CHAPTER 4. ANALYSIS AND DESIGN OF SINGLE-MODE
FIBER WITH ZERO POLARIZATION-MODE DISPERSION

Polarization-mode dispersiqi?MD) has gained considerable attentmrer the past few
years. It has bedahe subject omanyexperimental and theoretical investigati¢h84] in
order tothoroughly understand its effects adéntify the major sources contributing to
this phenomenon.Interest inthis subjecties upon surpassing themitations caused by
PMD in fibers, especially in longlistance telecommunication systems. Slichtations
are exhibited in bandwidth-distancproduct, bit-rate,pulse width distortion,power

penalty in the receiver, and nonlinear distortions in analog systems.

4.1 POLARIZATION-MODE DISPERSION

It has been established that in gener&lyo factors contribute to polarization-mode
dispersion(PMD) in circular fibers:the deformation of theircular geometry and the
internal stressesvhich leads tostress anisotropy. Botleffects occur during the
manufacturingorocess. Irthis chapter, thanvestigation of PMD idimited to elliptical
deformation of fibers.

For adeformedfiber with smallcore dipticity, the fundamental LR mode splits into two
orthogonally polarized modes willightly differentpropagation constants of these two
modes. The amount of PMD in fibers depends orditierence betweethe propagation
constants. In ordinary step-indsingle-mode fibersPMD vanishesoutside thesingle-
mode wavelength regioil06]. In other words, at theavelength oizero PMDtwo or
more modes are supported by fieer, thus significant signaldistortion occurs due to
modal dispersion effect. To improfieer performance in long-hahigh bitrate systems,

a zero PMDmust occur in thesingle-mode wavelength region. Few methods for
cancelingout the polarization moddispersion have beengposed by researchers. Also,

it has been verified experimentally thetv PMD due to form-induced and stress-induced
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birefringence can be achievddr short-length PMD (measured in ps/km) by partial

cancellation of the two induced effects, [107].

The main goal in this chapter is to design a fiber that provides zero PMé&ngle- mode
region. Afiber design withdepressed corand mitiple claddingsare promisingfor this
purpose. The approach adopted in examining this fiber is based on the analgsiglef a
modefiber with small ellipticity. Then theanalysisresults are used tdesign a fiber with
zero orvery smallPMD at thewavelength of operation. In addition to requiringro
PMD, othercritical fiber properties such asffective area, moddield diameter,field

distribution, and chromatic dispersion will also be examined.

4.2 SINGLE-MODE FIBERS WITH SMALL ELLIPTICITY

4.2.1 Analysis of Slightly Elliptical Multiple-Clad Fiber

The analysis of slightly elliptical multiple clad fibers mresentedusing a perturbation
technique. Fieldsare expressed in powseries of ellipticityfactor e, andonly the zero
and firstorder terms areetained in the solutions. Propagation propertiesuding
birefringence, effectivaarea, mode-field diameter, and dispersiame presented for an

example design.

4.2.1.1 Field Solutions

Let usconsider an N layers opticéiber consisting of aentralcoreregion and several
claddings, with boundaries of evemyo neighboring layers being slightly ellipticaEach
layer is assumed to leotropic, homogeneous, lossless, Anear. The ith layer, with i =

1 representing theoreand i> 1 referring tothe cladding regions, is characterized by a
radius rand refractive index;hwhere i = 1, 2,.. N. Theoutercladding layer is assumed
to extend toinfinity in the radial direction becausthe field of guided modes decay

exponentially inthe radial direction in this cladding. Figue1 illustrates the cross
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sectional view of such multiple clad fibefThe boundary between th# and (i+1)th

layers is described by

ri=a[1+ecos(d)] (4.1)

wheree is theellipticity factor and¢ is theazimuthal angle measured fratime x-axis.
The semi-major andemi-minor axisareaq; (1 +e) anda; (1 - e), respectively, fothe ith
elliptical boundary. For a perfectly circular fiber, the ellipticity faeter O and thdayers’

radii become ; = q;.

