
 May 2, 2018

Satellite Image Finder Parking Lot & Spots
Final Report

Department of Computer Science
Virginia Tech

Blacksburg, VA 24061

Class: CS4624: Multimedia, Hypertext, and Information Access - Spring 2018
Instructor: Dr. Edward A. Fox
Client: Mary Carome - Reinventing Geospatial
Team: Alex Lambrides, Thomas Wolfe, Khoa Le, Patrick Jahnig

2

Table of Contents
Table of Figures .. 3	
Table of Tables ... 3	

I. Executive Summary ... 4	
II. Introduction .. 5	

1. Objective ... 5	
2. Report Outline ... 5	
3. Client .. 5	

III. Requirements .. 6	
1. Basic requirements .. 6	
2. Stretch goals .. 6	

IV. Design .. 7	
1. Labelling the Data ... 7	
2. Applying the Algorithm ... 7	

V. Implementation .. 9	
1. Acquiring Satellite Images... 9	
2. Converting GeoTIFF to JPEG.. 10	
3. Satellite Image Labelling ... 10	
4. Parking Lot Identification Algorithm ... 12	

VI. Testing and Evaluation .. 14	
VII. User’s Manual ... 19	

1. Use Cases .. 19	
2. Tutorial ... 19	

VIII. Developer’s Manual ... 24	
1. Project Structure and Flow .. 24	
2. Inventory of Project Files .. 24	
3. Tutorial on Installing Software .. 25	
4. Training on New Data ... 26	

IX. Lessons Learned ... 28	
1. Timeline .. 28	
2. Problems ... 28	
3. Solutions ... 29	
4. Future Work .. 30	

X. Acknowledgements .. 33	
XI. References .. 34	
XII. Appendices .. 35	

1. Project Team Members and Responsibilities .. 35	

3

Table of Figures
Figure 1. Faster R-CNN Overview .. 8	
Figure 2. Faster R-CNN RPN and Example Detections ... 8	
Figure 3. Sample Las Vegas GeoTIFF .. 9	
Figure 4. Example Labelled XML ... 11	
Figure 5. Labelling JPG in labelImg .. 11	
Figure 6. Difficulty with Rotated Parking Lots .. 12	
Figure 7. Initial Test Run of the Algorithm ... 13	
Figure 8. Initial Parking Lot Identification .. 14	
Figure 9. Initial Localization Loss ... 15	
Figure 10. Final Detection Parking Lots .. 16	
Figure 11. Final Detection Rotated Parking Lots ... 17	
Figure 12. Final Total Loss ... 18	
Figure 13. Final Localization Loss .. 18	
Figure 14. Final Classification Loss .. 18	
Figure 15. Running the Script ... 21	
Figure 16. GeoJSON loaded in QGIS .. 22	
Figure 17. GeoJSON Loaded in Browser .. 23	
Figure 18. Labelling in roLabelImg ... 32	

Table of Tables
Table 1. Team Member Responsibilities ... 35	

4

I. Executive Summary
Satellite imagery in recent years has drastically increased in both quality and quantity.

Today, the problem is too much data. Map features such as roads, buildings, and other points of
interest are mainly extracted manually, and we just don’t have enough humans to carry out this
mundane task.

The goal of this project is to develop a tool that automates this process. Specifically, the
focus of this project is to extract parking lots using Object Based Imagery Analysis. The final
deliverable is a Python tool that uses Machine Learning algorithms to identify and extract
parking lots from high resolution satellite imagery.

This project was divided into two main steps: labeling data and training an algorithm. For
the first step, the project team gathered a large dataset of satellite imagery in the form of
GeoTIFFs, used GDAL to convert these files into JPEG image files, and used labelImg to label
the images. The labelling consisted of creating an XML layer corresponding to each GeoTIFF
image, where the XML layer contained bounding boxes outlining each parking lot. With all of
the training data labeled, the next step was training the algorithm. The project lead tried several
different models for the learning algorithm, with the final model being based on Faster RCNN.

After training, the project team tested the model and determined the accuracy was too
low, so the team decided to obtain and label more images to improve it. Once the accuracy met
the determined standards, a script was built that would take an input of a GeoTIFF image,
convert this to a JPEG image, run the image on the model to detect any parking lots and output
bounding boxes depicting those parking lots, and finally, convert these bounding boxes into a
single GeoJSON file. The main use case of the application is quickly finding parking lots with
relative accuracy in satellite imagery. The model can also be built upon to be improved or used
in related tasks, for example detecting individual parking spots.

The project has managed to achieve the expected goals using labelImg and a Faster
RCNN model. However, due to a limitation of labelImg, the model cannot detect parking lots
that are not horizontal or vertical. The project team researched several methods to solve this
problem but were not able to fully implement a suitable solution due to time and infrastructure
constraints. The team has described all of its research in this final report so that those who want
to improve on this project will have a good starting point.

5

II. Introduction
1. Objective

The main goal of the project is to take high resolution satellite images and detect parking
lots in them. The output is a GeoJSON1 file consisting of polygons that outline the parking lots
within the GeoTIFF 2image. The stretch goal of the project was to detect the individual parking
spots, and whether or not that parking spot is currently taken. A final tool was created that allows
users to input a GeoTIFF image, and they will receive a corresponding GeoJSON outlining all
parking lots, if any were found. Due to the complex nature of this task, the model has a total loss
of around 0.4. Users are free to do what they want with the information provided. They could use
it for real time analysis of parking spaces, the neural network could be built on top of for more
imagery analysis tasks, or the tool could be combined with another to detect more than just
parking lots.

2. Report Outline
 First, the requirements that the team came up with for building this project will be
outlined, including basic requirements as well as eventual stretch goals (Section III). Next is the
actual design of the project (Section IV) and how the team went about designing the two basic
steps of the project (labelling and training). The implementation section (Section V) details the
steps of the actual implementation, specifically how the project team trained the model. After
implementing the model, the next task was testing (Section VI) the model to ensure accuracy,
and making adjustments as needed.

