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Engineering Modeling Using a Design Paradigm: 
A Graphical Programming-Based Example 

 
Paul D. Schreuders 

Introduction 
Engineers combine design paradigms or methods for problem solving 

(“OED Online”, 2004) with mathematical modeling techniques to predict the 
success of their designs, a method that they have found to be accurate and 
repeatable. However, computer models are not just used in traditional 
engineering design and practice. Many computer games have complex 
mathematical models hidden behind their interfaces. Beyond the obvious 
examples, such as the Sims™ and SimCity™, the “first person shooters” contain 
extensive physics models, so that thrown objects and jumping characters behave 
correctly on the screen (“Best of What's New 2005”, 2005; Tamaki, 2006; 
Terzopoulos, 1999). 

As engineering has moved into the biological arena, engineering modeling 
has been used to describe living processes through the creation of constructs that 
reproduce, move, and eat. The reverse is also true. Modeling has adopted into its 
array of methods for solving problems, biological approaches such as neural 
networks and evolution-based optimization (Kim & Cho, 2006; Terzopoulos, 
1999). 

Mathematical models are also becoming increasingly important in the 
workplace. Businesses use models to optimize their future plans. Brokers use 
models to identify when to buy and sell stocks. Actuaries use models to predict 
death rates for insurance companies. Biologists use models to predict the impact 
of changes to the environment (Gotelli, 1998; Kurzweil, 1999).The teaching of 
model development is primed to move into the high school classroom for 
several reasons. These reasons include the removal of barriers to modeling, the 
inclusion of modeling in national curricular standards, and the adoption of pre-
engineering curricula by many high schools. 

First, many of the barriers to teaching modeling have been removed. As the 
computer gaming industry has demonstrated, the hardware for modeling is both  
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available and affordable. Further, analyses such as Moore’s Law indicate that 
computer hardware will become exponentially faster for the reasonable future 
(Kurzweil, 1999). The software required to create these models has also matured 
and become easier to use.  

Second, modeling integrates technology education, science education, and 
mathematics education by linking the design standards from the Standards for 
Technological Literacy (ITEA & TAAP, 2000) and the National Science 
Education Standards (National Research Council [U.S.], 1996) with the 
mathematical modeling standards of the Principles and Standards for School 
Mathematics(National Council of Teachers of Mathematics, 1989).  

Finally, there is a continuing trend towards the adoption of engineering 
design into the high school curriculum. Project Lead the Way, for example, has 
over 1300 participating schools in 45 states (PLTW, 2006). This trend is evident 
with the development of the Standards for Technological Literacy: Content for 
the Study of Technology (STL) and its endorsement by William A. Wulf, former 
President of the National Academy of Engineering (ITEA & TAAP, 2000). 
Engineering design emphasizes analysis and modeling. The development of 
student appropriate methods for engineering analysis represents some of the 
biggest remaining challenges in bringing engineering design into the high 
school. As shown in Table 1, there are a number of ways that analysis has been 
approached. 
 
Table 1.  
Some current practices for performing engineering analysis in the high school 
classroom. 

Methodology Limitation 
Student computation Restricted by the students’ mathematical 

background; often limits the problems to 
those soluble by algebra or trigonometry 

Use of tabular or graphical 
data 

Student solutions are limited to those 
considered in advance of the project 

Use of software (pre-
programmed) 

Student solutions are limited to those 
considered in advance of the project 

Student written software Requires extensive class time to teach 
programming/write the software; restricted 
by the students’ mathematical background 

Experimental/trial-and error Inefficient in creating designs; students often 
fail to understand the science and 
technologies behind their design; time 
consuming 

