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CHAPTER  4.      ANALYSIS AND DESIGN OF SINGLE-MODE

FIBER WITH ZERO POLARIZATION-MODE DISPERSION

Polarization-mode dispersion (PMD) has gained considerable attention over the past few

years.  It has been the subject of many experimental and theoretical investigations [104] in

order to thoroughly understand its effects and identify the major sources contributing to

this phenomenon.  Interest in this subject lies upon surpassing the limitations caused by

PMD in fibers, especially in long distance telecommunication systems.  Such limitations

are exhibited in bandwidth-distance product, bit-rate, pulse width distortion, power

penalty in the receiver, and nonlinear distortions in analog systems.

4.1  POLARIZATION-MODE DISPERSION

It has been established that in general,  two factors contribute to polarization-mode

dispersion (PMD) in circular fibers: the deformation of the circular geometry and the

internal stresses which leads to stress anisotropy.  Both effects occur during the

manufacturing process.  In this chapter, the investigation of PMD is limited to elliptical

deformation of fibers.

For a deformed fiber with small core ellipticity, the fundamental LP01 mode splits into two

orthogonally polarized modes with slightly different propagation constants of these two

modes.  The amount of PMD in fibers depends on the difference between the propagation

constants.  In ordinary step-index single-mode fibers, PMD vanishes outside the single-

mode wavelength region [106].  In other words, at the wavelength of zero PMD two or

more modes are supported by the fiber, thus significant signal distortion occurs due to

modal dispersion effect.  To improve fiber performance in long-haul high bit rate systems,

a zero PMD must occur in the single-mode wavelength region.  Few methods for

canceling out the polarization mode dispersion have been proposed by researchers.  Also,

it has been verified experimentally that low PMD due to form-induced and stress-induced
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birefringence can be achieved for short-length PMD (measured in ps/km) by partial

cancellation of the two induced effects, [107].

The main goal in this chapter is to design a fiber that provides zero PMD in a single- mode

region.  A fiber design with depressed core and multiple claddings are promising for this

purpose.  The approach adopted in examining this fiber is based on the analysis of a single-

mode fiber with small ellipticity.  Then the analysis results are used to design a fiber with

zero or very small PMD at the wavelength of operation.  In addition to requiring zero

PMD, other critical fiber properties such as effective area, mode field diameter, field

distribution, and chromatic dispersion will also be examined.

4.2  SINGLE-MODE FIBERS WITH SMALL ELLIPTICITY

4.2.1  Analysis of  Slightly Elliptical Multiple-Clad Fiber

The analysis of slightly elliptical multiple clad fibers is presented using a perturbation

technique.  Fields are expressed in power series of ellipticity factor e, and only the zero

and first order terms are retained in the solutions.  Propagation properties, including

birefringence, effective area, mode-field diameter, and dispersion are presented for an

example design.

4.2.1.1  Field Solutions

Let us consider an N layers optical fiber consisting of a central core region and several

claddings, with boundaries of every two neighboring layers being slightly elliptical.  Each

layer is assumed to be isotropic, homogeneous, lossless, and linear.  The ith layer, with i =

1 representing the core and i > 1 referring to the cladding regions, is characterized by a

radius ri and refractive index ni, where i = 1, 2, ... N .  The outer cladding layer is assumed

to extend to infinity in the radial direction because the field of guided modes decay

exponentially in the radial direction in this cladding.  Figure 4.1 illustrates the cross
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sectional view of such multiple clad fiber.  The boundary between the ith and (i+1)th

layers is described by

r i = ai [ 1 + ecos(2ϕ)] (4.1)

where e is the ellipticity factor and ϕ is the azimuthal angle measured from the x-axis.

The semi-major and semi-minor axis are ai (1 + e) and ai (1 - e), respectively, for the ith

elliptical boundary.  For a perfectly circular fiber, the ellipticity factor e = 0 and the layers’

radii become r i = ai.

For the fundamental LP01 mode, the scalar fields solutions are expressed as

ψi(r,ϕ) = f0i(r) + e f1i(r,ϕ) + 0(e2);  i = 1, 2, ....., N                              (4.2)

where f0i(r) is the zero-order solution and is the same as that if the fiber were circular.

