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Timothy R. Griffin

(ABSTRACT)

The goal of this research has been the development of an effective design tool for
torsional analysis.  In the hopes of achieving this goal the computer program, Torsion 1,
has been created.  This torsional transfer matrix program provides the user with the
ability to easily model multi-rotor systems using a simple user-interface.  The program is
capable of modeling such components or system characteristics as continuously
distributed mass, viscous and structural damping, vibration absorbers, and gear meshes
with gear tooth flexibility.  The analysis capabilities of the program include forced-
response and free-vibration analyses.  The forced-response analysis module is capable of
determining a system’s response to a static or harmonic torsional load.  The free-vibration
analysis module allows is capable of determining the eigenvalues and eigenvectors for
damped and undamped systems.  This thesis includes an explanation of the multi-rotor
transfer matrix technique employed in Torsion 1.  The derivation of transfer matrices for
visco-elastic vibration absorbers, pendulum absorbers, flexible gear meshes, and
planetary gear trains are included in this work.  Finally, the validity of the program
results is verified with a set of benchmark examples.



iii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Larry D. Mitchell,
for his guidance, advice, and support throughout the course of my graduate studies.  His
contributions to this research extend far beyond the references cited in this work.  I would
also like to thank my committee members, Dr. Reginald G. Mitchiner and Dr. Robert L.
West, Jr., for their help in reviewing this work.

My deepest appreciation is extended to my parents whose love and support has
among other things helped me to achieve my goals as a student thus far.  I am also
grateful for the knowledge and friendship shared with me by my brother, Geoff.  I would
like to thank the rest of my family for their fellowship and encouragement throughout my
studies.  In addition, I am grateful to my friends and fellow graduate students who have
made the time spent at Virginia Tech interesting and rewarding.

The willingness of fellow graduate students Tim Poppe, Anaita Dolasa, and Pavan
Thallapragada to share programming experiences and resources has been instrumental in
the completion of my work.  It should also be noted that the computer program, Torsion
1, is the latest in a series of transfer matrix programs developed by graduate students
advised by Dr. Mitchell.  Torsion 1 makes use of several subroutines developed by
others.   



iv

Table of Contents

List of Figures..................................................................................................................vi

List of Tables ................................................................................................................... ix

1 Introduction................................................................................................................ 1

1.1  Motivation:  A Design Tool for Torsional Analysis ............................................ 1

1.2  Literature Review ................................................................................................. 2

1.3  Goals of this Research .......................................................................................... 5

2 The Transfer Matrix Method for Single-Shaft Torsional Systems ....................... 6

2.1  State Vector, Coordinate System, and Sign Convention...................................... 6

2.2 Building the Global Transfer Matrix.................................................................... 8

2.3  Forced-Response Analysis ................................................................................. 10

2.4  Free-Vibration Analysis ..................................................................................... 12

2.5  Visco-elastic Absorber/Damper Transfer Matrix............................................... 15

2.6  Pendulum Absorber Transfer Matrix.................................................................. 17

2.7  Generalized Method for Applying Boundary Conditions to a Single-Shaft
Model.................................................................................................................. 18

3 Multi-Rotor Transfer Matrix Technique............................................................... 20

3.1  Expanded, Multi-Rotor Transfer Matrices ......................................................... 20

3.2  Transfer Matrix for a Compliant Gear Mesh Connecting Two Shafts ............... 21

3.3  Planetary Gear Train Transfer Matrix ................................................................ 24

3.4  Building the Global Transfer Matrix for a Multi-Shaft Model .......................... 31

3.5  Generalized Method for Applying Boundary Conditions to a Multi-Shaft
Model.................................................................................................................. 33

4 Torsion 1: A Transfer Matrix Computer Program for Torsional Analysis ....... 36

4.1  Introduction ........................................................................................................ 36

4.2  Organization of the Code.................................................................................... 37

4.3  Global Interface .................................................................................................. 38

4.4  Model Editor....................................................................................................... 41

4.5  Forced-Response Analysis Module.................................................................... 45

4.6  Free-Vibration Analysis Module........................................................................ 48



v

5 Verification of the Computer Program: A Set of Benchmark Solutions............ 53

5.1  Static Response of an Imbedded Bar.................................................................. 53

5.2  Harmonic Forced-Response Analysis of a Lumped-Parameter System............. 56

5.3  Undamped and Damped Free-Vibration Analysis of an Engine/Generator ....... 57

5.4  Free-Vibration Analysis of a Redundant Drive System..................................... 61

5.5  Free-Vibration Analysis of a Petroleum Drill String Modeled with a
Continuum Element............................................................................................ 63

5.6  Free-Vibration Analysis of an Automatic Vehicle Transmission ...................... 69

6 Conclusions and Recommendations....................................................................... 73

6.1  Conclusions ........................................................................................................ 73

6.2  Recommendations for Future Work ................................................................... 73

Appendix A.  Catalogue of Additional Transfer Matrices for Torsional Systems... 76

A.1  State Vector........................................................................................................ 76

A.2  Massless, Elastic Shaft with Uniformly Distributed Torque ............................. 76

A.3  Massless, Elastic Shaft on Elastic Foundation with Uniformly Distributed
Torque................................................................................................................. 77

A.4  Elastic Shaft with Continuously Distributed Mass and Uniformly Distributed
Torque................................................................................................................. 77

A.5  Field Stiffness and Viscous Damping................................................................ 78

A.6  Viscous Point Damping to Ground .................................................................... 79

Appendix B.  Listing of the Model Parameter Values for an Automatic Vehicle
Transmission ............................................................................................................ 80

References....................................................................................................................... 84

Vita .................................................................................................................................. 88



vi

List of Figures

Figure 1.1 Two-Shaft Non-Branched and Branched System Examples .......................2

Figure 1.2 Infinity Wraps in the Plot of a Characteristic Determinant Curve...............3

Figure 2.1 State Vector for the Torsional System.........................................................6

Figure 2.2 Numbering Convention for Single-Shaft Torsional Systems ......................7

Figure 2.3 Positive and Negative Faces of a Shaft........................................................7

Figure 2.4 Positive Torsional States on Opposite Ends of a Shaft Section...................7

Figure 2.5 Rigid Disk Modeled with Inertia Lumped at a Point...................................9

Figure 2.6 Massless Shaft and Lumped Inertia ...........................................................10

Figure 2.7 Fixed-Free Shaft with Static Load .............................................................11

Figure 2.8 Shaft-Disk System Fixed on the Left End .................................................13

Figure 2.9 Characteristic Determinant of Shaft-Disk System.....................................14

Figure 2.10(a) Torsional Visco-elastic Absorber/Damper – Schematic............................15

Figure 2.10(b) Torsional Visco-elastic Absorber/Damper – Free-Body Diagram ............15

Figure 2.11(a) Pendulum Absorber – Free-Body Diagram ...............................................17

Figure 2.11(b) Pendulum Absorber – Parameters..............................................................17

Figure 3.1 Two-Shaft Torsional System .....................................................................20

Figure 3.2(a) Two Meshing Spur Gears – Front View....................................................22

Figure 3.2(b) Two Meshing Spur Gears – Free-Body Diagrams.....................................22

Figure 3.3 Spur Gear Terminology .............................................................................22

Figure 3.4 Linear Stiffness Representation of Meshing Spur Gear Teeth ..................23

Figure 3.5 Planetary Gear Train ..................................................................................24

Figure 3.6 Free-Body Diagram of the Sun Gear .........................................................25

Figure 3.7 Free-Body Diagram of the Planet Gear .....................................................25

Figure 3.8 Free-Body Diagram of the Planet Arm......................................................26

Figure 3.9 Free-Body Diagram of the Ring Gear........................................................27

Figure 3.10 Axes of Rotation of the Planet Gear Shaft and the Planet Arm Shaft .......31

Figure 3.11 Elemental Transfer Matrices for a Geared, Two-Shaft Torsional
System..................................................................................................31

Figure 4.1 Torsion 1 Title Screen................................................................................36

Figure 4.2 Schematic Diagram of Torsion 1 Organization .........................................37

Figure 4.3 Parent Form/Child Form Hierarchy ...........................................................38



vii

Figure 4.4 Global Interface Menu and Toolbar...........................................................39

Figure 4.5 Model Editor Form, Edit Element Parameters Tab ...................................41

Figure 4.6 Gear Tooth Stiffness Estimator Tool Window ..........................................43

Figure 4.7 Model Editor Form, Select Boundary Conditions Tab ..............................44

Figure 4.8 Model Editor Form, Modify Gear Connections Tab .................................45

Figure 4.9 Forced-Response Analysis Form, State Figures Tab.................................46

Figure 4.10 Forced-Response Analysis Form, Stress Figures Tab ...............................47

Figure 4.11 Forced-Response Analysis Form, Data Table Tab ....................................48

Figure 4.12 Free-Vibration Analysis Form, Eigenvalues Tab ......................................49

Figure 4.13 Free-Vibration Analysis Form, Mode Shapes Tab ....................................50

Figure 4.14 Free-Vibration Analysis Form, Data Table Tab ........................................51

Figure 4.15 Free-Vibration Analysis Form, Characteristic Determinant Tab...............52

Figure 5.1 Shaft Imbedded in a Torsionally Flexible Foundation ..............................53

Figure 5.2 Deflection and Torque Response Results for the Imbedded Bar ...............55

Figure 5.3 Three-Mass System with Harmonically Varying Torsional Load.............56

Figure 5.4 Lumped-Parameter Torsional Model of an Engine/Generator Set ............57

Figure 5.5 Undamped Mode Shape of Engine/Generator Corresponding to
Natural Frequency of 118.2890 Hz......................................................60

Figure 5.6 Undamped Mode Shape of Engine/Generator Corresponding to
Natural Frequency of 157.2164 Hz......................................................61

Figure 5.7 Redundant Drive System ...........................................................................62

Figure 5.8 Petroleum Drill Sting Model......................................................................64

Figure 5.9 Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 0.3842 Hz.......................................................................65

Figure 5.10 Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 1.2616 Hz.......................................................................66

Figure 5.11 Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 3.2814 Hz.......................................................................67

Figure 5.12 Plot of the Characteristic Determinant for the Petroleum Drill String ......68

Figure 5.13 Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 2.2507 Hz.......................................................................69

Figure 5.14 Schematic Model Representation for the Automatic Vehicle
Transmission in Forward, First-Gear Configuration ...........................70

Figure 5.15 Variation of the Transmission’s First Oscillatory Natural Frequency
for a Range of Linear Gear Tooth Stiffness Values.............................71



viii

Figure 5.16 Variation of the Transmission’s Second Oscillatory Natural Frequency
for a Range of Linear Gear Tooth Stiffness Values.............................71

Figure A.1 Massless, Elastic Shaft with Uniformly Distributed Torque .....................76

Figure A.2 Massless, Elastic Shaft on Elastic Foundation with Uniformly
Distributed Torque ...............................................................................77

Figure A.3 Elastic Shaft with Continuously Distributed Mass and Uniformly
Distributed Torque ...............................................................................78

Figure A.4 Torsional Spring and Viscous Damper in Parallel.....................................79

Figure A.5 Viscous Point Damping to Ground ............................................................79

Figure B.1 Automatic Vehicle Transmission Schematic with Point Numbers............80



ix

List of Tables

Table 2.1 Definition of Variables i and j For Use in the Generalized Method of
Applying the Boundary Conditions .....................................................19

Table 4.1 Menu and Toolbar Functions .....................................................................40

Table 5.1 Deflection Results From TWIST and Torsion 1 .........................................54

Table 5.2 Torque Results From TWIST and Torsion 1 ..............................................54

Table 5.3 Deflection and Torque Results From Torsion 1 in SI Units ......................55

Table 5.4 Steady-State Deflection of the Three-Mass System Due to a Load
Varying Harmonically With Frequency = 6.1640 Hz..........................56

Table 5.5 Steady-State Deflection of the Three-Mass System Due to a Load
Varying Harmonically With Frequency = 10.6764 Hz........................57

Table 5.6 Parameter Values for the Engine/Generator Set ........................................58

Table 5.7 Lower Natural Frequencies of the Undamped Engine/Generator Model ..58

Table 5.8 Undamped Mode Shape for the Engine/Generator Corresponding to
118.298 Hz Natural Frequency ............................................................59

Table 5.9 Lower Eigenvalues of the Damped Engine/Generator Model ...................60

Table 5.10 Inertia and Stiffness Parameter Values for the Redundant Drive
System..................................................................................................62

Table 5.11 Assumed Values of the Gear Parameters for Creating a Multi-Rotor
Model of the Redundant Drive System Using Torsion 1.....................62

Table 5.12 Natural Frequency Estimates for the First Two Oscillatory Modes of
the Redundant Drive System ...............................................................63

Table 5.13 First Two Natural Frequencies for the Petroleum Drill String Model.......64



1

Chapter 1.  Introduction

1.1 Motivation: A Design Tool for Torsional Analysis

Mechanical power transmission systems are often subjected to static or periodic
torsional loading that necessitates the analysis of the torsional characteristics of the
system.  For example, the drive train of a typical automobile is subjected to a periodically
varying torque.  This torque variation occurs due to the cyclical nature of the internal
combustion engine that supplies the power1.*  If the frequency of the engine’s torque
variation matches one of the resonance frequencies of the engine/drive train system, large
torsional deflections and internal shear stresses can occur.  Continued operation of the
machinery under such conditions can lead to early fatigue failure of system components.
Thus, an engineer designing such a system needs to able to predict its torsional natural
frequencies and be able to easily determine what effects design changes might have on
those natural frequencies.

