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I. Executive Summary 
Satellite imagery in recent years has drastically increased in both quality and quantity. 

Today, the problem is too much data. Map features such as roads, buildings, and other points of 
interest are mainly extracted manually, and we just don’t have enough humans to carry out this 
mundane task. 

The goal of this project is to develop a tool that automates this process. Specifically, the 
focus of this project is to extract parking lots using Object Based Imagery Analysis. The final 
deliverable is a Python tool that uses Machine Learning algorithms to identify and extract 
parking lots from high resolution satellite imagery. 

This project was divided into two main steps: labeling data and training an algorithm. For 
the first step, the project team gathered a large dataset of satellite imagery in the form of 
GeoTIFFs, used GDAL to convert these files into JPEG image files, and used labelImg to label 
the images. The labelling consisted of creating an XML layer corresponding to each GeoTIFF 
image, where the XML layer contained bounding boxes outlining each parking lot. With all of 
the training data labeled, the next step was training the algorithm. The project lead tried several 
different models for the learning algorithm, with the final model being based on Faster RCNN.  

After training, the project team tested the model and determined the accuracy was too 
low, so the team decided to obtain and label more images to improve it. Once the accuracy met 
the determined standards, a script was built that would take an input of a GeoTIFF image, 
convert this to a JPEG image, run the image on the model to detect any parking lots and output 
bounding boxes depicting those parking lots, and finally, convert these bounding boxes into a 
single GeoJSON file. The main use case of the application is quickly finding parking lots with 
relative accuracy in satellite imagery. The model can also be built upon to be improved or used 
in related tasks, for example detecting individual parking spots. 

The project has managed to achieve the expected goals using labelImg and a Faster 
RCNN model. However, due to a limitation of labelImg, the model cannot detect parking lots 
that are not horizontal or vertical. The project team researched several methods to solve this 
problem but were not able to fully implement a suitable solution due to time and infrastructure 
constraints. The team has described all of its research in this final report so that those who want 
to improve on this project will have a good starting point.  
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II. Introduction 
1. Objective 

The main goal of the project is to take high resolution satellite images and detect parking 
lots in them. The output is a GeoJSON1 file consisting of polygons that outline the parking lots 
within the GeoTIFF 2image. The stretch goal of the project was to detect the individual parking 
spots, and whether or not that parking spot is currently taken. A final tool was created that allows 
users to input a GeoTIFF image, and they will receive a corresponding GeoJSON outlining all 
parking lots, if any were found. Due to the complex nature of this task, the model has a total loss 
of around 0.4. Users are free to do what they want with the information provided. They could use 
it for real time analysis of parking spaces, the neural network could be built on top of for more 
imagery analysis tasks, or the tool could be combined with another to detect more than just 
parking lots.  
 
2. Report Outline 
 First, the requirements that the team came up with for building this project will be 
outlined, including basic requirements as well as eventual stretch goals (Section III). Next is the 
actual design of the project (Section IV) and how the team went about designing the two basic 
steps of the project (labelling and training). The implementation section (Section V) details the 
steps of the actual implementation, specifically how the project team trained the model. After 
implementing the model, the next task was testing (Section VI) the model to ensure accuracy, 
and making adjustments as needed. 

The user’s manual (Section VII) outlines how to use the final deliverable. It details 
downloading and setting up the Python tool, and how to run it from a Jupyter notebook. This tool 
is meant for anyone to be able to use their own GeoTIFF images, and output a GeoJSON of the 
parking lots found. The developer’s manual (Section VIII) describes in detail how one can pick 
up from where the project team left off to improve upon the results. Finally, the lessons learned 
through the course of the project will be discussed (Section IX), followed by the appendices 
(Section X). 

 
3. Client 
 The client who supported this semester-long project was Reinventing Geospatial (RGI), 
specifically Mary Carome, Steven Lander, and Michael Szaszy. RGI is a consulting company 
specializing in geospatial technologies. One of the key areas RGI works in is data science, so 
training a neural network to detect parking lots could benefit them in this area. Building a 
machine learning algorithm, with a tool to use it, not only aids in automatic detection of parking 
lots, but the team’s model can be used to help build models for other similar tasks. 
  

                                                
1 GeoJSON: http://geojson.org 
2 OSGeo: trac.osgeo.org/geotiff/ 
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III. Requirements 
1. Basic requirements 
 For basic requirements, the team wanted to be able to distinguish between satellite 
images that have parking lots and those that do not. The final product would be a Python script / 
tool that is able to take in a satellite image (GeoTIFF) and output a GeoJSON containing the 
position of the parking lots. The script should be able to distinguish if the input files are in 
correct format, and convert the GeoTIFF into a JPEG for use with the model.  

For the machine learning algorithm itself, it should be able to distinguish parking lots in 
different levels of visibility, e.g., at night when the parking lines are harder to see, or in the snow 
when the parking lines blend in. As long as the human eye can discern a parking lot, the 
algorithm should be able to recognize it as well. 

The project team decided to exclude cases where parking lots are obscured to the point of 
being unrecognizable. This meant that while a human might look at the image and from subtle 
visual cues decide that a parking lot does exist in that image, it is a hard task for an algorithm to 
correctly determine that without also recognizing other non-parking lots as parking lots. An 
example of this is when a parking lot is not visible due to the shading caused by trees or 
buildings, or in the case of covered parking lots. 
 
2. Stretch goals 

The stretch goal for this project is, after determining whether or not the satellite image 
contains parking lots, the algorithm will also detect whether or not these parking lots have empty 
spaces. The algorithm must look at individual parking spaces inside a parking lot to determine 
whether or not there is a car parked there. It should be able to differentiate between a parking lot 
with cars, which will cause the parking lot to consist of potentially brighter colors, to a parking 
lot without one, which would be more uniform and consisting of darker colors. 