For the fundamental LoPmode, the scalar fields solutions are expressed as

Wir.d) = fo(r) +e fu(r,d) + 0€%; i=1,2, ..., N (4.2)

wherefgi(r) is the zero-ordesolution and is thsame as that ihe fiber were circular.
That is,

foi(r) = AiZoi (Ui 1) + B Zoi (Ui 1) (4.3)
where
Jo Bo <n
Zoi = ly, By > Ni @4
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Figure 4.1 Cross section view of multiple-clad elliptical fiber consisting of N layers.
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Yy, By < Ni

Lo = K,, Eo > N (4:5)

and

u = (2r/A) (O -~ B%0)Y2 (4.6)

with Bo =Bo/(217A). In (4.4)and(4.5), 4 and Y, are the zero-ordéBessel functions of
thefirst and second kindsyhile I, and K are the zero-ordenodified Bessel functions of

the first and second kinds, respectively. In order for the soluti@h3iy to befinite at r =

0 and r =0, it is necessary that;B- Ay = 0.

For the case obrdinary step-index fibers, where N = 2, it has been established that in
order tosatisfy boundary conditions at=a [ 1 + cos(®)], the function fy(r,¢) should
assumehe form g(r)cos(2), whereg(r) is thesolution of Bessel differentiaquation of
order 2. Clearly,the sameproperty holds for mitiple clad fibers. Thus, the solution for

f1i(r,) can be written as

f2i(r,9) = f 1i(r) cos(D) (4.7a)

f1(r) = [C Za (Ui 1) + D7 Zzi (U1)] (4.7b)

where %; and Z,; follow the same definition ashose for 4 and Z;, butwith subscript

zero replaced with 2, and @nd D are constant coefficients.
4.2.1.2 Boundary Conditions

The fieldsyi(r,¢) and their derivativesyi(r,$)/0 r must be continuous at the boundaries r

=r. Implementing these conditions results in the following equation,
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foi[ai (1 +ecos(@))] + e f u(r) [oi (1 +ecos(D))] cos(2p)] =

fos1[ai (1 +ecos(@))] + e f 1in(r) [ai (1 +ecos(@))] cos(@)], (4.8a)
and

f'oi [ai (1 +ecos(2)] +e fra [ai (1 +ecos(2p))] cos(2) =

f'oia[ai (1 +ecos(d))] +e fA'lM [ai (1 +ecos(2))] cos(2p) (4.8b)

Next, we obtain Tayloseries expansions dfie functions fo, f'oi foirt, floms f'1i

f'1141, using the following relationship,

fla (1 +ecos())] =f(ai) +e [a cos(D) f'(a )]+ 0 (e?)] (4.9a)
f'[a (1 +ecos())] = f'(a) +e [aicos(D) f"(ai)]+0 ()] (4.9a)
where f = foi, fojes, faiy fopand ' = o), Flouy, o o

Using (4.9) in (4.8) and collecting terms of €%, 0 (e'), 0 (e?), ...., we obtain

[ foi (@) - foir (@)] + €{ [ foi(ai) - floma(a)] ai+ faila) - foia)} cos(@) +
0(e’)=0 (4.10a)

[froi(a) - from(a)] +ef{[f oi(ai) - fromlai)] a+ fra(a) - fipa(a) } cos(@) +
0(e’)=0 (4.10b)

Equating the coefficients of &f), 0 (e*), .... terms, (4.10a) and (4.10b) reduce to
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foi (i) - fov1(a)) =0 (4.11)

floi(ai) - floi(ai)=0 (4.12)
[foi(a) - flomaai)] ai+ faa) - fii(a)=0 (4.13)
[f70i(ai) - f oma(a)] ai+ fro(a) - fiwa(a) =0 (4.14)

The propagation constafi, as well asthe coefficients A and B in (4.3) can be
determined from(4.11)and(4.12) in terms of oneoefficient, e.g. A Equations (4.13)

and (4.14) in conjunction with (4.12) reduce to

fAli(Gi) - fAl,i+l(0i) =0 (4-15)

fri(a) - froma(a) = -ai[ T oi(ai) - foia(ai)] (4.16)
From (4.15) and (4.16) the rest of the coefficienfgr@ D, can be found in terms of A

4.2.2 Analysis of Four-Layers Fiber

4.2.2.1 Field Solutions and Characteristic Equations

The general results derived the previous sub-sectionsilivbe used tofind the field
solutions, characteristic equation, ariimately birefringence.From (4.3) and(4.7), the

field solutions are expressed as

Zo(ur), r < az
2ZoAuzr) + BaZofud), a1< r < az
Zouar) + BZofud), a2< r< as
aZoduar), r > as

foi (r) = (4.29)
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1Zaa(ual), 1 < a

