
Linkage Based Dirichlet Processes

Yuhyun Song

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Statistics

Scotland C. Leman, Chair

Leanna L. House

Inyoung Kim

George R. Terrell

January 27, 2017

Blacksburg, Virginia

Keywords: concentration parameter, Dirichlet processes, nested Dirichlet processes

Copyright 2017, Yuhyun Song



Linkage Based Dirichlet Processes

Yuhyun Song

(Abstract)

We live in the era of Big Data with significantly richer computational resources than the

last two decades. The concurrence of computation resources and a large volume of data

has boosted researchers’ desire for developing feasible Markov Chain Monte Carlo (MCMC)

algorithms for large parameter spaces. Dirichlet Process Mixture Models (DPMMs) have

become a Bayesian mainstay for modeling heterogeneous structures, namely clusters, espe-

cially when the quantity of clusters is not known with the established MCMC methods. As

opposed to many ad-hoc clustering methods, using Dirichlet Processes (DPs) in models pro-

vide a flexible and probabilistic approach for automatically estimating both cluster structure

and quantity. While DPs are not fully parameterized, they depend on both a base measure

and a concentration parameter that can heavily impact inferences.

Determining the concentration parameter is critical and essential, since it adjusts the a-

priori cluster expectation, but typical approaches for specifying this parameter are rather

cavalier. In this work, we propose a new method for automatically and adaptively determin-

ing this parameter, which directly calibrates distances between clusters through an explicit

link function within the DP. Furthermore, we extend our method to mixture models with

Nested Dirichlet Processes (NDPs) that cluster the multilevel data and depend on the spec-

ification of a vector of concentration parameters. In this work, we detail how to incorporate

our method in Markov chain Monte Carlo algorithms, and illustrate our findings through a

series of comparative simulation studies and applications.
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(General Audience Abstract)

We live in the era of Big Data with significantly richer computational resources than the

last two decades. The concurrence of computational resources and a large volume of data

has boosted researcher’s desire to develop the efficient Markov Chain Monte Carlo (MCMC)

algorithms for models such as a Dirichlet process mixture model. The Dirichlet process mix-

ture model has become more popular for clustering analyses because it provides a flexible

and generative model for automatically defining both cluster structure and quantity. How-

ever, a clustering solution inferred by the Dirichlet process mixture model is impacted by

the hyperparameters called a base measure and a concentration parameter.

Determining the concentration parameter is critical and essential, since it adjusts the a-

priori cluster expectation, but typical approaches for specifying this parameter are rather

cavalier. In this work, we propose a new method for automatically and adaptively determin-

ing this parameter, which directly calibrates distances between clusters. Furthermore, we

extend our method to mixture models with Nested Dirichlet Processes (NDPs) that cluster

the multilevel data and depend on the specification of a vector of concentration parameters.

In this work, we have simulation studies to show the performance of the developed methods

and applications such as modeling the timeline for building construction data and clustering

the U.S median household income data.

This work has contributions: 1) the developed methods in this work are straightforward

to incorporate with any type of Monte Carlo Markov Chain algorithms, 2) methods cali-

brate with the probability distance between clusters and maximize the information based on

the observations in defined clusters when estimating the concentration parameter, and 3) the

methods can be extended to any type of the extension of Dirichlet processes, for instance,

hierarchical Dirichlet processes or dependent Dirichlet processes.
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Chapter 1

Introduction

Grouping objects is an inherent aspect of human activity. People distinguish objects based

on their features and characteristics, and then segment them into groups. In statistics and

computer sciences, the task of grouping is referenced to as a clustering analysis. As clus-

tering analyses have gained currency in several areas, various clustering methods have been

developed and widely used in many areas for segmenting data objects based on similarities

(or dissimilarities). These disciplines include, but are not limited to biology, psychology,

social science, and medicine. For instance, in the area of marketing, the goal of clustering

is to find apt target consumer groups so that a company can execute an effective marketing

campaign (Linoff and Berry, 2011). As an example, a clustering method assigns genes into

natural groups, providing similar functions (Ashburner et al., 2000). Also, with the growing

number of social networking platforms like Facebook and Twitter, many researchers are in-

terested in grouping users and identifying the homogeneous (or heterogeneous) behaviors of

users through employing various clustering methods (Wakita and Tsurumi, 2007). Cluster-

ing analyses have also been used for crime analyses in order to determine locations with high

incidence of crime (Chen et al., 2004; Murray et al., 2001). With the surge of interest in Big

Data, researchers use clustering algorithms for text mining which involve classifying huge

quantifies of documents from various sources, such as Twitter, Facebook, and news (Dhillon

1
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Figure 1.1: Visualization of Grouping objects. Image is from https://blogs.stthomas.

edu/hphc/2012/05/04/segmenting-the-future-of-health-care.

and Modha, 2001; Steinbach et al., 2000; Blei et al., 2003).Clearly, clustering is becoming

the cornerstone of many analyses. However, the uncertainty in the number of clusters has

been overlooked in the use of ad-hoc clustering algorithms.

Among various clustering methods, agglomerative hierarchical clustering approaches utilize

linkage functions to measure distances between clusters. In general, these methods first de-

termine a pair of closest clusters, and merge them at each stage (Kaufman and Rousseeuw,

2009; Hastie et al., 2009). Agglomerative hierarchical clustering algorithms do not require

the number of clusters to be fixed in advance. However, in order to determine the number

of clusters, users inspect a resulting dendrogram which graphically lays out clusters and the

distances between them. Therefore, agglomerative hierarchical clustering algorithms have a

disadvantage, in that a clustering solution in accordance with the number of clusters may

be biased depending upon the researcher’s subjective view.

The K-means clustering algorithm requires that objects are partitioned into a predeter-

mined number of K clusters, centered around K centroids, by minimizing the within cluster

https://blogs.stthomas.edu/hphc/2012/05/04/ segmenting-the-future-of-health-care
https://blogs.stthomas.edu/hphc/2012/05/04/ segmenting-the-future-of-health-care
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sum of squares (Hartigan and Wong, 1979). However, in order to use the K-means clustering

approach, users are required to select the number of clusters in advance and investigate the

selected number of clusters, for instance, by using a scree plot, which is a graphical tool

for determining K. Many such distance function modifications, e.g. K-medoids algorithm

(Kaufman and Rousseeuw, 1987), have been adapted for added flexibility in suggesting what

a cluster might look like. However, both agglomerative hierarchical clustering and K-means

clustering are inflexible for individual clusters. Also, once observations are assigned to clus-

ters, clustering results cannot be easily changed. Moreover, an inference about the number

of clusters and the quality of clustering cannot be assessed parametrically, because neither

method provides any generative models.

A Gaussian Mixture Model (GMM) solves some of the concerns associated with the K-

means clustering approach and agglomerative hierarchical clustering algorithms. Similar to

K-means clustering, the GMM is often used for clustering purposes by assuming that the

observations are drawn from the mixture of Gaussian distributions with mean µi and the

standard deviation si where i = 1 , . . . , K, such that K is the number of clusters ( or mix-

ture components) in the GMM (McLachlan and Basford, 1988; Figueiredo and Jain, 2002;

McLachlan and Peel, 2004). Like K-means clustering, when using this approach, the number

of mixture components should be predetermined prior to fitting the model. Without pre-

specified information, it is not easy to choose the number of components or clusters, and it

requires further investigations to examine the selected number of clusters. However, unlike

the K-means clustering approach and agglomerative hierarchical clustering algorithms, an

inference about the number of clusters can be made by model selection methods, such as

the Akaike Information Criterion (AIC) (Akaike, 1974), the Bayesian Information Criterion

(BIC) (Zhou and Hansen, 2000; Schwarz et al., 1978; Chen and Gopalakrishnan, 1998), the

Integrated Completed Likelihood (ICL) (Biernacki et al., 2000), and the Likelihood Ratio

Test (LRT) (McLachlan, 1987).
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Recently, Dirichlet process priors for mixture modeling have taken center stage as providing

both the identity of cluster labels and the number of clusters simultaneously (Antoniak, 1974;

MacEachern and Müller, 1998). Unlike ad-hoc clustering methods, the Dirichlet process prior

enables us not only to bypass the issue of predetermining the number of clusters, but also to

make inferences about clustering results. For example, Dahl (2006) uses a Dirichlet process

mixture model as a model-based clustering in order to group the gene expression data. Con-

sequently, clustering results provided by the Dirichlet process mixture model automatically

offer inferences about both the number of clusters and model parameters. Also, the use of

the Dirichlet process prior is common-place for handling heterogeneity in regression coeffi-

cients and determining the number of clusters (Kim et al., 2004). Assuming that each cluster

of data has its own mixture model, Teh et al. (2006) suggests building a semi-parametric

approach to model groups of data hierarchically. This approach involves constructing a hi-

erarchical Dirichlet process for groups of data and applying their method into text modeling.

A Dirichlet process prior is formed by two hyperparameters: a concentration parameter

(or a strength parameter) α, and a base measure G0. It is common knowledge that cluster-

ing results are sensitive to selections of these two hyperparameters (West, 1992; McAuliffe

et al., 2006; Rabaoui et al., 2011). Thus, we need to develop dependable approaches for

estimating hyperparameters in a Dirichlet process in order to ensure efficient and accurate

clustering results. Especially, it is known that unknown concentration parameter α plays

an important role because it determines the expected number of clusters in the Dirichlet

process. In this work, we propose a new method for estimating the concentration parameter,

which has an effect on the expected number of clusters in the DP. Unlike other previous

methods for estimating the concentration parameter, our method uses distances between

clusters, which implies that we borrow and pool the information from defined clusters.

This work is organized as follows. In Chapter 2, we review the Dirichlet process and the

Dirichlet process mixture model. We then introduce our new method, linkage based Dirichlet
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processes, in Chapter 3. Then, as a case study, we apply our method to simulated data un-

der different cases and compare with the result from another method proposed by McAuliffe

et al. (2006). As an application, we implement a mixture model with a linkage based Dirich-

let process prior for modeling the timeline for building construction costs in Chapter 5. In

Chapter 6, we review nested Dirichlet processes and propose a linkage based nested Dirichlet

process, which extends linkage based Dirichlet process to the nested Dirichlet process. This

is followed by a simulation study for a linkage based nested Dirichlet process mixture model

in Chapter 7. Finally, in Chapter 8, we conclude and discuss future works.



Chapter 2

Overview of Dirichlet Processes

2.1 Dirichlet Processes

A Dirichlet Process (DP), which is named after Peter Gustav Lejeune Dirichlet, is the

stochastic process that is used in Bayesian inferences (Blackwell and MacQueen, 1973).

The Dirichlet process is often called “a distribution over distributions” because this stochas-

tic process describes the prior knowledge about the distribution of random variables in

Bayesian semi-parametric models and each draw from this stochastic process is a realization

of probability distribution (Blackwell and MacQueen, 1973; MacEachern and Müller, 1998;

McAuliffe et al., 2006; Liu, 1996). The DP has gained popularity in machine learning, com-

puter science, and statistics due to its properties, such as flexibility and clustering effects.

Particularly, in linear mixed models, the DP prior is often assigned for the distribution of

random effects when they do not follow certain parametric distributions such as a normal

distribution (Kleinman and Ibrahim, 1998; Mukhopadhyay and Gelfand, 1997). In unsu-

pervised learning, in a Dirichlet process mixture model, the DP is used as the prior on the

number of clusters for clustering analyses (MacEachern and Müller, 1998; Escobar, 1994).

Then, the DP allows us to perform clustering analyses without possessing information about

the number of clusters due to its potentially infinite nature. In Chapter 2, we briefly review

6
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Dirichlet distributions, Dirichlet processes, Dirichlet process mixture models, and Markov

chain Monte Carlo algorithms for implementing Dirichlet process mixture models.

2.1.1 Dirichlet Distributions

A Dirichlet distribution is the probability distribution for K-dimensional random vectors

x, which elements are non-negative number in [0, 1] and
∑K

i=1 xi is at most 1 (Blackwell

and MacQueen, 1973; Fabius, 1973). ∀i : xi ≥ 0 and
∑K

i=1 xi = 1, the Dirichlet distribution

denoted by x ∼ Dir(α) has the following probability density distribution on Euclidean space

RK−1:

f (x1, . . . , xK−1, xK | α) =
Γ
(∑K

i=1 αi

)
∏K

i=1 Γ(αi)

K∏
i=1

xαi−1
i ,

where α = (α1, α2, . . . , αK). Uniform distributions and Beta distributions are the special

cases of the Dirichlet distribution. That is, when α1 = α2 = . . . = αK = 1, the Dirichlet

distribution becomes the uniform distribution. When K = 2, the Dirichlet process yields a

Beta distribution, Beta(α1, α2), for a scalar x.

Under a Bayesian framework, a Dirichlet distribution is the conjugate prior for probability

parameter π = {π1, π2, . . . , πK} in the multinomial distribution (Ferguson, 1973; Antoniak,

1974; Minka, 2000; Blei et al., 2003). Given data x, the posterior distribution of π is also a
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Dirichlet distribution:

f (π | x) ∝
(

n!

x1!x2! . . . xK !

K∏
i

πxii

)(
Γ(α1 + . . .+ αK)∏K

i Γ(αi)

K∏
i

παi−1
i

)

∝
K∏
i

παi+xi−1
i

∝ Dir(α+ x).

2.1.2 Formal Definition of Dirichlet Processes

We view a DP as an infinite-dimensional generalization of the Dirichlet distribution. This

suggests that the Dirichlet process is useful for modeling a distribution over distributions

because the domain of the Dirichlet distribution can be expressed as a set of K discrete

probability distributions (Ferguson, 1973; Balakrishnan, 2001). According to the origi-

nal definition by Ferguson (1973), consider a measurable space Ω and the finite partition

A = {A1, A2, . . . , AK} of Ω. Let G be a random distribution over Ω. Since G is random,

(G(A1), G(A2), . . . , G(AK)) is a random vector. We defines G ∼ DP (α,G0), where α and

G0 are a concentration parameter and a base measure, if

G(A1), G(A2), . . . , G(AK) ∼ Dir(αG0(A1), αG0(A2), . . . , αG0(AK)),

for every finite partition A = {A1, A2, . . . , AK} of Ω.

A DP is determined by a base measure G0 and a concentration parameter α, which are

the probability measure and the positive real number, respectively. In the DP, for any mea-

surable set A ⊂ Ω, the base measure G0 and the concentration parameter α have different
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roles as follows:

E (G(A) | G0, α) = G0(A),

V ar(G(A) | G0, α) =
G0(A)(1−G0(A))

α + 1
.

The base measure (G0), which is itself a distribution, is an expectation of the Dirichlet

process, which implies that the Dirichlet process samples the distributions around the base

measure. The concentration parameter (α) has an influence on determining the variance of

the DP. If α increases, the DP exhibits the smaller variance, then samples drawn from the

DP are more likely to concentrate on its mass around the mean G0(A) (Teh (2010)).

Now, we explain the posterior distribution of the Dirichlet process. Given by the ran-

dom distribution G ∼ DP (α,G0), let an exchangeable sequence θ = {θ1, θ2, . . . , θN} follow

the random distribution G over a measurable space Ω. For the finite measurable partition

{A1, A2, . . . , AK} of Ω, let nk be the number of observed values of θ1, θ2, . . . , θN in Ak for

i = 1, 2, . . . , N and k = 1, 2, . . . , K. Due to the conjugacy between a Dirichlet distribution

and a multinomial distribution, the posterior distribution of the DP becomes:

G(A1), G(A2), . . . , G(AK) ∼ Dir(αG0(A1) + n1, . . . , αG0(AK) + nK), (2.1)

where δ(θ = θi) is the Dirac delta centered at θi. Equation 2.1 shows that the posterior dis-

tribution of the DP is another Dirichlet process with α∗ = α +N and G∗0 =
αG0+

∑N
i=1 δ(θ=θi)

α+N

(Görür, 2007). Also, the posterior predictive distribution for θN+1 is described as

θN+1 |θ1, θ2, . . . , θN−1, θN ,∼
1

α +N

(
αG0(θN+1) +

N∑
i=1

δ(θN+1 = θi)

)
. (2.2)

A base measure can be continuous, but the fact of the matter is that the sampled distribu-

tions from a DP are discrete probability measures with the probability one (Blackwell and
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Figure 2.1: 1000 samples drawn from G ∼ DP (α,G0) with 4 different values of the concen-
tration parameter α = 1, 5, 10, 50, where G0 ∼ N(0, 1).

MacQueen (1973)). In addition, the conditional distribution in Equation 2.2 implies that

a DP naturally exhibits clustering effects (Antoniak, 1974; Aldous, 1985; Teh, 2010). Let

θ∗ = {θ1∗ , θ2∗ , . . . , θK∗} be the distinct values of θ = {θ1, θ2, . . . , θN}. Then, θ1, θ2, . . . , θN

are naturally grouped into K∗ clusters.

Figure 2.1 depicts samples drawn from the Dirichlet process. The locations at which peaks

along the x-axis occur correspond to the values of samples drawn from the DP. This demon-

strates that the samples from the DP (α,G0) are discrete. Also, the number of distinct values

of samples is the same as the number of peaks. It is clear that the number of distinct values

of samples increases as α increases. This illustrates that the number of clusters depends on

the size of the concentration parameter. These properties of the DP makes this stochastic

process more popular in Bayesian modelings, particularly for infinite mixture models (Ras-

mussen, 1999; Neal, 2000; Medvedovic and Sivaganesan, 2002; Teh, 2010).
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2.1.3 Implementation of Dirichlet Processes

The important characteristic of the Dirichlet process is that samples from the DP are discrete

and exhibit clustering effects, which is useful for grouping objects together. The realizations

of samples from the Dirichlet process often can be described by the Polya urn process (Black-

well and MacQueen, 1973), the Stick-Breaking Process (Sethuraman, 1991), and the Chinese

Restaurant Process (Aldous, 1985). In this section, we review the Chinese restaurant process

and the stick-breaking process.

Chinese Restaurant Process

A Chinese Restaurant Process (CRP), which is introduced by Aldous (1985), is often used

for construing the clustering effects of the samples drawn from the Dirichlet process. Con-

sidering a Chinese restaurant with an infinite number of tables, n customers, labeled with

{1, 2, . . . , n}, come and sit at tables in the restaurant. Starting from the first customer, the

first customer occupies the first table, labeled with 1, and the next customer decides whether

to sit at the table occupied by the first customer with the probability 1
1+α

or at a new table

with the probability α
1+α

. Given that n− 1 customers have already occupied tables, marked

as k = {1, 2, . . . , K}, then nth customer comes to the restaurant and chooses one of the

tables occupied by n − 1 customers with the probability nk
n−1+α

, where nk is the number of

customers already sitting at the table k or an unoccupied table with the probability α
n−1+α

.