The algorithm would then ideally output whether or not any parking spaces are available. 
If there are any available parking spaces, the algorithm should produce a GeoJSON file that 
contains the coordinates of the available parking spaces. 

Unfortunately due to time constraints and other unforeseen problems, the project team 
were unable to meet the stretch goals.  
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IV. Design 
1. Labelling the Data 

The satellite images that the model was trained on were retrieved from SpaceNet3. A 
GeoTIFF file is an image that contains geographical coordinates as well as the geographical area 
that those coordinates represent. The model required that the training use JPEG image files; 
therefore the first step was converting the GeoTIFF files to JPEG files using GDAL4. The project 
team used the open source software labelImg5 to process these images into corresponding XML 
files in the PASCAL VOC6 format by labeling any parking lot within the images by hand.  

The corresponding XML files simply contained bounding boxes, by noting the four 
corners of the box in terms of pixels. The major downside of using labelImg (also a downside of 
the model), is that rotated parking lots cannot be accurately labelled. The boxes can only be 
drawn along the horizontal and vertical axes with no rotation, so rotated parking lots required 
large bounding boxes that contained other parts of the image. 
 
2. Applying the Algorithm 

The project team decided to use the TensorFlow7 deep learning framework as a base for 
the learning implementation. The satellite images obtained in the first phase were converted from 
GeoTIFF images to JPEG images and labelled according to pixel coordinates. This is to match 
the format of the training data so that it is consistent with the general import of training data. In 
order to solve the problem of object recognition in imagery the team decided to use Faster R-
CNN8. This is a faster region-based convolutional neural network. The way this works is by 
running a convolutional neural network over images, followed by a region proposal network. 
This allows the network to identify regions of interest within the image that may correlate with 
the specified object. 

                                                
3 SpaceNet AWS: https://registry.opendata.aws/spacenet/ 
4 GDAL: http://www.gdal.org 
5 labelImg: https://github.com/tzutalin/labelImg 
6 PASCAL Visual Object Classes: http://host.robots.ox.ac.uk/pascal/VOC/ 
7 TensorFlow: https://www.tensorflow.org 
8 Faster-RCNN: https://arxiv.org/abs/1506.01497 
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Figure 1. Faster R-CNN Overview9 

 

 
Figure 2. Faster R-CNN RPN and Example Detections9 

As depicted in Figures 1 and 2, this algorithm classifies images within different region 
proposals in order to determine whether they contain the feature being searched for. Once this is 
conducted it is possible to create bounding boxes that pool different regions that have the object 
in order to generate an area that identifies the object of interest. This learning technique has been 
chosen as it is the fastest and most accurate iteration of a region based network. Once trained it 
generates bounding boxes that will contain parking lots. The pixel coordinates of these bounding 
boxes can then be converted back to geographic coordinates in order to provide a final output of 
geographical locations of parking lots within satellite imagery. 
  
  

                                                
9 Faster R-CNN Overview: https://arxiv.org/abs/1506.01497 
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V. Implementation 
1. Acquiring Satellite Images 
 SpaceNet is a collection of thousands of satellite images as well as labelled data, hosted 
on AWS with the intention of fostering innovation in computer vision algorithms. The data 
consists of five different areas of interest: Rio de Janeiro, Las Vegas, Paris, Shanghai, and 
Khartoum. Rio de Janeiro consists of 50 cm imagery, while the rest consist of 30 cm imagery. 
The team decided on using Las Vegas as it was assumed there would be a much higher chance of 
parking lots. After evaluating the model, the team determined that more images were required, 
and as such downloaded similar .tar.gz files from Paris and Shanghai. The .tar.gz file the team 
needed from Las Vegas contained the following directories: 
 
├── AOI_2_Vegas_Test_Public.tar.gz 
│      ├── MUL            # Contains Tiles of 8-Band Multi-Spectral raster data from WorldView-3 
│      ├── MUL-PanSharpen # Contains Tiles of 8-Band Multi-Spectral raster data pansharpened to 0.3m 
│      ├── PAN            # Contains Tiles of Panchromatic raster data from Worldview-3 
│      └── RGB-PanSharpen # Contains Tiles of RGB raster data from Worldview-3 

For the purpose of this project, the team used 3-band imagery (RGB) and so did not need 
the 8-band images. After downloading the file, the team extracted the RGB-PanSharpen 
directory to obtain 1,282 GeoTIFF image files. Each of these files is 650 x 650 pixels. An 
example of what a file might look like can be seen in Figure 3: 

 

  
Figure 3. Sample Las Vegas GeoTIFF 
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The SpaceNet data is hosted on a Requester Pays S3 bucket on AWS10. In order to 
download this data, the team had to use aws-cli commands. Due to timeouts on the commands, it 
was required to download the files in multiple parts. First, the team had to use this command 
three times with corresponding byte ranges: aws s3api get-object --bucket spacenet-dataset --key 
AOI_2_Vegas/AOI_2_Vegas_Test_Public.tar.gz --request-payer requester AOI_2_Vegas_Test_Public.tar.gz --
range bytes=3000000000-6000000000. Next, after downloading three separate parts of the file, the 
team was able to combine them using the command: cat AOI_2_Vegas_Test_Public_2.tar.gz >> 
AOI_2_Vegas_Test_Public_all_2.tar.gz. The team used this command on the three parts we 
downloaded in the correct order to get the entire .tar.gz file. From there the team was able to 
correctly extract the directories and proceed to labelling. 

 
2. Converting GeoTIFF to JPEG 
 In order to label the satellite images in labelImg, the GeoTIFFs had to be converted to 
JPEG format. To do this, the project team used an open source tool called GDAL to convert the 
GeoTIFF files into JPEG files. Two members wrote a script (convert.py) to do this conversion 
easily. The main command that was used was gdal_translate, using the geographic information that 
was extracted. In the convert.py script, the following command was used: gdal_translate -scale_1 20 
1463 -scale_2 114 1808 -scale_3 139 1256 -ot Byte -of. 
 The convert.py script was run using python convert.py -t jpeg to convert all the GeoTIFF files 
in the current directory and subdirectories into JPEG files. With all of the files converted to the 
correct format, the team was able to start labelling. 
 
