Community Process), a consortium that holds the responsibility for
the development of Java technology. A specification is initiated by community members and
approved for development by the Executive Committee.

JSP/Servlets Swing Web
Services

Session
Enterprise

Beans

Entity
Enterprise

Beans

JCA JDBC

Java Runtime Engine (JRE)
(Java Byte Code)

Presentation

Business
Logic

Persistence

Runtime

Message
Driven Beans

JDO

Figure 4 Java EE Architecture

Like .NET, the Java EE platform is intended primarily to build 3-tier enterprise applications and
service-oriented systems using Web Services.

2.1.2.1 Java EE Presentation
Java Server Pages (JSPs) are used to build tag-oriented dynamic web pages for accessing remote
objects. Dynamic pages can also be built programmatically using Servlets. Swing is used to build
rich, interactive GUIs.

2.1.2.2 Java EE Business Logic
In Java EE, Enterprise Java Beans (EJB) hold the application’s business logic – the code that
implements the functionality of the application. EJBs are server-side components written in the
Java programming language [Sun 2005]. There are two kinds of EJBs: Session EJBs and
message-driven beans.

2.1.2.2.1 Session EJBs
A session bean represents a single client inside the Application Server. To access an application
that is deployed on the server, the client invokes the session bean's methods. As its name

 12

suggests, a session bean is similar to an interactive session. A session bean is not shared; it can
have only one client, in the same way that an interactive session can have only one user. Like an
interactive session, a session bean is not persistent. (That is, its data is not saved to a database.)
When the client terminates, its session bean appears to terminate and is no longer associated with
the client.

There are two types of session beans: stateful and stateless.

e variables represent the state of a unique client-bean
ssion. Because the client interacts (i.e. talks) with its bean, this state is often called the

in a conversational state with the client. When a client

vokes the method of a stateless bean, the bean's instance variables may contain a state, but only

2.1.2.2.1.1 Stateful Session Beans

In a stateful session bean, the instanc
se
conversational state. The state is retained for the duration of the client-bean session.

2.1.2.2.1.2 Stateless Session Beans

A stateless session bean does not mainta
in
for the duration of the invocation. When the method is finished, the state is no longer retained.
Except during method invocation, all instances of a stateless bean are equivalent, allowing the
EJB container to assign an instance to any client.

.1.2.2.2 2 Message-Driven Beans (MDB)
A message-driven bean is an enterprise be
messages asynchronously. It normally acts a

an that allows Java EE applications to process
s a JMS message listener, which is similar to an

ew Java Persistence API [JCP 2006a] that greatly simplifies entity bean
htweight “entity objects”. Unlike EJB components that use container-

on communicates with a data storage system using JDBC. The Java
onnector Architecture (JCA) allows Java EE components to access different legacy enterprise

s
Web Services are built in Java EE using JAX-WS [JCP 2005a]. JAX-WS stands for Java API for
XML Web Services. The starting point for developing a JAX-WS web service is a Java class

event listener except that it receives JMS messages instead of events.

.1.2.3 Persistence 2
Java EE 5 introduces a n
persistence by using lig
managed persistence (CMP), entity objects using the new APIs are no longer components, but
POJOs (Plain Old Java Objects). This approach leads to a simpler and more lightweight
programming model. The new entity objects provide an object-oriented view of the data stored in
a relational database. The specification also standardizes how such object-relational mapping
information is provided.

In Java EE, an applicati
C
information systems.

.1.2.4 Web Service2

 13

annotated with the javax.jws.WebService annotation. The WebService annotation defines the

eworks is to make the task of developing Java EE applications
asier. A framework provides an abstraction over low level infrastructure APIs. A well designed

nd consistency to applications. The design frameworks are

class as a web service endpoint.

2.1.2.5 Design Frameworks
he aim of Java EE design framT

e
framework provides structure a
frameworks “over” Java EE.

2.1.2.5.1 The Spring Design Framework
The Spring Design Framework was developed to deal with the complexity inherent in
developing using EJB. The Spring Framework is a “full-stack” Inversion of Control (IoC) Java

 A JDBC abstraction
, JDO, and iBATIS SQL Maps

application framework

t its most base layer has a
ates objects, configures them and resolves

t Spring offers things like AOP support, various

EE design framework. Spring includes:

• A complete lightweight container,
• A common abstraction layer for transaction management,
•
• Integration with Toplink, Hibernate
• AOP (Aspect-Oriented Programming) functionality
• A flexible MVC web

ET. Spring, aThe Spring design framework has been ported to .N
 that crelightweight container, a glorified object factory

ependencies between them. But on top of thad
helper classes for doing EJB development, and sort of a whole slew of transaction management
facilities. In some sense there's a lot of the same stack found in EJBs.

2.1.2.5.2 The Hibernate Design Framework
ibernate is an open source Object Relation Mapping design framework for Java EE. It was H

developed in response to the perceived cumbersomeness of the persistence mechanism provided
tions – entity beans. Due to their deployment with the standard Java EE (the J2EE) specifica

within an EJB container, Entity beans were perceived to be more difficult to test. Also, they were
lacking in ability to manage relationships between persistent objects, the query language was
inadequate. Entity beans were, in short, perceived to be underspecified [Johnson 2004]. The aim
of the Hibernate framework is to provide transparent persistence to plain old java objects
(POJO).

2.1.2.5.3 The Struts Design Framework
Struts [Struts 2006] is a design framework for building Web applications based on the Front-
Controller design paradigm. The Apache Struts Project now consists of two design Frameworks,
namely:

• Struts Action Framework

 Struts Action is the original request-based framework.

 14

• Struts Shale Framework

 Struts Shale is a component-based framework for JavaServer Faces.

2.1.2.5.4 The Tiles Design Framework
Tiles is a Java EE design framework that allows users to provide a consistent user interface, to

in a larger page of content, and to download and
ime, decreasing bandwidth needs. Through a central

 application.

2.2 Distributed Objects Arc

In Client-Server programming, nothing prevents us from using Structured Modular programming
 server application logic. In DOA, the application

logic is organized as objects and distributed over multiple networked hosts. These objects

display portlet-like rectangles of content with
process just one section of the image at a t
XML file that defines screens and a set of tags that can be embedded in JSP pages for the
insertion of dynamic/static content, Tiles lets users build componentized views and assemble
them as they choose.

Figure 5 gives an overview of how the .NET and Java EE frameworks compare against each
other for a 3-tier CSA

JSP/
Servlets

Figure 5 .NET vs. Java EE

hitecture

or shell scripts to implement both client and

collaborate over the network to provide the overall functionality using method invocation as a
communication primitive [Emmerich and Kaveh 2001]. The invoking object is called as the
“client object” and the remote object on a different host whose method is being invoked is called
as the “server object”. Since this invocation happens over a network, a reference to the remote
object has to be obtained by the client object. Infrastructure software (often referred to as
“middleware”) that provides a level of abstraction over the network-layer protocols like TCP/IP
is used to achieve this remote invocation of a method.

Web
Client

Web
Server

Business
Object
Server

DBMS
Server HTTP

HTTP .NET
Remoting

ADO
.NET

RMI
/IIOP

Enterprise Java
Beans/Spring

JDBC/J
DO

.NET Enterprise
Services

ASP .NET

 15

One thing to be noted is that the distribution of the logic is transparent. The client object thinks it
is calling a local object. The task of actually making the call over the network is taken over by

e infrastructure software.

its of processing in DCM. Syzperski [1998] defines a software component
ally specified interfaces and explicit context

t can be deployed independently and is subject to

 Separation of interface from implementation

 component-based programming, the basic unit in an application is a binary-compatible
ies, methods, and events through which external

ntities can connect to, and communicate with, the component. According to Lowy [2003], this

ocation transparency allows components to be distributed onto different machines without
 into the client code. This allows the location of the components to be

hanged without requiring changes to the client code and recompilation.

re modules in that they
an be modified at design time as binary executables. In contrast, libraries, subroutines, and so

ld, independent of its internal
plementation. Current popular component standards include .NET, Java EE and CORBA who

evel services
r a component’s embedded components (such as process threads and memory resources).

th

The three most famous frameworks in this paradigm are DCM (Distributed Component Model),
CORBA and DCOM.

2.2.1 Distributed Component Model
Components are the un
as “a unit of composition with contractu
dependencies only. A software componen
composition by third parties.”

The core principles of Component-Oriented programming are:

•

In
interface. An interface defines a set of propert
e
principle contrasts with the object-oriented view of the world that places the object rather than its
interface at the center. Lowy [2003] further says that in component-based programming, the
server is developed independently of the client.

• Location transparency

L
hardcoding their location
c

Components are usually at a higher level of abstraction than objects and are explicitly geared
towards reuse. Components differ from other types of reusable softwa
c
on must be modified as source code [Krieger and Adler 1998].

Component standards specify how to build and interconnect software components. They show
how a component must present itself to the outside wor
im
provide support for the distributed component model through Enterprise Services [Nagel 2005],
Enterprise Java Beans (EJB) and CORBA Component Model (CCM) respectively.

Components often exist and operate within containers, which provide a shared context for
interaction with other components. Containers also offer common access to system-l
fo
Containers are themselves are typically implemented as components, which can be nested in
other containers. An example is embedding widget field arrays into panels within GUI windows.

 16

Event-based protocols are commonly used to establish the relationship between a component and
its container. Compliant containers all support the same set of interfaces which means that
components can freely migrate between different containers at runtime without the need of
reconfiguration or recompilation. Containers themselves run on application servers, which offer
services offered by the underlying middleware systems such as transactions, security, persistence
and notification. Also, server components are often multithreaded, replicated, and pooled, to
achieve scalability and reliability. Consequently server components cannot readily be organized
into static containment hierarchies.

2.2.2 Common Object Request Broker Architecture
ORBA, an acronym for Common Object Request Broker Architecture, is a suite of

ent Group [OMG 2005] for a
BA technology can be used for

es. An IDL
ompiler is a tool that a platform vendor must provide. It compiles the IDL file into platform-

ts. An ORB makes it possible for CORBA objects to
ommunicate with each other by connecting objects making requests (clients) with objects

C
specifications being standardized by the Object Managem
distributed object architecture and infrastructure. The COR
building applications as a collection of distributed objects/components that collaborate over a
network. It provides the mechanism for exposing an object's methods to remote callers (to act as
a server) and for discovering such an exposed server object within the CORBA infrastructure (to
invoke it as a client). CORBA objects can act as servers and clients simultaneously.

CORBA uses a platform-independent interface definition language (IDL) as a common
denominator. It is used for the definition of the calling interfaces and their signatur
c
specific stub code and maps the parameter types to platform-specific types. An IDL compiler can
generate both the client stubs and the server skeleton code. The IDL interface definition is
independent of programming language, but maps to all of the popular programming languages
via OMG standards: OMG has standardized mappings from IDL to C, C++, Java, COBOL,
Smalltalk, Ada, Lisp, Python, and IDLscript. Thus, CORBA is language independent, provided
that there is a mapping from the language constructs to the IDL. In CORBA lingo, an
implementation programming language entity that defines the operations that support a CORBA
IDL interface is called as a “Servant”.

The heart of the CORBA specification is the Object Request Broker (ORB), a common
communication software bus for objec
c
servicing requests (servers). Interoperability is implemented by ORB to ORB communication. A
CORBA ORB transparently handles object location, object activation, parameter marshalling,
fault recovery, and security. Figure 6 shows the structure of an ORB in terms of the various
interfaces supported by it.

 17

Figure 6 CORBA ORB Interfaces (Image taken from [OMG 2006])

The ORB is also the custodian of the Interface Repository (abbreviated variously IR or IFR), an
OMG-standardized distributed database containing IDL interface definitions. The ORB offers a
number of services for the manipulation of objects. It provides interface definitions from the IFR,
and constructs invocations for use with the Dynamic Invocation Interface (DII).

2.2.2.1 Dynamic Invocation Interface
The DII allows clients to generate requests at run-time. In this approach, the client has no stub
connecting it to the server and therefore must dynamically construct its request. To achieve this,
the client uses the ORB’s DII which provides access to a database containing the descriptions of
the interfaces of all the servers that are available in the system. The client thus finds the
information about the operations that it can invoke on the objects. This flexibility is useful when
an application has no compile-time knowledge of the interface it is accessing. While both static
and dynamic invocation support synchronous and one-way communication, only dynamic
invocation supports deferred synchronous communication.

2.2.2.2 Dynamic Skeleton Interface (DSI)
The DSI is the server’s analogue to the client’s DII. The DSI allows an ORB to deliver requests
to a servant that has no compile-time knowledge of the IDL interface it is implementing.

2.2.2.3 Object Adapter
An Object Adapter connects an incoming request using an object reference with the proper code
to service that request [Sun 2002a]. The Portable Object Adapter (POA) is a kind of object
adaptor which is designed to support constructing object implementations that are portable
among different ORB implementations, provide support for objects with persistent identities,
provide support for transparent object activation and allow a single servant to support multiple
object identities simultaneously [Sun 2002a].

 18

2.2.2.4 Implementation Repository
The Implementation Repository contains information that allows an ORB to activate servers to
process servants. Most of the information in the Implementation Repository is specific to an RB
or OS environment. In addition, the Implementation Repository provides a common location to
store information associated with servers, such as administrative control, resource allocation,
security, and activation modes.

2.2.2.5 CORBA Architecture
The CORBA specification is embedded in another embracing architecture, the Object
Management Architecture (OMA) shown in Figure 7. In addition to providing users with a
language and a platform-neutral remote procedure call specification, CORBA defines commonly
needed services such as naming, persistence, life cycle, event notification, transactions and
security. These services are implemented in the form of objects connected to the ORB and are
described by an IDL interface.

Application
Interfaces

Domain
Interfaces

Common
facilities

Object request Broker

Object
Services

Figure 7 CORBA Architecture

2.2.2.6 CORBA Component Model
CORBA Component Model (CCM) is an addition to the family of CORBA definitions. It was
introduced with CORBA 3, and it describes standard application framework for CORBA
components. It could be used for programming languages other than Java while achieving
interoperability with EJB components [Emmerich and Kaveh 2001].

The CCM has a component container, where software components can be installed. The
container offers a set of services that the components can use. These services include (but are not

 19

limited to) authentication, persistence and transaction management. These are all the most used
services a distributed system requires, and by moving the implementation of these services from
the software components to the component container, the complexity of the components is
dramatically reduced.

2.2.3 Distributed Component Object Model
Distributed Component Object Model (DCOM) is an extension of COM developed by Microsoft
in 1996. It allows two objects, one acting as a client and the other acting as the server object, to
communicate regardless of whether the two objects are on the same or on different machines.
This communication structure is achieved using a proxy object in the client and a stub in the
server.

When client and component reside on different machines, DCOM simply replaces the local inter-
process communication with a network protocol. The COM run-time provides object-oriented
services to clients and components and uses DCE-RPC and the security provider to generate
standard network packets that conform to the DCOM wire-protocol standard. Figure 8 provides
an overview of the DCOM architecture.

Client COM
run-time

COM run-
time

Component

Protocol Stack

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

DCE RPC

DCOM network-
protocol

Figure 8 DCOM Architecture

A DCOM object has one or more interfaces that a client accesses via interface pointers. It is not
possible to directly access an object itself; it is accessible only through its interfaces. Thus, a
DCOM object is completely defined by the interfaces that comprise it. Each DCOM interface is
unique in the system. A Globally Unique Identifier (GUID – a 128 bit integer that guarantees
uniqueness in space and time for an interface, an object or a class) allows them to be uniquely
named. A DCOM interface is not modifiable; if a new function is added or if the semantics of an
existing function changes, a new interface is added and a new GUID is assigned to it.

 20

DCOM, like CORBA, provides dynamic invocation and metadata facilities. The DCOM type
library, like the CORBA Interface Repository, allows clients to dynamically discover the
methods and properties a DCOM server object exposes.

All DCOM components and interfaces must inherit from IUnknown, the base DCOM interface.
IUnknown consists of the methods AddRef(), Release() and QueryInterface(). AddRef() and
Release() are used to for reference counting and memory management. Essentially, when an
object's reference count becomes zero, it must self-destruct.

2.3 Service-Oriented Architecture

Several definitions exist for what constitutes an SOA. Some take a technical perspective, some
others a business perspective and a few define SOA from an architectural perspective. For
example, the W3C (World Wide Web Consortium) takes a technical perspective and defines
SOA as “A set of components which can be invoked, and whose interface descriptions can be
published and discovered” [W3C 2004]. This is not very clear as it describes architecture as a
technical implementation and not in the sense the term “architecture” is generally used – to
describe a style or set of practices.

A more helpful definition of SOA from an architectural perspective is provided in [MSDN 2004
g] where SOA is defined as “an architecture for a system or application that is built using a set
of services”. An SOA defines application functionality as a set of shared, reusable services.
However, it is not just a system that is built as a set of services. An application or a system built
using SOA could still contain code that implements functionality specific to that application. On
the other hand, all of the application’s functionality could be made up of services.
Some of the other definitions of SOA include:

• “Service-Oriented Architecture is an approach to organizing information technology in which

data, logic, and infrastructure resources are accessed by routing messages between network
interfaces.” [Microsoft 2006b]

• “A service-oriented architecture (SOA) is an application framework that takes everyday

business applications and breaks them down into individual business functions and processes,
called services. An SOA lets you build, deploy and integrate these services independent of
applications and the computing platforms on which they run.” [IBM 2006]

The four tenets of SOA define desirable characteristics of a service [Microsoft 2004a]:

o Service boundaries are explicit.
o Services are autonomous.
o Services share schema and contract not types.
o Service compatibility is based on policy.

The most fundamental form of SOA consists of three components – a Service Consumer, a
Service and a Service Directory as shown in Figure 9. These three components interact with each
other to provide/achieve automation.

 21

Service
Consumer

Service
Directory

Service

Finds

Invokes

Registers

Figure 9 SOA

2.3.1 Service
In a SOA, services are the building blocks from which an application or system is assembled. A
service can be defined as “an implementation of a well-defined piece of business functionality,
with a published interface that is discoverable and can be used by service consumers when
building different applications and business processes” [O’Brian, Bass, and Merson 2005]. For
example, there could be a service that performs the following task: “verify a consumer’s credit
history.” The technology used to provide the service, such as a programming language, does not
form part of the definition of a service. A service should confirm to the following service-level
design principles.

2.3.2 Characteristics of a Service
• Discoverability

A service can be found at both design time and runtime, not only by unique identity but also by
interface identity and by kind of service. Service discovery can be facilitated by the use of a
directory provider, or, if the address of the service is known during implementation, the address
can be hard-coded into the user’s software during implementation.

• Interface based definition

Services implement separately defined interfaces. The benefit of this is that multiple services can
implement a common interface and a service can implement multiple interfaces. An application
or a system whose underlying structure is based on SOA is designed as a collection of discrete
services that are wired together using the description of their interfaces.

 22

• Composability

Services may compose other services. This possibility allows logic to be represented at different
levels of granularity and promotes reusability and the creation of abstraction layers.

• Reusability

Application logic encapsulated as a service can be reused in different applications. The Service
Oriented paradigm encourages reuse in bigger chunks at higher levels of abstraction than other
architectural approaches. The software components become very reusable because the interface
is defined in a standards-compliant manner. So, for example, a C# service could be used by a
Java application.

• Single instance nature

Each service is a single, always running instance with which a number of clients communicate.

• Autonomous nature

Services have distinct boundaries. They should be self-contained and should not depend on the
state of other functions or processes.

• Asynchronous nature

In general, services use an asynchronous message-passing approach; however, this is not
required. In fact, many services use synchronous message passing at times.

• Stateless

Services should not be required to manage state information, since that can impede their ability
to remain loosely coupled. Services should be designed to maximize statelessness even if that
means deferring state management elsewhere.

• Granularity

Compared to CSA and DOA, operations on services are frequently implemented to encompass
more functionality and operate on larger data sets.

• Loosely coupled nature

SOA is a loosely coupled architecture because it strictly separates the interface from the
implementation. Services share schema and contract, not class. Services interact solely on their
expression of structures using schema, and behaviors using contract. Further, runtime discovery

 23

reduces the dependency between service producers and consumers and makes an SOA even
more loosely coupled.

• Services are location transparent.

Service requestors do not have to access a service using its absolute network address. Requestors
dynamically discover the location of a service looking up a registry. This feature allows services
to move from one location to another without affecting the requestors.

• Abstract underlying logic

The interface definition encapsulates (hides) the vendor and language-specific implementation.

The characteristics of services listed above confer certain defining characteristics and capabilities
on SOA. Important among them are the capability for Legacy System Integration, service-based
interoperability and integration and loose coupling between elements of the architecture leading
to greater flexibility.

A Service-Oriented system is a system based on SOA principles. Web Services are one way of
realizing a SOA. In fact, it is possible to build an SOA without Web Services as a SOA can be
realized using a host of different technologies other than Web Services. Web Services are a
Service-based technology that is currently gaining industry acceptance as a standard to build
SOAs. However, Web services are not inherently service oriented. A Web service merely
exposes a capability that conforms to Web services protocols. A SOA is the structure that makes
service orientation possible.

2.3.3 Web Services
“A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards” [W3C 2004].

Web Services consist of Services. They are a way of encapsulating/exposing business
logic/application. Unlike the .NET or Java EE frameworks, an entire system of business logic
cannot be built using Web Services. A service can be implemented without distributed objects
behind [or with it]. It can be anything behind it, including procedural code. Or it could be an
entire enterprise application.

Web Services are “transport agnostic” meaning that they can be accessed over any type of
transport or application protocol. We can use SOAP to transport messages over HTTP, but we
can also use to transfer messages over UDP or TCP. However, most Web Services run over
HTTP.

 24

2.3.3.1 Web Service Standards
Interoperability using Web Services is made possible due to industry collaboration, standards
organizations and consensus from major software rivals on the Web Services standards.
Currently, there are over 60 web services standards and specifications, and that figure is
continuing to rise. Figure 10 provides an overview of the major standards and specifications.
There are three bodies that are mainly concerned with WS-standards.

The W3C [W3C 2006] is responsible for HTTP, SOAP and XML.

OASIS [OASIS 2006] (the Advancement of Structured Information Standards) maintains WS-
Security, UDDI, and WS-Reliability for reliable messaging using SOAP.

WS-I [WS-I 2006] (Web Services Interoperability Organization) provides Profiles, Sample
Applications and Testing Tools. Profiles include implementation guidelines for how related web
services specifications should be used together for best interoperability. To date, WS-I has
finalized the Basic Profile, Attachments Profile and Simple SOAP Binding Profile. Work on a
Basic Security Profile is underway too.

The WS-I Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1 specifications
in order to promote SOAP interoperability [WS-I 2004].

Figure 10 Web Services protocols stack (Image taken from [W3C 2004])

 25

2.3.3.1.1 SOAP
SOAP is an XML-based protocol used for exchanging structured and typed information between
Web Services. A SOAP message is formally specified as an XML Infoset which provides an
abstract description of its contents. SOAP is fundamentally a stateless, one-way message
exchange paradigm [W3C 2003a]. However, applications can create more complex interaction
patterns such as request/response or request/multiple responses by combining such one-way
exchanges with features provided by an underlying protocol and/or application-specific
information. [W3C 2003a] The name "SOAP" was originally an acronym for Simple Object
Access Protocol, but the full name was dropped in Version 1.2 of the SOAP specification

2.3.3.1.2 WSDL
Web Services Description Language (WSDL) [W3C 2006a] is a document written in XML that
describes a Web service. It specifies the location, the basic format of the request and response
messages and the protocol bindings for communicating with the service it describes.

