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Scalable Parameter Management using Casebased Reasoning for Cognitive
Radio Applications

Daniel R. Ali

(ABSTRACT)

Cognitive radios have applied various forms of artificial intelligence (AI) to wireless systems
in order to solve the complex problems presented by proper link management, network
traffic balance, and system efficiency. Casebased reasoning (CBR) has seen attention as a
prospective avenue for storing and organizing past information in order to allow the cognitive
engine to learn from previous experience. CBR uses past information and observed outcomes
to form empirical relationships that may be difficult to model apriori. As wireless systems
become more complex and more tightly time constrained, scalability becomes an apparent
concern to store large amounts of information over multiple dimensions.

This thesis presents a renewed look at an abstract application of CBR to CR. By appropri-
ately designing a case structure with useful information both to the cognitive entity as well
as the underlying similarity relationships between cases, an accurate problem description
can be developed and indexed. By separating the components of a case from the parameters
that are meaningful to similarity, the situation can be quickly identified and queried given
proper design. A data structure with this in mind is presented that orders cases in terms of
general placement in Euclidean space, but does not require the discrete calculation of dis-
tance between the query case and all cases stored. By grouping possible similarity dimension
values into distinct partitions called similarity buckets, a data structure is developed with
constant (O(1)) access time, which is an improvement of several orders of magnitude over
traditional linear approaches (O(n)).
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Chapter 1

Introduction

1.1 Motivation

Since the advent of cognitive radio technology, practical applications use a number of differ-
ent techniques to optimize wireless and networked communications. The need for scalable
implementations are critical due to growing system complexities and stringent user require-
ments. Case-based reasoning has been identified as a candidate to provide or assist the main
cognition cycle of CR technology by storing information about past experiences. Learn-
ing from past experiences is critical for CR technology and is found in most definitions.
As this requirement is prevalent and CR systems grow in complexity, practical information
management is critical to create realistic implementations.

1.2 Case-based Reasoning for Cognitive Radios

Within CR research, various methods have been used to realize the concept of Mitola’s vision,
which first introduced the concept of CR [31]. One important aspect prevalent in most
research is that CR devices must learn from past experiences. CBR provides a well studied
area of research that can satisfy this requirement in a modular sense. Other implementations
such as artificial neural networks (ANN) or hidden Markov models (HMMs) provide a tighter
coupling of past experiences with their search through the solution space. CBR can provide
a decoupling of these concepts and provide a way for a cognitive engine (CE) to easily access
past information while using its choice of cognitive optimization.

Traditional approaches of CBR in CR applications use a system of similarity to compare the
current situation to past experiences. By calculating a weighted Euclidean distance between
the features of the query case and all of the cases in the casebase, casebased cognitive radios
use this metric to identify a similar case or set of cases [6, 21]. Once a case or set of cases
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has been identified as similar, the information from the case(s) can be applied to the current
situation.

As CR finds more niches to fill in the field of wireless communications, the internal cognition
cycle is tasked with more responsibility in terms of the various aspects of the system it
manages. These aspects and their various descriptions provide the cognitive engine with
the information it needs to remember the state of the radio at the time the decision was
made. As more information is required to describe the situation the CR is in, the number
of possible configurations grows extremely rapidly. While not all areas of solution space
need to be enumerated, a CR can undergo a number of situations quickly depending on the
granularity of the system description and how often the cognitive cycle is invoked.

1.3 Contributions

CBR presents a well studied area of research that can be applied to CR technology to facil-
itate information gain from past experiences. While it may have disadvantages as a stand-
alone application for the entire domain, it does present a reasonable avenue for information
storage from a better suited cognitive entity, such as a genetic algorithm (GA) [43] or fuzzy
logic [23]. These contributions have made a significant impact on CR presenting a modular
way to store and retrieve past information. As CR technology is applied to various aspects
of wireless and networked communications the need for proper information management of
past experiences is critical in order to form a centralized cognitive entity whose operation
does not hinder the wireless system.

This work revisits CBR as applied to CR technology, demonstrating a renewed look at
information abstraction, case representations and similarity considerations. The main goal
of this work is to revisit the case representation and indexing module of CBR to reduce
the burden on the other modules. Typically, four modules are present in CBR [27]: case
representation and indexing, case selection and retrieval, case evaluation and adaptation, and
case database population and maintenance. Because it is assumed that the third module, case
evaluation and adaptation, is performed by a more complex cognitive entity, the underlying
casebase data structure can incorporate case representation, and retrieval to allow the CE
more time to optimize the parameters of the case. By doing so this indirectly reduces
the need for casebase maintenance as well as conservative population size constraints. By
using existing approaches to representational information in wireless communications [15], an
abstract framework is developed for case representation. By de-coupling the whole of a case’s
content and the exact parameters that a CE requires of the case to be similar, a more accurate
representation of similarity can be defined for practical CE implementations. Furthermore,
by bucketing these parameters a data structure for this approach is designed and investigated
that provides little impact from accessing its information on the cognitive architecture. This
data structure is compared to traditional approaches and shows performance increases by
several orders of magnitude, especially as the casebase grows large. This is possible by
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bucketing the parameters that are considered when searching for similar cases. The buckets
are presented in an abstract fashion so that the specific application can design the most
appropriate parameters for use in that system. Application of this data structure is simulated
in a specific scenario to demonstrate at least some level of convergence within the scenario’s
problem space.

Using this approach allows cognitive entities to store vast amounts of useful information
without the pitfalls of slow access times. I first introduce this concept of this data structure
is first introduced in [6]. Because no other software libraries, besides common GNU C++
libraries, were used in the development of the data structure, it can be deployed easily
without reliance on additional software packages.



Chapter 2

Cognitive Engine Design

2.1 Introduction

CR problem-solutions can be seen as a complex optimization problem with one or more
different local maximum and a single global maxima. These maximum can change with even
slight variations on the system. Environmental considerations make this inherent as no radio
will experience a single, unchanging environment. The very nature of additive white Gaussian
noise (AWGN) implies stochastic variation in the system. In real world applications, multi-
path and fading are almost always apparent as well, presenting researchers with the difficult
task of automating solutions for radios to work well in these environments. Using cognitive
technology research has applied this learning technique that require not only new solutions
to new problems, but also learning from past experiences. How these tasks are implemented
is the core of CR research.

Joe Mitola is credited with the inception of this idea and saw CR as a way to understand
and react to changing user needs [31]. His definition has evolved over time into a more
communications oriented point of view. As others have stated the exact definition of CR is
still up for debate and has been defined many times over [39]. Even still, much lower level
details of the PHY and MAC layer are apparent in different applications and the definition
used in this work will assume the definition presented in [39]:

The goal is to build a flexible, reconfigurable radio that is guided by intelligent
processing to sense its surroundings, learn from experience and knowledge, and
adapt the communications system to improve the use of radio resources and
provide desired quality of service.

In the context of this work, there are two relevant aspects of a CE that must be considered.
First, a mechanism must be in place to generate possible solutions for the problem encoun-
tered by the radio. Secondly, a way to store these solutions, their respective performance,

4
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and the operating conditions is focused upon to provide reliable information in a timely
manner. There are numerous aspects to a CR and CE design, such as policy, inter-process
communication, security, etc., I go over the relevant aspects of CE design to establish a
backdrop to stage the presentation of the main contributions of this work.

Much research aims to quickly converge on an understanding of the environment a radio is in
and using available transmission parameters, adapt itself to the global maxima [44, 6, 42, 22].
Using this view on CR, both link adaptation and proper dynamic spectrum access (DSA)
can store information on the decisions it made in terms of adaptation it just requires proper
identification of the parameters used. Parameter description is a crucial part of a CE design
as it is the basis of integrating a well planned high level design into an applications specific
one. This chapter’s goal is to define, at a high level, the relevant aspects of a CE that
will provide the information necessary to adapt the contributions of this work to a specific
application.

2.2 Cognitive Engine Approaches

The CR problem domain is large and many implementations have proven to be successful for
different applications [20]. In this section I review some of these approaches and highlight the
advantages they provide. It is important to understand these approaches and the problems
they solve order to know how CBR can be used effectively and efficiently. Because CBR
is based on case similarity, it is also important to correlate how these approaches use past
information to solve unseen or poorly solved problems. CBR facilitates a way for CR designs
to store and effectively reuse information the radio has learned through its optimizations.
The retaining and reuse of information is a critical aspect of CE and CR design and is seen
in most definitions of CR [15, 39].

2.2.1 Artificial Neural Networks

ANNs are created by creating a set of nonlinear functions with adjustable parameters to
simulate a network of neurons. Each neuron is comprised of a single function that takes
multiple inputs to produce a single output. Their exists many ways to form and structure
these networks, allowing for a multitude of applications [19]. ANNs are well suited for
recognizing received stimuli as well as solution adaptation. This makes it well suited for CR
applications. In CR research, ANNs have been developed for spectrum sensing applications
[13, 48]. These applications used them to classify different wireless signals online, which is
useful for dynamic device interoperability. Similar to the simulations performed in this work,
ANNs have been used for parameter adaptation [46, 18].

ANNs provide advantages in several ways. They scale well conceptually, which is critical
as CR and CE design becomes more complex with more of the network stack to manage.
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They also can be created from just a few examples, relying on past experiences to create a
complex network. This is a crucial aspect in that it learns by experience which is the main
focus of this thesis. ANNs tightly couple the information learned with proposed solutions,
which is different than the assumption presented here, which is that higher level cognition
is its own entity with a separate set of data to contain its experience.

