
Journal of Technology Education Vol. 19 No. 1, Fall 2007

-53-

Engineering Modeling Using a Design Paradigm:
A Graphical Programming-Based Example

Paul D. Schreuders

Introduction
Engineers combine design paradigms or methods for problem solving

(“OED Online”, 2004) with mathematical modeling techniques to predict the
success of their designs, a method that they have found to be accurate and
repeatable. However, computer models are not just used in traditional
engineering design and practice. Many computer games have complex
mathematical models hidden behind their interfaces. Beyond the obvious
examples, such as the Sims™ and SimCity™, the “first person shooters” contain
extensive physics models, so that thrown objects and jumping characters behave
correctly on the screen (“Best of What's New 2005”, 2005; Tamaki, 2006;
Terzopoulos, 1999).

As engineering has moved into the biological arena, engineering modeling
has been used to describe living processes through the creation of constructs that
reproduce, move, and eat. The reverse is also true. Modeling has adopted into its
array of methods for solving problems, biological approaches such as neural
networks and evolution-based optimization (Kim & Cho, 2006; Terzopoulos,
1999).

Mathematical models are also becoming increasingly important in the
workplace. Businesses use models to optimize their future plans. Brokers use
models to identify when to buy and sell stocks. Actuaries use models to predict
death rates for insurance companies. Biologists use models to predict the impact
of changes to the environment (Gotelli, 1998; Kurzweil, 1999).The teaching of
model development is primed to move into the high school classroom for
several reasons. These reasons include the removal of barriers to modeling, the
inclusion of modeling in national curricular standards, and the adoption of pre-
engineering curricula by many high schools.

First, many of the barriers to teaching modeling have been removed. As the
computer gaming industry has demonstrated, the hardware for modeling is both

Paul D. Schreuders (pschreuders@cc.usu.edu) is Assistant Professor in the Department of
Engineering and Technology Education at Utah State University, Logan, Utah.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-54-

available and affordable. Further, analyses such as Moore’s Law indicate that
computer hardware will become exponentially faster for the reasonable future
(Kurzweil, 1999). The software required to create these models has also matured
and become easier to use.

Second, modeling integrates technology education, science education, and
mathematics education by linking the design standards from the Standards for
Technological Literacy (ITEA & TAAP, 2000) and the National Science
Education Standards (National Research Council [U.S.], 1996) with the
mathematical modeling standards of the Principles and Standards for School
Mathematics(National Council of Teachers of Mathematics, 1989).

Finally, there is a continuing trend towards the adoption of engineering
design into the high school curriculum. Project Lead the Way, for example, has
over 1300 participating schools in 45 states (PLTW, 2006). This trend is evident
with the development of the Standards for Technological Literacy: Content for
the Study of Technology (STL) and its endorsement by William A. Wulf, former
President of the National Academy of Engineering (ITEA & TAAP, 2000).
Engineering design emphasizes analysis and modeling. The development of
student appropriate methods for engineering analysis represents some of the
biggest remaining challenges in bringing engineering design into the high
school. As shown in Table 1, there are a number of ways that analysis has been
approached.

Table 1.
Some current practices for performing engineering analysis in the high school
classroom.

Methodology Limitation
Student computation Restricted by the students’ mathematical

background; often limits the problems to
those soluble by algebra or trigonometry

Use of tabular or graphical
data

Student solutions are limited to those
considered in advance of the project

Use of software (pre-
programmed)

Student solutions are limited to those
considered in advance of the project

Student written software Requires extensive class time to teach
programming/write the software; restricted
by the students’ mathematical background

Experimental/trial-and error Inefficient in creating designs; students often
fail to understand the science and
technologies behind their design; time
consuming

Graphical modeling Requires modeling software; Unfamiliar to
most technology teachers

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-55-

There is a tendency to consider engineering design paradigms as primarily
applicable to the creation of physical objects or, perhaps, software. A more
appropriate view, however, is to view the design process as a paradigm for
problem solving with the goal of creation. Historically, this paradigm has been
amazingly effective for the creation and implementation of new ideas and
inventions. It is used for the identification of the boundaries of possible designs
and for the elimination of impossible, impractical, inefficient, or otherwise
undesirable designs. A number of design paradigms have been developed for
use in the classroom (Eggert, 2004; Gomez, Oakes, & Leone, 2004; Haik, 2003;
Oakes, Leone, & Gunn, 2004). In general, these paradigms differ only in minor
ways. One of these paradigms is shown in Table 2. The design process includes
a series of tradeoffs that alter what is considered the optimal product. There
may, in fact, be multiple optimal designs (Koen, 2003). The adoption of the
design paradigm for model development has an advantage in that it is a process
with which technology educators and their students are familiar and proficient in
using, allowing the transfer of existing skills. It provides a useful, structured
approach to introducing engineering analysis into the classroom, a goal and a
challenge for many pre-engineering programs.