2.3.3.1.3 UDDI
UDDI (Universal Description, Discovery, and Integration) [UDDI 2004] provides a standardized
method for publishing and discovering information about Web Services. A UDDI registry is
itself an instance of a Web Service. Information in UDDI is conceptually organized into white
pages, yellow pages and green pages with white pages providing information about business
entities and green pages providing technical information about the registered Web Services.
Information in a UDDI registry is modeled using five data structures: businessEntity,
businessService, bindingTemplate, tModel and publisherAssertion. An important aspect of
UDDI is that each entity, be it a businessService or a tModel, is assigned a unique key or
identifier when it is first published to a registry. Within each registry, this key must be unique.
Information in the different data structures is related using these keys.

There are two primary types of UDDI registries: private and public. UDDI was originally
conceived as a universal public registry called the “UDDI Business Registry” (UBR) where all
Web Services would be registered. As this proved to be quite infeasible, Version 3.0.2 (V3) of
UDDI places more emphasis on private registries and tries to address the interaction between
public and private registries by introducing the concept of root and affiliate registries. Prior to
V3, UDDI registry implementations had no relationship to one another. Identical entities having
the exact same keys could not be saved into multiple registries. In V3 of UDDI, a root registry
acts as the authority for key spaces. Such registries are used to delegate key partitions so that
other registries can rely upon the root registry to verify and maintain the uniqueness of such key
partitions. The UBR is a good example of a root registry.

 26

2.3.3.1.4 Orchestration and Choreography
2.3.3.1.4.1 Web Services Orchestration

Orchestration refers to an executable business process in which interactions with both internal
and external Web services occur at the message level.

2.3.3.1.4.2 Web Services Choreography

A choreography is a model of the sequence of operations, states, and conditions that control the
interactions involved in the participating services. The interaction prescribed by a choreography
results in the completion of some useful function. Examples include the placement of an order,
information about its delivery and eventual payment, or putting the system into a well-defined
error state.

2.3.3.1.4.3 Difference Between Orchestration and Choreography

Orchestration always represents control from one party’s perspective. This distinguishes it from
choreography, which is more collaborative and allows each involved party to describe its part in
the interaction and task execution order, and they can span applications and organizations to
define a long-lived, transactional, multistep process model [Chung, Lin, and Mathieu 2003].

2.3.4 Jini
The Jini framework is a distributed infrastructure built around the Java programming language
and environment. It specifies a way for clients and services to find each other on the network and
to work together to get a task accomplished [Sun 2004a]. The two most important components of
the Jini framework are the discovery protocol and the Lookup service [Waldo 1999].

A Jini federation is a collection of clients and services communicating with each other using Jini
protocols [Ledru 2002]. Entities wishing to join a Jini federation use the discovery protocol to
find a Lookup service. The Lookup service acts as a kind of directory service where service
providers publish service descriptions and service objects (proxies). Clients query a Lookup
service to find services that match their requirements. Lookup services send service objects to
interested clients, which then invoke methods on them. The basic communication model of Jini
is based on the Java Remote Method Invocation system, in which objects in one Java virtual
machine communicate with objects in another by receiving a proxy object that implements the
same interface as the remote object. This proxy object deals with all communication details
between the two processes.

A client discovers a Lookup service using either a multicast protocol or a unicast protocol. The
Jini network does not require that there be a single lookup service. Many lookup services can co-
exist on the same network, and a service can register with multiple lookup services depending
upon the local policy of the service.

In Jini, when a service registers itself with a lookup service, it has to provide a lease specifying
how long it wishes to stay registered. Once registered, it is the service’s responsibility to

 27

periodically renew its lease if it wants to stay registered. If a service does not renew its lease
either because it crashed or for some other reason, its reference will be eventually removed from
the lookup service.

The Jini model is java-centric i.e. all participants (service requestors, as well as service
providers) need to have Java Virtual Machine capability.

2.4 Peer-to-Peer Architecture

PPA is a self-organizing and decentralized architecture of potentially untrusted, unreliable nodes
with symmetric roles for purposes of sharing resources of the participating peers. In PPA, each
peer can play the role of both a client and a server, unlike CSA where roles are asymmetric – i.e.
a entity can be either a client or a server, but not both.

Each peer that joins the network has to register itself and the provided resources. By joining the
network, a new peer automatically registers itself to the network, either by signing up at a central
entity or by announcing its presence to the network.

There are mainly two different flavors of PPA, hybrid and pure. In hybrid PPA, a central entity,
called a super node or a rendezvous point provides a registry and helps in the discovery process.
On the other hand, in pure PPA networks, this is done by active announcement to the network.
Active announcement uses various broadcast protocols and algorithms. Thus, PPA networks rely
on the existence of a good discovery mechanism.

2.4.1 JXTA
Project JXTA (Juxtapose) [JXTA 2006a] is an attempt to formulate a core set of P2P protocols
on top of which P2P applications can be built [Halepovic and Deters 2002]. It started as a
research project at Sun Microsystems and was later converted into an open source project. JXTA
specifies a set of protocols rather than an API. Thus, JXTA technology can be implemented in
any language on any Operating System [JXTA 2006b].

The components that make up a JXTA system are the very same that can be identified in many
P2P network implementations:

• Peers and peer groups

• Services

JXTA services are available for shared use by peers within a peer group. In fact, a peer may join
a group primarily to use the services available within that group. A set of services, called core
services, is essential to the basic operation of a JXTA network. The core services included in the
JXTA specification include:

• Pipes

 In the JXTA specification, logical pipes are the mechanisms used to transfer data, files,

 28

information, code, or multimedia content between peers. JXTA pipes are used to send
messages (with arbitrary content) between peers.

• Messages

 JXTA messages are XML documents that are passed from one peer to another through pipes.
A JXTA message consists of
o A header
o Source endpoint information (in URI form)
o Destination endpoint information (in URI form)
o A message digest (optional -- for security purposes)

• Advertisements

 JXTA advertisements are also XML documents. The content of an advertisement describes the
properties of a JXTA component instance, such as a peer, a peer group, a pipe, or a service.
For example, a peer having access to an advertisement of another peer can try to connect
directly to that other peer.

• Membership

 Membership determines which peers belong to a peer group; handles arrival and departure of
peers within a peer group.

• Access

 Access can be considered as a security service for controlling access to services and resources
within a peer group; a sort of security manager for the peergroup

• Discovery

Discovery is a way peers can discover each other, the existence of other peer groups, pipes,
services, and the like

• Resolver

 Resolver allows peers to refer to each other, peer groups, pipes, or services indirectly through a
reference (called an advertisement in JXTA lingo); the resolver binds the reference to an
implementation at run time

The JXTA protocols define the minimum required network semantic for peers to establish a
virtual ad hoc network as shown in Figure 11 (called an “overlay network” in P2P parlance) on
top of the Internet and non-IP networks, allowing them to directly interact and self-organize
independently of their network connectivity. This can be used to build a wide variety of P2P
networks. The JXTA addressing model is based on a uniform and location independent logical
addressing model. Every network resource (peer, pipe, data, peergroup, etc.) is assigned a unique
JXTA ID. JXTA IDs are abstract objects enabling multiple ID representations (IPv6, MAC) to
coexist within the same JXTA network.

 29

Figure 11 JXTA (Image taken from [Sun 2004])

Figure 12 shows the Project JXTA protocols.

Peer
Discovery
Protocol

Pipe
Binding
Protocol

Peer
Rendezvous

Protocol

Peer
Information

Protocol

Endpoint
Routing
Protocol

Peer
Resolver
Protocol

Standard Services Protocols

Core Specification Protocols

Figure 12 Project JXTA protocols

 30

The Project JXTA protocols are composed of six protocols divided into two categories.

.4.1.1 Core Specification Protocols
efine the functionality required of all implementations

he Core Specification defines two protocols:

RP)

RP is the protocol by which a peer can discover a route (sequence of hops) used to send a

rotocol (PRP)

he PRP is used by a JXTA peer to send a query to another JXTA peer and receive a response.

.4.1.2 Standard Service Protocols
cols are optional JXTA protocols and behaviors.

he Standard Services protocols specification defines four protocols:

he RVP is used for propagating a message within a peer group.

 The Peer Discovery Protocol (PDP)

DP is the protocol by which a peer publishes its own advertisements, and discovers

 The Peer Information Protocol (PIP)

IP is the protocol by which a peer may obtain status information about other peers, such as

2
The JXTA Core Specification protocols d
that wish to be JXTA compliant.

T

• The Endpoint Routing Protocol (E

E
message to another peer. If a peer A wants to send a message to peer C, and there is no direct
route between A and C, then peer A needs to find the intermediary peer(s) to route the message
to C. ERP is used to manage and determine the routing information. If the network topology has
changed such that the route to C can no longer be used, the peer can use ERP to find routes
known by other peers to construct a new route to C.

• The Peer Resolver P

T

2
The JXTA Standard Services proto
Implementing these services will provide greater interoperability with other implementations and
broader functionality.

T

• The Rendezvous Protocol (RVP)

T

•

P
advertisements from other peers (peer, peergroup, module, pipe and content). PDP uses the Peer
Resolver Protocol for sending and propagating discovery advertisement requests.

•

P
state, uptime, traffic load, and capabilities. PIP uses the PRP for sending and propagating peer
information requests.

 31

• The Pipe Binding Protocol (PBP)

BP is the protocol by which a peer can establish a virtual communication channel or pipe

P
between one or more peers. PBP uses the PRP for sending and propagating pipe binding
requests. [Traversat et al. 2003]

 32

Chapter 3: Characteristics of Network-Centric Architectures

Modern software systems are complex entities. Their properties, characteristics and capabilities
are determined by the various structures of which they are composed. To understand the
structure of a software system better, it can be viewed as a succession of stages, where each stage
adds a little more detail (and properties and capabilities) to the previous stage as depicted in
Figure 13. A network-centric system can be visualized as starting with a style and generic
architecture which is extended to create a complete application architecture for an application
domain. This is further extended by design and implemented to form the complete system or
application. This complete system or application runs over a network infrastructure consisting of
a network software layer over the network hardware. Thus, the overall characteristics of a system
are a function of the underlying network hardware, the layers of the networking software used,
the generic architecture, the completed application architecture and application framework (if
any) and then the design and implementation of the application itself.

Figure 13 Structures in a system

Generic
technology
architecture

Complete
application
architecture

Application/
System

Network Hardware

runs on

design and
implementation

Network Software

Network
Infrastructure

A survey of existing literature on network-centric systems and architectures provides us with a
list of several required and desired characteristics and capabilities in a network-centric system
and infrastructure. As stated earlier, the qualities/capabilities exhibited by a system are a function
of its various aspects – the operational environment (the network infrastructure), its architecture,
design and implementation. These aspects influence the desired qualities and capabilities of a
network-centric system to various degrees. Certain attributes such as reach, quality, network
assurance and network agility are qualities of the underlying network – they are dominated by
the characteristics and capabilities of the underlying hardware and software network
infrastructure. In the same vein, certain attributes are the responsibility of the architecture and
some of the completed application/completed architecture. However, a large section of the
quality characteristics/capabilities are influenced/determined by all aspects of the system.

 33

From the definition and descriptions of the various classes of network-centric systems provided
in the previous chapter, it is evident that network-centric systems have the following
distinguishing characteristics:

• Components of a network-centric system operate with each other over a network such as

Internet, LAN (Local Area Network), WAN (Wide Area Network), VPN (Virtual Private
Network) or wireless network.

• The constituent nodes of a network-centric system can run on heterogeneous platforms
• The overall system can cross organizational boundaries
• A network-centric system could often be “dynamic coalition of nodes” – i.e. runtime

dynamism.

These characteristics of network-centric systems lead to the following quality requirements and
capability requirements for building such systems.

• Openness (enabling interoperability)

o Support for open standards

• Interoperability
o Data Elements Interoperability
o Communications interoperability
o Interoperability of new and legacy systems
o Interoperability with the GIG (Global Information Grid) for military systems
o Plug-and-play of new components

• Integration
o With disparate and interoperable systems
o With legacy systems

• Adaptability

o Modifiability and configurability
o Reconfigurability of its structure, components - runtime dynamism.

• Dependability

o High availability
o Fault tolerance/Survivability/Resilience
o Security

• Scalability and performance

 34

3.1 Qualities

3.1.1 Openness, Interoperability and Integration
Openness, Interoperability and Integration are terms that are frequently associated with network-
centric systems. An understanding of them with respect to each other will help us to understand
an important aspect of architecting network-centric systems.

To begin with, let us consider Integration. Integration is a process. SEI [2006d] defines software
integration as “the practice of combining individual software components into an integrated
whole.” Thus, the creation of network-centric systems often involves integration. Dynamic
composition, a characteristic of some network-centric systems can be considered as an act of
integration at runtime.

Interoperability is defined as “the ability of two or more systems or components to exchange
information and to use the information that has been exchanged”. [IEEE 1990] Interoperability is
required to realize the intended benefit of integration – combining capabilities to derive new
capabilities. Thus, interoperability is required to create systems that are composed of nodes
running on heterogeneous platforms. It is required irrespective of whether the system is
composed statically or it is a dynamic, runtime coalition of nodes.

The use of the terms “Interoperability” and “Integration” depends on the perspective – a system
composed of other entities that work together is said to the integrated when viewed from a
distance whereas from a closer view the entities are considered to be “interoperating”. The term
“Interoperability” does not imply that the “interoperating systems or entities” are integrated. It
merely expresses that the potential to integrate exists. Thus, proper interoperability is a
prerequisite for successful integration. Depending on the level and quality of interoperability
existing between nodes, various integration strategies can be adopted.

To arrive at a description of “openness” at the architectural level, it helps to begin with a few
popular definitions of an “open system” by various sources. The SEI defines an “open system” as
following [SEI 2006e]:

“An open system is a collection of interacting software, hardware, and human components

• designed to satisfy stated needs
• with interface specifications of its components that are

fully defined
available to the public
maintained according to group consensus

• in which the implementations of the components conform to the interface specifications”

Another popular definition of an ”Open System” is provided by the IEEE POSIX (Portable
Operating System Interface) working group and has been adopted by the DoD's Open Systems
Joint Task Force (OSJTF) . POSIX defines an open system as:

 35

“A system that implements sufficient open specifications for interfaces, services, and supporting
formats to enable properly engineered components to be utilized across a wide range of systems
with minimal changes, to interoperate with other components on local and remote systems, and
to interact with users in a style that facilitates portability”.[ACC 2006]

The SEI lists the following characteristics of an open system [SEI 2006f]:

• “well defined, widely used, and non-proprietary interfaces/protocols
• use of standards which are developed/adopted by industrially recognized standards bodies
• definition of all aspects of system interfaces to facilitate new or additional systems capabilities

for a wide range of applications
• explicit provision for expansion or upgrading through the incorporation of additional or higher

performance elements with minimal impact on the system”

As with the definition of open system, there are various definitions of the concept of open system
architecture. A simple one comes from the OSJTF [OSJTF 2006]:

“A system architecture produced by an open systems approach and employing open systems
specifications and standards to an appropriate level.”

One definition that is consistent with the more operational definition of open system given above
is [SEI 2006f]:

”An open system architecture is a representation of a system in which there is
• a mapping of functionality onto hardware and software components
• a mapping of the software architecture onto the hardware architecture
• a representation of the human interaction with these components
• interface specifications of the components that are

fully defined available
available to the public
maintained according to a consensus process”

In evaluating generic architectures and frameworks in terms of openness, the challenge is to
formulate a set of appropriate questions that address those aspects of openness that the
architectures should be responsible for at that level.

In terms of implemented systems, the term “Interface” refers to the interfaces of the fully
developed and implemented components or services that are the units of reuse. In Figure 13, we
brought out the notion of a less complete and abstract “generic architecture” that does not
include the domain specific components. The generic architecture prescribes the nature of the
components but not the components itself. Thus, at the generic architectural level, it makes more
sense to ask whether the nature of the components require them to be described by an Interface;
does the architecture mandate or recommend the separation of component Interface specification
and implementation?

 36

Openness is often a function of description. It is more influenced by design, documentation and
policy than architecture. For software systems, description can be of two types: external
documentation and intrinsic or self-description.

External documentation could consist of documents describing the module or component in a
natural language like English, or using formal methods like ADLs (Architectural Description
Languages) or process algebra that have the potential to be more precise. DODAF (DoD
Architecture Framework) [DODAF 2004] is a major effort by the DoD for comprehensively
documenting system and enterprise architecture. The framework, partitioned into two volumes
and a deskbook offers extensive guidance for documenting architectures from four operational
views: overarching All View (AV), Operational View (OV), Systems View (SV), and the
Technical Standards View (TV).

One of the dangers of using external documentation is its distance from the actual
implementation. It could easily be out of sync with the actual architecture or implementation.
For an architecture that relies on external documentation, openness becomes more of a policy for
that particular project than an intrinsic property of the overall architecture inherited from the
generic architecture.

A mandatory requirement by a generic architecture that a component’s interface
description/specification be separate from its implementation can be called as “Self-
Description”. Self-description enforced by the architectural requirement or constraints of a
particular architecture makes “openness” an intrinsic property of the architecture. Further,
interfaces always evolve together with their implementations. Therefore, they have the added
advantage of being more precise and always in sync.

3.1.2 Adaptability
Adaptability can be defined as “the ease with which software satisfies differing system
constraints and user needs.” [Evans 87] Differing system constraints and user needs can be
satisfied by changes to the overall system architecture and corresponding implementation. For a
certain class of Network-centric systems, these changes may be needed to be applied online
while for others it may suffice to incorporate them offline statically. Modifiability and
reconfigurability are two aspects of adaptability.

3.1.2.1 Modifiability
Modifiability is concerned with how the system can accommodate anticipated and unanticipated
changes and is largely a measure of how changes can be made locally, without ripple effect on
the system at large [Barbacci et al. 2000]. Modifiability is static in the sense that changes are
accommodated during development or maintenance. Modifiability scenarios in a technical sense
include changes such as addition of components, deletion of components, change in the interface
of a component and change in the interface semantics of a component. These changes are
required due to various scenarios such as new requirements, changed requirements, bug fixes,
and external changes like the change in the technology used. Configurability is a subset of
modifiability to adapt the system to a certain environment.

 37

Modifiability is measured in terms of the flexibility of the architecture to change. [Barbacci et al.
2000] identify the following architectural mechanisms that can help a system attain
modifiability:

• Location transparency of objects and services including “yellow pages” facility
• Modularity of components in the system.
• Information hiding and abstraction which promote modularity
• Mechanisms to achieve information hiding and abstraction such as layering, virtual machine

and using interfaces.

Versioning mechanisms are used to distinguish evolving software artifacts over time. Versioning
helps in component upgrades. In general, metadata that specifies different aspects of software
components is needed in case of dynamic linkage, where the only information about component
usage is the component itself.

3.1.2.2 Reconfigurability
Reconfigurability, also referred to as “Runtime dynamism” is the ability of a system to change its
structure and architecture during runtime to accommodate change in requirements and failures.
Reconfigurability faces almost similar forces as modifiability except that it is during runtime.
The effect in technical terms is the similar to the ones considered for modifiability: addition of an
interface or component, deletion and modification. The causes may include node failure, link
failure or resource change.

Reflection is a very powerful tool to support dynamicity of software architectures and
component configurations. Incorporating an explicitly reflective framework at the architectural
level helps to build adaptive systems. A considerable portion of the research on dynamic systems
is aimed at exploiting the architectural structure in systems. Architectural approaches using
reflection include constructing an architectural model and mapping them to implementation.

The term “reflection” indicates that the system can be viewed as being composed of two levels –
a base level and at least one meta level. A reflective system has an internal model of itself – this
model can be referred to as the meta level. The actual system (the implementation) can be
considered as the base level. The base level and the meta level have a causal connection i.e. any
change in the base level is reflected in the meta level. Similarly, any change in the meta level
causes corresponding changes in the base level.

Three kinds of runtime reflective capabilities can be identified [Ortin et al. 2005]:

• Introspection: The system’s structure can be consulted, but not modified
• Structural Reflection: The system’s structure can be modified and the changes are reflected

during runtime. An example would be to add or delete a member variable to a class and
objects.

• Computational (Behavioral) Reflection: The system’s semantics can be modified, changing the
runtime behavior of the system. This kind of the reflection is the most powerful as it allows
changing the architecture of a running system while still maintaining consistency. Thus, this

 38

concept of computational reflection can be used at the architectural level to define dynamic
systems.

At the architectural level, runtime change involves addition and deletion of nodes. It is easier to
accommodate addition and deletion of nodes if there is dynamic discovery. Further, the use of
certain styles like publish/subscribe (implicit invocation) are more amenable to this kind of
dynamism as these styles consider components as almost independent nodes. Architectural
mechanisms needed to support such styles include a robust event system.

3.1.3 Dependability
Dependability, the degree to which a system can be relied on, is a composite attribute. The
attributes of dependability are availability, reliability, safety and security [Laprie et al. 2000].
Dynamic reconfigurability can be considered as an important dependability mechanism
[Shrivastava and Wheater 1998].

Dependability for network-centric systems can be viewed at two levels of abstraction: at the
System-of-Systems (SoS) level and the application level. Architectural mechanisms for
achieving dependability have to be considered at these levels accordingly for the various
architectures and frameworks.

In network-centric systems, failures can occur mainly due to three reasons: process failures, node
failures and link failures. Node failures are applicable to systems that are formed as static or
dynamic coalitions of nodes. Thus node failures are the dominant failure scenarios for SoS and
systems (if a system, in turn, is a composition of services) and so on down the hierarchy until an
application that is not composed of discrete services is reached. For an application, process
failure is the main failure scenario. Link failures apply both to SoS and applications as a link
failure can be interpreted as a node or process failure.

When we talk of Client-Server Architecture (CSA), Distributed Objects Architecture (DOA) or
Component Based Architecture (CBA), the focus is on the failure of software entities in
individual tiers or the loss of connectivity between entire tiers. The presentation may have to
deal with the failure of the business tier, the business tier with the loss of the connection to the
database or to the persistence tier. Some of the architectural mechanisms for achieving
dependability for an application include:

• Redundancy of software components or services using replication [Laprie et al. 2000,

Nikander 2000]
• Transactions. [Tartanoglu et. al 2003] Transactions are a mechanism for maintaining database

consistency.
• fail over clustering

Architectural approaches to fault tolerance and resilience at the SoS and system level include:

• Dynamic discovery and composition [Nikandar 2000]
• Lease based resource management [Tichy and Giese 2004, Gray and Cheriton 1989]

 39

3.1.4 Scalability and Performance
3.1.4.1 Scalability
Scalability is an important quality characteristic for network-centric applications and systems as
poor scalability can result in poor performance [Bondi 2000]. Two major types of scalability can
be observed:

Structural Scalability: Bondi [2000] defines structural scalability as “the ability of a system to
expand in a chosen domain without major modifications to its architecture”. In a system and SoS
context, a major aspect of structural scalability can be interpreted as the ability of the discovery
mechanism to accommodate a large number of services, without significant degradation in
performance.

Load scalability: Load scalability of an application refers to the ability to handle more workload,
typically from the addition of more users. A platform is load scalable if an increase in hardware
resources results in a corresponding similar increase in supported user load while maintaining the
same response time.

Two types of load scalability can be observed:
• Scaling up or Vertical scalability: the scalability achieved by using faster hardware (single

machines).
• Scaling out or Horizontal scalability: the scalability achieved by using more hardware

(multiple machines). This has more significant implications for architectural design.

For standalone applications, load scalability is important. In terms of software, scalability is a
function of the hardware, operating system and the system architecture. The scalability of the
operating system plays a major role in the scalability of a software platform or framework that
runs on it as the operating system determines factors such as the kind of processors can be used
and how powerful the processors can be.

Some of the architectural and framework mechanisms that can help scalability are:

• Reduction in the amount of communication.

This helps scalability by reducing network-traffic. This can be achieved by code migration.
One form of code migration can be achieved by using value objects.

• Coupling.

 More coupling leads to less scalability as the amount of information exchanged is more.

• Statelessness.