Graphical modeling Requires modeling software; Unfamiliar to 
most technology teachers 
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There is a tendency to consider engineering design paradigms as primarily 
applicable to the creation of physical objects or, perhaps, software. A more 
appropriate view, however, is to view the design process as a paradigm for 
problem solving with the goal of creation. Historically, this paradigm has been 
amazingly effective for the creation and implementation of new ideas and 
inventions. It is used for the identification of the boundaries of possible designs 
and for the elimination of impossible, impractical, inefficient, or otherwise 
undesirable designs. A number of design paradigms have been developed for 
use in the classroom (Eggert, 2004; Gomez, Oakes, & Leone, 2004; Haik, 2003; 
Oakes, Leone, & Gunn, 2004). In general, these paradigms differ only in minor 
ways. One of these paradigms is shown in Table 2. The design process includes 
a series of tradeoffs that alter what is considered the optimal product. There 
may, in fact, be multiple optimal designs (Koen, 2003). The adoption of the 
design paradigm for model development has an advantage in that it is a process 
with which technology educators and their students are familiar and proficient in 
using, allowing the transfer of existing skills. It provides a useful, structured 
approach to introducing engineering analysis into the classroom, a goal and a 
challenge for many pre-engineering programs. 
 
Table 2.  
A comparison of two design paradigms, showing a general design paradigm 
and the same paradigm adapted for use in graphical modeling. 

Stage 
Number 

Design Paradigm 
(Gomez, Oakes, & Leone, 2004; 
Oakes, Leone, & Gunn, 2004) 

Modeling Paradigm 

Stage 1: Identify the problem/product 
innovation 

Identify the system to be 
analyzed or simulated 

Stage 2: Define the working 
criteria/goals 

Identify the information to be 
obtained from the model  

Stage 3: Research and gather data Research and gather data 
Stage 4: Brainstorm/generate creative 

ideas 
Brainstorm/generate model 
structures 

Stage 5: Analyze potential solutions Develop and refine model 
structures 

Stage 6: Develop and test models Implement the model 
Stage 7: Make the decision Specify and simulate 
Stage 8: Communicate and specify Interpret and communicate 
Stage 9: Implement and commercialize Protect and commercialize 
Stage 10: Perform post-implementation 

review 
Perform post-implementation 
review 
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Until recently, modeling required significant programming expertise and/or 
the knowledge of differential equations in order to analyze dynamic systems 
(Coughanowr & Koppel, 1965; Lewis & Yang, 1997; Ogata, 1997). However, 
with the maturation of graphical modeling software, this is no longer true. In 
this article, a design-based approach to engineering model development will be 
examined. Graphical approaches emphasize the development of a model’s 
structure prior to its implementation. 

Graphical Modeling Software 
In graphical modeling software, programming is performed by 

manipulating graphical elements and their connections. Educators familiar with 
using RoboPRO (“ROBO Pro”, 2005) or Robolab (“Robolab”, 2004) to control 
robots will find that the techniques used in graphical modeling software are 
quite similar. In addition, because of their emphasis on model structure and 
minimal programming requirements, graphical modeling software allows the 
development and solution of complex mathematical models rapidly with limited 
mathematical background.  

A number of engineering-specific graphical modeling software packages 
exist. However, because they presume significant discipline-specific expertise 
and are expensive, these packages are not useful in the high school classroom. 
Fortunately, a number of generalized modeling packages exist, including 
Simulink (“Simulink”, 2005), Berkeley Madonna (Zahnley, 2006), and Stella 
(“Stella”, 2005). Simulink is the most powerful of these packages, but the least 
friendly to the student user. Stella is the least powerful package, but is by far the 
most student friendly. Madonna lies somewhere in between the other two. All 
three packages are available with academic discounts at prices ranging from $50 
for a single copy to a site license for around $1000. 

Mathematical models of dynamic systems contain variables known as “state 
variables.” These variables and their inflows and outflows are described by sets 
of first order differential equations (Ogata, 1997; Phillips & Harbor, 1996). The 
solution to the model is obtained by simultaneously solving these differential 
equations. The flows are described using flow rate coefficients, equations, etc. 
(Hannon & Ruth, 1997; Richmond, 2004). In graphical programming software, 
all of the above information is entered using a graphical interface. Then, hidden 
to the user, the software solves the differential equations, using one of several 
numerical integration methods.  

In practice, the link between a graphical description of a system and the 
graphical program of the systems is clearest for classes of problems where each 
state variable represents a reservoir of things and the things flow between those 
reservoirs along defined pathways. Some examples of this type of systems 
include movement of liquid between tanks, storage, movement and distribution 
of energy in an automobile, and movement of money through a business. 
Techniques for converting equations directly into graphical programs are 
available (Ogata, 1997). However, the resulting graphical programs often bear 
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little resemblance to diagrams of the physical system, making them more 
challenging to use in the classroom. 