Table 2.
A comparison of two design paradigms, showing a general design paradigm
and the same paradigm adapted for use in graphical modeling.

Stage
Number

Design Paradigm
(Gomez, Oakes, & Leone, 2004;
Oakes, Leone, & Gunn, 2004)

Modeling Paradigm

Stage 1: Identify the problem/product
innovation

Identify the system to be
analyzed or simulated

Stage 2: Define the working
criteria/goals

Identify the information to be
obtained from the model

Stage 3: Research and gather data Research and gather data
Stage 4: Brainstorm/generate creative

ideas
Brainstorm/generate model
structures

Stage 5: Analyze potential solutions Develop and refine model
structures

Stage 6: Develop and test models Implement the model
Stage 7: Make the decision Specify and simulate
Stage 8: Communicate and specify Interpret and communicate
Stage 9: Implement and commercialize Protect and commercialize
Stage 10: Perform post-implementation

review
Perform post-implementation
review

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-56-

Until recently, modeling required significant programming expertise and/or
the knowledge of differential equations in order to analyze dynamic systems
(Coughanowr & Koppel, 1965; Lewis & Yang, 1997; Ogata, 1997). However,
with the maturation of graphical modeling software, this is no longer true. In
this article, a design-based approach to engineering model development will be
examined. Graphical approaches emphasize the development of a model’s
structure prior to its implementation.

Graphical Modeling Software
In graphical modeling software, programming is performed by

manipulating graphical elements and their connections. Educators familiar with
using RoboPRO (“ROBO Pro”, 2005) or Robolab (“Robolab”, 2004) to control
robots will find that the techniques used in graphical modeling software are
quite similar. In addition, because of their emphasis on model structure and
minimal programming requirements, graphical modeling software allows the
development and solution of complex mathematical models rapidly with limited
mathematical background.

A number of engineering-specific graphical modeling software packages
exist. However, because they presume significant discipline-specific expertise
and are expensive, these packages are not useful in the high school classroom.
Fortunately, a number of generalized modeling packages exist, including
Simulink (“Simulink”, 2005), Berkeley Madonna (Zahnley, 2006), and Stella
(“Stella”, 2005). Simulink is the most powerful of these packages, but the least
friendly to the student user. Stella is the least powerful package, but is by far the
most student friendly. Madonna lies somewhere in between the other two. All
three packages are available with academic discounts at prices ranging from $50
for a single copy to a site license for around $1000.

Mathematical models of dynamic systems contain variables known as “state
variables.” These variables and their inflows and outflows are described by sets
of first order differential equations (Ogata, 1997; Phillips & Harbor, 1996). The
solution to the model is obtained by simultaneously solving these differential
equations. The flows are described using flow rate coefficients, equations, etc.
(Hannon & Ruth, 1997; Richmond, 2004). In graphical programming software,
all of the above information is entered using a graphical interface. Then, hidden
to the user, the software solves the differential equations, using one of several
numerical integration methods.

In practice, the link between a graphical description of a system and the
graphical program of the systems is clearest for classes of problems where each
state variable represents a reservoir of things and the things flow between those
reservoirs along defined pathways. Some examples of this type of systems
include movement of liquid between tanks, storage, movement and distribution
of energy in an automobile, and movement of money through a business.
Techniques for converting equations directly into graphical programs are
available (Ogata, 1997). However, the resulting graphical programs often bear

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-57-

little resemblance to diagrams of the physical system, making them more
challenging to use in the classroom.

The clearest way to show the benefits of graphical model development is
using an example. This article will model the spread of a computer virus
through a school’s computer laboratories. The most obvious benefit of such a
model is as an aid to developing strategies for combating computer virus
infection, reducing the cost to companies and individuals. Models of a computer
virus infection can also examine a computer network’s vulnerability to
disruption and suggest possible areas for improvement.