 40

Chapter 4: Comparative Assessment

In this chapter, the network-centric architectures and frameworks described and characterized in
the previous chapters are compared based on two sets of criteria: architectural characteristics and
quality characteristics. Architectural characteristics are aspects of the architectures themselves
that help to distinguish architectures from one another. The quality characteristics chosen here
are the ones that were described in chapter 3. Quality characteristics are often influenced by the
architectural characteristics. Further, not all architectural and quality characteristics apply
equally to all architectures and frameworks. Even when they do apply, the sense in which they
apply may differ from one architecture or framework to another. This is indicated whenever
appropriate in the following sections.

4.1 Comparison between Architectures and Frameworks based on Architectural
Characteristics

In the previous chapter, four network-centric architectures, namely, Client-Server Architecture
(CSA), Distributed Objects Architecture (DOA), Service-Oriented Architecture (SOA) and Peer-
to-Peer Architecture (PPA) and their associated frameworks are described. Any system that
involves a request-response, a piece of software sending out a request over the network to
another piece of software and receiving a response in return can technically be termed as having
a CSA. Thus, all these architectures have an element of client-server interaction in them. The
difference between these architectures lays in architectural design that concern

• how application logic is partitioned
• where the partitioned units of processing logic reside
• how the units of processing logic interact

4.1.1 Partitioning of Application Logic
A network-based system can be viewed as a collection of nodes interacting over a network where
the nodes play various roles. The difference between the CSA, DOA, SOA and PPA primarily
arises in the roles played by the application level software on these nodes and the nature of the
application software on the nodes. To begin with, let us consider CSA and DOA. The most
popular style for these architectures is the 3 tier architecture where processing is divided into
three distinct layers – presentation, business logic and database/data store.

The heart of an application is the business logic that consists of application logic described by an
interface as illustrated in Figure 14. (Henceforth, the terms “application logic” and “business
logic” will be used interchangeably). The presentation accesses and incorporates the application
logic using the interface.

 41

Business logic

Application logic

Interface

Data
Mapping

Figure 14 Business logic

This partitioning of an application into layers can be viewed as a horizontal partitioning of the
logic. The different layers can be put on different machines. A layer on a different machine
constitutes a tier. (A layer can be considered as a logical grouping and separation of
functionality, while a “tier” can be considered as physical separation.) However, one layer
cannot be split onto different machines. Thus, the number of tiers cannot be more than the
number of layers. It is equal or smaller than the number of layers.

Layers are a horizontal partitioning of logic. Seen from this perspective, classic CSA can be
seen as consisting of a monolithic business layer. While, this entire business layer can be
deployed onto a different server, but it cannot be further divided into pieces and deployed onto
different machines. This business layer can be implemented in many ways. Using objects is one
possible and popular way of doing it. Other approaches include using procedural programming
or scripts. In fact, when the entire server side part of the application resides on the same
machine, if the application is not properly layered, there is often no strict separation of
presentation from business logic.

However, the logic in the business tier or layer can be vertically partitioned as illustrated in
Figure 15. In a CSA system with a monolithic business tier, vertical partitioning of the business
layer leads to either DOA or SOA. In SOA, you can cross organizational boundaries.

While DOA and SOA may look similar from a physical perspective, there is a major difference.
When dividing logic into discrete pieces, SOA uses and keeps in mind the tenets and principles
of service-orientation such as autonomy, statelessness and interface opacity. A subtle
characteristic of SOA is that it does not say anything about layering an application. When Web
Services are used as a façade in a 3-layered application, it is used at the business layer to
encapsulate and expose its functionality. However, SOA does not say anything explicitly about
the presentation layer. Nor is the link between the business and data layer a concern of this
architecture. It assumes that it need not look beyond the business layer. Thus, SOA says nothing
about splitting an application’s logic into different horizontal tiers. The internal
architecture/design of an application is irrelevant.

 42

Presentation

Application
(business) logic

Database
Service

Client-Server
with a
monolithic
business tier

Distributed Object
Architecture with an
ORB

Service Oriented
Architecture

Figure 15 Structure of applications architected in CSA, DOA and SOA

 43

Theoretically, a service can encompass even the presentation, but this is rarely done in practice
due to the drawbacks of depending on presentation data for integration. Encapsulating
presentation means depending on the exact layout of presentation data such as HTML which can
be very brittle [Trowbridge et al. 2004]. Any change in the position or layout of the fields can
break the service encompassing it. Also, when an application is architected with strict separation
of concerns, i.e. when there is no mixing of presentation and the business logic, the business
logic is the real heart of the application and provides the required functionality. It is the most
reusable part. A web service only needs to hook into this. In order to incorporate older
applications in a SOA, a web services façade is thrown around the business logic. This becomes
one of many other interfaces possible. Other interfaces can exist and the business logic can be
used as before. However, this Web Façade around business logic is not SOA. Vendor hype is
responsible for this impression. Doing so is using Web Services as a technology to achieve
interoperability and integration, but it is not SOA.

One can view Service Orientation as separation of concerns. The opposite of SOA is duplication
of functionality in every application that needs it. This means that the functionality is limited to
being consumed by only one process/thread instead of being consumed by multiple
processes/threads. Here the use of the word application again indicates that SOA is an enterprise
level strategy and not within an application. This is because the benefits of SOA begin to look
significant at that level. Within an application, SOA looks like Component-Based Architecture
(CBA) with Web Services being one more technology to provide an interface façade.

Another major characteristic of SOA is that it can be created using an Enterprise Service Bus
(ESB) as a communication fabric as shown in Error! Reference source not found.. An ESB
can be considered as a “connectivity layer between services”. [Schmidt et al. 2005] An ESB
forms a layer of abstraction over the underlying communication layer and offers two major
features over using just a conventional communication layer like the SOAP/HTTP over the
Internet: mediation and metadata in a metadata registry that is accessible from any point on the
bus. Mediation involves intercepting and acting on the messages passing between the various
services over the bus. Mediation actions could include protocol translation, enforcement of
policy (ex. for security), load balancing by delivery redirection or auditing. Thus, by providing
mediation, an ESB plays a more active role than other conventional communication fabrics. The
ESB may also provide a central registry for metadata such as service contracts and policies that
can be made available on a global basis. This registry acts as a catalog for services and supports
“assembly-from-parts”.

While the CSA, DOA and SOA all allow us to break an application into chunks of functionality
that can be deployed onto different machines, PPA on the other hand, does not have this concept.
The easiest way to understand PPA and its differences with the other three is to consider the
nature of the applications in built using PPA.

PPA applications are usually standalone applications and are not hosted from a web server.
Entire applications are distributed onto different nodes of the network. Three major PPA
application types can be observed:

 44

Figure 16 SOA Using Enterprise Service Bus

Enterprise Service Bus

Service
A

Enterprise Information
System

Service
Implementation

Service
A

Service
C

Application 1

Adaptor

Legacy System

Adaptor

• Distributed computing/processing Applications: The same application working on different

data sets i.e. same computation on different data units. An example of this class of application
is the distributed computing project SETI@home [SETI 2006].

• Content distribution Applications: Same application providing storage for resources such as

music files and other kinds of files on hard disks of peer like Gnutella [Gnutella 2001,
Ripeanu 2001], BitTorrent [BitTorrent 2006] and Kazaa [Kazaa 2005].

• Collaborative Applications: same Application is used by different clients to form an ad hoc

group and collaborate. Representative applications are chat clients, online meeting and
collaborative editing applications [Groove Networks 2005].

Thus, PPA applications are usually monolithic and are often tightly bound to the underlying
protocols. On the other hand, in SOA, different nodes provide different pieces of computation
and an application brings them together. Thus, a major difference between the PPA and SOA is

 45

in the nature of the nodes and the distribution of computational logic onto them. In SOA,
functionality is divided onto different nodes, i.e. it is not the same copy of the application
everywhere on the different nodes.

4.1.2 Operational Environment and Scope of Distribution
In PPA, certain assumptions are made about the nature of the nodes hosting the applications and
the network itself. PPA is also referred to as “computing on the edge”. Peers are most likely to be
PCs and workstations that connect to the network transiently rather than powerful servers with
dedicated connections to the network that are usually used to host Web Services or other types of
Services in a SOA. This means that peers can drop off at anytime i.e. there is a high “peer churn”
rate. Because of this, there is a constant need to keep track of peers and their identities which is
not required for Web Services as the assumption in a SOA is that of high availability. Web
Services are hosted on well known hosts and ports and have fixed addresses.

At a lower level, the lack of availability also creates the need for a reliable messaging facility
with an option for redelivery at a later time. Further, peers may alter their location on the
network and may not always have the same IP address. This creates a need for the ability to
resolve peer names to network addresses. Finally, while Web Services are hosted on external
servers and addressable from outside the network, peers are often hidden behind NATs (network
address translations) or firewalls and may require the use of a tunneling protocol or relaying
services for communication Services.

4.1.3 Level of Abstraction
Complexity drives the level of abstraction. The traditional solution to addressing increased
complexity has been to raise the level of abstraction as is evident in the evolution of
programming languages – from machine code to assembly to the modern high level languages
like C++, Java or C#. This is also the case with CSA and SOA. SOA evolved in response to a
set of challenges and requirements that were difficult for the CSA and DOA/CBA to handle as
they cannot be used at a sufficiently higher level of abstraction. The driving forces behind the
evolution of the SOA were:

• Integration at the application level
• Integration across organization boundaries/ Crossing trust boundaries
• Interoperability
• Discoverability (Dynamic)
• Flexibility of composing an application to meet changing requirements/needs
• Dynamic assembly of applications

The main difference between the CSA, DOA and the SOA is that SOA can be at a higher level of
abstraction and it can encapsulate several levels of abstraction as shown in Figure 17 and Figure
18. It is fractal. Multiple levels of abstraction can be achieved because services can encapsulate
much larger chunks of functionality in an interface. A service can be composed of other services
by using their interfaces. These services can be of any level of granularity from fine to very
coarse. This composite service can be in turn used in a higher composition and so on.

 46

Application
on Server

Local
Datastore

 Client

Figure 17 Application based on CSA

Due to the fractal nature of SOA, it is an ideal candidate to build System-of-Systems. The task of
engineering a System-of-Systems involves being able to abstract over and encapsulate an entire
system. Among all the paradigms, SOA has the capability to do so. While CSA and DOA/CBA
can be used to build applications, SOA is better suited for systems at higher levels of abstraction
above that viz. systems and system-of-systems.

 47

Service Oriented
Application

that uses composite
service CS

and Service B

Interface
 Application on Server

Local
Datastore

 Encapsulating Interface

Application on
server

Local Datastore

Service A

Service B

Interface
Application

Local datastore

Composite service CS

Service-specific
logic

Figure 18 SOA encapsulating entire applications and systems

 48

4.1.4 Granularity and Nature of Software Computing Units
4.1.4.1 Granularity
Levels of abstraction and granularity are different in the sense that granularity of a software
entity is defined for a particular level of abstraction. In the DOA, the computing entities are
classes of objects that are modeled, designed and implemented using OO principles. In the CBA,
components form the units of computing. While a component can be a single class, in practice, a
component usually consists of a grouping of several classes thus resulting in it having a coarser
granularity than objects. The largest granularity possible is in SOA where the software unit, a
service, can encapsulate an entire application as depicted in Figure 19. Since, services are fractal,
theoretically, there is no limit to how coarse a service can be. In the same token, nothing prevents
a service from being implemented by a single object or component. Thus, a service’s granularity
may vary from one end of the granularity spectrum to the other. However, since the benefits of
using a service-oriented approach might not be apparent below a certain level of granularity, best
practices generally suggest using a service at higher levels of granularity, usually at the
application level.

System of
Systems

Objects

Level of
Granularity

Lowest

Highest

CORBA

SOA

Figure 19 Granularity of the processing elements in the various architectures

 49

4.1.4.2 Nature of the Components
4.1.4.2.1 State
Distributed Objects and components have state. This means that multiple, simultaneous
instances of objects and components that are of the same type (class or component type) can
exist, with each instance being distinguished from the other by the internal state contained in it.

On the other hand, Web Services have no notion of state that can be seen from the client side. In
SOA, services exist irrespective of whether they are being invoked by a consumer or not. That
means they are independent of the consumer. As they are not created by consumer invocation or
destroyed after the completion of the interaction, their life cycle does not correspond to that of a
consumer. Therefore, services do not have an execution context for a particular consumer; they
are stateless with respect to consumer invocation unlike objects and components. Rather, it can
be said that their existence and state is dependent on the enterprise resource for which they are a
front end. An important point to be noted from this discussion is that, when it is said that a Web
Service is stateless, it is stateless from a consumer’s point of view.

For example, consider a service that provides information about a student given his/her personal
identification number (PID). Interaction between a client and a stateful service would proceed as
follows:

Client: what is the GPA of the student with PID (Personal Identification Number) 657585960?
Service: 3.6
Client: What is his major?
Service: Physics

In the above example, the Service needs to remember the PID of the student, which is state.

On the other hand, a Client’s conversation with a stateless service would proceed as follows:
Client: what is the GPA of the student with PID 77777?
Service: 3.6
Client: What is the major of the student with PID 77777?
Service: Physics

From the above example, it is clear that, state, when required, is maintained in the requesting
client application and is passed in messages to the service. Thus, the key to statelessness is
intelligent messages that contain all the information required to instigate an action on the part of
a web service. The service itself is not required to remember information between one invocation
and the other. “Statelessness” means that each invocation is completely independent of the
other. The consumer has to assume statelessness. This does not mean that a single instance of a
web service proxy on the service side services all requests. Multiple requests may be coming in
for a single web service. A Web Service may respond to all these multiple requests by
instantiating a new instance for each request. But the client should not assume that the same
instance will service consecutive requests from its side.

 50

4.1.4.2.2 Modes of communication
Two models of communication exist for distributed software entities: synchronous
request/response and asynchronous message passing/queuing. Traditional CSA uses a blocking,
synchronous form of interaction where the server passively waits until it receives a request. The
system blocks the client’s execution until a reply is received from the server.

In DOA/CBA, interaction is primarily through ORPC (Object Remote Procedure Call). The
RPC style of interaction typically involves passing a small number of individual data items in
multiple requests, and synchronously getting a small number of reply data items in return. The
data is in binary format. In this environment, the decision to invoke a particular synchronous call,
and the data to be passed to the call, depends heavily upon the context, which is defined by the
previously invoked RPC calls and the data returned by them.

Though CORBA and DCOM primarily use a synchronous Object RPC (ORPC) protocols, they
also provide support for interaction styles using messaging – CORBA through CORBA
messaging and DCOM through MSMQ (Microsoft Message Queuing).

SOA is based on the message passing style of communication. Web Services and SOA in general
use a document-style communications approach. The document-style organizes data within a
collection, called business document, and makes far fewer invocations compared with the RPC
style. The business document contains all of the information required for business processing and
typically contains far more data than the amount passed in RPC-style parameters. While a
document processing request/response could be synchronous, an asynchronous approach is far
more common. SOAP implements patterns such as request-response pairs as one-way
transmissions from a sender to a receiver.

An RPC request call (even when using Web Services and SOAP) maps to a backend method call.
As such, the request message contains elements that contain the method name and its parameters.
RPC is typically static, requiring changes to the client when the method signature changes.
Therefore, strict rules are applied to the data wire format and there is a tight contract between the
client and the provider. Document-style on the other hand, does not require a tight contract
between the client and the service provider. The contents of a document are described by an
XML schema that applies to the whole message itself rather than the parameters alone like in the
RPC-style. Thus, using the document style leads to less coupling between the consumers and
providers than when using RPC.

In PPA, communication between a pair of peers is based on an asynchronous, symmetric style of
interaction. In PPA, the software units on each node are the same and have the capability to play
the role of both a client and a server. When these roles are considered in isolation, the overall
interaction between two peers can be considered as a pair of client/server interactions – one for
each role played by a peer. Thus if A and B are two interacting peers, one interaction would be
where peer A acts as a client to peer B playing the role of a server and vice versa in the other.
Together, this pair of interactions provides symmetry in PPA interactions. PPA interactions are
carried out using low level application protocols over transport layer protocols like TCP/IP like
in traditional CSA. However, unlike most CSA applications, the interaction is asynchronous and
is typically implemented using callbacks or message queues.

 51

4.1.4.2.3 Autonomy
Services are more standalone. On the other hand, layers in a CSA application, objects or
components are not standalone; they do not provide a complete unit of functionality by
themselves. Objects and components provide pieces of functionality that can be reused in
different applications to build a complete piece of functionality. On the other hand, a service
encapsulating an application provides a complete piece of functionality. In PPA, the virtual
network itself is considered as an organic whole, an overall functionality. Every peer contains
complete, monolithic applications. Thus, the software entities in PPA can be considered as
standalone as in SOA. The major difference between SOA and PPA is that services can be
composed into applications and other services; where as the nodes in PPA cannot be
incorporated hierarchically.

4.1.4.2.4 Life Cycle
A Service is not a “distributed object”. Web Services have no notion of objects and object life
cycles [Vogols 2003]. In a distributed object environment, communication is by remote
procedure invocation on an object. This involves requesting an object instantiation, requesting an
operation on that instance of the object, obtaining that result as a reply and releasing the object
after use (garbage collection). On the other hand a service is a piece of software that can
understand and parse well-defined XML documents that is provided to it through some
combination of transport and application protocols. It could be anything from an entire
application to a small component and need not necessarily be implemented using object oriented
techniques. Thus, communication is document centric – i.e. it is by XML document exchange
and does not involve the object life cycle. Therefore, while Web Services can be used to
implement RPC style interactions, they are not distributed objects.

Inheritance is another OO principle that has no parallel in SOA. A Service does not inherit from
another service like a class does from a base class. A service can be a composition of other
services, but this is not the same as inheritance.

The term “service” is overloaded. Most of the confusion regarding what constitutes a “service”
stems from the misuse of the word service for any object or component with a Web Service
façade [Gamma et al. 1995]. A software unit can be called a “service” in the true SOA sense
when it is architected using service-oriented principles and displays the characteristics such as
standalone and statelessness listed in the “tenets of SOA”.

4.1.5 Intent of Usage and Usage of the Software Units
One of the major yet subtle characteristic of an SOA that differentiates it from other architectures
is the intent for the creation of the basic software unit. A service is created with intent of reuse –
reuse by customers in ways that cannot be foretold. This requires that the interface be created in
such a way that facilities such “repurposing”. You cannot see behind the interface of an SOA
(opacity). This opacity allows for replacement of parts i.e. modifiability. A service is
autonomous in its ability to control its level of opacity. That a single service is an orchestration
of several services may not be exposed, but may be inferred by such things as quality of service
attributes.

 52

When we work with a component, we work with code. When we work with a service, we work
with a contract. Using a component might involve code level activities such as checking it out of
a library, connecting it together with other components and compiling. Services on the other
hand are not accessed at the source code/binary executable level. They are accessed remotely
over a network and they are composed into an application, but not statically linked and compiled.

4.1.6 Nature of the Interface
An interface is a grouping of logically related methods and properties [Lowy 2003]. Interfaces
help to control complexity by abstracting away from implementation detail. Separation of the
Interface from the implementation and the nature and expressiveness of the interface play a
major role in network-centric architectures and systems. Interface-based architecting and
development help realize a sizable number of network-centric qualities such as interoperability
and dynamic comparison. The nature of the interface helps to do many things like cross
heterogeneous platforms and different implementation languages, ownership domains in the case
of SOA, allow different versions of a software entity to co-exist and enables lego-style assembly
of applications and system of systems. Interfaces make the task of programming large systems
significantly easier by enabling interchangeability of components and services.

Interfaces define contracts. The specification of the contract of a component includes the
input/output behavior, invariance and dependencies to other components. Architecturally,
interfaces encapsulate nodes and provide clear access points. A component or a service is visible
exclusively through its interface [Szyperski 2003]. Interfaces are considered to be necessary and
sufficient to characterize components. Current interface definition languages include CORBA’s
IDL (Interface Definition Language) and similar IDL like languages on other platforms and the
WSDL (Web Services Description Language) for Web Services.

A closer examination of these languages reveals that they mostly provide support for syntactic
specification of the components. They support specifying the functional aspects of the
component or node in terms of signatures. The WSDL, the more expressive of the two, also
defines operations on services and service end points.

However, information required for the proper use of a component is not confined to the syntactic
elements like method signatures or operations. The overall characteristics of a component consist
of non-functional properties (quality attributes such as latency and accuracy) and also the
internal behavior of the system that may need to be made explicit for proper use of the
component. An example would be the “locking” mechanism used in a component and its
characteristics. These types of information can be specified by any of the current interface
standards.

While, syntactic and functional information might be sufficient to invoke the node, but it might
not be sufficient to ensure proper interoperability. To illustrate inadequacy of syntactic
functional information, consider a service that provides the current price of the stock of a
company when it is provided with the name of the company. Semantic ambiguity would occur
when the price is in dollars but is interpreted in euros. Current interface definition practices have

 53

no way to accommodate this kind of information into the interface definition. This kind of under
specification may work as long as the developers who incorporate the component or service into
their application are in the same building. Things can be underspecified by relying on group
knowledge and “established practice”. However, such assumptions cannot be made for network-
centric services. This brings us back to the issue of network-centric systems crossing
organizational boundaries. Integration problems occur here as systems are created with some
components over which the integrator has less than complete control. Sometimes the integrator
application may have no control at all. All these make a firm case for the importance of
semantics in the interface definition of network-centric systems.

Several efforts are underway to add semantics to service contracts. An approach championed by
the Semantic Web community is to use a different language for service description altogether.
Current research centers on the use OWL-S (Ontology Web Language for Services) which was
formerly DAML-S (DARPA Agent Markup Language) and its variants as a service description
language for Web Services. The most interesting effort however is to add semantics to the
WSDL itself. This effort has led to the creation of the Web Service Semantics WSDL-S
specification [W3C 2005a]. WSDL-S uses the extensibility elements of WSDL to add semantic
annotations to WSDL document elements. This initiative draws upon the OWL-S and METEOR-
S [LSDIS 2006] initiatives.

4.1.6.1 Nature of Interfaces in the Different Architectures
Interfaces in CSA tend to be the most fine grained of all. Often, there is no separate interface in
the sense of an interface in the component-based or service-oriented development. In fact, one of
the major differences between client-server and component-based development is that in
component-based development, the focus is on defining and implementing interfaces. In DOA,
the solution is modeled using class hierarchies. An interface is not limited to defining methods.
An interface can also define properties, indexers and events. Interfaces promote loose coupling
between clients and objects because when you use an interface, there is a level of indirection
between the client’s code and the object implementation.

Both DCOM and CORBA have interfaces defined in an interface definition language (IDL). The
IDL describes an object-oriented Interface. Using an IDL can be considered as an external
description mechanism. .NET and Java EE are specifications upon programming languages and
do not have external descriptions. Both .NET and Java EE do not enforce some core principles of
component-based programming, such as separation of interface from implementation, unlike
COM and CORBA. While this separation is possible using the programming language
“interface” construct in both Java and .NET languages, it is not strictly enforced. In Java EE,
using interfaces is mandatory only when EJBs (Enterprise Java Beans). When using POJOs
(Plain Old Java Object), interface based development becomes a design choice like in .NET.
Thus, it can be said that both .NET and Java EE enable component based concepts, but do not
enforce them. Both frameworks allow binary inheritance of implementation.

A service description, typically in WSDL is different from an IDL in that it is not an object-
oriented description. It describes types and messages that are grouped into operations. A service
contract is totally different from a component interface. In SOA, association of methods in the
service interface is a pure logical construct. Service and consequently service interface is

 54

effectively a “namespace”, associating together service’s methods, which are otherwise
independent entities with their own quality of service requirements, security and versioning
strategy. To make a programming language analogy, every method of the service is similar to a
FORTRAN subroutine, which can exist and be executed independently from other functions.