That is,

f0i(r) = Ai Z0i (ui r) + BiZ0i (ui r)     (4.3)

where

Z0i ={J n

I n

i

i

0 0

0 0

,

,

β
β

<
>     (4.4)
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Figure 4.1 Cross section view of multiple-clad elliptical fiber consisting of N layers.
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Z0i ={Y n

K n

i

i

0 0

0 0

,

,

β
β

<
>                (4.5)

and

ui = (2π/λ) (n2
i - β2

o)1/2                            (4.6)

 withβo = βo /(2π/λ).  In (4.4) and (4.5), J0 and Y0 are the zero-order Bessel functions of

the first and second kinds, while I0 and K0 are the zero-order modified Bessel functions of

the first and second kinds, respectively.  In order for the solution in (4.3) to be finite at r =

0 and r = ∞, it is necessary that B1 = AN = 0.

For the case of ordinary step-index fibers, where N = 2, it has been established that in

order to satisfy boundary conditions at r  = a [ 1 + cos(2ϕ)], the function f1i(r,ϕ) should

assume the form g(r)cos(2ϕ), where g(r) is the solution of Bessel differential equation of

order 2.  Clearly, the same property holds for multiple clad fibers.  Thus, the solution for

f1i(r,ϕ) can be written as

f1i(r,ϕ) = $f 1i(r) cos(2ϕ)   (4.7a)

$f 1i(r) = [Ci Z2i (ui r) + DiZ2i (ui r)]   (4.7b)

where Z2i andZ2i follow the same definition as those for Z0i andZ0i, but with subscript

zero replaced with 2, and Ci and Di are constant coefficients.

4.2.1.2  Boundary Conditions

The fields ψi(r,ϕ) and their derivatives∂ ψi(r,ϕ)/∂ r must be continuous at the boundaries r

= ri.  Implementing these conditions results in the following equation,
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f0i [ai ( 1 + ecos(2ϕ))] + e $f 1i(r) [ai ( 1 + ecos(2ϕ))] cos(2ϕ)] =

f0,i+1 [ai ( 1 + ecos(2ϕ))] + e $f 1,i+1(r) [ai ( 1 + ecos(2ϕ))] cos(2ϕ)],   (4.8a)

and

′f oi  [ai ( 1 + ecos(2ϕ)] + e $ ′f 1i [ai ( 1 + ecos(2ϕ))] cos(2ϕ) =

′f o,i+1 [ai ( 1 + ecos(2ϕ))] + e $ ′f 1,i+1 [ai ( 1 + ecos(2ϕ))] cos(2ϕ)   (4.8b)

Next, we obtain Taylor series expansions of the functions  f0i, ′f o,i,  f0,i+1, ′f o,i+1, $ ′f 1,i,

$ ′f 1,I+1, using the following relationship,

f [ai ( 1 + ecos(2ϕ))] = f (ai ) + e [ai cos(2ϕ) ′f ( ai )] + 0 ( e2)]   (4.9a)

′f  [ai ( 1 + ecos(2ϕ))] = ′f (ai ) + e [ai cos(2ϕ) ′′f ( ai )] + 0 ( e2)]   (4.9a)

where  f = f0i,  f0,i+1, $f 1,i, $f 1,I+1 and ′f  = ′f o,i, ′f o,i+1, $ ′f 1,i, $ ′f 1,i+1

Using (4.9) in (4.8) and collecting terms of  0 ( e0), 0 ( e1 ), 0 ( e2), ...., we obtain

[ f0i (ai) - f0,i+1 (ai)] + e{ [ ′f o,i (ai ) - ′f o,i+1 (ai )] ai + $f 1i(ai) - $f 1,i+1(ai) }  cos(2ϕ) +

0 ( e2) = 0 (4.10a)

[ ′f 0i (ai) - ′f 0,i+1 (ai)] + e{ [ ′′f o,i (ai ) - ′′f o,i+1 (ai )] ai + $ ′f 1i(ai) - $ ′f 1,i+1(ai) }  cos(2ϕ) +

0 ( e2) = 0 (4.10b)

Equating the coefficients of  0 ( e0), 0 ( e1 ), .... terms, (4.10a) and (4.10b) reduce to
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f0i (ai) - f0,i+1 (ai) = 0   (4.11)

′f o,i (ai ) - ′f o,i+1 (ai ) = 0   (4.12)

[ ′f o,i (ai ) - ′f o,i+1 (ai )] ai + $f 1i(ai) - $f 1,i+1(ai) = 0   (4.13)