3. Satellite Image Labelling 

Labelling the JPEG satellite images for this model was done through an open source 
software tool called labelImg. The output is an XML file in the PASCAL VOC format (common 
for projects such as this) containing all of the bounding boxes for a single image. The format of 
that XML file is quite simple as seen in Figure 4 with the important parts highlighted: 
 

                                                
10 Requester Pays Buckets: https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html 



       

11 

 
Figure 4. Example Labelled XML 

For the purpose of this project, the team labelled each bounding box as “parking lot.” 
Figure 5 shows how one would label an image using labelImg: 
 

 
Figure 5. Labelling JPG in labelImg 
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One of the key issues with the model is the inability to rotate bounding boxes. In satellite 
images, often parking lots are arbitrarily rotated, and as such presented difficulties when 
labelling. This required the team to have large bounding boxes that contained parts of the image 
that were not the parking lot. Figure 6 shows how this was accomplished: 

 

 
Figure 6. Difficulty with Rotated Parking Lots 

4. Parking Lot Identification Algorithm 
The implementation of the deep learning algorithm works through the use of the 

Tensorflow framework. In order to facilitate efficient learning the team loaded CUDA11 and 
cuDNN12 onto a machine with a NVIDIA GeForce GTX 960M. This allows for the use of the 
graphics card for processing, which greatly increases the speed of training the network. The 
Tensorflow framework is then used to communicate and apply the layers of the learning 
network. In order to conduct training the team is currently using the Faster-RCNN-RESNET101-
COCO13 implementation. This is used for initial training, and to gauge functionality of the 
method, which the team can then tweak to further meet the project’s needs. 

In order to train the neural network, parking lots are identified within JPEG images and 
their bounding boxes represented by an XML file similar to the PASCAL VOC dataset training 
format, which is a common way to represent training data for region-based networks. This 
information is then converted into the TFRecords, which is the format for training data of 
Tensorflow. The team uses this training data to train the faster region-based CNN, which will 
then create predictors of the locations of parking lots displayed by bounding boxes. This can then 
be mapped back to geographical coordinates, which accomplishes the goal of identifying parking 
lots in satellite imagery.  
  

                                                
11 NVIDIA CUDA: https://developer.nvidia.com/cuda-zone 
12 NVIDIA cuDNN: https://developer.nvidia.com/cudnn 
13 Faster-RCNN-RESNET101-COCO: https://github.com/endernewton/tf-faster-rcnn 
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Figure 7 shows the principle of this method on a small training set. In this figure the 
green boxes depict the predicted location of a parking lot. This percentage represents the 
confidence that the network has in the generated bounding box being a parking lot. This figure 
represents one example of the general problem with the initial training run. With the use of a 
small training set the network had a huge localization loss, which is demonstrated in this image 
by parking lots with confidence over 50% producing very inaccurate bounding boxes. 

 

 
Figure 7. Initial Test Run of the Algorithm 
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VI. Testing and Evaluation 
The first test run of the algorithm provided poor results. The classification was decent, 

however, the localization was very off. This was likely due to the small training set the algorithm 
was initially provided (~50 labelled images).  

As can be seen in Figure 8, the algorithm was not able to accurately identify where the 
parking lots were during the first phase of testing. In this figure the green boxes depict the 
estimated locations of parking lots, and the red boxes have been manually inserted to highlight 
parking lots that were not recognized. It can be seen that many were missed, and the localization 
is quite inaccurate. Additionally, the model’s bounding box regression appears to heavily favor 
two distinct shapes for the bounding boxes, which is likely due to the small size of the dataset.   

 

 
Figure 8. Initial Parking Lot Identification 

 The network’s difficult to accurately identify the location of parking lots can be 
confirmed by the information presented in Figure 9. This figure represents the localization loss 
over iterations of training the network weights. Ideally a consistent downward trend would be 
visible, however, the dominant orange line, which represents the smoothed localization loss 
struggles to decrease consistently. This is exacerbated when viewing the faint line, which 
represents the loss without smoothing, however, due to the small testing set it is expected that for 
some iterations the loss will be high. Since localization loss represents the accuracy of scaling 
the outputted bounding boxes, the results of this graph provide a good explanation for the 
inaccuracy in the initial training run. 
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Figure 9. Initial Localization Loss 

 However, the team was optimistic and hoped adding many more labelled images (~500), 
as well as using a checkpoint from the Kitti14 model, would help to improve the model’s results. 
A checkpoint would assist primarily due to not having to train the model from scratch. This is 
because a model with checkpoints already has weights15 that can be modified, a weight 
representing the strength of connections between units, essentially meaning the amount of 
influence one unit has over another. 
  

                                                
14 Faster-RCNN Kitti: https://github.com/czhu95/kitti 
15 Meaning of Weights: https://stats.stackexchange.com/questions/213325/neural-network-meaning-of-weights 
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As can be seen in Figure 10, the team was successful in detecting horizontal and vertical 
parking lots, meaning that if the parking lot sits in line with the horizontal or vertical axis relative 
to the image. In the figure below all of the parking lots outputted for horizontal parking lots were 
displayed with a high confidence and provided the correct output. If the bottom right corner of 
the image is examined the issue with detecting off axis parking lots can be seen, however, a 
bounding box is still generated to capture its location. This figure demonstrates the success of 
training our model as false positives are generated, and a bounding box is generated for all of the 
parking lots present in the figure. 
 