While the DOA/CBA and SOA prescribe a standard way for describing interfaces, PPA does not
have the concept of service description in terms of interfaces. The description information
usually tends to be a simple textual description. In the case of JXTA, it could be a structured
XML document, but the format is not specified unlike the WSDL document for Web Services.
This is because of the nature of PPA; there is no composition of pieces of functionality into a
whole. Every node in a virtual network runs the same application. In P2P networks, the search is
for resources and not pieces of computation.

4.1.6.1.1 Component based Interface (IDL) vs. Service Contract (WSDL)

4.1.6.1.1.1 Syntax

IDL is C++ in a different syntax. It is rigid, and not capable of incorporating descriptions of
policies. WSDL is based on XML.

4.1.6.1.1.2 Type System

One of the reasons WSDL supports looser coupling than the IDL is because the type system of
the WSDL is more flexible. The WSDL type system is based on XML which a mature
technology for representing data as self-describing, platform-independent text. Self-describing
means several things, first, that data in an XML document identifies itself using element and
attribute names, and second that elements identify their type, such as “Integer” using the XML
Schema Definition Language (XSD). XSD allows services and clients running on diverse
platforms to interoperate over a common type set, and is critical to the success of web services.

4.1.6.1.1.3 Service Endpoints

The WSDL specifies a “Service Endpoint”. The message exchange patterns can be more easily
varied, and it is much easier to add new bindings for other protocols and transports.

In IDL, interfaces support multiple interface inheritance. WSDL does not have this construct and
therefore interface inheritance is mapped as repetition of the operations declared in the parenting
interfaces. Types declared within the parent interface scope are not repeated as that type space is
available to the derived interfaces. So, as such, WSDL doesn't have limitation in carrying the
information associated with an object that inherits from multiple object definitions. It is just
done in a different way than in the IDL.

4.1.7 Degree of Coupling
Loose coupling describes an approach where integration interfaces are developed with minimal
assumptions between the sending/receiving parties, thus reducing the risk that a change in one

 55

application/module will force a change in another application/module. Loose coupling is enabled
by open architectures. Loose coupling enhances the maintainability and reusability of software.
It also enhances the scalability and resilience of architectures.

Loose coupling is achieved by the use/incorporation of one or more of the following architectural
constraints [Orchard 2004]:

• Vendor and platform independent messages
• Coarse-grained, self-describing and self-contained messages.
• Well-defined interfaces
• Extensible versionable interfaces
• Constrained interfaces
• Stateless messaging
• Human readable strings like Universal Resource Identifiers (URIs) for service and instance

addresses
• Stateless messaging where possible and appropriate
• Asynchronous exchange patterns where possible and appropriate
•

4.1.7.1 Coupling and the Different Architectural Paradigms
By comparing the characteristics of CSA with the constraints and mechanisms for achieving
loose coupling listed above, it is easy to discern that it has the potential for the highest coupling
among all the other architectures. CSA uses synchronous RPC. In a typical 3-tiered architecture,
the communication between the tiers (or layers) is very fine grained. It involves the use of
entities such as properties, methods, events, delegates and data binding. There is a lot of fine
grained communication.

While DOAs lead to strong coupling too, some characteristics of the CBA lead to a looser
coupling. Component interfaces may group objects together, thus providing an abstraction of
their methods. Thus, communication between layers involves the use of fewer methods as each
method is designed to do a relatively large amount of work. CORBA, DCOM, EJB and .NET
Remoting use RPC calls where the wire format is binary. This results in much tighter coupling.

SOA ideally operates at an inter-application level. Therefore, communication between services is
coarser grained since each invocation of a service results in a much larger amount of work done
and hence the communication is not as much as in the CSA and DOA. The third tenet of SOA
roughly states that the calls between SOA services and between a client and an SOA service are
all XML messages and that only the contracts and schemas are shared between services and
clients. This contributes further to loose coupling. Incidentally, CORBA and DCOM cannot be
considered as SOAs as they violate this tenet. Both CORBA and DCOM are RPC based and the
messages that go inside the wire are binary OO-RPC call.

Another contributing factor to the loose coupling of SOAs is the opaqueness of the service
interface. Interface opaqueness means that you cannot see the internals of the implementation
behind that interface. You cannot bypass a layer. The SOA interface (or contract) is the most
opaque of all. For example, in SOA, you cannot bypass the business layer and access the

 56

database layer directly, something which you can do in CSA and DOA. The ability to do this
stems not only from the nature of the interface, but also the operational environment and policy.
Services are consumed assuming inter-organizational boundaries and thus it is not possible to
obtain a description of its internals or access them. Opaqueness can be achieved in a 3 tiered
CSA whereas in SOA it is a constraint enforced by the architecture. The nature of SOA is such
that opaqueness is an inherent characteristic of the architecture. While separation of concerns is
advocated, it is not enforced in the other architectures.

4.1.7.2 Coupling Summary
For Services, loose coupling is relevant at the boundaries of the services and service consumers.
It does not matter how things are internally. Boundaries are defined by the interfaces. Therefore,
to a great extent it is dependent on the nature of the interface and semantics. While the nature of
the interface may be decided to a great extent by the framework chosen, adding semantics and
other information is still a matter of architectural decisions.

While using XML protocols like SOAP can greatly enhance loose coupling and flexibility, there
are tradeoffs involved. XML can be expensive to parse and is often a larger representation of the
data compared to a binary format, so it is more cumbersome to send over a network. The
flexibility and loose-coupling offered at the expense of processing efficiency. Tightly-coupled
systems that use platform specific binary formats like .NET Remoting or RMI are generally
faster. They can transfer data and objects in binary formats that are specifically optimized for the
specific implementation language.

4.1.8 Dynamic Discovery (Discoverability) and Composability
4.1.8.1 Dynamic Discovery
Discovery is "the act of locating a machine-processable description of a service that may have
been previously unknown and that meets certain functional criteria." [W3C 2004] The goal is to
find an appropriate service. Three kinds of discovery mechanisms can be observed [W3C 2004]:

• Directory based
• Index based
• Broadcast

A robust discovery mechanism can be considered as a necessary mechanism for self-healing and
recovery from failures such as loss of network-connectivity, or in the case of military situations,
disappearance of cooperating components due to physical or cyber attacks, jamming of
communication channels and nodes moving out of range. In such volatile environments, service
discovery enable systems to rediscover lost components or to find other components that provide
essential services needed to accomplish critical tasks [Dabrowski and Mills 2002].

4.1.8.2 Composability
Composability or Compositionality is the composition potential of a software component or
service [Belloir et al. 2003]. Composability is a requirement for proper reuse. Composability is
influenced by openness, interoperability and modularity. Two kinds of compositions can be
observed in practice: composition at compile time (development time) that can be called as static

 57

composition and runtime composition. Runtime composition or dynamic composition requires
dynamic discoverability and late binding.

Properties of composable software work units include modularity, openness, interoperability,
autonomy, explicit statement of dependencies, expressive interfaces, statelessness,
discoverability and late binding.

Dynamic discovery and composition facilitate building communities of interest [Lau 2004]. A
community of interest (COI) is defined as “any group with a common mission interest and
informational needs” [DoD 2006]. Technically, a COI implies a common capability that should
be provided by a system or by some combination of system-of-systems (SoS). Without dynamic
discovery, it is not possible to create new capabilities by composing existing capabilities even if
they are provided as services. Dynamic discovery and composition allows creation of new and
different capabilities by combining and recombining the capabilities provided by existing
services. If the services are provided using Web Services technologies, this can be achieved by
orchestrating Web Services. Thus, dynamic composition helps to meet changing requirements
and to create dynamic communities of interest.

4.1.8.3 Dynamic Discovery and Composition in the Various Architectures
CBA and SOA promote modularity to a greater degree than the other paradigms. SOA has the
potential to help realize modularity at greater levels of abstraction. Modularity in the Web
Services Architecture is promoted by its self-describing nature using WSDL.

CSA does not have the concept of dynamic discovery. Everything is statically coded. CORBA
and DCOM can be said to have a limited kind of service description and discovery. The IDL
interface can be considered as a form of service description. Both frameworks provide a form of
“Naming Service” that can be used to lookup a CORBA based or DCOM based object. Of
course, clients must know the correct name in order to discover (or recognize) a service and all
functional information is only implicit, being assumed to be known independently.

To elaborate, CORBA’s naming service that lets you look up a remote object by name and obtain
a remote reference to it. However, in order to use the remote reference by invoking methods on a
local stub, CORBA requires that the client has the definition of the stub locally. (In other words,
CORBA requires that the code for the stub object be known to the developers that create the
client.) CORBA does offer a "dynamic invocation interface" (DII) that enables clients to use
remote objects without the stub definition, but it is more complex to use than just invoking
methods on a local stub. The difference in complexity is similar to the difference between using
a Java object through its interface and using the same Java object via the reflection API. The
CORBA trader service is something that comes closer to UDDI for Web Services. In the trader
service, instead of just supplying a name with which a remote object is associated, as you do
with the CORBA naming service, you describe the type of remote object you are seeking. The
CORBA trader service returns a remote reference to a matching remote object which can then be
used by the client through a local stub.

SOA is inherently dynamic as one of its cornerstones is dynamic discovery and composition.
Discovery in Web Services is accomplished using UDDI and WSDL. The use of UDDI implies
that Web Services follow a centralized directory model for discovery.

 58

A service can be said to be much more dynamically composable because it can be discovered
dynamically based on its WSDL description and incorporated into the application. Services in an
SOA are discoverable in the sense the distributed nature of services is not transparent, it is
explicit. In contrast, in distributed objects, remote object invocations are transparent. However,
even in SOA, completely automated discovery and composition on the fly to give rise to new
capabilities requires a level of semantic negotiation not possible yet.

Jini has a distributed service discovery mechanism in its Lookup service built atop Java. The
major difference from the Web Services approach is that several directories can exist within one
Jini network and the discovery process is by using a “multicast request protocol”. Jini services
may also come to know about the existence of a directory service through an advertisement by a
directory service of its existence. Directory services advertise their existence using the multicast
announcement protocol.

4.1.8.4 P2P Discovery Process
The discovery process in PPA is different from Web Services. Pure PPA is decentralized. There
is no central directory; instead broadcast protocols are used to discover peers. At discovery time,
a requester peer queries its neighbors in search of a suitable peer. If any one of them matches the
request, then it replies. Otherwise each queries its own neighboring peers and the query
propagates through the network until a particular hop count or other termination criterion is
reached. One of the advantages of the PPA approach over UDDI is the fact that the registration
of peers is done automatically and is very simple in nature.

PPAs do not need a centralized registry, since any node will respond to the queries it receives.
Therefore, PPAs do not have a single point of failure, such as a centralized registry. Furthermore,
each node may contain its own indexing of the existing peers. Finally, nodes contact each other
directly, so the information they receive is known to be current. (In contrast, in the registry or
index approach there may be significant latency between the time a Web service is updated and
the updated description is reflected in the registry or index.)

Even in hybrid PPA, the directory is distributed. In Web Services, there is only one UDDI
directory i.e. it is not yet a distributed directory.

What prevents us from building applications that are coalitions of services on different nodes
using the P2P paradigm? The answer lies in the key differences between the SOA and PPA
paradigms.

4.1.8.4.1 The Concept of a Virtual Overlay Network
An overlay network is a computer network which is built on top of another network [Wikipedia
2006]. Nodes in the overlay can be thought of as being connected by virtual or logical links, each
of which corresponds to a path, perhaps through many physical links, in the underlying network.
Overlay networks can be constructed in order to permit routing messages to destinations not
specified by an IP address.

 59

 P2P architectures have the concept of a virtual overlay network as illustrated in Figure 20. Most
peer-to-peer networks are overlay networks because they run on top of the Internet or some other
network. Many peer-to-peer protocols including Gnutella and Freenet are overlay network
protocols. There is no concept of an Overlay Network in SOA.

This concept of a virtual network over a network, usually a TCP/IP network, results in several
interesting properties of P2P networks.

Peer Overlay Network

Figure 20 Peer-to-Peer overlay network

4.1.8.4.1.1 Dynamic Addressing

Due to the fact that peers join or leave the virtual overlay network often, peers cannot establish
direct contact without discovering each one another first. In a overlay network, nodes are
identified not by static URLs but by dynamic IDs. Because it is a virtual network, every node
needs an ID that is unique in the virtual network. On the other hand, in SOA which does not have
the concept of an application level overlay, you use static URLs, as virtual IDs are not required.

In PPA, every node joining the network has to register itself and the provided resources. There is
no such thing in SOA because there is no concept of an overlay network. There is no concept
that nodes are connected to each other except that they are available over a network. In PPA
being a peer means that it is available on the network at least at the time the information was

 60

obtained. Peers mostly provide very simple information during the registration process. Because
of this, discovery of information in PPA has to stick to a simple search queries.

4.1.8.4.1.2 SOA vs. PPA for Creating an Application Composed of Services

Currently in SOA, dynamic discovery is not used. Addresses of services are statically embedded
into the application at compile time by the programmer. This is not possible in a PPA
environment because of the dynamic nature of the nodes and the transient nature of their
connection to the network. PPA nodes do not have fixed URLs. Therefore, dynamic discovery is
one of the prerequisites for service compositions in PPA. Also, Services in a P2P environment
can be considered as transient whereas SOA services are persistent.

In order to bring out the differences between SOA and the different flavors of PPA, let us
consider a hypothetical scenario where an application is created using functionality distributed
onto different nodes. The application’s functionality in this example is partitioned according to
SOA principles. In PPA, as in SOA, once the node containing the application has joined the
network, it could dynamically search for services that provide the missing piece of functionality
and uses them in accomplishing its task. Conceptually, this looks similar to SOA with dynamic
binding. However, a closer examination of the details reveals important differences between PPA
and Web Services.

While dynamic coalition of services is not a reality even for SOA, it is hard to see how it would
work for peer-to-peer topologies where service providers are more transient. Mechanisms for
partial or complete failure detection and recovery and for discovery of a semantically equal
service would be required – the same challenges faced by web services.

Another difference would be that using the application that leverages the services in PPA would
be like using any other PPA application. Users have to download it onto their computers and run
it from there instead of accessing it from a server like you could do in on SOA.

From the scenario, it is possible to extrapolate a few things. If replicated versions of applications
and services could be deployed, in systems requiring survivability (like military systems), a PPA
approach to discovery and redundancy could prove to be more robust. UDDI directories
represent single points of failure for Web Services. If using a distributed directory approach or
broadcast protocols over a overlay network like in PPA, an alternate replica of the service
(without considering semantic equivalence) could be found and used. As long as all the services
can be found, PPA may prove to be more robust than SOA. Thus, the SOA idea of decomposing
pieces can be combined with PPA’s robust connectivity to build highly resilient networks.

4.1.8.5 Dynamic discovery and composition summary
Composability is also related to satisfiability – whether the component or service helped to fulfill
the requirement for which it was composed. Hinton [1997] cautions about emergent behaviors,
the behaviors that arise because of the interaction of the component behaviors in composite
system and how they can play a role in hindering satisfiability of component compositions. He
argues that undesirable emergent behaviors are a result of the under-specification of components

 61

and services highlighting the importance of openness and complete interface specification in
proper composability.

4.2 Comparison between Architectures and Frameworks based on Quality
Characteristics

4.2.1 Openness
4.2.1.1 Evaluating Frameworks for Openness
Frameworks are more concrete than generic architectures. They are either complete
specifications for implementations or actual implementations. Therefore, when evaluating a
framework for openness, the first question to ask is about the openness of the framework itself
considered as a product. Are the specifications of the framework open and available? For
commercial frameworks whose specifications are not available, how open and well documented
are the interfaces supported by the framework? Their interfaces are usually the APIs supported
by the programming models for that platform. The next consideration is whether the frameworks
aid in the construction of open systems. Aspects to consider in evaluation include:

• Are the protocols used by the framework open and standards based?
• What concrete mechanisms do they provide for self-description (in the form of interface

definition?)
• Is the interface definition language (IDL) expressive enough for complete component

description? Is it a standard? Is the IDL language independent or specific?

4.2.1.2 CSA
In CSA, there is no self-description in terms of interfaces. In fact, separation of interface and
implementation is a design decision as opposed to an architectural dictate. Documentation is
through external means such as ADLs (Architecture Description Language), plain text using
natural languages or other external tools like diagrams. Openness of CSA with a monolithic
middle layer is thus a matter of detailed architectural specification and design and has to be
decided on a case by case basis.

4.2.1.3 .NET
Microsoft has secured certification for both C# and CLI (Common Language Infrastructure)
from ECMA and ISO/IEC as industry standards. CLI is Standard ECMA-335 while C# is
Standard ECMA-334. In doing so, Microsoft released all intellectual property in the core C#/CLI
platform to the public domain which means that a license is not needed to implement C#/CLI.
This will also help in better understanding the implementations of C# and CLI which are at the
core of .Net platform. Microsoft also provides “The Microsoft® Shared Source CLI
Implementation” which is a file archive containing working source code for the ECMA-334 (C#)
and ECMA-335 (CLI) standards.

However, the whole of .NET platform is not a public domain standard; Microsoft still owns
complete intellectual property rights to several class libraries and APIs within the .Net platform.
The non-standard parts of the .NET platform include Windows.Forms, ADO.NET and Web
Services.

 62

The major communication protocols used in .NET are mainly DCOM and SOAP. While SOAP
is an open protocol, DCOM is proprietary.

A major feature of the .NET framework is its support for XML. .NET has a suite of XML classes
for creating and parsing XML documents that fully conform to the current W3C recommended
standards of XML like Namespaces, XSLT, XPath, Schema, and the Document Object Model
(DOM) [MSDN 2006d]. These classes support the W3C XML Schema Definition language
(XSD) 1.0 recommendation [MSDN 2006d]. XML can be considered as a core technology in
.NET as the other parts of the .NET Framework including ASP.NET, Web Services and
ADO.NET use XML as their native data representation format [Skonnard 2001].

4.2.1.3.1 Assembly Metadata
.NET assemblies contain metadata in a standard format. Metadata makes assemblies self
describing by providing information on types (classes), methods, dependencies on other
modules, etc. However, since the .NET metadata is in binary format, it has to be retrieved at
runtime using reflection.

Lumpe [2002] argues that the custom attribute facility in .NET provides a way to represent
functional and non-functional properties of components. If we take a broader view of openness
as not just explicit documentation, but information in general that can be obtained about a
component, custom attributes can be seen as contributing to openness. Custom attributes have
the potential to provide more information about a component as they are highly accurate being in
such close proximity with the code. Reflection can be used for discovering attributes at runtime.

4.2.1.4 Java EE
The Java EE platform is a set of specifications maintained by the JCP (Java Community
Process). While only a subset of the .NET APIs are covered by ECMA standards, all the Java
specifications are defined by the JCP.

Communication between Java components is achieved using RMI (Remote Method Invocation).
JDK 1.5 also supports version 2.3.1 of the CORBA IIOP (Internet InterORB Protocol). Java EE
also supports the RMI-IIOP protocol, which is Java RMI but using the IIOP protocol for
communication.

Java EE provides support for WS standards through the JAX-WS (Java API for XML-based Web
Services) API. Support for XML Schema and parsing is provided in JAXB (Java Architecture
for XML Binding). Java EE 5 also provides “annotations” which is similar to .NET attributes.

4.2.1.5 DOA/CBA
Clear separation of interface and implementation is an architectural constraint in DOA and CBA.
Components are specified using an Interface Definition Language (IDL). IDL is used to define
the interfaces for accessing and operating upon service components. However, it provides a
signatures only specification. The primary purpose of IDL based specifications is type checking
between client code and independently developed components.

 63

4.2.1.6 CORBA
CORBA is an open specification maintained by the OMG [OMG 2005]. As such, the interfaces
of the standard CORBA services and the communication protocols used are open. The inherent
openness of CORBA applications are a function of the open protocols used for communication
and the expressiveness of the IDL.

4.2.1.7 DCOM
The COM, Active-X and DCOM specifications was turned over to the Open Group [Open Group
2006] by Microsoft in 1998. Thus, DCOM is often considered to be an open group standard
[MSDN 1997a].

DCOM supports two interchange formats for contract description: Microsoft’s IDL (MIDL) and
type library (TLB) files. The MIDL’s expressiveness is similar to that of the CORBA IDL.
COM has no support to describe component dependencies. The lack of dependency information
makes it difficult to determine what DLLs would be needed to deploy COM-based components.
The COM contract description format is also not extensible.

4.2.1.8 Web Services
Web Services themselves are a suite of open specifications. Web Services are able to describe
their own input and output requirements using the Web Services Description Language (WSDL).
Web Services use existing Internet protocols like HTTP and SOAP which are open and standard.

4.2.1.9 Jini
Jini’s licensing model places restrictions on the way derivative works using Jini can be
redistributed. This detracts from its openness. The Jini specifications were first released by Sun
Microsystems under the Sun Community Source License (SCSL) in 1998 [Sun Microsystems
2006b]. This licensing model proved to be quite complex when it came to defining how
developers who used Jini could license their work and was considered to be restrictive. In
response to this, Sun Microsystems released the Jini technology specifications under the less
restrictive Apache 2 license [Apache 2004]. In terms of service description, the Jini service
contract is a Java interface like for EJBs.

4.2.1.10 PPA
In PPA, there is no concept of interface based development. The applications are monolithic.
Openness in this paradigm can be interpreted as the “openness” of the protocols used for
purposes such as communication between the peers or for forming the virtual network.

4.2.1.11 JXTA
The JXTA protocols can be considered as “open” since they are the work of an open source
project. However, true openness in PPA is a function of design and policy like in CSA as the
application level protocol determines whether an application on a peer can interoperate with a

 64

particular virtual network of peers or not. Details of this protocol cannot be captured inherently
using the JXTA framework.

4.2.2 Interoperability
4.2.2.1 .NET
4.2.2.1.1 Interoperability with Applications Developed Using the Same Platform
For interoperability from a syntactic point of view, .NET provides seamless interoperability with
other applications developed using the same platform i.e. .NET. This is because Microsoft is the
only vendor who provides a full implementation of the platform and so there are unlikely to be
any inconsistencies. Even though, other open source implementations of the CLR exist, like
Mono [Novell 2005], most of the application development is done using the implementation
provided by Microsoft as it is the most comprehensive and widely deployed.

4.2.2.1.2 Interoperability with Applications Developed Using Other Platforms
Interoperability of .NET with Java EE without using Web Services can be achieved using third-
party vendor’s products like runtime bridges. The most popular runtime bridges include:

• Ja.NET and J-Integra.

Ja.NET makes it possible to write clients for Enterprise Java Beans in a .NET language targeting
the .NET platform. In essence, Ja.NET java components act as though they are .NET
components, and vice versa because Ja.NET leverages .NET remoting [Peltzer 2004].

• JNBridgePro [JNBridge LLC 2006] is another runtime bridge for .NET/Java EE

interoperability.

Using an ORB is also a feasible interoperability strategy. However, to use CORBA, a ORB
implementation for the .NET platform is required. MiddCor.NET [Middsol 2006] is one such
product. MiddCor.NET is a CORBA ORB implementation for the .NET platform. Since there is
an ORB implementation for Java EE, interoperability between .NET components and Java EE
components could be achieved. However, it should be noted that this capacity is not a native
capability of the platform, but depends on the use of an external product from a vendor. .NET
does not provide native support for CORBA’s interoperability protocol IIOP nor does it provide
an IDL compiler.

4.2.2.1.3 .NET and Web Services
While Web Services technology is platform-neutral, .NET provides several APIs and tools for
developing Web Services and wrapping and exposing existing applications as Web Services
through its ASMX (Active Server Methods) technology. It also supports Basic Profile 1.0.