R 2ZaUar) + D2Z2AU2l), a1< r< a

fai(r) = > (4.30)
sZzqusr) + DsZ2{uar), a2< r< as

aZ24(Uar), T > as

The characteristic equation and @aplitude coefficientsire determinedsing (4.29) in

applying the boundary conditions stated in (4.11) and (4.12). The results are expressed as

& (Mwo-No) = €01-N3) (N4-N7) -&(N1-Nn2) (Ns-N7) (4.31)
110 - Ne) 011 - N3) (N4 -Ne) - &(N1-N2) (N5 - Ne)

where the;; j = 1, 2, ... 10§, andé, are defined in Appendix A.

4.2.2.2 Amplitude Coefficients
The amplitude coefficients are determined in terms,;cd\
Az= Zo(U) . (N21-Na) - A

%xUz2)  (2-na)

Bo= Zoa(U1)) . (N1-N2) - As
Zo2(U2)  Qz-n2)

As= Zo( Uz) . (N7-Na) - Ao + Zoo( Up) . (N7-Ns) - Bz
23 (Us) €7 - ne) 4 (Us) 07 - ne)

Bs= Zo((U2) . Ne-Na) - A2 + Zo( Uz) . (Ne-Ns) - B2
Zoz3 (Us) Q16 - n7) “Zo3(Us)  Q1e-nv)
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Bs= Zos( Us) . As + Zos( Us) .Bs
~Zoa (Uy) "~ Zoa (Uy) (4.32)

The rest of theamplitude coefficients, Cand Q.; where k = 1, 2, and 3, amso

determined in terms of Aand are shown in Appendix A.

4.2.2.3 Birefringence Calculations

To calculate birefringence, firte difference betweethe scalar propagation constght
and the exacfvector) propagation constaftis obtained fronthe following relationship
[106]

B*-p*= (L (k. 89 8. O (In rf(r,0)] ds) /( L e ds) (4.33)

wheregisy a, ory a, for x or y polarizedundamental LE; modes, an&is the cross-

section area of the fiber. Now, we need to calculan r’(r,9)),

0. (In 1(r,$)) = [2 n(rd)[d n(rd)/d 1] m(r.d)] &, +
(M2 n(rd)[0 n(r.$)/o o1/ n*(r.)] 4,

=2 In(rd)[[8 n(r.p)/d r] & + [(1/NI n(r$)/d ¢] &,]
=200 (n(r$))n(r.d)

In the case of a step-indgxofile, rf(r,) is constant in each region andly the index

discontinuities at the boundaries contribut&tdin r(r,0)).

For the four-layer fiber under consideration in the design, we can write
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O (In rf(r,d)) = 2 [((nz-no)/ng) 3[r - au( 1 + ecos(D))] + ((Ne-no)/ny) J[r - ax( 1 +
ecos(2))] + ((nuns)/ns) 3r - as( 1 +ecos(@))]] (ar+ 2esin(2p)a,)
= g(r¢)(a+ 2esin(2p)a,)

The vectora,+ 2esin(2p)4&, is, in fact,the gradient of(r,p) = r - ai( 1 + ecos(?), as

shown below

Of(r,d) = a+ ((2aiesin(@p))/r)ay = a+ [(2aesin(2))/ ai( 1 +ecos(2)]as

=a+ [(2esin(2p))/ (1 +ecos(a)]a, Ua, + 2esin(2p) (1 -ecos(d))a,

04, + 2esin(2) - 2e? sin(2p) cos(2)d,

&, + 2esin(2p)a,

The next step is to cargut the analysisfor both polarizations x and y of tifiendamental

LPo; mode separately. For the’l,Pmode we have

€ =y(r,9) ax=Y(r,0) [cos@)a - sin@)a]
Oi. 8= (UN@ 10 1)(r &) + (LN@ &/d ¢)

W(r,d) =fo(r) + e fy(r,d) + O(ez); where fi(r,¢) = fl(r) cos(d), then
(O,. &)[ &;. O (In ré(r,d)] becomes
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(Or. 8)[ &c. O; (In r?(r,d)] = [ f'o(r) cose) +e(f'1(r) cosp)cos(2p) +
2/ f 1 sin@)sin(2)] [fo(r) +e f1(r) cos()].g(rd)[ cos@) - 2esin@)sin(2p)]
= gdr.)