 
Figure 10. Final Detection Parking Lots 
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For rounded / angled parking lots, meaning that the parking lots sit at an angle, the team 
found some lots were detected fairly well, as can be seen in Figure 11. In this figure a red circle 
has been added, to show the location of a semicircular parking lot. Here it can be seen that 
although there is angulation in the structure that the model is able to capture most of the parking 
lot. This demonstrates that while angular parking lots provide a challenge to the model a general 
localization of these parking lots is still possible. Additionally, the other parking lots in the 
image are located with a very high certainty and in the correct location. 
 

 
Figure 11. Final Detection Rotated Parking Lots 

Figures 12 – 14 show the loss over iterations through the neural network. On the last 
training run the team saw a decrease in the localization loss which can be seen in Figure 13. This 
is the deviation from the location of parking lots in the testing set in comparison to those 
generated by the model. This was a large improvement from the inconsistent change over time 
that was seen during previous iterations. For the purpose of parking lot detection, the accuracy at 
which the outputted boxes are able to resemble the true bounding boxes is extremely important, 
and therefore this loss presents the most important aspect. Additionally, the faded lines in Figure 
13, which represent the unsmoothed loss, begin to peak at .1 which suggests this is the worst-
case scenario. This means that a loss of .1 is a high bound which is a satisfactory loss. 

In Figure 13 it can be seen that the classification loss follows an unusual path, before 
beginning to converge to around .1. The reason for this behavior is due to the use of a starting 
model with pretrained weights. This meant that at the early iterations the loss of classifying 
parking lots was already a lot lower than a model with no preset weights, and as the weights 
adjusted to classify parking lots. Although this is the case it ultimately began to converge. 

The total loss, depicted in Figure 12, which is a combination of localization and 
classification loss also fell to an acceptable number. Generally, a total loss below 1 suggests that 
the model is finding some accurate results, and the convergence to .5 produced effective results. 
Although an improvement would still be beneficial the team predicts the main cause of not 
having a lower final loss was the angulation of parking lots. By manually observing the outputs 
of our testing set we predict that if only horizontal and vertical parking lots were present that the 
loss would reach a very low bound.  
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Figure 12. Final Total Loss 

 
Figure 13. Final Localization Loss 

 
Figure 14. Final Classification Loss  
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VII. User’s Manual 
1. Use Cases 

A user of the system produced by this project would need some technical skill with 
interacting with command-line applications as well as installing dependencies for software tools. 
The system takes a single image or series of images in the GeoTIFF file format, and will process 
these images and identify parking lots within those images by outputting a GeoJSON file for 
each image in which a parking lot was identified. A user should note that the system defines a 
parking lot as a sequence of adjacent parking spaces, as opposed to the entire paved lot. 

The system will produce GeoJSON files that can then be parsed be any application that is 
capable of accepting GeoJSON files. The system is only focused on producing data, and thus 
will have minimal user interaction. This is due to the way internal details are handled by the 
system. Little configuration can be done by the user and so the user can (or should) only interact 
with a single script, referred to as the master script. This script handles accepting input and 
passing that input to the other parts of the system, as well as returning the output of those parts of 
the system. 

As such, the main use case for this final script is detecting parking lots automatically in 
satellite images. The user may wish to use these detected parking lots for whatever they desire, 
such as analyzing which certain geographic areas contain the most parking lots. Another use case 
for this tool could be for mapping purposes and keeping them updated, as a user could run this 
script over areas that were known to not contain parking lots beforehand and now do. 

Users can also use this project as a starting point to further develop it into a more refined 
system. The team has included some ideas as to what could be done to improve the accuracy of 
the model. The team was not able to make these ideas work due to time and infrastructure 
constraints. However, there are files and documentation included on how to set up the improved 
Faster-RCNN Kitti model. The user can use all of these resources to make a model that is more 
likely to accurately detect parking lots. 
 Finally, the model could be used to build separate models that are used for similar tasks. 
The team has provided documentation on how the model was built, and as such could be used in 
the same way for detecting objects other than parking lots. The checkpoints, which are the model 
weights generated from training the neural network to identify parking lots are located in the 
training directory of the supporting files. This collection of model weights from the trained 
model can be used as a starting point in order to train another network with a similar purpose. 
Starting a new training run with these weighs will allow for a much faster convergence to a low 
loss on a new dataset, and therefore improve accuracy and reduce the amount of training data 
needed. 
 
2. Tutorial 
A. Install Tensorflow - while the Tensorflow website provides an installation guide, this is what 
worked for this project. 
     For Linux / macOS: 

1. Install TensorFlow by invoking one of the following commands: 
$ pip install tensorflow      # Python 2.7; CPU support (no GPU support) 

 $ pip3 install tensorflow     # Python 3.n; CPU support (no GPU support) 
 $ pip install tensorflow-gpu  # Python 2.7;  GPU support 
 $ pip3 install tensorflow-gpu # Python 3.n; GPU support 

2. After installing tensorflow, validate your installation by running a short code snippet. 
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    For Windows (The team used Anaconda for installation): 
1. Create an Anaconda environment named ‘tensorflow’ by invoking the following 

command: 
 C:> conda create -n tensorflow pip python=3.5 

2. Activate the Anaconda environment by issuing the following command: 
 C:> activate tensorflow 
  (tensorflow)C:>  # The prompt should change 

3. Issue the appropriate command to install TensorFlow inside the Anaconda environment.  
 CPU-only version of Tensorflow:  

(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow 
GPU version of Tensorflow:  
(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow-gpu 

4. After installing tensorflow, validate your installation by running a short code snippet. 
    Validating installation: 

1. Navigate to the Tensorflow install directory. 
2. Invoke Python from the shell by typing in: python 
3. Type the following inside the shell: 

 # Python 
import tensorflow as tf 
hello = tf.constant('Hello, TensorFlow!') 
sess = tf.Session() 
print(sess.run(hello)) 

 The output should be: Hello, TensorFlow! 
B. Install the necessary dependencies. 
C. Run the model. 