4.2.2.2 Java EE
4.2.2.2.1 Interoperability with Applications Using the Same Platform
With Java EE, since it is a specification, the implementation is provided by different, often
competing vendors. Vendors often add extensions that do not confirm to the Java EE

 65

specifications. Minute differences in implementation of the specifications for the application
servers and containers can impede seamless interoperability. For example, an application
designed specifically for BEA's application server won't necessarily be able to run on IBM's
WebSphere Application Server. To address this, Sun has provided the J2EE Certification
program. The J2EE certification program is a suite of tests and reference material to ensure that
J2EE applications don’t target any vendor-specific extensions and thus are portable across all
these different application servers.

4.2.2.2.2 Interoperability with Applications Using Other Platforms

Java provides Java IDL and supports the IIOP protocol for interop with CORBA. Java EE also
supports the Web Services protocol stack via JAX-WS 2.0. JAX-WS 2.0 supports the Web
Services Interoperability (WS-I) Basic Profile Version 1.1 [JCP 2005a]. To support WS-I Basic
Profile Version 1.1, JAX-WS has the following features: The JAX-WS runtime supports
doc/literal and rpc/literal encodings for services, static ports, dynamic proxies, and DII.

4.2.2.3 CORBA
Interoperability in CORBA is through the use of ORBs and the CORBA protocols. When you
use CORBA, you need an ORB at both ends. Differences in vendor implementation of an ORB
may hinder proper interoperability due to slight differences in interpretation and implementation
by vendors of the CORBA standards [Ironside et al. 2001]. CORBA provides a quite restricted
Interface Definition Language, which allows one to specify only operational signatures of
objects. CORBA does not offer mechanisms for semantic interoperability.

4.2.2.4 DCOM
Interoperability of DCOM with components developed on platforms other than DCOM and
Windows is achieved using a bridging strategy. DCOM interoperability is hindered by the fact
that the DCOM standard is not as widely accepted in the industry as CORBA. Like CORBA,
DCOM, which uses an IDL, has no facilities for semantic interoperability.

4.2.2.5 Web Services
Using only the official tenets of service orientation, it is quite possible, in fact, to build a service-
oriented application using proprietary message formats and communication protocols. Doing so
creates a flexible system that can't talk to anything but itself. However, since interoperability is a
fundamental requirement, the technology choices for these shared assumptions must facilitate
interoperability, not reduce the ability to work together.

A major reason for the meteoric rise of Web Services was the promise of seamless
interoperability. Web Services use document style messages that offer the flexibility and
pervasiveness that CORBA and DCOM cannot provide. Web Services through the use of open
and widely accepted standards, foster what can be called “intrinsic” interoperability. “Intrinsic”
interoperability does not require the use of runtime bridges and other mechanisms. As long as the
software is built using standards, interoperability just happens. Because of the wide acceptance

 66

of standards, services provide not only interoperability, but also interchangeability preventing
vendor lock in. Thus, services provide more choice than other “open” paradigms like CORBA
which do not offer both at the same time.

4.2.2.6 Jini
Jini is Java-centric as it is an extension of the Java programming language. A Jini object is
essentially a serialized java object, and Jini uses Java RMI API in order to provide a
communication mechanism for activating, locating and removing object groups. While
developers can write a service implementation in a language other than java, each object must be
encapsulated using JNI so that the java environment can dynamically load the objects. This
means that every device registered within a Jini community must have the ability to execute a
JVM. Jini’s Java-centricity severely hampers its capacity to interoperate.

4.2.2.7 JXTA
The project JXTA specification is generic. JXTA achieves interoperability in terms of the six
underlying JXTA protocols written in XML in terms of deployment platform, implementation
language and network protocol. JXTA applications can be developed in any language and can
interoperate with other JXTA applications regardless of their implementation language and
underlying operating system as long as they confirm to the JXTA protocol specifications.

4.2.2.8 Interoperability Summary
Interoperability in CSA, DOA and SOA is for integration of logic, for combining software
business logic. On the other hand, in PPA, it is more for exchange of information.

4.2.2.9 Legacy System Integration
Integration, in general, can be achieved in three ways [Hophe et al. 2003]:

• Presentation Integration
• Functional Integration
• Data Integration

Many large corporations have existing code have a number of legacy systems, such as
CICS/COBOL, SAP R/3 or Siebel. With legacy systems, it might not always be possible to
achieve functional integration, which is the most preferred for reasons of ease and stability of
integration and maintaining the integrity of the system. For many older systems, “screen
scraping” is the technique used for achieving integration.

There are several ways to achieve legacy integration using Java EE, including:

• Java Message Service (JMS) to integrate with existing messaging systems
• Web services to integrate with any system
• CORBA for interfacing with code written in other languages that may exist on remote

machines.
• JNI for loading native libraries and calling them locally.

 67

• J2EE Connector Architecture (JCA). The JCA is a specification for plugging in resource
adapters that understand how to communicate with existing systems, such as SAP R/3,
CICS/COBOL, Siebel, and so-on. If such adapters are not available, you can write your own
adapter. These adapters are reusable in any container that supports the JCA.

In .NET, legacy system integration can be achieved through:

• Host Integration Server 2004 for IBM platform interoperability. Host Integration Server can be

used to integrate IBM host applications, data sources, messaging and security systems.
• Web Services for any system that can be encapsulated as a service.
• COM Transaction Integrator (COM TI) can be used for collaborating transactions across

mainframe systems.
• Microsoft Message Queue (MSMQ) can integrate with legacy systems built using IBM

MQSeries.
• Finally, BizTalk Server 2004 can be used for process integration.

4.2.3 Adaptability
4.2.3.1 .NET
4.2.3.1.1 Modifiability
.NET while providing the ability to architect systems using layering strictly, gives more leeway
to write code that mixes up all the layers. This is possible due to the programming model where
the presentation can be developed using server side controls and powerful data binding
capabilities. This often results in the presentation and business logic layer interface becoming
very fine grained or non-existent as the presentation and business logic code being mixed
together. .NET does not enforce strict layering as is possible to write all the business logic in the
code-behind files in ASP.NET, thus achieving more of a flatter model

4.2.3.1.2 .NET Attributes and Contexts
The .NET framework can use contexts as an object's execution scope and intercept calls going to
and from the object, similar to the way COM+ provides component services. What is new with
this mechanism is that the runtime allows developers to take part in the interception chain and
add powerful services, thus extending existing component services. This in turn decouples the
business logic from the system plumbing and simplifies long-term maintenance.

4.2.3.1.3 .NET Versioning
The versioning mechanisms of the .NET framework are one of the most advanced as it allows
existence and usage of multiple versions of one component. .NET assemblies are the objects of
versioning where the version number is a quadruple of 16-bit integers which is specified by the
developer. Next to private assemblies, which can be used by local assemblies only, one can
deploy multiple versions of an assembly to the global assembly cache (GAC) to share it with
applications in the computer system. Shared assemblies must be extended with a strong name,
which is some kind of UID based on public key signature for authenticity and integrity.

 68

However, changes which are not reflected correctly by the version numbers will cause
unpredictable effects.

The manifest of a .NET assembly records all dependencies to external assemblies specified by
their name, their version number and the string names, if existing. The manifest may contain, in
addition to the version number, some metadata like name of the developer and other description
which can be retrieved at runtime by reflection.

4.2.3.1.4 Reflection and Metadata
The .NET platform provides reflection at the introspection level in the System.Reflection
namespace [MSDN 2006a]. Using the System.Reflection namespace, it is possible to obtain
information about classes, fields, methods at runtime. However, the .NET framework offers the
facility to dynamically generate MSIL code at runtime in a limited way (it only permits to create
new types, not add methods and other members to existing classes and objects) by means of the
System.Reflection.Emit [MSDN 2006b] namespace. Structural reflection capabilities can be used
to provide a degree of computational reflection capability by wrapping method invocations, etc.
Ortin et al. [2005] reports on an attempt to extend the CLI by providing it with a set of structural
reflection primitives.

4.2.3.2 Java EE
4.2.3.2.1 Modifiability
While architectures without containers are possible in Java EE (using just POJOs), the use of
containers in the Java EE framework can be thought of as a way of enforcing layering
automatically making it a little less easy if not impossible to write mixed code. The use of EJBs
can be seen as an encapsulation mechanism. A lot of plumbing issues like security, transaction,
pooling and caching issues are delegated to the application server with the use of EJB.

4.2.3.2.2 Session Beans
A client can access a session bean only through the methods defined in the bean's business
interface. The business interface defines the client's view of a bean. All other aspects of the bean-
-method implementations and deployment settings, are hidden from the client. Well-designed
interfaces simplify the development and maintenance of Java EE applications. Not only do clean
interfaces shield the clients from any complexities in the EJB tier, but they also allow the beans
to change internally without affecting the clients. For example, if you change a session bean
from a stateless to a stateful session bean, you won't have to alter the client code. But if you were
to change the method definitions in the interfaces, then you might have to modify the client code
as well. Therefore, it is important that you design the interfaces carefully to isolate your clients
from possible changes in the beans.

 69

4.2.3.2.3 Entity Beans
The use of entity beans improves modifiability by providing a nice object-oriented abstraction to
persistent data in a relational database, but they demand a lot of memory and can incur a high
number of database calls. If not used in the right situations or not configured properly, entity
beans may yield poor performance. An analysis may be needed to determine if the use of entity
beans in this situation hampers performance and if additional risk mitigation activities are
required. In addition, another tradeoff can involve application server specific optimizations that
reduce portability of the system.

On the flipside, Java EE’s EJB has often been accused of being too cumbersome to program
raising questions about its modifiability [Krastev and Galletly 2003]. It adds more complexity
compared to POJOs as every session bean consists of at least three Java classes, while every
entity bean comprises at least four. This led to the rise of lightweight containers like Spring in
the first place. To deal with this, EJB 3.0 introduced dependency injection using “annotations”
which can be used to achieve a programming model similar to what can be achieved using design
frameworks like Spring. What is interesting to note is that it also increases the similarity between
Java EE’s programming model and that of .NET. Other than cumbersomeness, another major
problem reported with respect to EJB has been its performance [Prechelt 2003]. EJBs have been
reported to degrade performance considerably. Also, the persistence provided by entity beans
have been considered to be not enough or expressive enough.

4.2.3.2.4 Location Transparency
To a remote client, the location of an enterprise bean is transparent. This facility is provided by
JNDI and LDAP.

4.2.3.2.5 Annotations and Deployment Descriptors
To create an enterprise bean that has remote access, you must annotate the business interface of
the enterprise bean as a @Remote interface. The remote interface defines the business and
lifecycle methods that are specific to the bean. For example, the remote interface of a bean
named BankAccountBean might have business methods named deposit and credit.

4.2.3.2.6 Patterns
While patterns are available for Java EE, it is debatable whether this contributed to modifiability
as excessive use of patterns can prove to be detrimental [Johnson 2004]. Several frameworks are
available that use these patterns.

4.2.3.2.7 Versioning
In Java EE, packages are the objects of versioning. Without using complicated workarounds, it is
not possible for multiple package versions to exist in one system in Java EE [Stuckenholz 2005].
Some of the conflicts that arise are listed in [Poddar 2004]. They include class loading conflicts,
servlet path conflicts, JNDI namespace conflicts, etc. Workarounds include using multiple
classloaders and keeping each version of the application component class in different JAR files.

 70

4.2.3.2.8 Reflection and Metadata for Dynamic Reconfiguration
Like .NET, Java EE has a reflection API that provides runtime introspection.

4.2.3.3 Web Services
4.2.3.3.1 Modifiability
In SOA, the focus is on composition rather than building applications. In SOA, the “service” can
provide an interface based abstraction over software entities of any granularity. Perhaps, the
strongest feature of the SOA paradigm is that a service can be used to abstract an entire system
by hiding its technology, implementation, etc. and provide a standard, message based interface to
it.

4.2.3.3.2 Versioning
There is no direct way to version web services yet. The current workaround is to use XML
namespaces. An XML namespace string is unique. A date or version stamp can be appended to
this namespace.

4.2.3.3.3 Dynamic Reconfiguration
In SOA, an application can be seen in terms of a coalition of nodes. Thus, changing the
architecture often means changing the topology in terms of the nodes involved. One of the
cornerstones of SOA is dynamic discovery. Architectural reconfiguration using dynamic
discovery is a distinguishing capability of SOA (and Web Services). Architectural dynamism
may also be achieved in Web Services using an event based style.

4.2.3.4 CORBA
4.2.3.4.1 Modifiability
Changeability and extensibility of components are provided through the use of interfaces in
CORBA. Changes to server implementations are transparent to clients if they don't change
interfaces. Changes to internal broker implementation does not affect clients and servers. Thus,
one can change communication mechanisms without changing client and server code.

CORBA provides location transparency as CORBA clients/servers do not care where servers and
clients are located. This is through the Common Object Service (COS) Naming which provides
a registry to hold references to CORBA objects. COS Naming is conceptually similar to the RMI
registry.

4.2.3.4.2 Versioning
CORBA has versioning problems [Stuckenholz 2005]. The CORBA specification [OMG 2005]
does not contain any approaches to handle component evolution at all. On the basis of the current
CORBA specification, it is neither possible to enrich components with version information, nor
to run more than one version of a single component in a system.

 71

4.2.3.4.3 Reflection
CORBA also supports dynamically discovering information about remote objects at runtime. The
IDL compiler generates type information for each method in an interface and stores it in the
Interface Repository (IR). A client can thus query the IR to get run-time information about a
particular interface and then use that information to create and invoke a method on the remote
CORBA server object dynamically through the Dynamic Invocation Interface (DII). Similarly,
on the server side, the Dynamic Skeleton Interface (DSI) allows a client to invoke an operation
of a remote CORBA Server object that has no compile time knowledge of the type of object it is
implementing.

4.2.3.5 DCOM
COM does not use a centralized registration and identification service. The most common way to
do a component upgrade in COM is to remove the old component and replace it with a newer
component.

4.2.3.5.1 DCOM Versioning
Once an interface of a DCOM component is published, it gets a unique identifier (IID) that is
unique also beyond the boundaries of all computers. In DCOM, an interface, once published,
cannot be changed. If the component offers new functionality, or modified functionality, rather
than changing an interface, this is exposed through a new interface that gets a new IID [MSDN
1996b]. This practice is useful to ensure that component clients are never disabled by installing a
newer version of a component. But this also prevents the client from knowing the features of the
new component versions without rebuilding them.

4.2.3.5.2 Reflection and Metadata
All COM interfaces must derive from IUnknown which supports three methods; Addref, Release
and QueryInterface. The QueryInterface method can be used to perform runtime introspection on
a COM object.

4.2.3.6 Jini
Jini, like Web Services, also provides dynamic discovery of services through its Lookup service
and discovery protocols.

4.2.3.7 JXTA
As P2P applications are traditionally monolithic and JXTA is a set of protocols for
communication, there isn’t much that can be said in terms of application modifiability. PPA is
not about how to construct an application. Hence, JXTA has almost nothing on this subject in its
specification. Modifiability (and other quality characteristics like performance and scalability) is
often used in a different sense in PPA. In PPA, the focus is on the system. The “system” is a
network of computing nodes running usually the same application or sometimes different
applications.

 72

Since applications are tightly coupled with the protocols in PPA, modifiability may mean being
able to swap different versions of the application and still being able to function in the network.
Modifiability may also mean being able to use different types of applications within the same
network and to introduce new kinds of applications within the same network. Since JXTA is an
open set of fairly generic protocols, this may be easy to do so. However, since JXTA protocols
are fairly low level, they might not be enough for this scenario.

4.2.4 Security
The traditional approach to security can be termed as the “islands of security” model. In this,
security is applied/considered at the application level. Each application has its own security
mechanisms and policies. Also, the applications do not span domains of autonomy. They work
with the knowledge of how they will be used. Unique security challenges arise in network-
centric systems architected using SOA that comprise of a collection of services as these services
can be composed into applications that span operational boundaries. Enforcing and maintaining
end-to-end security is the biggest challenge in network-centric systems when nodes involved in
an application are geographically distributed, run on heterogeneous platforms and span
autonomous regions. This is because tried and tested security policies and mechanisms that
worked for non network-centric applications are no longer valid. This requires formulating
policies at the highest level and not leaving it to the individual applications to implement it. It
also requires propagating the policies to the various nodes involved and ensuring compliance,
which is a difficult task.

From the perspective of a single service, security challenges arise as SOAs provide an additional
layer of abstraction that exposes business functionality as services that are both location
independent and discoverable on the network. However, this leads to a breakdown of traditional
models of security. Consider the problem of authentication and authorization. Since a service can
encapsulate a system, an SOA can consist of backend systems. The various backend systems can
have various security mechanisms and policies i.e. users may have different passwords and
privileges with each system. So, when users access a composite system or service, they still need
to be authenticated to the backend systems. But since the service composition layer acts as an
abstraction layer, and masks the underlying technology and implementation details from the
users, the service, in effect masks the user identity context from the underlying applications.
This makes it difficult to associate the users of the overall functionality, since the SOA provides
no security context. For example, consider an accounts system that is exposed as a service. One
of the functionalities it offers is the ability to retrieve the salary of an employee, given the
employee ID through the get_salary API. When a call on this API comes from a service
interface, it is difficult to distinguish whether the call is authorized or not. The calling party
could be the authorized “expenditure” service or the service composition software that the
service runs on. The “islands_of_security” approach of traditional applications breaks down in a
network-centric model.

Providing security with a global perspective for network-centric systems is still an immature area
unlike security for traditional monolithic applications that have been extensively studied. If the
end-to-end security solutions involve using additional data in the messages, it may impact other
quality attributes like performance.

 73

In this section, security for Web Services are discussed first as they have to be considered both
for .NET and J2EE.

4.2.4.1 Web Services
The security model for Web Services is currently provided by specifications and standards from
various organizations. Some of the important standards include WS Security (WSS) and Security
Assertion Markup Language [OASIS 2005a] (SAML). WS-Security is a message security
mechanism that uses XML Encryption and XML Digital Signature to secure web services
messages sent over SOAP. The WS-Security specification defines the use of various security
tokens including X.509 certificates, SAML assertions, and username/password tokens to
authenticate and encrypt SOAP web services messages. This specification also defines an
extensible, general-purpose mechanism for associating security tokens with message content, as
well as how to encode binary security tokens, a framework for XML-based tokens, and how to
include opaque encrypted keys. The SAML specification defines an XML-based mechanism for
securing Business-to-Business (B2B) and Business-to-Consumer (B2C) e-commerce
transactions. SAML defines an XML framework for exchanging authentication and authorization
information. Like for the core Web Service specifications, the WS-I provides the Basic Security
Profile (BSP)[WS-I 2005b].

4.2.4.2 .NET
In both J2EE and .NET, security mechanisms exist both at the transport level and application
level.

4.2.4.2.1 Applications
.NET provides extensive support for the traditional security mechanisms. For web applications,
ASP.NET provides Windows and Forms based authentication. A role based security mechanism
can be used for components (Enterprise service components) that allows defining different
access to components, interfaces and methods. Impersonation and delegation allow accessing
resources with the same identity of the caller. The authentication level settings make it possible
to encrypt the data that is sent across the network. .NET provides Code Access Security (CAS) to
limit access to code and other resources. By employing permissions you can limit what users can
access.

4.2.4.2.2 Web Services
The technology for building Web Services using .NET is ASMX 2.0. However, ASMX provides
support for the Web Services standards specified in basic Profile and not the security stack.
Support for Web Services security specifications is provided in the Web Services Extension
(WSE) technology which is an add on to the .NET 2.0 framework. WSE 3.0 provides support
for WS-Security [Skonnard 2006]. Thus, message level security for Web Services can be
considered as part of the .NET framework.

 74

4.2.4.3 Java EE
4.2.4.3.1 Applications
The Java EE security model also addresses authentication, authorization, delegation, and data
integrity for the components that make up a Java EE environment. Java provides for security in
two ways. The Java Cryptography Architecture and Java Cryptography Extension (JCA/JCE)
provide for user authentication and authorization and signing of digital messages. Both the JCA
and JCE are “provider based”. A provider implements a cryptographic service such as generating
random numbers or random numbers or creating digital signatures. JCA forms the core of the
Java security API. JCE provides other security services like Encryption/decryption of messages,
Password-Based Encryption, Cipher, key Agreement and Message Authentication Code (MAC).
Java Authentication and Authorization Services (JAAS) provide programmatic access control
and user authorization similar to CAS in .NET. JAAS grants a set of the program’s features
based on permissions and security policies.

4.2.4.3.2 Web Services
Message Security is not yet a part of the Java EE platform [Sun 2006a]. While sun provides
support for WS-Security in its application server for Java EE called the “Sun Java System
Application Server”. Sun’s Java Web Services Developer Pack (Java WSDP) also includes XML
and Web Services Security (XWSS). However, since these are provided as proprietary
enhancements to Sun products, and are not required to be provided by all the Java EE vendors,
they cannot be considered as part of the Java EE standard.

4.2.4.4 CORBA
OMG provides a series of specifications for addressing CORBA security [OMG 2006a]. The
main specification is the CORBA security service specification. CORBA implementations may
come with a Security Service based on the specifications of the Object Management Group's
standards. These standards define three levels of service in this context: Level 0 simply
incorporates SSL (Secure Socket Layer). Level 1 is intended for applications that may need to be
secure, but where the code itself need not be aware of security issues. In such a case, all security
operations should be handled by the underlying object request broker (ORB). Level 2 supports
other advanced security features, and the application is likely to be aware of these. There are
plenty of variances between CORBA implementations that anyone choosing CORBA should
consider carefully. For example, many implementations of CORBA do not contain a Security
Service at all. Others may only implement part of the specification.

4.2.4.5 DCOM
The DCOM specification provides similar functionality to CORBA even though it looks
completely different. Authentication, data integrity, and secrecy are all wrapped up into a single
property called the authentication level. Authentication levels only apply to server objects, and
each object can have its own level set. Higher levels provide additional security, but at a greater
cost. Authentication levels vary from 1 to 7, which each level building upon the capabilities of
the previous level. Usually, a DCOM user chooses the authentication level on a per-application
basis. The user may also set a default authentication level for a server, which will be applied to

 75

all applications on the machine for which specific authentication levels are not specified. DCOM
also provides multiple levels of impersonation. COM+ provides role-based security to DCOM.

4.2.4.6 Jini
Jini Security features are quite similar to that of Java EE. It is based upon the twin notions of the
principal and access control lists (ACLs). While the principal refers to a particular network user,
access to a resource depends upon the contents of the ACL associated with that object. While
these security features of Jini are enough for a trusted workgroup, problems arise when unknown
clients are introduced to a Jini network of any size. Jini has no provision for data encryption or
authentication beyond that provided by the standard capabilities of Java and RMI. Hasselmeyer
et al. [2000] discuss Jini’s dynamically downloaded proxies as a security concern as the client
who downloads them does not know what the code of the proxy might be doing. The Jini
Security Architecture by Sun’s Davis project [jini.org 2006] tries to address that. The Jini
Security Architecture mainly defines security as a deployment-time option. Using the new JSK
(Jini Starter Kit) it is in fact possible to deploy an existing service in a secure way. In this respect
then, Jini security is similar to Java EE security. In the Jini Security Framework both the client
and the service provider can impose constraints on the service object (or proxy). For instance,
once a service’s proxy has been downloaded, it is possible to restrict which client (on the same
device) can invoke which proxy’s methods. Similarly, the client may impose certain constraints
on the service provider such as that it authenticates and achieves integrity and confidentiality.

4.2.4.7 JXTA
Since JXTA is a set of protocols and infrastructure for building peer-to-peer applications, it
makes more sense to discuss security in the context of PPA itself. The challenges in P2P
computing are different from the ones in traditional client-server computing. The lack of a single
information owner means that it is extremely difficult to establish a single security policy across
an entire network, or implement traditional CSA security measures such as authentication,
authorization, challenge/response, filtering, and logging. Some of the security problems
associated with P2P networks includes poisoning [Daswani and Garcia-Molina 2004] and
violation of privacy [Good and Krekelberg 2003]. However, the lack of central authority may
also be advantageous sometimes as it can make Denial-of-Service attacks difficult. A malicious
user cannot monitor the entire network by snooping on server communications as peer activity is
usually limited to a small locality.