Stella software will be used herein to create the model. However, any of the
generalized graphical modeling software packages could be used. Educators will
find that Stella requires a minimal amount of instruction (typically on the order
of a few hours) for students to develop basic facility in its use. In addition, a
wide range of problems have been solved using this software, so that grade
appropriate problems are available in both the scientific literature and in books
(Fisher, 2005a, 2005b; Hannon & Ruth, 1994, 1997; Richmond, 2004).

The Virus Model’s Development Process
This paper will develop and demonstrate an approach to modeling using a

ten-stage modeling protocol, adapted from engineering design protocols
(Gomez, Oakes, & Leone, 2004; Oakes, Leone, & Gunn, 2004), to model the
spread of a computer virus. The design model paradigm is shown in Figure 1.

Stage 1. Identify the system to be analyzed or simulated
In system identification, the model’s contents are chosen and extraneous

content is eliminated from the model. It has several aspects. The first is
identification of what system is to be modeled and what components of that
system are to be included in the model. As part of this, the nature of the system
needs to be analyzed. An important component of this analysis is the isolation of
the root process to be modeled. In this example, the behavior of the virus is the
root process. The brand of operating system is relevant only if it alters the
system’s behavior. The next important aspect of system identification is the
definition of the system’s scope and resolution, i.e., what will not be modeled.
For example, in this example, the Internet will not be considered. In addition,
the network speed will not be considered, since it operates at speeds that are
orders of magnitude faster than the processes being modeled.

Identification of the system for this example must consider the three main
categories of computer viruses: file infector viruses, boot-sector viruses, and
macro viruses (Kephart, Sorkin, Chess, & White, 1997). The greater majority of
known viruses belong to the first category, infecting application files such as
games, spread-sheets, and word processors. The second category, boot-sector
viruses, reside with the start-up information executed when a computer first
starts up. Once in place, a boot-sector virus can infect any electronic storage
media used on that computer. Many computer applications today allow the
program to run macros or scripts, which are small sub-programs used to perform

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-58-

Figure 1. A graphical depiction of some possible approaches for grouping

computers in a computer virus model. The computers have been
grouped by virus infection status (A), user type (B), and location (C).

repeated actions or a series of actions quickly. The final category of viruses,
macro viruses, infect the data files that are freely and rapidly shared by users. A
data file infected with a macro virus will execute a viral macro script in response
to the actions of the user. These are the most prevalent of all viruses
(Kepschreudersphart, Sorkin, Chess, & White, 1997) and are the type of virus
that we wish to model.

Stage 2. Identify the information to be obtained from the model
Once an overall understanding of the system has been developed, the

question that motivates the model needs to be formulated. The formulation of
this question is critically important, since it provides the foundation for
designing the model. Asking the question: “How fast will our school become
infected when a new macro computer virus appears?” will yield a vastly

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-59-

different model than “Will my computer become infected by the new virus?” In
the first question, the model examines the average behavior of the computers,
whereas for the second question the model examines the behavior of individual
computers. Like most design processes, modeling is a balancing act. Improving
the quality of a model (e.g., increasing accuracy or adding functionality) must
be balanced against cost (e.g., time or money). Formulating the question
appropriately provides the basis for the balancing decisions. In demonstrating
this approach to model development, we will answer the first question.

Stage 3. Research and gather data
Most new models are based on existing knowledge/models and modified

and refined to fit the problem at hand. In this stage of model development, the
modeler develops an understanding of the process of interest and of the existing
models. The viruses under consideration have three main aspects, the payload,
the dormancy period, and the infection component (Thimbleby, Anderson, &
Cairns, 1999). The payload is the set of commands that, when executed, do
something undesirable. The dormancy period is the time lapse between infection
and manifestation, where the infection may lay hidden or concealed before
manifesting itself. This delay makes the program more difficult to detect by
distancing the payload’s actions from the time of infection. The third aspect, the
infection component, is the means by which the virus will propagate itself and
infect other systems.