The user’s manual (Section VII) outlines how to use the final deliverable. It details
downloading and setting up the Python tool, and how to run it from a Jupyter notebook. This tool
is meant for anyone to be able to use their own GeoTIFF images, and output a GeoJSON of the
parking lots found. The developer’s manual (Section VIII) describes in detail how one can pick
up from where the project team left off to improve upon the results. Finally, the lessons learned
through the course of the project will be discussed (Section IX), followed by the appendices
(Section X).

3. Client
 The client who supported this semester-long project was Reinventing Geospatial (RGI),
specifically Mary Carome, Steven Lander, and Michael Szaszy. RGI is a consulting company
specializing in geospatial technologies. One of the key areas RGI works in is data science, so
training a neural network to detect parking lots could benefit them in this area. Building a
machine learning algorithm, with a tool to use it, not only aids in automatic detection of parking
lots, but the team’s model can be used to help build models for other similar tasks.

1 GeoJSON: http://geojson.org
2 OSGeo: trac.osgeo.org/geotiff/

6

III. Requirements
1. Basic requirements
 For basic requirements, the team wanted to be able to distinguish between satellite
images that have parking lots and those that do not. The final product would be a Python script /
tool that is able to take in a satellite image (GeoTIFF) and output a GeoJSON containing the
position of the parking lots. The script should be able to distinguish if the input files are in
correct format, and convert the GeoTIFF into a JPEG for use with the model.

For the machine learning algorithm itself, it should be able to distinguish parking lots in
different levels of visibility, e.g., at night when the parking lines are harder to see, or in the snow
when the parking lines blend in. As long as the human eye can discern a parking lot, the
algorithm should be able to recognize it as well.

The project team decided to exclude cases where parking lots are obscured to the point of
being unrecognizable. This meant that while a human might look at the image and from subtle
visual cues decide that a parking lot does exist in that image, it is a hard task for an algorithm to
correctly determine that without also recognizing other non-parking lots as parking lots. An
example of this is when a parking lot is not visible due to the shading caused by trees or
buildings, or in the case of covered parking lots.

2. Stretch goals

The stretch goal for this project is, after determining whether or not the satellite image
contains parking lots, the algorithm will also detect whether or not these parking lots have empty
spaces. The algorithm must look at individual parking spaces inside a parking lot to determine
whether or not there is a car parked there. It should be able to differentiate between a parking lot
with cars, which will cause the parking lot to consist of potentially brighter colors, to a parking
lot without one, which would be more uniform and consisting of darker colors.

The algorithm would then ideally output whether or not any parking spaces are available.
If there are any available parking spaces, the algorithm should produce a GeoJSON file that
contains the coordinates of the available parking spaces.

Unfortunately due to time constraints and other unforeseen problems, the project team
were unable to meet the stretch goals.

7

IV. Design
1. Labelling the Data

The satellite images that the model was trained on were retrieved from SpaceNet3. A
GeoTIFF file is an image that contains geographical coordinates as well as the geographical area
that those coordinates represent. The model required that the training use JPEG image files;
therefore the first step was converting the GeoTIFF files to JPEG files using GDAL4. The project
team used the open source software labelImg5 to process these images into corresponding XML
files in the PASCAL VOC6 format by labeling any parking lot within the images by hand.

The corresponding XML files simply contained bounding boxes, by noting the four
corners of the box in terms of pixels. The major downside of using labelImg (also a downside of
the model), is that rotated parking lots cannot be accurately labelled. The boxes can only be
drawn along the horizontal and vertical axes with no rotation, so rotated parking lots required
large bounding boxes that contained other parts of the image.

2. Applying the Algorithm

The project team decided to use the TensorFlow7 deep learning framework as a base for
the learning implementation. The satellite images obtained in the first phase were converted from
GeoTIFF images to JPEG images and labelled according to pixel coordinates. This is to match
the format of the training data so that it is consistent with the general import of training data. In
order to solve the problem of object recognition in imagery the team decided to use Faster R-
CNN8. This is a faster region-based convolutional neural network. The way this works is by
running a convolutional neural network over images, followed by a region proposal network.
This allows the network to identify regions of interest within the image that may correlate with
the specified object.

3 SpaceNet AWS: https://registry.opendata.aws/spacenet/
4 GDAL: http://www.gdal.org
5 labelImg: https://github.com/tzutalin/labelImg
6 PASCAL Visual Object Classes: http://host.robots.ox.ac.uk/pascal/VOC/
7 TensorFlow: https://www.tensorflow.org
8 Faster-RCNN: https://arxiv.org/abs/1506.01497

8

Figure 1. Faster R-CNN Overview9

Figure 2. Faster R-CNN RPN and Example Detections9

As depicted in Figures 1 and 2, this algorithm classifies images within different region
proposals in order to determine whether they contain the feature being searched for. Once this is
conducted it is possible to create bounding boxes that pool different regions that have the object
in order to generate an area that identifies the object of interest. This learning technique has been
chosen as it is the fastest and most accurate iteration of a region based network. Once trained it
generates bounding boxes that will contain parking lots. The pixel coordinates of these bounding
boxes can then be converted back to geographic coordinates in order to provide a final output of
geographical locations of parking lots within satellite imagery.