The clearest way to show the benefits of graphical model development is 
using an example. This article will model the spread of a computer virus 
through a school’s computer laboratories. The most obvious benefit of such a 
model is as an aid to developing strategies for combating computer virus 
infection, reducing the cost to companies and individuals. Models of a computer 
virus infection can also examine a computer network’s vulnerability to 
disruption and suggest possible areas for improvement. 

Stella software will be used herein to create the model. However, any of the 
generalized graphical modeling software packages could be used. Educators will 
find that Stella requires a minimal amount of instruction (typically on the order 
of a few hours) for students to develop basic facility in its use. In addition, a 
wide range of problems have been solved using this software, so that grade 
appropriate problems are available in both the scientific literature and in books 
(Fisher, 2005a, 2005b; Hannon & Ruth, 1994, 1997; Richmond, 2004). 

The Virus Model’s Development Process 
This paper will develop and demonstrate an approach to modeling using a 

ten-stage modeling protocol, adapted from engineering design protocols 
(Gomez, Oakes, & Leone, 2004; Oakes, Leone, & Gunn, 2004), to model the 
spread of a computer virus. The design model paradigm is shown in Figure 1. 

Stage 1. Identify the system to be analyzed or simulated 
In system identification, the model’s contents are chosen and extraneous 

content is eliminated from the model. It has several aspects. The first is 
identification of what system is to be modeled and what components of that 
system are to be included in the model. As part of this, the nature of the system 
needs to be analyzed. An important component of this analysis is the isolation of 
the root process to be modeled. In this example, the behavior of the virus is the 
root process. The brand of operating system is relevant only if it alters the 
system’s behavior. The next important aspect of system identification is the 
definition of the system’s scope and resolution, i.e., what will not be modeled. 
For example, in this example, the Internet will not be considered. In addition, 
the network speed will not be considered, since it operates at speeds that are 
orders of magnitude faster than the processes being modeled.  

Identification of the system for this example must consider the three main 
categories of computer viruses: file infector viruses, boot-sector viruses, and 
macro viruses (Kephart, Sorkin, Chess, & White, 1997). The greater majority of 
known viruses belong to the first category, infecting application files such as 
games, spread-sheets, and word processors. The second category, boot-sector 
viruses, reside with the start-up information executed when a computer first 
starts up. Once in place, a boot-sector virus can infect any electronic storage 
media used on that computer. Many computer applications today allow the 
program to run macros or scripts, which are small sub-programs used to perform  
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Figure 1. A graphical depiction of some possible approaches for grouping 

computers in a computer virus model. The computers have been 
grouped by virus infection status (A), user type (B), and location (C). 

 
repeated actions or a series of actions quickly. The final category of viruses, 
macro viruses, infect the data files that are freely and rapidly shared by users. A 
data file infected with a macro virus will execute a viral macro script in response 
to the actions of the user. These are the most prevalent of all viruses 
(Kepschreudersphart, Sorkin, Chess, & White, 1997) and are the type of virus 
that we wish to model.  

Stage 2. Identify the information to be obtained from the model 
Once an overall understanding of the system has been developed, the 

question that motivates the model needs to be formulated. The formulation of 
this question is critically important, since it provides the foundation for 
designing the model. Asking the question: “How fast will our school become 
infected when a new macro computer virus appears?” will yield a vastly 
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different model than “Will my computer become infected by the new virus?” In 
the first question, the model examines the average behavior of the computers, 
whereas for the second question the model examines the behavior of individual 
computers. Like most design processes, modeling is a balancing act. Improving 
the quality of a model (e.g., increasing accuracy or adding functionality) must 
be balanced against cost (e.g., time or money). Formulating the question 
appropriately provides the basis for the balancing decisions. In demonstrating 
this approach to model development, we will answer the first question. 

Stage 3. Research and gather data 
Most new models are based on existing knowledge/models and modified 

and refined to fit the problem at hand. In this stage of model development, the 
modeler develops an understanding of the process of interest and of the existing 
models. The viruses under consideration have three main aspects, the payload, 
the dormancy period, and the infection component (Thimbleby, Anderson, & 
Cairns, 1999). The payload is the set of commands that, when executed, do 
something undesirable. The dormancy period is the time lapse between infection 
and manifestation, where the infection may lay hidden or concealed before 
manifesting itself. This delay makes the program more difficult to detect by 
distancing the payload’s actions from the time of infection. The third aspect, the 
infection component, is the means by which the virus will propagate itself and 
infect other systems.  

