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The purpose of this Letter is to detail the effect of random (zero-mean) noise on the reference input 
of an adaptive feedforward filter in the control of single-frequency disturbance inputs. Results from 
this study indicate that if system identification is required to execute the adaptive algorithm (as is the 
case with the filtered-x LMS algorithm), then the sample rate should be set at 4 samples per period 
to minimize the number of finite impulse response filter coefficients needed to compute an accurate 
estimate of the filtered reference signal for multi-channel control. However, results from this study 
demonstrate that the sample rate has very little effect on the minimum mean-squared error that can 
be achieved with the adaptive control filter, owing to the reverberant characteristics of the dynamics 
system. 

PACS numbers: 43.40.Vn 

INTRODUCTION I. OPTIMAL CONTROL FILTER DESIGN THEORY 

Active feedforward control has been the subject of con- 
siderable research and implementation in recent years as a 
result of a widely referenced paper by Elliot et al. (1987) 
whereby the authors developed a multiple-input/multiple- 
output version of the filtered-x LMS algorithm (Widrow and 
Stearns, 1985) for control of persistent disturbances. Since 
this publication, adaptive feedforward control has been the 
subject of a number of applications and investigations. The 
purpose of this letter is to detail practical concerns in feed- 
forward control of harmonic signals with respect to random 
noise on the reference signal and investigate the effect that 
the sampling rate has on the performance characteristics. 

The work presented is applicable to any adaptive feed- 
forward harmonic control approach, independent of the algo- 
rithm used in the adaptation. In the textbook by Widrow and 
Stearns (1985), the authors highlight the impact of noise on 
the reference input to an adaptive filter with respect to the 
optimal Wiener solution. This letter further considers the im- 
pact of noise with respect to the sample rate and demon- 
strates that for single harmonic active noise cancellation 
(ANC), an optimum sample rate exists for minimizing the 
mean-squared error. In addition, a single-input, single-output 
control problem is considered in this work, and the impact of 
the system dynamics on the optimal Wiener filter in the pres- 
ence of random (zero-mean) noise is detailed. Results from 
this study indicate that for the control problem, the minimum 
mean-squared error which can be achieved is relatively inde- 
pendent of the sample rate, which contradicts the results ob- 
tained for the ANC problem. This result stems from the fact 
that the noise on the reference is filtered by the impulse 
response of the physical plant and thus becomes correlated 
With respect to previous iterations in time as will be detailed 
in the following sections. 

A schematic diagram of an adaptive filter implemented 
to control the response of a structure for some chosen error is 
illustrated in Fig. 1. The transfer function between the con- 
trol input and the error is designated by Hce while the trans- 
fer function between the disturbance and the error is desig- 
nate H de. The task of the adaptive filter is to generate a 
control input, uk, such that the output of the system, yk, will 
be equal in magnitude and opposite in phase to the output 
resulting from the disturbance, d k, in the ideal scenario. The 
cost function is E[e•]; however, the control input is filtered 
by the physical system in this case before being summed 
with the response due to the disturbance (by superposition in 
a mathematical sense). 

In vector form, the mean-squared error can be expressed 
as follows: 

so= brRb+ Wr[D+ H]W+ 2WrC, (1) 

where, in words, R is the input correlation matrix of the 
reference signal, b is a vector of the impulse response of the 
disturbance to error path, H represents the correlation matrix 
of the noise signal filtered by the control to error path, D 
represents the correlation matrix of the filtered reference sig- 
nal (i.e., filtered-x signal), W is the vector of adaptive filter 
coefficients, and C is the cross-correlation vector between 

the output of the adaptive filter, yk, and the desired response 
at the error, d k. 

The optimal solution is obtained by taking the derivative 
of the mean-squared error with respect to the weight vector 
and setting the vector equations equal to zero: 

= 2[0+ a]w+ 2(:=0. (2) 

Solving for the optimal solution, Wopt, one obtains 
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FIG. 1. Schematic diagram of filter structure for control. 