2.2.2 Hidden Markov Models

HMM is a useful tool to develop statistical relationships of random processes [37]. By
modeling the states of the output of a system, various analytics can be applied to the states
to learn more about the system in terms of the observed states. These states can be known
or unknown a-priori and are considered ”hidden”. These hidden states are then discovered
through observation and incorporated into the analysis of the system. HMMs have been
applied to three different problem domains [37]; an evaluation or recognition problem, which
is used to compute the probability that a specific observation sequence will be observed given
the parameters of the model. Secondly, the decoding problem which finds the sequence of
hidden states that best explains the observation sequence. Lastly, the training and learning
problem, which uses an observation sequence to find the most likely set of state transitions
and observational outcomes.

HMMs is useful to identify and classify stimuli and have been applied to channel modeling
[40]. The advantage of this is that if a CR can deduce what device is transmitting in
a certain frequency band purely on observed signal alone with no meaningful interaction,
the CR then has some preliminary information on the device, its expected protocols and
frequency occupancy priority, etc. Rondeau et al. used HMMs to model wireless channels
during a CR transmission. In [24] Kim et al. used HMMs to identify cyclostationary features
for primary signal detection. Gosh et al. formulated the problem of spectrum sensing using
Markov models proving its existence amongst wireless applications [16]. This was done
using real-time measured data. HMMs have also been used to describe spectrum occupancy
prediction [5]. This provides useful information to CR to significantly increase signal to
noise and interference ratio (SNIR) . HMMs build the set of states it considers based on
the observations of the system outputs. In comparison to CBR, HMMs can see resemblance
between the states it considers and the cases in CBR. HMMs focus on the transitions from
states and can be useful in CBR to understand the situation transitions that cases store and
base similarity on.

2.2.3 Rule Based Reasoning

Rule based reasoning uses an approach of applying current data to a set of rules described
in an IF-THEN format [35]. The rules can be built into the system and executed in any
order. Conversely, these rules can be learned autonomously and used dynamically as new
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data is observed and more conclusions can be reached about the system. This type of system
is generally split up into two functional modules, an inference engine and a rule base. The
inference engine is what decides which actions to take based on the conclusions reached by
sifting the observed data through the rule base. In [47] a rule based reasoning was used to
develop an application for IEEE 802.22 applications, which achieves similar performance to
a genetic algorithm approach but with less complexity. This is one of the major trade-offs
for rule based reasoning in that it is much easier to implement and has less computational
complexity, especially when compare to a GA approach. In [10] a RBR engine was developed
using predicate calculus using a generic CR architecture to be used in the reasoning process.

Rule based reasoning stores the information it considers useful in its rule base. This is useful
in that the cognitive entity in the system develops relationships and from those relationships
rules can be formed that shape well suited solutions. The approach taken in this work is based
mainly in storing discrete instances of parameter application. If each situation the radio
encounters can be described by a set of parameters, there are advantages in these discrete
applications have a measurable outcomes which may provide more precise information than
a rule outcome may infer.

2.3 Genetic Algorithms

Genetic algorithms are discussed here at length to describe a commonly used way of gener-
ating new parameters for a given situation. GAs have been commonly used in conjunction
with CBR [33, 6, 9], and are well suited for searching a large solution space to find a globally
optimal solution. There are issues, however, as it can be complex and take more time than
is allowed for some applications.

A biologically inspired CE design is presented through the works of Rieser et al. [38] which
introduces two important aspects of a CR. First, a GA is introduced to traverse the search
space of possible configuration parameters that is available to the radio. Newman introduced
the concept of using past experience as a starting set for GA population adaptation [33] and
is revisited in more detail to provide a better description of its integration [39]. Within the
context of this work, the CBR is used to provide more then as a mere primer for the GA. Due
to the reasons discussed below, GA usage in embedded radio system can cause detrimental
impact on a CE’s effectiveness, proving to be too complex [15]. For these reasons, the CBR
should be relied upon whenever possible to provide a solution orders of magnitude faster than
is possible with a GA. A CBR casebase can be seen as a cache of empirical measurements
of real values applied to a specific situation.

Rieser’s dissertation goes into detail on the application of GAs to CR, demonstrating the
chromosome structure and the interaction between the different components of a GA [38].
GAs are used as an optimization heuristic to search a parameter set for an optimal set
of values. This is inspired through biological functions like reproduction and evolution in
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order to simulate a rapid progression of a populous through multiple generations. Mapping
raw parameter values into acceptable genes inspired the idea of bucketing parameters in
the casebase. By defining the parameters that are considered by the search algorithm into
different chromosomes, the GA evolves its set of considered parents into a set that has what
is generally accepted as a high probability of having an acceptably good solution. This
is done through a few different techniques known as selection, crossover, and mutation.
Selection creates a pool of candidate solutions from the general population to be crossed
over. Crossover is the matching of parents to one another to produce offspring which will
have a mix of genes sourcing from either parent. The offspring can then be further mutated
to ensure the system doesn’t converge to a local optima. Each member is evaluated via a
utility function to determine which chromosome selections produced the best results. Those
chromosomes deemed fit enough survive to the next generation to reproduce, while the others
are discarded. An example of a chromosome is shown in Table 2.1 to some n entries [38].

Gene
Chromosome Number Power Frequency Code Rate Modulation

0 5 dBm 2.5 GHz 5/6 BPSK
...

n 0 dBm 2 GHz 1/2 QPSK

Table 2.1: Chromosome Example

In some research, the mutation aspect of chromosome augmentation requires specific patterns
of bit flipping with certain probabilities [32]. This conflicts with the wide range of possible
values that each gene may take on. For instance flipping a psuedo-random bit (there is
some probability theory behind the bit position selection) in the string sequence ”BPSK”
will most likely result in an unintelligible string. The same applied to other types commonly
found in computer languages such as floating point representations as well as signed integer
types. A mapping is required to interpret these non-uniform binary representations and
may add additional computational complexity to an already complex system of evolution.
This is especially strenuous when required by the fitness function which must re-map each
gene of each chromosome back to some ”model space” for every evaluation of each member
of an evolutionary population. Model space is considered the raw values that can be used
in wireless estimation functions such as in theoretical bit error rate (BER) curves. In [6] I
address this concept and discuss the mappings used for the system.

Furthermore, genetic algorithms are required to model the environment in which they are
operating in. Because they are not able to empirically try every case that is contained
within its population, these must be based in a theoretical evaluation and are charged with
accurately providing a method of determining the best set of transmission parameters [32].
This is a difficult task however, as the functions used to accurately describe the inputs and
output of a wireless system are not always static and can change dynamically over time [7].
Not only do these functions change, but are required to be applied to every chromosome
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in each population to determine performance. This can be very taxing for even powerful
computer given a large enough population size. The problem is compounded when considered
in an embedded sense of CR design.

While the GA itself can present the problems described in this section, it in no way nullifies
its well studied functionality to the system. While a GA is still accepted by many to provide
a useful way to traverse a solution space [20], the importance of efficiency gains by using
past experience should be considered when performing on-line optimization. This will gen-
erally provide better performance given that the database structure representing the past
knowledge is quickly accessible and the information useful to the reasoning entity.

2.4 Case-based Reasoning

When CBR was first introduced to CR it was under the guise of Case-base Decision Theory
(CBDT), which has a natural correlation to CBR [39]. Here we consider the application
of CBDT to be synonymous with CBR. CBR incorporates a group of case manipulation
mechanisms to drive its reasoning. These including case representation and indexing, case
retrieval, case adaptation, and case-base maintenance [36]. In CR literature CBR is usually
coupled with an adaptation mechanism to choose new parameters given the case-base is not
sufficiently populated to produce a case with similar enough characteristics or a case with
sufficiently acceptable performance. Multiple adaptation techniques were surveyed for IEEE
802.22 WRAN applications including a hill-climbing search, a GA, and a combination of the
two [21]. CBR has also been coupled with fuzzy logic to determine the type of operating
channel [23]. This separation shows a divide in the definition of CR in that the CBR aspect
provides the mechanisms to retain and organize empirical knowledge versus adaptation and
the ability to respond to situations it has yet to undergo. It is in this, that CBR can be used
in a diversity of scenarios that require, or can make use of, a modular system component
that retains and organizes information from past experiences.

The term ”Case-based reasoning” is an umbrella terms used to encompass a few different
forms of artificial intelligence (AI) . It is important to classify which specific application
of CBR is best suited for CR, as it has many applications. Exemplar-based reasoning is
a classification problem in which many exemplars are classified to represent the class’s de-
scription. An unclassified exemplar presents the problem and must be classified. Instance
based learning uses a highly syntactic CBR-approach, commonly using feature vectors, with
discrete values as opposed to a generalize knowledge base. This remains to be seen as a
classification problem, in that it attempts to identify clusters within of similar cases within
its space [4]. Memory-based reasoning is a focus group of CBR and views the collection of
cases as a large memory and the reasoning processes as accessing and searching this mem-
ory. This work relates to this field in that it focuses on memory organization and a specific
retrieval algorithm for a static case representation. In the typical CBR domain, cases vary
with their structure and have a degree of complexity and thus richness of information. This
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domain also encompasses some form of case modification or adaptation of retrieved cases.
In this work, the complexity of the cases is static and the adaptation of case information
is a job left to a higher level of the cognition within the engine. Analogy based reasoning
uses cases from a different field of view to solve cases in a completely separate domain. An
example of a singular case in this view would be the use of biological evolution as the basis
for a optimization heuristic algorithms, such as that discussed in Section 2.3. However, this
approach may be difficult to implement any kind of on-line approach for an area as specific
as cognitive radio.

While each approach has merit and can be applied to CR applications, this work views
the problem in the memory-based reasoning domain. Traditionally, memory-based reasoning
research has focuses on using parallel processing and parallel memories [25] to improve per-
formance. By adding faster hardware implementations systems are able to solve problems
faster, however, I revisit this subject with two different advantages at my disposal. This
work is presented in terms of proper memory organization using modern day computational
power, reducing the requirements of the data structure in terms of size and access time. I
also redefine similarity for our specific situation in that each feature vector of a CR’s case
can be partitioned in terms of each similarity dimension. This eliminates the need for a
similarity calculation to quantify a discrete distance between cases. Section 3.3 discussed
this is greater detail.