1. Move parkinglot_finder.ipynb to models/research/object detection. 
2. Move parking_lot_inference_graph.tar.gz to models/research/object_detection and 

extract. 
3. Adjust variables within the parkinglot_finder.ipynb notebook to represent the correct 

paths to necessary files on your local machine. 
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Figure 15 describes the variables necessary to edit (note discussion in Section IX, Future Work), 
where the red boxes indict the import areas of the Notebook to update when identifying parking 
lots: 

 
Figure 15. Running the Script 
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After running the notebook, a GeoJSON file should be produced. There are several ways 
to open this GeoJSON. The user can open QGIS with the GeoTIFF file that was entered, and 
then open the GeoJSON file as well, which shows the parking lots outlined on top of the image. 
Or, the user could go to a GeoJSON file viewer online16 and load the files in there. Figure 16 is 
an example of what inputting a GeoTIFF might lead to when loaded in QGIS: 
 

 
Figure 16. GeoJSON loaded in QGIS 

 
  

                                                
16 GeoJSON Map Viewer: http://geojsonviewer.nsspot.net 



       

23 

The same GeoJSON loaded with a map viewer17 verifies that the output is correct in terms of its 
geographic coordinates, as can be seen in Figure 17. This figure provides a proof of concept that 
the outputted GeoJSON file of the network can be correctly mapped to the positions identified in 
Figure 16. In Figure 17, the faint black boxes on the bottom section of the image, are in the same 
area as the green boxes represented in Figure 16, which provides the desired output. 
 

 
Figure 17. GeoJSON Loaded in Browser 

  

                                                
17 GeoJSON Map Viewer: http://geojsonviewer.nsspot.net 
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VIII. Developer’s Manual 
This section of the report serves to provide information that would be helpful to any 

developer that wishes to extend or modify the system to suit their needs. Additionally, the project 
structure that was used as well as the flow of project development will be given. 
 
1. Project Structure and Flow 

Due to the nature of geographic identification, the system was comprised of two phases: 
data labeling and classification, and training and assessment of the identification algorithm. In 
order to accomplish the project’s ultimate goal, the entire project team focused on identifying 
parking lots within images, and labeling those parking lots. This was a team-wide effort so that a 
sizable introductory training set would exist for the identification algorithm to accept and learn 
from.   

After the creation of the initial training set, the identification algorithm was created using 
Tensorflow to accept a set of one or more images. Currently, a master script is used to execute 
the system. This master script executes a couple of conversion scripts, primarily due to the effect 
that limitations of time had on the algorithm requiring an input of JPEG image files. The first 
conversion script takes an optional input GeoTIFF image file and a required file output flag. If 
no image file was given as input, then the script will execute on all GeoTIFF image files found in 
the current resident directory and any subdirectories of that resident directory. In the case of an 
image file as input, the script will only execute on that specific file. The required file output flag 
is used to specify the file type that the script should convert GeoTIFF files to (using GDAL). In 
the instance of the master script, an output of JPEG is assumed. The JPEG files are then labeled 
using labelImg. The team used the bounding boxes provided by labelImg to identify parking lots. 
The labeled images and the negatives (images that contains no parking lot) are then fed into the 
model for training. After the training phase is complete - a satisfiable accuracy is found with the 
current model - the project team ran images through the trained algorithm, grabbed the output 
array, and converted it into GeoJSON file using a Python script.  

Moving forward, this project may have to be modified based on the needs of the entities 
that plan on using and / or expanding the system. If it is used simply for parking lot identification 
and the user is happy with the final level of accuracy, then no changes may be necessary. 
However, if the user is not happy with the final level of accuracy, then several options are 
possible. The user could attempt to retrain the algorithm such that it will have a larger dataset to 
learn from, which would entail labeling more images than the algorithm was originally trained 
with. In addition, or as a substitute, the user could attempt to modify the algorithm itself to 
ensure that it is as accurate as it possibly can be with the current dataset that it was trained on. It 
should be noted that as the project currently stands, no maintenance is required for the system to 
report the parking lots found in the images it is supplied with. Modifications, and maintenance 
for those modifications, are only required if the user wants / needs higher accuracies in reporting 
the locations of parking lots. 
 
2. Inventory of Project Files 
The project files used in the creation of the system as it currently stands are detailed below: 
Parking Lot Identification Algorithm Files: 
● convert.py: Python script to convert the GeoTIFF files into JPEG for the faster R-CNN 

model. This script will scour the current directory for files with a TIF extension and 
convert them to JPEG using GDAL. The converted files will keep the same name but 
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with .jpg extension instead of .tif. This conversion is necessary because GeoTIFF 
contains geographical coordinates and which wouldn’t work with our labeling program. 
The script can also convert a single image if desired. 

● to_geojson.py: Python script to convert the output XML into GeoJSON containing the 
geographical coordinates of each parking lot.  

● xml_to_rbox.py (future use): This script converts the XML from roLabelImg to Rbox 
format for the DRBox Caffe model. This model only uses Rbox so this conversion is 
necessary. 

● parkinglot_finder.ipynb: The main script that runs the project. It’s a Jupyter notebook that 
runs the model and outputs a GeoJSON file that contains the geographical coordinates of 
the parking lots.  

● xml_to_csv.py: Script to convert the XML file to a CSV file. The CSV is used to train the 
model. 

● splittraintest.py: Script to split the CSV file of all labels into two CSV files, one for 
training and one for testing. 

● generate_tfrecord.py: Python script to generate the training and testing data for the 
model. 

● Training: Contains all the necessary files for the training process. This includes different 
checkpoints that the team used to speed up the training process as well as data for the 
model. 