Wopt= -- In+ l-l]- 1C. (3) 
In the absence of noise, It=0, and the expression for the 
unbiased weight vector is obtained. The minimum mean- 
squared error is also expressed in matrix form as follows: 

•min = brRb - Cr[D+ H]- •C. (4) 

As indicated in the previous equation, the minimum mean- 
squared error is controlled by the inverse of [D+ H], which is 
composed of the harmonic reference filtered by the physical 
systems as well as that of the noise filtered by the system, 
respectively. The minimum mean-squared error differs from 
that obtained for the optimal filter design in ANC since the 
noise term is no longer a diagonal matrix. This observation 
results from the fact that stochastic noise is correlated by the 
impulse response of a reverberant system, and as will be 
demonstrated in the results, this off-diagonal contribution 
will essentially serve to render the adaptive filter implemen- 
tation independent of the chosen sampling rate with respect 
to noise on the reference. 

II. RESULTS FROM OPTIMAL FILTER DESIGN 

A. Noise and the optimal filter design for system 
identification 

To provide an example, the adaptive linear combiner 
presented in Fig. 6.2 of Adaptive Signal Processing (Widrow 
and Stearns, 1985) was adopted in this work. For this single 
frequency ANC problem, the minimum mean-squared error 
resulting from the optimal filter design with random noise 
present on the input was computed and is presented in Fig. 2. 
The variance of the noise is selected such that the signal to 
noise ratio is 60 dB. As illustrated in Fig. 2, the minimum 
mean-squared error is achieved at a sample rate between 3 
and 6 samples per period. The optimal sampling rate corre- 
sponds to N= 4 for the two coefficient filter and single fre- 
quency disturbance. As the sampling rate approaches the Ny- 
quist frequency, the minimum mean-squared error increases 
as is the case when the sampling rate is increased beyond 
that of the optimal. For N= 4, the input correlation matrix is 
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FIG. 2. Minimum mean-squared error as a function of samples per period (harmonic system identification case). 
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FIG. 3. Schematic diagram of simply supported beam. 

diagonal as is the contribution of the noise. Hence the opti- 
mal filter can be expressed in terms of a first-order perturba- 
tion of the input correlation matrix: 

R=Ro+R1, (5) 

where R0 is the input correlation matrix in the absence of 
noise and R• is the contribution due to the noise. For N = 4, 

R1 = (&/0.5)R0= 2&I. 

where &=E[rx2]. 
Thus the optimal filter design for this case is simply 

(6) 

1 1 

Wopt = R- 1P= • 1 P, (7) +24, Ro- P= +24, 
where P is the cross-correlation vector between the input 
reference and the desired response. One can readily show 
that the minimum mean-squared error can be computed as 
follows (Widrow and Stearns, 1985; Haykin, 1991): 

•min=E[d•]-pTWopt, (8) 

Substituting Eq. (7) into Eq. (8) one obtains an expression 
for the minimum mean-squared error for N = 4' 

•min=E[d•]-[1/(1 q- 2 &) ]PrP. (9) 

Thus any contribution of noise on the reference will serve to 
reduce the second term in Eq. (9) and increase the minimum 
mean-squared error. However, if & is small, the performance 
degradation is reasonably small as well when N= 4. 

In contrast, if N:/: 4, the symmetric off-diagonal terms 
are present and as N approaches infinity, the value of the 
off-diagonal terms approach that of the diagonal terms, in- 
creasing the dependence of the optimal filter design upon the 
noise contribution. This can be seen upon considering the 
determinant of R (R can be found in Adaptive Signal Pro- 
cessing, Eq. 6.13, Widrow and Stearns, 1985): 

I R[ = 0.5[( + 2 4,) 2- cos2(2,r/N)] 

=0.5[ 1 + 4&+ 4 &2- cos2(2*r/N) ]. (10) 

As N approaches 2, the determinant becomes proportional to 
& since cos2(2,r/N) approaches one, and thus the optimal 
weights diverge from the solution as a function of 1/&. Simi- 
larly, as N becomes increasingly large, cos2(2*r/N) again 
approaches one and the determinant is proportional to &. 