CBR is based in the idea that every case contains information related to the situation that the
reasoning entity underwent at some point in time. While there are many ways to represent
and implement information, three common factors are seen in each case that a CBR stores;
a problem, an action, and a result. This section introduces the idea of CBR to CR and
reviews the literature of its latest application. Chapter 3 provides an in depth analysis on
the relevant system components of CBR and how they apply to our system.

2.5 General Parameter Description

In a simplified view, a radio’s transmission parameters are at the heart of its ability to
control aspects of the system to improve system efficiency and overall throughput. As CR
research grows to more complex applications, the number of parameters considered grow as
well. This is the case with LTE network technology as CR technology is used for bandwidth
allocation strategies [2]. The relationship between adjustable parameter inputs (commonly
known as knobs), environmental observables, and resulting performance metrics (commonly
known as meters) is explained in detail in [15]. I review these definitions to provide the
basis of understanding of how the CBR component within a CE can be designed from an
abstract stand point. These allow an avenue to quantify a numerical understanding of the
capabilities of a radio, its operating environment, and the measure of its performance both
in traditional terms (throughput, BER, spectral efficiency, etc.) and in a goal-oriented
environment (parameter utility, combined overall utility, adequate case relevance etc.).
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CRs and CEs alike have multiple parameters available for them to augment and change
to provide a dynamic performance gain. These parameters are assumed to be reactive in
nature in that they are goal oriented and performance metrics have the ability to dictate
whether there is a ”problem” or not. How a radio can define its problem is discussed in more
detail later. These changeable parameters are considered as a vector θ = {θ0, θ1, ..., θNθ−1} ,
containing Nθ elements in the system. Environmental observables are considered to be un-
controllable parameters that describe the conditions the radio is operating in. This can range
from path loss to number of users in the system to application requirements. This is defined
by the vector φ = {φ0, φ1, ..., φNφ−1} similarly containing Nφ possible elements. A wire-
less transmission’s performance can be viewed in different ways, such as spectral efficiency,
throughput, overall system throughput, bit errors, signal strength, etc. These performance
parameters are considered as β = {β0, β1, ..., βNβ−1} consisting of Nβ parameters.

These vectors of parameter interact in different ways to produce the observable measure-
ment statistics. Abstractly one can view the environment, hardware considerations, or any
reasonable factor that may impact the performance measures of the radio as a black box
represented by a function f . Formally,

β = f(θ|φ) (2.1)

By wholly understanding f , a radio will then have the knowledge to know which θ param-
eters will produce the ”best” possible β parameters. This is the primary problem with CR
in that f is extremely difficult to understand, especially in real time and autonomously.
Communications theory demonstrates a mathematical representation of understanding for
this function, but may not always perform as expected in implementation. The advantage of
CBR is the ability to store sufficient empirical information on f such that it does not need
to adapt a case or create one anew based on a reasoning entity’s solution generation.

As a simple example, consider the measurement of RSSI as β0, transmission power as θ0, φ0

as path loss, and that Nφ = Nθ = Nβ = 1. Typical RSSI graphs demonstrating a sample of
the type of fading (as shown in Figure 2.1) shows the plot of β over time.

Figure 2.1 presents an overly simplified view of the characteristics of a wireless channel. More
complicated estimation techniques can be used to identify statical understandings about the
channel (e.g. Rician or Rayleigh fading estimations). This is especially relevant when con-
sidering the channel against the properties of the waveform produced at the transmitter.
Knowing how the waveform built at the transmitter interacts with its environment is crucial
in understanding how to best build a waveform. Comparing coherence time and coherence
bandwidth to symbol time and bandwidth used provides more details about the type of
channel. These characteristics can extend φ and provide better understandings of the envi-
ronment to the reasoning engine. Figure 2.1 presents a simple simulation over an orthogonal
frequency-division multiplexing (OFDM) in a Rician Fading channel.
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Figure 2.1: Plotting a simple f

2.6 Utility: Measuring Parameter Usefulness

Each parameter considered in the system may or may not map to a space that the reasoning
engine can find useful. φ is meant to provide a set of parameters that are measured by the CR
and provide useful information, but the actual values of these metrics provide no additional
information beyond what the channel was actually like during that point in operation. This
is opposed to a controllable parameter like transmission power. Transmission power can
provide a double edge sword in terms of utility as it can offer both better signal strength as
well as long battery life if used efficiently. Both signal strength and battery life source their
sample information off the raw dBm values that this metric provides. This section’s aim is
to go over how an appropriate mapping of raw values to a common usefulness metric, known
as utility, can provide a good backdrop for the set of goals of a CR system.

2.6.1 Utility

[15] provides a meaningful utility function described by three main parameters. p , which is
actually made up of the descriptor ẋ and an input x, η, and σ. ẋ describes the upper goal
that the raw value of the parameter (x) should map to. η is the threshold parameter and σ
is the spread parameter. η and σ can be chosen to be any arbitrary value, but are chosen
such that once the upper goal is reached in the parameter space, a utility of 95 % will be
obtained.

q(x, ẋ; η, σ) =
1

2

{

1 + tanh
[

log
(x

ẋ

)

− η
]

σ
}

(2.2)

This is considered an ”upper” goal in that it reaches the higher utility value. These mappings
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are described formally in Equation 2.2, where the hyperbolic tangent function is tanh(z) =
(ez − e−z)/(ez + e−z) and p = x/ẋ. The values of η and σ are described when q(ẋ) = q0 and
q(pẋ) = qp such that

σ =
1

2 log p

[

log

(

1

q0
− 1

)

+ log

(

qp
1− qp

)]

(2.3)

and

η =
1

2σ
log

(

1

q0
− 1

)

(2.4)

This function produces a monotonically increasing utility function that provides a means
of mapping raw parameter values to a measure of usefulness to the system. Figure 2.2
shows this curve for a generic logarithmic parameter. Note that q is bounded q ∈ (0, 1),
providing a common grounds for comparison. It is important to note that this mapping
is extremely important to a CR in that it provides a relative ground of comparison to
the system. Comparison of solutions based simply in parameter space are not sufficient.
Equation 2.2 provides a common equation which can be applied across all utilities while still
preserving the unique attributes of the parameter it is describing. This is done by specifying
p for each parameter.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10  100

U
til

ity
, g

(x
, x

do
t)

x/xdot

Figure 2.2: Generic Utility Function

This function has seen use in CR applications [47] and [21] and is used here for several
reasons as described in [15]. As describe before Equation 2.2 is monotonically increasing
which improves convergence on most search algorithms. This prevents gradient based search
algorithms from hitting a plateau. Because 2.2 is a ratio of the metric x to its goal ẋ,
units are abstracted away from the underlying parameter space it is describing. Finally,
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an unattainable upper bound allows engines and reasoners alike to always search for better
performance. The diminishing marginal return on the utility however, provides smaller
returns the further above its upper bound it is. This is useful when trying to optimize a
global utility.

This generic utility function describes a single utility, however, there will be a number of
utilities in the system that need to be measured. Thus, the vector u = {u0, u1, ..., uNu−1}
is used to describe the value of h for Nu utilities. Although a simple search algorithm was
used in this work, this description of utility provides a convenient mapping making it easier
for solution space searching algorithms to plug into the framework described here for CBR.
The use of the subspace mappings is also helpful in visualizing the relationships between φ,
θ, β, u and uglobal. These parameters are the basis for the case description presented here.

2.6.2 Fitness

In CR applications, a natural design trade-off is usually inherent in the different θ param-
eters of a CR system. Power, again, is used as an example of having two different and
conflicting utilities. These utilities being signal strength and battery consumption. Not
only might higher power levels drain the battery but cause harmful interference known as
the saturation effect in a single link scenario. In a networked scenario, this effect is still
possible to each link as well as cause harmful interference to other radio links within range.
CR implementations need to balance this trade-off effectively and fairly. In this example
a weight can be introduced for each utility, giving more importance to reducing power due
to compounding effects if too much power is in the air. These weights can then be incor-
porated into a fitness function to appropriately reflect the relative weighted values of each
utility. They are assumed as a vector in w = {w0, w1, ..., wNw−1} of Nw = Nu weights. Each
weight must be designed according to the goals that the CR aims to achieve. These goals
are assumed static and unchanging once deployed.

Fitness is considered as a global utility uglobal which quantizes the performance of the radio
into a singular value. By combining the underlying utilities, the radio has a convenient way
of gaging how well the solution it generated did. [32] introduces a weighted utility function
described in Equation 2.5 viz

uglobal(u|w) =

Nw−1
∑

i=0

wiui (2.5)

with the constraints that

wi ≥ 0, ∀i = 0, 1, ..., Nw (2.6)



Daniel R. Ali Chapter 2. Cognitive Engine Design 15

and

Nw−1
∑

i=0

wi = 1 (2.7)

While this is an intuitive approach to consolidating utilities, it has a flaw. Given that each
utility was to have some measure of importance in the system, and some utility was reduced
to 0, uglobal would not adequately reflect this. Even if that utility were given plenty of weight.
For instance, if throughput was considered a utility and it were reduced to zero, if the other
utilities considered by the system are doing moderately well, then the fitness would reflect
a moderate fitness, whereas zero throughput should map to zero fitness as no connectivity
presents no practical usefulness to the system.