● Data: Contains all information in the format that Tensorflow requires. 
Labeled Satellite Image Files: 
● Training_Data/GeoTIFF: ~1400 GeoTIFF files that were initially pulled from SpaceNet. 

These images are from the cities of Las Vegas and Paris. 
● Training_Data/Labeled_JPEG: ~500 labeled images using labelImg for the Faster R-

CNN model training. 
● Training_Data/Negative_JPEG: ~600 negatives for Faster R-CNN model training. These 

images do not contain any parking lots in them. 
● Training_Data/Labeled_roLabel: 76 labeled images using roLabelImg for the Caffe 

model training. These images are from the Las Vegas image pool. 
 
3. Tutorial on Installing Software 
A. Training model 
Install CUDA and cuDNN 
● CUDA Installation Guide: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/ 
● CuDNN Installation Guide: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/ 

Install Tensorflow 
● Tensorflow Installation Instructions: https://www.tensorflow.org/install/  

Install additional Python dependencies: 
● Install pillow, lxml, jupyter, matplotlib 

Retrieve and make Tensorflow Models: 
● Git clone the following repository: https://github.com/tensorflow/models 
● If using Ubuntu navigate to models/research and execute command: protoc 

object_detection/protos/*.proto --python_out=. And export 
PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim 
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Retrieve the project code: 
● Clone the following repository: https://github.com/khoale95/SatImageParkingLotFinder 

 
B. Labelling 
Follow the steps that were detailed in the implementation section (Section V) for labelling data. 
The future work section details labelling rotated bounding boxes for use in the DRBox model. 
● labelImg: Download and use LabelImg at https://github.com/tzutalin/labelImg   
● roLabelImg: Download and use roLabelImg at https://github.com/cgvict/roLabelImg . 

For roLabelImg, the user will want to always use the rotating bounding box as the normal 
bounding boxes does not store an angle in the output XML file. 

 
4. Training on New Data 
In order to train the object detection once information has been labeled using labelImg, a few 
steps must be taken. 
 
A. Data Manipulation 
● Put labelImg XML files into the Bounding_Boxes folder. 
● Put the JPEG files into the Images folder 
● Run xml_to_csv.py 
● Run splittraintest.py with the arguments of the CSV file name and ratio of training to 

testing. For example ‘python splittraintest.py data/parkinglot_labels.csv 0.8’ will create a 
test and train split of the overall CSV file with 80% of the training images being part of 
the training set. 

● Create TFRecords for use by the neural network: 
○ Run: python generate_tfrecord.py --csv_input=data/train_labels.csv  --

output_path=train.record 
○ Run: python generate_tfrecord.py --csv_input=data/test_labels.csv  --

output_path=test.record 
● The information is now formatted in the correct way to be passed to the neural network. 

 
B. Model Setup 
● Locate a model: 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detect
ion_model_zoo.md 

● Add the .config file to the training directory. The project team used 
faster_rcnn_resnet101_kitti.config. The model selected can differ based on training 
needs. 

● Once a config file has been downloaded, the user will need to adjust the necessary paths 
and parameters to the data. Reference faster_rcnn_resnet101_kitti.config in the repository 
as an example. 

● If the user is so inclined, the user can also acquire model checkpoints. To use these, 
download the TAR file and extract them in Tensorflow’s 
model/research/object_detection directory. 
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● In the training directory create an object-detection.pbtxt file. It should look something 
like: 
 item { 
  id: 1 
   name: 'parking lot' 
} 
 

C. Running Model 
● All setup has now been completed and training can begin. 
● To train, navigate to models/research/object_detection and run: python train.py --

logtostderr  --train_dir=training/ --
pipeline_config_path=training/faster_rcnn_resnet101_kitti.config 

● To monitor the progress, run tensorboard --logdir=’training’ from 
models/object_detection 

● NOTE: The directory training is the one provided in the project team’s repository; the 
user path to get there may have to have precursors. For example: 
/home/user/Documents/SatImageParkingLotFinder/training 

 
 
 
 
  



       

28 

IX. Lessons Learned 
The timeline below details the required goals for this project to be considered complete, and the 
stretch goals if the required goals are able to be completed, as well as the expected date for those 
goals to be completed by. 
 
1. Timeline 

Required Goals: 
● Feb. 8   - Documenting the project plan and goals 
● Feb. 22   - Label data, develop the training set for parking lot identification 
● Mar. 8   - Create / adapt a learning algorithm for accepting the data 
● Mar. 15  - Training the algorithm for parking lot identification 
● Mar. 22  - Testing the algorithm and accessing accuracy 
● Mar. 29  - Finalize the algorithm for parking lot identification 

 
 Stretch Goals: 

● April 12 - Label the training set for parking space identification 
● April 19 - Create / adapt a learning algorithm for accepting the data 
● April 26 - Training the algorithm for parking space identification, adjusting the algorithm 
● May 1  - Finalize presentation and deliver final product 

 
Unfortunately, due to several complications along the way, the project team was unable to meet 
the project’s stretch goals. However, the team felt very satisfied with the final model for the 
required goals, and feel identifying parking spaces (stretch goals) can be easily accomplished 
with the work that was completed. 
 
2. Problems 

1. Downloading the SpaceNet data proved to be surprisingly difficult. The SpaceNet dataset 
was hosted on a S3 bucket that could only be accessed through command line through the 
aws-cli commands. Therefore, the team was unable to pick and choose which files were 
wanted, and were forced to either download images one at a time or in large 8GB+ .tar.gz 
files. Unfortunately, these files provided a lot of data that was unnecessary in the scope of 
the project. In addition, using the aws-cli would timeout after several minutes, thus not 
allowing the team to download the entire .tar.gz files. 