[ ′′f o,i (ai ) - ′′f o,i+1 (ai )] ai + $ ′f 1i(ai) - $ ′f 1,i+1(ai) = 0   (4.14)

The propagation constant βo as well as the coefficients Ai and Bi in (4.3) can be

determined from (4.11) and (4.12) in terms of one coefficient, e.g. Ai.  Equations (4.13)

and (4.14) in conjunction with (4.12) reduce to

$f 1i(ai) - $f 1,i+1(ai) = 0   (4.15)

$ ′f 1i(ai) - $ ′f 1,i+1(ai) = - ai [ ′′f o,i (ai ) - ′′f o,i+1 (ai )]   (4.16)

From (4.15) and (4.16) the rest of the coefficients, Ci and Di, can be found in terms of Ai.

4.2.2 Analysis of Four-Layers Fiber

4.2.2.1  Field Solutions and Characteristic Equations

The general results derived in the previous sub-sections will be used to find the field

solutions, characteristic equation, and ultimately birefringence.  From (4.3) and (4.7), the

field solutions are expressed as

f0i (r) = 

A Z u r r a

A Z u r B Z u r a r a

A Z u r B Z u r a r a

B Z u r r a

1 01 1 1

2 02 2 2 02 2 1 2

3 03 3 3 03 3 2 3

4 04 4 3

( ),

( ) ( ),

( ) ( ),

( ),

<
+ < <
+ < <

>






  (4.29)
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$f 1i(r) = 

C Z u r r a

C Z u r D Z u r a r a

C Z u r D Z u r a r a

D Z u r r a

1 21 1 1

2 22 2 2 22 2 1 2

3 23 3 3 23 3 2 3

4 24 4 3

( ),

( ) ( ),

( ) ( ),

( ),

<
+ < <
+ < <

>






  (4.30)

The characteristic equation and the amplitude coefficients are determined using (4.29) in

applying the boundary conditions stated in (4.11) and (4.12).  The results are expressed as

ξ2    (η10 - η9)    =      (η1 - η3) (η4 - η7) - ξ1(η1 - η2) (η5 - η7) (4.31)

      (η10 - η8)           (η1 - η3) (η4 - η6) - ξ1 (η1 - η2) (η5 - η6)

where the ηj; j = 1, 2, ... 10, ξ1 and ξ2 are defined in Appendix A.

4.2.2.2  Amplitude Coefficients

The amplitude coefficients are determined in terms of A1 as

A2 =  Z01(U1)   .  (η1 - η3)  .  A1

         Z02(U2)      (η2 - η3)

 B2 =  Z01(U1)   .  (η1 - η2)  .  A1

       Z02 (U2)      (η3 - η2)

A3 =  Z02(U2 )   .  (η7 - η4)  .  A2  +   Z02(U2 )   .  (η7 - η5)  .  B2

         Z03 (U3)        (η7 - η6)                  Z03 (U3)       (η7 - η6)

B3 =  Z02(U2 )   .  (η6 - η4)  .  A2  +   Z02(U2 )   .  (η6 - η5)  .  B2

       Z03 (U3)        (η6 - η7)                Z03 (U3)       (η6 - η7)
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B4 =  Z03(U3 )  .  A3  +   Z03(U3 )   . B3

       Z04 (U4)                  Z04 (U4)   (4.32)

The rest of the amplitude coefficients, Ck and Dk+1 where k = 1, 2, and 3, are also

determined in terms of A1 and are shown in Appendix A.

4.2.2.3  Birefringence Calculations

To calculate birefringence, first the difference between the scalar propagation constant ~β

and the exact (vector) propagation constant β is obtained from the following relationship

[106]

~β 2 − β2 = ( S
∫ (∇t . 

r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)] ds) /( S

∫ | re t|2 ds)   (4.33)

where 
r
e t is ψ $a x or ψ $a y for x or y polarized fundamental LP01 modes, and S is the cross-

section area of the fiber.  Now, we need to calculate ∇t (ln n2(r,ϕ)),

∇t (ln n2(r,ϕ)) = [2 n(r,ϕ)[∂ n(r,ϕ)/∂ r] /n2(r,ϕ)] $a r +

(1/r)2 n(r,ϕ)[∂ n(r,ϕ)/∂ ϕ]/ n2(r,ϕ)] $aϕ

= 2 /n(r,ϕ)[[∂ n(r,ϕ)/∂ r] $a r + [(1/r)∂ n(r,ϕ)/∂ ϕ] $aϕ]

= 2 ∇t (n(r,ϕ))/n(r,ϕ)

In the case of a step-index profile, n2(r,ϕ) is constant in each region and only the index

discontinuities at the boundaries contribute to ∇t (ln n2(r,ϕ)).