For the LPy: mode we have
€ =y(r,9) ay =Y(r,0) [sin(@)a, - cosp)a]

To obtain the expression fdil{. &,)[ &;. O, (In r(r,d)] for the y polarization, wehange
cosf) to singp) and sin) to -coso) in the result of [);. €;), then

(0. &y &:. O (In r’(r,9)] for the y polarization becomes

(Or. 8)[ &c. O (In r(r,d)] = [ £'o(r) Sin@) +e(f'1(r) sin@)cos(2h) -
(2/n f 1 cos@)sin(2)] [fo(r) +e f1(r) cos()].g(r.0)[ sin(@) - 2eco s@)sin(2p)]
=g,(r,9)

Now, we have

(EZ - Bzx )- (EZ - Bzy) = Bzy : Bzx = By - B (By +Bx) U2Bo OBy

=(.rs [9:(r.9)- gy(r,d))]ds)/ (L qJZ(r,q))ds) (4.34)

In order toevaluate the integration abov@st we will find simplified expressions for
ad(r,0)- gy(r,0) andw?(r,p). To find anexpression for [dr,0) - g,(r.$)], we substitute
the functions defined previously fogg¢) ,g,(r.¢), andg(r,p), and by neglecting terms of

order of €% we obtain the following
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0(r,$)- gy(r.9) = Zi ((Mier-m)/mi) 1 - ai (1 +ecos(2p))].

{ fo(a) f'o(a)cos(@) +e [ailfo(a) f"oa)+ (f'oar)’] cos(29)
- 2fo (@) f'o(a) Sirf(29) + [fo (a) f'a(a) + f'o(@) f(an)] cos(29)
+ (2k) fo (@) f (o) sirf(29)]} + 0 (e?)

and
2n

¢'[0 r'!.o [9(r0)- g(r,9)] rdr ap = Zne{ IZ ((Nix2-n)/m) Qi } + 0% = 2reQ

where
Q =fo(a)l-a f'o(a) +a’ f"o(a) + 2f1(a) +ar fra(a)] +

ai frofaifo(a) + fa(a)]

The denominator for the3ddB,, expression is

d= ( L qﬂ(r,q))ds) = 2,1([ fo?(r) r dr

finally the birefringence is

By = (1/2Bo) (€Q)/(d)
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and the normalized birefringence is

By /e = (1/2Bo) (Q)/(d) (4.36)

where

d= -I f(r)rdr + I B4? Ko?(ugr) r dr
0 as

as

:I P rdr + (1/2)52 B2 [Ko'X(Us) -KeX(Us)]
0

SinceA anda;; i = 1, 2, and 3 are measuredam, the unit for §3,,/e) is pm™.

4.2.2.4 Effective Area (Aeff) and Mode-Field Diameter (MFD)

The expression for the effective area (Aeff) is given by [113]

2
rd rdcp]

4 (4.37)
rdrde

W(r,

it

I

Aeff =

O Ny 8

w(r, ¢)

and for the fundamental mode reduces to

o0 2
[I rdr]
Aeff = (2m) = Z (4.38)
.([ Q(r)| rdr
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The expression used to calculate tmede-field diameter(MFD) is based on the

Petermann Il definition [114]

2

rdr
5 (4.39)

rdr

00

I w(r)

MED = [(8) =
[ law(ry 7 ar

0

4.3 DESIGN OF ZERO POLARIZATION-MODE DISPERSION FIBER

In order toachievezero PMD as @rincipal goal, several refractive-indeprofiles were
examined. The design afero PMD fiber was carriedout by varying the material
compositions and adjustirthe dimensions of various layers-or all testedprofiles, the
requirements of havingmall chromatic dispersion, single-modgeration, and practical
dimensionsvere taken into consideration. The results obtained foexAmined profiles
indicate that a multiple-clad geometry with depressed core, shown in Figure 4.2, is suitable
for thedesign ofzero PMDfiber. Thebasis of choosing this profile it sdely to meet
the previously stated requirements, but alsconsideringother factors thafplay an
important role in present communicatiggstems as well. In particular, among such
factors are effective area and mode-field diameter.