This model used herein will draw from similarities between computer and
biological viruses. The analogy between biological systems and computers has
existed since the inception of the computer age. The computer terms ‘bugs’,
‘environment’, ‘worms’, and ‘viruses’ have strong biological connotations and
parallels. This is not without reason, as the processes observed in biological
systems can represent the processes and mechanisms at work in the artificial
environment of computer systems (Kephart, Chess, & White, 1993). The
approach finds its promise in that computer and biological viruses exhibit
similar behavior (Thimbleby, Anderson, & Cairns, 1999). Both insert
themselves into a host, where they produce an undesirable effect. Both use the
resources of the host to replicate their genetic or program code and spread
themselves to new hosts, thereby spreading the infection. Finally, both the
biological organisms and the computers can be immunized against viral
infection to the degree that the virus strains can be identified and effectively
targeted.

Nevertheless, it is important to be aware of the assumptions of the analogy,
since they impact the model’s development. The first assumption is that
homogeneous, symmetric interactions take place (Kephart & White, 1991). In
biological systems, there is a certain degree of random physical contact
associated with the spread of disease. In contrast, in the computer world,
physical proximity bears no relevance. In computer communication, interactions
are more likely to occur within organizational groups than geographical groups.
In both cases, though, the rates of transmission are linked to behavioral patterns.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-60-

In the computer environment, there are computers that distribute or pass
information that other computers download and install and there are servers that
send out mass mailings and do not necessarily receive information in return.
Similarly, users vary in the degree to which they send and receive files. It
should also be noted that there are biological viruses that do not have an equal
chance of being transmitted by every host (Schneeberger et al., 2004) and this is
likely to be the case for the spread of computer viruses over the entire Internet
(Chang & Young, 2005).

Stage 4. Brainstorm/generate model structures
In creating and visualizing the system, a graphical model is structured to

match the structure of the system being modeled. System matching approaches
provide strong benefits in the classroom, since they allow students to structure
their models using personal knowledge. The next stage is identifying the
subjects of the model and describing their linkages. In the classroom,
exploration of potential structure starts with an inquiry of how the subject of the
model can be divided. Each of these divisions or categories will become one of
the state variables in this model example. A box will be used to denote each
state variable, either the school’s computers or the computer viruses in this
example. Students are then asked to identify the pathways where movement can
occur between those categories. The paths are indicated by arrows, with
arrowhead(s) indicating the directions of the flow. Flows may be either
unidirectional or bidirectional.

As shown in Figure 1, there is an array of possible structures for developing
the model, depending on how the system is viewed. In diagram (A), the
computers are viewed as a group and have been divided based on their
infectious state. In this case, computers change status and flow between the
boxes representing the various states. This model is a variant of the SIP
(susceptible, infected, protected) model used in human epidemiology (Hannon
& Ruth, 1997). In diagram (B), the computers have been divided based on the
type of users to allow compensation for differences in user behavior. In diagram
(C), the computers are arranged based on the network’s topology. In these cases
(B and C), the model tracks the movement of the viruses between the
computers.

Stage 5. Develop and refine model structures
This stage of designing a model is one of the most difficult to teach, in part

because students rarely experience multiple valid choices in their classroom
experiences. Unfortunately, in engineering practice and in model development,
the luxury of a single solution is seldom available. There is no single “right”
model. There are only valid choices.

There are a number of factors that can influence the inclusion or elimination
of a model from the overall pool of valid structures. Often, the final, optimal
choice is a hybrid of the structures in the initial pool. As with physical design,
model development is an iterative process, with decisions to add or remove

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-61-

features of the model occurring continuously. Some methods that are useful in
guiding the decisions are:

1. Occam’s Razor - ‘entia non sunt multiplicanda’ (entities are not to be
multiplied without necessity) (“OED Online”, 2004). Using this
technique, the simplest model that exhibits the desired behavior is the
preferred model. This approach has several justifications. It reduces the
amount of data required, the number of assumptions, and opportunities
for human or computer error.

2. Identification of available information – The data used to build a model
or add functionality need to be available and of high quality for the model
to be valid. If the information is not available, the model will need to be
modified, the missing data acquired, or an estimate of the missing values
obtained. All models have limits in their use and these limits are often
defined by the data.

3. Matching the model to the question – A model that does not answer the
question at hand, whether it is accurate or filled with errors, is useless.
Many modeling errors are the result of ill-posed questions or
specifications. In addition, calibrating or adjusting the model parameters
to meet reality and validation, or checking the results against reality, are
critical parts of the modeling process (Haefner, 1996).