A design tool for predicting torsional natural frequencies of a piece of machinery
should be capable of modeling the important characteristics of the system in a timely
manner.  Accurately modeling a system in the early stages of a design can reduce costs
by decreasing the number of changes needed at later stages in the design process.  In the
case of modeling torsional system characteristics, it is common to find machinery with
vibration dampers, tuned absorbers, and multiple shafts connected by gear trains that can
significantly affect the system’s dynamic performance.  An accurate model of the system
must be flexible enough to account for such components.  However, a balance must be
maintained between the accuracy of the model being created and the amount of time and
effort needed to create the model.  Therefore, a valuable design tool for torsional analysis
would allow the engineer to quickly create a model of the system that provides insight
about the system characteristics.

The transfer matrix method has certain advantages when compared to other
techniques for modeling torsional systems.  For example, the scope of problems which
can be solved using commercially available finite element packages is often very broad
(not limited specifically to torsional cases).  Thus, a transfer matrix program designed
specifically for modeling torsional systems can be much easier to learn and use
effectively for torsional analysis.  Of course the finite element method could be used in a
computer program customized to torsional analysis as well.  However, the transfer matrix
method has the advantage of being able to easily model such system characteristics as
continuously distributed mass and non-proportional damping.  In addition transfer matrix
techniques exist for modeling multi-rotor torsional systems with ease.  Thus, a computer
program using the transfer matrix method can provide valuable information about the
torsional characteristics of a piece of equipment.  When coupled with a simple user
interface such a program can serve as an effective design tool.

                                                          
* Superscripted numbers refer to references at the end of this thesis.
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1.2 Literature Review

A review of the literature reveals the following topics:
• the origin of interest in the torsional analysis of machinery
• methods for modeling torsional system components
• the transfer matrix method for determining torsional natural frequencies and

the forced response of a torsional system
• techniques for modeling multi-rotor systems
• transfer matrix computer programs with torsional capabilities
• methods for estimating the stiffness of a gear mesh

Wilson2 gives a historical review of the early development of modern torsional
analysis.  It is reported that failures in marine and aeronautical drive trains were the
original source of interest in the dynamic torsional behavior of machinery.  The Holzer
method, an iterative procedure for calculating the torsional natural frequencies of multi-
mass systems, was developed in the early 1900’s.

Wilson3 and Nestorides4 describe methods for modeling the various elements of
torsional systems.  These references include methods for determining equivalent inertias
and/or stiffnesses for a variety of machinery components including crankshafts,
flywheels, couplings, absorbers, etc.  It is common for machinery systems to consist of
multiple shafts geared together in non-branched or branched configurations as depicted in
Figure 1.1.  Both references describe a method for modeling non-branched, multi-shaft
systems as an equivalent single-shaft system as well as a procedure for performing
Holzer method calculations for branched systems.

The transfer matrix method for determining natural frequencies of torsional
systems is an extension of the Holzer method in which the equations relating the
displacements and internal forces of the system are written in matrix form.  Pestel and
Leckie5 provide a thorough reference for the application of the transfer matrix method to
a wide variety of problems including the determination of natural frequencies and mode
shapes for undamped and damped torsional systems.  In the process of determining the
eigenvalues of a torsional system or the system’s response to a torsional excitation the
boundary conditions of the model must be applied.  Pilkey and Chang6 present a

    (a) Non-Branched System         (b) Branched System
Figure 1.1: Two-Shaft Non-Branched and Branched System Examples
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generalized method for applying the boundary conditions to a torsional transfer matrix
model that is useful in developing an algorithm to accomplish the desired analysis.
Pilkey and Chang also present a number of useful torsional transfer matrices and describe
a computer program, TWIST, capable of performing torsional analysis for branched
systems.

A transfer matrix technique for analyzing a branched-torsional system is
described by Pestel and Leckie7 that involves reducing the branched system to an
equivalent single-shaft system.  This method requires lumping the characteristics of the
branch at the point on the main system where the branch is attached.  That technique
requires the elimination of the branch’s state relations from the global transfer matrix and
can result in numerical difficulties when using a root finding routine to determine natural
frequencies.  These numerical difficulties result from infinity wraps that can be observed
by plotting the characteristic determinant curve for a branched system over a range of
frequency values as demonstrated in Figure 1.2.

Sankar8 presents one multi-shaft torsional transfer matrix approach that maintains
the state information for the entire model in the global transfer matrix.  This method
involves building the transfer matrix for each branch separately, applying compatibility
relations at the junction where the branches join, and then using the boundary conditions
to find the characteristic determinant of the system.  However, that method is
cumbersome for complicated systems with multiple branches.

Infinity Wraps

Figure 1.2: Infinity Wraps in the Plot of a Characteristic Determinant Curve,
adapted from Pestel and Leckie9



Timothy R. Griffin Chapter 1.  Introduction 4

Abhary10 advocates the use of a semi-graphical approach for modeling lumped-
parameter torsional systems.  The graphical part of the technique is simply a bookkeeping
tool to aid the analyst in performing equivalence calculations for systems with several
branches.  Once the equivalent model has been created, the author suggests writing the
equations of motion for the system in matrix form and performing an eigenvalue analysis
with the aid of a commercial software package.  However, for complicated systems the
necessary equivalence calculations can become time consuming and tedious.  Therefore,
this technique is not optimal for use in a design tool for torsional analysis.

Mitchell11 has modified a multi-rotor transfer matrix approach for geared-
torsional systems which was originally developed by Hibner12 for shafts experiencing
lateral vibrations.  This multi-rotor transfer matrix approach is a simple and effective
method for modeling multi-shaft systems.  The advantages of this method include that it:

• eliminates much of the equivalence calculation needed with some other
methods

• provides a simple transfer matrix to relate the states on either side of a gear
mesh

• allows for the insertion of a gear tooth flexibility into the model
• permits the insertion of gear mesh transmission errors
• carries all the state information in the global transfer matrix
• models systems that many branches with ease

The model building procedure associated with this method can be readily generalized for
application in a computer program.

Blanding13 describes a transfer matrix computer program that implements the
Hibner/Mitchell multi-rotor transfer matrix approach for analyzing the three-dimensional,
harmonically forced response of multiple-shaft systems.  This three-dimensional response
includes not only torsional response but also axial and lateral responses.  This model
includes coupling terms between the different degrees of freedom.  The program has the
capability to represent the time-varying stiffness of a pair of meshing spur gears.  In
addition gear mesh errors can also be included in the model to determine their effects on
the response.  These added modeling capabilities increase the program’s ability to model
a system accurately and as such are significant contributions to the development of the
transfer matrix method for modeling rotors.  However, including such advanced
modeling capabilities comes at the expense of increasing the complexity of the program.
Tsai and Kuang14 also report of a computer program which implements the multi-rotor
transfer technique for coupled lateral-torsional vibration analysis of geared rotors.  Tsai
and Kuang present an example uncoupled torsional analysis of a three-shaft system.
However, some of the parameters used for modeling the system have inappropriate units.
Therefore, the results they obtained cannot be used as a test case for a new computer
program.

Doughty and Vafaee15 report on a transfer matrix computer program capable of
determining the damped natural frequencies and mode shapes of simple torsional
systems.  Two example problems with solutions are provided to demonstrate the
technique.  However, analysis using the program is limited to systems for which an
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equivalent single-shaft system can be developed.  The root search method used in this
case is a Newton-Raphson algorithm that has certain drawbacks.  The Newton-Raphson
technique requires an initial root estimate that can affect the success of the routine in
finding roots.  In addition this root-finding method requires the calculation of derivatives
of the function being considered.  For the transfer matrix problem these derivatives must
be approximated in a somewhat arbitrary fashion which can also affect the success of the
root-finding efforts.  Huang and Horng16 also describe a transfer matrix computer
program that uses the Newton-Raphson technique for finding the roots of damped
torsional systems.  This program implements the Pestel and Leckie branching technique
for a two-shaft system.  Because this technique keeps track of only the main system state
values and not those of the branch, calculating the complete eigenvectors for a two-shaft
system using their program requires two separate system models.

Methods for modeling the stiffness of a pair of meshing gears are abundant in the
literature.  Among those techniques is a linear, algebraic model developed by Daws17 for
calculating the stiffness of a single spur gear tooth by modeling the tooth as a tapered
beam.  This model neglects the longitudinal compression and Hertzian contact
deformation modes.  The assumption is also made that the gear disk is rigid.  However,
because this tooth stiffness model is linear and algebraic it can be easily generalized and
implemented in a computer program.  A few of the references suggesting alternate
methods for modeling gear tooth stiffness include Blanding18, Neriya et al19, Oswald et
al20, and Kuang and Yang21.

1.3 Goals of this Research

The primary goal of this research is to develop a user-friendly transfer matrix
program capable of modeling the torsional characteristics of common machinery systems.
The computer program, Torsion 1, is written in the Visual Basic 4.0 language for systems
running the Windows 95 operating system.  Torsion 1 allows the user to model the
behavior of such components or system characteristics as uniformly distributed loads,
pendulum absorbers, visco-elastic dampers, shafts with continuously distributed mass,
foundations with uniformly distributed flexibility, gear meshes with a constant gear tooth
stiffness, and planetary gear trains.

The program provides the user with the ability to perform forced-response and
free-vibration analyses of multi-rotor systems with ease.  The free-vibration analysis
module is capable of automatically determining the undamped and damped natural
frequencies and mode shapes using a Muller-Method22 root-search routine.  The forced-
response analysis module provides the capability to determine the steady-state response
of a damped or undamped system to a harmonic excitation.  Static analysis of a torsional
system can be performed with the forced-response module by specifying an excitation
frequency of zero (a static load).  Analysis results are displayed graphically and can be
saved to a text file or a bitmap image for easy manipulation using other programs.
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Chapter 2.  The Transfer Matrix Method for Single-Shaft Torsional
Systems

2.1 State Vector, Coordinate System, and Sign Convention

As mentioned previously, the transfer matrix method involves writing in matrix
form the equations which relate the displacements and internal forces at one point in a
system to the displacements and internal forces at another point in the system.  In terms
of transfer matrix terminology the displacements and internal forces at a point describe
the “state” of the system at that point.  A state vector is simply the combination of the
displacements and internal forces of the system in a column-vector form.  In the case of
torsional analysis the displacement of concern is the angle of twist of a shaft and the
internal force considered is an internal torque.  Thus, the state vector for a torsional
system can be represented as shown in Figure 2.1.