This work uses a weighted production function instead of a weighted summation function
as described in [15]. This equation is shown in Equation 2.8 which is on the same bound as
q(u) such that uglobal ∈ (0, 1).

uglobal(u|w) =

[

Nw−1
∏

i=0

h(ui)
wi

]1/Nu

(2.8)

To demonstrate the impact weight can have on this fitness function a situation is developed
of two utilities. Using our previous example consider u0 is Signal Strength and u1 is Battery
Usage. Allow q0 = 0.95 and qp = 0.05. For signal strength p0 = 10/35 and to equally
pit battery power p1 = 35/10. In Figure 2.3a we can see that when the weight is evenly
split between both parameters at w0 = w1 = 0.5, an optimal fitness value can be reached of
uglobal = 0.707 at x = 18.75. If we wanted to skew this to favor battery life over signal strength
for the reasons stated above, we simply set the weights differently such that w0 = 0.75 and
w1 = 0.25. The result of this skew is shown similarly in Figure 2.3b, reaching a slightly
higher fitness of around uglobal = 0.755 at its peak at at x = 14.81.

An interesting aspect that may not be intuitive is that this fitness presents a function that
does not have natural peak performance at one. The view on this is that since h(x) at least
approaches both bounds that the fitness function should do the same. This is not true. In
the scenario presented in Figure 2.3, both utilities are pitted equally against each other and
have their upper bounds at some distance equal in the power domain to their distance. If
the battery drain utility is allowed to be more generous in terms of its goals and is shifted a
fitness increase can be seen in Figure 2.4. Formally, this graph is the same as Figure 2.3a,
however, p1 = 45/20. This gives a result of uglobal = 0.894 and x = 23.815

What this reflects is that Equation 2.8 shows us a true representation of trade-off between
utilities. Scaling this fitness value to one can be done, however, provides no advantage in
terms of radio performance. A global fitness maxima must be known a-priori to appropriately
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Figure 2.3: Weight skew

scale this function and is not required as all fitness functions are assumed static as the
measure of usefulness each utility exhibits does not change. Variable and dynamic utility
function are outside of the scope of this work, but provide an interesting area of research
that may offer even more dynamics in terms of radio performance metrics.



Daniel R. Ali Chapter 2. Cognitive Engine Design 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

U
til

ity
 a

nd
 F

itn
es

s 
R

at
io

Power (dBm)

u0: Signal Strength Utility
u1: Battery Drain Utility

Overall Fitness

Figure 2.4: Generous Goal Fitness



Chapter 3

Parameter Management

3.1 Introduction

Traditionally, much CBR research has studied how a reasoning entity would use the infor-
mation in the cases to classify the case under a specific classification description. Using this
description it could then find other cases with similar attributes and use the information for
these cases to be applied to the current situation [26]. In the CR domain, cognitive entities
must have adequate domain knowledge in order to function properly as AI entities. With-
out at least knowing the possible variables of the system it is trying to optimize, it cannot
adequately perform its duties. Knowing that a cognitive entity will at least have knowledge
of the parameters involved, an adequate storage mechanism can be created to structure and
index the information of the experiences it under goes. As cognitive systems become more
and more complex, more parameters are introduced to the CE to interrupt different aspects
of the systems. Systems like LTE and WiMAX can make use of a multitude of information
to adequately optimize the adjustable parameters of the system [23, 1]. In this section, the
case design used for the casebase is introduced, as well as describing the aspects of each
element in the case. One way a casebase could be generally integrated with a reasoning
entity is also reviewed. Finally the concept of similarity is introduced to give the reader an
understanding of the actual organization of the data structure. Finally, the data structure
is explained at length using the definitions created by this chapter.

3.2 Case Design

Within CBR, case design is critical to adequately representing useful information. As men-
tioned in Section 2.4 a case generally contains three critical pieces of information for use
within the system; a problem, an action, and the respective results. There are numerous

18
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Table 3.1: Case Representation

Case Contents CBDT Attribute
û Problem

θ̂ Action
u Result
δ Similarity
ǫ Misc.

ways to represent the case’s information and the organization of the casebase hinges on this
design. Table 3.1 shows the organization of a case at a high level. What this case represents
is a problem û that describes some set of utilities that have dropped below their designated
goal or reached some undesirable levels. The lower limits of acceptable performance can
defined by adequately defining p for Equation 2.3.

There are three classical representation of cases; object-oriented representation, predicate
representation and relational representation [36]. Object-oriented representation compacts
the data into a singular object, which may contain a set of feature vectors or contain a set of
other objects. Similarity calculations can be difficult with this representation if the structure
of these cases varies from case to case. Predicate representation presents cases purely in a
rule based IF-THEN indexing system. Given that certain feature vectors or objects are
available within the case, or they are a specific value, then they are selected based on some
similarity gradient. This has some similarity to Rule-Based Reasoning and could be seen as
an instance of it. Relational representation uses a search algorithm based on one or more
feature vector instance values. By searching the casebase based on a range for a specific
attribute, or a set of ranges for multiple attributes, a set of cases can be produced which
match this description.

This approach uses a combination of these representations with two caveats, that the struc-
ture of the case is static and the calculation of similarity must be based on a static feature
vector set, defined here as a similarity dimension. Each member of this similarity dimension
must be describable by a minimum, a maximum and an interval gradient. This is represented
in the case in Table 3.1 as δ = {δ0, δ1, ..., δδ−1} .

Through the description of the processes involved here, we can view the flow of interaction
between the engine and the casebase as a series of queries and responses. This is shown at
a high level in Figure 3.1. Each part of the case is populated at a different point in this
flow graph and demonstrates where in the reasoning process the casebase has control of the
case and the reasoner has control over the contents of the case. This also demonstrates the
separation between the two in that this work focuses mainly in the implementation of the
casebase space, but is designed with its reasoning entity negotiations in mind.
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Figure 3.1: Interaction Flow Graph of Casebase and Reasoning Entity

3.2.1 Engine Invocation and Problem Description

At it’s inception, CR research has been based around the OODA loop presented originally
by Mitola [31]. This has generally been accepted as a reasonable loop for a CR to take,
but is defined at a high level for abstraction. Different application implement this loop as is
needed by their application [7, 28, 39, 38]. This work assumes some form of this loop is used
in a general CR architecture and is discussed here to further the reader’s understand of a
clear problem definition within a case. The definition of the case is not described specifically
to maintain abstraction, but is presented in a specific form in Chapter 4. From a high level
point of view, this loop is considered invoked when something in the system changes, usually
for the worse. The change in the system is assumed to have an impact on the utilities
considered. Specifically, the designer should plan for possible problems that the radio can
encounter, so that a measure of usefulness can be implemented to know exactly what the
problem is. For example, in a single wireless link, throughput seems like an obvious utility
to include in the reasoning engine. Signal strength, however, might be included to provide a
means for the radio to know what is wrong with its transmission. While throughput degrades
with signal strength, the CR cognition loop will not know how to adequately correct for this
unless it knows its signal strength is empirically weak due to underestimating the path loss
of the channel or simply not using enough power.

Thus we can assume that at least in some form of utility, we can identify the problem when a
problem arises. To accurately describe this problem, a specific set of utilities, û ⊆ u is used
to describe the problem. This invokes the need for cognition and happens first in Figure 3.1.

There are other possibilities for the OODA loop (or some reasoning in general) to kick
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in. The most apparent is the drive for the engine to optimize itself beyond satisfactory
performance, even if there is no utility below acceptable measures. This is beyond the scope
of this work and adds much more complexity for minimal return, which is reflected in the
utility functions described in Section 2.6.1, given that the parameters for ẋ, qp, q0 and p
are chosen for acceptable performance for each utility. Alternatively these goals can be
chosen such that the fitness functions reflects the best possible values at their upper goal but
with two drawbacks. Generally, each utility cannot be obtained at their maximum. Such is
the case with signal strength and battery power consumption. Furthermore, the advantage
of diminishing returns is lost and reflects only a steep gradient to reach its upper bound.
Another reason why an OODA loop would be invoked might be because of a simple time
interval. Regular initiation of a CE could provide benefit in analyzing ongoing metrics to
predict possible deep fades if the channel’s coherence time was small enough. The reasoning
used in these simulations is time-interval based as it is all that is required to show acceptable
performance of the casebase.

3.2.2 Case Elements

Now that the problem has been has been identified, the proper actions can be taken to
correct its cause. The reasoning entity has controllable parameters available to them, which
are assumed described in θ. To adequately correct for the problem utilities, û, the engine will
change some subset of parameters that it has control over, which is defined as θ̂ ⊆ θ. How
these changes are made are left up to the reasoning entity as the best changes depend on the
application. This is the situation that a new case is created entirely. The reasoner should
first query the casebase to find a set of similar cases related to its current problem. A set of
similar cases can provide two different types of information to the reasoner, encompassing
two types of reasoning as discussed in Section 2.4, instance-based reasoning and exemplar-
based reasoning. The difference here is the problem of classifying cases is not an issue,
merely a problem of properly indexing them. It is assumed that the designer has enough
knowledge of the system to at least identify the parameters that are influence and have
influence on the system. The relationship between these need not be defined for the casebase,
as enough instances within a specific scenario will produce a good result or result set. This
set can provide a general set of knowledge for some instance samples of similarity features,
as well as ones that the reasoner can simply re-apply, with no higher level cognition involved.
This would be, of course, reapplied if the reasoner deemed it performed well enough to be
reapplied.

The result of the case is the resulting set of utilities after the application of θ̂ is performed.
Within the CBR cycle, described in [3] and in [21] a case estimator is used to predict how well
a case is going to perform. This is done in the reasoning space and may or may not be done
given that the reasoner is going to simply reapply a previous case or alternatively, modify
or create a new case altogether. This distinction is illustrated in Figure 3.1. The estimation
that is performed can provide the reasoner with useful information as it can compare its
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generated solution to past solutions to ensure the best one is chosen. This is where a proper
exploitation vs. exploration trade-off algorithm would best be suited between a reasoner and
a casebase, such as in [44].