The fiber parameters and material compositidoisan example desigare summarized in
Table 4.1. The pragseddispersion-shifted fiber offers several improvementdiber

communications links as discussed next.
In order to achieve zero PMD at the operating wavelength1.55um), thetwo xand y

polarizations of thdundamental LR, mode must havéhe samegroup velocity. The

group velocity is defined as; ¥ dw'dp = c(dk/dB), where k=w/c = 2UA is the free
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Figure 4.2 Refractive-index profile used for the design of zero PMD fiber.
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Table 4.1 Materials and Radii of Designed Dispersion-Shifte&iber For Zero
PMD.

Core Clad1l Clad2 Clad3

Material M5 M2 M9 M3

Radius | 2.9um 4.2um 5um 00

space wave number, c is the speed of light in free spacg,iartkde propagation constant.
Thetwo polarizations Wl havethe samegroup velocitywhenthe d@ + &B3,)/dV = d@ +
ofy)/dV. In other wordswhen @y - By) = OBy = (OB« - dBy) IS maximum/minimum, the
two polarizations havehe samegroup velocityand therefore the PMD igero at the
corresponding wavelength.

A normalized birefringencearameter idefined asdB./e. Figure 4.3 illustrates the
normalized birefringence versus wavelenigththefiber specified in Table.4. This plot
shows that theminimum of birefringenceoccurs at 1.55um. The significance of this
result is zero PMD in thsingle-modeoperation, whereas iypical single-mode fiber this
occurs outside thesingle-modeoperation. Thenormalized propagation constant b,
defined in(4.6), iscalculated anglotted versusvavelength forthe fundamental L&
modein Figure 4.4. The cutoff wavelength thie nexthigherorder mode, LR, is found

to be 1.45um, which ensures a single-mode operation at itb5

Figure 4.5 showsvariations of chromatic dispersion versus wavelength. The dispersion
calculated atl.55um is 0.65ps/nm.km, andhe dispersion slope at this wavelength is
0.055 ps/nrhkm.

Two otherimportant parameters are tleffective area andmode-field diameter. The
variations of theeffectivearea and thenode-field diameter as a function of wavelength
have been calculated and shown in Figutésand 4.7, respectively. AL.55pum, the
effective area is 122.5um” and themode-field diameter i40.5 um. Thefiber design

offers a larger effective area compared to those of conventional and low-nonlinearity
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Figure 4.3 Normalized birefringence ©B,/e) versus wavelength of fundamental

LPy; mode.
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Figure 4.5 Dispersion versus wavelength of fundamental LiPmode.
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Figure 4.6 Effective area versus wavelength of fundamental LLPmode.
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Figure 4.7 Mode-Field Diameter versus wavelength of fundamental llPmode.
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Table 4.2 Transmission Properties of Zero PMD Dispersion-Shifted Fiber At
A = 1.55um.

Dispersion | Mode-Field | Effective Cutoff
Dispersion Slope Diameter Area Wavelength of
LP,.; Mode
0.65 0.055 10.5 122.5 1.42
ps/nm.km | ps/nnf.km um um’ Um

dispersion-shifted fiberfid 9] whose range is between 67 to 90un?. Themode-field
diameter value isbout thesame aghe maximumvalue accepted fominimum lcsses in
fiber for high capacity transmission application&lso, bending loss is calculated and
plotted versus bending radius in Figure 4.8.

The transmission characteristics tbe designed fiberare tabulated inrable 4.2 at an

operating wavelength of 1.%8n.

4.4 TOLERANCE ANALYSIS

Toleranceanalysisdue to variation in theadii of the designed fiber’s layers onducted

in order tosimulatethe effects of such variations whicimay occur in manufacturing
processes. The effects time normalized birefringence and chromatic dispersion versus
wavelength will be shown numerically due to variatioome of thefiber’'s layers radius at

a time.

4.4.1 Polarization Mode Dispersion

The variations in theadii of the layersare taken ax1% and+2%. Startingwith the
normalized birefringence, Figures 4410, and 4.11displaythe behavior of normalized
birefringence versus wavelength as a result of radii variations of the first, second, and third
layer, respectively. Théourth layer is considered t@xtend toinfinity in the radial

direction, and therefore no radius variation is considered. Examining these three figures
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Figure 4.8 Bending loss versus bending radius of fundamental kPmode.
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Figure 4.9 Variations of normalized birefringence ©B./e) versus wavelength of

fundamental LPy; mode for radius a; variations of +1% and +2%.
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Figure 4.10 Variations of normalized birefringence ©B.,/e) versus wavelength of

fundamental LPy; mode for radius a, variations of +1% and +2%.
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Figure 4.11 Variations of normalized birefringence ©B.,/e) versus wavelength of

fundamental LPy; mode for radius a; variations of +1% and +2%.
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Table 4.3 The Wavelength At WhichNormalized Birefringence Peak Occurs As
The Radiiq; (i = 1, 2, and 3) Of The Fiber Changes.