This model used herein will draw from similarities between computer and 
biological viruses. The analogy between biological systems and computers has 
existed since the inception of the computer age. The computer terms ‘bugs’, 
‘environment’, ‘worms’, and ‘viruses’ have strong biological connotations and 
parallels. This is not without reason, as the processes observed in biological 
systems can represent the processes and mechanisms at work in the artificial 
environment of computer systems (Kephart, Chess, & White, 1993). The 
approach finds its promise in that computer and biological viruses exhibit 
similar behavior (Thimbleby, Anderson, & Cairns, 1999). Both insert 
themselves into a host, where they produce an undesirable effect. Both use the 
resources of the host to replicate their genetic or program code and spread 
themselves to new hosts, thereby spreading the infection. Finally, both the 
biological organisms and the computers can be immunized against viral 
infection to the degree that the virus strains can be identified and effectively 
targeted.  

Nevertheless, it is important to be aware of the assumptions of the analogy, 
since they impact the model’s development. The first assumption is that 
homogeneous, symmetric interactions take place (Kephart & White, 1991). In 
biological systems, there is a certain degree of random physical contact 
associated with the spread of disease. In contrast, in the computer world, 
physical proximity bears no relevance. In computer communication, interactions 
are more likely to occur within organizational groups than geographical groups. 
In both cases, though, the rates of transmission are linked to behavioral patterns. 
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In the computer environment, there are computers that distribute or pass 
information that other computers download and install and there are servers that 
send out mass mailings and do not necessarily receive information in return. 
Similarly, users vary in the degree to which they send and receive files. It 
should also be noted that there are biological viruses that do not have an equal 
chance of being transmitted by every host (Schneeberger et al., 2004) and this is 
likely to be the case for the spread of computer viruses over the entire Internet 
(Chang & Young, 2005). 

Stage 4. Brainstorm/generate model structures 
In creating and visualizing the system, a graphical model is structured to 

match the structure of the system being modeled. System matching approaches 
provide strong benefits in the classroom, since they allow students to structure 
their models using personal knowledge. The next stage is identifying the 
subjects of the model and describing their linkages. In the classroom, 
exploration of potential structure starts with an inquiry of how the subject of the 
model can be divided. Each of these divisions or categories will become one of 
the state variables in this model example. A box will be used to denote each 
state variable, either the school’s computers or the computer viruses in this 
example. Students are then asked to identify the pathways where movement can 
occur between those categories. The paths are indicated by arrows, with 
arrowhead(s) indicating the directions of the flow. Flows may be either 
unidirectional or bidirectional. 

As shown in Figure 1, there is an array of possible structures for developing 
the model, depending on how the system is viewed. In diagram (A), the 
computers are viewed as a group and have been divided based on their 
infectious state. In this case, computers change status and flow between the 
boxes representing the various states. This model is a variant of the SIP 
(susceptible, infected, protected) model used in human epidemiology (Hannon 
& Ruth, 1997). In diagram (B), the computers have been divided based on the 
type of users to allow compensation for differences in user behavior. In diagram 
(C), the computers are arranged based on the network’s topology. In these cases 
(B and C), the model tracks the movement of the viruses between the 
computers. 

Stage 5. Develop and refine model structures 
This stage of designing a model is one of the most difficult to teach, in part 

because students rarely experience multiple valid choices in their classroom 
experiences. Unfortunately, in engineering practice and in model development, 
the luxury of a single solution is seldom available. There is no single “right” 
model. There are only valid choices. 

There are a number of factors that can influence the inclusion or elimination 
of a model from the overall pool of valid structures. Often, the final, optimal 
choice is a hybrid of the structures in the initial pool. As with physical design, 
model development is an iterative process, with decisions to add or remove 
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features of the model occurring continuously. Some methods that are useful in 
guiding the decisions are: 

1. Occam’s Razor - ‘entia non sunt multiplicanda’ (entities are not to be 
multiplied without necessity) (“OED Online”, 2004). Using this 
technique, the simplest model that exhibits the desired behavior is the 
preferred model. This approach has several justifications. It reduces the 
amount of data required, the number of assumptions, and opportunities 
for human or computer error. 

