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The interaction of surface gravity waves on a nonuniformly periodic seabed is considered. The 
method of multiple scales is used to analyze the interaction leading to two coupled-mode 
equations. The power reflection coefficient is used as an indicator to evaluate the filter action of 
the bottom corrugation. The results show that the modes are strongly coupled when the Bragg 
resonant condition is satisfied. The characteristics of the filtration are found to be enhanced by 
imposing special types of amplitude and phase modulated periodic nonuniformities, including 
amplitude taper and chirped periodic variations. 

I. INTRODUCTION 

The resonant interaction of surface gravity waves with 
a periodic seabed is a subject of fundamental importance. 
This stems from the fact that a considerable reflection of 
incident waves takes place when the resonant (Bragg) con- 
dition is satisfied. The reflection is due to the multiple in- 
terferences of the waves from the periodic structure of the 
bed, which leads to a strong stop-band interaction. This 
phenomenon might constitute an efficient mechanism for 
coastal protection. An important application of the Bragg 
effect is the construction of tuned periodic patches of sand- 
bars in order to reflect incident waves with appropriate 
wave number. 

Early works include the papers by McGoldrick’ and 
Rhines and Bretherton’ on long waves in shallow water 
over a periodic topography. Their formulation led to the 
Mathieu equation, and consequently, to the conclusion 
that a resonant reflection is possible in the subharmonic 
instability region. These studies were followed by the work 
of Davies3 who examined the interaction between har- 
monic waves and a patch of bottom ripples of constant 
mean depth. He used a regular perturbation expansion in 
terms of the ratio of the bottom amplitude to the mean 
water depth to show that few ripples might be needed to 
produce a substantial backscattered wave at the Bragg con- 
dition. These theoretical predictions were supported by the 
experimental measurements of Heathershaw.4 Davies and 
Heathershaw’ reconsidered the problem in order to deter- 
mine the amount of incident wave energy that is reflected 
by the ripple patch. They compared the theoretical predic- 
tions with an extensive set of laboratory observations made 
in a wave tank. Their theory is limited to weak reflection 
and fails at resonance because the reflection coefficient be- 
comes unbounded and the perturbation expansion breaks 
down. 

face waves over periodic ripples superimposed on a bed 
with a slowly varying mean depth. Hara and Mei ex- 
tended the linearized theory on Bragg scattering of surface 
waves by periodic sandbars to include second-order effects 
of the free surface and bars. Measured responses were com- 
pared with corresponding theoretical results. Mei, Hara, 
and Naciri” examined the case of an oblique incidence on a 
strip of periodic bars and a seabed with a mean slope. 
Guazzelli, Rey, and Belzons” carried out experiments to 
describe the higher-order Bragg resonant interactions be- 
tween linear gravity waves and doubly sinusoidal beds. 
Kirby” has recently considered the reflection of waves on 
sinusoidal bars which are deposited on a mild-sloped sea- 
bed. 

In the present work, the general problem of surface 
gravity waves on a seabed with nonuniform periodicities, 
including amplitude taper and chirped corrugations, is 
considered. The method of multiple scales is used to ana- 
lyze the interaction of the propagating modes when the 
Bragg condition is satisfied. The coupled-mode equations 
together with suitable boundary conditions constitute a 
two-point boundary-value problem, which is solved numer- 
ically. The results are utilized for calculating the response 
in terms of the power reflection coefficient. The nonuni- 
form corrugations are found to enhance certain desirable 
features. 

II. PROBLEM FORMULATION 

The resonant interaction phenomenon was considered 
by Mei” who explained why a strong reflection could be 
induced by periodic sandbars when the Bragg resonance 
condition is met. In his analysis, he used the method of 
multiple scales, allowing the incident waves to vary slowly 
in time and space, and found that the scattering process 
depends critically on whether the modulation frequency 
lies above or below a threshold frequency. 