Percent A of Birefringence| A of Birefringence| A of Birefringence
Variations | Peak Due To Radiug Peak Due To Radiug Peak Due To Radius
of Rdii a a; Changes a; Changes a; Changes

-2% 1.57pm 1.5pum 1.56pum

-1% 1.56pum 1.53um 1.56pum

0% 1.55pm 1.55pm 1.55pm

1% 1.54pum 1.58um 1.55pm

2% 1.53pum 1.6pm 1.55um

shows that the parameter that has the most effect is the radius of the seconrg. |aliees,
numericalresults show that the peak of thermalized birefringence has shifted either to
upper or lower wavelength compared to the original design. The wavelengtiisicht
the peak occurs due t@, variations are shown in Table 4.3. The variations of radius
has the least effect on the normalized birefringence whergeak stayed at about 1.55
pm, as shown in Table 4.3. The effectvafying radiusa; as shown in Tabld.3 and

Figure 4.9 is about moderatend not much significant orthe normalized birefringence

peak with the specified percent variations.

4.4.2 Chromatic Dispersion

The next tolerancanalysis iperformed on the chromataispersion by varyinghe radii

of the fiber’'s layers one at a time the same way that was caatgdr thenormalized
birefringence previously. Thpercent variations of theadii are also considered to be
+1% and+2%. Figures4.12, 4.13,and 4.14 show theariations of the chromatic

dispersion versus wavelength due to variations in the fiber’'s radii. The numerical values of
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Figure 4.12 Variations of chromatic dispersionversus wavelength of fundamental

LPy; mode for radius a; variations of +1% and +2%.

88



2%
1%

0%

-1%

-2%

N
||||I||||=||||I||||

D (ps/nm.km)
o

1
N
R N N IR N T T TR T Y TR N |

-4 ||||=||||:n|||=||||=||||=||||=||||:||||=||||=||||=||||=||||

15 151 152 153 154 155 156 157 158 159 16 161 1.62
Wavelength (um)

Figure 4.13 Variations of chromatic dispersionversus wavelength of fundamental

LPy; mode for radius a, variations of +1% and +2%.
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Figure 4.14 Variations of chromatic dispersionversus wavelength of fundamental

LPy; mode for radius a; variations of +1% and +2%.
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Table 4.4 Chromatic Dispersion Values in ps/(nm.km) A = 1.55um As The
Radiusai (i = 1, 2, and 3) Of The Fiber Changes.

Percent Dispersion Due| Dispersion Due| Dispersion Due
Variations of | To Radius a;| To Radius a;| To Radius a3
Rdii a; Changes Changes Changes
-2% 0.944 -0.067 0.773
-1% 0.814 0.337 0.725
0% 0.679 0.679 0.679
1% 0.54 0.97 0.64
2% 0.393 1.22 0.595

the dispersionare shown inTable 4.4 indicating, inthe same manner as the previous

toleranceanalysisdone for thenormalized birefringence, thahe radius of the second

layera; is the mostritical parameter compared tioe otheradii a; and a;. The radius
of the first layera; has some effect ahe dispersiorbut notdrastically; whiletheradius

of the thirdlayeras; hasthe least and almostinor effect. Takinghese calculations one

step further, thevavelengths at whiclzero orclose tozero dispersion (less tha@.09
ps/(nm.km)) occur aredetermined and listed in Tabk.5 for the specified grcent
variations of thefiber's radii. However, sometimes positive or negative dispersion are
needed infiber designfor communications links taeduce gnal distortions due to

nonlinearity in fiber.