For the four-layer fiber under consideration in the design, we can write
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∇t (ln n2(r,ϕ)) = 2 [((n2-n1)/n1) δ[r - a1( 1 + ecos(2ϕ))] + ((n3-n2)/n2) δ[r - a2( 1 +

ecos(2ϕ))] + ((n4-n3)/n3) δ[r - a3( 1 + ecos(2ϕ))]] ( $a r+ 2esin(2ϕ) $aϕ)

= g(r,ϕ)( $a r+ 2esin(2ϕ) $aϕ)

The vector $a r+ 2esin(2ϕ) $aϕ is, in fact, the gradient of f(r,ϕ) = r - ai( 1 + ecos(2ϕ), as

shown below

∇ f(r,ϕ) = $a r+ ((2aiesin(2ϕ))/r) $aϕ =  $a r+ [(2 aiesin(2ϕ))/ ai( 1 + ecos(2ϕ)] $aϕ

= $a r+ [(2 esin(2ϕ))/ ( 1 + ecos(2ϕ)] $aϕ ≅ $a r + 2esin(2ϕ) ( 1 - ecos(2ϕ)) $aϕ

≅ $a r + 2esin(2ϕ) - 2 e2 sin(2ϕ) cos(2ϕ) $aϕ

≅ $a r + 2esin(2ϕ) $aϕ

The next step is to carry out the analysis for both polarizations x and y of the fundamental

LP01 mode separately.  For the LPx
01 mode we have

r
e t = ψ(r,ϕ) $a x = ψ(r,ϕ) [cos(ϕ) $a r - sin(ϕ) $aϕ]

∇t . 
r
e t = (1/r)(∂ /∂ r)(r er) + (1/r)(∂  eϕ/∂ ϕ)

ψ(r,ϕ) = f0(r) + e f1(r,ϕ) + 0(e2); where  f1(r,ϕ) = $f 1(r) cos(2ϕ), then

(∇t . 
r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)]  becomes
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(∇t . 
r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)] = [ ′f o(r) cos(ϕ) + e( $ ′f 1(r) cos(ϕ)cos(2ϕ) +

(2/r) $f 1 sin(ϕ)sin(2ϕ)] [ f0(r) + e $f 1(r) cos(2ϕ)].g(r,ϕ)[ cos(ϕ) - 2esin(ϕ)sin(2ϕ)]

= gx(r,ϕ)

For the LPy01 mode we have

r
e t = ψ(r,ϕ) $a y = ψ(r,ϕ) [sin(ϕ) $a r - cos(ϕ) $aϕ]

To obtain the expression for (∇t . 
r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)] for the y polarization, we change

cos(ϕ) to sin(ϕ) and sin(ϕ) to -cos(ϕ) in the result of (∇t . 
r
e t), then

 (∇t . 
r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)]  for the y polarization becomes

(∇t . 
r
e t)[ 

r
e t . ∇t (ln n2(r,ϕ)] = [ ′f o(r) sin(ϕ) + e( $ ′f 1(r) sin(ϕ)cos(2ϕ) -

(2/r) $f 1 cos(ϕ)sin(2ϕ)] [ f0(r) + e $f 1(r) cos(2ϕ)].g(r,ϕ)[ sin(ϕ) - 2eco s(ϕ)sin(2ϕ)]

= gy(r,ϕ)

Now, we have

(~β 2 − β2
x )- (

~β 2 − β2
y) = β2

y - β2
x = (βy - βx) (βy + βx) ≅ 2βo δβxy

= ( S
∫ [gx(r,ϕ)- gy(r,ϕ)]ds )/ ( S

∫ ψ2(r,ϕ)ds)   (4.34)

In order to evaluate the integration above, first we will find simplified expressions for

gx(r,ϕ)- gy(r,ϕ) and ψ2(r,ϕ).  To find an expression for [gx(r,ϕ) - gy(r,ϕ)], we substitute

the functions defined previously for gx(r,ϕ) ,gy(r,ϕ), and g(r,ϕ), and by neglecting terms of

order of (e2) we obtain the following
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gx(r,ϕ)- gy(r,ϕ) = 2
i =
∑

1

3

((ni+1-ni)/ni) δ[ r - ai ( 1 + ecos(2ϕ))].