Now, a table where nth customer sits is drawn from the following distribution:

p(nth customer sits at the table k | 1, 2, . . . , n− 1) =
nk

α + n− 1
,

p(nth customer sits at the new table | 1, 2, . . . , n− 1) =
α

α + n− 1
.

(2.3)

After we draw the table for nth customer, let K be the total number of tables occupied by

n customers. Also, n customers will have a latent variable, which is a table assignment,

an integer from 1 to K. We can view the CRP as the random process which partitions n

customers into K clusters. Similar to Blackwell-MacQueen urn scheme (Blackwell and Mac-
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Queen, 1973), the CRP specifies a distribution over partitions, which are table assignments

of n customers. The graphical representation of the Chinese Restaurant Process is displayed

in Figure 2.2.

The fact that customers share the same table or sit alone exhibits the clustering effects

in CRP. In CRP, each table represents a cluster. Thus, each customer and each table stand

for a data point and a cluster, respectively. The total number of tables occupied by customers

represents the number of clusters. In addition, Equation 2.3 addresses the important feature

of the Dirichlet process, which is that the probability of opening a new table is proportional

to a positive real number α.
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Figure 2.2: A graphical representation of the Chinese Restaurant Process is depicted for
describing the clustering effects of the Chinese Restaurant Process.
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The Stick-Breaking Process

Previously, we have shown that samples drawn from a Dirichlet process are consisted of

the weighted sum of point masses. In stead of a Chinese restaurant process, Sethuraman

(1991) has alternatively explained the characteristic of DP samples by using a stick-breaking

representation. To construct the Stick-Breaking process, consider G =
∑∞

k=1 πkδ(θ = θk)

where θ is the sample drawn from G0, and
∑∞

k=1 πk = 1. Then, assume that we have a stick

with length 1 and we draw a random sample β1 from a Beta distribution with parameters

1 and α. Let π1 = β1, which corresponding to the length of the part of the stick we just

break off. To obtain π2, we draw β2 ∼ Beta(a, b) and then again let π2 be (1− β1)β2 which

is also the length of the part of stick. Then, we repeat the procedure until K → ∞. For

k = 1, 2, ..., K, the overall procedure can be written down as:

βk ∼ Beta(1, α),

π1 = β1,

π2 = (1− β1)β2,

...

πK =
K−1∏
k=1

(1− βk)βK .

This mechanism can be understood as stick-breaking because a stick with length 1 breaks off

with the fraction {π1, π2, . . . , π∞} and it shows that the concentration parameter α influences

the distribution of π. The stick-breaking construction is graphically described in Figure 2.3.

The stick-breaking process is ideal for understanding the realization of Dirichlet process.

Also, the stick-breaking process is useful in the Markov chain Monte Carlo algorithms when

drawing random samples for the Dirichlet process mixture models because sampling random

variables from a Beta distribution is relatively easy to do (Ishwaran and James, 2001).
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Figure 2.3: A visual depiction of a stick-breaking process. When K →∞, the stick-breaking
process becomes the Dirichlet process.
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2.2 Dirichlet Process Mixture Models

As an application of a Dirichlet process prior, a Dirichlet Process Mixture Model (DPMM)

has been popularly used as a model-based clustering approach in Bayesian frameworks (Neal,

2000; Figueiredo and Jain, 2002; Medvedovic and Sivaganesan, 2002; Dahl, 2006). Because

the Dirichlet process prior in the model enables us to have a various and infinite number

of clusters, the DPMM is capable of accommodating an infinite number of clusters and it

provides multiple clustering solutions (Medvedovic and Sivaganesan, 2002; Figueiredo and

Jain, 2002). In other words, unlike other clustering methods, the DPMM does not require

the number of clusters to be fixed in advance when we do not have prior information about

it. However, as shown in the previous section, the number of clusters specified by the models

turns on a reasonable value of α in the DP, which is application specific.

We formulate the Dirichlet process mixture model by setting up a parametric mixture

model. Consider the finite mixture model with K components for a set of n observations

{y1, y2, . . . , yn}:
θ1, θ2, . . . , θK ∼ G,

π1, π2, . . . , πK ∼ Dir(
α

K
J),

ci | π ∼Mult(1,π),

yi | ci, θ1, θ2, . . . , θK ∼ F (θci),

(2.4)

where i = 1, 2, . . . , n, θ = {θ1, θ2, . . . , θK} is a parameter vector, G is a probability distribu-

tion, π = {π1, π2, . . . , πK} is the mixing proportion for K components, J = 11×K , and ci for

yi is the component label ranged from 1 to K, which indicates the cluster assignment for the

observation yi. Probability distribution F with parameter θ = {θ1, . . . , θK} is underlying

distribution for observations y. In semi-parametric Bayesian approach, G in Equation 2.4

is unknown, and we assign the Dirichlet process prior for G. Then, the DPMM is formally
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represented as:

G | α,G0 ∼ DP (α,G0),

θ1, θ2, . . . , θn ∼ G,

yi|ci, θ1, θ2, . . . , θn ∼ F (θci),

(2.5)

where θ = {θ1, θ2, . . . , θn} is the collection of the latent parameters which demonstrates

clustering effects of the Dirichlet process prior. The number of clusters is automatically es-

timated by the number of unique θ, and the estimation of θ tells us the cluster assignments

which distribution the data points are come from. For example, data points labeled with c3

belong to cluster c3 and these data points share the same parameter θc3 . Also, if a data point

is newly observed, the DP in the DPMM can allow the new data point either to belong to

the existing clusters or to declare its own cluster. The DPMM in Equation 2.5 is visualized

in Figure 2.4.

Figure 2.4: The graphical representation of the Dirichlet process mixture model.

The DPMM not only considers the data likelihood as a mixture model, but it also combines

the clustering effect by assigning the DP prior over the latent parameters. Thus, the actual

number of clusters in DPMM is not fixed and automatically estimated by modeling data ac-

cording to the nature of DP. The DPMM is a compelling application for clustering analysis

in order to alternate finite mixture models with model selection procedures and ad-hoc clus-
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tering approaches such as the K-means clustering approach and agglomerative hierarchical

clustering algorithms.

2.3 Markov Chain Monte Carlo Algorithms for Dirich-

let Process Mixture Models

Due to the advances in Markov Chain Monte Carlo (MCMC) algorithms, sampling from the

posterior distribution of parameters, which follow the Dirichlet process, has become compu-

tationally feasible (Neal, 2000). In this section, we summarize useful MCMC algorithms to

draw random samples from the posterior distribution of Dirichlet process mixture models,

including two algorithms that are reviewed and summarized in Neal (2000). The notations

for these MCMC algorithms are provided in Table 2.1.

Collapsed Gibbs sampling

The collapsed Gibbs sampling algorithm for the DPMM requires us to choose the base

measure G0 to be conjugate to the distribution f (Escobar, 1994; MacEachern, 1994; Neal,

2000). Let the state of the Markov chain consist of c = (c1, c2, . . . , cn) and θ = (θc : c ∈

Table 2.1: Notations for MCMC algorithms summarized by Neal (2000) are provided.

Notation
y = {y1, . . . , yn} data points with the size of n

yi ith data point
ci a class indicator associated with yi
c−i cj for j 6= i

θ = {θc1 , . . . , θcn} a latent parameter corresponding to class indicator c for y
n−i,c the number of cj for j 6= i that are equal to c
f a probability distribution of y
G0 a base measure in Dirichlet process
α a concentration parameter in Dirichlet process
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{c1, c2, . . . , cn}) For i = {1, 2, . . . , n}, if no observations are labeled with ci (n−i,ci = 0),

remove θci from the present state of MCMC and sample the new value for ci with the

following probabilities (Neal, 2000):

P (ci = c |c−i, yi, θ) ∝ n−i,c
n− 1 + α

f(yi|θc),

P (ci 6= c |c−i, yi, θ) ∝ n−i,c
n− 1 + α

∫
f(yi|θ)dG0(θ),

(2.6)

where n−i,c is the number of ci for i 6= j. Then, θ is sampled from the posterior distribution

of θ. This sampling algorithm is feasible when we are able to compute
∫
f(yi|θ)dG0(θ) and

to draw samples from the posterior distribution of θ. This implies that the base measure G0

is required to be conjugate to a distribution f .

Gibbs sampling with an auxiliary variable

We briefly describe a Gibbs sampling with an auxiliary variable in Neal (2000), which ad-

dresses the case that G0 is not conjugate to f and uses auxiliary variables corresponding to

class indicators. Let ci and k− denote the latent class variable and the number of distinct ci

for i 6= j, respectively. Suppose that h = k− + m, where m is an arbitrary natural number.

Before sampling the parameter θc, we label ci with the values in {1, 2, 3, . . . , k−}. For the

case that ci 6= cj, we label ci with k− + 1 and draw θc for k− + 1 < c ≤ h. Then, we sample

a new value for ci from {1, 2, ..., h} with the following probabilities (Neal, 2000):

P (ci = c |c−i, yi, θ1, . . . , θh) ∝


n−i,c
n−1+α

f(yi|θc) for i ≤ c ≤ k−

α/m
n−1+α

f(yi|θc) for k− < c ≤ h

, (2.7)

where n−i,c is the number of ci for i 6= j. This algorithm does not require the base measure

G0 to be conjugate to f . More MCMC algorithms for sampling in the DPMM are well

introduced in Neal (2000).



Chapter 3

Linkage Based Dirichlet Processes:

Methodology

The fact that the number of clusters relies on the concentration parameter in the Dirichlet

process prior emphasizes the importance of estimation of the concentration parameter (α)

for gaining the adequate number of clusters given observed data. This chapter is divided

into the following sections. Section 3.1 reviews related work for estimating the concentration

parameter. In Section 3.2, we propose the new method, which we will call linkage based

Dirichlet process.

3.1 Related Work

In clustering analyses, the most important issue is related to defining an appropriate number

of clusters given observed data (Fraley and Raftery, 1998). The Dirichlet process prior

demonstrates a “rich-gets-richer” property that the probability of choosing the table in the

CRP is proportional to the number of customers who already sat at the table (Pitman et al.,

2002). Given the fixed number of customers in the CRP, the probability of obtaining a new

20
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cluster is proportional to the size of α. We have discussed these properties in Chapter 2.

Antoniak (1974) proves that the distribution of the number of clusters is dependent on both

the number of observations in the data and the concentration parameter in that

p(K | α, n) = cn(K)n!αK
Γ(α)

Γ(α + n)
,

where K is the number of clusters and cn(K) is Stirling number (Antoniak, 1974). When

the number of observations n→∞, the expected number of clusters K for observations is:

E(K|α, n) =
n∑
i=1

α

α + i− 1
≈ αlog(n), (3.1)

which was established by Liu (1996). Equation 3.1 certainly demonstrates that the expected

number of clusters relies on the size of α and n. With the fixed n observations, the expected

number of clusters increases as the size of α increases. Thus, depending on the size of the

concentration parameter, the Dirichlet process mixture model may either overestimate the

number of clusters or underestimate it. This emphasizes the importance of estimating the

concentration parameter to obtain the appropriate number of clusters.

Due to the pioneering of work by West (1992), a Gamma prior with a shape parameter

a and a scale parameter b is assigned over the concentration parameter. Then, West (1992)

induces the resulting posterior distribution of the concentration parameter, which is also a

Gamma distribution, so that a Gibbs sampling can draw samples for estimating the concen-

tration parameter. However, this approach gives rise to estimating the hyperparameters a

and b in the Gamma prior. Related to the work of West (1992), Dorazio (2009) presents

the means of estimating the hyperparameters, a and b, in the Gamma prior in the Dirichlet

process through KL-divergence. Accordingly, West (1992), Escobar and West (1995), Liu

(1996), Dorazio (2009), McAuliffe et al. (2006), and Rabaoui et al. (2011) discuss how to

estimate the concentration parameter α in the DP. Liu (1996) demonstrates the maximum

likelihood estimate of the concentration parameter α, which satisfies Equation 3.1. Liu
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(1996) encourages the use of an empirical Bayes approach for making inferences about the

concentration parameter.

McAuliffe et al. (2006) introduces an approach for estimating both the base distribution

G0 and the concentration parameter α. McAuliffe et al. (2006) posits that an estimation of

the base measure G0 is important when the true density of the θ′is is skewed and does not

follow the parametric form of the probability densities in the exponential family. They sug-

gest employing both a kernel density estimation and an empirical Bayes method to estimate

G0. The constructed kernel density estimate (Ĝ0) for G0 in McAuliffe et al. (2006) is:

E(Ĝ∗0|y1, ..., yn) = E

(
1

K(θ1:n)

K(θ1:n)∑
i=1

κh(θ
∗
i |y1:n)

)

≈ 1

B

B∑
b=1

(
1

Kb

Kb∑
i=1

κhb(θ
b∗
i )

)
= Ĝ0,

(3.2)

where B is a specified number of previous MCMC samples. K(θ1:n) is the number of unique

θ∗i ’s observed, κh is the kernel with width (h) for density estimation, and Kb is the number of

unique θb∗1:Kb
. After estimating G0 in Equation 3.2, they draw the θ∗i ’s from the point estimate

Ĝ0. Then, the concentration parameter is estimated by solving the following equation:

n∑
i=1

α

α + i− 1
≈ 1

B

B∑
b=1

Kb. (3.3)

Rugging in these estimates, at each iteration of a Gibbs sampler, constitutes an empirical

Bayesian method for specifying Ĝ0 and α̂ (McAuliffe et al., 2006).

However, with respect to the estimation of the concentration parameter α, the method

proposed by McAuliffe et al. (2006) presents several possible limitations of their method.

First of all, the estimated base measure is a weighted average of the samples from an MCMC
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procedure via a Kernel Density Estimation and an empirical Bayes method, rather than a

sample itself from the MCMC procedure. This implies that the estimated concentration

parameter is no longer a sample from the MCMC and does not hold the Markov chain prop-

erty. Secondly, their method has the potential to get trapped in inappropriate clusters. Once

they find the membership of observations, they update the concentration parameter using

only the number of observations and the number of defined clusters in the MCMC algorithm.

In summary, the methods mentioned in Section 3.1 for estimating the concentration pa-

rameter have the common limitation of relying on only the number of observations which

are assigned to the clusters. In addition, these methods do not account for the shape of

clusters and the distances between clusters. We thus emphasize the necessity for the new

method, which incorporates not only the size of n and α, but also the linkages between

defined clusters.

3.2 Linkage Based Dirichlet Processes

In this section, we propose a new method for estimating the concentration parameter in

Dirichlet processes. The estimation of the concentration parameter is based on the linkages

between clusters. Before we propose our method in detail, we review several meaningful

metrics that measure distances between clusters in probability scales, and an empirical Bayes

approach.
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3.2.1 Meaningful Metrics for Measuring Distances between Clus-

ters

In statistics, measuring distances between clusters is indispensable for clustering analyses.

For instance, agglomerative clustering analyses use several linkage functions, such as com-

plete linkage, average linkage, and single linkage, for measuring distances between two clus-

ters. The range of distances between a pair of clusters is between 0 and ∞. Thus, it is

challenging to determine whether two clusters are close enough to be merged or separated.

In addition, given observed data points (x1, x2, . . . , xn), the K-means clustering method

employs the metric which is called Within-cluster Sum of Squares (WSS) and determines

clustering assignments by minimizing it:

WSS =arg min
S

K∑
k=1

∑
x∈Sk

‖x− µk‖
2 ,

where S = {S1, S2, · · · , SK} represents clusters, K is the number of clusters, and µk is the

mean of observations assigned to Sk. However, by WSS, it is somewhat problematic to

determine how close the clusters are. We expect proximity between clusters to be stretched,

since our goal is to define well-separated clusters via any clustering algorithms.

In model-based clustering algorithms, formal probability mixture models assume that ob-

servations within a cluster follow a distribution f with parameter θ. This means that each

cluster has its own distribution. With respect to explaining proximity between clusters, some

metrics which quantify distances between probability distributions are appropriate. Com-

monly used probability measures include the Kullback-Leibler (KL) divergence (Kullback

and Leibler, 1951; Kullback, 1987), the earth mover’s distance (Rubner et al., 2000; Levina

and Bickel, 2001), the Hellinger distance (Hellinger, 1909; Bhattacharyya, 1946; Nikulin,

2001), the total variation distance (Dunford and Schwartz, 1958), and so on.
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In order to account for proximity between K clusters, we measure distances by a met-

ric, which range is between 0 and 1, for all
(
K
2

)
pairs. If K clusters are well separated, each

cluster has a distinct probability density. Then, distances between any pair of clusters are

approximately 1. On the other hand, the distance between two clusters, which are almost

completely overlapping, is close to 0. Any metric, which gives results between 0 and 1, is

suitable for our proposed method. Also, metrics should satisfy the properties of a distance

measure as follows:

The properties of a distance measure

A metric d on a set X such that d : X × X → [0,∞) is called a distance function if the

following conditions are satisfied for all x, y, z in X:

1. Non-negativity: d(x, y) ≥ 0,

2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y,

3. Symmetry: d(x, y) = d(y, x),

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Now we introduce possible distance metrics, which give us an insight into the proximity

between clusters with their range. For notational convenience, we assume that f and g are

probability measures on a σ-algebra F of subsets of the sample space Ω and x ∈ Ω.

Total variation distance

Total variation distance is a distance measure that calculates the difference between two

probability distributions. In Bayesian statistics, this measure is often used for assessing the

convergence of the MCMC chain to the stationary distribution from the current distribu-

tion (Reutter and Johnson, 1995). The mathematical expression of total variation distance
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between two probability measures is as follows:

TV D(f, g) = sup
x∈F
|f(x)− g(x)|

=

∫
f>g

(
f(x)− g(x)

)
dx

≈ 1

2

n∑
i=1

|f(xi)− g(xi)|.

Operating under the assumption that clusters have their own distributions, total variation

distance measures the distance between two probability measures. A total variation distance

of 0 suggests that two probability distributions or two clusters completely overlap while a

total variation distance of 1 means two are very distinct. We employ total variation distance

in order to measure the distance between clusters.

Hellinger distance

Hellinger distance introduced in Bhattacharyya (1946) is a metric for measuring the distance

between two probability density functions f and g. The squared Hellinger distance with an

integral is expressed as

HD2(f, g) =
1

2

∫ (√
f(x)−

√
g(x)

)2

dx

= 1−
∫ √

f(x)g(x) dx.