4.4.3 Effective Area and Mode-Field Diameter
The toleranceanalysishas also been carrienlt for the effective area andmode-field
diameter of thalesigned fiber. Ithe same manner as has befme for the chromatic

and polarization-mode dispersion, the radii of the fiber layers have been varied and the
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Table 4.5 The Wavelength At Which Chromatic Dispersion IZero Or Close To
Zero (lessthan 0.09 ps(nm.km)) As The Radiusa; (i = 1, 2, and 3) Of TheFiber

Changes.
Percent A of Zero Dispersion| A of Zero Dispersion| A of Zero Dispersion
Variations | Due To Radius a; | Due To Radius a,| Due To Radius as
of Rdii a Changes Changes Changes

-2% 1.535um 1.55pum 1.538um

-1% 1.535um 1.545um 1.538um

0% 1.535um 1.535um 1.535um

1% 1.545um 1.535um 1.54um

2% 1.545um 1.53um 1.54pm

corresponding effectivarea andnode-field diameter valueme evaluated. Figurdsl5,

4.16, and 4.17 show the effective area versus wavelength duertalii variationso;, ay,

andags, respectively. The values tife effectivearea at\ = 1.55um are determined and

shown in Table 4.6. The percent variationsheffiber’s radii considered in thianalysis

havenot affected theeffective areasignificantly, especially ak = 1.55um. Thevalues

obtained for the effective area)at 1.55um range between 13 and 128un7 for all

theradii percent variations. Th&orstcase of these variations is due-286 change im;

in which the value ofthe effectivearea is 117.65n’. This value is stilhot significantly

different fromthe original design’s effectivarea valuewhich is 122.5un?. Also, it is

clear from Tablet.6 and Figure4.17 that theadius percent change of the thiager has

almost no effect othe effectivearea, atas been demonstrated beféoethe otheffiber

transmission parameters. Evdough the tolerancanalysisperformed on effective area

due to the fiber’s radii did not affect the value of the effective area significantly, generally
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Figure 4.15 Variations of effectivearea versus wavelength of fundamental LB

mode for radius q; variations of +1% and +2%.
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Figure 4.16 Variations of effectivearea versus wavelength of fundamental LB,

mode for radius a, variations of +1% and +2%.
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Figure 4.17 Variations of effectivearea versus wavelength of fundamental LB,

mode for radius a3 variations of +1% and +2%.
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Table 4.6 EffectiveArea Values inpm?At A = 1.55pum As The Radiusa; (i = 1, 2,
and 3) Of The Fiber Changes.

Percent Effective Area | Effective Area | Effective Area
Variations of | Due To Radius| Due To Radius| Due To Radius
Rdii q; a; Changes a, Changes as Changes
-2% 117.65 126.8 122.76
-1% 120 124.44 122.64
0% 122.5 122.5 122.5
1% 125 120.9 122.33
2% 128 119.6 122.14

thefirst layer radius hathe mostinfluence in decreasintdpe effectivearea and the second
layer radius comes next.

The tolerancanalysisfor the mode-field diametedue to variations of théber’s radii is
performedsimilarly and plotted versusavelength in Figured.18, 4.19and4.20. The
mode-field diameteplots in the thredéiguresarevery close in values to eachhers. The
original fiber design has a value 1.5um for themode-field diameter, and withe radii
variations considered in thmnalysisthe maximumvalue ofthe mode-field diameter is

10.78pum due to -2%variation of the radius,. The values obtainedr the mode-field

diameter ah = 1.55um are shown iTable 4.7. This analysghows that thenode-field

diameter is moreensitive tothe radius of the secordyer of the fiber than the others.
This can be explained by the fact that the field is mainly confined to the dagendf the

fiber, wherethe first layer isdepressed core whosefractive index idower than that of
the second cladding.

As in all other transnssion parameters results discussed previotistythirdlayer radius

variations has negligible effect on the mode-field diameter.
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Figure 4.18 Variations of mode-field diameterversus wavelength of fundamental

LPy; mode for radius a; variations of +1% and +2%.
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Figure 4.19 Variations of mode-field diameterversus wavelength of fundamental

LPy; mode for radius a, variations of +1% and +2%.
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Figure 4.20 Variations of mode-field diameterversus wavelength of fundamental

LPy; mode for radius a; variations of +1% and +2%.
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Table 4.7 Mode-Field Dianeter Values inum At A = 1.55um As The Radiusa; (i =

1, 2, and 3) Of The Fiber Changes.

Percent

Variations of

Rdii q;

Mode-Field

Diameter Due

To Radius a;

Mode-Field
Diameter Due

To Radius a,

Mode-Field
Diameter Due

To Radius aj

Changes Changes Changes
-2% 10.24 10.86 10.51
-1% 10.36 10.67 10.5
0% 10.5 10.5 10.5
1% 10.64 10.34 10.49
2% 10.78 10.2 10.48
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