{  f0 (ai) ′f o(ai)cos(2ϕ) + e [ai [f0(ai) ′′f o(ai) +  ( ′f o(ai))
2] cos2(2ϕ)

- 2 f0 (ai) ′f o(ai) sin2(2ϕ) + [f0 (ai) $ ′f 1(ai) + ′f o(ai) $f 1(ai)] cos2(2ϕ)

+ (2/ai) f0 (ai) $f 1(ai) sin2(2ϕ)]}  + 0 ( e2)

and

ϕ=
∫

0

2Π

r=

∞

∫
0

[gx(r,ϕ)- gy(r,ϕ)] r dr dϕ = 2πe{
i =
∑

1

3

((ni+1-ni)/ni)Qi } + 0(e2) = 2πeQ

where

Qi = f0(ai)[- ai ′f o(ai) + ai
2 ′′f o(ai) + 2 $f 1(ai) + ai $′f 1(ai)] +

ai ′f o[ai ′f o(ai) + $f 1(ai)]

The denominator for the 2βoδβxy expression is

d = ( S
∫ ψ2(r,ϕ)ds) = 2π

0

∞

∫  f0
2(r) r dr

finally the birefringence is

δβxy = (1/2βo) (eQ)/(d)   (4.35)
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and the normalized birefringence is

δβxy /e = (1/2βo) (Q)/(d)                                                                                           (4.36)

where

d = 
0

a 3

∫  f0
2(r) r dr   +   

a3

∞

∫ B4
2 K0

2(u4r) r dr

   = 
0

a 3

∫  f0
2(r) r dr   +   (1/2)a3

2 B4
2 [K0’

2(U4) -K0
2(U4)]

Since λ and ai; i = 1, 2, and 3 are measured in µm, the unit for (δβxy/e) is µm-1.

4.2.2.4  Effective Area (Aeff) and Mode-Field Diameter (MFD)

The expression for the effective area (Aeff) is given by [113]

[ ]
Aeff =

∫ ∫

∫ ∫

∞

∞
0

2

0

2 2

0

2

0

4

π

π

ψ ϕ φ

ψ ϕ φ

( , )

( , )

r rdrd

r rdrd

                                                                            (4.37)

and for the fundamental mode reduces to

[ ]
A eff

r rd r

r rd r

=

∞

∞

∫

∫
( )

( )

( )

2
0

2 2

0

4π

ψ

ψ

                                                                                (4.38)
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The expression used to calculate the mode-field diameter (MFD) is based on the

Petermann II definition [114]

M FD

r rd r

d r d r rd r

=

∞

∞

∫

∫
( )

( )

( ) /

8
0

2

0

2

ψ

ψ

                                                                              (4.39)

4.3  DESIGN OF ZERO POLARIZATION-MODE DISPERSION FIBER

In order to achieve zero PMD as a principal goal, several refractive-index profiles were

examined.  The design of zero PMD fiber was carried out by varying the material

compositions and adjusting the dimensions of various layers.  For all tested profiles, the

requirements of having small chromatic dispersion, single-mode operation, and practical

dimensions were taken into consideration.  The results obtained for the examined profiles

indicate that a multiple-clad geometry with depressed core, shown in Figure 4.2, is suitable

for the design of zero PMD fiber.  The basis of choosing this profile is not solely to meet

the previously stated requirements, but also considering other factors that play an

important role in present communication systems as well.  In particular, among such

factors are effective area and mode-field diameter.

The fiber parameters and material compositions for an example design are summarized in

Table 4.1.  The proposed dispersion-shifted fiber offers several improvements in fiber

communications links as discussed next.

In order to achieve zero PMD at the operating wavelength (λ = 1.55 µm), the two x and y

polarizations of the fundamental LP01 mode must have the same group velocity.  The

group  velocity  is  defined as  vg = dω/dβ = c(dko/dβ), where  ko = ω/c = 2π/λ  is  the  free
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Figure 4.2  Refractive-index profile used for the design of zero PMD fiber.
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Table 4.1  Materials  and Radii of Designed Dispersion-Shifted Fiber For Zero
PMD.