2. Identification of available information – The data used to build a model 
or add functionality need to be available and of high quality for the model 
to be valid. If the information is not available, the model will need to be 
modified, the missing data acquired, or an estimate of the missing values 
obtained. All models have limits in their use and these limits are often 
defined by the data. 

3. Matching the model to the question – A model that does not answer the 
question at hand, whether it is accurate or filled with errors, is useless. 
Many modeling errors are the result of ill-posed questions or 
specifications. In addition, calibrating or adjusting the model parameters 
to meet reality and validation, or checking the results against reality, are 
critical parts of the modeling process (Haefner, 1996). 

4. Matching the model to the available resources – Time and money are two 
of the biggest constraints in model building. They often amount to the 
same thing. In the classroom, time is at a premium and teachers need to 
balance the time constraints of the course with the levels of refinement of 
the model. Historically, the resolution and complexity of a model was 
severely limited by the speed of the available computers, their memory, 
or the software on which they ran. Fortunately, not only has the software 
developed and matured, but also the speed of student’s computers is more 
than adequate for most models. 

5. Comparing the model’s sophistication and accuracy to that required by 
the results – Engineering models are often used as the basis for decisions 
and designs. The time that is spent acquiring quality data and validating a 
model is dependent on the benefits of getting a right answer and the 
penalties for failing to get a right answer. Often these benefits/penalties 
are measured in hundreds of thousands of dollars, jobs, or human lives. 

 
Using one or more of the methods described above, the model’s structure 

and variables are finalized. While all of the structures in Figure 1 can be made 
to work, implementing model structures B and C will require that each of their 
blocks be broken down into a structure similar to that found in structure A. 
Though B and C are more complex, the additional information that they 
generate is not required. Therefore A is the most appropriate structure. 

In structure A, the overall population of items (the computers) is 
categorized as having one of three states (Hoppensteadt & Perkin, 2002), each 
represented by a box in Figure 1A. They are: 
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1. Susceptible Computers (S) – These computers do not currently have the 
virus and are capable of contracting the virus. 

2. Infected Computers (I) – These computers are currently infected with the 
virus and are capable of transmitting the virus to others. 

3. Protected Computers (P) – These computers are those who do not fall 
into either of the above populations. Typically, they fall into one or more 
of the following categories: naturally immune to the virus (running 
different software), immune to the virus due to immunization (have 
current antivirus software), and currently infected but not contagious (not 
connected to the network). 

These three variables have values assigned indicating “number of 
computers.” Mathematically, each state represents a first order differential 
equation. Using a graphical programming language for implementation, 
transfers the challenges of writing the equations and their solution to the 
software, allowing students to concentrate on the structure of the problem and 
the solution of models that are beyond their mathematical skills. 

Computers do not necessarily stay in any one state. If they did, this model 
would be uninteresting both practically and theoretically. Instead, they are 
moved from one state to another via the pathways. In this example, four 
pathways for aggregated changes of the computers’ state will be allowed. By 
defining the values and constants involved, this model mimics the behavior of 
the defined virus through a population. The four pathways are: 

1. Susceptible computers become infected computers (FS-I) – a virus infects 
a computer, 

2. Infected computers become protected computers (FI-P) – the virus is 
removed from the computer and the antivirus software is updated, 

3. Infected computers become susceptible computers (FI-S) – the virus is 
removed from the computer, but the antivirus software is not updated, 
and 

4. Susceptible computers become protected computers (FS-P) – current 
antivirus software is installed on a non-infected computer. 

All of these flows are expressed in “computers per day.” Definition of these 
pathways completes the definition of the model’s structure, and the specific 
information describing our situation needs to be added.  

Stage 6. Implement the model 
Next, the model must be converted into a computer program for simulation. 

In Stella, this conversion is relatively simple. The conversion of the structure is 
shown in Figure 2A. The next stage in the implementation of the model is 
identifying the causes and magnitudes of the flow rates. The definitions of the 
four pathways for flow within this model are shown in what follows. 