Transfer matrix models are typically divided into a series of fields and points.  A
field is a piece of the model having some non-zero length, such as a shaft segment in a
torsional system.  The points in a model represent characteristics which are not
distributed over a length, but rather are lumped at a single position.  For example, it is a
common practice to lump the inertia of a large disk at a point on the system model.
Figure 2.2 demonstrates the convention used in this reference for numbering fields,
points, and state vectors in single-shaft transfer matrix models.  The points in a model are
numbered from zero.  A field is given the same number as the point to its right.  State

vectors are numbered with respect to the points in the system (i.e. 
L
iz

r
 is the state vector

to the left of point “i”).

The coordinate system used for the torsional transfer matrix model consists of the
x-axis which coincides with the axis of the rotor.  A positive angular displacement is
defined as one whose right-hand-rule vector points in the positive x-direction.  The
definition of a positive torque is dependent on whether the face on which the torque acts

Figure 2.1: State Vector for the Torsional System, adapted from Pestel and
Leckie23

State Vector:  








=
T

z
θr

      Where:   
torqueinternal

ntdisplacemeangular 

=
=

T

θ

θ

T
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is a positive or negative one.  A positive face has an outwardly directed normal that
points in the direction of the positive x-axis.  A negative face has an outward normal
pointing in a direction opposite that of the positive x-axis.  This concept of a positive and
negative face is demonstrated in Figure 2.3.  A positive torque can now be defined as one
whose right-hand-rule vector points in the positive x-direction if it acts on a positive face.
The vector for a positive torque acting on a negative face points in the negative x-
direction.  Shown in Figure 2.4 are vector representations of positive angular
displacements and a positive internal torque pair for a length of shaft.

+ X

Positive Face Negative Face

Figure 2.3: Positive and Negative Faces of a Shaft, adapted from Pestel and Leckie25

R
0θ L

1θ

RT0
LT1

+ X

Figure 2.4: Positive Torsional States on Opposite Ends of a Shaft Section,
adapted from Pestel and Leckie26

P0 P1 P2 Pi Pi+1

F1 F2 Fi+1

Lz0

r Lz1

r Lz2

r L
iz

r L
iz 1+

rRz0

r Rz1

r Rz2

r R
iz

r R
iz 1+

r

Note:  F = Field
           P = Point
          z

r
= State Vector

Figure 2.2: Numbering Convention for Single-Shaft Torsional Systems, adapted
from Pestel and Leckie24
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2.2 Building the Global Transfer Matrix

The global transfer matrix for a system relates the state at one end of the system to
the state at the opposite end.  The global transfer matrix is needed to obtain the desired
solution (forced-response results or free-vibration characteristics of a torsional system in
this case).  Typically the global transfer matrix is assembled from individual transfer
matrices that describe the characteristics of smaller elements of the system.  In other
words, the system model is first broken up into smaller elements (fields and points) for
which the transfer matrices can be easily written.  Then the global, or total system,
transfer matrix is obtained by multiplying the individual transfer matrices together as will
be demonstrated in the following paragraphs.

A field matrix is a transfer matrix that relates the states on either side of a field
element.  For example, a length of shaft with constant cross-section is often modeled with
a field transfer matrix.  The field transfer matrix for an elastic, massless shaft (as shown
in Figure 2.4) is developed by first applying the mechanics of materials relation shown in
Equation (2.1) that describes the angular displacement of a linear, elastic shaft with
length l , shear modulus G , and torsional constant J .

JG

lT R
RL 0
01 =−θθ (2.1)

Assuming no external torques are applied to the shaft, the torque equilibrium equation is
then written as

RL TT 01
= (2.2)

Equation (2.1) and Equation (2.2) are combined in matrix form resulting in

RL

TJG
l

T
01 10

1









⋅













=







 θθ

(2.3)

Note that the field transfer matrix for a massless, elastic shaft is found to be

TM massless, elastic shaft













=

10

1
JG
l

(2.4)

A transfer matrix that relates the states on either side of a model element having
zero length is referred to as a point transfer matrix.  A rigid disk with its inertia lumped at
a point, which can be represented as shown in Figure 2.5, is an example of a torsional
element that can be modeled with a point transfer matrix.  The point transfer matrix for
the rigid disk is developed by first reasoning that the displacements L

1θ  and R
1θ  are

equivalent because the disk has no flexibility.  The equilibrium equation for the disk with
polar mass moment of inertia, I , undergoing harmonic oscillation with frequency, ω ,
can be written as

LLR ITT 1
2

11 θω−= (2.5)
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The matrix equation relating the states to the left and right of the rigid disk is shown in
Equation (2.6).











⋅














−

=




LR

TIT
1

2

1
1

01 θ
ω

θ
(2.6)

The point transfer matrix for the rigid disk with lumped inertia is then

TM rigid disk with lumped inertia 







−

=
1

01
2ωI

(2.7)

Assembling a transfer matrix that relates the states on opposite ends of a series of
elements that are connected end to end involves a simple matrix multiplication of the
elemental transfer matrices.  For example, the transfer matrix for the combination of an
elastic, massless shaft and a rigid disk with lumped inertia, as shown in Figure 2.6, is
assembled by noting that the states to the right of the shaft and to the left of the disk are
equivalent.  Therefore, Equation (2.3) can be substituted into Equation (2.6) resulting in











⋅
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l

IT
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1 10

1
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01 θ
ω

θ
(2.8)

Therefore, the transfer matrix for the shaft-disk combination can be written as

 TM massless, elastic shaft + rigid disk with lumped inertia 













⋅








−

=
10

1
1

01
2 JG

l

Iω
(2.9)

Note that the transfer matrix for the shaft-disk combination is equal to the transfer matrix
for the first element (the shaft) pre-multiplied by the transfer matrix for the second
element (the disk).  The global transfer matrix for a larger model can be assembled in the
same manner by simply multiplying the transfer matrices of the individual elements in
the proper order.

L
1θ R

1θ

LT1
RT1

+ X

Figure 2.5: Rigid Disk Modeled with Inertia Lumped at a Point, adapted from
Pestel and Leckie27
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2.3 Forced-Response Analysis of Simple Torsional Systems

Static analysis of a torsional system involves finding the shaft deflections that
correspond to some applied load.  As such, static analysis is an example of a forced-
response analysis for which the applied load is steady and not cyclic.  Pestel and Leckie28

discuss a useful technique for including applied loads (both static and harmonically
varying) in a transfer matrix model that involves expanding the size of the transfer
matrix.  For example, the partitioned transfer matrix for a positive torque, Tapplied, applied
at a point on a rotor is given as

  (2.10)

where the corresponding state vector must also be expanded as shown in Equation (2.11).

(2.11)

Note that all other transfer matrices in an externally loaded system model must also be
expanded and partitioned as will be demonstrated in the example to follow.  Once the
expanded global transfer matrix is determined, the boundary conditions are applied and
the remaining unknowns can be solved for.

As an example, consider the shaft shown in Figure 2.7 which is fixed on the left
end and has an applied static torque on its right end which is free to rotate.  The global
transfer matrix is assembled by expanding the transfer matrix for the shaft given in
Equation (2.4) and pre-multiplying by the transfer matrix given in Equation (2.10) as
demonstrated in Equation (2.12).

TM applied torque

















−=

100

10

001

appliedT

Expanded State Vector =
















1

T

θ

Figure 2.6: Massless Shaft and Lumped Inertia

R
0θ R

1θ

RT0
RT1

+ X
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 (2.12)

Carrying out the matrix multiplication in Equation (2.12) the following expression can be
derived:

(2.13)

Since the left end of the shaft is fixed, 00 =Rθ .  It is also known that 01 =RT  since the

right end is unrestrained (free).  Applying those boundary conditions, Equation (2.13) can
be reduced to the following two equations:

JG

lT R
R 0

1 =θ    (2.14)

applied
R TT =0                   (2.15)

Equation (2.14) provides the solution for the displacement of the right end of the shaft
due to the applied load.  More complicated problems can be solved in the same manner.

TM global  =
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 θθ

Figure 2.7: Fixed-Free Shaft with Static Load
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Tapplied  (applied torque)
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For the more general forced-response case where the excitation varies with some
known frequency, the analysis is performed in much the same way.  However, in this
case it is known that a linear system will oscillate at the same frequency as the excitation.
Therefore, the excitation frequency is substituted as the oscillating frequency of the
system into the transfer matrices which represent mass elements such as the transfer
matrix for a lumped inertia shown in Equation (2.6).  The global transfer matrix is then
assembled in the usual manner and the unknowns in the left-hand-state vector are solved
for as was demonstrated in the static case.

2.4 Free-Vibration Analysis of Simple Torsional Systems

In free-vibration analysis the goal is to determine system natural frequencies and
mode shapes.  The transfer matrix method for determining a system’s torsional natural
frequencies involves:

• building the global transfer matrix
• applying the boundary conditions to eliminate unknowns in the global matrix

equations
• finding the frequencies of vibration which make a solution to the matrix

equation possible
The mode shapes corresponding to the natural frequencies can be found by making an
arbitrary assumption about the unknown values of the state at the left end of the system
and then calculating the other displacements and torques of the system relative to the
assumed values at the left end.  This yields an arbitrarily scaled eigenvalue or mode
shape.

To demonstrate the procedures described above, consider the problem of
determining the natural frequencies and mode shapes of the system shown in Figure 2.8
which consists of a massless, elastic shaft and a lumped-inertia fixed on the left end and
unrestrained on the right end.  Noting that the transfer matrix for this system will be the
same as for that shown in Figure 2.6, the global system equations can be determined by
carrying out the matrix multiplication specified in Equation (2.8).

RR

T
JG
l

II

JG
l

T
0221 )(1

1









⋅

























−−

=






 θ

ωω

θ
(2.16)

Next, the boundary conditions can be applied to eliminate unknowns from
Equation (2.16).  Since the left end is fixed, 00 =Rθ , and since the right end is

unrestrained, 01 =RT .  Those values can be inserted into Equation (2.16) and the matrix
equation can be broken into its two component equations, Equation (2.17) and Equation
(2.18).
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JG

lT R
R 0

1 =θ  (2.17)







−=

JG
l

IT R )(10 2
0 ω   (2.18)

In order for a non-zero solution to exist for these equations, the characteristic equation of
the system, shown in Equation (2.19), must be true.

0)(1 2 =





−

JG

l
Iω   (2.19)

Typically, the frequencies, ω , which cause the expression on the left-hand-side of
Equation (2.19) to equal zero are found by plotting the function







−=

JG

l
If )(1)( 2ωω   (2.20)

over a range of frequencies.  The points where the function crosses the zero-axis can be
shown to be the natural frequencies of the system. Using the definition of the variables
shown in Figure 2.8, a plot of the characteristic determinant for the example problem is
generated as shown in Figure 2.9.  By examining the plot of the function over a smaller
range than is shown in Figure 2.9 or by implementing a root search routine it can be
determined that the natural frequency of the system is 840.63 rad/sec.  The same
procedure can be used to determine the natural frequencies of more complicated systems.
For this simple system, Equation (2.19) can be rearranged as shown in Equation (2.21) to
check that the natural frequency found from the determinant plot is accurate.

sec63.840
)03.0)(3.0(

)1080)(1095.7(
2

948

rad
mkgm

Paxmx
Il
GJ

=
⋅

=
⋅
⋅

=
−

ω (2.21)

ml 3.0=
203.0 mkgI ⋅=

481095.7 mxJ −=

2
91080

m
NxG =

Rz 0

r Rz 1

rLz 1

r

Figure 2.8: Shaft-Disk System Fixed on the Left End
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The mode shape for the system can be determined by assigning a value of one
newton-meter to the unknown, RT0 .  The displacement, R

1θ , can then be calculated to be

4.716x10-5 radians using Equation (2.17).  For more complicated systems determining the
mode shapes is slightly more involved.  Once values have been assigned to the unknowns
of the left-hand state, the elemental transfer matrices can be used to transfer the state to
the opposite side of each element.  In the process, those states can be recorded and plotted
to show the relative magnitudes of the displacements and torques along the length of the
model.

sec63.840 rad
n =ω

Figure 2.9: Characteristic Determinant of Shaft-Disk System
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2.5 Visco-elastic Absorber/Damper Transfer Matrix

An effective means of alleviating some torsional vibration problems involves the
use of a vibration absorber or damper29.  One category of such devices is composed of an
auxiliary mass, referred to here as the seismic mass, that is coupled to the main system by
some elastic and/or viscous medium as depicted in Figure 2.10(a).  Such devices can
include tuned and untuned absorbers as well as viscous damping devices sometimes
referred to as Houdaille dampers.  Tuned absorbers which have negligible damping are
sometimes employed to shift the system’s natural frequencies or to provide an anti-
resonance at a particular frequency.  Untuned absorbers which have a significant amount
of damping are often used to reduce amplitude levels over a wider range of frequencies
than tuned absorbers.  Houdaille dampers serve as devices for dissipating vibratory
energy.