Core Clad1 Clad2 Clad3
Material M5 M2 M9 M3

Radius 2.9 µm 4.2 µm 5 µm ∞

space wave number, c is the speed of light in free space, and β is the propagation constant.

The two polarizations will have the same group velocity when the d(β + δβx)/dV = d(β +

δβy)/dV.  In other words, when (βx - βy) = δβxy = (δβx - δβy) is maximum/minimum, the

two polarizations have the same group velocity and therefore the PMD is zero at the

corresponding wavelength.

A normalized birefringence parameter is defined as δβxy/e.  Figure 4.3 illustrates the

normalized birefringence versus wavelength for the fiber specified in Table 4.1.  This plot

shows that the minimum of birefringence occurs at 1.55 µm.  The significance of this

result is zero PMD in the single-mode operation, whereas in typical single-mode fiber this

occurs outside the single-mode operation.  The normalized propagation constant b,

defined in (4.6), is calculated and plotted versus wavelength for the fundamental LP01

mode in Figure 4.4.  The cutoff wavelength of the next higher order mode, LP11, is found

to be 1.45 µm, which ensures a single-mode operation at 1.55 µm.

Figure 4.5 shows variations of chromatic dispersion versus wavelength.  The dispersion

calculated at 1.55 µm is  0.65 ps/nm.km, and the dispersion slope at this wavelength is

0.055 ps/nm2.km.

Two other important parameters are the effective area and mode-field diameter.  The

variations of the effective area and the mode-field diameter as a function of wavelength

have been calculated and shown in Figures 4.6 and 4.7, respectively.  At 1.55 µm, the

effective area is 122.5 µm2 and the mode-field diameter is 10.5 µm.  The fiber design

offers a larger  effective  area  compared  to  those  of  conventional  and  low-nonlinearity
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Figure 4.3  Normalized birefringence (δδββxy/e) versus wavelength of fundamental

LP01 mode.
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Figure 4.4  Normalized propagation constant b versus wavelength of fundamental

LP01 mode.
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Figure 4.6  Effective area versus wavelength of fundamental LP01 mode.
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Figure 4.7  Mode-Field Diameter versus wavelength of fundamental LP01 mode.
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Table 4.2  Transmission Properties of  Zero PMD Dispersion-Shifted Fiber At

λλ = 1.55 µµm.

Dispersion
Dispersion

Slope
Mode-Field
Diameter

Effective
Area

Cutoff
Wavelength of

LP11 Mode
0.65

ps/nm.km
0.055

ps/nm2.km
10.5
µm

122.5
µm2

1.42
µm

dispersion-shifted fibers [19] whose range is between 50 µm2 to 90 µm2.  The mode-field

diameter value is about the same as the maximum value accepted for minimum losses in

fiber for high capacity transmission applications.  Also, bending loss is calculated and

plotted versus bending radius in Figure 4.8.

The transmission characteristics of the designed fiber are tabulated in Table 4.2 at an

operating wavelength of 1.55 µm.

4.4  TOLERANCE ANALYSIS

Tolerance analysis due to variation in the radii of the designed fiber’s layers is conducted

in order to simulate the effects of such variations which may occur in manufacturing

processes.  The effects on the normalized birefringence and chromatic dispersion versus

wavelength will be shown numerically due to variation in one of the fiber’s layers radius at

a time.

4.4.1  Polarization Mode Dispersion

The variations in the radii of the layers are taken as ±1% and ±2%.  Starting with the

normalized birefringence, Figures 4.9, 4.10, and 4.11 display the behavior of normalized

birefringence versus wavelength as a result of radii variations of the first, second, and third

layer, respectively.  The fourth layer is considered to extend to infinity in the radial

direction, and therefore no radius  variation  is considered.   Examining  these three figures
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Figure 4.8  Bending loss versus bending radius of fundamental LP01 mode.
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Figure 4.9  Variations of normalized birefringence (δδββxy/e) versus wavelength of

fundamental LP01 mode for radius aa1 variations of ±1% and ±2%.
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Figure 4.10  Variations of normalized birefringence (δδββxy/e) versus wavelength of

fundamental LP01 mode for radius aa2 variations of ±1% and ±2%.
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Figure 4.11  Variations of normalized birefringence (δδββxy/e) versus wavelength of

fundamental LP01 mode for radius aa3 variations of ±1% and ±2%.
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Table 4.3  The Wavelength At Which Normalized Birefringence Peak Occurs As

The Radii aai (i = 1, 2, and 3) Of The Fiber Changes.