9 Faster R-CNN Overview: https://arxiv.org/abs/1506.01497

9

V. Implementation
1. Acquiring Satellite Images
 SpaceNet is a collection of thousands of satellite images as well as labelled data, hosted
on AWS with the intention of fostering innovation in computer vision algorithms. The data
consists of five different areas of interest: Rio de Janeiro, Las Vegas, Paris, Shanghai, and
Khartoum. Rio de Janeiro consists of 50 cm imagery, while the rest consist of 30 cm imagery.
The team decided on using Las Vegas as it was assumed there would be a much higher chance of
parking lots. After evaluating the model, the team determined that more images were required,
and as such downloaded similar .tar.gz files from Paris and Shanghai. The .tar.gz file the team
needed from Las Vegas contained the following directories:

├── AOI_2_Vegas_Test_Public.tar.gz
│ ├── MUL # Contains Tiles of 8-Band Multi-Spectral raster data from WorldView-3
│ ├── MUL-PanSharpen # Contains Tiles of 8-Band Multi-Spectral raster data pansharpened to 0.3m
│ ├── PAN # Contains Tiles of Panchromatic raster data from Worldview-3
│ └── RGB-PanSharpen # Contains Tiles of RGB raster data from Worldview-3

For the purpose of this project, the team used 3-band imagery (RGB) and so did not need
the 8-band images. After downloading the file, the team extracted the RGB-PanSharpen
directory to obtain 1,282 GeoTIFF image files. Each of these files is 650 x 650 pixels. An
example of what a file might look like can be seen in Figure 3:

Figure 3. Sample Las Vegas GeoTIFF

10

The SpaceNet data is hosted on a Requester Pays S3 bucket on AWS10. In order to
download this data, the team had to use aws-cli commands. Due to timeouts on the commands, it
was required to download the files in multiple parts. First, the team had to use this command
three times with corresponding byte ranges: aws s3api get-object --bucket spacenet-dataset --key
AOI_2_Vegas/AOI_2_Vegas_Test_Public.tar.gz --request-payer requester AOI_2_Vegas_Test_Public.tar.gz --
range bytes=3000000000-6000000000. Next, after downloading three separate parts of the file, the
team was able to combine them using the command: cat AOI_2_Vegas_Test_Public_2.tar.gz >>
AOI_2_Vegas_Test_Public_all_2.tar.gz. The team used this command on the three parts we
downloaded in the correct order to get the entire .tar.gz file. From there the team was able to
correctly extract the directories and proceed to labelling.

2. Converting GeoTIFF to JPEG
 In order to label the satellite images in labelImg, the GeoTIFFs had to be converted to
JPEG format. To do this, the project team used an open source tool called GDAL to convert the
GeoTIFF files into JPEG files. Two members wrote a script (convert.py) to do this conversion
easily. The main command that was used was gdal_translate, using the geographic information that
was extracted. In the convert.py script, the following command was used: gdal_translate -scale_1 20
1463 -scale_2 114 1808 -scale_3 139 1256 -ot Byte -of.
 The convert.py script was run using python convert.py -t jpeg to convert all the GeoTIFF files
in the current directory and subdirectories into JPEG files. With all of the files converted to the
correct format, the team was able to start labelling.

3. Satellite Image Labelling

Labelling the JPEG satellite images for this model was done through an open source
software tool called labelImg. The output is an XML file in the PASCAL VOC format (common
for projects such as this) containing all of the bounding boxes for a single image. The format of
that XML file is quite simple as seen in Figure 4 with the important parts highlighted:

10 Requester Pays Buckets: https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html

11

Figure 4. Example Labelled XML

For the purpose of this project, the team labelled each bounding box as “parking lot.”
Figure 5 shows how one would label an image using labelImg:

Figure 5. Labelling JPG in labelImg

12

One of the key issues with the model is the inability to rotate bounding boxes. In satellite
images, often parking lots are arbitrarily rotated, and as such presented difficulties when
labelling. This required the team to have large bounding boxes that contained parts of the image
that were not the parking lot. Figure 6 shows how this was accomplished:

Figure 6. Difficulty with Rotated Parking Lots

4. Parking Lot Identification Algorithm
The implementation of the deep learning algorithm works through the use of the

Tensorflow framework. In order to facilitate efficient learning the team loaded CUDA11 and
cuDNN12 onto a machine with a NVIDIA GeForce GTX 960M. This allows for the use of the
graphics card for processing, which greatly increases the speed of training the network. The
Tensorflow framework is then used to communicate and apply the layers of the learning
network. In order to conduct training the team is currently using the Faster-RCNN-RESNET101-
COCO13 implementation. This is used for initial training, and to gauge functionality of the
method, which the team can then tweak to further meet the project’s needs.

In order to train the neural network, parking lots are identified within JPEG images and
their bounding boxes represented by an XML file similar to the PASCAL VOC dataset training
format, which is a common way to represent training data for region-based networks. This
information is then converted into the TFRecords, which is the format for training data of
Tensorflow. The team uses this training data to train the faster region-based CNN, which will
then create predictors of the locations of parking lots displayed by bounding boxes. This can then
be mapped back to geographical coordinates, which accomplishes the goal of identifying parking
lots in satellite imagery.

11 NVIDIA CUDA: https://developer.nvidia.com/cuda-zone
12 NVIDIA cuDNN: https://developer.nvidia.com/cudnn
13 Faster-RCNN-RESNET101-COCO: https://github.com/endernewton/tf-faster-rcnn

13

Figure 7 shows the principle of this method on a small training set. In this figure the
green boxes depict the predicted location of a parking lot. This percentage represents the
confidence that the network has in the generated bounding box being a parking lot. This figure
represents one example of the general problem with the initial training run. With the use of a
small training set the network had a huge localization loss, which is demonstrated in this image
by parking lots with confidence over 50% producing very inaccurate bounding boxes.

Figure 7. Initial Test Run of the Algorithm

14

VI. Testing and Evaluation
The first test run of the algorithm provided poor results. The classification was decent,

however, the localization was very off. This was likely due to the small training set the algorithm
was initially provided (~50 labelled images).

As can be seen in Figure 8, the algorithm was not able to accurately identify where the
parking lots were during the first phase of testing. In this figure the green boxes depict the
estimated locations of parking lots, and the red boxes have been manually inserted to highlight
parking lots that were not recognized. It can be seen that many were missed, and the localization
is quite inaccurate. Additionally, the model’s bounding box regression appears to heavily favor
two distinct shapes for the bounding boxes, which is likely due to the small size of the dataset.