2. The visibility of the parking lots during the labeling phase caused a small debate in the 
team. It had to be decided which parking lots were visible enough for the algorithm to 
reliably identify. The baseline was if it looks like a parking lot - large open area with 
rectangular spaces marked with white lines - then it would be a labeled. However in the 
satellite images that were downloaded, some parking lots were obscured to the point that 
while a human can tell that it is a parking lot, a machine might mix it up with something 
else. Examples of this are parking lots with canopies over them, parking lots obscured by 
building shadow or at night, parking lots with trees over them, etc. 

3. The model proved difficult to get set up. The project team first attempted to use Caffe 
and Faster-RCNN which proved to be more pain than it was worth. The team then moved 
to the Tensorflow framework using Faster-RCNN-RESNET-101-COCO, starting from 
scratch. This ran, but had bad overall loss because it wasn’t given any negatives. The 
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second attempt with Tensorflow was one where negatives were given, which decreased 
the overall loss but gave many false positives. 

4. In addition to the trouble that the model set up gave the team, the team had trouble 
getting the model to accept and train from GeoJSON files. This meant that attempting to 
produce trainable data with QGIS was not worthwhile. 

5. Realizing that bounding boxes could not be rotated with the model, the team wanted to 
build a model that had this ability. The team found a model called DRBox from a recent 
research paper that appeared to be exactly what was needed, but had several difficulties 
running this model. 

6. Setting up roLabelImg on PC using Anaconda and Python 2.7. The Python libraries to set 
up roLabelImg on PC don’t set up in the proper directory. This causes pathing issues 
when trying to run the program. The library that causes the issue is PyQT4.  

 
3. Solutions 

1. In order to download the appropriate dataset, after much trial and error, the team had to 
download the .tar.gz file in parts. It was found that the team could download about 3GB 
of data before getting timed out, therefore the team downloaded three parts of the .tar.gz 
file, and combined them into one. First, the team used a byte range: aws s3api get-object --
bucket spacenet-dataset --key AOI_2_Vegas/AOI_2_Vegas_Test_Public.tar.gz --request-payer requester 
AOI_2_Vegas_Test_Public.tar.gz --range bytes=3000000000-6000000000. Next, after downloading 
three separate parts of the file, the team combined them using: cat 
AOI_2_Vegas_Test_Public_2.tar.gz >> AOI_2_Vegas_Test_Public_all_2.tar.gz. After combining the 
three parts, the team was able to finally successfully extract the file and retrieve the data. 

2. After debating amongst the team and consulting with RGI, it was decided to label parking 
lots that the team can still make out an outline. So even if it is in the dark, or has some 
debris obscuring small part of it, the team would still include it. The team would, 
however, exclude parking lots that are completely obscure like those with canopies or if it 
is in complete darkness such that the white lines are not visible. 

3. The final model uses Faster-RCNN-RESNET-101-Kitti which gave the system better 
execution speed, a low number of false positives, and overall significantly much better 
results.  

4. This allowed the team to pursue easier techniques of labeling trainable data, such as using 
labelImg. However, labelImg cannot open GeoTIFF image files, so to get around this the 
team needed a script that could accept a GeoTIFF image and convert it to a JPEG image 
that the team can then label. 

5. First, the ran into several errors regarding dependencies in order to run this model. After 
much troubleshooting, all dependency errors were removed, yet the team still had errors 
when training. It was discovered that the model DRBox18 was built upon (VGGNet) and 
required over 11 GB of GPU memory. Because the team was trying to run this on a 
personal laptop, the team did not have the resources to run it, so the team looked into 
running this model on Virginia Tech’s high powered computers. After a consultation with 
the Advanced Research Computing division, the team was told running this model would 
be quite challenging given the current setup of the machines. Due to this and the limited 

                                                
18 DRBox: https://github.com/liulei01/DRBox 
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amount of time that the team had, the team was unable to train DRBox, however, the 
team documented how to run this model for users wishing to have improved results. 
Another potential fix to this is that the team can rotate the images with a Python script 
using GDAL. The images will be rotated by set degrees (like 30, 45, 60, ...) and run 
through the model. The script will then merge the output of these multiple rotations to 
hopefully provide a more accurate model for parking lots that are not horizontal or 
vertical. The team was able to merge this because the team knows the angle of rotation so 
the team can translate the point of the rotated images into its actual point in the real 
image. This approach is a bit ad hoc, but it is also faster than switching the model. 
What the team ended up doing was just trying to exclude irrelevant objects from the 
bounding boxes. This meant that for large / long parking lots that are tilted, the team used 
smaller bounding boxes that encompass only a small section of the parking lot. There are 
limitations to this approach as the shape of parking lots are very varied and sometimes 
the team had to include more irrelevant data than what was wanted. This causes the 
model to miss many of the tilted parking lots but it does catch some, from time to time. 

6. Instead of just running ‘conda install pyqt=4’ on PC, run ‘conda install -c anaconda 
pyqt=4’. This will cause PyQT4 to install into the correct directory of Anaconda. 

 
4. Future Work 

One of the most obvious limitations of the model is that it has difficulty identifying 
parking lots that are at an angle (i.e., a parking lot that is not horizontal or vertical with respect to 
the source image dimensions). This is primarily due to the difficulty that was encountered when 
attempting to train the model using bounding boxes that stored the angle of rotation. The project 
team has potentially solved this by using roLabelImg and the new Caffe model. However, the 
team could not get the model to work as the team lacked the necessary hardware. The model 
requires a minimum of 11GB of video RAM which the team did not have. So for anyone who 
wanted to improve the model and has the necessary hardware, this would be a good place to 
start. 

Another feature that would be useful is modifying the way the tool accepts input. 
Currently the tool is a Jupyter notebook in which the user must modify a couple of lines of code 
to adjust the input to the model. This is not particularly user-friendly, and so it would be 
beneficial to adjust this input to either be stored in a config file or interactive input (i.e. 
command line or user interface). 