When estimating a density or clustering observations, we use observations which are discrete

and are assumed to be from the probability distribution. Thus, Hellinger distance between

two continuous probability density functions can be approximated by the following equation:

HD(f, g) =
1√
2

(∫ (√
f(x)−

√
g(x)

)2

dx

)1/2

≈ 1√
2

( n∑
i=1

(√
f(xi)−

√
g(xi)

)2)1/2

.
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Hellinger distance and total variation distance for two probability distributions have the

following relationship: H2(f, g) ≤ TV D(f, g) ≤
√

2H(f, g) (Gibbs and Su (2002)). For two

multivariate normal distributions f ≡ N (µ1,Σ1) and g ≡ N (µ2,Σ2), squared Hellinger dis-

tance is obtained as:

HD2(f, g) = 1− det(Σ1)1/4 det(Σ2)1/4

det
(

Σ1+Σ2

2

)1/2
exp

{
−1

8
(µ1 − µ2)T

(
Σ1 + Σ2

2

)−1

(µ1 − µ2)

}
.

(3.4)

The Hellinger distance in Equation 3.4 is easier to compute than total variation distance

when clustering multidimensional data by a linkage based Dirichlet process mixture model.

Cosine divergence

Cosine divergence is one of metric among J-divergence (Chung et al., 1989). The cosine

divergence can be written as follows:

CDn,α(f, g) =
1

2

[
1−

∫
(f(x)g(x))1/2cos

(
s · log2

f(x)

g(x)

)]
≈ 1

2

[
1−

n∑
i=1

(f(xi)g(xi))
1/2cos

(
s · log2

f(xi)

g(xi)

)]
,

(3.5)

where s is a degree in J-divergence, which effciently adjusts the logarithm base measuring

the divergence between f and g. Cosine divergence has useful properties in that this metric

is symmetric and bounded from 0 to 1. If and only if two distributions are same, CDn,s

becomes 0.

Jensen-Shannon divergence

In statistics, Jensen-Shannon divergence also measures the proximity between two probability

distributions. This metric is also known as total divergence to the average (Dagan et al.,

1997). This metric is bounded between 0 and 1. Thus, it will provide the clear criterion to
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decide the similarity between clusters. It is defined by

JSD(f, g) =
1

2

[ ∫
f(x)log

f(x)
1
2
(f(x) + g(x))

dx+

∫
g(x)log

g(x)
1
2
(f(x) + g(x))

dx

]
≈ 1

2

[ n∑
i=1

f(xi)log
f(xi)

1
2
(f(xi) + g(xi))

+
n∑
i=1

g(xi)log
g(xi)

1
2
(f(xi) + g(xi))

]
.

(3.6)

Jensen-Shannon divergence is suggested in order to overcome the drawback of Kullback-

Leibler divergence, which is not symmetric. We can view Jensen-Shannon divergence as a

symmetrized and smoothed version of KullbackLeibler divergence.

Linkage functions

Alternatively, when computing exact probability distance between clusters is difficult, we can

use linkage functions in agglomerative hierarchical clustering methods. The linkage functions

can be scaled to the value between 0 and 1 by employing the following equation:

dist(i, j) =
d(i, j)− dmin
dmax − dmin

, (3.7)

where d(i, j) is the distance between cluster i and cluster j calculated by the linkage func-

tions such as the complete linkage, the average linkage, and average linkage function. dmin

and dmax are the minimum and maximum among distances between pair-wised clusters, re-

spectively. dist(i, j) ranges between 0 and 1, and 1 of dist(i, j) indicates two clusters are

distant. We can expect that using linkage functions and scaling the distances are useful

when the data is on the high dimensions.

We have listed distance metrics which can be used in our proposed method. Since clus-

tering analyses deal with high dimensional data in general, we strongly suggest utilizing

Hellinger distance or linkage functions. We employ the concept of distance measures in or-

der to measure the distance between clusters. Then, distance measures in this section allow

for us to not only make inferences about the concentration parameter, but also accurately
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identify the number of clusters in the DPMM. Figure 3.1 illustrates two simulated data from

a Gaussian mixture distribution with 7 components. The left plot in Figure 3.1 depicts 7

non-overlapping clusters while the right one in Figure 3.1 plots 7 clusters, some of which are

overlapping. Intuitively, the TVD between pairwise clusters on the left plot in Figure 3.1

would be approximately 1. On the other hand, the TVD between overlapping clusters on

the right one in Figure 3.1 would be far less than 1. Figure 3.2 shows the proximity between

pairwise clusters in Figure 3.1 for two different scenarios by calculating the total variation

distance.
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(a) Non-overlapping clusters
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(b) Overlapping clusters

Figure 3.1: Panel (a) shows the 7 non-overlapping clusters and Panel (b) shows the overlap-
ping clusters.

(a) TVD for non-overlapping clusters (b) TVD for overlapping clusters

Figure 3.2: Panel (a) and (b) describe the total variation distances for all possible pairwise
clusters in Figure 3.1 (a) and (b).
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3.2.2 Empirical Bayes Methods

We briefly review the class of empirical Bayes methods, because part of our proposed method

utilizes the empirical Bayes method when estimating a concentration parameter. The empir-

ical Bayes approach is an application for parameter estimation and inference. The empirical

Bayes approach is placed between classical and Bayesian methods because this approach

borrows pieces from each. In general, an estimation step is done by classical techniques and

an inference step is completed by Bayesian techniques in general (Casella, 1992). We provide

an example that describes how the empirical Bayes approach mixes classical and Bayesian

methods. Consider the hierarchical model, i.e., data likelihood and prior:

x ∼ f(x|θ)

θ ∼ g(θ|λ),

where λ is a hyperparameter in a prior distribution of θ and then p(x|λ) =
∫
f(x|θ)g(θ|λ)dθ.

In the empirical Bayes approach, instead of specifying λ, we obtain λ̂ based on p(x|λ) by

using classical methods such as method of moments or maximum likelihood estimation in

order to estimate λ. Then, we substitute λ with λ̂ so that we have the posterior distribution

p(θ|x, λ̂). Because the empirical Bayes method uses observed data to specify the prior spec-

ification for λ and utilizes classical methods for estimation, the empirical Bayes approach

is not the fully Bayesian technique. Also, since we substitute λ with λ̂ for the posterior

distribution p(θ|x, λ̂), the empirical Bayes approach is not the fully classical technique. In

other words, instead of specifying unknown hyperparameter in fully Bayesian techniques,

the empirical Bayes approach attempts to estimate unknown hyperparameter and substi-

tutes estimated hyperparameter into Bayesian quantity. Thus, empirical Bayes approach is

a hybrid application of both classical and Bayesian techniques (Casella, 1992).

For easier computation in the empirical Bayes approach, in order to estimate the hyper-

parameter in the prior distribution, Casella (2001) suggests the empirical Bayes Gibbs sam-
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pling, which uses samples from Gibbs sampler for estimation. Both McAuliffe et al. (2006)

and our proposed method use MCMC samples for estimating the concentration parameter

α instead of assigning a prior distribution for this parameter.

3.2.3 Linkage Based Dirichlet Processes

Let D denote the distance matrix containing the distances between
(
K
2

)
pairs of clus-

ters. Then, D(Ci, Cj) denotes the distance between clusters Ci and Cj for i and j ∈

{1, 2, . . . , K}. The sum of the upper triangular elements of D for K non-overlapping clus-

ters,
∑

i<j D(Ci, Cj), is approximately
(
K
2

)
, where the range of D(Ci, Cj) is between 0 and

1. Consider the following function for K distinct clusters:

S(C,K) =

(
K

2

)
−

K∑
i<j

D(Ci, Cj), (3.8)

where C represents clusters (C1, C2, ..., CK). The maximum value which
∑K

i<j D(Ci, Cj) can

have is
(
K
2

)
. Thus, it is apparently clear that the function S(C,K) is greater than or equal

to 0. S(C,K) is approximately 0 when all clusters are accurately defined and clearly distin-

guishable. Thus, the general idea behind the use of the function S(C,K) is to validate that

K specified clusters is an ideal number of clusters for observations in terms of probability

distances between clusters. We use this idea to calibrate the concentration parameter α in

the DP prior.

Given data, let K ′ be an ideal number of clusters, such that
(
K′

2

)
=
∑K

i<j D(Ci, Cj). K ′

represents the appropriate number of clusters, at least with respect to the distance measure,

which is a useful metric for suggesting whether two structures should be combined or not.

Our goal is to search for K ′ when the DPMM defines K clusters and the distances between

K clusters are calculated. Then, the positive solution for
(
K′

2

)
=
∑K

i<j D(Ci, Cj) is derived
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in Equation 3.10,

K ′2 −K ′

2
=

K∑
i<j

D(Ci, Cj), (3.9)

which yields:

K ′ =
1 + (1 + 8

∑K
i<j D(Ci, Cj))

1/2

2
. (3.10)

Note that K in the distance matrix D is the number of clusters defined via the DPMM.

K ′ is an appropriate number of clusters which reflects the probability distances between K

clusters. For our proposed method, we find K ′ in Equation 3.10 and use it for estimating

the concentration parameter.

Liu (1996) proves that the expected number of clusters is conditional on both the number of

observations and the concentration parameter α as shown in Equation 3.1. For estimating

the concentration parameter, we replace E(K |α, n) with K ′ in Equation 3.10. Then, we

rewrite Equation 3.1 as follows:

K ′ =
n∑
i=1

α

α + i− 1
. (3.11)

For updating the concentration parameter in MCMC chain, we solve Equation 3.11 with

respect to α. We use Brent’s method (Brent, 1973), which borrows benefits of both bisection

method and Newton’s method as a root-finding algorithm, since Equation 3.11 is not a closed

linear form of α. Then, we estimate the concentration parameter α which satisfies Equation

3.11. Equation 3.11 is the same equation in the empirical Bayes approach introduced by

McAuliffe et al. (2006) and Liu (1996) except K ′. Recall that McAuliffe et al. (2006) uses

B samples from previous draws in order to estimate the concentration parameter, and their

estimators for a concentration parameter are no longer MCMC samples but are weighted

averages of MCMC samples at each iteration. However, our method uses random sample

from the present state of MCMC chain in order to hold Markov chain property for estimating

the concentration parameter.
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3.2.4 Gibbs Sampling Implementation

Our proposed method can be applied into any MCMC techniques, which draw samples from

the posterior distribution of θ in Figure 2.4. We introduce how to incorporate our proposed

method in the Gibbs sampler.

Suppose we have n observations and fit the DPMM for clustering. First, we sample the

latent class variable c = {c1, c2, . . . , cn−1, cn} corresponding to clustering memberships. Let

c∗ = {c1, c2, . . . , cK} be the unique value of sampled c. Then, with partitioned n observations

into K defined clusters based on their sampled latent class variables, we measure the proba-

bility distance between K clusters by using the kernel density estimation and construct the

distance matrix (D). After finding D, we obtain the solution K ′ in Equation 3.10 and esti-

mate α corresponding to K ′. Our proposed method can be applied to any MCMC techniques

for drawing samples from the posterior distribution of θ. We summarize the procedure for

implementing our approach within MCMC techniques in Algorithm 1. This method yields

the estimate for the concentration parameter, which corresponds to the optimal number of

clusters for observations.
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Algorithm 1 MCMC algorithm for LB-DP mixture models

Initialize all parameters.

for t = 1 to T do
for i = 1 to n do

Draw cluster indicator c
(t)
i for i = 1, 2, . . . , n with

p(ci = c|.) = π(t−1)
c

∏
p(yi | θ(t−1)

c ).
end for i
Let c∗ = 1, 2, . . . , K(t) be the unique value of c(t).

Sample uc ∼ beta(1 + nc, α
(t−1) +

∑C
c+1 ns) and update πc = uc

∏c−1
s=1(1− us).

Draw a new sample for θ
(t)
c∗ from p(θ

(t)
c∗ | yc∗).

Construct the distance matrix D(t) for K(t) clusters.

Update K ′(t) by solving

K ′2 −K ′ − 2
∑
k<j,

k,j=1,...,K(t)

D(t) = 0.

Update α(t) by solving
n∑
i=1

α

α + i− 1
= K ′(t).

end for t



Chapter 4

Linkage Based Dirichlet Processes:

Simulation and Comparisons

In this chapter, we present a sequence of simulation studies for comparing the performance

of linkage based Dirichlet processes under varying conditions. The rest of the chapter is

organized as follows. Section 4.1 presents our simulation designs. Then, Section 4.2 provides

simulation results corresponding to our simulation designs and demonstrates the performance

of the linkage based Dirichlet processes against the method suggested by McAuliffe et al.

(2006), which we refer to as DP-MBJ. For simulation studies in Chapter 4, except the mixture

of univariate Gaussian example in section 4.1.1, we have truncated K = 10 for efficient

computation. Also, in our simulation studies except the simulation design in Section 4.1.1,

we also assume that σi ∼ DP or Σi ∼ DP where i = {1, 2, . . . , n} given n observations.

Then, we conclude our findings in Section 4.3.

36
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4.1 Simulation Design

In this section, we introduce our simulation designs for generating data points: a mixture

of univariate Gaussian distributions, an overlapping/non-overlapping mixture of bivariate

Gaussian distributions, and an overlapping/non-overlapping mixture of 5-D multivariate

Gaussian distributions.

4.1.1 Mixture of Univariate Gaussians

We generate n = 1000 observations from a Gaussian mixture distribution with a mean vector

θ = (θ1, θ2, · · · , θ1000), which are samples drawn from the Dirichlet process, and σ = 0.1 fixed.

The simulated observations yi are from the following distribution:

yi ∼ N(θi, σ
2),

θi ∼ G,

G ∼ DP (α,G0),

where i = {1, 2, . . . , 1000}, and G0 is the normal distribution with µ = 0 and σ = 3. The

concentration parameter used for generating θ from the DP is diversely chosen in order to

produce various numbers of clusters. The number of simulated clusters K is from 6 to 20.

For each K, we have 50 simulated datasets. To apply DP-MBJ into simulated observations,

we use B = 100 samples to estimate the base measure G0 and the concentration parameter

α. Given our simulated data, we aim to find the optimal number of clusters, and estimate

α.
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4.1.2 Mixture of Bivariate Guassians

Our simulation is based on K-component mixture of bivariate Gaussian distributions, where

K = {3, 4, 5, 6}. Each component weight is 1/K. We have two schemes to generate the mix-

ture of bivariate Guassian distributions: non-overlapping clusters and overlapping clusters.

Non-overlapping clusters

Our simulation design to simulate n data points fromK non-overlapping clusters is as follows:

Step 1. Simulate a mean vector θk = (θ1, θ2) and a covariance matrix, Σk =

σ2
1 σ12

σ21 σ2
2

.

Step 2. Generate a cluster Yk ∼MVN(θk,Σk).

Step 3. Repeat step 1 ∼ 3 until we have K clusters.

We choose mean vectors to make sure that we have K distinct clusters.

Overlapping clusters

We show how we generate a pair of overlapping clusters as follows:

Step 1. Simulate a mean vector θ = (θ1, θ2) and a covariance matrix, Σx =

σ2
1 σ12

σ21 σ2
2

 .

Step 2. Choose τ and rotate the covariance matrix Σx by using the rotation matrix

R =

cos(τ) −sin(τ)

sin(τ) cos(τ)

. Then, the rotated covariance matrix Σy = RΣxR
T .

Step 3. Generate two overlapping clusters X ∼MVN(θ,Σx) and Y ∼MVN(θ,Σy).

Under this scheme, we generate a pair of overlapping clusters and a distinct cluster for

K = 3. For K = 4, we simulate two pairs of overlapping clusters, and we generate two pairs
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of overlapping clusters and a distinct cluster for K = 5. For K = 6, we have three pairs of

simulated overlapping clusters. With n = 50, the examples of simulated overlapping clusters

for different K are visualized in Figure 4.1. τ is chosen to be in [π/3, 2π/3] for rotation.

(a) K = 3 (b) K = 4

(c) K = 5 (d) K = 6

Figure 4.1: Panels (a), (b), (c), and (d) show n = 50 data points from overlapping clus-
ters generated according to the simulation design in Section 4.1.2 for K = 3, 4, 5 and 6,
respectively.
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4.1.3 Mixture of 5-D Multivariate Gaussians

We generate n observations from a mixture of 5-dimensional multivariate Gaussian distribu-

tions with a set of mean vectors θ1,θ2, . . . ,θK and a set of covariance matrices
∑

1,
∑

2, . . . ,
∑

K

where K is the number of mixture components. The simulation design for the mixture of

5-D multivariate Gaussian distributions is similar to the simulation design in Section 4.1.2.

Non-overlapping clusters

The scheme for generating non-overlapping clusters on 5-D space is similar to the genera-

tion of non-overlapping clusters in Section 4.1.2, but the length of the mean vector and the

dimension of the covariance matrix are different.

Overlapping clusters

To generate a pair of overlapping clusters on 5-dimensional space, we implement 3D rotation

to obtain the rotated covariance matrix. We rotate the first 3 axes, i.e., coordinate rotation

of x, y, and z axes are chosen for generating the overlapping clusters (Goldstein, 1965). We

present how we generate a pair of overlapping clusters as follows:

Step 1. Simulate a mean vector θ = (θ1, θ2, θ3, θ4, θ5).

Step 2. Simulate a covariance matrix, Σx

Step 3. Choose τ and rotate the covariance matrix Σx by using the rotation matrix

R =



1 0 0 0 0

0 cos(τ) −sin(τ) 0 0

0 sin(τ) cos(τ) 0 0

0 0 0 1 0

0 0 0 0 1





cos(τ) 0 −sin(τ) 0 0

0 1 0 0 0

sin(τ) 0 cos(τ) 0 0

0 0 0 1 0

0 0 0 0 1





cos(τ) −sin(τ) 0 0 0

sin(τ) cos(τ) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Then, the rotated covariance matrix Σy = RΣxR

T .
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Step 4. Generate two overlapping clusters X ∼MVN(θ,Σx) and Y ∼MVN(θ,Σy).

For generating non-overlapping clusters, the mean vectors θ1,θ2, . . . ,θK are chosen to ensure

clear separation between the clusters. However, when generating overlapping clusters, two

overlapping clusters share the same mean vector. For convenience, let LB-DP:HD and LB-

DP:Comp be our proposed method using Hellinger distance and our proposed method using

complete linkage function, respectively. Since the construction of Ĝ0 for high dimensional

data in the original DP-MBJ is not easy and causes overestimation of the number of clusters,

we leave out the procedure of construction of Ĝ0 from our simulation studies, except for the

mixture of univariate Gaussians.

4.2 Simulation Results

4.2.1 Mixture of Univariate Gaussians

In this section, we aim to find the optimal number of clusters given simulated observations

and to estimate α along with these clusters. For convenience, let DP-MBJ and LB-DP be

the method proposed by McAuliffe et al. (2006) and our proposed method, respectively. As

the range of distances calculated by the complete linkage function is not between 0 and 1,

we standardize the distance so that the range of standardized distance is between 0 and 1.