Figure 8. Initial Parking Lot Identification

 The network’s difficult to accurately identify the location of parking lots can be
confirmed by the information presented in Figure 9. This figure represents the localization loss
over iterations of training the network weights. Ideally a consistent downward trend would be
visible, however, the dominant orange line, which represents the smoothed localization loss
struggles to decrease consistently. This is exacerbated when viewing the faint line, which
represents the loss without smoothing, however, due to the small testing set it is expected that for
some iterations the loss will be high. Since localization loss represents the accuracy of scaling
the outputted bounding boxes, the results of this graph provide a good explanation for the
inaccuracy in the initial training run.

15

Figure 9. Initial Localization Loss

 However, the team was optimistic and hoped adding many more labelled images (~500),
as well as using a checkpoint from the Kitti14 model, would help to improve the model’s results.
A checkpoint would assist primarily due to not having to train the model from scratch. This is
because a model with checkpoints already has weights15 that can be modified, a weight
representing the strength of connections between units, essentially meaning the amount of
influence one unit has over another.

14 Faster-RCNN Kitti: https://github.com/czhu95/kitti
15 Meaning of Weights: https://stats.stackexchange.com/questions/213325/neural-network-meaning-of-weights

16

As can be seen in Figure 10, the team was successful in detecting horizontal and vertical
parking lots, meaning that if the parking lot sits in line with the horizontal or vertical axis relative
to the image. In the figure below all of the parking lots outputted for horizontal parking lots were
displayed with a high confidence and provided the correct output. If the bottom right corner of
the image is examined the issue with detecting off axis parking lots can be seen, however, a
bounding box is still generated to capture its location. This figure demonstrates the success of
training our model as false positives are generated, and a bounding box is generated for all of the
parking lots present in the figure.

Figure 10. Final Detection Parking Lots

17

For rounded / angled parking lots, meaning that the parking lots sit at an angle, the team
found some lots were detected fairly well, as can be seen in Figure 11. In this figure a red circle
has been added, to show the location of a semicircular parking lot. Here it can be seen that
although there is angulation in the structure that the model is able to capture most of the parking
lot. This demonstrates that while angular parking lots provide a challenge to the model a general
localization of these parking lots is still possible. Additionally, the other parking lots in the
image are located with a very high certainty and in the correct location.

Figure 11. Final Detection Rotated Parking Lots

Figures 12 – 14 show the loss over iterations through the neural network. On the last
training run the team saw a decrease in the localization loss which can be seen in Figure 13. This
is the deviation from the location of parking lots in the testing set in comparison to those
generated by the model. This was a large improvement from the inconsistent change over time
that was seen during previous iterations. For the purpose of parking lot detection, the accuracy at
which the outputted boxes are able to resemble the true bounding boxes is extremely important,
and therefore this loss presents the most important aspect. Additionally, the faded lines in Figure
13, which represent the unsmoothed loss, begin to peak at .1 which suggests this is the worst-
case scenario. This means that a loss of .1 is a high bound which is a satisfactory loss.

In Figure 13 it can be seen that the classification loss follows an unusual path, before
beginning to converge to around .1. The reason for this behavior is due to the use of a starting
model with pretrained weights. This meant that at the early iterations the loss of classifying
parking lots was already a lot lower than a model with no preset weights, and as the weights
adjusted to classify parking lots. Although this is the case it ultimately began to converge.

The total loss, depicted in Figure 12, which is a combination of localization and
classification loss also fell to an acceptable number. Generally, a total loss below 1 suggests that
the model is finding some accurate results, and the convergence to .5 produced effective results.
Although an improvement would still be beneficial the team predicts the main cause of not
having a lower final loss was the angulation of parking lots. By manually observing the outputs
of our testing set we predict that if only horizontal and vertical parking lots were present that the
loss would reach a very low bound.

18

Figure 12. Final Total Loss

Figure 13. Final Localization Loss

Figure 14. Final Classification Loss

19

VII. User’s Manual
1. Use Cases

A user of the system produced by this project would need some technical skill with
interacting with command-line applications as well as installing dependencies for software tools.
The system takes a single image or series of images in the GeoTIFF file format, and will process
these images and identify parking lots within those images by outputting a GeoJSON file for
each image in which a parking lot was identified. A user should note that the system defines a
parking lot as a sequence of adjacent parking spaces, as opposed to the entire paved lot.

The system will produce GeoJSON files that can then be parsed be any application that is
capable of accepting GeoJSON files. The system is only focused on producing data, and thus
will have minimal user interaction. This is due to the way internal details are handled by the
system. Little configuration can be done by the user and so the user can (or should) only interact
with a single script, referred to as the master script. This script handles accepting input and
passing that input to the other parts of the system, as well as returning the output of those parts of
the system.

As such, the main use case for this final script is detecting parking lots automatically in
satellite images. The user may wish to use these detected parking lots for whatever they desire,
such as analyzing which certain geographic areas contain the most parking lots. Another use case
for this tool could be for mapping purposes and keeping them updated, as a user could run this
script over areas that were known to not contain parking lots beforehand and now do.

Users can also use this project as a starting point to further develop it into a more refined
system. The team has included some ideas as to what could be done to improve the accuracy of
the model. The team was not able to make these ideas work due to time and infrastructure
constraints. However, there are files and documentation included on how to set up the improved
Faster-RCNN Kitti model. The user can use all of these resources to make a model that is more
likely to accurately detect parking lots.
 Finally, the model could be used to build separate models that are used for similar tasks.
The team has provided documentation on how the model was built, and as such could be used in
the same way for detecting objects other than parking lots. The checkpoints, which are the model
weights generated from training the neural network to identify parking lots are located in the
training directory of the supporting files. This collection of model weights from the trained
model can be used as a starting point in order to train another network with a similar purpose.
Starting a new training run with these weighs will allow for a much faster convergence to a low
loss on a new dataset, and therefore improve accuracy and reduce the amount of training data
needed.