Doughty30 provides a derivation of the transfer matrix for this type of element.
The derivation is begun by first applying Newton’s second law to the main damper mass
shown on the left in Figure 2.10(b).

∑ = L
DDIT θ&& (2.22)

L
DD

R
DS

R
DS

L
D

R
D IckTT θθθθθ &&&& =−+−+− )()(  (2.23)

The damper mass is assumed to be a rigid disk.  Therefore, the deflection on the left of
the disk is equal to the deflection on the right as expressed below.

L
D

R
D θθ =   (2.24)

The velocities on opposite sides of the rigid disk will also be equivalent.
L
D

R
D θθ && =   (2.25)

By substituting Equations (2.24) and (2.25) into Equation (2.23) and rearranging terms
the following expression for the torque on the right side of the disk can be written.

k

c

Damper Mass Seismic Mass

DI SI

L
Dθ
L

DT

R
Dθ
R

DT
Sθ

)( R
DSk kT θθ −=

)( R
DSc cT θθ && −=

Dθ
Sθ

            (a) Schematic                                             (b) Free-Body Diagram
Figure 2.10: Torsional Visco-elastic Absorber/Damper
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)()( L
DS

L
DS

L
DD

L
D

R
D ckITT θθθθθ &&&& −−−−+= (2.26)

By assuming that the motion of the damper is harmonic (oscillating sinusoidally with
frequency ω ) the velocity and acceleration of the damper can be expressed in terms of
the damper displacement:

tjL
D

L
D e ωθθ = (2.27)

L
D

tjL
D

L
D jej ωθθωθ ω ==&   (2.28)

L
D

tjL
D

L
D e θωθωθ ω 22 −=−=&&   (2.29)

Similarly, by assuming the motion of the seismic mass is harmonic, the velocity and the
acceleration of the seismic mass can be written in terms of the displacement as:

SS jωθθ =&            (2.30)

SS θωθ 2−=&&    (2.31)

Substituting the expressions for velocity and acceleration in terms of displacement into
Equation (2.26) results in the following expression:

)()(2 L
DS

L
DS

L
DD

L
D

R
D cjkITT θθωθθθω −−−−−= (2.32)

To determine the relationship between Sθ  and L
Dθ  Newton’s second law can be

applied to the seismic mass:

∑ = SSIT θ&&  (2.33)

SS
R
DS

R
DS Ick θθθθθ &&&& =−−−− )()(     (2.34)

Substituting Equation (2.24) and Equation (2.25) into Equation (2.34),

SS
L
DS

L
DS Ick θθθθθ &&&& =−−−− )()(  (2.35)

Next by substituting the expressions for velocity and acceleration written in terms of
displacement and rearranging terms, the following expression is obtained:

L
D

S
S Icjk

cjk θ
ωω

ωθ
2−+

+
=     (2.36)

By substituting Equation (2.36) into Equation (2.32) and rearranging terms the
following expression can be written:

L
D

S
D

L
D

R
D Icjk
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IcjkTT θ

ωω
ωωω 
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+−++=
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2
2 (2.37)

Finally, by writing Equation (2.24) and Equation (2.37) in matrix form the global transfer
matrix can be expressed as:









⋅














−+
+

+−+=








L
D

L
D

S
DR

D

R
D

TIcjk

cjk
IcjkT

θ

ωω
ωωω

θ
1

)(

)(
01

2

2
2 (2.38)



Timothy R. Griffin Chapter 2.  The Transfer Matrix Method for
Single-Shaft Torsional Systems

17

2.6  Pendulum Absorber Transfer Matrix

The pendulum absorber is another useful device for alleviating some torsional
vibration problems.  One of the unique features of the pendulum absorber is that its
natural frequency is directly proportional to the rotational speed of the shaft on which it is
employed.  That feature is especially useful in such systems as internal combustion
engines where some of the periodic torsional excitations within the system occur at
specific multiples of the running speed.31

The transfer matrix for the pendulum absorber can be determined by making use
of previously developed expressions for a pendulum absorber.  Equation (2.39) is adapted
from an expression given by Thomson and Dahleh32 that describes the torque, T , applied
to the disk by the pendulum.  Note that the symbol, n, represents the bulk rotational speed
of the shaft in radians/sec and ω  represents the frequency of torsional oscillation also in
radians/sec.

L
PRnr

rRm
T θ

ω
ω ⋅








−

+
−=

22

2
2

1

)(
(2.39)

Applying Newton’s second law to the disk to which the pendulum absorber is attached
results in the following equation:

L
P

L
P
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R
P I
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ω 2

22

2
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)(
−=⋅
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Rearranging Equation (2.40),

L
P

L
P

R
P Rnr

rRm
ITT θ

ω
ω 
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22

2
2

1

)(
(2.41)

The pendulum disk is assumed to be rigid such that:
L
P

R
P θθ = (2.42)

R

r

m

I

L
Pθ
L

PT

R
Pθ
R

PT

                   (a) Free-Body Diagram                            (b) Parameters
Figure 2.11: Pendulum Absorber
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Writing Equation (2.41) and Equation (2.42) in matrix form leads to the transfer matrix
for the pendulum absorber.
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2.7  Generalized Method for Applying Boundary Conditions to a
Single-Shaft Model

As mentioned in the literature review, Pilkey and Chang33 provide a generalized
technique for applying the boundary conditions to single-shaft torsional systems.  This
technique is useful for computer-program applications of the transfer matrix method, and
its extension to multi-shaft models will be demonstrated in Section 3.5.  To help explain
this technique a special notation is adopted here.

(2.44)

Using this notation the global transfer matrix equation can be written as:

(2.45)

The boundary condition on the left end of the model can be defined by 0)( =endleftiz ,

where i = 1 or 2.  Similarly the boundary condition on the right end of the model can be
defined by 0)( =endrightjz  where j = 1 or 2.  The definitions of i and j are also shown in

Table 2.1.  For the forced-response case the value of the unknown left-end state variable,
z(3 - i)left end, must be determined.  This can be done with the following equation written
in terms of i and j:

)3,(

)3,(
)3(

ijTM
jTM

iz endleft −
−

=− (2.46)

For the case of a free-vibration analysis it is necessary to apply the boundary conditions
to determine the characteristic equation for the system.  This characteristic equation can
be defined by:

0)3,( =− ijTM (2.47)
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Table 2.1: Definition of Variables i and j For Use in the Generalized Method of
Applying the Boundary Conditions, adapted from Pilkey and Chang34

Right End

Left End
Fixed:

z(1)right end = 0
Free:

z(2)right end = 0

Fixed:
z(1)left end = 0

i = 1

j = 1

i = 1

j = 2

Free:
z(2)left end = 0

i = 2

j = 1

i = 2

j = 2
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Chapter 3.  Multi-Rotor Transfer Matrix Technique

3.1 Expanded, Multi-Rotor Transfer Matrices

As mentioned in the Literature Review, an effective method for modeling
torsional systems with multiple shafts involves using a multi-rotor transfer matrix
technique developed by Mitchell35.  That technique involves expanding the transfer
matrix to keep track of the states of all shafts simultaneously.   The numbering
convention used here for the states of multi-shaft models involves adding the shaft

number to the subscript as shown here: 
)()(

,int
RightRorLeftL

NumberShaftNumberPoz
r

.   To examine the concept

of keeping track of the states for multiple shafts simultaneously, consider the system
shown in Figure 3.1 which consists of two massless shafts that are not connected.  The
global transfer matrix for this system can be built by assembling the individual expanded
transfer matrices.  The transfer matrix equation relating the state on the right side of
Shaft 1 to the state on its left end is given by:
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(3.1)

R
1,0θ L

1,1θ

RT 1,0
LT 1,1

R
2,0θ L

2,1θ

RT 2,0
LT 2,1

Shaft 1

Shaft 2

+ X1

+ X2

Figure 3.1: Two-Shaft Torsional System



Timothy R. Griffin Chapter 3.  Multi-Rotor Transfer Matrix
Technique

21

The matrix equation relating the states to the left and right of Shaft 2 can be written as
follows:
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(3.2)

The global transfer matrix can then be assembled by substituting Equation (3.1) into
Equation (3.2).

12 ShaftShaftGlobal TMTMTM ⋅= (3.3)

The simple example presented above demonstrates the method of expanding the
transfer matrix and state vector to simultaneously model multiple rotors.  This multi-rotor
transfer matrix technique is needed for modeling systems that have multiple shafts that
are coupled in some manner.  The following sections will discuss methods for modeling
torsional systems that are gear coupled.

3.2 Transfer Matrix for a Compliant Gear Mesh Connecting Two Shafts

It is common to find multi-shaft torsional systems that are connected by a pair of
meshing spur gears as shown in Figure 3.2(a).  The transfer matrix that relates the states
on either side of a pair of meshed spur gears can be derived by first writing the equations
that relate the displacements and torques shown in Figure 3.2(b).  The force, MeshGearF ,

applied to the tooth of the driven gear acts along the pressure line which is perpendicular
to the base radius, br , as shown in Figure 3.3.  Therefore, the following equations can be

developed:
LR
1,11,1 θθ = (3.4)

MeshGearb
LR FrTT ⋅+= 1,11,11,1 (3.5)

LR
1,11,1 θθ =  (3.6)

MeshGearb
LR FrTT ⋅+= 2,12,12,1 (3.7)

Note that at this point the inertia of the gears is neglected because only the gear mesh
itself is being modeled.  The gear inertias can be modeled with separate point matrices.
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1,1br

2,1br

L
1,1θ

R
1,1θ

L
2,1θ

R
2,1θ

LT 1,1

RT 1,1

LT 2,1

RT 2,1

MeshGearF

(a) Front View                             (b) Free–Body Diagrams
Figure 3.2: Two Meshing Spur Gears, adapted from Mitchell36

φ
Pressure Line

Pitch Circle

br

Base Circle

pr

Figure 3.3: Spur Gear Terminology, adapted from Shigley and Mischke37
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In this case the gear teeth on the spur gears connecting two shafts are modeled as
having a constant linear stiffness as shown in Figure 3.4.  An equivalent stiffness, eK , for

the gear mesh can be calculated as the series combination of 1,1TK  and 2,1TK  as shown in

Equation (3.8).

2,11,1

2,11,1

TT

TT
e KK

KK
K

+

⋅
= (3.8)

As mentioned in the Literature Review, several techniques are available for estimating
this type of stiffness value for a gear tooth.  The force on the gear teeth, MeshGearF , can be

defined in terms of the combined displacement of the two gear teeth, ∆ .