The model that can accept rotated bounding boxes is called DRBox and is based on a 
research paper titled “Learning a Rotation Invariant Detector with Rotatable Bounding Box.”19. 
Follow the instructions for installation and preparation on the repository. It is important to note 
this model requires 11GB of GPU memory, so it must be set up on a powerful computer. Next, 
the user must label satellite images with rotated bounding boxes. Follow the instructions in the 
developer manual (Section VII) for installing roLabelImg. This tool can be used to label parking 
lots in the same manner as labelImg, with the addition of rotation. 

The DRBox uses its own format for labelled images (.rbox) unlike the project model 
which uses XML files. As such, the labelled images the team has provided must be re-labelled 
using roLabelImg. To label the rotated parking lots, use roLabelImg on a JPEG file and create a 
RotatedRbox with “parking lot” as the label. It is important that even for parking lots that are 

                                                
19 Learning a Rotation Invariant Detector with Rotatable Bounding Box: https://arxiv.org/abs/1711.09405  
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vertical or horizontal (no rotation), one still labels using a RotatedRbox rather than a RectBox so 
that the conversion script works.  
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Figure 18 gives an example of how a user would label parking lots in roLabelImg, so that 
angled parking lots can be handled: 

 

 
Figure 18. Labelling in roLabelImg 

After labelling and saving the XML for the rotated bounding boxes, use the 
xml_to_rbox.py script that has been provided to convert the files into a usable format for the 
model. This Python script requires Python 3.X in order to run. This script can be run in a 
directory by simply calling the following command in the directory of your choice: python3 
xml_to_rbox.py 
If you wish to run this script on a single XML file, run: python3 xml_to_rbox.py foo.xml. 

With all of the labelled images in the correct directory, follow the directions in the 
DRBox repository for training. The training should take some time, but after it has completed, 
follow the View Results section to see the output of the newly trained model. The team believes 
this improved model should provide significantly better results compared to the current trained 
model. 
  



       

33 

X. Acknowledgements 
This project was supported by Mary Carome, Steven Lander, and Michael Szaszy. We would 
like to thank them as well as everyone at Reinventing Geospatial Inc. for all of their help and 
guidance. We would also like to thank Dr. Fox for his assistance as well as directing the course 
that allowed us to work on this project. 
 
Client: Reinventing Geospatial Inc. 
● Mary Carome: mary.carome@rgi-corp.com 
● Steven Lander: steven.lander@rgi-corp.com 
● Michael Szaszy: michael.szaszy@rgi-corp.com   

 
Instructor: Dr. Edward A. Fox - fox@vt.edu  
Graduate Teaching Assistant: Yilong Jin - e1337@vt.edu  



       

34 

XI. References 
1. P. Hagerty. Establishing a Machine Learning Workflow. Sept. 2016. Web. 

https://medium.com/the-downlinq/establishing-a-machine-learning-workflow-
530628cfe67. Accessed 26 Mar. 2018. 

2. A. Van Etten. Getting Started With SpaceNet Data. Jan. 2017. Web. 
https://medium.com/the-downlinq/getting-started-with-spacenet-data-827fd2ec9f53. 
Accessed 26 Mar. 2018. 

3. Machinalis. Establishing a Machine Learning Workflow. Mar. 2016. Web.  
http://www.machinalis.com/blog/obia/. Accessed 26 Mar. 2018. 

4. Ujjwalkarn. Python Data Science Tutorials. Jul. 2017. Web. 
https://github.com/ujjwalkarn/DataSciencePython. Accessed 26 Mar. 2018. 

5. T. Bai, D. Li, K. Sun, Y. Chen, and W. Li, “Cloud Detection for High-Resolution 
Satellite Imagery Using Machine Learning and Multi-Feature Fusion,” Remote Sensing, 
vol. 8, no. 9, p. 715, Aug. 2016 [Online]. Available: http://dx.doi.org/10.3390/rs8090715 

6. J. Xu. Deep Learning for Object Detection: A Comprehensive Review. Sept. 2017. Web. 
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-
review-73930816d8d9. Accessed 26 Mar. 2018. 

7. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks" CoRR, Jan. 2016. Accessed on: May. 1, 2018. 
[Online]. Available: https://arxiv.org/abs/1506.01497 

8. L. Liu, Z. Pan, B. Lei, "Learning a Rotation Invariant Detector with Rotatable Bounding 
Box" CoRR, Nov. 2017. Accessed on: May. 1, 2018. [Online]. Available: 
https://arxiv.org/abs/1711.09405 

9. TensorFlow. TensorFlow. 2018. Web. https://www.tensorflow.org/ Accessed 1 May 
2018. 

10. Tzutalin. LabelImg. 2018. Web.  https://github.com/tzutalin/labelImg Accessed 1 May 
2018. 

11. cgvict. roLabelImg. 2018. Web. https://github.com/cgvict/roLabelImg Accessed 1 May 
2018. 

12. TensorFlow. Tensorflow detection model zoo. 2018. Web. 
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detect
ion_model_zoo.md.  Accessed 1 May 2018. 

 
 
 
 
 
 
 
 
  



       

35 

XII. Appendices 
1. Project Team Members and Responsibilities 

Team Member Role Responsibilities 

Thomas Wolfe Project Lead 
Machine Learning Lead 

● Maintain contact between client, 
group, and professor 

● Develop and train ML algorithm 

Alex Lambrides GIS Lead ● Research GIS labelling techniques 
● Acquire data 
● Label GeoTIFFs 
● Assist in developing model 

Khoa Le Presentation Lead ● Lead presentation 
● Label GeoTIFFs 
● Assist in developing model 

Patrick Jahnig Report Lead 
Programming Lead 

● Lead interim and final report 
● Label GeoTIFFs 
● Wrote conversion scripts 

Table 1. Team Member Responsibilities 