4. Matching the model to the available resources – Time and money are two
of the biggest constraints in model building. They often amount to the
same thing. In the classroom, time is at a premium and teachers need to
balance the time constraints of the course with the levels of refinement of
the model. Historically, the resolution and complexity of a model was
severely limited by the speed of the available computers, their memory,
or the software on which they ran. Fortunately, not only has the software
developed and matured, but also the speed of student’s computers is more
than adequate for most models.

5. Comparing the model’s sophistication and accuracy to that required by
the results – Engineering models are often used as the basis for decisions
and designs. The time that is spent acquiring quality data and validating a
model is dependent on the benefits of getting a right answer and the
penalties for failing to get a right answer. Often these benefits/penalties
are measured in hundreds of thousands of dollars, jobs, or human lives.

Using one or more of the methods described above, the model’s structure

and variables are finalized. While all of the structures in Figure 1 can be made
to work, implementing model structures B and C will require that each of their
blocks be broken down into a structure similar to that found in structure A.
Though B and C are more complex, the additional information that they
generate is not required. Therefore A is the most appropriate structure.

In structure A, the overall population of items (the computers) is
categorized as having one of three states (Hoppensteadt & Perkin, 2002), each
represented by a box in Figure 1A. They are:

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-62-

1. Susceptible Computers (S) – These computers do not currently have the
virus and are capable of contracting the virus.

2. Infected Computers (I) – These computers are currently infected with the
virus and are capable of transmitting the virus to others.

3. Protected Computers (P) – These computers are those who do not fall
into either of the above populations. Typically, they fall into one or more
of the following categories: naturally immune to the virus (running
different software), immune to the virus due to immunization (have
current antivirus software), and currently infected but not contagious (not
connected to the network).

These three variables have values assigned indicating “number of
computers.” Mathematically, each state represents a first order differential
equation. Using a graphical programming language for implementation,
transfers the challenges of writing the equations and their solution to the
software, allowing students to concentrate on the structure of the problem and
the solution of models that are beyond their mathematical skills.

Computers do not necessarily stay in any one state. If they did, this model
would be uninteresting both practically and theoretically. Instead, they are
moved from one state to another via the pathways. In this example, four
pathways for aggregated changes of the computers’ state will be allowed. By
defining the values and constants involved, this model mimics the behavior of
the defined virus through a population. The four pathways are:

1. Susceptible computers become infected computers (FS-I) – a virus infects
a computer,

2. Infected computers become protected computers (FI-P) – the virus is
removed from the computer and the antivirus software is updated,

3. Infected computers become susceptible computers (FI-S) – the virus is
removed from the computer, but the antivirus software is not updated,
and

4. Susceptible computers become protected computers (FS-P) – current
antivirus software is installed on a non-infected computer.

All of these flows are expressed in “computers per day.” Definition of these
pathways completes the definition of the model’s structure, and the specific
information describing our situation needs to be added.

Stage 6. Implement the model
Next, the model must be converted into a computer program for simulation.

In Stella, this conversion is relatively simple. The conversion of the structure is
shown in Figure 2A. The next stage in the implementation of the model is
identifying the causes and magnitudes of the flow rates. The definitions of the
four pathways for flow within this model are shown in what follows.

Infection of a computer by a computer virus. If every host has an equal
chance of interacting with any other host, the rate of interaction is proportional
to the product of the number of susceptible and infected computers (Anderson &

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-63-

May, 1991). More infected computers and more available susceptible computers
result in faster spread of the computer virus. Algebraically, this is:

F S-I = ß • S • I
Where: ß = Infectious contact rate including virus dormancy [1 /

(Computers • Day)]
The contact rate ß is the average number of events of possible transmission per
unit of time (Frauenthal, 1980).