The standardized distance dist(i, j) is as follows:

dist(i, j) =
d(i, j)− dmin
dmax − dmin

,

where d(i, j) is the distance between cluster i and cluster j calculated by complete linkage

function. Given simulated observations, let K be the true number of clusters. We also denote

Kopt the optimal number of clusters, the positive solution in Equation 3.10. Let the ratio



Yuhyun Song Chapter 4. LBDP: Simulation and Comparisons 42

Ropt and the ratio Rtrue have the following forms:

Ropt =

wwwwKopt − K̂
Kopt

wwww,
Rtrue =

wwwwK − K̂K

wwww,
where K̂ is the posterior mode of the number of clusters defined by DP-MBJ or LB-DP.

The significance of using the relative ratio Ropt and Rtrue is in connection with not only the

estimated number of clusters, but also the estimation of the concentration parameter. For

example, if Ropt or Rtrue is 0, then we think that the estimated number of clusters and α̂

are well defined. However, if Ropt or Rtrue is substantially large, the estimated number of

clusters is far from the optimal number of clusters Kopt or the true number of clusters K.

Then, we consider the estimated number of clusters and α̂ are not appropriate for observed

data.

Figure 4.2 and Figure 4.3 illustrate side-by-side boxplots for the distribution of the ratio

Ropt and Rtrue obtained by LB-DP and DP-MBJ. We refer to LB-DP with total variation

distance as LB-DP:TVD, LB-DP with Hellinger distance as LB-DP:HD, and LB-DP with

complete linkage function as LB-DP:Comp. If any method works perfectly for the simulated

data, then Ropt or Rtrue becomes 0. Associated with the estimate of the number of clusters,

both Figure 4.2 and Figure 4.3 report that DP-MBJ tends to have higher Ropt and Rtrue

than our LB-DP:TVD, LB-DP:HD, and LB-DP:Comp as K increases. This implies that our

LB-DP is more robust than DP-MBJ when defining the appropriate number of clusters given

simulated observations. Also, we can see that LB-DP:TVD, LB-DP:HD, and LB-DP:Comp

show similar levels of performance with respect to Ropt and Rtrue regardless of the choice of

linkage functions.

As we reviewed in Chapter 3, DP-MBJ uses kernel density estimation and the empirical

Bayes approach for constructing Ĝ0, and Ĝ0 has an effect on defining the proper number of
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clusters. Consider the case that we draw samples from Ĝ0. Because Ĝ0 is constructed over

previously sampled θ
(1)
1:n, θ

(2)
1:n, . . . , θ

(B)
1:n , there is a high probability that the newly sampled

θnew from Ĝ0 is located near the point mass around previous sampled θ. This may result

in DP-MBJ overestimating the number of clusters. Also, as the dimension in the dataset

increases, the construction of Ĝ0 using kernel density estimation will not be easy, and will

result in overestimating the number of clusters. For other simulation studies, we leave out

the step for constructing Ĝ0 to prevent DP-MBJ from overestimating the number of clusters.

Also, because DP-MBJ uses the empirical Bayes approach for estimating the concentration

parameter, their estimated concentration parameter is no longer strictly the sample from

MCMC chains when B > 1. In this section, we conclude that the original DP-MBJ has

a tendency to overestimate the number of clusters, and it is more appropriate for density

estimation rather than clustering analyses.
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Figure 4.2: Side-by-side boxplots for the distribution of the ratio Ropts obtained by the
simulation study. Each boxplot depicts the distribution of the ratio Ropt against the true
number of clusters K. At different K, the first boxplot from the left (red) describes the
distribution of the ratio Ropt obtained by LB-DP with total variation distance, and the
second boxplot from the left (green) depicts the distribution of the ratio Ropt obtained by
LB-DP with Hellinger distance. The third boxplot from the left (blue) and the first boxplot
from the right (gray) illustrate distributions of the ratio Ropt obtained by LB-DP with
complete linkage function and by DP-MBJ at each K, respectively.
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Figure 4.3: Side-by-side boxplots for the distribution of the ratio Rtrues obtained by the
simulation study. Each boxplot depicts the distribution of the ratio Rtrue against the true
number of clusters K. At different K, the first boxplot from the left (red) describes the
distribution of the ratio Rtrue obtained by LB-DP with total variation distance, and the
second boxplot from the left (green) depicts the distribution of the ratio Rtrue obtained by
LB-DP with Hellinger distance. The third boxplot from the left (blue) and the first boxplot
from the right (gray) illustrate distributions of the ratio Rtrue obtained by LB-DP with
complete linkage function and by DP-MBJ at each K, respectively.
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4.2.2 Mixture of Bivariate Gaussians with Small Number of Ob-

servations

When the number of observations is small, the influence of the concentration parameter

becomes considerable. According to the CRP, the probability that nth customer chooses the

new table is α
n−1+α

in theory. For example, given n = 1000 and α = 5, this probability

becomes 5
1004

. However, given n = 30 and α = 5, the probability of choosing the new

table is 5
34

, which is larger than 5
1004

. In theory, the expected number of clusters from DP

in Liu (1996) is exponentially growing when the number of observations is smaller than

50 as shown in Figure 4.4. However, we can see that the expected number of clusters

is slowly increasing when the number of observations is greater than 50. In our work,

“small” indicates the number of observations is smaller or equal to 50 where the expected

number of clusters increases exponentially. In this section, in order to assess the effect of the

concentration parameter when we have a low number of observations (n = 50), we conduct

the simulation studies under two conditions: (1) non-overlapping clusters and (2) overlapping

Figure 4.4: The expected numbers of clusters from the DP in theory when α = 0.5 and α = 1
over the number of observations (n) are plotted. The blue dashed line indicates n = 50.
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clusters. Under the first condition (non-overlapping clusters), we intend to verify whether

linkage based Dirichlet process mixture model works well as a clustering tool for the well-

separated clusters. Under the second condition (overlapping clusters), we designate that LB-

DP merges highly overlapping clusters into one cluster successfully. We use K = {3, 4, 5, 6},

and we simulate different sets of data 350 times for each K. We obtain the clustering

assignment for each observation based on its clustering assignment probability. Then, we

calculate the silhouette coefficient as a metric to measure the performance of clustering

models (Rousseeuw, 1987). A silhouette coefficient measures how similar a data point is to

its assigned cluster compared to other clusters. The range of the silhouette coefficient is

from −1 to 1, and a higher value of the silhouette coefficient indicates a better clustering

solution. After data points are clustered, the silhouette s(i) for a data point i is calculated

by:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
,

where a(i) is the average distance of the data point i between all other data points belonging

to the same cluster, and b(i) is the lowest average distance of the data point i to other clusters

that do not include i. The average of s(i) over the data points in the cluster measures how

the data points in the clusters are well-grouped. Then, the average of s(i) over the all data

points in the dataset measures the clustering quality how all data points are well-clustered.

Non-overlapping clusters

We demonstrate the simulation result for 50 data points from K non-overlapping mixture

of bivariate Gaussian distributions, where K = {3, 4, 5, 6}. Figure 4.5 displays the dis-

tributions of the silhouette coefficients obtained by applying DP-MBJ and LB-DP:HD for

non-overlapping clusters. We can see that the distribution of the silhouette coefficients for

DP-MBJ (white) and the distribution of the silhouette coefficients for LB-DP:HD (dark-

gray) look similar to each other. When we have non-overlapping clusters, LB-DP penalizes

the concentration parameter less, since distances between clusters will be close to 1. This

leads both methods to have similar silhouette coefficients. We conclude that the two meth-
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ods have the similar level of performance with respect to the silhouette coefficients when

clusters are not overlapping.
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Figure 4.5: Side-by-side boxplots for the distribution of the silhouette coefficient obtained
by applying DP-MBJ and LB-DP:HD for non-overlapping clusters in Section 4.2.2.

Overlapping clusters

We analyze the simulation result based on the silhouette coefficients. Figure 4.6 depicts the

distributions of the silhouette coefficients obtained by applying DP-MBJ and LB-DP:HD for

overlapping clusters. Specifically, as shown in Figure 4.6, the silhouette coefficients obtained

by LB-DP:HD have higher medians of the silhouette coefficients than DP-MBJ when we

have Ktrue = 4 and Ktrue = 6. As shown in Figure 4.1(b) and Figure 4.1(d), the number

of pairs of overlapping clusters are 2 and 3 for Ktrue = 4 and Ktrue = 6, respectively. We

can infer that the reason LB-DP:HD shows high medians of the silhouette coefficients for

Ktrue = 4 and Ktrue = 6 is because of the fact that the linkage based Dirichlet process
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works more powerfully in merging two overlapping clusters into one cluster than DP-MBJ

by penalizing the concentration parameter. Especially, when we have a random noise data

point, the linkage based Dirichlet process will attempt to merge this data point to the closest

cluster, but DP-MBJ leaves this data point as a standalone cluster, and this influences the

estimation of the concentration parameter. As an example, Figure 4.7 shows that a data

point is claimed to be the one cluster by DP-MBJ. The silhouette coefficients obtained by

DP-MBJ and LB-DP:HD are 0.62 and 0.79, respectively for the clustering solutions in Figure

4.7. Linkage based Dirichlet process mixture model performs slightly better than DP-MBJ

when we have low number of observations from highly overlapping clusters.
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Figure 4.6: Side-by-side boxplots for the distributions of the silhouette coefficients obtained
by applying DP-MBJ and LB-DP:HD for overlapping clusters in Section 4.2.2.
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(a) True Clusters (b) DP-MBJ (c) LB-NDP

Figure 4.7: Panel (a) depicts the simulated data with their true clustering memberships.
Panel (b) shows the clustering solution obtained by DP-MBJ. Panel (c) depicts the clustering
solution obtained by LB-DP:HD. The silhouette coefficients for the clustering solutions in
Panel (b) and (c) are 0.62 and 0.79, respectively.
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4.2.3 Mixture of 5-D Multivariate Gaussians with Small Number

of Observations

As an extension of the simulation study in Section 4.2.2, we simulate 50 data points from

the mixture of 5-D multivariate Gaussian distributions. We use K = {3, 4, 5, 6}, and we

simulate different sets of data 200 times for each K.

Non-overlapping clusters

As shown in Figure 4.8, DP-MBJ and LB-DP:HD have similar levels of clustering perfor-

mance with respect to the obtained silhouette coefficients when we have a small number

of observations from 5-D dimensional space. The distributions of the silhouette coefficients

obtained by DP-MBJ (white) and LB-DP:HD (dark-gray) look similar to each other for each

Ktrue. This result is consistent with the one for non-overlapping clusters in Section 4.2.2.

We confirm that both have a similar level of performance based on the calculated silhouette

coefficients when clusters are very distinct from each other.

Overlapping clusters

As depicted in Figure 4.9, LB-DP:HD has higher medians of the silhouette coefficients than

the ones obtained by DP-MBJ. The distributions of the silhouette coefficients obtained by

DP-MBJ (white) and LB-DP:HD (dark-gray) look similar to each other for each Ktrue. This

result is consistent with the one for overlapping clusters in Section 4.2.2. This implies that

LB-DP has the better performance as a clustering tool than DP-MBJ given the small number

of data points on 5-D space.
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Figure 4.8: Side-by-side boxplots for the distribution of the silhouette coefficient obtained
by applying DP-MBJ and LB-DP:HD for non-overlapping clusters on 5-D dimensional space
in Section 4.2.3.
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Figure 4.9: Side-by-side boxplots for the distribution of the silhouette coefficient obtained
by applying DP-MBJ and LB-DP:HD for overlapping clusters on 5-D dimensional space in
Section 4.2.3.
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4.2.4 Mixture of 5-D Multivariate Gaussians with Large Number

of Observations

In this section, we explore simulation studies for a large number of observations (n = 1000)

under two different conditions: (1) non-overlapping clusters and (2) overlapping clusters.

We focus on examining the influence of the estimated concentration parameter on clustering

quality when we have a large number of observations. For performing the linkage based

Dirichlet process mixture model, we employ two different distance measures: Hellinger dis-

tance and complete linkage function. The reason that Hellinger distance is chosen instead

of total variation distance is for easier computation when data dimension d > 1. In our

simulation, K = 5, 6, . . . , 10. The mixture proportion is drawn from a Dirichlet distribution

with K and α = 1. For each K, we simulate different sets of data 100 times.

Non-overlapping clusters

Figure 4.10 depicts the distributions of the silhouette coefficients obtained by LB-DP:HD,

LB-DP:Comp, and DP-MBJ against Ktrue(= K). We can see that for non-overlapping clus-

ters, both our proposed models, LB-DP:HD and LB-DP:Comp, and DP-MBJ have similar

levels of clustering performance. It seems that when Ktrue > 7, the medians of the silhouette

coefficients obtained by LB-DP:HD are slightly larger than the medians of the silhouette co-

efficients obtained by DP-MBJ. Also, the choice of probability distance measures in linkage

based Dirichlet process prior, either Hellinger distance or scaled complete linkage function,

shows that they are not very different with respect to modeling performance.

Overlapping clusters

Figure 4.11 depicts the distributions of the silhouette coefficients obtained by three differ-

ent models: LB-DP:HD, LB-DP:Comp, and DP-MBJ. Figure 4.11 shows that the modeling

performances obtained by the three different methods are similar to each other.
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Figure 4.10: Side-by-side boxplots of silhouette coefficients for simulated non-overlapping
clusters in Section 4.2.4. At different Ktrue, the left boxplot (white) describes the distribution
of silhouette coefficients from applying LB-DP:HD and the boxplot(gray) in the middle
depicts the distribution of silhouette coefficients from LB-DP:Comp. The right boxplot
(dark gray) describes the distribution of silhouette coefficients from applying DP-MBJ.

Through the simulation study for non-overlapping/overlapping clusters in this section, we

have seen that linkage Based Dirichlet process mixture model has similar levels of perfor-

mance as DP-MBJ. The reasons that we have similar modeling performance from LB-DP

and DP-MBJ are possibly the number of observations and their clustering structures. In

theory, we know that the number of clusters defined via the Dirichlet process mixture model

is dependent on the concentration parameter. However, if we have a large number of ob-

servations, the effect of the concentration parameter on having new clusters in the Dirichlet

process is minor. Even though, in theory, selecting an appropriate concentration parameter

in any type of Dirichlet processes is important to derive clustering solutions, the effect of
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the concentration parameter on clustering solution is relatively weak in practice, especially

when n is large.

Figure 4.11: Side-by-side boxplots of silhouette coefficients for simulated overlapping clusters
in Section 4.2.4. At different Ktrue, the left boxplot (white) describes the distribution of
silhouette coefficients from applying LB-DP:HD, the boxplot(gray) in the middle depicts
the distribution of silhouette coefficients from LB-DP:Comp while the right one (dark gray)
describes the distribution of silhouette coefficient from applying DP-MBJ.
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4.3 Conclusions

By conducting a sequential of simulation studies, we have examined whether the linkage

based Dirichlet process prior estimates the concentration parameter which specifies the suf-

ficient number of clusters. In Section 4.2.1, given simulated univariate Gaussian mixtures,

we investigated the inferred number of clusters. We have demonstrated that the original

DP-MBJ that estimates both the concentration parameter and the base measure via kernel

density estimation is not appropriate for clustering analysis, because of its inherent tendency

of misjudging the number of clusters due to the estimated base measure. In addition, the

estimated concentration parameter via MCMC chains no longer possesses the Markov prop-

erty when B > 1. We conclude that the original DP-MBJ is not appropriate for clustering

analyses.

A set of simulation studies in Sections 4.2.2, 4.2.3, and 4.2.4 has been performed to ver-

ify whether the estimated concentration parameter and the inferred clusters construe the

structure of the simulated datasets. We have dropped the step for estimating G0 for the

simulation studies in Sections 4.2.2, 4.2.3, and 4.2.4. Based on the silhouette coefficients,

Sections 4.2.2 and 4.2.3 compared the performance of the linkage based Dirichlet process

against DP-MBJ for n = 50 data points from the mixture of non-overlapping Guassians.

It turns out that the linkage based Dirichlet process has a similar level of performance as

DP-MBJ given a small number of observations from distinct clusters. However, the linkage

based Dirichlet process performs better than DP-MBJ for a small number of observations

from highly overlapping clusters. This is because the effect of the size of the estimated

concentration becomes relatively large when a small number of data points are observed

compared to a large number of data points. Specifically, we conclude that the estimation of

the concentration parameter is important for a small number of observed data points.

In Section 4.2.4, we have compared the performance of linkage based Dirichlet process mix-



Yuhyun Song Chapter 4. LBDP: Simulation and Comparisons 58

ture model with DP-MBJ for a large number of observations from overlapping clusters and

non-overlapping clusters. What we have found through the simulation studies in Section

4.2.4 is that the concentration parameter has little influence on clustering results defined by

Dirichlet process mixture models when the number of observations is substantially large.



Chapter 5

Linkage Based Dirichlet Process:

Application

In Chapter 5, we present an application of the linkage based Dirichlet process: modeling the

timeline for building construction costs at Virginia Tech. In particular, we apply a mixture

model with a linkage based Dirichlet process and a mixture model with a DP-MBJ into the

building construction data. Then, we compare the results and infer estimated and classified

curves for understanding the pattern of the building construction costs.

5.1 Modeling the Timeline for Building Construction

Costs

5.1.1 Background

In functional data analyses, fitting and clustering curves have been prominent applications

of the data, where data points correspond to a curve (Lancaster and Salkauskas, 1986; Mo-

tulsky and Christopoulos, 2004; Ramsay, 2006; Silverman and Ramsay, 2005; Tarpey, 2007).

59
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Curve fitting is a method of constructing curves or mathematical functions, which approx-

imately fit a series of data points (Kolb, 1983; Pyle, 1999; Motulsky and Christopoulos,

2004). Curve fitting is intimately related to nonlinear regression when data transformation

does not work for fitting a linear regression model ((Silverman, 1985; Motulsky and Ransnas,

1987)). By assigning a function to the entire range of data observed with random errors,

this method attempts to capture a trend of data points. For example, curve fitting is used to

estimate disease progress (Berger, 1981), survival rate (Motulsky and Christopoulos, 2004),

and growth rate (Blasco et al., 2003). Blasco et al. (2003) utilizes a Bayesian approach to

estimate the growth rate of rabbits in order to compare growth rates from a control group

and a treatment group. To fit growth rate curves, Blasco et al. (2003) assumes that the in-

dividual rabbit growth rate can be described by the Gompertz function (Gompertz (1825)).

Also, Berger (1981) constructs a Gompertz model and a logistic model to capture the trend of

plant disease progress. In economics, estimating economic growth rate curve has been an im-

portant application in signposting the growth of an economy (Nadaraya, 1964; Hardle, 1990).