4.2.5 Dependability
4.2.5.1 .NET and Java EE
Both .NET and Java EE provide similar support for the traditional mechanisms to achieve
dependability at the application level.

 76

4.2.5.1.1 Transactions
.NET provides transactions to components through .NET Enterprise Services. Similarly, the
Java EE EJB container provides built-in support for transactions.

4.2.5.1.2 State Management and Failover Clustering
When state is stored in a separate node or persisted in a database, it can be used for failover load
balancing. Clustering helps to achieve both availability (through redundancy) and scalability.
.NET and Java EE support for clustering is described under scalability.

ASP.NET allows several modes to store session state and enables on demand backing up of state
to an independent node. State in Java EE applications can be in HttpSession (for Web
Applications) or in stateful session beans. Java EE vendors provide failover clustering solutions
at the HttpSession and EJB level. The biggest difference among the Java EE servers is support
for automatic failover. Some vendor servers do not provide it, while others allow failover of
stateful session beans by using in-memory state replication [Sun 2006c].

4.2.5.1.3 Support for Asynchronous Communication
.NET provides loosely coupled events and queued components. Java EE provides support for
asynchronous communication with persistent JMS and message-driven beans.

4.2.5.2 CORBA
Fault Tolerant CORBA [OMG 2005] is the part of the CORBA 3.0 specification that can be used
to provide fault-tolerance to CORBA objects. The Fault tolerant CORBA uses the entity
redundancy paradigm (i.e. replication of objects) to provide fault tolerance to CORBA objects.

4.2.5.3 DCOM
DCOM’s reliability and consistency capabilities are mainly provided in conjunction with COM+
and MTS (Microsoft Transaction Server). DCOM also provides a “pinging mechanism” for fault
tolerance at the protocol level [MSDN 1996b]. A basic idea is for client machines to keep
sending “ping messages” periodically to a DCOM server object they are accessing. If the server
object does not receive a message from a client for a specified period of time, that client is
considered “dead”. This can be considered as a form of network failure detection mechanism.

4.2.5.4 Web Services
Dependability for Web Services can be considered from two perspectives: reliability of the
messages sent between services over unreliable channels and the reliability of a service itself. A
service that is architected in accordance with the SOA principles will be ideally stateless.
Keeping this in mind and the fact that SOA includes dynamic discovery and composition,
providing for fault tolerance at the service level might be much easier using replicated Web
Services. If Web Services providing identical functionality are available, dealing with a crashed
web server or web service node might be as simple as routing messages for them to an alternate
service using dynamic discovery. WS-Management [Arora et al. 2004] might help in this regard.

 77

Stateful Web Services, on the other hand, might pose problems as dealing with failover and will
require state management and migration. This will need to be incorporated into the code.

Message reliability in Web Services is addressed using the WS-Reliability [OASIS 2004] which
is an OASIS standard and WS-ReliableMessaging [IBM 2005] developed by IBM, BEA,
Microsoft, and TIBCO Software. WS-Reliability aims to provide guaranteed delivery of
messages, duplicate elimination and message order.

Other Web Services specifications related to dependability include WS-Transactions and WS-
Coordination proposed by a consortium of companies led by Microsoft, IBM and BEA.
However, these are not industry accepted standards as either the W3C nor OASIS has ratified
them. WS-Transaction provides for the implementation of two different types of transactions,
atomic and long running [BEA 2004]. WS-Transaction is built upon the WS-Coordination
specification that provides protocols that coordinate the actions of distributed applications.

In terms of dynamic discovery, the location of the UDDI service is hardcoded into the
application or service. This may be a less robust approach to the bootstrapping problem (i.e. in
this case, finding a directory that facilitates service publishing and discovery) than dynamically
discovering the directory using multicasting or other approaches.

4.2.5.5 Jini
In distributed systems, the most common failure scenario is the one in which some, but not all
system components can be accessed. This partial failure can be the result of a host machine
failure, a network partition, a software failure, or simple neglect (say, for example, one
component decides to cease responding to another component). One of the distinguishing
characteristics of the Jini framework is the concept of “lease” which is a useful mechanism to
deal with partial failure scenarios. A Jini service is leased to a client in order to handle network
failure and provide reliability. Each lease is negotiated between the service provider and service
consumer as part of the network protocol and when a lease expires, a client must renew that lease
in order to continue using that service.

A lease is a contract between a client and a server where a server grants a client privileges for a
certain period of time. A lease can be considered as a failure detection mechanism in that the
expiration of a lease that would have otherwise be expected to be renewed can be construed as a
network or service failure on the part of the server [Bowers et al. 2003, Jai et al. 2000].
Similarly, if the server fails to respond to a renew request, the client detects that an error has
occurred to the server. Usually, failure detection is achieved by monitoring a software entity or
by the entity sending out heartbeats. The renewal of the lease can be considered as an heartbeat
[Jai et al. 2000]. The rapidity of failure detection may be affected by the lease period [Bowers et
al. 2003].

4.2.5.6 PPA Dependability
 One of the hallmarks of PPA is that it is a decentralized architecture; applications and resources
are replicated on the various nodes of the virtual network and the nodes collectively form the

 78

system without any central coordination. Because of this decentralization, there are no single
points of failure.

Further, most PPA applications build an overlay network at the application layer. The graph-
theoretic properties of this application layer overlay influence the routing efficiency and
resilience to node failures of the network [Loguinov 2005]. Distributed Hash Tables (DHT) is an
approach that has proved to be very efficient for PPA application networks in achieving
properties such as resilience, performance and scalability [Chawathe et al. 2003]. DHTs are an
approach to building PPA applications in which an abstract keyspace is partitioned among the
participating nodes. The overlay network that connects these nodes can be used to find any node
by using its key using hash table like semantics. Thus, DHTs help to locate resources in a PPA
network more efficiently than using other approaches like flooding as fewer peers are visited and
network communication is reduced. This approach has been proposed in structured P2P
networks like Chord [Stoica et al. 2001], Pastry [Rowstron and Druschel 2001] and Tapestry
[Zhao et al. 2001]. Another approach that can cut down on message overhead when trying to
locate resources is a random walk [Lv et al. 2002].

4.2.5.6.1 JXTA
The JXTA platform provides a de-centralized environment that minimizes single-points of
failure and is not dependent on any centralized services. Both centralized and de-centralized
services can be developed on top of the JXTA platform.

In JXTA, all network resources such as peers, pipes, peergroups and services are represented by
advertisements. JXTA uses a hybrid approach to provide for dependability and scalability. It
combines a loosely consistent DHT with a limited range rendezvous walker to search for
advertisements in a JXTA network [Traversat et al. 2003a].

JXTA advertisements are published with an expiration lifetime and they are purged from the
caches of peers when it expires. This can be considered as a mechanism for dependability on the
lines of Jini leases.

4.2.6 Scalability and Performance
4.2.6.1 .NET and Java EE
While clustering, load-balancing and failover fall outside the Java EE specification, the major
implementations for application servers based on the Java EE specification provide suitable
mechanisms for it. On the .NET side, Microsoft Application Center [Microsoft 2006a] provides
support for load-balancing technology that enables a cluster of machines to collaborate and
service user load that scales over time (scale-out). Both object clustering or clustering of whole
deployments is possible as in Java EE.

.NET enterprise applications typically execute in the context of COM+ applications, which are
typically used to provide automatic transaction and Just-in-Time activation (JITA) support.
JITA helps to reduce load on a server. Java enterprise applications execute within a EJB
container such as Websphere or Weblogic, which also provide automatic transaction and
activation support.

 79

The earlier perception that .NET does not scale vertically (by deployment on faster processors)
as well as Java EE because of its dependence on the Windows operating system does not hold
anymore. The advent of Windows Server 2003, has changed this. The 64 bit datacenter Edition
of Windows Server 2003 [Microsoft 2002a] has the 3rd position in the TPC-C benchmark [TPC
2006]. The TPC-C benchmark models basic OLTP (OnLine Transaction Processing) functions
used in OLTP environments. TPC-C as a measurement of scalability is important as a
considerable number of enterprise applications are deployed in such environments. Thus,
platform wise, Windows can scale as well as a UNIX or Solaris machine.

Scalability and performance can also be improved by reducing communication overhead. Both
.NET and Java EE provide value objects and caching that can be used to achieve this. The
connection with the database can become another major bottleneck. Once again, both .NET and
Java EE provide database connection pooling that helps to improve this.

4.2.6.2 DCOM
For DCOM, platform scalability is the same as that for .NET as it is used primarily on Windows.
DCOM achieves scalability by distributing objects onto different machines (location
transparency), by providing support for symmetric multiprocessing for certain applications that
use a free thread model and parallel deployment [MSDN 1996a, 1996b].

In DCOM, a client talks to a server component only through method calls. The client obtains the
addresses of methods from a simple method address table called the “vtable” [MSDN 1996b]. If
the method resides in a different process or machine, the DCOM RPC mechanism is used to
make the call. This method is more efficient than using a component to intercept a client request
as the overhead involved in sending out a call is reduced to a lookup in a vtable.

4.2.6.3 CORBA
The Portable Object Adapter (POA) can be considered as a mechanism for scalability for
CORBA. POA is the piece of the ORB that manages server-side resources for scalability. By
deactivating objects' servants when they have no work to do, and activating them again when
they are needed, it helps to extend the same amount of hardware to service many more clients.

CORBA does not have a load balancing service [OMG 2006b] or other specific scalability
services. Like in DCOM, multi-threading can be used to achieve a degree of scalability. The
OMG [OMG 2006b] does suggest a load balancing mechanism that can be implemented based
on the features of the GIOP, OMG’s protocol for CORBA. But since issues like how it is
implemented (in terms of interface provided) and whether it is implemented at all is dependent
completely on the vendors, and no standardized interfaces are specified as part of the CORBA
specifications to access this mechanism from clients. It cannot be considered as a core feature of
CORBA.

An observation that can be made from the preceding sections on DCOM and CORBA scalability
is that, in both frameworks, features for scalability are not transparently supported. Incorporating

 80

scalability into an application built on these frameworks requires extensive technical knowledge
of the various client-server interactions involved.

4.2.6.4 Web Services
Scalability in the SOA context can be considered from several perspectives. From one point of
view, scalability can be considered as the ability to accommodate increasing numbers of services
and types of services. Other perspectives include the scalability of an individual service that is
atomic (i.e. not composed of other services) and the scalability of an application or service that is
created by federating a set of services.

When dynamic discovery is used, scalability, in the sense of being able to accommodate large
numbers of services becomes the scalability of the approach that is used for dynamic discovery.
In the case of a directory-based approach, it is then the scalability of the directory. Scalability of
the discovery process having a single directory may become a bottleneck as the number of
registered services increases exponentially. In Web Services, the discovery process using UDDI
represents a centralized approach.

From the perspective of a single service, scalability depends on the technology used to
implement it and is the same as for a single web application. The scalability scenario becomes
more interesting when you consider an application incorporating a set of services from different
providers. The overall scalability often becomes the salability of the least scalable service.

Scalability and performance is also affected by the communication protocols used. In Web
Services, the communication protocol is SOAP which is verbose and text based. This may result
in communication overhead leading to network congestion. The implementation of the soap
stack used in creating a service may also have an impact on performance. The soap stack is
responsible for providing libraries for parsing the soap messages received from various clients
and performance and scalability depend on the speed of this parsing. Also, the encoding style
used for soap may have an impact on the scalability [Cohen 2003]. Cohen [2003] describes an
experiment for testing the performance of various SOAP stacks with the document style
performing better than others.

Another factor that affects the performance of Web Services is the latency of the network over
which they are accessed. This could be quite high for the Internet and is not deterministic.

Achieving scalability by load balancing might be easy as web services are stateless. Further,
Web Services support the asynchronous communication model which can be exploited to
enhance the performance of a services based application.

4.2.6.5 Jini
Sollins [2003] postulates that it is possible to create very large scale networks by using a
grouping and partitioning mechanism. These large scale networks are formed by the
interconnection of smaller, autonomous networks called “regions” where a region can be
considered as a group of networked-entities with a boundary. While Jini was envisioned for use
mostly in LANs and small scale networks, large scale networks can be formed using the concept

 81

of Jini federations. A Jini federation is a group of Jini services and clients that come together to
form a community. These federations can, in turn, link together to form a larger federation and
so on to form a hierarchy. Thus, large Jini federations can be formed out of smaller federations.
This is possible because a Jini lookup service can register itself in other federations acting as the
interface for sharing its resources with other federation’s clients.

4.2.6.6 JXTA
Scalability for JXTA is discussed in the context of P2P virtual networks as the overall scalability
is influenced more by the characteristics of the P2P paradigm than anything else. Since the nodes
in a P2P paradigm play both role of client and server, scalability in the P2P network may be in
terms of the number of nodes that the virtual network can accommodate gracefully. Scalability
may be affected by overhead of routing, locating and synchronizing.

Since a large class of P2P networks exist for the sharing of resources, scalability and
performance for P2P can also be interpreted as the ability of the virtual network to handle sudden
spikes in the demand for particular resources. Rubenstein and Sahu [2005] report that even
simple P2P solutions are capable of naturally handling sudden spikes in demand gracefully
without much adverse effect on time and performance. Like resilience, the performance of a
PPA application network is dependent on the graph-theoretic properties of the application layer
overlay.

The same grouping and partitioning behavior that can be achieved using Jini federations for
scalability can also be achieved using JXTA peer groups. Peers in JXTA self organize into peer
groups like services and clients in Jini self organize into federations. Thus, peergroups enable
subdividing a JXTA network into “regions” which can be used as boundaries for propagation of
discovery and search requests. JXTA rendezvous and relay peers can be used as bridges between
JXTA PPA networks.

4.3 Comparative Assessment Summary

This section provides a summary of the comparative analysis of the four architectures and seven
frameworks based on architectural and quality characteristics provided in the previous sections
of this chapter. Table 1 summarizes the similarities and differences between CSA, DOA, SOA
and PPA. Table 2 summarizes the similarities and differences between the .NET framework and
Java EE. Table 3 summarizes the similarities and differences between CORBA and DCOM.
Table 4 summarizes the similarities and differences between Web Services, Jini and JXTA.

 82

Table 1 Summary of comparison between CSA, DOA/CBA, SOA and PPA

Comparison Criteria

CSA DOA/CBA SOA PPA

Interface based
definition/description

No separate
interface based
definition

Interfaces defined in
object-oriented IDL

Document-like
Service contracts

No concept of
interface

Partitioning of application logic Horizontal Horizontal and vertical Vertical NA
Discoverable
Entity

None Objects Services Peers and
resources

Discoverability
(static and
dynamic) Discoverable? None Directory lookup of object

location
Services are
dynamically
discoverable

Peers are
dynamically
discoverable

Autonomy of software units None Fair Excellent Excellent
Composability of software units None Good Excellent None
Coupling Very tight Tight Loose Tight to Loose
Software units have state? Yes Depends on design. Both

stateless and stateful
components are possible

Ideally, does not
have state

NA

Granularity of processing units Objects/functions Distributed objects,
Components

Varies. Usually a
service
encapsulates an
application

Monolithic
application on a
node

Distribution scope Application Enterprise/organization Inter-
organizational

Global

Assumptions about operational
environment

Stable Stable Stable Unstable,
transient
connections,
“computing on
the edge”

Openness External
documentation,
design and policy

Expressiveness of
Interfaces, external
documentation

Expressiveness
of Service
Contracts,
External
Documentation

Openness of
application level
communication
protocol, policy

Interaction mode Blocking
synchronous
request/reply

Primarily synchronous,
finegrained ORPC,
asynchronous comm..
Possible using polling,
callback and message
queues

Coarse grained
document-style
message passing.
Both
synchronous and
asynchronous
semantics can be
achieved

Aynchronous,
symmetric
messaging/
request/reply

Life cycle NA Objects have life cycles No notion of
object life cycle

NA

 83

Table 2 .NET vs. Java EE

Comparison Criteria .NET Java EE
Interface based definition Not enforced, possible using

“interface” language construct
Enforced only if using EJB.
Otherwise, optional using Java
“interface” construct

Framework Partially open Open specifications Openness

support for building
open applications

Interfaces, Custom attributes,
metadata, support for WS-*
standards, XML standards

Interfaces, Annotations, support for
WS-* standards

Interoperability and Integration Bridging, Web Services (support
for Basic Profile 1.0)

Bridging, RMI-IIOP, Web Services
(support for Basic Profile 1.0)

Adaptability Strict layering not enforced, but
possible

.NET attributes and contexts

Strong versioning mechanism
Manifest metadata

Reflection.Emit namespace

Strict layering enforced if using EJB
or an Inversion-of-Control container

Entity beans provide object-oriented
abstraction for relational data

Weak versioning mechanism

JNDI, annotations, deployment
descriptors

Dependability Transactions

ASP.NET state management

Loosely coupled events, queued
components

Transactions

Vendor support for automatic
failover varies

JMS, MDB

Applications Support for traditional security
mechanisms

Role based security, impersonation
and delegation, multiple
authentication and authorization
levels

Programmatic security through
 CAS

Support for traditional security
mechanisms using JCE

Role based security, programmatic
access control through JAAS

Security

Web Services Support for WS-Security Support for WS-Security not part of
Java EE spec, proprietary standards
provided.

Scalability and Performance Support for clustering, load
balancing and fail over using
Microsoft Application Server

Runs on Windows Server 2003 that
scales both horizontally and
vertically

Value objects, Automatic
transactions, JITA, caching,
database connection pooling.

Vendor support in application server
for clustering, load balancing and
failover

Runs on almost all operating systems

Provides value objects, Automatic
transactions, JITA, caching, database
connection pooling.

 84

Table 3 CORBA vs. DCOM

Comparison Criteria CORBA DCOM
Interfaces Object-oriented CORBA IDL, Multiple

inheritance implemented using
inheritance

MIDL, Multiple interfaces implemented
via aggregation

Object Uses references to identify objects Only access to the interfaces of objects is
possible

Client communication Communication with the server object is
through an ORB intermediary

Access to the server object can use RPC

Framework Open specifications maintained by OMG Specifications turned over to Open
Group

Openness

Support to build
open applications

Expressiveness of IDL, open protocol Expressiveness of MIDL, open protocol

Interoperability and Integration Using ORB-to-ORB communication. DCE-RPC protocol
Adaptability Location transparency, DII

Has problems with versioning
Location transparency, Strong Interface
Versioning,

Security CORBA security specification provides
3 levels of security

Delegation of privileges

Not much vendor support for CORBA
security specifications

Multiple authentication levels and
impersonation levels

Dependability Fault tolerant CORBA using entity
redundancy

Mechanisms provided by COM+ and
MTS

DCOM protocol’s “pinging mechanism”

Scalability and Performance Pros:
Portable Object Adaptor
Cons:
no load balancing service

Scalability and performance features not
transparently supported

Symmetric multiprocessing, vtable,
parallel deployment

Scalability and performance features not
transparently supported

 85

Table 4 Web Services vs. Jini vs. JXTA

Comparison Criteria Web Services Jini JXTA
Interface WSDL Java Interface Not applicable

Framework Web Services is a set of open
and widely accepted
standards

Jini specifications are openly
available, licensing
restrictions on developed
code

Core protocols and
specification open, openness
of application

Openness

Support for
building open
applications

Service contracts, open
protocols

Service contracts are Java
interfaces, RMI is the
protocol used

JXTA does not influence
this, matter of policy for
openness of application
protocols

Interoperability and
Integration

Intrinsic interoperability Java-centric Depends on openness of
application protocols

Adaptability Dynamic discovery of
services, contractual
description, services are
modular, dynamic
reconfiguration easy

No direct way for versioning

Dynamic discovery of
services

Dynamic discovery of peers,
resources

Security Security with global
perspective problematic,
Message based security,
policies. Standards: WS-
Security, SAML, Basic
Security Profile 1.0

Based on principles and
ACLs, similar to Java EE

Downloadable smart proxies
can create problems

Single security policy
difficult
Pros: DoS attacks, snooping
difficult
Cons:
Providing traditional CSA
security mechanisms
difficult

Dependability Dynamic discovery, loose
coupling, statelessness, WS-
Reliability, WS-
ReliableMessaging

Cons: UDDI directory single
point of failure

Dynamic discovery, partial
decentralization through
multiple Lookup services
and direct discovery through
multicast, Leases, distributed
events

Ad hoc decentralized
networks, redundancy –
application and data
replication, JXTA
advertisements with
expiration lifetime, JXTA
forms a loosely consistent
DHT with limited range
random walker

Scalability and Performance Pros: service statelessness,
autonomy, loose coupling,
coarse interfaces
Cons:
UDDI - performance
bottleneck

 SOAP and XML parsing
overhead, unpredictable
network latency (esp. if
Internet) overall scalability
least common denominator
of all services in an
orchestration

Downloadable smart
proxies, distributed
directories, Jini communities
cons: uses multicast for
discovery

Influenced by graph-
theoretic properties of the
overlay network formed,
routing algorithm of overlay
network.
JXTA peer groups, loosely
consistent DHTs.

 86

Chapter 5: Concluding Remarks

This thesis examined four mainstream architectures and seven popular associated frameworks.
One trend that can be observed from the preceding comparative analysis of these architectures
and frameworks is the need to consider architecture from a global perspective at a much higher
level of abstraction than it is today to accommodate the unique needs of systems and System-of-
Systems (SoS).The Service-Oriented Architecture (SOA) emerges as a natural candidate for
architecting systems and SoS at this level. At the same time, it becomes evident that the
Distributed-Objects Architecture (DOA) and Component Based Architecture (CBA) are more
suitable for building single applications or to implement services. The rise of SOA does not
render these architectures obsolete as SOA is an evolutionary architecture that rose in response to
requirements that could only be solved at a higher level of abstraction than was possible to
achieve with CSA, DOA or CBA. Many of the concepts found in peer-to-peer architecture are
also very relevant to building network-centric systems. Both SOA and PPA view a system as a
collection of cooperating nodes- they both take the focus away from the internals of a node and
deal with it as a blackbox. If the PPA architectural constraint that each node in a PPA network is
the same computationally is removed, the difference between SOA and PPA begins to blur.

Another trend that can be observed is that the two major platforms, .NET and Java EE are being
cross pollinated with features and ideas from each other and are almost equally powerful. What
can be achieved in one, can be achieved in the other, with perhaps different degrees of ease, cost,
and methods.

This thesis presented a conceptual framework consisting of two sets of criteria- architectural and
quality-based, for comparing network-centric software architectures and frameworks. Using this
conceptual framework, a number of unique features, constraints and mechanisms that contribute
towards realizing desirable characteristics of network-centric systems in each architecture and
framework were identified and characterized. For example, Jini has leasing mechanisms for
dependability; JXTA has an efficient method for resource location in a transient environment and
so on. This characterization helps to understand the tradeoffs involved in using a particular
architecture or framework to build a network-centric system.

The conceptual framework used for evaluating the architectures and frameworks could be further
refined and extended. Future research may also involve evaluating academic and other domain
specific architectures with respect to network-centricity. Further, a new architecture could be
created by synthesizing these features or extending current architectures with useful features
from the others.

 87

Bibliography

ACC (2006), “Terrms and Definitions,” Acquisition Community Connection,”
https://acc.dau.mil/simplify/ev.php?ID=93327_201&ID2=DO_TOPIC

Acton, M. (2003), “Designing Highly Available Web-Based Software Systems,” CrossTalk 16, 8, 4-8.

Adler, R.M. (1995), "Distributed Coordination Models for Client/Server Computing," Computer 28, 4, 14-22.