Virus removal with installation of antivirus software. The second flow is
the flow of individuals from the infected population to the protected. It occurs
when a computer has the virus removed and the antivirus software updated. This
flow is proportional to the total infected population and the recovery rate
following infection divided by the total time from infection to recovery. The
recovery rate is the proportion of the infected to be cured and successfully
converted to the protected status. The total time is expressed as a latency, ρ,
which is the inverse of the time from infection to discovery and the time
between discovery and cure, yielding (Anderson & May, 1991):

F I- P = I • γ • ρ
Where: γ = Recovery rate [non-dimensional]

 ρ = Response latency [1 / Day]

Virus removal without installation of antivirus software. This flow
represents a situation where an infected computer is subjected to a one-time
cleaning process without an update to the antivirus software. Thus, the
computers in this state are still vulnerable to future virus attack. This flow is
proportional to the total infected population and the probability of cleaning the
infection without complete immunization from the time of infection to recovery.

F I-S = I • δ • (1 – (γ • ρ))
Where: δ = Virus protection availability [non-dimensional]

Installation of antivirus software on an uninfected computer. This fourth
flow is an extension of the basic SIP model, and represents the possibility that
individuals will learn about a new virus afflicting others and become immunized
in anticipation of possible infection, protecting him/her from the virus without
having gone through the infected stage. This is particularly appropriate for an
academic setting where a single agency administers control over computer
laboratories. It assumes that the information upon which action will be taken is
proportional to the susceptible population who stand at risk multiplied by the
number of individuals who have learned of the virus.

FS-P = α • (I + P) • S
Where: α = Immunization/communication rate [1 / Computers •

Day]

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-64-

Figure 2. A depiction of the SIP model relationships as implemented in Stella

in 2A. The double headed arrow between the susceptible and
infected computers in Figure 1A has been replaced by two flow paths
because the rate of virus infection and virus removal are different.
The SIP model fully implemented in Stella is shown in 2B.

The immunization/communication rate is based on the probability that
information concerning the virus will be conveyed to the susceptible population
and that the information will be acted upon.

The coupled differential equations describing this model are shown in Table
3. These equations are known as the state equations for the model. In aggregate,
they describe the changes to the state variables.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-65-

Table 3
The set of coupled differential equations describing the computer virus model.
The upper equation for each state variable is written in terms of the pathways
and the lower equation includes the equation for each pathway. By using the
design paradigm and the graphical modeling software, the modeler has been
able to create a complex model without requiring the mathematical or
programming background otherwise required.

State Variable Assembled Differential Equations
Susceptible Computers dS

dt
= – FS−I – FS−P +FI−S

or

dS
dt

= – βSI –α (I+P)S+ Iδ(1– γρ)

Infected Computers dI

dt
=FS−I – FI−P − FI−S

or

dI
dt

=βSI– I γρ− Iδ(1– γρ)

Protected Computers dP

dt
=FI−P +FS−P

or

dP
dt

= I γρ+α(I+P)S

Stage 7. Specify and simulate
The final step before actually running any model is entering the specific

values describing the situation of interest. The example model requires three
initial conditions, shown in Table 4, and five rate coefficients specifying the
flows between the states, shown in Table 5. The initial conditions assume that
the computers are largely unprotected against the virus, as would occur with a
new virus. The rate constants describe a rapidly spreading virus and a very rapid
response by the generator of the antivirus software and the computer technicians
at the school.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-66-

Table 4
The initial distribution of the computers between the various state variables.

State Variable Symbol Number of Computers
Susceptible S 195
Infected I 2
Protected P 3
Total Number of Computers 200

Table 5
The values of the rate coefficients used in the simulation. The values have been
arbitrarily chosen.

Coefficient Symbol Value
Infectious contact rate β 0.15
Recovery rate γ 0.10
Response latency ρ 0.33
Virus protection availability δ 0.25
Immunization rate α 0.05

The assembled model after the implementation of the equations and the

inclusion of the initial conditions and rate constants is shown in Figure 2B. In
addition, the results of this simulation are shown in Figure 3.

Figure 3. The results of the simulation produced by Stella. The simulation

shows a rapid decline in the number of susceptible computers with
concomitant rises in the number of protected and infected computers.
Later, the number of infected computers decreases as their viruses are
removed and protective software is installed. The simulation was
performed using a numerical integration with a step size of 0.01. The
integration was performed using a 4th-order Runga-Kutta.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-67-

Stage 8. Interpret and communicate
Once a model is complete, it will be used, often by those who did not

design it. Full documentation is an essential component of any design process.
Typically, this documentation will include:

1. Identification of all components, assumptions, and limitations of the
model,

2. Documentation of the software under which the model operates, and
3. Printouts of the model and typical results.
It is worth noting that models are also intellectual property. Complete

documentation should include the filing of documents to protect that property.
This protection is an important business issue. Consulting firms sell the results
of their simulations and, as noted earlier, many computer games contain
significant computer modeling components. To put it in perspective, one major
computer games company, Electronic Arts, had a net revenue of 1.3 billion
dollars for the final quarter of 2005 (Tamaki, 2006).