With respect to both clustering and estimating curves, Tarpey (2007) introduces the K-

means clustering algorithm to segment the functional data by plugging estimated regression

coefficients from individual curves. On the other hand, curve fitting can be performed after

implementing the K-means algorithm. However, these two approaches are inefficient because

we need to either analyze the curves from different clusters or segment estimated individual

curves. As discussed in Ray and Turi (1999) and Tibshirani et al. (2001), the K-means

clustering method requires attention when choosing the number of clusters for data. Also,

the clustering solution from ad-hoc clustering algorithms such as K-means clustering do not

provide any probabilistic inference (Fraley and Raftery, 2002). Gaffney and Smyth (2003)

proposes random effects regression mixtures, a model-based curve clustering, which enables

us to cluster and estimate curves. However, Gaffney and Smyth (2003) also has an issue with

choosing the number of clusters. To overcome the issue of selecting the number of clusters,

Heard et al. (2006) uses the prior for the number of clusters, which is a uniform prior from
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1 to N . Assigning this uniform prior, the size of clusters becomes the multinomial-Dirichlet

prior. Heard et al. (2006) utilizes a Bayesian model-based hierarchical clustering algorithm

for curve data in order to investigate regulation mechanisms in the genes. However, these

models have revealed that some prior information about the number of clusters is needed.

Recently, Dirichlet process mixture models have been used in many areas including non-

linear regression, classification, and density estimation (Susarla and Van Ryzin, 1976; West

and Escobar, 1993; MacEachern and Müller, 1998; Escobar and West, 1995; Müller et al.,

1996). A Dirichlet process prior in the model, which exhibits the clustering effects, enables

us to perform simultaneous clustering and density estimation. The major advantage of using

the Dirichlet process mixture model is that this model is free from pre-assigning the num-

ber of clusters (Figueiredo and Jain, 2002; Dahl, 2006). For example, the Dirichlet mixture

model has its use for estimating and grouping curves without assigning the number of clusters

(Müller et al., 1996; Shahbaba and Neal, 2009; Nsoesie et al., 2014). However, the clustering

solution is dependent on the selection of the concentration parameter. In Chapter 5, we

utilize the mixture model with a linkage based Dirichlet process which helps in both gaining

the appropriate number of clusters and estimating the reasonable size of the concentration

parameter for simultaneous curve estimation and clustering.

5.1.2 Data

As academic universities are required to be answerable for all properties under their control

by federal laws, the office of Capital Assets and Financial Management in Virginia Tech co-

ordinates long-term strategic plans for its capital improvements and financial managements.

This includes budget development and financing, and forms the basis for authorizing major

capital projects. Also, this office invests in a broad range of capital assets which include

land and land improvements, building and building improvements, facilities and other im-



Yuhyun Song Chapter 5. LBDP: Application 62

provements, etc. In particular, constructing new buildings contributes to an increase in the

value of a university’s capital assets, and building improvements extend the life of an existing

building. When there are construction projects, the Office of Capital Assets and Financial

Management draws up expense budgets for long-term constructions such as constructing new

buildings and for short-term constructions such as remodeling ramshackle facilities. Then,

the office of Capital Assets and Financial Management organizes the processes of projects

and supports the delivery of accountable, competitive and diverse resources for those projects

smoothly. This office is needed to avoid any penalties caused by failing to deliver the resource

on time, such as late payments. Thus, when managing budgets and purchasing facilities for

the university, it is very important to estimate future expenses in advance so that the office

can disburse money at the proper time. This chapter uses data that focus on occurrences

of expenses in building construction projects at Virginia Tech. We aim not only to cluster

building construction projects based on their cumulative expenditure rates, but also to esti-

mate clustered curves for describing features of cumulative expenditure rate curves.

Our data contains 30 cumulative expenditure rates corresponding to building construction

projects at Virginia Polytechnic Institute and State University from 2004 to 2011. In gen-

eral, the construction project has 3 phases: a design, a construction, and a closeout phase

(Gould and Joyce, 2003; Clough et al., 2000; Fisk, 1988). We can view the design phase as a

refinement of the scope of the project after identifying and reviewing the construction project

proposal. The design phase outlines, coordinates, and confirms the scope of the project and

detailed plans for the elements of the project such that equipment installations, landscape,

and budget (Clough et al., 2000; Fisk, 1988; Trauner, 1993). Then, the construction phase

is the actual period when contractors start building. At the construction phase, the budget

will be spent on delivering facilities, installation, and real constructions (Clough et al., 2000;

Fisk, 1988). In general, the construction phase eats up the major proportion of the project

budget. As the final stage of the project, the closeout phase is the period for facilitating,

coordinating, and organizing occupancy (Fisk, 1988; Trauner, 1993; Clough et al., 2000).
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Thus, compared to other phases, a small portion of the budget goes into the closeout phase.

As an example, the cumulative rate of the construction project through construction phases

is depicted in Figure 5.1. The cumulative expenditure rate in the design phase grows lin-

early, and the one in the closeout phase is nearly flat. However, the cumulative rate in the

construction phase grows rapidly. Also, a high proportion of the project budget is spent

in the construction phase. Thus, it seems that there are change points with respect to the

cumulative expenditure rate between phases. Figure 5.1(a) shows the expenditure rate curve

for the building project, “Chemistry/Physics-Phase II”, over the construction phases. Figure

5.1(a) depicts that the expenditure rate in the design phase grows linearly and the one in the

closeout phase is nearly flat. However, the cumulative cost rate in the construction phase

grows exponentially and a high proportion of the project budget is spent in the construction

phase. Thus, it seems that there are trade-offs with respect to the cumulative expenditure

rate between phases. The building construction projects have different construction periods

in months. Among 30 projects, the shortest construction period is 19 months. Thus, for

analysis we are required to scale the length of the construction period for all projects to 19.

Thus, the cumulative cost rates have been modified in accordance with the scaled construc-

tion periods by calculating the weighted averages. We provide how the weighted averages

are calculated to scale the construction data:

Step 1. For building construction project j, denote the original length of data and data

points be T and xt respectively, where t = {1, 2, ..., T}.

Step 2. For i ∈ {1, 2, ..., 19}, find two data points, x[ T
19

]i and x[ T
19

]i+1.

Step 3. Solve the following equation with respect to xnew,i:

xnew,i =
x[ T

19
]i

1
dL

+ x[ T
19
i+1]

1
dR

1
dL

+ 1
dR

,

where dL and dR are the euclidean distances between xnew,i and x[ T
19

]i and between

xnew,i and x[ T
19

]i+1.
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Figure 5.1(b) visualizes 30 scaled cumulative cost rate curves corresponding to 30 construc-

tion projects at Virginia Tech and we can see that some of curves have distinct patterns.

We can apply the K-means clustering algorithm in order to classify the building projects.

When using the K-means clustering algorithm, the optimal number of clusters is not deter-

mined in a statistical way. We may rely on the scree plot in Figure 5.2 to choose the number

of clusters. However, as shown in Figure 5.2, the within groups sum of squares is gradually

decreasing over the number of clusters larger than 6, and this is not informative when choos-

ing the optimal number of clusters. Thus, we decide to use a linkage based Dirichlet process

mixture model that automatically determines the optimal number of clusters by updating

the concentration parameter and estimates the curve simultaneously.

(a) (b)

Figure 5.1: Panel (a) describes the pattern of the cumulative cost rate for the building
construction project , “Chemistry/Physics- Phase II”, over design phase, construction phase,
and closeout phase. Panel (b) depicts 30 scaled cumulative cost rate curves corresponding
to 30 building construction projects at Virginia Tech.
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Figure 5.2: The scree plot depicts the Within groups sum of squares according to the number
of clusters in K-means clustering analysis for building projects.

5.1.3 Model Specification

We explore a parameterization of the basis function for modeling the timeline for building

construction costs. Then, we form a linkage based Dirichlet process mixture model with

Hellinger distance and a mixture model with DP-MBJ in order to partition 30 curves into

K clusters, where the range of possible K is between 1 and 30.

Given time t = {1, 2, . . . , 19}, i = {1, 2, . . . , 30}, and yi = {yi,1, yi,2, . . . , yi,19} corresponds to

the curve of the building construction project i, the model is as follows:

yit = f(θ, t) + εit,

εit ∼ N(0, σ2
i ),

where f(θ, t) is the function of time t and the parameter θ, and error terms εit are independent

and identically distributed. As a basis function f(θ, t), we may consider the use of the

Gompertz function (Gompertz, 1825). In the following, consider the described Gompertz
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function:

f(t) = ae−be
−ct
, (5.1)

where t ∈ (−∞,∞), a is an asymptotes, and positive values b and c are shape parameter and

scale parameter, respectively. The Gompertz function is the favorable basis function in order

to model the growth rate in biology (Berger, 1981). However, in this work, it is necessary to

modify the Gompertz function by adding more parameters for following reasons: 1) consider-

ing the shape of our cost rate curves; it seems the curve is a mixture of linear and Gompertz

functions; 2) We need to explain where changes from a linear growth to an exponential

growth or an exponential growth to a linear growth have taken place. In particular, the

change-point, where the curve grows exponentially, will be the starting time point where the

Office of Capital Assets and Financial Management pays out a high proportion of the budget.

To construct the modified Gompertz function (Clarke et al., 2013), first, we set the pa-

rameter b in Equation 5.1 to be 1 for all curves as this parameter explains the displacement

of the curves from the left to the right, which should be same for all curves in our data. Also,

in terms of t, we add a shift parameter since our data has t ≥ 0 and this shift parameter

explains where the curve grows exponentially. To demonstrate the linear pattern in the rate

curve, we introduce a slope parameter. Then, we include the offset parameter for describ-

ing where the curves are linearly growing after their exponential growth. Finally, our basis

function with five parameters is as follows:

f(θ, t) = θ1e
−e−θ3(t−θ2) + I(t < θ4)× θ5(t− 1) + I(t ≥ θ4)× θ5(θ4 − 1), (5.2)

where I is an indicator function. The parameters in Equation 5.2 have different roles. θ1,

θ2, θ3, θ4, and θ5 represent a height parameter, a shift parameter, a growth rate parameter,
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an offset parameter, and a slope parameter, respectively. In particular,

lim
t→+∞

f(θ, t) = θ1e
−e∞ + θ5(θ4 − 1)

= θ1e
0 + θ5(θ4 − 1)

= θ1 + θ5(θ4 − 1).

(5.3)

Equation 5.3 shows that θ1, θ4, and θ5 jointly determine an asymptote in our modified

Gompertz function. The Gompertz curves and the modified Gompertz curves with different

parameter settings are depicted in Figure 5.3. The Gompertz curves (dotted, dot-dashed,

and long dashed) in Figure 5.3 show asymptotes are determined by the parameter a. For

example, depending on the choice of a = 0.9 or a = 1, the asymptotes in the curve are

different. The modified Gompertz curve (black and solid) and the Gompertz curve (red

and long-dashed) look similar in Figure 5.3. However, the modified Gompertz function

provides more flexibility in terms of the curve shape than the Gompertz function, especially

when the curve grows linearly or when the curve has a change point-where the curve grows

exponentially. We employ the modified Gompertz function in Equation 5.2 as our basis

function to demonstrate the pattern of the cumulative cost curves in Figure 5.1(b).

Given by the defined basis function in Equation 5.2, our linkage based Dirichlet process

mixture model for the cumulative cost rate curves is hierarchically formed as:

yi ∼MVN(f(θi, t), σ
2
i It×t),

θi, 1/σ
2
i ∼ G,

G ∼ LBDP (α,G0),

(5.4)

where θi = (θi1, θi2, θi3, θi4, θi5). For the base measure G0, we use uniform priors for the

parameters in Equation 5.2 because we have information that the reasonable range of pa-

rameters and the Gamma(1, 1) prior for 1/σ2. As a linkage function in the linkage based

Dirichlet process prior, we utilize Hellinger distance. For DP-MBJ, we use the following
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model:

yi ∼MVN(f(θi, t), σ
2
i It×t),

θi, 1/σ
2
i ∼ G,

G ∼ DP (α,G0),

(5.5)

with B = 100 samples. We use the same base measure G0 as the linkage based Dirichlet

process mixture model in Equation 5.4.

Curve Simulation

Before we analyze our building construction data, we performed a simulation study to ex-

amine whether the linkage based Dirichlet process mixture model successfully classifies the

Figure 5.3: Visualization of the Gompertz function and the modified Gompertz function with
different parameter settings. The Gompertz function with 2 different parameter settings
(dotted and dot-dashed) and the modified Gompertz function with 2 different parameter
settings (solid and dashed) are depicted.
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groups of curves and estimates the parameters in 5.2. We used five parameter sets in Table

5.1 to simulate 45 curves and t = {1, 2, . . . , 30}. 45 simulated curves are depicted in Figure

5.4(a). The model is as follows:

yi ∼MVN(f(θi, t), σ
2
i It×t),

θi, 1/σ
2
i ∼ G,

G ∼ LBDP (α,G0),

(5.6)

where i = {1, 2, . . . , 45} and t = {1, 2, . . . , 30}. Hellinger distance has been used to measure

the distance between the clusters. As out base measure, we used the uniform priors for

θ = (θ1, θ2, θ3, θ4, θ5)) and the Gamma(1, 1) prior for 1/σ2.

As a result, the linkage based Dirichlet process mixture model based on our basis function

Table 5.1: The true parameters used for generating 45 curves.

Group # of curves (n) θ1 θ2 θ3 θ4 θ5

1 10 5 8 1 24 0.2
2 10 8 18 0.65 25 0.14
3 10 8 10 0.45 24 0.18
4 10 7 14 0.55 23 0.16
5 5 8.5 5 0.63 18 0.09

successfully identified the original clusters, and estimated the parameters. We provide the

estimated parameters in Table with their 95% credible intervals, and depict the posterior

distributions of the estimated parameters in Figure 5.5. We also provide five estimated

curves by the linkage based Dirichlet process mixture model in Figure 5.4(b). Through the

simulation study, we have verified that the linkage based Dirichlet process mixture model

successfully classify the curves and estimate the parameters. We also performed DP-MBJ

for the simulated curves, and DP-MBJ also found the same clusters. In Section 5.1.4, we

present the modeling results for building construction data.
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(a) The 45 Simulated Curves (b) The estimated curves

Figure 5.4: Panels (a) and (b) depict the 45 simulated curves and the five estimated curves
by the linkage based Dirichlet process mixture model, respectively.

Table 5.2: The estimated parameters by the linkage based Dirichlet process mixture model
for five clusters defined in the simulation are summarized.

Group θ1 θ2 θ3 θ4 θ5 σ2

C1 4.865 7.827 1.049 23.900 0.233 0.224
(4.3578,5.3789) (7.6201,8.0272) (0.7773,1.4728) (22.4716,25.3992) (0.2019,0.2645) (0.1764,0.3050)

C2 8.055 18.089 0.631 24.964 0.138 0.170
(7.5469,8.7737) (17.8811,18.3437) (0.5215,0.7528) (19.4520,28.5991) (0.1251,0.1509) (0.1251,0.2466)

C3 7.895 9.863 0.457 24.369 0.176 0.181
(6.3752,9.3258) (9.6308,10.1055) (0.3640,0.5892) (22.1434,30.5653) (0.1071,0.2504) (0.1259,0.2736)

C4 7.011 14.074 0.5558 22.694 0.164 0.201
(6.4126,7.6872) (13.8397,14.3027) (0.4591,0.6725) (20.2316,24.8497) (0.1416,0.1870) (0.1527,0.2762)

C5 8.283 4.716 0.633 18.437 0.086 0.0180
(7.0626,9.1708) (4.4847,4.9442) (0.4972,0.8450) (15.2774,21.9404) (0.0298,0.1747) (0.1342,0.2556)
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(a) θ1 (b) θ2

(c) θ3 (d) θ4

(e) θ5 (f) σ2

Figure 5.5: The distributions of the MCMC samples for parameters in Equation 5.2 when
LB-DP is applied to simulated curves. Panels (a), (b), (c), (d), (e), and (f) depict the
posterior distributions of θ1, θ2, θ3, θ4, θ5, and σ2 by cluster label, respectively.
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5.1.4 Results

In this section, we identify the cluster assignments for 30 curves by calculating the cluster

assignment probability and demonstrate the timeline for building construction costs. By

defining the posterior mode of the number of clusters, we obtain the optimal number of

clusters along with an estimated concentration parameter.

Sensitivity of the choice of the concentration parameter

Before applying the linkage based Dirichlet process mixture model (LB-DP:HD) and DP-

MBJ, we perform the Dirichlet process mixture model for our building project data. This

model is used to assess the sensitivity of the number of clusters related to the size of the con-

centration parameter. We conduct experiments with the various values of the concentration

parameter, α ∈ {1, 5, 10}. Figure 5.6 compares the estimated number of clusters using the

Dirichlet process mixture model with the concentration parameter fixed at {1, 5, 10}. Figure

5.6 depicts samples of size 10000 for the number of clusters after burn-in for α ∈ {1, 5, 10}.

As shown in Figure 5.6, note that the posterior distribution for the number of clusters de-

pends on the choice of the concentration parameter (α). As α increases, the number of

clusters increases. Thus, in order to gain meaningful groups given the building project data,

the estimation of the concentration parameter is essential.

Clustering results

In what follows we compare the clustering results from LB-DP:HD with DP-MBJ. Then,

we concentrate on an interpretation of clustering results. As both LB-DP:HD and DP-MBJ

provide the various solutions, we investigate our clustering results as follows:

1. After the MCMC chains for parameters in Equation 5.2 converge to the stationary

distribution, we calculate the cluster assignment probabilities for curves and decide

which cluster a curve belongs to.

2. We obtain the number of clusters from the posterior mode from the MCMC chain.
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Then, we examine whether this result is consistent with the findings that we draw by

calculating clustering assignment probabilities.

3. We summarize the estimated parameters in our basis function for defined clusters and

draw an inference about the concentration parameter in the linkage based Dirichlet

process.

Any type of Dirichlet process mixture models suggest various clustering solutions. There

is no best way to demonstrate the clustering memberships. However, we can calculate the

clustering assignment probability for each building project and determine clustering mem-

berships. We use 10000 samples for class indicator variables, which are drawn from the

MCMC chain after a burn-in period for clustering assignment probability calculation. For

example, LB-DP:HD concludes that the building project, “Agriculture/Natural Resources

Lab”, belongs to cluster C3 in Table 5.4 with the clustering assignment probability 0.9892.