Percent

Variations

of Rdii aai

λλ of Birefringence

Peak Due To Radius

aa1 Changes

λλ of Birefringence

Peak Due To Radius

aa2 Changes

λλ of Birefringence

Peak Due To Radius

aa3 Changes

-2% 1.57 µm 1.5 µm 1.56 µm

-1% 1.56 µm 1.53 µm 1.56 µm

0% 1.55 µµm 1.55 µµm 1.55 µµm

1% 1.54 µm 1.58 µm 1.55 µm

2% 1.53 µm 1.6 µm 1.55 µm

shows that the parameter that has the most effect is the radius of the second layer, a2.  The

numerical results show that the peak of the normalized birefringence has shifted either to

upper or lower wavelength compared  to  the original design.   The wavelengths  at  which

the peak occurs due to  a2  variations are  shown in Table 4.3.   The variations of radius a3

has the least effect on the normalized  birefringence where the  peak stayed  at  about 1.55

µm, as shown in Table 4.3.  The effect of varying radius a1 as shown in Table 4.3 and

Figure 4.9 is about moderate and not much significant on the normalized birefringence

peak with the specified percent variations.

4.4.2  Chromatic Dispersion

The next tolerance analysis is performed on the chromatic dispersion by varying the radii

of  the fiber’s layers one at  a time the same way  that  was carried out  for  the normalized

birefringence previously.  The percent variations of the radii are also considered to be

±1% and ±2%.  Figures 4.12, 4.13, and 4.14 show the variations of the chromatic

dispersion versus wavelength due to variations in the fiber’s radii.  The numerical values of
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Figure 4.12  Variations of chromatic dispersion versus wavelength of fundamental

LP01 mode for radius aa1 variations of ±1% and ±2%.
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Figure 4.13  Variations of chromatic dispersion versus wavelength of fundamental

LP01 mode for radius aa2 variations of ±1% and ±2%.
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Figure 4.14  Variations of chromatic dispersion versus wavelength of fundamental

LP01 mode for radius aa3 variations of ±1% and ±2%.
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Table 4.4  Chromatic Dispersion Values in ps/(nm.km) At λλ = 1.55 µµm As The

Radius aai (i = 1, 2, and 3) Of The Fiber Changes.

Percent

Variations of

Rdii aai

Dispersion  Due

To Radius aa1

Changes

Dispersion Due

To Radius aa2

Changes

Dispersion Due

To Radius aa3

Changes

-2% 0.944 -0.067 0.773

-1% 0.814 0.337 0.725

0% 0.679 0.679 0.679

1% 0.54 0.97 0.64

2% 0.393 1.22 0.595

the dispersion are shown in Table 4.4 indicating, in the same manner as in the previous

tolerance analysis done for the normalized birefringence, that the radius of the second

layer a2 is the most critical parameter compared to the other radii  a1 and  a3.   The radius

of  the first layer  a1 has some effect on the dispersion but  not drastically; while the radius

of  the third layer a3 has the least and almost minor effect.  Taking these calculations one

step further, the wavelengths at which zero or close to zero dispersion (less than 0.09

ps/(nm.km)) occur are determined and listed in Table 4.5 for the specified percent

variations of the fiber’s radii. However, sometimes positive or negative dispersion are

needed in fiber design for communications links to reduce signal distortions due to

nonlinearity in fiber.

4.4.3  Effective Area and Mode-Field Diameter

The tolerance analysis has also been carried out for the effective area and mode-field

diameter of the designed fiber.  In the same manner as has been done for the chromatic

and polarization-mode dispersion, the  radii of  the fiber  layers  have  been  varied and the
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Table 4.5  The Wavelength At Which Chromatic Dispersion Is Zero Or Close To

Zero (less than 0.09 ps/(nm.km)) As The Radius aai (i = 1, 2, and 3) Of The Fiber

Changes.