∆⋅= eMeshGear KF (3.9)

L
b

L
b rr 2,12,11,11,1 θθ ⋅+⋅=∆ (3.10)

)( 2,12,11,11,1
L

b
L

beMeshGear rrKF θθ ⋅+⋅⋅= (3.11)

By inserting Equation (3.11) into Equation (3.5) and Equation (3.7) and rearranging
terms the following two equations result:

L
ebb

L
eb

LR KrrKrTT 2,12,11,11,1
2

1,11,11,1 )()( θθ ⋅⋅⋅+⋅⋅+=   (3.12)

L
eb

L
ebb

LR KrKrrTT 2,1
2

2,11,12,11,12,12,1 )()( θθ ⋅⋅+⋅⋅⋅+=   (3.13)

Equations (3.4), (3.6), (3.12), and (3.13) can be written in matrix form as:
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(3.14)

Equation (3.14) defines the transfer matrix for a flexible gear mesh.

1,1TK

2,1TK

1,1br

2,1br

Figure 3.4: Linear Stiffness Representation of Meshing Spur Gear Teeth,
adapted from Mitchell38
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3.3 Planetary Gear Train Transfer Matrix

In order to obtain proper gear ratios in power transmission systems it is often
advantageous to implement the use of planetary gear trains such as the one represented in
Figure 3.5.39  Modeling the torsional vibration characteristics of a system that includes
one or more planetary gear trains can be a cumbersome task.  If the modeling procedure
involves the creation of a single-shaft equivalent model of the system, a significant
amount of time must be spent performing equivalence calculations for the multiple
components spinning at different speeds.  Therefore, a multi-rotor transfer matrix
technique that eliminates the need for equivalence calculations is ideally suited for such a
task.  As with the previously developed transfer matrix for a pair of meshing spur gears,
the inertias of the gears can be modeled with separate point matrices.  Thus, the matrix
developed here transfers the state across the actual mesh of the gears (it doesn’t include
the gear inertias).

The development of a multi-rotor transfer matrix for a planetary gear train is
begun here by examining the free-body diagram of the sun gear shown in Figure 3.6.
Assuming the sun gear is a rigid disk with respect to its shaft attachment, the torsional
displacements on either side of the sun gear will be equivalent.

L
S

R
S θθ = (3.15)

Ring Gear

Sun Gear

Planet Arm

Planet Gear

Figure 3.5: Planetary Gear Train
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The torque equilibrium equation can be written as:

1GMbS
L

S
R

S FrTT += (3.16)

The free-body diagram of the planet gear is shown in Figure 3.7.  The planet gear
body is assumed to be rigid.  Thus, the displacements on either side of the gear are equal
as shown in Equation (3.17).

L
P

R
P θθ = (3.17)

1GMF

φ
bSr

+ X axis (out of page)

L
ST

R
ST Sθ+

Figure 3.6: Free-Body Diagram of the Sun Gear

φ
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)(⊥armF

)(axialarmF

R
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+X axis out of page
L

PT

bPr

Pθ+

Figure 3.7: Free-Body Diagram of the Planet Gear
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The torque equilibrium equation for the planet gear can be written as:

21 GMbPGMbP
L

P
R

P FrFrTT −+=  (3.18)

The equations that describe the relationship of the states on opposite sides of the
planet arm can be developed by examining the free-body diagram shown in Figure 3.8.  It
is assumed that the planet arm is rigid such that,

L
A

R
A θθ = (3.19)

The torque equilibrium equation for the planet arm is

)(⊥−= armarm
L

A
R

A FrTT   (3.20)

Next, the equations governing the motion of the ring gear are developed by
examining the free-body diagram shown in Figure 3.9.  The assumption is made that the
displacements on either side of the ring gear are equivalent.

L
R

R
R θθ =   (3.21)

The torque equilibrium equation for this gear can be written as:

2GMbR
L

R
R

R FrTT +=    (3.22)

)(⊥armF

)(⊥armF

)(axialarmF)(axialarmF

armrAθ+

+ X axis (out of page)

Origin of X axis

R
AT

L
AT

Figure 3.8: Free-Body Diagram of the Planet Arm
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At this point, the equations for transferring the state across the planetary gear train
mesh have been written, but the values of 1GMF , 2GMF , and )(⊥armF  have not yet been

defined in terms of the state on the left side of the mesh.  The meshing gear teeth in the
planetary gear train will be treated as having a constant linear stiffness.  This will allow
the unknown forces 1GMF , 2GMF , and )(⊥armF  to be defined in terms of the torsional

displacements of the gear train components.  1eK , the stiffness of the gear mesh between

the sun and planet gears, will be equivalent to the series combination of the stiffness of a
sun gear tooth, TSK , and the stiffness of a planet gear tooth, TPK .

TPTS

TPTS
e KK

KK
K

+
⋅

=1   (3.23)

Similarly, the stiffness of the gear mesh between the planet gear and the ring gear, 2eK ,

is defined as the series combination of the planet gear tooth stiffness and the stiffness of a
ring gear tooth, TRK .

TRTP

TRTP
e KK

KK
K

+
⋅

=2   (3.24)

φ

2GMF

L
RT

R
RT Rθ+ bRr

+X axis out of page

Figure 3.9: Free-Body Diagram of the Ring Gear
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The force, 1GMF , can be defined in terms of the combined linear displacement,

1∆ , of the sun gear tooth and the planet gear tooth.

111 ∆⋅= eGM KF   (3.25)

Assuming that the torsional displacements of the sun gear, planet gear, and planet arm are
small, 1∆  can be defined as:

L
AbS

L
PbP

L
SbS rrr θθθ ⋅−⋅+⋅=∆1 (3.26)

Substituting Equation (3.26) into Equation (3.25)

( )L
AbS

L
PbP

L
SbSeGM rrrKF θθθ ⋅−⋅+⋅⋅= 11   (3.27)

The force, 2GMF , can be defined in terms of the combined linear displacement,

2∆ , of the planet gear tooth and the ring gear tooth.

222 ∆⋅= eGM KF   (3.28)

Assuming that the torsional displacements of the sun gear, planet gear, and planet arm are
small, 2∆  can be defined as:

L
AbR

L
PbP

L
RbR rrr θθθ ⋅−⋅−⋅=∆ 2   (3.29)

Substituting Equation (3.29) into Equation (3.28)

( )L
AbR

L
PbP

L
RbReGM rrrKF θθθ ⋅−⋅−⋅⋅= 22 (3.30)

The equilibrium equation for the forces on the planet gear in the direction
perpendicular to the planet arm can be written to define the equation for )(⊥armF .

φφ coscos 21)( GMGMarm FFF +=⊥   (3.31)

Substituting Equation (3.27) and Equation (3.30) into Equation (3.31),

[ ] φθθθθθθ cos222111)(
L
AbRe

L
PbPe

L
RbRe

L
AbSe

L
PbPe

L
SbSearm rKrKrKrKrKrKF −−+−+=⊥  (3.32)

Simplifying Equation (3.32),

     ( ) ( )[ ] φθθθθ cos221211)(
L
RbRe

L
AbRebSe

L
PbPee

L
SbSearm rKrKrKrKKrKF ++−−+=⊥     (3.33)

The expressions for the forces, 1GMF , 2GMF , and )(⊥armF , that couple the planetary

gear train components can now be substituted into the torque equations for each of the
components.  This is begun by substituting Equation (3.27) into Equation (3.16).

L
AbSe

L
PbPbSe

L
SbSe

L
S

R
S rKrrKrKTT θθθ 2

11
2

1 )()( −++=  (3.34)

Substituting Equation (3.27) and Equation (3.30) into Equation (3.18) results in the
following expression:

( )
( ) L

RbRbPe
L
AbPbSebRe

L
PbPee

L
SbPbSe

L
P

R
P

rrKrrKrK

rKKrrKTT

θθ

θθ

212

2
211 )(

−−+

+++=
  (3.35)

Equation (3.33) is substituted into Equation (3.20).
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( )
( ) φθθ

θθ

cos]

[

221

121

arm
L
RbRe

L
AbRebSe

L
PbPee

L
SbSe

L
A

R
A

rrKrKrK

rKKrKTT

−++

−+−+=
 (3.36)

It is known that armr  must equal the sum of the pitch radii of the sun gear and the planet

gear.  It is also known that the relationship between the base radius of a gear and pitch
radius is given as:

φcospitchb rr =  (3.37)

Therefore, the following expression can be shown to be true:

bPbSarm rrr +=φcos (3.38)

Equation (3.38) is now substituted into Equation (3.36).

( )
( ) { }bPbS

L
RbRe

L
AbRebSe

L
PbPee

L
SbSe

L
A

R
A

rrrKrKrK

rKKrKTT

+−++

−+−+=

]

[

221

121

θθ

θθ
 (3.39)

The expression for transferring the torque component of the state across the ring gear can
be written by substituting Equation (3.30) into Equation (3.22).

L
RbRe

L
AbRe

L
PbRbPe

L
R

R
R rKrKrrKTT θθθ 2

2
2

22 )()( +−−= (3.40)

The transfer matrix equation for the planetary gear mesh can now be written by
writing Equations (3.15), (3.17), (3.19), (3.21), (3.34), (3.35), (3.36), and (3.40) in matrix
form.
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(3.41)

Where
2

11 )( bSe rKu ⋅= (3.42)

bPbSe rrKu ⋅⋅= 12 (3.43)

2
13 )( bSe rKu ⋅−= (3.44)

bPbSe rrKu ⋅⋅= 14 (3.45)

( ) 2
215 )( bPee rKKu += (3.46)
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( ) bPbSebRe rrKrKu ⋅⋅−⋅= 126  (3.47)

bRbPe rrKu ⋅⋅−= 27  (3.48)

( )bPbSbSe rrrKu +⋅⋅−= 18  (3.49)

( ) ( )bPbSbPee rrrKKu +⋅⋅−= 129  (3.50)

( ) ( )bPbSbRebSe rrrKrKu +⋅⋅+⋅= 2110  (3.51)

( )bPbSbRe rrrKu +⋅⋅−= 211 (3.52)

bRbPe rrKu ⋅⋅−= 212 (3.53)

2
213 )( bRe rKu ⋅−= (3.54)

2
214 )( bRe rKu ⋅= (3.55)

Equations (3.41) through (3.55) define the transfer matrix for the planetary gear mesh.
That transfer matrix enables the creation of models with any number of planetary gear
sets for static or dynamic analysis.

Care must be exercised in modeling the inertias of the planetary gear train
components.  Note from Figure 3.7 that the displacements of the planet gear shaft, Pθ ,
correspond to rotations about the central axis of the planet gear.  The planet gear also
revolves about the axis of the sun along with the planet arm.  However, the displacements
of the planet gear shaft, L

Pθ  and R
Pθ , only represent the relative displacement of the planet

gear with respect to its pivot on the planet arm.  Therefore, special care must be taken in
modeling the inertia of the planet gear.  The inertia of the planet gear about the planet
gear shaft’s axis of rotation should be lumped on the planet gear shaft.  The planet gear
shaft’s axis of rotation is labeled in Figure 3.10.  However, the inertia of the planet gear
about the rotational axis of the planet arm should be algebraically added to the inertia of
the planet arm on the planet arm shaft.  In other words, the inertial resistance to
acceleration about the planet arm shaft’s axis of rotation is equal to the total inertia of the
planet arm and planet gear assembly about that axis.  Wilson40 and Nestorides41 describe
analytical and experimental methods for calculating these polar mass moments of inertia
for a variety of different geometries.  Those discussions include techniques for
calculating the polar mass moment of inertia for a component whose axis of rotation does
not pass through its center of gravity (i.e. the inertia of a planet gear about the axis of
rotation of the planet arm.)
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3.4 Building the Global Transfer Matrix for a Multi-Shaft Model

A standard procedure for assembling the global transfer matrix for a multi-shaft
system is demonstrated with an example system shown in Figure 3.11.  [ ] jiF ,  is an

expanded field matrix describing the properties of the ith field section on shaft number j.
Likewise [ ] jiP ,  represents an expanded point matrix for the ith point on shaft j.  [ ]GM  is a

gear mesh transfer matrix that describes the connection of the two shafts.  The gear mesh
is defined as a point in the model on both shafts and the state vector at that point is

labeled as 
)()(

,
RightRorLeftL

NumberShaftGMz
r

.