For LB-DP:HD, we have identified eight clusters after calculating clustering assignment prob-

abilities for all 30 curves. Also, Figure 5.7(a) shows the posterior mode of the number of
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Figure 5.6: A comparison of the estimated number of clusters depending on the choice of
the concentration parameter. The posterior distributions of the number of clusters for the
building project data defined through the Dirichlet process mixture model with the different
size of α ∈ {1, 5, 10} are depicted.
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clusters is eight. We conclude that the appropriate number of clusters defined by LB-DP:HD

is eight. We describe the posterior distribution α in Figure 5.7(b), and the posterior mean

for the concentration parameter is 1.039. The clustering assignment for each building project

is in Table 5.4.

(a) The number of clusters by LB-DP:HD (b) α by LB-DP:HD

(c) The number of clusters by DP-MBJ (d) α by DP-MBJ

Figure 5.7: Panels (a) and (c) show the histogram of MCMC samples for the number of
clusters by applying LB-DP:HD and the histogram of MCMC samples for the number of
cluster by applying DP-MBJ, respectively. Panels (b) and (d) are the histograms of MCMC
samples for the concentration parameter estimated by LB-DP:HD and estimated by DP-
MBJ.
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We have identified the number of clusters by the posterior mode of the number of clusters

and the number of clusters by calculating the clustering assignment probability for each

building project. When LB-DP:HD is applied, these two numbers are same but we have a

different result when we use DP-MBJ. With the application of DP-MBJ, we have identified

nine clusters after calculating clustering assignment probabilities for all 30 curves. However,

Figure 5.7(c) shows the posterior distribution of the number of clusters defined by DP-MBJ,

and the posterior mode for the number of clusters is 10. This number is not consistent

with the number of clusters based on calculating the clustering assignment probabilities.

It may be because the choice of B in DP-MBJ causes mis-estimation of the concentration

parameter, which results in the convergence of MCMC chain related to the defined number

of clusters. Thus, we may think that the size of the concentration parameter estimated by

DP-MBJ leads to the additional standalone cluster at each iteration of the MCMC chain;

especially, the posterior mean of sampled α in Figure 5.7(d) is 4.94, which is relatively larger

than the one in Figure 5.7(b). This may result in producing more number of clusters than

the sufficient number of clusters.

Two methods, LB-DP:HD and DP-MBJ, have brought about different clustering assign-

ment results for two building projects, “Career Services Facility” and “New Residence Hall”.

Our 30 cumulative cost rate curves are depicted and colored according to the clustering solu-

tions obtained by LB-DP and DP-MBJ in Figure 5.8. When LB-DP:HD is applied, these two

building projects belong to the same cluster, which is labeled with C8 in Table 5.3 and Table

5.4. This result may have come about because LB-DP penalizes the concentration parameter

to merge these two building projects into the one cluster, as the probability distance between

theses two curves are close to each other. The samples drawn from the MCMC chain for

parameters by the cluster label are visualized in Figure 5.9. The clusters labeled with C1,

C2,. . ., and C8 on x-axis in Figure 5.9 are equal to the cluster labels in Table 5.3 and Table

5.4. However, DP-MBJ has defined nine clusters in total when calculating the clustering

assignment probabilities, and DP-MBJ has separated these two building projects to be in
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the different clusters. We can see that these two building projects labeled with D8 and D9

on x-axis in Figure 5.9 have different estimates for θ2, θ3, and θ4, but similar estimates for θ1

and θ5. Also, we have compared the silhouette coefficients for clustering solutions obtained

by DP-MBJ and LB-DP, and LB-DP has the higher silhouette coefficient (0.32) than the

one obtained by DP-MBJ (0.29). Thus, for summarizing parameter estimates and clustering

results, we accept the clustering solution defined by LB-DP:HD.

The estimated parameters θ = {θ1, θ2, θ3, θ4, θ5} with their 95% credible intervals in the ba-

sis function for eight clusters are given in Table 5.3. As discussed previously, θ1, θ4, and θ5

jointly describe the asymptotes of the expenditure cost curve. θ4 determines the time when

the expenditure rate starts growing slowly and indicates when a closing phase starts. θ5 il-

lustrates a linear slope in the basis function. Noticeably, estimated parameters for “Football

Fields” in group C6 show that this building project has a distinct pattern of the cumulative

expenditure rate in their closing phase. The posterior mean of θ4 for “Football Fields” is

9.181. This result indicates that this building project has relatively longer periods of the

closing phase than building projects in other clusters. This information may be helpful for

(a) LB-DP:HD (b) DP-MBJ

Figure 5.8: Panels (a) and (b) visualize 30 cumulative cost rate curves with colors based on
clustering memberships in Tables 5.4 and 5.5, respectively.
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managing budget. In addition, building projects in C3 in Table 5.4 exhibit the shortest

period of the closeout phase. As shown in Equation 5.2, our basis function is the mixture of

functions, the function of exponential growth and the linear function. θ1 contributes to de-

termining the height of expenditure cumulative rate curves in the part of exponential growth

function. Thus, the estimated θ1 is the approximate proportion of the expenditure before

the end of construction phase. Additionally, relatively large estimated θ2 in Table 5.3 points

to the longer period of the design phase and indicates when a high proportion of budget will

start paying out. Therefore, building projects in group C3, C4, and C5 are the construction

projects that may require more time on design. Also, this information will be helpful for

setting up the timeline for building construction cost. The growth parameter θ3 is the rate

of the exponential growth of expenditure rate curve. Thus, we may conclude that smaller

estimated θ3 has less rapid exponential growth rate. In other words, for example, from the

building project, “Football fields”, we can observe that the cumulative expenditure rate is

increasing at a fast rate. The estimated cumulative expenditure rate curves, which represent

groups, are depicted in Figure 5.10. In addition, the estimated cumulative expenditure rate

curves that are estimated by DP-MBJ are illustrated in Figure A.1 in Appendix A.

For modeling cumulative expenditure rate curves, we have utilized the linkage based Dirich-

let process mixture model and have shown that the linkage based Dirichlet process mixture

model have an ability to jointly estimate curves and define clusters. Also, in our application,

a part of our curves has a form similar to that of the Gompertz growth curves, which means

that we can apply our model to any application such as estimating growth rates. It would

be interesting using the linkage based Dirichlet process mixture model to jointly estimate

economic indicator curves through time from different countries and cluster countries based

on the pattern of economic indicator curves.
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Table 5.3: The estimated parameters by the linkage based Dirichlet process mixture model
for 8 clusters are summarized.

Group θ1 θ2 θ3 θ4 θ5 σ2

C1 0.76 9.964 0.429 13.047 0.021 0.0018
(0.744, 0.776) (9.904, 10.023) (0.417, 0.442) (12.914, 13.253) (0.02, 0.022) (0.0015, 0.0023)

C2 0.846 10.869 0.706 12.522 0.013 0.0006
(0.834, 0.859) (10.834, 10.903) (0.688, 0.724) (11.817, 13.141) (0.012, 0.013) (0.0005, 0.0008)

C3 0.879 13.898 0.597 15.822 0.011 0.0014
(0.861, 0.898) (13.853, 13.945) (0.571, 0.623) (15.111, 16.387) (0.011, 0.012) (0.001, 0.0018)

C4 0.886 12.327 0.787 14.96 0.009 0.0007
(0.875, 0.896) (12.295, 12.358) (0.763, 0.811) (14.391, 15.458) (0.008, 0.009) (0.0005, 0.001)

C5 0.564 13.967 0.785 15.259 0.031 0.0017
(0.52, 0.6) (13.828, 14.092) (0.687, 0.898) (14.569, 16.252) (0.03, 0.032) (0.0009, 0.0032)

C6 0.689 6.296 0.714 9.181 0.039 0.0014
(0.641, 0.74) (6.167, 6.427) (0.663, 0.776) (8.629, 9.844) (0.033, 0.044) (0.0007, 0.0027)

C7 0.445 9.689 0.142 14.427 0.049 0.0036
(0.372, 0.533) (8.327, 11.286) (0.119, 0.169) (14.006, 14.887) (0.047, 0.05) (0.0019, 0.0069)

C8 0.823 8.494 0.698 11.133 0.017 0.001
(0.8, 0.846) (8.418, 8.567) (0.665, 0.733) (10.444, 11.918) (0.015, 0.019) (0.0006, 0.0015)

Table 5.4: Cluster assignments for 30 building construction projects by the linkage based
Dirichlet process mixture model.

Cluster Building projects
C1 Basketball Practice Facility, Biology Building/Vivarium Facility,

Boiler Pollution Control Improvement, Main Campus Chilled Water Plant Add,
,Classroom Improvements - Phase I, Graduate School Facility,

Substation Expansion, Upper Quad Conversion.
C2 Chemistry/Physics - Phase II, Cowgill Hall HVAC and Power,

Dietrick Servery/HVAC - Phase II, Hampton AREC Wing Replacement,
Inst of Critical Tech and Applied Sci, Litton Reaves Hall Exterior Repairs,

Surge Space Building.
C3 Agriculture/Natural Resources Lab,Addition To Cheatham Hall,

Fisheries and Aquatics Research Ctr, Add’l Recreat’n/Counseling/Clinical,
Electric Service Facility.

C4 Alumni/CEC/Hotel Complex, Bishop-Favrao/Bldg Construction Lab,
Dairy Science Facilities, Geotechnical Lab, Multi-Purpose Livestock Arena.

C5 Infectious Waste Incinerator 15232.
C6 Football Fields.
C7 Recreation Fields.
C8 Career Services Facility, New Residence Hall.
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(a) θ1 (b) θ2

(c) θ3 (d) θ4

(e) θ5 (f) σ2

Figure 5.9: Panels (a), (b), (c), (d), (e), and (f) depict the distributions of the MCMC
samples for θ1, θ2, θ3, θ4, θ5, and σ2 in Equation 5.2,respectively. C1, C2,. . ., and C8 represent
the eight clusters defined by LB-DP and D1, D2,. . ., and D9 represent the nine clusters
defined by DP-MBJ.
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Table 5.5: Cluster assignments for 30 building construction projects by DP-MBJ.

Cluster Building projects
D1 Basketball Practice Facility, Biology Building/Vivarium Facility,

Boiler Pollution Control Improvement, Main Campus Chilled Water Plant Add,
,Classroom Improvements - Phase I, Graduate School Facility,

Substation Expansion, Upper Quad Conversion.
D2 Chemistry/Physics - Phase II, Cowgill Hall HVAC and Power,

Dietrick Servery/HVAC - Phase II, Hampton AREC Wing Replacement,
Inst of Critical Tech and Applied Sci, Litton Reaves Hall Exterior Repairs,

Surge Space Building.
D3 Agriculture/Natural Resources Lab,Addition To Cheatham Hall,

Fisheries and Aquatics Research Ctr, Add’l Recreat’n/Counseling/Clinical,
Electric Service Facility.

D4 Alumni/CEC/Hotel Complex, Bishop-Favrao/Bldg Construction Lab,
Dairy Science Facilities, Geotechnical Lab, Multi-Purpose Livestock Arena.

D5 Infectious Waste Incinerator 15232.
D6 Football Fields.
D7 Recreation Fields.
D8 Career Services Facility.
D9 New Residence Hall.
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(a) Estimated curve for C1 (b) Estimated curve for C2

(c) Estimated curve for C3 (d) Estimated curve for C4

(e) Estimated curve for C5 (f) Estimated curve for C6

(g) Estimated curve for C7 (h) Estimated curve for C8

Figure 5.10: 8 estimated curves by LB-DP:HD are illustrated with their members.



Yuhyun Song Chapter 5. LBDP: Application 82

5.2 Conclusion

As an application of linkage based Dirichlet process mixture model, we have modeled cumula-

tive expenditure rate curves of building construction projects at Virginia Tech. Our findings

are that the linkage based Dirichlet process has the capacity to find a reasonable cluster

structure given observed data, and estimate the concentration parameter corresponding to

the appropriate number of clusters. Compared to DP-MBJ, the linkage based Dirichlet pro-

cess mixture model has provided the clustering solutions with a better silhouette coefficient

for modeling the timeline for building construction costs.



Chapter 6

Linkage Based Nested Dirichlet

Processes

As previously proposed, linkage based Dirichlet processes yield an approach for estimating

the concentration parameter α in DPs. Extensions of Dirichlet processes include but are

not limited to the following: hierarchical Dirichlet processes (Teh et al., 2006), dependent

Dirichlet processes (MacEachern, 2000), and nested Dirichlet processes (Rodriguez et al.,

2008). In this work, we particularly extend linkage based Dirichlet processes to the nested

Dirichlet process setting. First, we introduce our motivation and review nested Dirichlet

processes briefly. Then, we propose our extension, which is named linkage based nested

Dirichlet processes.

6.1 Motivation

We have stated that Dirichlet process mixture models have the capability of accommodating

an infinite number of mixture components and have the strength wherein users do not need

83
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to specify the prior information on the number of components in advance. Most applica-

tions of Dirichlet processes rest on the underlying assumption that exchangeable samples

are from an unknown distribution (MacEachern and Müller, 1998; Neal, 2000). There has

been an increased need for extending Dirichlet processes when the structure of data is not

simple but is nested or hierarchical, because we cannot posit the underlying exchangeabil-

ity assumption (Teh et al., 2006; Rodriguez et al., 2008). Consider that data is nested in

groups. For example, an academic university has different divisions such as a the college of

science, a college of engineering, etc. Then, each division comprises various departments, for

instance, the department of statistics and the department of mathematics in the college of

science. Suppose that we would like to cluster based on students’ GPA from the University.

Observed GPAs from the University are nested in two layers: division level and department

level. In this case, rather than using a classical Dirichlet process prior for clustering, other

types of Dirichlet processes that allow having complex data structures seem more appro-

priate. Nested Dirichlet processes, hierarchical Dirichlet processes, and dependent Dirichlet

processes are options for dealing with complex data (MacEachern, 2000; Teh et al., 2006;

Rodriguez et al., 2008).

In this work, we propose linkage based nested Dirichlet process, which is an extension of

a linkage based Dirichlet process and an alternative to the nested Dirichlet process. This

work is motivated by two concentration parameters (α and β) in nested Dirichlet processes

that have an effect on estimating the number of global clusters (or centers) and the num-

ber of local clusters (or sub-clusters). So far, there have been few studies on choosing the

concentration parameters in the nested Dirichlet processes (Rodriguez et al., 2008). Ro-

driguez et al. (2008) suggests employing Gamma priors on both concentration parameters or

having the values of the concentration parameters fixed. Also, given K segmented centers,

Rodriguez et al. (2008) has only one concentration parameter (β) for defining sub-clusters

within K segmented centers. Unlike nested Dirichlet processes, our linkage based nested

Dirichlet process allows us to have an equal number of the concentration parameters (β1,
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β2,. . ., βK) to the number of the segmented centers. The rest of this section is organized as

follows: we first review the nested Dirichlet process, introduce how to extend our proposed

method to nested Dirichlet processes, and show how to implement a linkage based nested

Dirichlet process in the Markov Chain Monte Carlo algorithm.

6.2 Nested Dirichlet Processes

The nested Dirichlet process introduced by Rodriguez et al. (2008) broadens the scope of

using Dirichlet processes. Particularly, mixture models with the nested Dirichlet process

are beneficial for multi-level clustering analyses because this stochastic process enables us

to cluster probability distributions, which are the mixture of sub-clusters, and to configure

the sub-clusters. For example, consider SAT scores of students from different universities.

The probability distribution of SAT scores within a particular university can be assumed

to be the mixture of sub-clusters because most universities value student diversity in their

universities. Also, because universities have different qualifications for entrance, the prob-

ability distributions of universities based on their SAT scores of students might be distinct

from each other. Thus, clustering universities-according to their probability distribution of

SAT-should be considered for identifying unique universities. Clustering universities and

grouping students within grouped universities can be accomplished by the use of the nested

Dirichlet process.

Rodriguez et al. (2008) defines the nested Dirichlet process as follows. For j = 1, 2, . . . , J

and i = 1, 2, . . . , nj, we assume that observations yj = (y1j, y2j, . . . , ynjj) within distribution

j are exchangeable and yj ∼ Fj. As an example, we can consider yij the SAT score of student

i in university j. Given a collection of mixing distribution, {G1, G2, . . . , GJ}, let K be the

unique number of clustered centers and G∗k be the distribution for grouped centers into k for
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k = 1, 2, . . . , K. Then, the random distributions F1, F2, . . . , FJ are as follows:

Fj(| φ) =

∫
Θ

p(. | θ, φ)Gj(dθ),

Gj ≡
∞∑
k=1

π∗kδG∗k ,

G∗k ≡
∞∑
l=1

ω∗lkδθ∗lk ,

where θ and φ are the parameters in the distribution p, πk is the mixing proportion for k

distribution and ωlk is the mixing proportion for l sub-cluster in k distribution, such that∑
πk = 1 and

∑
ωlk = 1. Then, the mixture model with the nested Dirichlet process can

be formed as follows:

yij ∼ p(yij | θij, φ),

θij ∼ Gj,

G1, G2, . . . , GJ ∼ DP (αDP (β,G0)),

where α and β are the concentration parameters and G0 is the base measure in the nested

Dirichlet process. In the nested Dirichlet process, there are two concentration parameters,

α and β, which determine the number of unique distributions (or centers) and the number

of sub-clusters within unique distributions, respectively. Similar to P (θj = θj′) = 1
1+α

in

the DP, the nested Dirichlet ensures that P (Gj = Gj′) = 1
1+α

for the mixing distribution

G = {G1, G2, . . . , GJ}. Also, by the stick breaking construction, the marginal distribution

of each Gj follows the Dirichlet process with β and H (Rodriguez et al., 2008).

To model the nested Dirichlet process, we start with a stick-breaking representation of the

Dirichlet process. Intuitively, if we replace the random sample from the Dirichlet process

with the random probability measure, a nested Dirichlet process prior results. In other

words, the nested Dirichlet process is the collection of distributions for different centers.
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The stick breaking process construction for nested Dirichlet processes is in shown Figure 6.1.

Figure 6.1: An illustration of a stick-breaking process for a nested Dirichlet process. When
K →∞ and L→∞, the stick-breaking process becomes the nested Dirichlet process.

6.3 Linkage Based Nested Dirichlet Processes

A linkage based nested Dirichlet process is motivated by the estimation of the concentra-

tion parameter β for defining sub-clusters within distributions. For typical nested Dirichlet

processes, one β has been used for defining sub-clusters within distributions. However, we

expect the shapes of sub-clusters and number of sub-clusters in {G∗1, G∗2, . . . , G∗K} are dif-

ferent from each other. Thus, we suggest using different βs for K grouped centers in order

to enhance the performance of clustering, especially for defining meaningful sub-groups. In

other words, our motivation for linkage based nested Dirichlet processes starts from the idea

that we should use β = (β1, β2, . . . , βK) for defining sub-clusters within grouped centers.