We consider the propagation of surface gravity waves 
in an inviscid, incompressible, and irrotational fluid over a 
nonuniformly corrugated bottom with mean wave number 
lig. We introduce dimensionless variables by using kg-’ as 
a reference length. The motion can be described by a di- 
mensionless potential function #(x,z) , which is governed 
by the Laplace equation 

a”+ a’$b 
dx’+&FO. (1) 

it is assumed that the seabed is periodically corrugated in 
the domain extending from x=0 to x- L and can be de- 
scribed by 

Kirby7 obtained a general wave equation for linear sur- h(x) =dCl +Q(ucMnlx+g(.=) I), (2) 
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where &=a*/d* is a small dimensionless parameter that is 
equal to the ratio of the average amplitude a* of the cor- 
rugated bottom to the mean depth d* of undisturbed fluid, 
f(cx) is a periodic taper function, and g(cx) is a linear 
chirp function (see Asfar and Hawwa12). Hence, the 
boundary condition at the bottom is given by 

a+ 7g= -h’(x) 2, at z= --/z(x). 

The linearized boundary condition at the free surface is 

a24 a4 z+gz=O, at z=O (4) 

Using a Taylor-series expansion to transfer the bound- 
ary condition in Eq. (3) from z=--h(x) to z=--d, we 
obtain 

= -{edf(Ex)cos[x+g(uc)]) $+..., at z=-d. 

(5) 

III. METHOD OF SOLUTION 

Employing the method of multiple scales 
(Nayfeh’37’4), we seek a first-order perturbation expansion 
for 4 in powers of E in the form 

~(x,z)=~o(Xo,X~,...,z)+~~~(Xo,X~,...,z)+..., (6) 

where Xo==x is a short length scale, which is the order of 
the wavelength of the corrugation, and X1=&x is a long 
length scale, which characterizes the spatial amplitude and 
phase modulations due to the seabed periodicity. The de- 
rivatives with respect to x are expanded in terms of E as 

~2+&~;-+..., (7) 
0 1 

a2 a2 a2 
Q=*+";j;P+"'. (8) 

Substituting Eqs. (6)-(8) into Bqs. (l), (4), and (5), 
and equating the coefficients of co and .sl on both sides, we 
obtain 0( 1) : 

a?, 3, z+gz=O, at z=O, 

O(E): 
f-% a% a2+o zg+3P--2dx,ax,’ 

(9) 

(10) 

(12) 

a% ah 
z+gz=O, at z=O, 

+CdfW,)cos[Xo+gW~) I} 2 7 at z=-d. 

(13) 

(14) 

Had we attempted a straightforward asymptotic solu- 
tion, corresponding to @/X,=0, in Bqs. ( 12)-( 14), we 
would have found that it breaks down when the wave num- 
ber of the corrugation is equal or nearly equal to twice the 
wave number k of the propagating mode; that is, 

2k=:l. (15) 

This condition is known in the literature as a Bragg con- 
dition (Brillouin”), at which steady-state harmonic waves 
are unstable (resonance occurs). Physically, a Bragg con- 
dition implies that two contradirectional modes interact 
strongly with each other by exchanging energy, resulting in 
a high level of attenuation. 

A. The zeroth-order solution 

Equation ( 12) admits a solution in the form of a linear 
combination of incident and reflected modes. These are 
given by 

4*= [A+ (Xl)e’kYo+A-(Xl)e-‘kxo] 

x [cash kz+ (w2/gk)sinh kz]e-‘“‘, (16) 

where the superscripts + and - indicate an incident and 
a reflected mode, respectively, and the AT (X,) are un- 
known functions at this level of approximation. They are 
determined by imposing the appropriate solvability condi- 
tions at the next level of approximation. 

Substitution of Eq. ( 16) into the boundary conditions 
( 10) and ( 11) leads to the following dispersion relation: 

k tanh kd=w2/g. (17) 

5. The solvability condition 

Since the homogeneous first-order problem has a non- 
trivial solution, the inhomogeneous first-order problem has 
a solution only if the inhomogeneous parts are orthogonal 
to every solution of the adjoint homogeneous problem. To 
reach this solvability condition, we seek a particular solu- 
tion for $1 in the form 

+1= [ Bj+ (z)cPO+ By (z)e-ikxO]e-i”t. (18) 

Substituting Eqs. ( 16) and ( 18) into the governing equa- 
tion ( 12) and equating the coefficients of exp( rikX,) on 
both sides, we obtain 

coshkz+gsinhkz 
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Next, we introduce the detuning parameter cr such that 

2k=l+&o+g(Xi). (20) 

Substituting Eqs. (16) and (18) into the boundary condi- 
tions (13) and ( 14), expressing the sines and cosines in 
polar form, and equating the coefficients of exp( rz7cXc) 
on both sides, we obtain 

(21) 

dBr 
-;I;-(-d)=r~ikd~(x,)(l-k) 

X (co& kd)-lA~e;tiu~le*tiR(Xl). (22) 

The system of Eqs. (19), (21), and (22) forms a self- 
adjoint problem. Hence, the solvability condition takes the 
form 

--‘I!( -d)G(X,) = JId \I, (z)F(Xl,z)dz, (23) 

where Y is the adjoint solution and F(Xi,z) and G(X,) 
are the right-hand sides of Eqs. ( 19) and (22), respec- 
tively. 