Infection of a computer by a computer virus. If every host has an equal 
chance of interacting with any other host, the rate of interaction is proportional 
to the product of the number of susceptible and infected computers (Anderson & 
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May, 1991). More infected computers and more available susceptible computers 
result in faster spread of the computer virus. Algebraically, this is: 

F S-I = ß • S • I 
Where:  ß = Infectious contact rate including virus dormancy [1 / 

(Computers • Day)] 
The contact rate ß is the average number of events of possible transmission per 
unit of time (Frauenthal, 1980).  

Virus removal with installation of antivirus software. The second flow is 
the flow of individuals from the infected population to the protected. It occurs 
when a computer has the virus removed and the antivirus software updated. This 
flow is proportional to the total infected population and the recovery rate 
following infection divided by the total time from infection to recovery. The 
recovery rate is the proportion of the infected to be cured and successfully 
converted to the protected status. The total time is expressed as a latency, ρ, 
which is the inverse of the time from infection to discovery and the time 
between discovery and cure, yielding (Anderson & May, 1991): 

F I- P = I • γ • ρ 
Where:  γ = Recovery rate [non-dimensional] 

 ρ = Response latency [1 / Day] 
 

Virus removal without installation of antivirus software. This flow 
represents a situation where an infected computer is subjected to a one-time 
cleaning process without an update to the antivirus software. Thus, the 
computers in this state are still vulnerable to future virus attack. This flow is 
proportional to the total infected population and the probability of cleaning the 
infection without complete immunization from the time of infection to recovery. 

F I-S = I • δ • (1 – (γ • ρ)) 
Where: δ = Virus protection availability [non-dimensional] 
 

Installation of antivirus software on an uninfected computer. This fourth 
flow is an extension of the basic SIP model, and represents the possibility that 
individuals will learn about a new virus afflicting others and become immunized 
in anticipation of possible infection, protecting him/her from the virus without 
having gone through the infected stage. This is particularly appropriate for an 
academic setting where a single agency administers control over computer 
laboratories. It assumes that the information upon which action will be taken is 
proportional to the susceptible population who stand at risk multiplied by the 
number of individuals who have learned of the virus.  

FS-P = α • (I + P) • S 
Where: α = Immunization/communication rate [1 / Computers • 

Day] 
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Figure 2. A depiction of the SIP model relationships as implemented in Stella 

in 2A. The double headed arrow between the susceptible and 
infected computers in Figure 1A has been replaced by two flow paths 
because the rate of virus infection and virus removal are different. 
The SIP model fully implemented in Stella is shown in 2B.  

 
The immunization/communication rate is based on the probability that 
information concerning the virus will be conveyed to the susceptible population 
and that the information will be acted upon. 

The coupled differential equations describing this model are shown in Table 
3. These equations are known as the state equations for the model. In aggregate, 
they describe the changes to the state variables. 
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Table 3 
The set of coupled differential equations describing the computer virus model. 
The upper equation for each state variable is written in terms of the pathways 
and the lower equation  includes the equation for each pathway. By using the 
design paradigm and the graphical modeling software, the modeler has been 
able to create a complex model without requiring the mathematical or 
programming background otherwise required. 

State Variable Assembled Differential Equations 
Susceptible Computers dS

dt
= – FS−I – FS−P +FI−S

 
or 

dS
dt

= – βSI –α (I+P)S+ Iδ(1– γρ)

 
Infected Computers dI

dt
=FS−I – FI−P − FI−S

 
or 

dI
dt

=βSI– I γρ− Iδ(1– γρ)
 

 
Protected Computers dP

dt
=FI−P +FS−P

 
or 

dP
dt

= I γρ+α(I+P)S
 

Stage 7. Specify and simulate 
The final step before actually running any model is entering the specific 

values describing the situation of interest. The example model requires three 
initial conditions, shown in Table 4, and five rate coefficients specifying the 
flows between the states, shown in Table 5. The initial conditions assume that 
the computers are largely unprotected against the virus, as would occur with a 
new virus. The rate constants describe a rapidly spreading virus and a very rapid 
response by the generator of the antivirus software and the computer technicians 
at the school. 
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Table 4 
The initial distribution of the computers between the various state variables.  