Stage 10. Perform post-implementation review
In addition, the modeler needs to understand that the model that has been

created will need to be updated or modified. In our example, a new virus may
emerge with different properties. New computers may be added to the school.
The school district may want to understand the impact of the virus on all of the
schools under its control. In the case of computer models of electronics, new
parts will become available. In the case of computer games, a new version of the
game will need to be created.

An important component of any design process is the evaluation review that
should occur after the model has been completed. There are three broad
categories that need to be considered, including

1. What did we do right?
2. What did we do wrong?
3. How can we improve our process?
The modeler will generally be asked to create new models in the future and

modify the present model. Understanding the successes and failures of the
process used to create the model will result in a smoother, more efficient design
process the next time it is performed. A useful analogy is that of the toolbox.
Each model adds techniques to the engineer’s or designer’s toolbox. The post-
implementation review helps the modeler to understand the strengths and
limitations of their tools.

Conclusions and Implications
The ten-stage modeling paradigm represents a method for the development

of engineering models. It adapts a design paradigm used in technology
education for the creation of these models. Furthermore, instead of requiring the
development of computer code in Basic, FORTRAN, or other manual analytical
solution for simultaneous differential equations, this approach graphically
develops the structure of the model and implements the model in graphical

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-68-

modeling software. By defining state variables and the flows into and out of the
variables using algebraic equations, complex engineering models can be
developed and solved in high school classrooms.

The introduction of design-based methodology for graphical model
development has a number of implications for technology education. First, it
builds on the historical strengths of technology education such as hands-on
experiences, visualization, and design and uses those approaches to bring
relevance to students’ mathematics and science skills. Further, this is achieved
by meeting the goals of the Standards for Technological Literacy (ITEA &
TAAP, 2000) through application of the content of the National Science
Education Standards (National Research Council [U.S.], 1996) and the
Principles and Standards for School Mathematics(National Council of Teachers
of Mathematics, 1989). Second, it teaches the transferability of the design
process to other disciplines by following paradigms that are familiar to both
students and the teachers of technology education. This familiarity reinforces
the design paradigms in the students’ minds, while extending their abilities.
Finally, by using software to create and solve the mathematical models that are
constructed, the approach is less dependent on the abilities of the students to
perform mathematical manipulations. In fact, it is relatively easy to create and
solve mathematical models that are analytically insoluble even for many
practicing engineers.

References
Anderson, R. M., & May, R. M. (1991). Infectious Diseases of Humans

Dynamics and Control. New York, NY: Oxford University Press.
Best of What's New 2005. (2005). Popular Science, 267(6), 29.
Chang, D. B., & Young, C. S. (2005). Infection dynamics on the Internet.

Computers & Security, 24(4), 280-286.
Coughanowr, D. R., & Koppel, L. B. (1965). Process Systems Analysis and

Control. New York: Mc-Graw Hill Book Company.
Eggert, R. J. (2004). Engineering design. Upper Saddle River, NJ: Pearson

Prentice Hall.
Feynman, R. P. (1998). The meaning of it all: Thoughts of a citizen-scientist.

New York, NY: Basic Books.
Fisher, D. M. (2005a). Lessons in mathematics: A dynamic approach. Lebanon,

NH: ISEE Systems.
Fisher, D. M. (2005b). Modeling dynamic systems: Lessons for a first course.

Lebanon, NH: ISEE Systems.
Frauenthal, J. C. (1980). Mathematical modeling in epidemiology. New York,

NY: Springer-Verlag.
Gomez, A. G., Oakes, W. C., & Leone, L. L. (2004). Engineering your future: a

project-based introduction to engineering. Wildwood, MO: Great Lakes
Press.

Gotelli, N. J. (1998). A Primer of Ecology (Second ed.). Sunderland, MA:
Sinauer Associates, Inc.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-69-

Haefner, J. W. (1996). Modeling biological systems: Principles and
applications. New York, NY: Chapman & Hall.