It should be noted that ǫ provides the case with any other relevant information that may
not necessarily be included in either of the vectors mentioned Section 3.2.2 or Section 3.2.1.
This includes non-relevant, yet non-trivial information the reasoner may use for other high
level reasoning including possible time stamp information, case identification numbers and
policy considerations (what policies were in effect during this case’s operation). Specific
policy instances in effect may be used here or within the similarity dimension as it places
constraints on what solutions the reasoner may be allowed to use.

3.3 Similarity

The final aspect of the case representation is δ = {δ0, δ1, ..., δNδ−1}, a similarity dimension
vector of Nδ entries. This dimension of the case is the cornerstone of this casebase’s indexing
scheme as it provides the relative similarity details of the case. This structure is assumed
to be specific information, mapped from the information of the case (û, θ̂, u or ǫ) into the
similarity dimension. This deviates from CBR literature in considering the information on
which to index the case is wholly separate from the case contents itself. While there is a
separate vector of information than the rest of the case, the contents of δ are still generated
from the case information. This is based on the fact that not all information in the case is
relevant to describing the aspects that must be similar in order for a case to provide useful
information to the reasoning engine. By designing the case such that some or all information
is relevant to describe the similar aspects of the situation in which the case was generated,
a reasoner can know in which problem domain it is before even assessing what it should do.

3.3.1 Concept Definition

Similarity provides a way for a case-based reasoner to adequately quantize how the relevance
of the information of cases in the casebase to a particular case that is currently trying to be
solved. In traditional CBR research, similarity has taken on two forms; surface similarity
and structural similarity [30]. Structural similarity is based in the fact that each case has
a different set of feature vectors, structures and objects contained within itself. The exact
structure of the case can vary from case to case and can be computationally complex when
considered for an entire casebase. Surface similarity is calculated using the features of the
case comparatively, which represents the traditional approach of similarity for static feature
vector cases. For two cases, eq and ep of n feature vectors, and a similarity weight vector of
wi∀i = 0, 1, ..., n, weighted Euclidean distance is shown in Equation 3.1 has been a mainstay
in CBR distance calculation [36]. When all weights are equal to one, this degrades into a
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measure of Euclidean distance. d1pq.

d(w)
pq = d(w)(ep, eq) =

[

n
∑

j=1

w2
j (xpj − xqj)

2

]1/2

(3.1)

Equation 3.1 represents the heart of a k -Nearest Neighbor (k -NN) algorithm. By comparing
all cases to the current case, a k -NN algorithm can be used to find the absolute most relevant
case or cases by classifying which problem set the case belongs to. Some implementations
in CR literature have used a ranking system to derive the highest set of possible cases using
this calculation [6]. I used CBR differently in this classification in that generally, CBR first
identifies the class of case via some method (e.g. - k -NN) and uses this classification to find
which cases performed the best amongst those in that class. In [6] a casebase was used to
store the information and used Equation 3.1 to identify similar cases. This is not necessarily
a classification problem, which is what most classical CBR research attempts to solve, but
does provide a studied quantification of how to compare the relevance of two cases.

3.3.2 Advantages and Disadvantages

This weighted Euclidean distance provides advantages in that it can find the closest neighbors
near some given point in Euclidean space and factors in weights to make some features more
important than others. This same weighting scheme may be used in the case definition in
Table 3.1, but there are two negative drawbacks to using this kind of calculation. First, it
is unwieldy for large casebases that contain many cases. The access time is always relative
to the computational power behind it, however, with CR embedded designs are prevalent
and this computation power should be considered limited. As a casebase’s size increases,
the access time of a list data structure increases linearly as well when all elements of the
list have to be visited. This is on the order of O(n), where n is the number of cases
stored. Secondly, using this kind of similarity calculation presents problems like that seen
in Equation 2.5. Because Equation 3.1 is based in the real number space, R, features that
may range from several orders of magnitude larger than others may overshadow smaller, yet
equally important differences. For example, if some utility was used as a similarity metric
in δ and is bounded as defined in [15] as g(x) ∈ (0, 1), then some other similarity measure
such as packet size which may range from just a few bytes to several thousand could easily
overshadow this. Consider a case with two feature vectors x0 and x1 which represent fitness
and packet size respectively, with weights w0 = 0.5 and w1 = 0.5. When the Euclidean
distance is plotted, Figure 3.2 shows this disadvantage with an almost linear scale in packet
size’s difference, while fitness difference has almost no impact.

Even when the weights are heavily skewed at w0 = 0.99 and w1 = 0.01, the same trend is
still prevalent in Figure 3.3
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Figure 3.2: Euclidean Distance Example
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Figure 3.3: Weighted Euclidean Distance Example

The reason this does not work for our application and why it has worked in so many other
domains is due to the range of dimensions we are working with as well as an inherent
difference in the problem that traditional CBR usage has been applied to. The dimensions
used in traditional CBR usage assumes that the general scale of each dimension is relative
to each other in terms of the differences presented. Using the weights to scale these is
inefficient and a misuse of what the weights themselves are trying to accomplish for the
resulting metric. Weights are used to describe the importance of the metric in terms of
similarity, not to appropriately scale the curve of its feature vector. Other work has created
scale invariant techniques such as the Mahalanobis distance [29]. This work grows out of
the original CBR problem of classification and is not targeted to simply identifying cases on
a single vector. The problem still remains, however, is that as a casebase grows, its access
time grows linearly as well if every case in the casebase needs to be compared against the
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query case.

3.4 Organization by Similarity

There are two main ways to consider similarity in a CBR system. One is structural similarity,
which is the basis of a classification problem [45]. By successfully grouping similar cases,
a reasoner can use this knowledge to identify the domain the current case lies within and
identify the different experiences it has gone through within this domain to find information
relevant to a good solution. This deals mainly with what attribute-value pairs are available
within the current case and the set of cases that had the same pair(s) available to it as well
[36]. Once this domain is identified, there are even more techniques that use this information
to further refine the information those cases provide it. The other way to obtain a similarity
is to simply calculate it using a distance metric between two cases. For the CR domain, the
problem with these two measures are described in Section 3.3.

Using the case definition described in Table 3.1, we can now describe how a data structure
can be used to organize this information. Recall the similarity dimension vector, δ. Instead
of assuming that each member of δ is bounded on the real number line, in CR applications
we can statically define the parameters required by the CR to maintain the goals defined in
its objectives. Not only the utilities, but any parameter contained within the case can be
translated into this similarity dimension by understanding the properties of the dimension
itself. For example, when considering an abstract piece of information that would be useful in
a single wireless link, dimensions of path loss, distance, fading, extreme temperature would
all contribute in terms of a similar situation that the radio would currently be experiencing.
In a networked aspect, a base station would want to store similar data but relate it to a
geographic location to identify an area of unusually bad reception for its users. It could
also associate data with the user itself. The number of users, network load, and dynamic
network configurations would all contribute to describing the situation a CR is in when it
encounters a problem. As CR technology moves up the network stack in terms of what it has
control over and must consider the case dimensions can become quite large. As dimensions
are added to a case’s description of its situation, the possible quantifiable situations grow
exponentially. Consider a simple example of a similarity dimension as 4 vectors, each able
to take on one of 10 possible values. This results in 104 = 10000 possible combinations for
a simple scenario. Allowing the dimension to take on any continuous value rapidly increases
complexity. Furthermore, adding more features to δ exponentially increases these possibili-
ties at an alarming rate. With such a large combination of solution space the reasoning of
a CE is tasked with the large task of finding optimal solutions for any situation. In parallel
with this task, managing such a large number of possibilities can be daunting if not designed
properly.

In order to manage such a large solution space, consider each dimension of δ. For a CR the
dimensions of these vectors, δi∀i = 0, 1, ..., Nδ−1 can be described in terms of a minimum, a
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maximum, and a granularity. The constraint for this description is that for some dimension
i, max δi −min δi ≥ 2gi to maintain at least more than one possible interval. The minimum
and maximum need not be the absolute of the metric but just a practical measure of what
the CR will experience in its life cycle. For example if temperature were a dimension on this
similarity vector the absolute minimum theoretical value of 0 Kelvin does not need to be
considered the minimum due to the fact that no radio will ever experience this temperature.
There are reasons that all of these ranges would be included, one being for the benefit of the
reasoning entity. Radios that communicate from the dead cold of space experience different
temperature ranges than those along the equator and each range should include a practical
set of values.

The grain of each dimension is defined here as g = {g0, g1, ..., gNδ−1}. g is meant to provide
an interval of value that the CR reasoning engine can consider points in that interval to be
similar. This will vary from dimension to dimension but the only requirement of the range
is that it is even divisible by the difference of extremes on δi, viz

(max δi −min δi) mod gi = 0 ∀ i = 0, 1, ..., Nδ − 1 (3.2)

The constraint presented in Equation 3.2 creates intervals on the dimensions values space
and is defined here as similarity buckets. To demonstrate this concept consider an example
where δ contains two dimensions, transmission gain and receiver gain, δ0 and δ1 respectively.
For the sake of simplicity assume the following configuration in Table 3.2.

δi Max Min Grain
δ0 (dBm) 24 16 2
δ1 (dBm) 34 26 2

Table 3.2: δ Configuration for δ0 and δ1

From Table 3.2 the grain of each dimension allows for a 2 dBm swing to be considered similar.
This may be large for a communication system, especially if it was trying to optimize at
very fine levels but is presented coarsely here for similarity. If the CR had operated in three
different scenarios using different, but similar values each time we could get possible values
as below, in Table 3.3.