Axis of Rotation
of the Planet
Gear Shaft

Axis of Rotation
of the Planet
Arm Shaft

Planet Gear

Planet Arm

Figure 3.10: Axes of Rotation of the Planet Gear Shaft and the Planet Arm Shaft

[ ] 2,0P

[ ] 2,1F

[ ] 2,1P

[ ] 2,2F

[ ] 2,2P

[ ]GM

[ ] 1,0P

[ ] 1,1F

[ ] 1,1P

[ ] 1,2F

[ ] 1,2P

[ ] 1,3F

[ ] 1,3P

Figure 3.11: Elemental Transfer Matrices for a Geared, Two-Shaft Torsional
System
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The global transfer matrix assembly for this system can proceed by first
transferring the state on the left end of the first shaft up to the gear mesh.

[ ] [ ] [ ] [ ] [ ]
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 (3.56)

The gear mesh transfer matrix should not be added to the global transfer matrix until the
state on shaft 2 has been transferred up to the same point.  This is accomplished by the
following multiplication:

[ ] [ ] [ ]
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(3.57)

Next, the state is transferred across the gear mesh.
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(3.58)

The state can be transferred to the end of shaft 1 with the following equation.
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(3.59)

The state can then be transferred to the end of shaft 2 as shown:

[ ] [ ]





















⋅⋅=





















R
GM

R
GM

R

R

R

R

R

R

T

T
FP

T

T

2,

2,

1,3

1,3

2,22,2
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(3.60)

Finally the global transfer matrix can be assembled by combining Equations (3.56)
through (3.60).

  TM global = [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1,01,11,11,21,22,02,12,11,31,32,22,2 PFPFPPFPGMFPFP   (3.61)
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3.5 Generalized Method for Applying Boundary Conditions to a Multi-Shaft
Model

To determine the desired solution, the boundary conditions of the system must be
applied to the global transfer matrix as was already demonstrated for single-shaft models.
However, a multi-shaft system has more boundary conditions to be applied - the left and
right end of each shaft is either fixed or free.  Therefore, a method for applying these
boundary conditions will first be demonstrated with a two-shaft example.  Finally, the
generalized procedure for applying the boundary conditions to a system with an arbitrary
number of shafts will be presented.

To demonstrate the process of applying the boundary conditions to a multi-shaft
system, consider performing a forced-response analysis for a two-shaft system having
both shafts fixed on the left end and free on the right end with some intermediate loading.
The global transfer matrix and the end state vectors for such a system can be written as

(3.62)

The second and fourth equations (the equations with a “0” in the vector on the left-hand
side of the expression) in the matrix expression above can simplified to the following two
equations:

)5,2()4,2()2,2( 2,1, TMTTMTTM leftleft −=⋅+⋅ (3.63)

)5,4()4,4()2,4( 2,1, TMTTMTTM leftleft −=⋅+⋅ (3.64)

This set of two equations and two unknowns can be solved for the remaining unknowns
in the left-hand state vector, 1,leftT  and 2,leftT , using Cramer’s Rule.

)4,4()2,4(

)4,2()2,2(

)4,4()5,4(

)4,2()5,2(

1,

TMTM

TMTM

TMTM

TMTM

Tleft

−
−

= (3.65)

)4,4()2,4(

)4,2()2,2(

)5,4()2,4(

)5,2()2,2(

2,

TMTM

TMTM

TMTM

TMTM

Tleft

−
−

= (3.66)

Similarly, torsional systems with x shafts will have x unknowns in the left-end state after
applying the boundary conditions.  For such a system, a set of x equations and x
unknowns can be solved for the remaining unknowns using Cramer’s Rule.
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To determine the natural frequencies of the system with the global transfer matrix
shown in Equation (3.62), it is necessary to determine the characteristic determinant of
the system.  The characteristic determinant can be found by first reasoning that loading
terms (the terms in the fifth column of the global transfer matrix) will all be zero since
this is a “free” vibration problem.  The second and fourth equations from the matrix
expression in Equation (3.62) can then be written as

0)4,2()2,2( 2,1, =⋅+⋅ leftleft TTMTTM (3.67)

0)4,4()2,4( 2,1, =⋅+⋅ leftleft TTMTTM (3.68)

In order that this system of equations has a non-zero solution, the determinant of the
coefficients must equal zero as expressed in Equation (3.69).

0
)4,4()2,4(

)4,2()2,2(
=

TMTM

TMTM
(3.69)

The determinant in Equation (3.69) is the characteristic determinant for this system, and
finding the system’s natural frequencies entails finding the roots of the characteristic
equation formed by evaluating that determinant.  For systems with more shafts, the size
of the characteristic determinant grows, but the procedure for finding the natural
frequencies is the same.

Next, the equations used for applying the boundary conditions to a system with an
arbitrary number of shafts will be defined.  To help explain this generalized technique the
following notation will be adopted for the state vectors:

(3.70)

This notation is similar to that used in Section 2.7 with the exception that the shaft
number has been added to the subscript.  Also note that here x is equal to the total number
of shafts in the model and the “ 12 +⋅ x ” column of the transfer matrix would contain any
applied torques.

The left end boundary condition for each shaft in the model can be defined by
z(im)left end, m = 0  where  im = 1 or 2  and m is the number of the shaft.  Similarly the
boundary condition on the right end of each shaft can be defined by  z(jm)right end, m = 0
where  jm = 1 or 2.  For the forced-response case the values of the m unknown left-end
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state variables, z(3 - im)left end, m , must be determined.  This can be done for each shaft, m,
by applying the following equation:

[ ]
[ ]B
A

iz mendleftm det

det
)3( , =−  (3.71)

The matrix, [ ]B , is formed from the non-zero coefficients of the global matrix equations
which have a zero in the state vector for the right side of the model.  In the example
presented at the beginning of this section Equations (3.63) and (3.64) are the equations
from Equation (3.62) that have a zero state term in the state vector for the right side of the
model.  The transfer matrix columns for the non-zero coefficients in Equations (3.63) and
(3.64) correspond to the non-zero rows in the state vector for the left side of the model.
The zero state term in the right side state vector corresponding to shaft number p is
located in row number  jp + 2*p – 2.  This defines the corresponding global transfer
matrix row numbers of terms in row p of matrix [ ]B .  The non-zero state term in the left
side state vector corresponding to shaft number p is located in row number 1 + 2*p – ip.
This defines the corresponding global transfer matrix column numbers of terms in
column p of matrix [ ]B .  Therefore matrix [ ]B  can be defined as:

                (3.72)

The matrix, [ ]A , is identical to matrix [ ]B  except that the mth column is replaced by:
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(3.73)

For the case of a free-vibration analysis the characteristic equation can be defined by:

[ ] 0det =B (3.74)

where [ ]B  is defined in Equation (3.72).
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Chapter 4.  Torsion 1: A Transfer Matrix Computer Program for
Torsional Analysis

4.1 Introduction

An effective design tool for torsional analysis, Torsion 1, has been created using
the Visual Basic 4.0 programming language.  This program is capable of performing
linear, forced-response and free-vibration analyses for a torsional system.  Additional
transfer matrices that have not been derived in this text but are used by Torsion 1 are
catalogued in Appendix A.  The modeling and analysis capabilities of the program allow
multi-shaft systems connected by meshing gears to be analyzed with ease.  The Visual
Basic 4.0 programming environment has been chosen because it allows the programmer
to easily create an effective graphical user interface.  Figure 4.1 shows the main program
window as it appears when the program is first run.

Figure 4.1: Torsion 1 Title Screen
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4.2 Organization of the Program

 The bulk of the functionality for the program Torsion 1 is accessed by the user
from four basic forms.  The organization and hierarchy of the forms within Torsion 1 is
depicted schematically in Figure 4.2.  Note that the global interface for the program is a
parent form.  The parent form is the main window for a program within which the other
program modules operate.  Figure 4.3 is a picture of the global interface of Torsion 1 with
the three child forms open within the parent form.  The global interface provides the
program capabilities which are common to all the child forms such as sending output to
the printer.  The child forms which include the model editor, forced-response analysis
module, and free-vibration analysis module perform the specific tasks for which they are
named.  The block in Figure 4.2 labeled “Public Code” represents the subroutines in the
program which can be accessed by any of the program modules.  The details of the parent
form and the child forms within this program will be provided in the following sections.

Global Interface
(Parent Form)

Model Editor
(Child Form)

Forced-Response
Analysis Module

(Child Form)

Free-Vibration
Analysis Module

(Child Form)

Public Code
Global variable declarations, global transfer matrix assembly,

state calculation, root search, matrix operations, etc.

Figure 4.2: Schematic Diagram of Torsion 1 Organization
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4.3 Global Interface

The global interface for Torsion 1 is the parent form depicted in Figure 4.3.
Through the controls on the global interface the program user can save or load model
parameters to or from a data file.  The user can also choose to display one or more of the
child forms or send analysis results to the printer or to a file.  Another function of the
controls on the global interface allows the user to change the system of units being used
to model a system.  The controls for the global interface include a menu and a toolbar,
and they are located at the top, left corner of the form.  Figure 4.4 shows a closer view of
the menu and toolbar on the global interface.

parent form

child forms

Figure 4.3: Parent Form/Child Form Hierarchy
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menu

toolbar

Figure 4.4: Global Interface Menu and Toolbar

When one of the menu options is selected by way of a mouse click, a second-level
menu appears that provides the available options within the initially selected category.
Selecting one of the second-level menu options initiates one of the functions of the global
interface described in Table 4.1.  The buttons in the toolbar provide the user with the
ability to access the functions of the global interface more easily.  Table 4.1 also shows
the correspondence of the toolbar icons to the second-level menu options and the
functions that can be accessed through them.
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Table 4.1: Menu and Toolbar Functions

First-Level
Menu

Second-Level
Menu

Toolbar
Icon

Function

Model

New

Load

Save

Open the Model Editor for a new model

Load an existing model from a data file

Save the current model parameters to a data
file

Analysis

Forced-Response

Free-Vibration

Open the Forced-Response Analysis module

Open the Free-Vibration Analysis module

Output

Print

Text File

Bitmap Image

Print the image or text currently displayed

Save results or model listing to a text file

Save graphical display to a bitmap image

Units

SI

English

Convert to SI system of units

Convert to English Gravimetric system of
units

Window

List of child
forms that are
currently open

(none) Bring the selected child form to the front
within the global interface and make it
active (ready for input via the mouse or
keyboard)
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4.4 Model Editor

The Model Editor allows the user to create or edit the system model such that
torsional analysis can be performed.  Figure 4.5 shows the Model Editor open within the
global interface.  The controls on this form are grouped into three major categories:
controls used to edit the element parameters, controls used to select the appropriate
boundary conditions, and controls used to specify the nature of the gear connections in
the model (if any exist).  These controls are displayed on separate tabs (or pages) on the
Model Editor form.  Note that only one set of controls is displayed at a time.  The user
selects which set of controls is displayed by clicking on the appropriate tab label at the
top of the Model Editor form.

Element selection controls Tab labels
Point parameter frame

Shaft/section controls Model display frame

Figure 4.5: Model Editor Form, Edit Element Parameters Tab
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The tab which has controls for editing the values of the element parameters is
labeled “Edit Element Parameters” and is the selected tab in Figure 4.5.  When modeling
a system the user must edit one element at a time.  The element selection controls shown
in Figure 4.5 allow the user to specify which element in the model is to be edited.  When
the element selected is a point on the model the point parameter frame (a frame is a set of
controls on a form bound by a black rectangle) appears.  The controls on the point
parameter frame display the pertinent values of the point parameters and allow those
values to be changed.  A similar field parameter frame appears in place of the point
parameter frame whenever a field element is selected within the element selection
controls.  The shaft/section controls allow the user to change the number of shafts or
field/point sections in the model.  Finally, the model display frame shows a schematic
representation of the model.  This frame appears on all three tabs within the Model
Editor, and the element, shaft, or gear connection that is selected appears highlighted in
red.  The controls on the model display frame allow the user to change the view in the
display window and the relative positions of the shafts in the display.