For convenience, denote the distribution G∗k and the sub-cluster l within G∗k by Ck and
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(a) α for distributions (b) β for sub-clusters within distributions

Figure 6.2: Our motivation of the linkage based nested Dirichlet process. Panels (a) and
(b) describe the motivation of estimating the concentration parameter for the number of
distributions and the concentration parameters for the number of sub-clusters in clustered
distributions, respectively.

Clk. To construct the linkage based nested Dirichlet process, the function in Equation 3.8 is

revisited for Ck and Clk for k = 1, 2, . . . , K and l = 1, 2, . . . , L:

S(C,K) =

(
K

2

)
−

K∑
i<j

D(Ci, Cj),

S(Ck, L) =

(
L

2

)
−

L∑
i<j

D(Cik, Cjk).

(6.1)

We estimate K + 1 concentration parameters, α and β = {β1, . . . , βK}, by measuring dis-

tances between clustered distributions and distances between sub-clusters within each clus-

tered distributions. The solution for the optimal number of distributions is the same as the

solution in Equation 3.10; the estimate for α is the solution by solving Equation 3.11 with

respect to α, same as the one in the linkage based Dirichlet process. For k = 1, . . . , K, the

expected number of sub-clusters for k distribution is as follows:

E(L | βk, nk) =

nk∑
i=1

βk
βk + i− 1

. (6.2)
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To update β = (β1, . . . , βK), we define the optimal number of sub-clusters L′k for k clustered

distributions as follows:

L′k =
1 + (1 + 8

∑Lk
i<j D(Cik, Cjk))

1/2

2
.

(6.3)

We replace E(Lk | βk, nk) with L′k in Equation 6.3. We rewrite Equation 6.2 as follows:

L′k =

nk∑
i=1

βk
βk + i− 1

(6.4)

Then, we solve Equation 6.4 with respect to βk. For the linkage based nested Dirichlet

process, we can write our model as follows:

yij ∼ p(yij | θij),

θij ∼ Gj,

Gj ∼ LBNDP(α,β, H),

(6.5)

where β = (β1, β2, . . . , βJ). In addition, we calculate a covariance between random distribu-

tions {G1, G2, . . . , GJ} in the linkage based nested Dirichlet process as follows:

Cov(Gi(B), Gj(B)) =


H(B)(1−H(B))

β+1
if Gi = Gj

0 if Gi 6= Gj

, (6.6)

for any finite and measurable partition B of a measurable space Ω. In Equation 6.6, we

can induce β = βi = βj if Gi = Gj, then the covariance between two random distribution

Gi and Gj becomes V ar(Gj(B)) for each j. However, if Gi 6= Gj, the covariance between

Gi and Gj becomes 0 in the linkage based nested Dirichlet process. Equation 6.6 expresses

no covariance between observations from different distributions but a positive covariance

between the observations in the same distribution. This is in line with our initial idea of
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both linkage Dirichlet process prior and linkage based nested Dirichlet process prior, because

our goal of clustering analyses is identifying distinct distributions.

6.3.1 Extension of DP-MBJ to Nested Dirichlet Processes

We extend DP-MBJ to the nested Dirichlet process setting so that we can compare our link-

age based nested Dirichlet process. The logic for extending DP-MBJ is simple. We estimate

the same number of concentration parameters as the linkage based nested Dirichlet process

estimates; the step to estimate the concentration parameter α for grouped distributions is

same as in DP-MBJ. The way to estimate the concentration parameters β = (β1, β2, . . . , βK)

is as follows:
1

B

B∑
b=1

Lk =

nk∑
i=1

βk
βk + i− 1

, (6.7)

where Lk is the number of sub-clusters in k distribution. We repeat this process for k =

{1, 2, . . . , K}. We can obtain B samples of Lk from the MCMC chain and solve Equation

6.7 with respect to βk.

6.3.2 Gibbs Sampling Implementation

The MCMC sampling scheme for nested Dirichlet processes is introduced in Rodriguez et al.

(2008). The scheme in Rodriguez et al. (2008) uses the idea from Ishwaran and James (2001),

which is the sampler that replaces the infinite sum by a finite sum. The sampling scheme

for linkage based nested Dirichlet processes is introduced in Algorithm 2.

6.3.3 Property of Linkage Based Nested Dirichlet Processes

Let {G1(B), G2(B), G3(B), · · · , GJ(B)} be the collection of random variables, then, the

correlation between Gi(B) and Gj(B) for Linkage Based Nested Dirichlet processes is as
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Algorithm 2 MCMC algorithm for LB-NDP mixture models.

Initialize all parameters and choose K and L for double truncation.
for t = 1 to T do

for k = 1 to K do
Sample the center indicators ζj for j = 1, 2, . . . , J with

p(ζj = k | .) = π
(t−1)
k

nj∏
i=1

L∑
l=1

ω
(t−1)
lk p(yij | θ(t−1)

lk , φ(t−1)).

Sample uk ∼ beta(1 +mk, α
(t−1) +

∑K
s=k+1ms) given the number of centers in k,

mk.
Update πk = uk

∏k−1
s=1(1− us).

Construct a distance matrix D for unique K∗ centers.
Update K̂ such that

K̂ =
1 +

√
1 + 8

∑K∗

i<j D(Ci, Cj)

2
.

Estimate α(t) which satisfies K̂ =
∑J

j=1
α

α+j−1
.

for l = 1 to L do
Draw the sub-cluster indicator ξij for i = 1, 2, . . . , nj with

p(ξik = l | .) ∝ w
(t−1)
lζk

p(yik | θ(t−1)
lζk

, φ(t−1)).

Sample νlk ∼ beta(1 + nlk, β
(t−1)
k +

∑L
s=l+1 nls), where nlk is the number of obs

in l sub-cluster in k center.
Update ωlk = νlk

∏l−1
s=1(1− νsk).

Construct the distance matrix Dk∗ for sub-clusters in k∗ centers.
Update L̂k∗ such that

L̂k∗ =
1 +

√
1 + 8

∑lk∗
i<j Dk(Cik∗, Cjk∗)

2
.

Estimate β
(t)
k which satisfies L̂k∗ =

∑nk∗
i=1

βk
βk+i−1

.

Draw a new sample for θ
(t)
lζk
∼ p(θ

(t−1)
lζk

| yik).
end for l

end for k
Draw a new sample for φ(t) ∼

∏j=1
J

∏i=1
nj

p(yij | θ(t)
lζk
, φ)p(φ).

end for t
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follows: If Gi and Gj are equal, then let β = βi = βj.

Cov(Gi(B), Gj(B) | Gi = Gj) = E(Gi(B)Gj(B) | Gi = Gj)

− E(Gi(B) | Gi = Gj)E(Gj(B) | Gi = Gj)

= E(G2
i (B))− E2(Gi(B))

= V ar(Gi(B))

=
H(B)(1−H(B))

β + 1

(6.8)

For Gi 6= Gj,

Cov(Gi(B), Gj(B) | Gi 6= Gj) = E(Gi(B)Gj(B) | Gi 6= Gj)

− E(Gi(B) | Gi 6= Gj)E(Gj(B) | Gi 6= Gj)

= E(Gi(B))E(Gj(B))− E(Gi(B))E(Gj(B))

= 0

(6.9)

Thus,

Cov(Gi(B), Gj(B)) = Cov(Gi(B), Gj(B) | Gi = Gj)p(Gi = Gj)

+ Cov(Gi(B), Gj(B) | Gi 6= Gj)p(Gi 6= Gj)

=
H(B)(1−H(B))

β + 1

1

α + 1
+ 0

α

α + 1
.

(6.10)



Chapter 7

Linkage Based Nested Dirichlet

Processes: Simulation and

Application

In Chapter 7, we illustrate a set of simulation studies for investigating the performance of the

linkage based nested Dirichlet process, which is the extension of the linkage based Dirichlet

process when the data is nested in groups. In addition, by modeling the median household

income data in the United States, we cluster the states first and then segment the counties

within the clustered states into the optimal number of groups. We will compare the modeling

result obtained by the linkage based nested Dirichlet process to the clustering result defined

by the extension of DP-MBJ, which we refer to as NDP-MBJ.

7.1 Simulation

In this section, we perform a sequence of simulation studies to verify the performance of

linkage based nested Dirichlet processes. Like the linkage based nested Dirichlet process, we

93
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also extend DP-MBJ to the nested Dirichlet process as shown in Chapter 6. Specifically, DP-

MBJ estimates the concentration parameters (β1, β2, . . ., βK) by obtaining B samples of the

number of sub-clusters belonging to each K segmented centers. In this section, we introduce

our simulation designs and the scheme to quantify the performance of the linkage based

nested Dirichlet processes as an application of the multi-level clustering algorithm. Then,

we demonstrate our simulation results by comparing with the performance of NDP-MBJ.

7.1.1 Simulation Design

We present our simulation design to generate the distributions that comprising a mixture

of Gaussian components. The simulation set up is as follows: we generate K distributions

of each size n from the mixtures of J Gaussian components. For each distribution with

J Gaussian components, we start by sampling the mixing proportion π = (π1, π2, . . . , πJ)

from a Dirichlet distribution. For each distribution, the number of Gaussian components J

can differ. In detail, we show how we generate the distribution of the mixture of univariate

Gaussians:

Step 1. Choose the number of mixture components J arbitrarily.

Step 2. Given J , sample π = (π1, π2, . . . , πJ) from Dir(α), where α = (α1, α2, . . . , αJ).

Step 3. Choose µ = (µ1, µ2, . . . , µJ).

Step 4. Generate y = {y1, y2, . . . , yn} from p (y | π,µ, σ2) =
∑

j πjp (y | µj, σ2).

In simulation studies, we choose K = 6 and generate six distributions, i.e. D1, D2, D3,

D4, D5, and D6. We intentionally plot a scenario where D1 and D4, D2 and D5, and D3

and D6 share the same Gaussian components. However, the mixture weights are different

in order to see not only whether LB-NDP has the capability of clustering the distribution

of the mixtures but also to measure the effect of estimated concentration parameters when

the size of n differs. Across the simulation study, we use n = {20, 50, 100} in order to assess
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the the influence of the sample size on the concentration parameter estimation and modeling

results. We estimate the concentration parameter using the linkage based nested Dirichlet

process and the extension of DP-MBJ (NDP-MBJ). For sampling the mixture weights from

the Dirichlet distribution, we choose α = 1. When generating data points, we fix σ at 0.5 for

the distribution of the mixture of the univariate Gaussians. For bivariate Gaussians, we use

Σ = 0.52I. We use the double truncation approximation (Rodriguez et al. (2008)) for easier

computation. We choose the truncation level K = 10 for distributions and the truncation

level J = 10 for sub-clusters.

There might be several approaches to summarize the simulation results. For example, cal-

culating KL divergence of the density estimates to the true densities may be the one way

to summarize the results. However, we are more interested in measuring the performance

of LB-NDP as an application of multi-level clustering analysis. Thus, we will compare the

modeling results using the overall silhouette coefficient. Since each segmented cluster via LB-

NDP/NDP-MBJ is consisted of the sub-clusters, we obtain the silhouette coefficients from

sub-clusters within each segmented distributions. We then call the average of these silhou-

ette coefficients the overall silhouette coefficient to quantify the overall clustering qualities.

Also, when we calculate the distances between distributions and the distances between sub-

clusters, we utilize the total variation distance:

TV D(f, g) ≈ 1

2

N∑
i=1

|f(xi)− g(xi)|, (7.1)

where N =
∑K

k=1 nk.



Yuhyun Song Chapter 7. LBNDP: Simulation and Application 96

Non-overlapping distributions from mixtures of univariate Gaussians distributions

In our simulation study, we simulate six distributions from the mixture of univariate Gaus-

sians. We allow D1 and D4, D2 and D5, and D3 and D6 to have the same Gaussian com-

ponents, but different weights. However, when we generate Gaussian components for these

distributions, we purposely separate these three pairs (D1,D4), (D2,D5), and (D3,D6) from

each other, so that these pairs are unlikely to share the area under density curves as shown

in Figure 7.1. As a base measure for both LB-NDP and NDP-MBJ, we choose a normal

inverse gamma distribution, NIG(0, 0.01, 1, 2). This simulation aims to investigate whether

LB-NDP keeps separating these three pairs from each other and provides the better cluster-

ing solution by defining the optimal number of sub-clusters than NDP-MBJ based on the

calculation of the overall silhouette coefficient. For each n, we repeat the experiments 200

times. All results are based on 5, 000 MCMC samples obtained after 20, 000 iterations. We

use the double truncation approximation (Rodriguez et al. (2008)). We choose the trunca-

tion level K = 10 for distributions and the truncation level J = 10 for sub-clusters.

Figure 7.1: An example of generated distributions for non-overlapping distributions from
mixtures of univariate Gaussians case.
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Overlapping distributions from mixtures of univariate Gaussians case

Unlike non-overlapping distributions from the mixtures of univariate Gaussians case, (D1,D4)

partially shares the Gaussian components with both (D2,D5) and (D3,D6), as shown in Fig-

ure 7.2. We use a normal inverse gamma distribution, NIG(0, 0.01, 1, 2) as our base measure

in LB-NDP and NDP-MBJ. This simulation study investigates whether LB-NDP reinforces

D1 and D4 to be merged into other distributions and finds the better clustering solution

than NDP-MBJ by obtaining the overall silhouette coefficients. Also, for each n, we repeat

the experiments 200 times. The simulation results are summarized based on based on 5, 000

MCMC samples obtained after 20, 000 iterations.

Figure 7.2: An example of simulated distributions for overlapping distributions from mixtures
of univariate Gaussians case.

Non-overlapping distributions from mixtures of bivariate Gaussians case

We extend our simulation study to model non-overlapping distributions from mixtures of

bivariate Gaussians distributions. The simulation set up is same as the design for univariate
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distributions. We designate D1 and D4, D2 and D5, and D3 and D6 to share the same

bivariate Gaussian components but weighted differently. For each n, we generate 200 differ-

ent data sets and summarize the simulation results based on 10, 000 samples after 20, 000

iterations in the MCMC chain.

Overlapping distributions from mixtures of bivariate Gaussians case

We simulate six distributions from mixtures of bivariate Gaussians. The set up for the

simulation as follows: we design (D1,D4) to share the piece of the Gaussian components

with both (D2,D5) and (D3,D6). This simulation study aims to analyze the performance of

LB-NDP over NDP-MBJ when there are distributions overlapping each other. We obtain the

overall silhouette coefficients based on 10, 000 samples after the burn-in period to summarize

the simulation results for each n.

7.1.2 Simulation Results

We report the experiment’s results based on the different sets of data with different size of

n = {20, 50, 100}, which is the number of data points for each distribution. Also, recall

that our number of simulated distributions is equal to six. This means for n = 20, we

generate 120 data points in total. We choose the numbers of mixture components for six

distributions are 3, 5, 3, 3, 5, and 3, respectively. Since we now measure the distance between

the distribution of the mixtures, we are not able to use the Hellinger distance in Equation

3.4 for bivariate Gaussian cases. Thus, we calculate the total variation distance by utilizing

kernel density estimation to measure the proximity between distributions and the proximity

between sub-clusters. We use B = 100 for implementing NDP-MBJ.
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Non-overlapping distributions from mixtures of univariate Gaussians case

We demonstrate the simulation result for non-overlapping distributions from mixtures of

univariate Gaussians case, where the number of data points for each distribution is n =

{20, 50, 100}. Figure 7.3 displays the distributions of the overall silhouette coefficients ob-

tained by applying NDP-MBJ and LB-NDP. We can verify that the distribution of the

overall silhouette coefficients for NDP-MBJ (white) and the distribution of the overall sil-

houette coefficients for LB-NDP (dark-gray) look similar to each other when n = 50 and

n = 100. However, as depicted in panel (a) in Figure 7.3, LB-NDP shows the higher median

of the overall silhouette coefficients than NDP-MBJ when n = 20. In theory, the effect of the

concentration parameter is considerable given the small number of observations. We have

examined this via the simulation studies in Chapter 4. As the overall silhouette coefficient

is based on the silhouette coefficients from sub-clusters within segmented distributions, we

can see that the estimation of concentration parameters, β1, β2, . . . , βK , for K distributions

influences the clustering results when the number of observations within the distribution is

small.
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Figure 7.3: Panels (a), (b), and (c) illustrate the distributions of the overall silhouette
coefficients for n = 20, n = 50, and n = 100 for non-overlapping distributions respectively.
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Overlapping distributions from mixtures of univariate Gaussians case

We illustrate the simulation result for overlapping distributions from mixtures of univariate

Gaussians case given n = {20, 50, 100}. Figure 7.4 depicts the distributions of the overall

silhouette coefficients obtained by applying NDP-MBJ (white) and LB-NDP (dark-gray). As

shown in panels (a), (b), and (c) in Figure 7.4, across the size of n, we can see that the median

of the overall silhouette coefficients obtained by LB-NDP is consistently and slightly higher

than the median of the overall silhouette coefficients obtained by NDP-MBJ. Also, we can

see that there is less variability in the overall silhouette coefficients for LB-NDP than NDP-

MBJ. We conclude that when there are distributions overlapping with other distributions

across the range of data points, LB-NDP has better performance than NDP-MBJ because

of the fact that LB-NDP merges the distributions/sub-clusters if they are similar to each

other.
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Figure 7.4: Panels (a), (b), and (c) illustrate the distributions of the overall silhouette
coefficients for n = 20, n = 50, and n = 100 for overlapping distributions respectively.
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Non-overlapping distributions from mixtures of bivariate Gaussians case

We provide the simulation result for non-overlapping distributions from mixtures of bivariate

Gaussians case, where the number of data points for each distribution is n = {20, 50, 100}.

Panel (a) in Figure 7.5 clearly shows LB-NDP has the higher median of the overall silhou-

ette coefficients than NDP-MBJ when the number of data points for each distribution is 20.

When n = 50 and n = 100, the distributions of the overall silhouette coefficients obtained

by NDP-MBJ (white) and LB-NDP (dark-gray) look similar to each other. Like the simula-

tion study for the univariate distributions, we can verify that the effect of the concentration

parameter (α) is considerable when n is small. we can see that the estimation of concen-

tration parameters, β1, β2, . . . , βK , for K distributions influences the clustering results when

the number of observations within the distribution is small.