Anand, S., Padmanabhuni, S. and Ganesh, J. (2005), "Perspectives on Service Oriented Architecture," In

Proceedings of the IEEE International Conference on Services Computing, IEEE computer society
press, Los Alamitos, CA, pp. xvii.

Androutsellis-Theotokis, S. and Spinellis, D. (2004), “A Survey of Peer-to-Peer Content Distribution

Technologies,” ACM Computing Survey 36, 4, 335-371.

Apache (2004), “Apache License, Version 2.0,” http://www.apache.org/licenses/LICENSE-2.0.html

Arora, A., Geller, A., He, J., Kaler, C., McCollum, R., Milenkovic, M., et al. (2004), “Web Services for

Management,” http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management1004.pdf

Barbacci, M., R., Ellison, R., J., Weinstock, C., B. and Wood W. G. (2000), “Quality Attribute Workshop

Participants Handbook,” Special report, Software Engineering Institute, CMU/SEI-2000-SR-001.

BEA (2004), “Web Services Transaction (WS-Transaction),” http://dev2dev.bea.com/pub/a/2004/01/ws-

transaction.html

Belloir, N., Bruel, J. and Barbier, F. (2003), “Whole-Part Relationships for Software Component Combination,” In

Proceedings of the 29th Conference on EUROMICRO, IEEE Computer Society, Washington, DC, pp.
86.

BitTorrent (2006), “BitTorrent homepage,” http://www.bittorrent.com/

Boeing (2005), "Strategic Architecture Reference Model", The Boeing Company, Anaheim, CA,

http://www.boeing.com/ids/stratarch/docs/sarm.pdf

Bowers, K., Mills, K., and Rose, S. (2003), “Self-Adaptive Leasing for Jini,” In Proceedings of the First IEEE

international Conference on Pervasive Computing and Communications, IEEE Computer Society,
Washington, DC, pp. 539.

Box, D. and Pattison, T. (2002), Essential .Net: the Common Language Runtime, Addison-Wesley Longman

Publishing Co., Inc.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996), Pattern-Oriented Software

Architecture: a System of Patterns, John Wiley & Sons, Inc.

Casagni, M. and Lyell, M. (2003), “Comparison of two component frameworks: the FIPA-compliant multi-agent

system and the web-centric J2EE platform,” In Proceedings of the 25th international Conference on
Software Engineering, IEEE Computer Society, Washington, DC, pp. 341-351.

 88

https://acc.dau.mil/simplify/ev.php?ID=93327_201&ID2=DO_TOPIC
http://www.apache.org/licenses/LICENSE-2.0.html
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management1004.pdf
http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.html
http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.html
http://www.bittorrent.com/
http://www.boeing.com/ids/stratarch/docs/sarm.pdf

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N. and Shenker, S. (2003), “Making Gnutella-like P2P Systems
Scalable,” In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and
Protocols For Computer Communications, ACM Press, New York, NY, pp. 407-418.

Chung, J. (2005), "An Industry View on Service-Oriented Architecture and Web Services," in Proceedings of the

IEEE International Workshop on Service-Oriented System Engineering, IEEE computer society,
Washington, DC, pp. 59.

Chung J., Lin K. and Mathieu, R.G. (2003), "Web Services Computing: Advancing Software Interoperability,"

Computer 36, 10, 35- 37.

Clayton, C. W. (2000), “Scalability with the Use of Object Pooling in an E-Commerce Environment,” Microsoft

Developer Network, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomser/html/scalobjpool.asp

Cohen C. (2003), “Discover SOAP Encoding's Impact on Web Service Performance,” http://www-

128.ibm.com/developerworks/webservices/library/ws-soapenc/

Cook, S.C. (2001), “On the Acquisition of Systems of Systems,”

http://www.unisa.edu.au/seec/pubs/01papers/SoS%20Acquisition.PDF

Cotroneo, D., Graziano, A. and Russo, S. (2004), “Security Requirements in Service Oriented Architectures for

Ubiquitous Computing,” In Proceedings of the 2nd Workshop on Middleware For Pervasive and Ad-
Hoc Computing, ACM Press, New York, NY, pp. 172-177.

Bailes, J. E. and Templeton, G. F. (2004), “Managing P2P security,” Communications of the ACM 47, 9, 95-98.

Bondi, A. B. (2000), “Characteristics of Scalability and their Impact on Performance,” In Proceedings of the 2nd

international Workshop on Software and Performance, ACM Press, New York, NY, pp. 195-203.

Dabrowski, C. and Mills, K. (2002), “Understanding Self-healing in Service-Discovery Systems,” In Proceedings

of the First Workshop on Self-Healing Systems, ACM Press, New York, NY, pp. 15-20.

Dashofy, E. M., Medvidovic, N. and Taylor, R. N. (1999), “Using Off-the-shelf Middleware to Implement

Connectors in Distributed Software Architectures,” In Proceedings of the 21st international Conference on
Software Engineering, IEEE Computer Society Press, Los Alamitos, CA, pp. 3-12.

Daswani, N. and Garcia-Molina, H. (2004), “Pong-cache Poisoning in GUESS,” In Proceedings of the 11th ACM

Conference on Computer and Communications Security, ACM Press, New York, NY, pp. 98-109.

DoD (2006), “Horizontal Fusion: FAQs,” http://horizontalfusion.dtic.mil/faq/

DoD (2006a), “Network-Centric Warfare: Department of Defense Report to Congress,” Department of Defense,

http://www.defenselink.mil/nii/NCW/

DODAF (2004), “DoD Architecture Framework Version 1.0,”

http://www.defenselink.mil/nii/doc/DoDAF_v1_Volume_I.pdf

Dogac, A., Dengi, C., and Öszu, M. T. (1998), “Distributed Object Computing Platforms,” Communications of the

ACM 41, 9, 95-103.

ECMA International (2005), “Standard ECMA-335 -- Common Language Infrastructure (CLI),” Third Edition,

Technical report ECMA-335,
http://www.ecma-international.org/publications/standards/Ecma-335.htm

 89

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/scalobjpool.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomser/html/scalobjpool.asp
http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www.unisa.edu.au/seec/pubs/01papers/SoS%20Acquisition.PDF
http://horizontalfusion.dtic.mil/faq/
http://www.defenselink.mil/nii/NCW/
http://www.defenselink.mil/nii/doc/DoDAF_v1_Volume_I.pdf
http://www.ecma-international.org/publications/standards/Ecma-335.htm

Eddon, G. and Eddon, H. (1998), “Understanding the DCOM Wire Protocol by Analyzing Network Data Packets,”

Microsoft Systems Journal, http://www.microsoft.com/msj/0398/dcom.aspx

Ellison, R. J., Moore, A. P., Bass, L., Klein, M. and Bachmann, F. (2004), “Security and Survivability Reasoning

Frameworks and Architectural Design Tactics,”
http://www.sei.cmu.edu/publications/documents/04.reports/04tn022.html

Emmerich, W. and Kaveh, N. (2001), “Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the

CORBA Component Model,” In Proceedings of the 8th European Software Engineering Conference
Held Jointly with 9th ACM SIGSOFT international Symposium on Foundations of Software
Engineering, ACM Press, New York, NY, pp. 311-312.

Erl, T. (2005), “A Look Ahead to the Service-Oriented World: Defining SOA When There’s No Single, Official

Definition,” http://weblogic.sys-con.com/read/48928.htm

Esposito, D. (2002), Building Web Solutions with ASP.NET and ADO.NET, Microsoft Press Redmond, WA,

USA.

Evans, M. W. and Marciniak, J. (1987), Software Quality Assurance and Management,John Wiley & Sons, Inc,

New York, NY.

Fayad, M. and Schmidt, D. C. (1997), “Object-Oriented Application Frameworks,” Communications of the ACM

40, 10, 32-38.

Forster, F., and De Meer, H. (2004), “Discovery of Web Services With a P2P Network,” In Proceedings of the

4th International Conference on Computational Science (ICCS) 2004, Springer-Verlag, Berlin, pp. 90-
97.

Fowler, M. (2002), Patterns of Enterprise Application Architecture, Addison-Wesley Longman Publishing Co., Inc.

Fuzak, C., Carper, W. L., Gmitruk, M., Aitkenhead, J. W., Mattoon, T. and Monteleon, V. J. (2001), “C4ISR

Imperatives -- Cornerstones of a Network-Centric Architecture,”
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA434121&Location=U2&doc=GetTRDoc.pdf

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995), Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Longman Publishing Co., Inc.

Garlan, D., (2000), “Software Architecture: a Roadmap,” In Proceedings of the Conference on the Future of

Software Engineering ICSE '00, ACM Press, New York, NY, pp. 91-101.

Gnutella (2001), “Gnutella Homepage” http://www.gnutella.com/

Good, N. S. and Krekelberg, A. (2003), “Usability and Privacy: a Study of Kazaa P2P File-sharing,” In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM Press, New
York, NY, pp. 137-144

Govindaraju, M., Slominski, A., Choppella, V., Bramley, R., and Gannon, D. (2000), “Requirements for and

Evaluation of RMI protocols for Scientific Computing,” In Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing (CDROM), IEEE Computer Society, Washington, DC, pp. 61.

Gray, C. and Cheriton, D. (1989), “Leases: an Efficient Fault-tolerant Mechanism for Distributed File Cache

Consistency,” In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles,
ACM Press, New York, NY, pp. 202-210.

 90

http://www.microsoft.com/msj/0398/dcom.aspx
http://www.sei.cmu.edu/publications/documents/04.reports/04tn022.html
http://weblogic.sys-con.com/read/48928.htm
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA434121&Location=U2&doc=GetTRDoc.pdf
http://www.gnutella.com/

Groove Networks (2005), “Groove Virtual Office at a Glance: Architecture,” http://www.groove.net/pdf/gaag/gaag-

architecture.pdf

Halepovic, E. and Deters, R. (2002), “Building a P2P Forum System with JXTA,” In Proceedings of the Second

international Conference on Peer-To-Peer Computing, IEEE Computer Society, Washington, DC, p.
41.

Hasselmeyer, P., Kehr, R. and Vob, M. (2000), “Tradeoffs in a Secure Jini Service Architecture,“ In Proceedings

of the 3rd IFIP/GI International Conference on Trends towards a Universal Service Market,
Springer-Verlag, London, UK, pp. 190-201.

Hinton, H. M. (1997), “Under-specification, Composition and Emergent Properties,” In Proceedings of the 1997

Workshop on New Security, ACM Press, New York, NY, pp. 83-93.

Hohpe, G. and Woolf, B. (2004), Enterprise Integration patterns: designing, building and deploying

messaging solutions, Addison-Wesley

IBM (2006), “IBM Homepage,” http://www.ibm.com/us/

IBM (2005), “Web Services Reliable Messaging,” http://www-

128.ibm.com/developerworks/library/specification/ws-rm/

IEEE (1990), “IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries,”

Institute of Electrical and Electronics Engineers, New York, NY.

Ironside, E., Etzkorn, L., and Zajac, D. (2001), “Examining CORBA Interoperability,” Dr. Dobb's J. 26, 6, 111-

122.

Jai, B., Ogg, M. and Ricciardi, A. (2000), “Effortless Software Interoperability with Jini Connection Technology,”

Bell Labs Technical Journal 5, 2, 88-101

JCP (2005a), “JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0,” Java Community Process,

http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html

Jini (2006), “Jini Standards,” http://www.jini.org/standards/

jini.org (2006), “Davis Project Home,” http://davis.jini.org/

JNBridge LLC. (2006), “JNBridgePro: High Performance Java/.NET Interoperability,”

http://www.jnbridge.com/jnbpro.htm

Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., and Kopylenko, D. (2005), Professional Java Development

with the Spring Framework, Wrox Press Ltd.

Johnson, R. (2005), “J2EE Development Frameworks,” Computer 38, 1, 107-110.

JXTA (2006a),”Project JXTA,” http://www.jxta.org/

JXTA (2006b), “General JXTA™ FAQ,” http://www.jxta.org/JXTAFAQ.html#whatisProjectJXTA

Kazaa (2005), “Kazaa homepage,” http://www.kazaa.com/us/index.htm

 91

http://www.groove.net/pdf/gaag/gaag-architecture.pdf
http://www.groove.net/pdf/gaag/gaag-architecture.pdf
http://www.ibm.com/us/
http://www-128.ibm.com/developerworks/library/specification/ws-rm/
http://www-128.ibm.com/developerworks/library/specification/ws-rm/
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://www.jini.org/standards/
http://davis.jini.org/
http://www.jnbridge.com/jnbpro.htm
http://www.jxta.org/
http://www.jxta.org/JXTAFAQ.html#whatisProjectJXTA
http://www.kazaa.com/us/index.htm

Krastev, A. and Galletly, J. (2003), “Do We Really Need EJB?” In Proceedings of the 4th international
Conference on Computer Systems and Technologies: E-Learning, ACM Press, New York, NY, pp.
190-195.

Krieger, D. and Adler, R.M. (1998), "The Emergence of Distributed Component Platforms," Computer 31, 3, 43-

53.

Laprie, J., C., Avizienis, A. and Randell, B. (2000), "Fundamental Concepts of Dependability," UCLA CSD Report

#010028, UCLA, Los Angeles, CA

Lau, Y. (2004), “Service-Oriented Architecture and the C4ISR Framework,” CrossTalk 17, 9, 11-14.

Ledru, P. (2002), “Smart proxies for Jini Services,” SIGPLAN Notes 37, 4, 57-61.

Lewandowski, S. M. (1998), “Frameworks for Component-based Client/Server Computing,” ACM Computing

Surveys 30, 1, 3-27.

Logan, B. C. (2003). "Technical Reference Model for Network-centric Operations," Crosstalk 16, 8, 22-25

Loguinov, D., Casas, J. and Wang, X. (2005), “Graph-theoretic Analysis of Structured Peer-to-Peer Systems:

Routing Distances and Fault Resilience,” IEEE/ACM Transactions on Networks 13, 5, 1107-1120.

Lowy, J. (2003), Programming .NET Components, O’Reilly & Associates Inc, Sebastopol, CA, USA

LSDIS (2006), “MWSAF: METEOR-S Web Service Annotation Framework,” Large Scale Distributed Information

Systems, http://lsdis.cs.uga.edu/projects/meteor-s/mwsaf/

Lumpe, M. (2002), “On the Representation and Use of Metadata,”

http://www.cs.iastate.edu/~lumpe/WCL2002/Camera/Lumpe.pdf

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002), “Search and Replication in Unstructured Peer-to-Peer

Networks,” In Proceedings of the 16th international Conference on Supercomputing, ACM Press,
New York, NY, pp. 84-95.

Maeir, M. W. (2006), “Architecting Principles for System-of-Systems,”

http://www.infoed.com/Open/PAPERS/systems.htm

Medvidovic, N. (2002), “On the Role of Middleware in Architecture-based Software Development,” In

Proceedings of the 14th international Conference on Software Engineering and Knowledge
Engineering, ACM Press, New York, NY, pp. 299-306.

Meredith, L. G. and Bjorg, S. (2003), “Contracts and Types,” Communications of the ACM 46, 10, 41-47.

Meyers, B. C., Levine, L., Morris, E., Place, P. and Plakosh D. (2004), “SOSI: System-of-Systems

Interoperability,” Software Engineering Institute, http://www.sei.cmu.edu/products/events/acquisition/2004-
presentations/meyers/

Middsol (2006), “MiddCor.NET,” http://www.middsol.de/MiddCor/doc/MiddCor.pdf

Microsoft (2006), “Microsoft .NET Homepage,” http://www.microsoft.com/net/default.mspx

Microsoft (2006a), “Application Center Product Overview,”

http://www.microsoft.com/applicationcenter/evaluation/overview/default.mspx

Microsoft (2006b), “Microsoft Corporation Homepage,” http://www.microsoft.com/

 92

http://lsdis.cs.uga.edu/projects/meteor-s/mwsaf/
http://www.cs.iastate.edu/%7Elumpe/WCL2002/Camera/Lumpe.pdf
http://www.infoed.com/Open/PAPERS/systems.htm
http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/meyers/
http://www.sei.cmu.edu/products/events/acquisition/2004-presentations/meyers/
http://www.middsol.de/MiddCor/doc/MiddCor.pdf
http://www.microsoft.com/net/default.mspx
http://www.microsoft.com/applicationcenter/evaluation/overview/default.mspx
http://www.microsoft.com/

Microsoft (2005), “Understanding the Distributed Object Component Model (DCOM) Architecture,”

http://www.microsoft.com/ntserver/techresources/appserv/COM/dcom_architecture.asp

Microsoft (2004), “How to use ASP.NET Session State SQL Server Mode in a Failover Cluster,”

http://support.microsoft.com/default.aspx?scid=kb;en-us;323262

Microsoft (2004a), “Service Orientation and Its Role in Your Connected Systems Strategy,”

http://msdn.microsoft.com/architecture/default.aspx?pull=/library/en-us/dnbda/html/srorientwp.asp

Microsoft (2002a), “Overview of Windows Server 2003 R2, Datacenter Edition,”

http://www.microsoft.com/windowsserver2003/evaluation/overview/datacenter.mspx

Monarch, I. and Wessel, J. (2005), “Autonomy and Interoperability in System of Systems Requirements

Development,” in Proceedings of the Fifth International Workshop on for requirements for High Assurance
Systems, Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA,
http://www.sei.cmu.edu/community/rhas-workshop/monarch.pdf

MSDN (2006), “MSDN Home Page,” Microsoft Corporation, Redmond, WA,

http://msdn1.microsoft.com/en-us/default.aspx

MSDN (2006a), “The System.Reflection Namespace,”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemreflection.asp

MSDN (2006b), “The System.Reflection.Emit Namespace,”
 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemreflectionemit.asp

MSDN (2006c), “Session-State Modes,” http://msdn2.microsoft.com/en-us/library/ms178586(VS.80).aspx

MSDN (2006d), “Architectural Overview of XML in the .NET framework,”

http://msdn2.microsoft.com/en-us/library/hfkahe27(VS.80).aspx

MSDN (2006f), “.NET Remoting Overview,” http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpguide/html/cpconnetremotingoverview.asp

MSDN (2006j), “Web Services Enhancements,”

http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx

MSDN (1997a), “DCOM Architecture,” http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dndcom/html/msdn_dcomarch.asp

MSDN (1996a), “Cariplo: Distributed Object Component Model,”
 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomhb.asp

MSDN (1996b), “DCOM Technical Review,”
 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp

Nagel, C. (2005), Enterprise Services with the .NET Framework : Developing Distributed Business

Solutions with .NET Enterprise Services (Microsoft Net Development Series), Addison-Wesley
Professional, Boston, MA

Nikander, P. (2000), “Fault Tolerance in Decentralized and Loosely Coupled Systems,” In Ericsson Conference

on Software Engineering, Stockholm, Sweden, http://www.tml.tkk.fi/~pnr/publications/Ecse2000.pdf

 93

http://www.microsoft.com/ntserver/techresources/appserv/COM/dcom_architecture.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;323262
http://msdn.microsoft.com/architecture/default.aspx?pull=/library/en-us/dnbda/html/srorientwp.asp
http://www.microsoft.com/windowsserver2003/evaluation/overview/datacenter.mspx
http://www.sei.cmu.edu/community/rhas-workshop/monarch.pdf
http://msdn1.microsoft.com/en-us/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemreflection.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemreflectionemit.asp
http://msdn2.microsoft.com/en-us/library/ms178586(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/hfkahe27(VS.80).aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomarch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomhb.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp
http://www.tml.tkk.fi/%7Epnr/publications/Ecse2000.pdf

OASIS (2006), Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/home/index.php

OASIS (2004), “WS-Reliability 1.1,”

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

OMG (2006a) “OMG Security,” Object Management Group,

http://www.omg.org/technology/documents/formal/omg_security.htm#Security_Service

OMG (2006b), “ORB Basics,” Object Management Group,

http://www.omg.org/gettingstarted/orb_basics.htm#g:LoadBalancing

OMG (2005), “CORBA/IIOP Specification,” Object Management Group,

http://www.omg.org/technology/documents/formal/corba_iiop.htm

Open Group (2006), “The Open Group: Boundaryless information flow through Interoperability,”

http://www.opengroup.org/

Open Group (1997), “DCE 1.1: Remote Procedure Call – Transfer Syntax NDR,”

http://www.opengroup.org/onlinepubs/9629399/chap14.htm

Oracle (2004), "Building a Network-centric Warfare Architecture", Oracle Corporation, Redwood Shores, CA,

http://www.oracle.com/industries/government/ncwwhitepaperr1.pdf

Orchard, D. (2004), “Achieving Loose Coupling,”
 http://dev2dev.bea.com/pub/a/2004/02/orchard.html

Orfali, R., Harkey, D. and Edwards, J. (1999), Client/Server Survival Guide, 3rd Edition, John Wiley & Sons.

Ortin, F., Redondo, J., Vinuesa, L. and Cueva, J.M. (2005), “Adding Structural Reflection to the SSCLI,”

http://dotnet.zcu.cz/NET_2005/Papers%5CFull%5CA67-full.pdf

OSJTF (2006), “Open Systems Joint Task Force,” http://www.acq.osd.mil/osjtf/

OUSDATL (2005), “System-of-Systems and Family-of-Systems Frequently Asked Questions,” Office of the Under

Secretary of Defense for Acquisition, Technology, and Logistics,
http://www.acq.osd.mil/dpap/Docs/FAQs-- SoS & FoS.doc

OWL-S (2004), “DAML Services,” http://www.daml.org/services/owl-s/

Papazoglou, M. P. and Georgakopoulos, D. (2003), “Introduction,” Communications of the ACM 46, 10, 24-28.

Patrick, P. (2005), “Impact of SOA on Enterprise Information Architectures,” In Proceedings of the 2005 ACM

SIGMOD international Conference on Management of Data, ACM Press, New York, NY, pp. 844-
848.

Peltzer, D. (2004), .NET and J2EE Interoperability, McGraw-Hill/Osborne.

Perrey, R. and Lycett, M. (2003), "Service-Oriented Architecture," In Proceedings of the Symposium on

Applications and the Internet Workshops, IEEE Computer Society, Washington, DC, pp. 116-119.

Pinzger, M., Oberleitner, J. and Gall, H. (2003), "Analyzing and Understanding Architectural Characteristics of

COM+ Components," In proceedings of the 11th IEEE International Workshop on Program
Comprehension, IEEE Computer Society Press, Washington, DC, pp. 54- 63.

 94

http://www.oasis-open.org/home/index.php
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.omg.org/technology/documents/formal/omg_security.htm#Security_Service
http://www.omg.org/gettingstarted/orb_basics.htm#g:LoadBalancing
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.opengroup.org/
http://www.opengroup.org/onlinepubs/9629399/chap14.htm
http://www.oracle.com/industries/government/ncwwhitepaperr1.pdf
http://dev2dev.bea.com/pub/a/2004/02/orchard.html
http://dotnet.zcu.cz/NET_2005/Papers%5CFull%5CA67-full.pdf
http://www.acq.osd.mil/osjtf/
http://www.acq.osd.mil/dpap/Docs/FAQs--%20SoS%20&%20FoS.doc
http://www.daml.org/services/owl-s/

Poddar, I. (2004), “Co-hosting multiple versions of J2EE applications,” IBM WebSphere Developer Technical
Journal, IBM,
http://www-128.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

Prechelt, L. (2003) “The Co-evolution of a Hype and a Software Architecture: Experience of Component-Producing

Large-Scale EJB Early Adopters,” In Proceedings of the 25th international Conference on Software
Engineering, IEEE Computer Society, Washington, DC, pp. 553-556.

Pressman, R. S. (2005), Software Engineering: A Practitioner’s Approach, McGraw-Hill Professional, New

York, NY, 6th Edition.