One of the program options available on the point parameter frame is a tool
window that can estimate the stiffness of a spur gear tooth based on standard gear
dimensions provided by the user.  The Gear Tooth Stiffness Estimator tool window is
shown in Figure 4.6.  This model uses an adapted version of the Daws’42 model for
calculating a tooth stiffness.  Some additional assumptions have been made in using the
equations presented by Daws such that a single, constant-stiffness estimate can be
obtained for the gear tooth from a few basic parameters used to describe the spur gear
(which can be seen in Figure 4.6).  The assumptions used in conjunction with the
equations listed in the Daws reference are presented here:

• The stiffness estimate is based on a model of the gear teeth in contact at
their pitch point.

• The addendum and dedendum distances are assumed to match those for
standard, coarse-pitch-involute spur gears as presented by Mabie and
Reinholtz43 :

addendum = 
pitchdiametral

000.1
                                       (4.1)

dedendum = 
pitchdiametral

250.1
                                       (4.2)
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Figure 4.6: Gear Tooth Stiffness Estimator Tool Window

The tab on the Model Editor form which allows the user to select the boundary
conditions for the model is labeled “Select Boundary Conditions”.  The Select Boundary
Conditions tab is the active tab in Figure 4.7.  The shaft selection control on this tab
allows the user to specify the shaft whose boundary conditions will be edited.  The
boundary condition frame contains controls which allow the user to specify whether the
ends of the selected shaft are free or fixed.
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Select shaft control Boundary condition frame

Figure 4.7: Model Editor Form, Select Boundary Conditions Tab

Finally, the Modify Gear Connections tab is shown in Figure 4.8.  The controls on
this tab allow the user to edit the gear connections within the system.  The select gear
mesh control allows the user to select one of the existing gear meshes as the active mesh.
A description of the active mesh is provided in the gear mesh description frame.  The
add/delete gear mesh controls can be used to change the number and type of gear mesh
connections.  Whenever one of the add gear mesh controls is selected, the gear mesh
connection frame appears.  The controls on this frame can be used to specify the new
gear connection to be added.
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Select gear
mesh control

Gear mesh
description frame

Add/Delete gear
mesh controls

Gear mesh
connection frame

Figure 4.8: Model Editor Form, Modify Gear Connections Tab

4.5 Forced-Response Analysis Module

A static or dynamic forced-response analysis can be performed with the aid of the
Forced-Response Analysis module of Torsion 1.  The Forced-Response Analysis form is
shown in Figure 4.9 with the State Figures tab active.   Note that the controls on the left
side of the form appear on the main form and not on any of the tabs.  Thus, the controls
on the left of the form can be accessed from any of the tabs.  The shaft selection control
allows the user to choose the shaft for which the response results will be displayed (the
results are displayed for a single shaft at a time).  The increment number controls are
used to change the number of increments within each field section for which the state is
calculated.  The forcing frequency control is used to select the harmonic frequency for
the loads whose magnitudes are specified on the Model Editor form.  The user has the
option of performing a damped or undamped analysis.  This option is selected using the
control at the bottom, left corner of the form.  Note that the State Figures tab displays the
displacement and internal torque results in graphical form.  The Stress Figure tab, shown
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in Figure 4.10, provides a graphical representation of the stress analysis results.  The
displacement, torque, and stress results are all provided in tabular form on the Data Table
tab shown in Figure 4.11.

Shaft selection
control

Increment number
controls

Deflection and torque
response figures

Damping
option control

Forcing frequency
control

Figure 4.9: Forced-Response Analysis Form, State Figures Tab
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Maximum Torsional Shear Stress Figure

Figure 4.10: Forced-Response Analysis Form, Stress Figures Tab
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Response results in tabular form

Figure 4.11: Forced-Response Analysis Form, Data Table Tab

4.6 Free-Vibration Analysis Module

The Free-Vibration Analysis form shown in Figures 4.12 through 4.15 can be
used to determine the natural frequencies and modes shapes of a torsional system.  The
root-search controls at the top of the form allow the user to select the type of root search
to be used in finding the natural frequencies.  One of the options for finding the system
natural frequencies is an automated Muller-Method root search for finding either damped
or undamped roots.  A second option for finding roots involves plotting the characteristic
determinant curve for the system to visually approximate where the value of the
determinant equals zero.  This root approximation can be refined using a false position
search routine.  It should be noted that this second root-search option can only be used in
finding the undamped natural frequencies.

The Eigenvalues tab of the Free-Vibration Analysis form, shown in Figure 4.12,
displays the roots that have been found using the Muller-Method or false-position root
searches.  The Mode Shapes tab, which is shown in Figure 4.13, displays the arbitrarily
scaled eigenvectors which correspond to the eigenvalues that have been found.  The
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mode and shaft selection controls at the top, left corner of this tab allow the user to select
the particular mode and shaft for which the eigenvector results are displayed.  As was
described for the Forced-Response Analysis form, the increment number controls allow
the user to select the number of increments in each field section of the model for which
the state vector is calculated.  The mode selection, shaft selection, and increment number
controls also appear on the Data Table tab shown in Figure 4.14 where they perform
similar functions.  The Data Table tab shows the eigenvector results in tabular form.
Figure 4.15 is an image showing the Characteristic Determinant tab which can be used to
view a logarithmically scaled plot of the determinant curve.  The controls on that tab are
used to set the range of frequencies displayed in the figure and allow the user to refine a
root approximation using a false-position root-search routine.

Root search controls Eigenvalue table

Figure 4.12: Free-Vibration Analysis Form, Eigenvalues Tab
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Mode selection
control

Shaft selection
control

Increment
number controls

Mode shape
figures

Figure 4.13: Free-Vibration Analysis Form, Mode Shapes Tab
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Mode shape table

Figure 4.14: Free-Vibration Analysis Form, Data Table Tab
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Frequency range
frame

Characteristic
determinant plot

False position
root search frame

Figure 4.15: Free-Vibration Analysis Form, Characteristic Determinant Tab
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Chapter 5.  Verification of the Computer Program: A Set of
Benchmark Solutions

5.1 Static Response of an Imbedded Bar

The first example problem presented here is taken from Pilkey and Chang44 and
involves determining the static response of a shaft that is imbedded in an elastic
foundation as shown in Figure 5.1.  The shaft is subjected to a uniformly distributed static
torque, t .  The magnitudes of the shaft’s torsional constant ( J ), shear modulus (G ),
foundation stiffness modulus ( tk ), section lengths ( 321 ,, lll ), and loading ( t ) are specified

in Figure 5.1.  Pilkey and Chang present results from their computer program, TWIST.
The deflection results from TWIST along with the results obtained from Torsion 1 are
shown in Table 5.1.  Note that the difference between the results from the two programs
is insignificant and can be explained by the different number of decimal places reported.
The torque results from the two programs are shown in Table 5.2.  The torque results
compare favorably as well.  The deflection and torque results from the Torsion 1 program
are shown in Table 5.3 in SI units.  The same results are displayed graphically in
Figure 5.2.
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Figure 5.1: Shaft Imbedded in a Torsionally Flexible Foundation, adapted from
Pilkey and Chang45
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Table 5.1: Deflection Results From TWIST and Torsion 1
Axial Location

(in)
TWIST

Deflection (rad)
Torsion 1

Deflection (rad)
Percent

Difference

0.000000E+00 4.99774E-02 4.997736E-02 8.00E-05

5.333333E+00 4.99849E-02 4.998491E-02 2.00E-05

1.066667E+01 5.00075E-02 5.000755E-02 1.00E-04

1.600000E+01 5.00453E-02 5.004529E-02 2.00E-05

1.866667E+01 5.00679E-02 5.006793E-02 5.99E-05

2.133333E+01 5.00906E-02 5.009058E-02 3.99E-05

2.400000E+01 5.01132E-02 5.011323E-02 5.99E-05

2.666667E+01 5.01321E-02 5.013210E-02 0.00E+00

2.933333E+01 5.01434E-02 5.014342E-02 3.99E-05

3.200000E+01 5.01472E-02 5.014720E-02 0.00E+00

Table 5.2: Torque Results From TWIST and Torsion 1
Axial Location

(in)
TWIST

Torque (lb-in)
Torsion 1

Torque (lb-in)
Percent

Difference

0.000000E+00 0.00000E+00 0.000000E+00 0.00E+00

5.333333E+00 5.33119E+01 5.331187E+01 5.63E-05

1.066667E+01 1.06640E+02 1.066398E+02 1.88E-04

1.600000E+01 1.60000E+02 1.600000E+02 0.00E+00

1.866667E+01 1.60000E+02 1.600000E+02 0.00E+00

2.133333E+01 1.60000E+02 1.600000E+02 0.00E+00

2.400000E+01 1.60000E+02 1.600000E+02 0.00E+00

2.666667E+01 1.06667E+02 1.066667E+02 2.81E-04

2.933333E+01 5.33333E+01 5.333333E+01 5.63E-05

3.200000E+01 -9.09494E-13 0.000000E+00 N/A
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Table 5.3: Deflection and Torque Results From Torsion 1 in SI Units
Axial Location

(m)
Torsion 1

Deflection (rad)
Torsion 1

Torque (N-m)

0.000000E+00 4.997736E-02 0.000000E+00

1.354667E-01 4.998491E-02 6.023432E+00

2.709333E-01 5.000755E-02 1.204868E+01

4.064000E-01 5.004529E-02 1.807757E+01

4.741333E-01 5.006793E-02 1.807757E+01

5.418667E-01 5.009058E-02 1.807757E+01

6.096000E-01 5.011323E-02 1.807757E+01

6.773333E-01 5.013210E-02 1.205172E+01

7.450667E-01 5.014342E-02 6.025858E+00

8.128000E-01 5.014720E-02 0.000000E+00

Figure 5.2: Deflection and Torque Response Results for the Imbedded Bar
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5.2 Forced-Response Analysis of a Lumped-Parameter System

The second example problem consists of a three-mass system shown in Figure 5.3
which is subjected to a harmonically varying torque of magnitude, T .  This problem is
taken from Wilson46 who provides forced-response solutions corresponding to two
different forcing frequencies.  Wilson’s solutions were obtained from hand calculations.
A comparison of Wilson’s results with the results obtained using Torsion 1 corresponding
to forcing frequency of 6.1640 Hz is shown in Table 5.4.  Note that the difference
between the results is less than 1%.  Table 5.5 shows similar results when the torsional
load varies harmonically with a frequency of 10.6764 Hz.  These results have a slightly
higher disparity which is probably due to round-off and lack of precision in the hand
calculations.
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924,564

000,50

1K

1I 2I

2K

rad
mN

rad
inlbKK

⋅=
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000,000,421

)sin( tTT ω=

Figure 5.3: Three-Mass System with Harmonically Varying Torsional Load

Table 5.4: Steady-State Deflection of the Three-Mass System Due to a Load Varying
Harmonically With Frequency = 6.1640 Hz

Point Wilson’s
Deflection (rad)

Torsion 1
Deflection (rad)

Percent Difference

0 0.0204 0.02036920 0.15

1 -0.0074 -0.007407479 0.10

2 -0.0297 -0.02962863 0.24
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Table 5.5: Steady-State Deflection of the Three-Mass System Due to a Load Varying
Harmonically With Frequency = 10.6764 Hz

Point Wilson’s
Deflection (rad)

Torsion 1
Deflection (rad)

Percent Difference

0 -0.004 -0.004074211 1.86

1 -0.0074 -0.007407302 0.10

2 0.006 0.005925917 1.23

5.3 Damped and Undamped Free-Vibration Analysis of an Engine/Generator

Shown in Figure 5.4 is the schematic representation for a model of a 16 cylinder
diesel engine coupled with an electric generator.  Doughty and Vafaee47 use a transfer
matrix program to determine the eigenvalues and eigenvectors for this model
corresponding to the parameter values shown in Table 5.6.  The first five undamped
eigenvalues obtained by Doughty and Vafaee are compared with results from Torsion 1
in Table 5.7.  The results obtained from Torsion 1 show good correspondence with those
provided by Doughty and Vafaee.  A comparison of the eigenvector (mode shape)
corresponding to the 118.298 Hz natural frequency obtained from the two computer
programs is shown in Table 5.8.