Case Number δ̂0 δ̂1
1 21.4 30.7
2 20.6 31.5
3 20.8 31.3

Table 3.3: Sample Cases for a Simple δ

Plotting these samples on a 2-dimension plot would give us cases that were stored together
as shown in Figure 3.4.
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Figure 3.4: 2D Plot of Case Samples

This demonstrates the bucketing feature of using gi for each respective dimension of δ. By
partitioning the dimension into what can be considered similar values of each dimension, we
can store cases into the same Nδ dimensional hypercube. We can see this organization at a
high level in an abstract data structure as shown in Figure 3.5. Note that even though these
cases are stored in the same bucket, no specific information is lost in the actual case.

Considering that each dimension of δ is represented by an array of pointers that represent
a set of slots that classify every possible value of δi, we can see the structure of two levels
of dimensions in Figure 3.5. Each node of this structure contains a single array of possible
dimension buckets and every value in the array is a pointer to either NULL or has value.
When an array element has value, it can either be a pointer to another node in the next
level down of the tree, which means another array of possible values, or a pointer to the
container that holds each cases’ information individually. The former is commonly referred
to as a node or arch and the latter a leaf or terminal node in a treed data structure [12]. Nδ

dictates how many levels of indirection this structure can have.

These levels of nodes when used together form a m-way tree structure. An m-way tree can
be seen in graph theory as a rooted tree structure in which each child can only have at most
m children [12]. The difference in this data structure is that at each level, each node can
contain at most the number of buckets as defined by the parameters of the dimension. The
number of children, or buckets, is calculated via Equation 3.3. Due to the constraint on
these descriptors in Equation 3.2, the number of children is always a positive integer value.

NumBuckets =
max δi −min δi

gi
(3.3)

Using Equation 3.3 we can see that the maximum number of buckets available for the example
shown in Figure 3.4 is NumBuckets = 4. These nodes build up a tree structure with the
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Figure 3.5: Data Structure Organization of Case Samples

first dimension, δ0 being the root node and containing pointers to possible children. For a
singular case, we can see that for some Nδ dimension similarity vector, the levels of the tree
correspond to each dimension in Figure 3.6.

Each one of the cases is organized via their exact value of each dimension. Depending on
the value of that dimension, an index is calculated for which interval on the dimension that
particular value would be found. This index calculation provides an easy way to group
similar values in a bucketed fashion. In order to calculate the index offset for the insertion
and accessing algorithm Equation 3.4 is used to find the proper index value for the precise
dimension value, δ̂i.

i(δ̂i; gi) =

⌊

δ̂i −min δi
gi

⌋

(3.4)

Tree structures have been seen before within the context of CBR [45, 41]. These trees
have been used for classification and are similar to the approach taken in this research but
has several differences. In [45] the most important difference is the use of a binary tree.
By dynamically creating the buckets on arbitrary bounds, the case attribute space is split
when two sets of case(s) needed to be separately distinguished. This approach assumes that
enough knowledge about the system is available to predefine the situation. [41] also uses
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Figure 3.6: Tree Data Structure

trees to separate cases into qualitative and quantitative divisions, but also creates indexes
dynamically. For our application a simpler approach can be used as long as each dimension
of similarity can be understood in context of a minimum, maximum and extreme. CBR
enables CR to store and index practical information from past experiences. Classification
of these cases in this approach are held to simple strict bounds that are defined before
implementation.

The advantage of this algorithm is based in it’s iteration through δ. For a case that is being
queried to the casebase, the underlying data structure needs only to traverse and calculate
the correct index for each dimension of δ. This is seen in the access algorithm presented
in Algorithm 2. The insertion and access algorithm are similar except that the insertion
algorithm, in Algorithm 1, new DimensionNode and new LeafNodes must be created in
the appropriate place. Algorithm 2 simply assumes that no cases have matched the query
case. This is opposed to traversing the entire casebase and iteratively comparing each case
in the casebase to the current query case. Theoretically these computations orders differ
from O(n) to O(1).
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Algorithm 1 Insertion Algorithm using Case ei

1: Node← RootNode
2: Q← ei {Gather similarity vector from query case}
3: {δ0, δ1, ..., δNδ−1} ← δ {Dimension definitions}
4: {g0, g1, ..., gNδ−1} ← g {Grain definitions}
5: index← 0
6: for i = 0 to Nδ − 1 do

7: if !Node then

8: Node← new DimensionNode
9: end if

10: index← ⌊(Qi −min δi)/gi⌋
11: Node← Node.Children[index]
12: end for

13: if !Node then

14: Node← new LeafNode
15: end if

16: Node.Cases.pushBack(ei)
17: return

Algorithm 2 Query Access Algorithm using Case eq

1: Node← RootNode
2: if !Node then

3: return NULL
4: end if

5: Q← eq {Gather similarity vector from query case}
6: {δ0, δ1, ..., δNδ−1} ← δ {Dimension definitions}
7: {g0, g1, ..., gNδ−1} ← g {Grain definitions}
8: index← 0
9: for i = 0 to Nδ − 1 do

10: index← ⌊(Qi −min δi)/gi⌋
11: Node← Node.Children[index]
12: if !Node then

13: return NULL
14: end if

15: end for

16: return Node.Cases



Chapter 4

Simulation Results

4.1 Introduction

Section 3 explains the structure and organization of cases for a CBR in use by a CR appli-
cation. By appropriately defining the general framework this data structure can be used in,
values can be applied and performance can be verified. This chapter aims to simulate this
implementation under several scenarios to analyze the performance of the structure. This
chapter aims to verify the validity of the claims made in terms of a performance improvement
over traditionally accepted methods of similarity calculation in CBR applications. By first
showing the implementation in terms of extreme cases, for example 100 dimensions of sim-
ilarity contained within δ, the data structure is still expected to perform relatively quickly,
especially as the casebase grows in terms of number of cases. Secondly, the structure is
combined with a simple reasoner as a case generation mechanism. Even with a random pop-
ulation of cases throughout the simulation two things are prevalent; access time is greatly
reduced as compared to traditional CBR approaches and Euclidean distance assumptions
of the cases returned are generally preserved even though there is some loss in precision
when considering a similarity measurement over the entire casebase using an calculation like
Equation 3.1.

Each simulation was performed using open source C++ code and a light-weight digital
signal processing (DSP) library known as Liquid-DSP [14]. Liquid-DSP provides a useful
set of functions that aide in simulating wireless links. Using theoretical approaches, it
enables the simulator to perform a wide variety of wireless testing, supporting a multitude
of popular wireless techniques including automatic gain control, equalization, forward error
correction schemes, examples to demonstrate the usage of each, as well as tests to prove
their functionality. The basis of this simulation was forged out of an OFDM link example
between two nodes. OFDM is chosen for its prevalence in current Long Term Evolution
(LTE) technologies [1]. The static simulation parameters are shown in Table 4.2. These

31
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must be defined in the scenario to determine the resulting data that is presented in Section
4.3.2.

4.2 Testing Scalability

Part of the contribution of this thesis is to design a data structure well suited to handling
many cases within a CBR framework. Restrictions are not placed on the cases in terms of
information they can store to describe the situation the case was created for. In order to
test the various scenarios that this data structure can handle, the practical storage capacity
is verified to demonstrate the preservation of access time through a large information set.
This is especially important as the assumption is traditional CBR approaches are ill-suited
to handle more complex scenarios that CR technology will encounter.

4.2.1 Scenario

Using the following metrics in Table 4.1, a simulation is created to insert a variable number
of cases into a casebase followed by a retrieval of all cases. Before the casebase can be
created, δ must be design as it dictates the height of the similarity tree. By creating a
variable number of cases, inserting them into the casebase and then testing the retrieval
time of random case access, we can observe the performance of the similarity tree against a
traditional list approach.

Metric Value
Nδ 100

max δi ∀i = 0, 1, ..., Nδ − 1 100
min δi ∀i = 0, 1, ..., Nδ − 1 0
gi ∀i = 0, 1, ..., Nδ − 1 1

Table 4.1: Configuration for Similarity Tree Simulation

Each data structure was initialized to empty storage with no contents. This can make a dif-
ference if reallocation is used in the casebase’s data structure as reallocation can significantly
slow down insertion time, but also increase access time. An example of this kind of dynamic
storage is STL’s vector implementation [11]. A simple experiment was conducted using a
variable number of cases. For each simulation event loop, n represented the number of cases
inserted and then searched for. Figure 4.1 shows this loop for both kinds of simulations
tested. Each gray event block in Figure 4.1 shows which events are measured in terms of
timing. Insertion time of both data structures is measured as well as access time.

How each data structure is tested varies slightly to better simulate how it would be used in
a practical sense. Figure 4.1b shows the event process for testing the linear data structure.
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First an empty list is created, then some n number of cases is inserted into the casebase list.
Once the list is populated, an iterator traverses the list performing a similarity calculation
over Nδ dimensions for each case. In this scenario, traditional reasoning entities must cal-
culate the distance between the query case and every case in the casebase. Some kind of
ranking system would be used to rank the top most similar cases. Inefficient or overly extra-
neous ranking systems are not taken into account here and are assumed to take a relatively
small amount of time.

(a) Tree Simulation (b) List Simulation

Figure 4.1: Event Flow for Simulations

A similar method was used to test the similarity tree. First, an empty tree was constructed
and used to insert n random dimensional samples. Because the tree itself is configured on
the similarity dimension of the cases, a single arbitrary case was used to insert into the tree
using a different similarity dimension. The similarity dimension was varied to simulate an
evenly diverse case set. This shows how the case representation abstracts away from a tight
dependence on the contents of the case. Each case is used to create a path through the tree
by populating the dimensional vector. Once all cases are inserted, each case is then searched
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for in the tree. The average time required to access each case is recorded. Once all cases are
found, the tree is deleted and n updated.