2. Tutorial
A. Install Tensorflow - while the Tensorflow website provides an installation guide, this is what
worked for this project.
 For Linux / macOS:

1. Install TensorFlow by invoking one of the following commands:
$ pip install tensorflow # Python 2.7; CPU support (no GPU support)

 $ pip3 install tensorflow # Python 3.n; CPU support (no GPU support)
 $ pip install tensorflow-gpu # Python 2.7; GPU support
 $ pip3 install tensorflow-gpu # Python 3.n; GPU support

2. After installing tensorflow, validate your installation by running a short code snippet.

20

 For Windows (The team used Anaconda for installation):
1. Create an Anaconda environment named ‘tensorflow’ by invoking the following

command:
 C:> conda create -n tensorflow pip python=3.5

2. Activate the Anaconda environment by issuing the following command:
 C:> activate tensorflow
 (tensorflow)C:> # The prompt should change

3. Issue the appropriate command to install TensorFlow inside the Anaconda environment.
 CPU-only version of Tensorflow:

(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow
GPU version of Tensorflow:
(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow-gpu

4. After installing tensorflow, validate your installation by running a short code snippet.
 Validating installation:

1. Navigate to the Tensorflow install directory.
2. Invoke Python from the shell by typing in: python
3. Type the following inside the shell:

 # Python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

 The output should be: Hello, TensorFlow!
B. Install the necessary dependencies.
C. Run the model.

1. Move parkinglot_finder.ipynb to models/research/object detection.
2. Move parking_lot_inference_graph.tar.gz to models/research/object_detection and

extract.
3. Adjust variables within the parkinglot_finder.ipynb notebook to represent the correct

paths to necessary files on your local machine.

21

Figure 15 describes the variables necessary to edit (note discussion in Section IX, Future Work),
where the red boxes indict the import areas of the Notebook to update when identifying parking
lots:

Figure 15. Running the Script

22

After running the notebook, a GeoJSON file should be produced. There are several ways
to open this GeoJSON. The user can open QGIS with the GeoTIFF file that was entered, and
then open the GeoJSON file as well, which shows the parking lots outlined on top of the image.
Or, the user could go to a GeoJSON file viewer online16 and load the files in there. Figure 16 is
an example of what inputting a GeoTIFF might lead to when loaded in QGIS:

Figure 16. GeoJSON loaded in QGIS

16 GeoJSON Map Viewer: http://geojsonviewer.nsspot.net

23

The same GeoJSON loaded with a map viewer17 verifies that the output is correct in terms of its
geographic coordinates, as can be seen in Figure 17. This figure provides a proof of concept that
the outputted GeoJSON file of the network can be correctly mapped to the positions identified in
Figure 16. In Figure 17, the faint black boxes on the bottom section of the image, are in the same
area as the green boxes represented in Figure 16, which provides the desired output.

Figure 17. GeoJSON Loaded in Browser

17 GeoJSON Map Viewer: http://geojsonviewer.nsspot.net

24

VIII. Developer’s Manual
This section of the report serves to provide information that would be helpful to any

developer that wishes to extend or modify the system to suit their needs. Additionally, the project
structure that was used as well as the flow of project development will be given.

1. Project Structure and Flow

Due to the nature of geographic identification, the system was comprised of two phases:
data labeling and classification, and training and assessment of the identification algorithm. In
order to accomplish the project’s ultimate goal, the entire project team focused on identifying
parking lots within images, and labeling those parking lots. This was a team-wide effort so that a
sizable introductory training set would exist for the identification algorithm to accept and learn
from.

After the creation of the initial training set, the identification algorithm was created using
Tensorflow to accept a set of one or more images. Currently, a master script is used to execute
the system. This master script executes a couple of conversion scripts, primarily due to the effect
that limitations of time had on the algorithm requiring an input of JPEG image files. The first
conversion script takes an optional input GeoTIFF image file and a required file output flag. If
no image file was given as input, then the script will execute on all GeoTIFF image files found in
the current resident directory and any subdirectories of that resident directory. In the case of an
image file as input, the script will only execute on that specific file. The required file output flag
is used to specify the file type that the script should convert GeoTIFF files to (using GDAL). In
the instance of the master script, an output of JPEG is assumed. The JPEG files are then labeled
using labelImg. The team used the bounding boxes provided by labelImg to identify parking lots.
The labeled images and the negatives (images that contains no parking lot) are then fed into the
model for training. After the training phase is complete - a satisfiable accuracy is found with the
current model - the project team ran images through the trained algorithm, grabbed the output
array, and converted it into GeoJSON file using a Python script.

Moving forward, this project may have to be modified based on the needs of the entities
that plan on using and / or expanding the system. If it is used simply for parking lot identification
and the user is happy with the final level of accuracy, then no changes may be necessary.
However, if the user is not happy with the final level of accuracy, then several options are
possible. The user could attempt to retrain the algorithm such that it will have a larger dataset to
learn from, which would entail labeling more images than the algorithm was originally trained
with. In addition, or as a substitute, the user could attempt to modify the algorithm itself to
ensure that it is as accurate as it possibly can be with the current dataset that it was trained on. It
should be noted that as the project currently stands, no maintenance is required for the system to
report the parking lots found in the images it is supplied with. Modifications, and maintenance
for those modifications, are only required if the user wants / needs higher accuracies in reporting
the locations of parking lots.

2. Inventory of Project Files
The project files used in the creation of the system as it currently stands are detailed below:
Parking Lot Identification Algorithm Files:
● convert.py: Python script to convert the GeoTIFF files into JPEG for the faster R-CNN

model. This script will scour the current directory for files with a TIF extension and
convert them to JPEG using GDAL. The converted files will keep the same name but

25

with .jpg extension instead of .tif. This conversion is necessary because GeoTIFF
contains geographical coordinates and which wouldn’t work with our labeling program.
The script can also convert a single image if desired.