Percent

Variations

of Rdii aai

λλ of Zero Dispersion

Due To Radius aa1

Changes

λλ of Zero Dispersion

Due To Radius aa2

Changes

λλ of Zero Dispersion

Due To Radius aa3

Changes

-2% 1.535 µm 1.55 µm 1.538 µm

-1% 1.535 µm 1.545 µm 1.538 µm

0% 1.535 µµm 1.535 µµm 1.535 µµm

1% 1.545 µm 1.535 µm 1.54 µm

2% 1.545 µm 1.53 µm 1.54 µm

corresponding effective area and mode-field diameter values are evaluated.  Figures 4.15,

4.16, and 4.17 show the effective area versus wavelength due to the radii variations a1, a2,

and a3, respectively.  The values of the effective area at λ = 1.55 µm are determined and

shown in Table 4.6.  The percent variations of the fiber’s radii considered in this analysis

have not affected the effective area significantly, especially at λ = 1.55 µm.  The values

obtained for the effective area at λ = 1.55 µm range between 117 µm2 and 128 µm2 for all

the radii percent variations.  The worst case of these variations is due to -2% change in a1

in which the value of the effective area is 117.65 µm2.  This value is still not significantly

different from the original design’s effective area value, which is 122.5 µm2.  Also, it is

clear from Table 4.6 and Figure 4.17 that the radius percent change of the third layer has

almost no effect on the effective area, as has been demonstrated before for the other fiber

transmission parameters.  Even though the tolerance analysis performed on effective area

due to the fiber’s radii did not affect the value of  the effective area significantly,  generally
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Figure 4.15  Variations of effective area versus wavelength of fundamental LP01

mode for radius aa1 variations of ±1% and ±2%.
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Figure 4.16  Variations of effective area versus wavelength of fundamental LP01

mode for radius aa2 variations of ±1% and ±2%.
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Figure 4.17  Variations of effective area versus wavelength of fundamental LP01

mode for radius aa3 variations of ±1% and ±2%.
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Table 4.6  Effective Area Values in µµm2 At λλ = 1.55 µµm As The Radius aai (i = 1, 2,

and 3) Of The Fiber Changes.

Percent

Variations of

Rdii aai

Effective Area

Due To Radius

aa1 Changes

Effective Area

Due To Radius

aa2 Changes

Effective Area

Due To Radius

aa3 Changes

-2% 117.65 126.8 122.76

-1% 120 124.44 122.64

0% 122.5 122.5 122.5

1% 125 120.9 122.33

2% 128 119.6 122.14

the first layer radius has the most influence in decreasing the effective area and the second

layer radius comes next.

The tolerance analysis for the mode-field diameter due to variations of the fiber’s radii is

performed similarly and plotted versus wavelength in Figures 4.18, 4.19, and 4.20.  The

mode-field diameter plots in the three figures are very close in values to each others.  The

original fiber design has a value of 10.5 µm for the mode-field diameter, and with the radii

variations considered in this analysis the maximum value of the mode-field diameter is

10.78 µm due to -2% variation of the radius a2.  The values obtained for the mode-field

diameter at λ = 1.55 µm are shown in Table 4.7.  This analysis shows that the mode-field

diameter is more sensitive to the radius of the second layer of the fiber than the others.

This can be explained by the fact that the field is mainly confined to the second layer of the

fiber, where the first layer is depressed core whose refractive index is lower than that of

the second cladding.

As in all other transmission parameters results discussed previously, the third layer radius

variations has negligible effect on the mode-field diameter.
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Figure 4.18  Variations of mode-field diameter versus wavelength of fundamental

LP01 mode for radius aa1 variations of ±1% and ±2%.
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Figure 4.19  Variations of mode-field diameter versus wavelength of fundamental

LP01 mode for radius aa2 variations of ±1% and ±2%.
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Figure 4.20  Variations of mode-field diameter versus wavelength of fundamental

LP01 mode for radius aa3 variations of ±1% and ±2%.
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Table 4.7  Mode-Field Diameter Values in µµm  At λλ = 1.55 µµm As The Radius aai (i =

1, 2, and 3) Of The Fiber Changes.

Percent

Variations of

Rdii aai

Mode-Field

Diameter Due

To Radius aa1

Changes

Mode-Field

Diameter Due

To Radius aa2

Changes

Mode-Field

Diameter Due

To Radius aa3

Changes

-2% 10.24 10.86 10.51

-1% 10.36 10.67 10.5

0% 10.5 10.5 10.5

1% 10.64 10.34 10.49

2% 10.78 10.2 10.48