4.2.2 Results

Using the event flows described above, performance metrics were collected to verify the per-
formance gains of this the bucketed similarity tree approach over a traditional list method-
ology. The initial simulations show that a similarity based tree approach provides a much
faster access time than a traditional list approach. This is especially true as the casebase
grows in size. Figure 4.2a shows the average access time for each data structure which re-
flects a much faster access time for the similarity tree when compared to a traditional list
approach. Figure 4.2a represents these access times at Nδ = 25.

By increasing the number of similarity dimensions in the case, the similarity tree requires
more processing time. This does not add additional order complexity to the list data struc-
ture as it uses the same information to calculate distance, however, Figure 4.2b shows that
some additional computation power is required to compute more dimensions for each case.
Specifically Figure 4.2b represents the respective access times when Nδ = 100. Figure 4.2b
shows us that even with an increase in the number of similarity dimensions, the buckets
similarity tree out-performs the linear data structure.

In these initial tests we can see that the similarity tree provides more advantages in terms
of access times for larger casebase sizes. Bucketing the parameters of δ provides us with a
generalized guideline to quantize the scenario each case was created in. While the access
time is improved, it is important to verify that this data structure creates a useful way to
organize information as well as a fast was to access that information.
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Figure 4.2: Simulation Access Times

4.3 Bucket Convergence

In Section 4.2 I showed how the similarity tree compares to traditional methods of orga-
nization when it came to scalability and access time. In this section the casebase is used
on-line, with a simple reasoning entity to create and store information that the reasoner can
use to classify the kind of channel it is operating in. The scenario is not necessarily how a
real reasoner would use the casebase nor a representational of a traditional reasoning mecha-
nism, but instead is used to show solution convergence within the dimensional problem sets.
Because I have changed the way information is quantified as similar, it is important to verify
that the information provides useful information relevant to the problem at hand.

When each bucket is created via δ, a situation is created that inherently defines the general
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vicinity of the problem in the problem space. Once the problem is identified, there exist an
optimization problem that the reasoning entity must perform to find an optimal solution to
this problem. In this scenario, the convergence time of the reasoning engine is not considered
but the fact that it converges even if from random trials is important to ensure that the
underlying data structure provides a useful organization of information for the cognitive
engine.

4.3.1 Scenarios

In this scenario the casebase similarity tree is tested under a simple reasoning entity. This
entity creates cases at random to not only try and find an optimal solutions to a static
environment, but also to build information about the specific problem in terms of whether a
solution is good or bad. Using Liquid-DSP and the similarity tree tested in Section 4.2, a new
test was created for a simple wireless environment. This parameters of this environment is
extended later, but is tested here to ensure convergence of the solution sets that are retrieved
by the casebase tree. The reasoning entity in this scenario is allowed to generate new cases
randomly and test for similar ones in the tree. The reasoner queries the similarity tree and
retrieves a set, if any, that are deemed similar in terms of the definitions presented in δ.
Being a simple reasoner, amongst the cases presented by the similarity tree, the one with
the highest fitness is selected. We examine the parameters of the case to identify trends
within the buckets defined, specifically transmission power. The representation of the static
parameters are given in Table 4.2. Modulation, forward error correction, and packet length
will become variable in later simulations but kept static here.

Table 4.2: Static Transmission Parameters

Configuration Element Value
Frequency 910 MHz

Modulation QAM, 8 b/s
Forward Error Correction None

Packet Length 1024
No. of Sub-carriers 64

Cyclic Prefix Length 16 bits
No. of S0 Training Symbols 3 symbols
Cyclic Redundancy Check 16 bits

Free Space Path Loss 20.0 dBm
Noise Floor -90 dBm

To demonstrate the casebase’s ability to appropriately store and reach a steady state, only
transmission gain was varied randomly between it’s possible values. Using power as the only
similarity dimension and giving it such a large grain allowed for two independent scenarios
to be created; one that operated in a transmission gain higher than -40 dB and the other
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when operating at lower than -40 dB. By allowing the reasoner to choose cases that simply
contained a higher fitness, a basic reasoner is created. Naturally, the highest fitness possible
provides the best solution to the simulated wireless transmission. By biasing the weights
to choose transmission gains that conserved battery life, but preserved a small amount of
throughput, we can observe that even though the casebase is being populated randomly,
at some point convergence occurs. Table 4.3 shows the configuration of this experiment in
terms of the parameters described in Section 2.5.

Table 4.3: Simulation Parameter Description

Metric Value Description
θ Transmission Gain -90 thru 10 dBm
β Throughput b/s
φ Path Loss -40 thru +10 dB

Table 4.4: δ Description

Similarity Dimension min max Grain
Transmission Gain -90 dBm 10 dBm 50 dBm

Two other simulations were performed with different weights. By exchanging the fitness
weights in terms of signal strength and power consumption, we are able to observe the
production of cases that converge to powers that are as low as possible in each of the different
buckets. The last simulation evenly distributed the weights to show power convergence within
each bucket for some arbitrarily fit transmission gain.

Table 4.5: Signal Strength Emphasized Utility Description

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.01
Signal Strength -15 dBm -15 / -65 dBm 0.97
Throughput 800 kb/s 100 / 800 kb/s 0.01
Robustness 13 13 / 2 Coding 0.01
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Table 4.6: Battery Conservative Utility Description

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.97
Signal Strength -15 dBm -15 / -65 dBm 0.01
Throughput 800 kb/s 100 / 800 kb/s 0.01
Robustness 13 13 / 2 Coding 0.01

Table 4.7: Evenly Distributed Utility Description

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.25
Signal Strength -15 dBm -15 / -65 dBm 0.25
Throughput 800 kb/s 100 / 800 kb/s 0.25
Robustness 13 13 / 2 Coding 0.25

4.3.2 Results

The reasoner is allowed to create cases and apply them to the simulation. As the reasoner
creates cases, it stores them in the casebase. The casebase is queried before every case
creation to find similar cases. As is expected, the casebase eventually produces cases that
converge to a near optimal transmission gain value. In the first simulation we observe that
by maximizing the transmission gain in each individual scenario, a better fitness is returned
in Figure 4.3. Figure 4.3 shows the convergence of the casebase to return cases with higher
overall power. As opposed to lower powers which eventually give no throughput, higher
SNRs are not bounded by the same thing. In a real scenario, given that the transmitter
had enough power the receiver would be saturated with power and would again be unable
to receive packets.

In the next scenario, battery power was held over higher regards than any other entry in
θ that the radio had control over, as shown in Table 4.6. This contributed to the lower
powers having more fitness in each bucket. For each bucket, (-90 thru -40 dBm and -40 thru
10 dBm) the lower the sampled power, the higher the fitness. This is due to the battery
conservation bias shown in Figure 4.5. It is interesting to note that even though lower power
is weighted for a higher fitness, the system does not use the lowest power possible. This
is most likely due to the fitness incorporating throughput as well. Given that the SNR of
the received signal was low enough to not synchronize for packet reception, the throughput
dropped to zero, reducing the overall fitness to zero, preventing a power of zero being held
at the highest regard.
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Figure 4.3: Liberal Power Decisions
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Figure 4.4: Conservative Power Decisions

While biasing shows us that a convergence to an optimal fitness is helpful, it is not very
practical. In a more realistic scenario, the weights of the utilities would be on a much more
even keel. The configuration in Table 4.7 shows an even weight distribution amongst each
utility. While the weights used in each scenario sum to one evenly, this is not a constraint of
the utility functions. A summation of one simply gives the reader a better frame of reference
for the relative weight distribution.

Figure 4.5 shows us a convergence of an evenly distributed utility weight. The casebase
confirms that the highest utility power is given around -48 dBm, which is near the middle
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Figure 4.5: Evenly Weighted Power Decisions

Table 4.8: Updated δ for Finer Grain

Similarity Dimension min max Grain
Transmission Gain -90 dBm 10 dBm 10 dBm

of the possible values the transmitter is able to use. This is slightly conservative of battery
power however, and can be typical of wireless systems that once a given SNR is reached, the
probability of synchronization is relatively high with a diminishing return when increasing
power. This makes sense in that the system would tend to slightly more conservative power
cases as throughput is not noticeably affected between the middle of -40 dBm and the settling
point of -48 dBm.

If the number of scenarios is increased by increasing the granularity of the power, shown in
Table 4.8, we are presented with 10 scenarios in which the reasoner can specifically classify
the problem with. While these scenarios are simple and artificial they still demonstrate
two things; the casebase’s able to accurately split up the problem space by identifying the
problem as it happens and it is able to converge within the defined situation given that the
situation has been seen enough in the past to have enough information to solve it.

The results in Figure 4.6 show that the casebase eventually contains the required information
to produce the best fit for that power setting. It is interesting to note within this results
that two global convergences appear. Most buckets try and optimizing their power to a
transmission gain settling around what is seen in Figure 4.5, however, a contending fitness
is produced within the scenario of the -80 to -70 dB bucket. This set of cases shows similar
if not better improvement around -80 dBm. This demonstrates the trade-off of throughput
and battery consumption vs. throughput and signal strength. This can be seen as two
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local maximum in the entirety of the system, however, in real applications these would be
considered local in their own bucket space.
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Figure 4.6: Finer Grain Bucket Splitting
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4.4 Dynamic Environments

In Section 4.3 I demonstrated the ability of the casebase to at least converge on a certain
fitness within the defined similarity buckets for a simple case. In this section the simulations
work with a time-variant environment to demonstrate the bucketed similarity tree’s usage.
The first of which is that with a different δ, a similar situation is redefined. By adding in
a new dimension that varies over time, a true measure of stochasticity is introduced to the
reasoner in that its own controllable settings, specifically described in θ, do not dictate the
actions it will make next. It is entirely possible for real world situations to incorporate the
information from θ but should only be included if it is useful for the reasoner.