The satisfaction of this solvability (consistency) con- 
dition leads to the following coupled-mode equations: 

$& [ /(X,)kd(~~)]A-e-~“~le-“lXl), (24) 

f$j= [ f(Xl)kd(/ifkd) ]A+&‘x@(xl), (25) 

where 

I=4wc&/g, (26) 

where c,=&u’ak is the group velocity. Equations (24) 
and (25) reduce to the coupled-mode equations of Me? 
and Kirby’? ’ ’ for the special case of uniform periodicity. 

IV. NUMERICAL ILLUSTRATIONS 

In this section, we present the reflection characteristics 
of a corrugated seabed with mean wavelength il*= 100 cm 
(i.e., k$ = ?r/SO cm-- ‘), a*= 5 cm, L* =2500, 5000, and 
7500 cm. Hence, E =O. 16. 

The modal interaction over the periodic bottom is gov- 
erned by Eqs. (24) and (25) which, without any loss of 
generality, are provided with the following boundary con- 
ditions on both ends of the periodic section: 

A*=1 at Xi-0 and A-=0 at X1=4/2,8il, or 12/2. 
(27) 

We note that the first condition represents the excitation 
amplitude of the incident mode, and the second condition 
expresses the fact that the reflected mode vanishes at the 
end of the corrugated section. 

The two-point boundary-value problem defined by FIG. 1. Reflection coefficient R for a periodic seabed with L=% 
Eqs. (24), (25), and (27) is solved numerically (see Asfar uniform, (b) tapered, (c) tapered and chirped. 
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FIG. 2. Reflection coefficient R for a periodic seabed with L=8/2, (a) 
uniform, (b) tapered, (c) tapered and chirped. 

FIG. 3. Reflection coefficient R for a periodic seabed with L= 12/2 (a) 
uniform, (b) tapered, (c) tapered and chirped. 
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and Hussein16) to obtain the missing boundary conditions, 
and consequently, to calculate the power reflection coeffi- 
cient. 

The reflection characteristics in the case of a uniformly 
periodic seabed [i.e., f(X,> = 1 and g(X,> =0] are shown 
in Figs. l(a), 2(a), and 3(a) for L=4il, 8/2, and 12il, 
respectively. The figures show filter responses with maxi- 
mum reflection at resonance and side ripples whose level 
decreases away from resonance. We note that the amount 
of reflection increases as the number of wavelengths in- 
creases. 

In order to investigate the effect of periodic nonunifor- 
mities on the response, we apply a taper of the form 
f(X,> =sin’(X,/L) in the region O<X, <L/2 and 
f(X,> =sin’[( L-X,)/L] in the region L/2<X, < L. In 
Figs. l(b), 2(b), and 3(b), we show the effect of this 
amplitude tapering in realizing better filtration character- 
istics, with “clean” sides due to the disappearance of the 
side ripples. 

When a linear chirp of the form g(X,) 
= (X,-L/2)/L is imposed on the corrugation function in 
addition to the tapering function, wide midbands can be 
seen in Figs. l(c), 2(c), and 3(c). We note that the re- 
flection bandwidth increases but the maximum reflection 
coefficient decreases as L decreases. Nearly ideal filtering 
characteristics are realized when L = 12A. 

V. CONCLUSION 

The resonant interaction of surface gravity waves on a 
nonuniformly periodic seabed has been considered. The 
filtering characteristics of the bottom have been investi- 
gated. Tapered corrugations iead to a narrower midband 
response, while chirped corrugations lead to a wider mid- 
band response. A combination of taper and chirp has been 

used to realize a nearly ideal wide midband response. 
These theoretical results might provide the basis of new 
concepts for the design of tuned seabeds to protect coastal 
structures. 
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