State Variable Symbol Number of Computers 
Susceptible S 195 
Infected I 2 
Protected P 3 
Total Number of Computers  200 

 
Table 5 
The values of the rate coefficients used in the simulation. The values have been 
arbitrarily chosen. 

Coefficient Symbol Value 
Infectious contact rate β 0.15 
Recovery rate γ 0.10 
Response latency ρ 0.33 
Virus protection availability δ 0.25 
Immunization rate α 0.05 

 
The assembled model after the implementation of the equations and the 

inclusion of the initial conditions and rate constants is shown in Figure 2B. In 
addition, the results of this simulation are shown in Figure 3. 

 
 

 
Figure 3. The results of the simulation produced by Stella. The simulation 

shows a rapid decline in the number of susceptible computers with 
concomitant rises in the number of protected and infected computers. 
Later, the number of infected computers decreases as their viruses are 
removed and protective software is installed. The simulation was 
performed using a numerical integration with a step size of 0.01. The 
integration was performed using a 4th-order Runga-Kutta. 
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Stage 8. Interpret and communicate 
Once a model is complete, it will be used, often by those who did not 

design it. Full documentation is an essential component of any design process. 
Typically, this documentation will include: 

1. Identification of all components, assumptions, and limitations of the 
model, 

2. Documentation of the software under which the model operates, and 
3. Printouts of the model and typical results. 
It is worth noting that models are also intellectual property. Complete 

documentation should include the filing of documents to protect that property. 
This protection is an important business issue. Consulting firms sell the results 
of their simulations and, as noted earlier, many computer games contain 
significant computer modeling components. To put it in perspective, one major 
computer games company, Electronic Arts, had a net revenue of 1.3 billion 
dollars for the final quarter of 2005 (Tamaki, 2006). 

Stage 10. Perform post-implementation review 
In addition, the modeler needs to understand that the model that has been 

created will need to be updated or modified. In our example, a new virus may 
emerge with different properties. New computers may be added to the school. 
The school district may want to understand the impact of the virus on all of the 
schools under its control. In the case of computer models of electronics, new 
parts will become available. In the case of computer games, a new version of the 
game will need to be created. 

An important component of any design process is the evaluation review that 
should occur after the model has been completed. There are three broad 
categories that need to be considered, including  

1. What did we do right? 
2. What did we do wrong? 
3. How can we improve our process? 
The modeler will generally be asked to create new models in the future and 

modify the present model. Understanding the successes and failures of the 
process used to create the model will result in a smoother, more efficient design 
process the next time it is performed. A useful analogy is that of the toolbox. 
Each model adds techniques to the engineer’s or designer’s toolbox. The post-
implementation review helps the modeler to understand the strengths and 
limitations of their tools.  

Conclusions and Implications 
The ten-stage modeling paradigm represents a method for the development 

of engineering models. It adapts a design paradigm used in technology 
education for the creation of these models. Furthermore, instead of requiring the 
development of computer code in Basic, FORTRAN, or other manual analytical 
solution for simultaneous differential equations, this approach graphically 
develops the structure of the model and implements the model in graphical 
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modeling software. By defining state variables and the flows into and out of the 
variables using algebraic equations, complex engineering models can be 
developed and solved in high school classrooms. 

The introduction of design-based methodology for graphical model 
development has a number of implications for technology education. First, it 
builds on the historical strengths of technology education such as hands-on 
experiences, visualization, and design and uses those approaches to bring 
relevance to students’ mathematics and science skills. Further, this is achieved 
by meeting the goals of the Standards for Technological Literacy (ITEA & 
TAAP, 2000) through application of the content of the National Science 
Education Standards (National Research Council [U.S.], 1996) and the 
Principles and Standards for School Mathematics(National Council of Teachers 
of Mathematics, 1989). Second, it teaches the transferability of the design 
process to other disciplines by following paradigms that are familiar to both 
students and the teachers of technology education. This familiarity reinforces 
the design paradigms in the students’ minds, while extending their abilities. 
Finally, by using software to create and solve the mathematical models that are 
constructed, the approach is less dependent on the abilities of the students to 
perform mathematical manipulations. In fact, it is relatively easy to create and 
solve mathematical models that are analytically insoluble even for many 
practicing engineers. 
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