4.4.1 Scenarios

A scenario similar to Section 4.3 with a few key differences. First, the weight of the utilities
is redefined for more realistic scenario, which places emphasis on throughput and battery
conservation. Signal strength is included to provide a trade-off between the two utilities that
transmission gain can offer. It can be said that signal strength provides diminishing returns
and can be represented fairly well through the measure of throughput. Robustness is not
given great consideration as this simulation is designed to demonstrate the convergence of
optimal power levels in a time varying channel. δ is defined in Table 4.9 which represents
the similarity buckets of path loss in the channel.

Table 4.9: δ for Time-Varying Channel

Similarity Dimension min max Grain
Path Loss -10 dBm 40 dBm 1 dBm

The utilities used for this scenario are defined in Table 4.10. This places greater emphasis on
throughput and battery conservation over signal strength and robustness. Signal strength is
downsized due to the diminishing returns it gives once a certain SNR threshold is reached.
Robustness is not considered yet here as it is left static of the duration of this simulation.
During the simulation, the path loss of the system is varied in a square wave. The square
wave oscillated between 0 dB and 30 dB of loss in the system over a period of 200 packets.
Each time the system identified the amount of path loss in the system, it was classified into
its respective bucket with an associated fitness. This simulation continuously tried cases and
saved their results and before each case was generated by the reasoner, the casebase was
queried for a case in that situation the same path loss and requested a power with the best
fitness. The returned case is not applied to speed up the convergence time, but evaluated to
see what would be available to the cognitive entity.

This can also be demonstrated through a sine wave as well to demonstrate a more dynamic
environment. To be more specific with the scenario encountered, we can redefine δ to also
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Table 4.10: Time Varying Utility Description

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.23

Signal Strength -15 dBm -15 / -65 dBm 0.00999
Throughput 800 kb/s 100 / 800 kb/s 0.53
Robustness 13 13 / 2 Coding 0.23

be more specific about the levels of path-loss and make the intervals of δ0 to be 5 dB with
no coding and a modulation scheme of QAM with 4 bits per symbol. To allow more cases to
be tried for each of the buckets, the number of frames was extended to 2500 frames. Figure
4.8 shows the casebase responding adequately to the shifting path-loss.

4.4.2 Results

The result of this scenario produced good results, showing that the system adequately clas-
sified the scenario it experienced and converged on an optimal power for each level of path
loss. Figure 4.7 shows the casebase returning the powers of the cases with the highest fitness,
having converged on a power for both scenarios around packet 400 for random attempts.
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Figure 4.7: Time Varying Path Loss Scenario

There are a couple things to note about the results presented in Figure 4.8. The trends
of the returned cases show a small delay between the fit choices returned by the casebase
and the given pathloss. This is due to the reactive nature of a simple Reasoner. Proactive
reasoners have shown promise to improve engine and overall system performance [8] and can
be applied here. The other thing to note is that while these cases are returned with good
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fitness, they are not applied. Again, this is so we can quickly see convergence of a random
θ generation as applied to each similar situation. The next scenario will lift this limitation
and create a more realistic simulation that applies past cases to the transmission as well as
create new ones.
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Figure 4.8: Varying Path Loss as a Sine Wave

4.5 Additional Parameters

In this simulation, the reasoner was able to modify not only transmission power, but mod-
ulation, coding and packet size. Similarity is also extended to include more than just path
loss and a larger number of frames were simulated. Extending the simulation to include
these parameters introduces different aspects that make the simulation more realistic but
also more complex. Again a random reasoner is used to generate cases, but because cases
were being queried and applied, additional steps were required to allow a trade-off between
exploration versus exploitation to at least some extent. While the trade-off used in this
simulation is not optimal, it allows for enough convergence to happen showing the power of
the casebase’s bucketing strategy. This can provide useful information to a reasoning entity
to perform the optimization of the system.

4.5.1 Scenarios

In this scenario, a simulation was performed similarly to those described before in Section
4.4. The length of the simulation was increased to 10000 packets as even more parameters
have been introduced to the system. Again, the speed of convergence is not the focus, but the



Daniel R. Ali Chapter 4. Simulation Results 45

convergence within a bucket is what is under consideration. The parameters of the system
and similarity configuration is presented in Table 4.11.
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Table 4.11: Additional Parameter Simulation Configuration

Metric Value Description

θ

Transmission Gain -90 thru 10 dBm
Modulation BPSK, QPSK, QAM8 - QAM256

Coding
None,

Convolution V27 P23-P78,
Convolution V28 P23-P78

Packet Size 512 - 2048 bytes

β

Throughput b/s

φ

Path Loss 0 thru 40 dB
Throughput 0 thru 2000

δ

Similarity Dimension min max Grain
Path Loss 0 dB 40 dB 1 dB
Throughput 0 2000 kbps 200 kbps

The final set of utilities used are described in Table 4.12. These are chosen to minimize
power consumption and maximize throughput. Because more parameters are introduced,
the weights change to reflect what a real system would aim to optimize. In [34] five utili-
ties were chosen to be optimized; maximum throughput, minimum BER, minimum power
consumption, minimum interference, and maximum spectral efficiency. The reason so few
utilities are used here is because most utilities in [34] would be redundant in this system.
Throughput is calculated using average good data over some time interval. This throughput
reflects the BER in the system and does not need to be double counted here. Interference
deals more with a networked scenario and because this is a single link transmission, is not
considered here. This, however, does present an interesting utility as inter-node interfer-
ence is a major limiting factor for wireless networks [17]. Spectral efficiency is a scalar
measurement of the throughput of the network. Theoretical capacity can be increased, for
example, by increasing the bits per symbol of the modulation scheme or by reducing the
FEC rate. However, practical adjustments such as these are reflected in the throughput
measurement and would essentially be double counted in this system. For this reason, they
are not included.

This simulation also performs an on-line trial of generated cases, as well as cases that are
returned from the casebase. The simulation uses measures of 10 frames to measure the
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Table 4.12: Utility Configuration

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.49
Signal Strength -15 dBm -15 / -65 dBm 0.01
Throughput 800 kb/s 100 / 800 kb/s 0.49
Robustness 13 13 / 2 Coding 0.01

statistics of φ and β and thus δ. To introduce some exploration every 11th measurement
(every 110th packet) uses a randomly generated θ. During the other measurements the
casebase is queried with the measured parameters of δ. Given that a case with a fitness
greater than the current case is returned from the query, the returned case is applied. The
additional parameters are also recorded to find the best case fit.

4.5.2 Results

In Figure 4.9 the current power of the system, the current path loss, and the resulting
fitness is plotted. Because of the additional parameters, we can see that the graph does
not converge as quickly as the previous simulations. This is expected, however, as more
parameters mean that the cognitive entity much search through a larger solution space. As
the bucket size decreases due to finer granularity, the case then becomes more descriptive
about the situation it was in. There is a trade-off to this, however, that shows in Figure 4.9 in
that the convergence time for the reasoning entity is increased when randomly searching the
solution space. Again, a better reasoner can be used to find better solutions more quickly.
Generally, near the end of the run fitness is maintained for the most part and is degraded
only when a random case is forced upon the simulation.

The effect on throughput due to the variation of pathloss can be seen in Figure 4.10. Eventu-
ally the trend of the throughput finds a cyclic performance degradation which could provide
useful information to a reasoning entity trying to classify the kind of interference it is expe-
riencing. The case with the casebase here, however, shows us that the casebase can maintain
a fit throughput even in a varying environment. When the throughput degrades to little to
no connectivity, this is because a current case is experiencing a new level of pathloss and
must be adjusted. Preemptive these fades was not employed here but can be used to reduce
the amount of connection blackout. Random application of poor θ selections can also cause
a drop in connectivity.
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Figure 4.9: Power, Pathloss and Fitness of a Wireless Link
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Chapter 5

Concluding Remarks and Future

Work

This work presents a renewed look at an abstract look of CBR for CR applications. The ideas
presented in this work show that while casebase maintenance is important, the casebase does
not need to be aggressively pruned to maintain acceptable performance. By simplifying the
requirements of similarity, a constant access time can be maintained and more information
can be stored for the cognitive entity to use. This can be useful when considering the a Pareto
front that may be changing. One interesting note to make is that more parameters such as
frequency, bandwidth, or sub-carriers could be used in θ but were not. This is because
there are not something that can be changed through some header information received at
the receiver. As there are certain properties of the waveform required for the receiver to
synchronize and understand the signal it is using, some protocol is needed to inform the
receiver before the change takes place. Others, like power, modulation, coding and packet
size can be observed by the receiver through static and robust header information. Liquid-
USRP, an extension of Liquid-DSP to the universal software radio platform (USRP) , uses a
robust set of parameters for the header information which contain the information to decode
the rest of the samples for the packet payload. This provides a useful trade-off for efficient
usage of spectrum as well as dynamic reconfigurations.

To extend this work, a dynamic bucket size would be useful for many applications. For
instance, over a specific threshold of power, receivers are saturated. Given that the trans-
mitter knew where this power was in terms of its own gain setting, it could bucket any power
greater than this threshold into a similarity bucket. The same can be said for other parame-
ters and would require a different set of Equations 3.3 and 3.4 for each dimension of δ. This
could provide greater clarity for similar situation in that there need not be a constant of
gi ∀ i = 0, ..., Nδ − 1. Given that an implementation was already in place and additional
parameters need to be added to the similarity vector, the root node can be recreated with a
set of children, have only one entry for all cases previously created. This is assuming that all
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cases used the same parameter or at least were in the same similarity bucket when they were
created. The casebase would need to be re-created from scratch given that this was not true.
This should not be very often however, as the CE as the parameters are assumed to be well
designed before implementation and are generally not considered dynamically changeable.
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