● to_geojson.py: Python script to convert the output XML into GeoJSON containing the
geographical coordinates of each parking lot.

● xml_to_rbox.py (future use): This script converts the XML from roLabelImg to Rbox
format for the DRBox Caffe model. This model only uses Rbox so this conversion is
necessary.

● parkinglot_finder.ipynb: The main script that runs the project. It’s a Jupyter notebook that
runs the model and outputs a GeoJSON file that contains the geographical coordinates of
the parking lots.

● xml_to_csv.py: Script to convert the XML file to a CSV file. The CSV is used to train the
model.

● splittraintest.py: Script to split the CSV file of all labels into two CSV files, one for
training and one for testing.

● generate_tfrecord.py: Python script to generate the training and testing data for the
model.

● Training: Contains all the necessary files for the training process. This includes different
checkpoints that the team used to speed up the training process as well as data for the
model.

● Data: Contains all information in the format that Tensorflow requires.
Labeled Satellite Image Files:
● Training_Data/GeoTIFF: ~1400 GeoTIFF files that were initially pulled from SpaceNet.

These images are from the cities of Las Vegas and Paris.
● Training_Data/Labeled_JPEG: ~500 labeled images using labelImg for the Faster R-

CNN model training.
● Training_Data/Negative_JPEG: ~600 negatives for Faster R-CNN model training. These

images do not contain any parking lots in them.
● Training_Data/Labeled_roLabel: 76 labeled images using roLabelImg for the Caffe

model training. These images are from the Las Vegas image pool.

3. Tutorial on Installing Software
A. Training model
Install CUDA and cuDNN
● CUDA Installation Guide: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/
● CuDNN Installation Guide: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

Install Tensorflow
● Tensorflow Installation Instructions: https://www.tensorflow.org/install/

Install additional Python dependencies:
● Install pillow, lxml, jupyter, matplotlib

Retrieve and make Tensorflow Models:
● Git clone the following repository: https://github.com/tensorflow/models
● If using Ubuntu navigate to models/research and execute command: protoc

object_detection/protos/*.proto --python_out=. And export
PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

26

Retrieve the project code:
● Clone the following repository: https://github.com/khoale95/SatImageParkingLotFinder

B. Labelling
Follow the steps that were detailed in the implementation section (Section V) for labelling data.
The future work section details labelling rotated bounding boxes for use in the DRBox model.
● labelImg: Download and use LabelImg at https://github.com/tzutalin/labelImg
● roLabelImg: Download and use roLabelImg at https://github.com/cgvict/roLabelImg .

For roLabelImg, the user will want to always use the rotating bounding box as the normal
bounding boxes does not store an angle in the output XML file.

4. Training on New Data
In order to train the object detection once information has been labeled using labelImg, a few
steps must be taken.

A. Data Manipulation
● Put labelImg XML files into the Bounding_Boxes folder.
● Put the JPEG files into the Images folder
● Run xml_to_csv.py
● Run splittraintest.py with the arguments of the CSV file name and ratio of training to

testing. For example ‘python splittraintest.py data/parkinglot_labels.csv 0.8’ will create a
test and train split of the overall CSV file with 80% of the training images being part of
the training set.

● Create TFRecords for use by the neural network:
○ Run: python generate_tfrecord.py --csv_input=data/train_labels.csv --

output_path=train.record
○ Run: python generate_tfrecord.py --csv_input=data/test_labels.csv --

output_path=test.record
● The information is now formatted in the correct way to be passed to the neural network.

B. Model Setup
● Locate a model:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detect
ion_model_zoo.md

● Add the .config file to the training directory. The project team used
faster_rcnn_resnet101_kitti.config. The model selected can differ based on training
needs.

● Once a config file has been downloaded, the user will need to adjust the necessary paths
and parameters to the data. Reference faster_rcnn_resnet101_kitti.config in the repository
as an example.

● If the user is so inclined, the user can also acquire model checkpoints. To use these,
download the TAR file and extract them in Tensorflow’s
model/research/object_detection directory.

27

● In the training directory create an object-detection.pbtxt file. It should look something
like:
 item {
 id: 1
 name: 'parking lot'
}

C. Running Model
● All setup has now been completed and training can begin.
● To train, navigate to models/research/object_detection and run: python train.py --

logtostderr --train_dir=training/ --
pipeline_config_path=training/faster_rcnn_resnet101_kitti.config

● To monitor the progress, run tensorboard --logdir=’training’ from
models/object_detection

● NOTE: The directory training is the one provided in the project team’s repository; the
user path to get there may have to have precursors. For example:
/home/user/Documents/SatImageParkingLotFinder/training

28

IX. Lessons Learned
The timeline below details the required goals for this project to be considered complete, and the
stretch goals if the required goals are able to be completed, as well as the expected date for those
goals to be completed by.

1. Timeline

Required Goals:
● Feb. 8 - Documenting the project plan and goals
● Feb. 22 - Label data, develop the training set for parking lot identification
● Mar. 8 - Create / adapt a learning algorithm for accepting the data
● Mar. 15 - Training the algorithm for parking lot identification
● Mar. 22 - Testing the algorithm and accessing accuracy
● Mar. 29 - Finalize the algorithm for parking lot identification

 Stretch Goals:

● April 12 - Label the training set for parking space identification
● April 19 - Create / adapt a learning algorithm for accepting the data
● April 26 - Training the algorithm for parking space identification, adjusting the algorithm
● May 1 - Finalize presentation and deliver final product

Unfortunately, due to several complications along the way, the project team was unable to meet
the project’s stretch goals. However, the team felt very satisfied with the final model for the
required goals, and feel identifying parking spaces (stretch goals) can be easily accomplished
with the work that was completed.