(a) n=20 (b) n=50 (c) n=100

Figure 7.5: Panels (a), (b), and (c) illustrate the distributions of the overall silhouette
coefficients for n = 20, n = 50, and n = 100 for bivariate non-overlapping distributions
respectively.
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Overlapping distributions from mixtures of bivariate Gaussians case

We analyze the simulation result for overlapping distributions from mixtures of bivariate

Gaussians when n = {20, 50, 100}. Figure 7.6 illustrates the distributions of the overall sil-

houette coefficients obtained by applying NDP-MBJ (white) and LB-NDP (dark-gray). As

depicted in panel (a) in Figure 7.6, for bivariate Gaussians with n = 50, the median of the

overall silhouette coefficients obtained by LB-NDP is slightly higher than the median of the

overall silhouette coefficients obtained by NDP-MBJ. Also, we can see that both methods

show similar levels of the performance. There is less variability in the overall silhouette

coefficients for LB-NDP than NDP-MBJ. We conclude that when there are distributions

overlapping with other distributions across the range of data points, LB-NDP has a better

performance than NDP-MBJ because of the fact that LB-NDP merges the distributions/sub-

clusters if they are similar to each other.

(a) n=20 (b) n=50 (c) n=100

Figure 7.6: Panels (a), (b), and (c) illustrate the distributions of the overall silhouette coef-
ficients for n = 20, n = 50, and n = 100 for bivariate overlapping distributions respectively.

We have performed the simulation studies in order to analyze the performance of LB-NDP by

comparing the performance of NDP-MBJ, which is the extension of DP-MBJ to the nested
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Dirichlet process. As a metric to compare the performance, we use the overall silhouette

coefficient, that is, the average of silhouette coefficients obtained from the segmented distri-

butions. It is interesting that for overlapping distributions from the mixture of univariate

Gaussian case, LB-NDP has performed better than NDP-MBJ across the size of n used in

our simulation studies when the number of distributions is equal to six. We can infer that

the reason is because LB-NDP, which uses the proximity information between distributions

and between sub-clusters to estimate the concentration parameters, α, β1, β2, . . . , βK , forces

a sub-cluster/distribution to be segmented into other sub-clusters/distributions, if they are

close to each other.
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7.2 Application: Modeling Median Household Income

in the United States

In this section, we model the median household income in the United States. Using a linkage

based nested Dirichlet process mixture model, we group the territories based on the distribu-

tions of the median household income from the counties in each state. The counties within

the clustered states are then segmented into sub-clusters based on their median household

income. We utilize the nested Dirichlet process mixture model with fixed concentration pa-

rameters and NDP-MBJ for comparing the clustering results.

7.2.1 Data

The median household income data is from the U.S. Census Bureau, 2009-2013 5-Year Amer-

ican Community Survey. The household income is a combined gross income of all people

15 years or older sharing the same house unit. Notably, the median household income is an

economic statistic often used for comparing affluence and living standards between cities,

counties, and states (DeNavas-Walt, 2010). Figure 7.7 depicts the states in the United States

based on the median household income at the state level. Figure 7.7 does not show the dis-

tributions of the median household income collected from the counties in the states. In the

original dataset, the collection of the median household income from counties and county

equivalents in 51 territories states including the 50 states and the District of Columbia are

collected. The number of counties per state differs; for example, 3 counties in Delaware,

254 counties in Texas, and 58 counties in California. We use 49 states that have more than

3 counties (excluding the District of Columbia and Delaware) and contain 3139 counties

and county equivalents in total. Before analyzing the median household income data, we

standardize the median household income.
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Figure 7.7: States in the United States are visualized according to their categorized median
household income. Hawaii and Alaska are not depicted on the map.

7.2.2 Model Specification

The K-means clustering algorithm is not able to handle the data in the nested setting. Thus,

Applying the K-means clustering algorithm to the median household data will bring the

result that only groups counties and ignores the distribution of the median household income

within the state. Therefore, we will not be able to see the differences in the distributions

of the median household income by states. In order to model the median household data

which are nested, we fit a nested Dirichlet process mixture model with fixed concentration

parameters, a nested Dirichlet process mixture model with NDP-MBJ, and a linkage based

nested Dirichlet process mixture model to the scaled median household income. Let yij be

the scaled household income from i counties in state j. Then the nested Dirichlet process
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mixture model, which we refer to as NDP, is as follows:

yij ∼ N(θij, σ
2
ij),

θij ∼ Gj,

G1, G2, . . . , GJ ∼ DP (αDP (β,G0)),

where i ≤ nj and j ≤ J . We use the fixed concentration parameters α = 1 and β = 1. Also,

we formulate the nested Dirichlet process mixture model with NDP-MBJ:

yij ∼ N(θij, σ
2
ij),

θij ∼ Gj,

G1, G2, . . . , GJ ∼ DP (αDP (β, G0)),

where β = (β1, β2, . . . , βJ). Our linkage based nested Dirichlet process mixture model for

modeling the house median income is as follows:

yij ∼ N(θij, σ
2
ij),

θij ∼ Gj,

G1, G2, . . . , GJ ∼ LB −NDP (α,β, G0),

where β = (β1, β2, . . . , βJ). For efficient computation, we utilize the algorithm presented in

Rodriguez et al. (2008), which employs the truncation approximation to the stick-breaking

process. Let K be the truncation level at the level of states and L be the truncation level

at the level of counties. We choose K = 10 and L = 10 for fitting three models. We

use total variation distance to measure the distance between clustered states/counties in

the linkage based nested Dirichlet process. We pick a normal inverse gamma distribution,

G0 ∼ NIG(0, 0.01, 1, 1) as our base function for three models.
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As a preliminary study, we illustrate total variation distances between all pairs of states

based on the distribution of the median household income in Figure 7.8. Figure 7.8 provides

an insight into possible cluster structure. As shown in Figure 7.8, we define a distinct cluster

structure of the states on the lower left corner of Figure 7.8. For example, we can see that

MD, NH, AK, MA, CT, HI, NJ, RI are well-separated from other states. However, it looks

like a heterogeneous partition of the states also exists, such as states CA and NV. This may

provide the insight to obtain the various number of distinct partitions of the states depending

on the choice of the concentration parameter α.
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Figure 7.8: Total variance distances between states based on the distributions of median
household income are visualized using a heatmap.
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7.2.3 Results

In this section, we present our clustering results inferred by NDP, NDP-MBJ, and LB-NDP.

The results provided in this section are based on 20, 000 samples obtained after a 50, 000

burn-in period. We provide the posterior probabilities of the number of distinct states ob-

tained by three models in Table 7.1. Table 7.1 demonstrates that NDP is strongly in favor

of five groups of distinct states with the posterior probability of 0.963. On the other hand,

both NDP-MBJ and LB-NDP prefer six groups of distinct states (the posterior probabilities

0.05175 and 0.5572, respectively). We infer the fact that the concentration parameter α in

NDP is 1 and the posterior mean of α̂ estimated via LB-NDP is 2.64 causes the different

number of distinct states. Also, the different numbers of distinct states estimated by NDP,

NDP-MBJ, and LB-NDP result in different clustering memberships for 49 states. Based on

the posterior probability on the number of distinct states, we decide to accept five partitions

of the sets of states for NDP and six partitions of the sets of states for both NDP-MBJ and

LB-NDP.

The resulting partitions are listed in Tables 7.2, 7.3, and 7.4 with their labels. As we provide

the five partitions of the sets of states for NDP, we leave two cells in the row for C3 in

Table 7.2 for easier comparison with NDP-MBJ and LB-NDP. Additionally, the clustering

assignments are visualized in Figure 7.10. Alaska and Hawaii are excluded from the maps in

Figure 7.10. Figure 7.10 shows that some partitions of the sets of states inferred from NDP,

NDP-MBJ, and LB-NDP are not same but similar. When the three models are applied, all

three models show the different clustering memberships for the two states, WY and UT. We

Table 7.1: The posterior probabilities of the number of distinct clusters are provided for
three different models. The cell with light gray marks the highest probability at each model.

The Number of Distinct Clusters
Model 5 6 7 8 9 10

NDP with α = 1 and β = 1 0.96300 0.03675 0.00025 0 0 0

NDP-MBJ 0.01570 0.55175 0.40130 0.03080 0.00045 0

LB-NDP with TVD 0.0119 0.5572 0.3947 0.0354 0.0008 0
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may infer WY and UT are the states that share the similar characteristics to other states

in different clusters. For example, NDP assigns WY and UT to the same partition with

IL, IN, KS, MN, NE, NY, ND, OH, PA, VT, WA, and WI. However, LB-NDP segments

WY into the partition (C1 in Table 7.4) that is consisted of the following states: CT, MD,

MA, NH, NJ, RI, AK, and HI. Figure 7.11 depicts the median household income from coun-

ties or county equivalents by states based on the clustering solutions obtained by the three

models. LB-NDP assigns WY into the cluster that includes AK, MD, NH, and etc. Figure

7.11(c) shows that the distribution of the median household income in WY looks similar to

the distribution of the median household income in NH in that WY and NH have the high

density of the counties near $60, 000 and have some counties clustered near $75, 000. Also,

LB-NDP assigns UT into the cluster that includes CA because the distribution of the median

household income in CA covers up the distribution of the median household income in UT.

Also, the distribution in UT have the similar features with the distribution of the median

household income in ND in that the median household incomes of most counties in both

states are peaked at near $50, 000. However, NDP-MBJ assigns WY into the cluster that

includes CA, ND, and NV. NDP model assigns WY into the cluster that includes IL, IN, and

etc. We may conclude that WY is the state that shares the similarity and neighbors with

(a) NDP with α = 1 and β = 1 (b) NDP-MBJ (c) LB-NDP with TVD

Figure 7.9: The number of distinct states estimated by NDP, NDP-MBJ, and LB-NDP.
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the following clusters: C4 in Figure 7.11(a) C3 in Figure 7.11(b), and C1 in Figure 7.11(c).

Also, UT is that state that neighbors with C4 in Figure 7.11(a), C5 in Figure 7.11(b), and

C3 in Figure 7.11(c). However, the three models show that both UT and WY are distinct

from the states in C4 and C6 in Figure 7.11(c).

Interestingly, the two states, VA and CO, are clustered in the same group. Figure 7.11

shows that the distributions of the median household income in VA and CO have the larger

dispersion than other states. The shape of the distributions of the median household income

in VA and CO looks similar because of the high density of the median household income that

ranges from approximately $30, 000 to $70, 000. Also, there are the sub-cluster of counties

with the median household income higher than $100, 000.

We also examine the clustering structure of the counties within states. However, the in-

terpretation of the sub-clusters should be conditional to the partition of the sets of states via

NDP, NDP-MBJ, or LB-NDP. The numbers of sub-clusters in the partitions of the states are

provided in Tables 7.2, 7.3, and 7.4. From the linkage based Dirichlet process mixture model,

we obtained six groups of clustered states and labeled them as C1, C2, C3, C4, C5, and C6.

Each group of clustered states had 2, 3, 3, 2, 2, and 3 sub-clusters, respectively. We have

identified that the states that are categorized into Cluster C6 in Tables 7.2, 7.3, and 7.4 are

same for the three models. However, the numbers of sub-clusters for C − 6 are different; 4,

5, and 3 for NDP, NDP-MBJ, and LB-NDP, respectively. We have calculated the silhouette

coefficients in Table 7.5 for the partitions in Tables 7.2, 7.3, and 7.4. It shows that LB-NDP

provides the highest silhouette coefficient for C6 among the three models. We may conclude

that three sub-clusters defined by LB-NDP is the optimal clustering solution. Furthermore,

LB-NDP finds a better clustering solution than NDP-MBJ and NDP for Cluster C4 that are

consisted of the same states by the three models, but has a different number of sub-clusters.

As the number of distinct states are different for the NDP and LB-NDP models, an ex-
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act comparison between the two models with respect to the quality of clustering is not easy.

Therefore, we calculate the overall silhouette coefficient for evaluating the performance of

the models. In order to obtain the overall silhouette coefficient, we calculate the average of

the silhouette coefficient for each partition of clustered states. We then take the average of

the averages of the silhouette coefficients from all partitions of clustered states, and define

this as the overall silhouette coefficient. The detailed silhouette coefficients for each partition

of the states are provided in Table 7.5. Note that we are not able to obtain the silhouette

coefficient for cluster C1 because of the number of sub-clusters within C1 as shown in Table

7.2 and Table 7.3. The obtained overall silhouette coefficients are 0.517, 0.457, and 0.436

for LB-NDP, NDP-MBJ, and NDP respectively. As the number of the counties within the

clustered states can be differ, the estimation of the vector of the concentration parameters β

is important to obtain the optimal clustering solution. We conclude that the linkage based

nested Dirichlet process mixture model finds a better clustering solution than NDP-MBJ and

the nested Dirichlet process mixture model when the concentration parameters are fixed at 1.

Table 7.2: The partitions of the distinct states defined by NDP with α = 1 and β = 1 are
provided with the number of sub-clusters within the partitions.

Cluster State # of sub-clusters
C1 CT, MD, MA, NH, NJ, RI, AK, HI 1
C2 CA, CO, NV, VA 4
C3 - -
C4 AZ, FL, ID, LA, ME, MI, MO, MT, NC, OK, OR, SD, TX 3
C5 IL, IN, IA, KS, MN, NE, NY, ND, OH, PA, UT, VT, WA, WI, WY 2
C6 AL, AR, GA, KY, MS, NM, SC, TN, WV 4

Table 7.3: The partitions of the distinct states defined by NDP-MBJ are provided with the
number of sub-clusters within the partitions.

Cluster State # of sub-clusters
C1 CT, MD, MA, NH, NJ, RI, AK, HI 1
C2 CO, VA 3
C3 CA, NV, ND, WY 2
C4 AZ, FL, ID, LA, ME, MI, MO, MT, NC, OK, OR, SD, TX 3
C5 IL, IN, IA, KS, MN, NE, NY, OH, PA, UT, VT, WA, WI 3
C6 AL, AR, GA, KY, MS, NM, SC, TN, WV 5



Yuhyun Song Chapter 7. LBNDP: Simulation and Application 113

Table 7.4: The partitions of the distinct states defined by the linkage based nested Dirichlet
process are provided with the number of sub-clusters within the partitions.

Cluster State # of sub-clusters
C1 CT, MD, MA, NH, NJ, RI, WY, AK, HI 2
C2 CO, VA 3
C3 CA, NV, ND, UT 3
C4 AZ, FL, ID, LA, ME, MI, MO, MT, NC, OK, OR, SD, TX 2
C5 IL, IN, IA, KS, MN, NE, NY, OH, PA, VT, WA, WI 2
C6 AL, AR, GA, KY, MS, NM, SC, TN, WV 3

Table 7.5: Silhouette coefficients obtained by the linkage based nested Dirichlet process
model and the nested Dirichlet process mixture model are provided for clustered states.

Cluster Label
Model C1 C2 C3 C4 C5 C6

NDP with α = β = 1 NA 0.208 − 0.428 0.664 0.442
NDP-MBJ NA 0.611 0.642 0.429 0.187 0.417

LBNDP with TVD 0.343 0.630 0.636 0.621 0.231 0.643
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(a) NDP with α = 1 and β = 1

(b) NDP-MBJ

(c) LB-NDP with the total variation distance

Figure 7.10: States are visualized on the map, and each state is colored based on its partition
defined by the model. Panels (a), (b), and (c) provide the clustering solutions by NDP with
α = β = 1, NDP-MBJ, and LB-NDP with the total variation distance, respectively.
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(a) NDP

(b) NDP-MBJ

(c) LB-NDP

Figure 7.11: The median household income from counties or county equivalents are plotted
by states based on the clustering solution.
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7.3 Conclusion

The linkage based nested Dirichlet process estimates the concentration parameter α for clus-

tering distinct densities (i.e. states), and infers the vector of the concentration parameter

β for obtaining sub-clusters (i.e. counties) within the partitions of the distinct densities.

This fact can provide users with more flexible modeling results with respect to identifying

sub-clusters and densities simultaneously. In Chapter 7, through a sequence of the sim-

ulation studies, we have examined the performance of the linkage based nested Dirichlet

process mixture model. As a conclusion, the linkage based nested Dirichlet process mixture

model demonstrates better performance than the nested Dirichlet process mixture model

with NDP-MBJ, given a distribution of a small number of observations. Additionally, when

the distributions are overlapping, the linkage based nested Dirichlet process mixture model

shows a better performance than the nested Dirichlet process mixture model with NDP-MBJ

with respect to the overall silhouette coefficients.

As an application of the linkage based nested Dirichlet process, we have modeled the median

household income data using the linkage based nested Dirichlet process mixture model, the

nested Dirichlet process mixture model with NDP-MBJ, and the nested Dirichlet process

mixture model. We have shown that the linkage based nested Dirichlet process has per-

formed better among the three models based on the calculation of the silhouette coefficient.

In this chapter, we conclude that the estimation of concentration parameters for multi-level

clustering is important because the choice of the concentration parameters can affect the

clustering solutions.



Chapter 8

Discussion and Future Work

In this work, we have introduced the two methods, the linkage based Dirichlet process and

the linkage based nested Dirichlet process, for estimating the concentration parameter in the

DP and the concentration parameters in the nested DP. Other studies for estimating the

concentration parameter have used only the defined number of clusters and the number of

data points. However, our techniques calibrate the probability distances between the clus-

ters and the configuration of the clusters, so that we maximize information based on the

observations in the defined clusters and use it as much as possible. We have shown that two

methods are capable of providing the optimal clustering solutions based on the calculation

of the silhouette coefficient through the sequence of the simulation studies and applications

The linkage based Dirichlet process mixture model and the linkage based nested Dirich-

let process mixture model have demonstrated themselves to be a useful statistical tool as the

clustering algorithms. Currently, the dimension of the simulated data for the linkage based

nested Dirichlet process mixture model is up to 2 due to the difficulty in measuring the

distance between the mixtures of the distributions. By using other measures introduced in

Nowakowska et al. (2014), we may extend our simulation study for the linkage based nested

Dirichlet process to the higher dimensional data.

117
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In this work, the linkage based Dirichlet process and the linkage based nested Dirichlet

process are used for clustering analyses. However, the linkage based Dirichlet process and

the linkage based nested Dirichlet process are not limited to clustering analyses. Like the

Dirichlet process, these two techniques also can be used in random effect models as a prior for

a random effect term. For future, we may perform random effect models in linear regressions

by using the linkage based Dirichlet process or the linkage based nested Dirichlet process.

Through the sequence of simulation studies for a small number of observations and modeling

the timeline for the building construction costs, we have examined the effect of the estimation

of the concentration parameter, and we have shown that the linkage based Dirichlet process

provides a better clustering solution. Recently, clustering analyses for a small number of

observations from a high dimensional space become popular in many areas such as modern

biology; i.e. gene expression clustering. Thus, we may apply our techniques for clustering

gene expression data.
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(a) The estimated curve for D1 (b) The estimated curve for D2 (c) The estimated curve for D3

(d) The estimated curve for D4 (e) The estimated curve for D5 (f) The estimated curve for D6

(g) The estimated curve for D7 (h) The estimated curve for D8 (i) The estimated curve for D9

Figure A.1: 9 estimated curves by DP-MBJ are illustrated with their members.
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