Reiss, S. P. (2005), “A Component Model for Internet-Scale Applications,” In Proceedings of the 20th

IEEE/ACM international Conference on Automated Software Engineering, ACM Press, New York,
NY, pp. 34-43.

Ripeanu, M. (2001), "Peer-to-Peer Architecture Case Study: Gnutella Network," In proceedings of the First

International Conference on Peer-to-Peer Computing, IEEE Computer Society, Washington, DC,
p. 0099.

Rowstron, A. I. and Druschel, P. (2001), “Pastry: Scalable, Decentralized Object Location, and Routing for Large-

Scale Peer-to-Peer Systems,” In Proceedings of the IFIP/ACM international Conference on
Distributed Systems Platforms Heidelberg, Springer-Verlag, London, pp. 329-350.

Rubenstein, D. and Sahu, S. (2005), “Can Unstructured P2P Protocols Survive Flash Crowds?” IEEE/ACM

Transactions on Networks 13, 3, 501-512.

Schmidt, M.-T, Hutchison, B., Lambros, P. and Phippen, R. (2005), “The Enterprise Service Bus: Making Service-

Oriented Architecture Real,” IBM Systems Journal 44, 4, 781-797.

SEI (2006a), “The Open System Approach at the SEI,” Software Engineering Institute, Carnegie Mellon University,

Pittsburg, PA, http://www.sei.cmu.edu/opensystems/

SEI (2006b), “Integrating the SoS”, Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA,
 http://www.sei.cmu.edu/isis/guide/engineering/integration.htm

SEI (2006c) “Component Frameworks”, Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA,
 http://www.sei.cmu.edu/isis/guide/engineering/integration.htm

SEI (2006d), “A Framework for Software Product Line Practice Version 4.2,” Software Engineering Institute,

Carnegie Mellon University, Pittsburg, PA,
http://www.sei.cmu.edu/productlines/frame_report/softwareSI.htm

SEI (2006e),”The Open Systems Approach at the SEI,” Software Engineering Institute, Carnegie Mellon University,

Pittsburg, PA, http://www.sei.cmu.edu/opensystems/

SEI (2006f), “Open Systems Frequently Asked Questions (FAQ),” Software Engineering Institute, Carnegie Mellon

University, Pittsburg, PA, http://www.sei.cmu.edu/opensystems/faq.html

SEI (2006g), “Three tier software architectures,” Software Engineering Institute, Carnegie Mellon University,

Pittsburg, PA, http://www.sei.cmu.edu/str/descriptions/threetier_body.html

SEI (2005), “Component Object Model (COM), DCOM, and Related Capabilities,” Software Engineering Institute,

Carnegie Mellon University, Pittsburg, PA, http://www.sei.cmu.edu/str/descriptions/com.html

 95

http://www-128.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html
http://www.sei.cmu.edu/opensystems/
http://www.sei.cmu.edu/isis/guide/engineering/integration.htm
http://www.sei.cmu.edu/isis/guide/engineering/integration.htm
http://www.sei.cmu.edu/productlines/frame_report/softwareSI.htm
http://www.sei.cmu.edu/opensystems/
http://www.sei.cmu.edu/opensystems/faq.html
http://www.sei.cmu.edu/str/descriptions/threetier_body.html
http://www.sei.cmu.edu/str/descriptions/com.html

SEI (2000), “Three Tier Software Architectures,” Software Engineering Institute, Carnegie Mellon University,
Pittsburg, PA, http://www.sei.cmu.edu/str/descriptions/threetier.html

SETI (2006), “SETI@home Homepage,” http://setiathome.ssl.berkeley.edu/

Shrivastava, S., K. and Wheater, S., M. (1998), "Architectural Support for Dynamic Reconfiguration of Large Scale

Distributed Applications," In Proceedings of the Fourth International Conference on Configurable
Distributed Systems, IEEE Computer Society, Washington, DC, pp.10-17

Singh, M. (2001), "Peering at Peer-to-Peer Computing," IEEE Internet Computing 5, 6, 4- 5.

Singh, I., Stearns, B., and Johnson, M. (2002), Designing Enterprise Applications with the J2EE Platform, Second

Edition, Addison-Wesley Longman Publishing Co., Inc.

Skonnard, A. (2006), “Service Station: All about ASMX 2.0, WSE 2.0 and WCF,” MSDN Magazine,

http://msdn.microsoft.com/webservices/default.aspx?pull=/msdnmag/issues/06/01/servicestation/default.aspx

Skonnard, A. (2001),” XML in .NET: .NET Framework XML Classes and C# Offer Simple, Scalable Data

Manipulation,” MSDN Magazine, http://msdn.microsoft.com/msdnmag/issues/01/01/xml/

Sollins, K. R. (2003), “Designing for Scale and Differentiation,” In Proceedings of the ACM SIGCOMM

Workshop on Future Directions in Network Architecture, ACM Press, New York, NY, pp. 267-276.

Spring (2006), “The Spring Framework,” http://www.springframework.org/

SSC San Diego (2006), “SSC San Diego: Programs,”

http://www.spawar.navy.mil/sandiego/html/programs_body.html

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001), “Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications,” In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, ACM Press, New York,
NY, pp. 149-160.

Stuckenholz, A. (2005), “Component Evolution and Versioning State of the Art,” SIGSOFT Software Engineering

Notes 30, 1, 7.

Sun Microsystems (2006), “Java Platform, Enterprise Edition (Java EE) 5 Technologies,” Sun Microsystems, Santa

Clara, CA, http://java.sun.com/javaee/5/javatech.html

Sun Microsystems (2006a), “Using Message Security with Java EE,” Sun Microsystems, Santa Clara, CA,
http://java.sun.com/javaee/5/docs/tutorial/doc/Security-WebSvcs7.html

Sun Microsystems (2006b), “Jini Network Technology - Sun Community Source License (SCSL) Overview,” Sun

Microsystems, Santa Clara, CA,
http://www.sun.com/software/jini/licensing/overview.xml

Sun (2006c), “High Availability for J2EE Platform-Based Applications,” Sun Microsystems, Santa Clara, CA,
http://java.sun.com/developer/technicalArticles/J2EE/applications/index.html

Sun (2006d), “Jini Specifications,” Sun Microsystems, Santa Clara, CA,
http://www.sun.com/software/jini/specs/

Sun (2005), “JXTA v2.3.x: Java Programmer’s Guide,” Sun Microsystems, Santa Clara, CA,
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf

 96

http://www.sei.cmu.edu/str/descriptions/threetier.html
http://setiathome.ssl.berkeley.edu/
http://msdn.microsoft.com/webservices/default.aspx?pull=/msdnmag/issues/06/01/servicestation/default.aspx
http://msdn.microsoft.com/msdnmag/issues/01/01/xml/
http://www.springframework.org/
http://www.spawar.navy.mil/sandiego/html/programs_body.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/javaee/5/docs/tutorial/doc/Security-WebSvcs7.html
http://www.sun.com/software/jini/licensing/overview.xml
http://java.sun.com/developer/technicalArticles/J2EE/applications/index.html
http://www.sun.com/software/jini/specs/
http://www.jxta.org/docs/JxtaProgGuide_v2.3.pdf

Sun (2005a), “Java EE Tutorial,” Sun Microsystems, Santa Clara, CA,
 http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf

Sun (2004), “JXTATM Technology: Creating Connected Communities,” Sun Microsystems,

http://www.jxta.org/docs/JXTA-Exec-Brief.pdf

Sun (2004a), “Jini Architecture Specification,” http://www.sun.com/software/jini/specs/jini1.2html/jiniTOC.html

Sun (2002a), “Portable Object Adaptor (POA),” http://java.sun.com/j2se/1.4.2/docs/guide/idl/POA.html

Szyperski, C. (2003), “Component Technology: What, Where, and How?” In Proceedings of the 25th

international Conference on Software Engineering, IEEE Computer Society, Washington, DC, pp. 684-
693.

Szyperski, C. (1998), Component Software: Beyond Object-Oriented Programming, Addison-Wesley, Reading MA,

Harlow, England.

Tartanoglu, F., Issarny, V., Romanovsky, A. and Levy, N. (2003), “Dependability in the Web Services

Architecture,” in Architecting Dependable Systems, LNCS 2677, http://www-
rocq.inria.fr/~tartanog/publi/wads/

Tichy, M. and Giese, H. (2004), “A Self-optimizing Run-Time Architecture for Configurable Dependability of

Services,” Lecture Notes in Computer Science, Springer Berlin/Heidelberg, Volume 3069, pp. 25-50.

TPC (2006), “Top Ten TPC-C by Performance,” Transaction Processing Performance Council,

http://www.tpc.org/tpcc/results/tpcc_perf_results.asp

Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J. , Pouyoul, E. and Yeager, B. (2003),

“Project JXTA 2.0 Super-Peer Virtual Network,” Sun Microsystems,
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

Traversat, B., Abdelaziz, M. and Pouyoul, E. (2003a), “Project JXTA: A Loosely-Consistent DHT Rendezvous

Walker,” http://www.jxta.org/docs/jxta-dht.pdf

Trowbridge, D., Roxburgh, U., Hohpe, G., Manolescu, D. and Nadhan, E. G. (2004), “Integration Patterns,”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp

UDDI (2004), “UDDI Version 3.0.2,” http://uddi.org/pubs/uddi_v3.htm

Vogols, W. (2003), “Web Services Are Not Distributed Objects,” IEEE Internet Computing 7, 6, 59-63.

W3C (2006), “Web Services Activity,” http://www.w3.org/2002/ws/

W3C (2006a), “Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,”

http://www.w3.org/TR/wsdl20/#component_model

W3C (2005a), “Web Service Semantics WSDL-S,” http://www.w3.org/Submission/WSDL-S/

W3C (2004), “Web Services Architecture,” http://www.w3.org/TR/ws-arch/

W3C (2003a), “SOAP Version 1.2 Part 1: Messaging Framework,” http://www.w3.org/TR/soap12-part1/

Waldo, J. (1999), “The Jini Architecture for Network-Centric Computing,” Communications of the ACM 42, 7,

76-82.

 97

http://java.sun.com/javaee/5/docs/tutorial/doc/JavaEETutorial.pdf
http://www.jxta.org/docs/JXTA-Exec-Brief.pdf
http://www.sun.com/software/jini/specs/jini1.2html/jiniTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/idl/POA.html
http://www-rocq.inria.fr/%7Etartanog/publi/wads/
http://www-rocq.inria.fr/%7Etartanog/publi/wads/
http://www.tpc.org/tpcc/results/tpcc_perf_results.asp
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf
http://www.jxta.org/docs/jxta-dht.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/intpatt.asp
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/2002/ws/
http://www.w3.org/TR/wsdl20/#component_model
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap12-part1/

Wikipedia (2006), “Overlay Network,” http://en.wikipedia.org/wiki/Overlay_network

WS-I (2006), Web Services Interoperability Organization, http://www.ws-i.org/

WS-I (2004), “Basic Profile Version 1.1,” Web Services Interoperability Organization, http://www.ws-

i.org/Profiles/BasicProfile-1.1-2004-08-24.html

Yang, Z. and Duddy, K. (1996), “CORBA: a Platform for Distributed Object Computing,” ACM SIGOPS

Operating Systems Review 30, 2, 4-31

Zhao, B., Y., Kubiatowicz, J., D. and Joseph, A. D. (2001), “Tapestry: an Infrastructure for Fault-Tolerant Wide-

Area Location and Routing”, Technical Report. UMI Order Number: CSD-01-1141, University of California
at Berkeley, Berkeley, CA.

 98

http://en.wikipedia.org/wiki/Overlay_network
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

VITA

LIKHITA KRISHNAMURTHY

Education M.S. in Computer Science, May 2006
Virginia Polytechnic Institute & State University (Virginia Tech), Blacksburg, VA

B.S. in Information Science and Engineering, July 2004
Vishveswaraiah Technological University, Belgaum, India

Computer
Skills

Programming languages: C/C++, Java, C#, VB, Perl, ASP .NET, PHP,COBOL
Databases: MS SQL server 2000, Oracle, MS Access, MySQL
Operating systems: Windows XP, Windows server 2003, Linux
Software: Rational Rose, Rational RequisitePro, Rational SoDA

Work
Experience

Summer Internship (SDET), Microsoft Corporation, 2005

Search Digger
Search Digger is a tool that lets you monitor the performance as seen by the end
user of a large-scale distributed system like the MSN Search engine. It lets you run
a set of queries against a search engine, collect data on how long each portion of
the query execution took as moves through the various components in the back-
end and to be able to graphically drill in to individual components to identify
bottlenecks. Additionally, long-term statistics are kept about all aspects of system
performance, providing a good baseline for analysis as well as anomaly and
regression detection. The repository used was SQL Server 2000. Data was
collected by a client written in C++ and stored in the SQL Server repository. The
interface was a C# windows application that queried the database and displayed
the statistics using XCeed, a graphics library.

MSN Search API Web Service
• Worked extensively with Web Services technologies like WSDL, SOAP and

XML Schema as part of my work with the MSN Search API Web Service.
• Developed several sample applications for the API using the .NET platform and

in Java using Apache Axis.
• Did functional, interoperability and conformance testing and wrote code to

automate the testing process.

Graduate Research Assistant, Dept. of Agriculture and Life Sciences, Fall
2005
Conceptualized, designed and implemented the ASP .NET Web Application Cyber
Sheep. Cyber Sheep makes it makes it possible for students to play a stochastic
simulation game of sire referencing schemes written in Fortran over the Internet
using a browser.

Internship at Dimension Cybertech, Bangalore, India. (2004)

 99

Developed a reader in C to read objects files in the Common Object File Format
(COFF) and populate appropriate data structures that could be later plugged into
Simulators/Emulators of various vendors for the Texas Instruments’ C6000 family
of Digital signal processors.

Graduate Teaching Assistant, Intermediate Software Design and
Engineering course, Virginia Tech, Spring 2005

Graduate Teaching Assistant, Network Architecture and Programming
course, Virginia Tech, Spring 2006

Course
Projects

EtanaBrowse, Virginia Tech, Fall 2004
Enhanced, tested, debugged the 5SGraph tool – a graphical modeling tool written
in Java that enables users to build their own instance of a digital library specified
in the 5SL language automatically

Outback Queue Manager, Outback steakhouse, Christiansburg
The Outback Queue Manager (OQM) is a waitlist system for managing in-person
and Call-Ahead customers for the Outback Steakhouse restaurant in
Christiansburg. Hosts/Hostesses on the floor will use OQM via electronic Tablet
PCs to manage a single waitlist. The application will keep track of waiting
customers, table availability, and wait times. This system increases customer
satisfaction by reducing wait time, and it simplifies business operations by
automating the management of the waitlist between multiple hosts/hostesses.
Developed a prototype in VC# using MS Access as the database and ADO .NET

Courses Information storage and retrieval, Internet Programming, File structures in C/C++,
Analysis and design of algorithms, DBMS, UNIX system programming, Software
engineering, Usability engineering, Operating systems, Distributed Computing,
Computer networks, Data communication, Computer architecture, Management
Information Systems, Artificial Intelligence, Pattern Recognition, Neural
Networks, Object Oriented System Development, Network Architecture and
Protocols, Verification and Validation, Software Architecture

Activities &
Awards

• Ranked first in a class of 34 in all four years of undergraduate studies
• Selected as Microsoft student champ for Vivekananda Institute of Technology,

Bangalore, India
• Ranked 5th in the Karnataka state (India) matriculation exams (an estimated

600,000 students took the exams)

Other
Interests

• Drama – Acted in a play “Antigone” that was presented at the Virginia Tech
Department of Arts

• Creative fiction writing and poetry, painting and music
• Trained in two Indian classical dances
• Philosophy

 100

	Chapter 1: Introduction
	1.1 What is a Network-Centric System?
	1.1.1 System of Systems
	1.1.2 Family of Systems
	1.1.3 Network-Centric Software

	1.2 Network-Centric Architectures Literature Review
	1.3 Statement of the Problem
	1.4 Statement of Objectives
	1.5 Scope
	1.6 Overview of Thesis
	Chapter 2: Network-Centric Software Architectures
	2.1 Client-Server Architecture
	2.1.1 The Microsoft .NET Framework
	2.1.1.1 Presentation
	2.1.1.2 Business Logic
	2.1.1.2.1 Remoting
	2.1.1.2.2 Enterprise Services (COM+)
	2.1.1.2.3 Queued Components

	2.1.1.3 Persistence
	2.1.1.4 Web Services

	2.1.2 The Java Platform, Enterprise Edition (Java EE) Framework
	2.1.2.1 Java EE Presentation
	2.1.2.2 Java EE Business Logic
	2.1.2.2.1 Session EJBs
	2.1.2.2.1.1 Stateful Session Beans
	2.1.2.2.1.2 Stateless Session Beans

	2.1.2.2.2 Message-Driven Beans (MDB)

	2.1.2.3 Persistence
	2.1.2.4 Web Services
	2.1.2.5 Design Frameworks
	2.1.2.5.1 The Spring Design Framework
	2.1.2.5.2 The Hibernate Design Framework
	2.1.2.5.3 The Struts Design Framework
	2.1.2.5.4 The Tiles Design Framework

	2.2 Distributed Objects Architecture
	2.2.1 Distributed Component Model
	2.2.2 Common Object Request Broker Architecture
	2.2.2.1 Dynamic Invocation Interface
	2.2.2.2 Dynamic Skeleton Interface (DSI)
	2.2.2.3 Object Adapter
	2.2.2.4 Implementation Repository
	2.2.2.5 CORBA Architecture
	2.2.2.6 CORBA Component Model

	2.2.3 Distributed Component Object Model

	2.3 Service-Oriented Architecture
	Service
	2.3.2 Characteristics of a Service
	2.3.3 Web Services
	2.3.3.1 Web Service Standards
	2.3.3.1.1 SOAP
	2.3.3.1.2 WSDL
	2.3.3.1.3 UDDI
	2.3.3.1.4 Orchestration and Choreography
	2.3.3.1.4.1 Web Services Orchestration
	2.3.3.1.4.2 Web Services Choreography
	2.3.3.1.4.3 Difference Between Orchestration and Choreography

	2.3.4 Jini

	2.4 Peer-to-Peer Architecture
	2.4.1 JXTA
	2.4.1.1 Core Specification Protocols
	2.4.1.2 Standard Service Protocols

	Chapter 3: Characteristics of Network-Centric Architectures
	3.1 Qualities
	3.1.1 Openness, Interoperability and Integration
	3.1.2 Adaptability
	3.1.2.1 Modifiability
	3.1.2.2 Reconfigurability

	3.1.3 Dependability
	3.1.4 Scalability and Performance
	3.1.4.1 Scalability

	Chapter 4: Comparative Assessment
	4.1 Comparison between Architectures and Frameworks based on Architectural Characteristics
	4.1.1 Partitioning of Application Logic
	4.1.2 Operational Environment and Scope of Distribution
	4.1.3 Level of Abstraction
	4.1.4 Granularity and Nature of Software Computing Units
	4.1.4.1 Granularity
	4.1.4.2 Nature of the Components
	4.1.4.2.1 State
	4.1.4.2.2 Modes of communication
	4.1.4.2.3 Autonomy
	4.1.4.2.4 Life Cycle

	4.1.5 Intent of Usage and Usage of the Software Units
	4.1.6 Nature of the Interface
	4.1.6.1 Nature of Interfaces in the Different Architectures
	4.1.6.1.1 Component based Interface (IDL) vs. Service Contract (WSDL)
	4.1.6.1.1.1 Syntax
	4.1.6.1.1.2 Type System
	4.1.6.1.1.3 Service Endpoints

	4.1.7 Degree of Coupling
	4.1.7.1 Coupling and the Different Architectural Paradigms
	4.1.7.2 Coupling Summary

	4.1.8 Dynamic Discovery (Discoverability) and Composability
	4.1.8.1 Dynamic Discovery
	4.1.8.2 Composability
	4.1.8.3 Dynamic Discovery and Composition in the Various Architectures
	4.1.8.4 P2P Discovery Process
	4.1.8.4.1 The Concept of a Virtual Overlay Network
	4.1.8.4.1.1 Dynamic Addressing
	4.1.8.4.1.2 SOA vs. PPA for Creating an Application Composed of Services

	4.1.8.5 Dynamic discovery and composition summary

	4.2 Comparison between Architectures and Frameworks based on Quality Characteristics
	4.2.1 Openness
	4.2.1.1 Evaluating Frameworks for Openness
	4.2.1.2 CSA
	4.2.1.3 .NET
	4.2.1.3.1 Assembly Metadata

	4.2.1.4 Java EE
	4.2.1.5 DOA/CBA
	4.2.1.6 CORBA
	4.2.1.7 DCOM
	4.2.1.8 Web Services
	4.2.1.9 Jini
	4.2.1.10 PPA
	4.2.1.11 JXTA

	4.2.2 Interoperability
	4.2.2.1 .NET
	4.2.2.1.1 Interoperability with Applications Developed Using the Same Platform
	4.2.2.1.2 Interoperability with Applications Developed Using Other Platforms
	4.2.2.1.3 .NET and Web Services

	4.2.2.2 Java EE
	4.2.2.2.1 Interoperability with Applications Using the Same Platform
	4.2.2.2.2 Interoperability with Applications Using Other Platforms

	4.2.2.3 CORBA
	4.2.2.4 DCOM
	4.2.2.5 Web Services
	4.2.2.6 Jini
	4.2.2.7 JXTA
	4.2.2.8 Interoperability Summary
	4.2.2.9 Legacy System Integration

	4.2.3 Adaptability
	4.2.3.1 .NET
	4.2.3.1.1 Modifiability
	4.2.3.1.2 .NET Attributes and Contexts
	4.2.3.1.3 .NET Versioning
	4.2.3.1.4 Reflection and Metadata

	4.2.3.2 Java EE
	4.2.3.2.1 Modifiability
	4.2.3.2.2 Session Beans
	4.2.3.2.3 Entity Beans
	4.2.3.2.4 Location Transparency
	4.2.3.2.5 Annotations and Deployment Descriptors
	4.2.3.2.6 Patterns
	4.2.3.2.7 Versioning
	4.2.3.2.8 Reflection and Metadata for Dynamic Reconfiguration

	4.2.3.3 Web Services
	4.2.3.3.1 Modifiability
	4.2.3.3.2 Versioning
	4.2.3.3.3 Dynamic Reconfiguration

	4.2.3.4 CORBA
	4.2.3.4.1 Modifiability
	4.2.3.4.2 Versioning
	4.2.3.4.3 Reflection

	4.2.3.5 DCOM
	4.2.3.5.1 DCOM Versioning
	4.2.3.5.2 Reflection and Metadata

	4.2.3.6 Jini
	4.2.3.7 JXTA

	4.2.4 Security
	4.2.4.1 Web Services
	4.2.4.2 .NET
	4.2.4.2.1 Applications
	4.2.4.2.2 Web Services

	4.2.4.3 Java EE
	4.2.4.3.1 Applications
	4.2.4.3.2 Web Services

	4.2.4.4 CORBA
	4.2.4.5 DCOM
	4.2.4.6 Jini
	4.2.4.7 JXTA

	4.2.5 Dependability
	4.2.5.1 .NET and Java EE
	4.2.5.1.1 Transactions
	4.2.5.1.2 State Management and Failover Clustering
	4.2.5.1.3 Support for Asynchronous Communication

	4.2.5.2 CORBA
	4.2.5.3 DCOM
	4.2.5.4 Web Services
	4.2.5.5 Jini
	4.2.5.6 PPA Dependability
	4.2.5.6.1 JXTA

	4.2.6 Scalability and Performance
	4.2.6.1 .NET and Java EE
	4.2.6.2 DCOM
	4.2.6.3 CORBA
	4.2.6.4 Web Services
	4.2.6.5 Jini
	4.2.6.6 JXTA

	4.3 Comparative Assessment Summary

	Chapter 5: Concluding Remarks