2. Problems

1. Downloading the SpaceNet data proved to be surprisingly difficult. The SpaceNet dataset
was hosted on a S3 bucket that could only be accessed through command line through the
aws-cli commands. Therefore, the team was unable to pick and choose which files were
wanted, and were forced to either download images one at a time or in large 8GB+ .tar.gz
files. Unfortunately, these files provided a lot of data that was unnecessary in the scope of
the project. In addition, using the aws-cli would timeout after several minutes, thus not
allowing the team to download the entire .tar.gz files.

2. The visibility of the parking lots during the labeling phase caused a small debate in the
team. It had to be decided which parking lots were visible enough for the algorithm to
reliably identify. The baseline was if it looks like a parking lot - large open area with
rectangular spaces marked with white lines - then it would be a labeled. However in the
satellite images that were downloaded, some parking lots were obscured to the point that
while a human can tell that it is a parking lot, a machine might mix it up with something
else. Examples of this are parking lots with canopies over them, parking lots obscured by
building shadow or at night, parking lots with trees over them, etc.

3. The model proved difficult to get set up. The project team first attempted to use Caffe
and Faster-RCNN which proved to be more pain than it was worth. The team then moved
to the Tensorflow framework using Faster-RCNN-RESNET-101-COCO, starting from
scratch. This ran, but had bad overall loss because it wasn’t given any negatives. The

29

second attempt with Tensorflow was one where negatives were given, which decreased
the overall loss but gave many false positives.

4. In addition to the trouble that the model set up gave the team, the team had trouble
getting the model to accept and train from GeoJSON files. This meant that attempting to
produce trainable data with QGIS was not worthwhile.

5. Realizing that bounding boxes could not be rotated with the model, the team wanted to
build a model that had this ability. The team found a model called DRBox from a recent
research paper that appeared to be exactly what was needed, but had several difficulties
running this model.

6. Setting up roLabelImg on PC using Anaconda and Python 2.7. The Python libraries to set
up roLabelImg on PC don’t set up in the proper directory. This causes pathing issues
when trying to run the program. The library that causes the issue is PyQT4.

3. Solutions

1. In order to download the appropriate dataset, after much trial and error, the team had to
download the .tar.gz file in parts. It was found that the team could download about 3GB
of data before getting timed out, therefore the team downloaded three parts of the .tar.gz
file, and combined them into one. First, the team used a byte range: aws s3api get-object --
bucket spacenet-dataset --key AOI_2_Vegas/AOI_2_Vegas_Test_Public.tar.gz --request-payer requester
AOI_2_Vegas_Test_Public.tar.gz --range bytes=3000000000-6000000000. Next, after downloading
three separate parts of the file, the team combined them using: cat
AOI_2_Vegas_Test_Public_2.tar.gz >> AOI_2_Vegas_Test_Public_all_2.tar.gz. After combining the
three parts, the team was able to finally successfully extract the file and retrieve the data.

2. After debating amongst the team and consulting with RGI, it was decided to label parking
lots that the team can still make out an outline. So even if it is in the dark, or has some
debris obscuring small part of it, the team would still include it. The team would,
however, exclude parking lots that are completely obscure like those with canopies or if it
is in complete darkness such that the white lines are not visible.

3. The final model uses Faster-RCNN-RESNET-101-Kitti which gave the system better
execution speed, a low number of false positives, and overall significantly much better
results.

4. This allowed the team to pursue easier techniques of labeling trainable data, such as using
labelImg. However, labelImg cannot open GeoTIFF image files, so to get around this the
team needed a script that could accept a GeoTIFF image and convert it to a JPEG image
that the team can then label.

5. First, the ran into several errors regarding dependencies in order to run this model. After
much troubleshooting, all dependency errors were removed, yet the team still had errors
when training. It was discovered that the model DRBox18 was built upon (VGGNet) and
required over 11 GB of GPU memory. Because the team was trying to run this on a
personal laptop, the team did not have the resources to run it, so the team looked into
running this model on Virginia Tech’s high powered computers. After a consultation with
the Advanced Research Computing division, the team was told running this model would
be quite challenging given the current setup of the machines. Due to this and the limited

18 DRBox: https://github.com/liulei01/DRBox

30

amount of time that the team had, the team was unable to train DRBox, however, the
team documented how to run this model for users wishing to have improved results.
Another potential fix to this is that the team can rotate the images with a Python script
using GDAL. The images will be rotated by set degrees (like 30, 45, 60, ...) and run
through the model. The script will then merge the output of these multiple rotations to
hopefully provide a more accurate model for parking lots that are not horizontal or
vertical. The team was able to merge this because the team knows the angle of rotation so
the team can translate the point of the rotated images into its actual point in the real
image. This approach is a bit ad hoc, but it is also faster than switching the model.
What the team ended up doing was just trying to exclude irrelevant objects from the
bounding boxes. This meant that for large / long parking lots that are tilted, the team used
smaller bounding boxes that encompass only a small section of the parking lot. There are
limitations to this approach as the shape of parking lots are very varied and sometimes
the team had to include more irrelevant data than what was wanted. This causes the
model to miss many of the tilted parking lots but it does catch some, from time to time.

6. Instead of just running ‘conda install pyqt=4’ on PC, run ‘conda install -c anaconda
pyqt=4’. This will cause PyQT4 to install into the correct directory of Anaconda.

4. Future Work

One of the most obvious limitations of the model is that it has difficulty identifying
parking lots that are at an angle (i.e., a parking lot that is not horizontal or vertical with respect to
the source image dimensions). This is primarily due to the difficulty that was encountered when
attempting to train the model using bounding boxes that stored the angle of rotation. The project
team has potentially solved this by using roLabelImg and the new Caffe model. However, the
team could not get the model to work as the team lacked the necessary hardware. The model
requires a minimum of 11GB of video RAM which the team did not have. So for anyone who
wanted to improve the model and has the necessary hardware, this would be a good place to
start.