Haik, Y. (2003). Engineering design process. [South Melbourne, Victoria],
Australia ; Pacific Grove, CA: Thomson/Brooks/Cole.

Hannon, B. M., & Ruth, M. (1994). Dynamic modeling. New York: Springer-
Verlag.

Hannon, B. M., & Ruth, M. (1997). Modeling dynamic biological systems. New
York: Springer.

Hoppensteadt, F. C., & Perkin, C. S. (2002). Modeling and simulation in
medicine and the life sciences (2nd ed.). New York, NY: Springer-Verlag.

International Technology Education Association, & Technology for All
Americans Project. (2000). Standards for Technological Literacy: Content
for the study of technology. Reston, VA: International Technology
Education Association.

Kephart, J. O., Chess, D. M., & White, S. R. (1993). Computers and
epidemiology. IEEE Spectrum(May), 20-26.

Kephart, J. O., Sorkin, G. B., Chess, D. M., & White, S. R. (1997). Fighting
computer viruses: Biological metaphors offer insight into many aspects of
computer viruses and can inspire defenses against them. Scientific
American(November), 88-93.

Kephart, J. O., & White, S. R. (1991). Directed-graph epidemiological models
of computer viruses. Paper presented at the IEEE Computer Society
Symposium on Research in Security and Privacy, Oakland, CA.

Kim, K.-J., & Cho, S.-B. (2006). A comprehensive view of artificial life.
Artificial Life, 12(1), 153-182.

Koen, B. V. (2003). Discussion of the method: conducting the engineer's
approach to problem solving. New York: Oxford University Press.

Kurzweil, R. (1999). The age of spiritual machines: when computers exceed
human intelligence. New York: Viking.

Lewis, P. H., & Yang, C. (1997). Basic control systems engineering. Upper
Saddle River, NJ: Prentice Hall.

National Council of Teachers of Mathematics. (1989). Principles and standards
for school mathematics. Retrieved February 15, 2006, from
standards.nctm.org/document/appendix/alg.htm

National Research Council (U.S.). (1996). National Science Education
Standards: observe, interact, change, learn. Washington, DC: National
Academy Press.

Oakes, W. C., Leone, L. L., & Gunn, C. J. (2004). Engineering your future: a
comprehensive approach (4th ed.). Wildwood, MO: Great Lakes Press.

OED Online. (2004, August 1). Retrieved December 22, 2006, from
http://dictionary.oed.com

Ogata, K. (1997). Modern control engineering (3rd ed.). Upper Saddle River,
N.J.: Prentice Hall.

Phillips, C. L., & Harbor, R. D. (1996). Feedback control systems (3rd ed.).
Englewood Cliffs, N.J.: Prentice Hall.

Journal of Technology Education Vol. 19 No. 1, Fall 2007

-70-

Project Lead the Way. (2006). General FAQ's. Retrieved January 1, 2007
Richmond, B. (2004). An introduction to systems thinking. Lebanon, NH: ISEE

Systems.
ROBO Pro. (2005). (2005). Erbes-Büdesheim, Germany: Fischertechnik GmbH.
Robolab. (2004). (2004). Medford, MA: Tufts University.
Schneeberger, A., Mercer, C. H., Gregson, S. A., Ferguson, N. M., Nyamukapa,

C. A., Anderson, R. M., et al. (2004). Scale-free networks and sexually
transmitted diseases: a description of observed patterns of sexual contacts in
Britain and Zimbabwe. Sexually Transmitted Diseases, 31(6), 380-387.

Simulink. (2005). [Graphical Modeling]. Natick, MA: Mathworks, Inc.
Stella. (2005). [Systems Modeling]. Hanover, NH: ISEE Systems, Inc.
Tamaki, J. (2006, February 3). EA profit slides 31% as gamers opt to wait. Los

Angeles Times.
Terzopoulos, D. (1999). Artificial life for computer graphics. Communications

of the ACM, 42(8), 33-42.
Thimbleby, H., Anderson, S., & Cairns, P. (1999). A framework for modeling

trojans and computer virus infection. Computer Journal, 41(7), 444-459.
Zahnley, T. (2006). Berkeley Madonna (Version 8.3). Berkeley, CA: Berkeley

Madonna.