Thus it is obvious as to why the optimal sampling rate occurs 
at N= 4 for the two coefficient FIR filter: the noise contri- 

bution is insignificant (as long as the signal-to-noise ratio is 
large) in the determinant of the input correlation matrix and 
the corresponding contribution to the minimum mean- 
squared error. 

B. Noise and the optimal filter design for control 

Fortunately, in the design of an adaptive filter for control 
applications, the sampling rate does not play an important 
role with respect to random noise contributions on the input 
reference. The difference can be attributed to the impulse 
response of the system (i.e., the filtering of the reference 
signal through the physical plant). For system identification 
through ANC, the off-diagonal contribution of the (zero- 
mean) random noise is always zero, owing to the fact that 
random noise is uncorrelated in time. However, as indicated 
in Sec. I, an off-diagonal contribution from the noise on the 
reference input for a control application results from filtering 
the random noise contribution with the impulse response of 
the system. Thus the random noise becomes correlated in 
time, owing to the resonant characteristics of the system. 

Given this observation, the off-diagonal contribution of 
the noise as a function of the sampling rate increases propor- 
tionally with respect to the off-diagonal contribution due to 
the harmonic reference as N is increased for a fixed distur- 

bance frequency. Hence for all values of N, the "filtered" 
input correlation matrix is perturbed proportionally. With a 
simple first-order perturbation of a real symmetric matrix 
one can show that if 

D+H•D+ &KD, (11) 

where K is some constant of proportionality and •b is the 
variance of the noise, then 

[D+ H]-• [ 1/( 1 + &K)]D -•. (12) 

Since the minimum mean-squared error varies as a function 
of Eq. (12), as indicated in Eq. (4), any contribution resulting 
from noise will simply increase the minimum mean-squared 
error by •bK/(1 + •bK). Thus for small •b the effect of the noise 
is negligible. 

An example is provided to demonstrate this observation. 
For the purpose of this example, a simply supported beam 
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FIG. 4. Minimum mean-squared error as a function of samples per period (harmonic control case). 

was selected as the test structure with a single point force 
disturbance input and a single point force control input. De- 
tails of the discrete-time model are omitted for brevity; how- 
ever, a schematic diagram of the structure is illustrated in 
Fig. 3. Material properties of the structure were based upon 
that of steel. The driving frequency was selected at 50 Hz, 
which is between the first and second natural frequencies of 
the structure, 31.1 and 124.4 Hz, respectively, for the chosen 
dimensions and material properties. As indicated in Fig. 4, 
for random noise with a fixed variance, the minimum mean- 
squared error is relatively independent of the chosen sam- 
pling rate in the presence of noise. 

III. CONCLUSIONS 

For single frequency control applications with a two co- 
efficient adaptive FIR filter, if the reference input is contami- 
nated with (zero-mean) random noise, then the optimal sam- 
pling rate is 4 samples per period of the harmonic reference. 
Specifically, if system identification is required as part of the 
control implementation (as is the case in the filtered-x LMS 
algorithm), the best estimate of the system response is ob- 
tained when the effects of the random noise on the reference 

are minimized, which occurs when the sampling rate is set at 
4 samples per period. In terms of the control implementation 
of an adaptive FIR filter, this is not the case. Since the noise 

contribution on the input reference is filtered by the physical 
system being controlled, the impact of the random noise with 
respect to the sampling rate is minimal as was indicated in 
the results. Hence, in terms of the control filter, the sampling 
rate is essentially arbitrary with respect to noise on the ref- 
erence. 

An alternative method of compensating for the effects of 
noise on the reference is to increase the length of the FIR 
filter used in the system identification process (Cowan and 
Grant, 1985), which ultimately results in greater computa- 
tional time and effort. If the objective is to maximize the 
number of control channels which can be utilized for a given 
digital signal processing rate, one must minimize the compu- 
tational time required to implement the control. Minimizing 
the filter length is one method of accomplishing this goal. 
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