Another feature that would be useful is modifying the way the tool accepts input.
Currently the tool is a Jupyter notebook in which the user must modify a couple of lines of code
to adjust the input to the model. This is not particularly user-friendly, and so it would be
beneficial to adjust this input to either be stored in a config file or interactive input (i.e.
command line or user interface).

The model that can accept rotated bounding boxes is called DRBox and is based on a
research paper titled “Learning a Rotation Invariant Detector with Rotatable Bounding Box.”19.
Follow the instructions for installation and preparation on the repository. It is important to note
this model requires 11GB of GPU memory, so it must be set up on a powerful computer. Next,
the user must label satellite images with rotated bounding boxes. Follow the instructions in the
developer manual (Section VII) for installing roLabelImg. This tool can be used to label parking
lots in the same manner as labelImg, with the addition of rotation.

The DRBox uses its own format for labelled images (.rbox) unlike the project model
which uses XML files. As such, the labelled images the team has provided must be re-labelled
using roLabelImg. To label the rotated parking lots, use roLabelImg on a JPEG file and create a
RotatedRbox with “parking lot” as the label. It is important that even for parking lots that are

19 Learning a Rotation Invariant Detector with Rotatable Bounding Box: https://arxiv.org/abs/1711.09405

31

vertical or horizontal (no rotation), one still labels using a RotatedRbox rather than a RectBox so
that the conversion script works.

32

Figure 18 gives an example of how a user would label parking lots in roLabelImg, so that
angled parking lots can be handled:

Figure 18. Labelling in roLabelImg

After labelling and saving the XML for the rotated bounding boxes, use the
xml_to_rbox.py script that has been provided to convert the files into a usable format for the
model. This Python script requires Python 3.X in order to run. This script can be run in a
directory by simply calling the following command in the directory of your choice: python3
xml_to_rbox.py
If you wish to run this script on a single XML file, run: python3 xml_to_rbox.py foo.xml.

With all of the labelled images in the correct directory, follow the directions in the
DRBox repository for training. The training should take some time, but after it has completed,
follow the View Results section to see the output of the newly trained model. The team believes
this improved model should provide significantly better results compared to the current trained
model.

33

X. Acknowledgements
This project was supported by Mary Carome, Steven Lander, and Michael Szaszy. We would
like to thank them as well as everyone at Reinventing Geospatial Inc. for all of their help and
guidance. We would also like to thank Dr. Fox for his assistance as well as directing the course
that allowed us to work on this project.

Client: Reinventing Geospatial Inc.
● Mary Carome: mary.carome@rgi-corp.com
● Steven Lander: steven.lander@rgi-corp.com
● Michael Szaszy: michael.szaszy@rgi-corp.com

Instructor: Dr. Edward A. Fox - fox@vt.edu
Graduate Teaching Assistant: Yilong Jin - e1337@vt.edu

34

XI. References
1. P. Hagerty. Establishing a Machine Learning Workflow. Sept. 2016. Web.

https://medium.com/the-downlinq/establishing-a-machine-learning-workflow-
530628cfe67. Accessed 26 Mar. 2018.

2. A. Van Etten. Getting Started With SpaceNet Data. Jan. 2017. Web.
https://medium.com/the-downlinq/getting-started-with-spacenet-data-827fd2ec9f53.
Accessed 26 Mar. 2018.

3. Machinalis. Establishing a Machine Learning Workflow. Mar. 2016. Web.
http://www.machinalis.com/blog/obia/. Accessed 26 Mar. 2018.

4. Ujjwalkarn. Python Data Science Tutorials. Jul. 2017. Web.
https://github.com/ujjwalkarn/DataSciencePython. Accessed 26 Mar. 2018.

5. T. Bai, D. Li, K. Sun, Y. Chen, and W. Li, “Cloud Detection for High-Resolution
Satellite Imagery Using Machine Learning and Multi-Feature Fusion,” Remote Sensing,
vol. 8, no. 9, p. 715, Aug. 2016 [Online]. Available: http://dx.doi.org/10.3390/rs8090715

6. J. Xu. Deep Learning for Object Detection: A Comprehensive Review. Sept. 2017. Web.
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-
review-73930816d8d9. Accessed 26 Mar. 2018.

7. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks" CoRR, Jan. 2016. Accessed on: May. 1, 2018.
[Online]. Available: https://arxiv.org/abs/1506.01497

8. L. Liu, Z. Pan, B. Lei, "Learning a Rotation Invariant Detector with Rotatable Bounding
Box" CoRR, Nov. 2017. Accessed on: May. 1, 2018. [Online]. Available:
https://arxiv.org/abs/1711.09405

9. TensorFlow. TensorFlow. 2018. Web. https://www.tensorflow.org/ Accessed 1 May
2018.

10. Tzutalin. LabelImg. 2018. Web. https://github.com/tzutalin/labelImg Accessed 1 May
2018.

11. cgvict. roLabelImg. 2018. Web. https://github.com/cgvict/roLabelImg Accessed 1 May
2018.

12. TensorFlow. Tensorflow detection model zoo. 2018. Web.
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detect
ion_model_zoo.md. Accessed 1 May 2018.

35

XII. Appendices
1. Project Team Members and Responsibilities

Team Member Role Responsibilities

Thomas Wolfe Project Lead
Machine Learning Lead

● Maintain contact between client,
group, and professor

● Develop and train ML algorithm

Alex Lambrides GIS Lead ● Research GIS labelling techniques
● Acquire data
● Label GeoTIFFs
● Assist in developing model

Khoa Le Presentation Lead ● Lead presentation
● Label GeoTIFFs
● Assist in developing model

Patrick Jahnig Report Lead
Programming Lead

● Lead interim and final report
● Label GeoTIFFs
● Wrote conversion scripts

Table 1. Team Member Responsibilities