Crank Throws
Gear

Flywheel and
Coupling Half

Coupling Half

Generator

0I 1I 2I 3I 4I 5I 6I 7I 8I

9I
10I

11I

1K 2K 3K 4K 5K 6K 7K 8K 9K 11K

10K

10C

11D

Figure 5.4: Lumped-Parameter Torsional Model of an Engine/Generator Set,
adapted from Doughty and Vafaee48
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Table 5.6: Parameter Values for the Engine/Generator Set, adapted from Doughty
and Vafaee49

Section
(Field+Point)

Kfield

Field Stiffness
(N-m/rad)

Cfield

Field Damping
(N-m-s/rad)

Ipoint

Polar Inertia
(kg-m2)

Dpoint

Damping to
Ground

(N-m-s/rad)

0 - - 6 0

1 16 0 4.5 0

2 16 0 4.5 0

3 16 0 6 0

4 13 0 6 0

5 16 0 4.5 0

6 16 0 4.5 0

7 16 0 6 0

8 25 0 3.5 0

9 150 0 100 0

10 0.5 330 20 0

11 10 0 350 550

Table 5.7: Lower Natural Frequencies of the Undamped Engine/Generator Model

Root
Doughty and Vafaee
Natural Frequency

(Hz)

Torsion 1
Natural Frequency

(Hz)
Percent Difference

1 0.0 0.0000 0.0000

2 10.731 10.7309 0.0009

3 59.9513 59.9513 0.0000

4 118.298 118.2980 0.0000

5 157.216 157.2164 0.0002
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Table 5.8: Undamped Mode Shape for the Engine/Generator Corresponding to
118.298 Hz Natural Frequency

Point
Doughty and Vafaee

Deflection
(rad)

Torsion 1
Deflection

(rad)
Percent Difference

0 1.0000 1.000000 0.000

1 0.7928 0.7928210 0.003

2 0.4625 0.4624502 0.011

3 0.0602 0.06022183 0.036

4 -0.4502 -0.4501844 0.003

5 -0.7716 -0.7716206 0.003

6 -0.9732 -0.9731593 0.004

7 -1.0235 -1.023484 0.002

8 -0.9200 -0.9199838 0.002

9 -0.8909 -0.8908741 0.003

10 106.2796 106.2796 0.000

11 -5.7960 -5.796002 0.000

Doughty and Vafaee also provide some of the results obtained from analyzing the
damped torsional system.  For example, the damped eigenvalues for the model are shown
along with the corresponding results from Torsion 1 in Table 5.9.  Once again the
agreement of most of the results provides confidence that the new program is functioning
correctly.  However, there is a very significant disagreement for the results of the two
programs in the real component of roots 9 and 10.  The following paragraph provides the
intuitive reasoning used to conclude that the result provided by Doughty and Vafaee is
possibly too large.

The real component of an eigenvalue represents the rate of decay of the
oscillation experienced by a system.  This decay term is representative of the
effectiveness of the damping within the system for a particular mode.  As an example,
consider roots 7 and 8 in Table 5.9.  The mode corresponding to these eigenvalues has a
larger decay term than any of the other modes.  The undamped mode shape
corresponding to this mode (undamped natural frequency of 118.2890 Hz) has a large
relative deflection between points 9 and 10 as can be seen in Figure 5.5.  Therefore, the
damper between points 9 and 10 would likely dissipate a significant amount of energy
from this mode, and the large decay term makes sense.
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Table 5.9: Lower Eigenvalues of the Damped Engine/Generator Model
Doughty and Vafaee

Eigenvalue
Torsion 1

Eigenvalue
Percent Difference

Root
Real
(Hz)

Imaginary
(Hz)

Real
(Hz)

Imaginary
(Hz)

Real Imaginary

1 0.0 0.0 0.0000 0.0000 0.000 0.000

2 -0.1698 0.0 -0.1698 0.0000 0.000 0.000

3 -0.2605 10.728 -0.2605 10.7277 0.000 0.003

4 -0.2605 -10.728 -0.2605 -10.7277 0.000 0.003

5 -0.0528 59.9516 -0.0529 59.9517 0.189 0.000

6 -0.0528 -59.9516 -0.0529 -59.9517 0.189 0.000

7 -1.275 118.285 -1.2747 118.2853 0.024 0.000

8 -1.275 -118.285 -1.2747 -118.2853 0.024 0.000

9 -1.051 157.216 -0.0105 157.2160 99.001 0.000

10 -1.051 -157.216 -0.0105 -157.2160 99.001 0.000

Point Number

Figure 5.5: Undamped Mode Shape of Engine/Generator Corresponding to Natural
Frequency of 118.2890 Hz
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Point Number

Figure 5.6: Undamped Mode Shape of Engine/Generator Corresponding to Natural
Frequency of 157.2164 Hz

The decay term reported by Doughty and Vafaee for roots 9 and 10 is only about
18 percent less than the decay term for roots 7 and 8.  By looking at the undamped mode
shape corresponding to roots 9 and 10 (undamped natural frequency of 157.2164 Hz)
shown in Figure 5.6, one notices that the relative deflection between points 9 and 10 is
significantly less prominent in this mode than was observed in the previous mode shape.
Also, the deflection at point 11 (location of the damper to ground) is essentially zero.  If
one assumes that these are valid mode shapes, it seems logical that the decay term for
roots 9 and 10 presented by Doughty and Vafaee is too large.  Although this is certainly
not absolute proof that the results form Torsion 1 are valid, the fact that the two results
appear to be a factor of 100 off leads to the belief that the location of the decimal place in
the decay term may have been misreported by Doughty and Vafaee.  Since the
eigenvalues for all of the other modes are in good agreement, this seems to be the most
logical explanation for the discrepancy.

5.4 Undamped Free-Vibration Analysis of a Redundant Drive System

The system shown in Figure 5.7 is a redundant drive train for which Wilson50

provides estimates of the systems natural frequencies.  The analysis of the undamped
natural frequencies of this system using Torsion 1 is provided as a demonstration of the
program’s ability to provide valid natural frequency results for multi-rotor systems.  The
values of the inertias and stiffnesses used to model the system are shown in Table 5.8.
Wilson states that Shaft 2 runs at twice the speed of Shaft 1 and assumes that the gear
teeth are rigid.  For the purpose of creating a multi-rotor model of the system, the values
in Table 5.9 have been assumed for the gears in the system.  The assumed radii provide
the speed ratio specified by Wilson.  The gear tooth stiffness values were successively
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increased until increasing the stiffness value no longer had a significant effect on the
resulting estimates of the system’s first two oscillatory natural frequencies.

Table 5.10: Inertia and Stiffness Parameter Values for the Redundant Drive System
Section
Number

Polar Inertia, I
(lb-in-s2)

Polar Inertia, I
(kg-m2)

Field Stiffness, K
(lb-in/rad)

Field Stiffness, K
(N-m/rad)

0,1 1970 222.58 - -

1,1 1000 112.99 4.0000E+6 4.5194E+5

2,1 2970 335.57 3.0000E+6 3.3895E+5

0,2 20 2.2597 - -

1,2 2.5 0.28246 5.0000E+5 5.6492E+4

Table 5.11: Assumed Values of the Gear Parameters for Creating a Multi-Rotor
Model of the Redundant Drive System Using Torsion 1

Section
Number

Gear Base
Radius

(in)

Gear Base
Radius

(m)

Gear Tooth
Stiffness
(lb/in)

Gear Tooth
Stiffness

(N/m)

0,1 2 0.0508 1.0E+11 1.751E+13

2,1 2 0.0508 1.0E+11 1.751E+13

0,2 1 0.0254 1.0E+11 1.751E+13

1,2 1 0.0254 1.0E+11 1.751E+13

Shaft 1

Shaft 2

1,0I

1,1I

1,2I

2,0I 2,1I

1,1K 1,2K

2,1K

Figure 5.7: Redundant Drive System, adapted from Wilson51
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Table 5.12: Natural Frequency Estimates for the First Two Oscillatory Modes of the
Redundant Drive System

Root

Wilson’s
Natural Frequency

Estimates
(Hz)

Torsion 1
Natural Frequency

Estimates
(Hz)

Matlab Model
Natural Frequency

Estimates
(Hz)

1 8.72 8.6784 8.6784

2 14.8 14.7863 14.7863

The estimates for the natural frequencies of the first two oscillatory modes of this
system are provided in Table 5.12.  Since the results from Torsion 1 and the hand
calculations performed by Wilson did not coincide exactly, a third model of the system
was created by forming the mass and stiffness matrices for an equivalent single-speed
system.  Having formed the mass and stiffness matrices of the equivalent system (for
which the gear teeth were assumed to be rigid), Matlab was used to determine the system
eigenvalues.  The results from this analysis are also shown in Table 5.12 and show very
good agreement with the results from the multi-rotor, Torsion 1 model.

5.5 Undamped Free-Vibration Analysis of a Petroleum Drill String Modeled
with a Continuum Element

In the following example, an undamped free-vibration analysis is performed for
the petroleum drill string model shown in Figure 5.8.  Thomson and Dahleh52

demonstrate the calculation of the first two natural frequencies for this system using an
analytical technique.  The estimates for the first two natural frequencies obtained from
both the analytical technique and the Torsion 1 computer program are provided in Table
5.13.  The mode shapes which correspond to the first two natural frequencies are
provided in Figure 5.9 and Figure 5.10.
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Figure 5.8: Petroleum Drill Sting Model, adapted from Thomson and Dahleh53

Table 5.13: First Two Natural Frequencies for the Petroleum Drill String Model

Root
Analytically Determined

Natural Frequency
(Hz)

Torsion 1
Natural Frequency

(Hz)

1 0.384 0.3842

2 1.26 1.2616
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Figure 5.9: Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 0.3842 Hz
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Figure 5.10: Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 1.2616 Hz

The correspondence of the natural frequency results from Torsion 1 shown in
Table 5.13 with the results obtained from Thomson and Dahleh’s analytical expression
helps to verify the proper operation of the routines in the Torsion 1 computer program.
However, examining the mode shape for the third root reported by the Muller method
algorithm of Torsion 1 reveals a problem.  The mode shape for this third root (natural
frequency of 3.2814 Hz) is shown in Figure 5.11.  Note that the first vibration mode,
shown in the deflection diagram of Figure 5.9, has only a single node at the left end.  As
would be expected, the second mode in Figure 5.10 has two nodes.  Similarly, it would be
expected that the third mode would have three nodes.  However, the mode shape for the
“third” root shown in Figure 5.11 has four nodes.  The “third” root reported by the Muller
method algorithm actually corresponds to the fourth vibratory mode of the system.  The
root-search algorithm failed to report the third natural frequency of the system.  Thus, the
program user must be certain that the results obtained make sense.  When the
characteristic determinant curve is plotted, as shown in Figure 5.12, it can be seen that
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natural frequency of 3.2814 Hz is actually the fourth root of this system.  The false
position root search routine can be used to determine the system’s third natural frequency
as 2.2507 Hz.  The deflection and torque diagrams for the third mode of the system are
shown in Figure 5.13.

Figure 5.11: Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 3.2814 Hz
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0.3842 Hz

1.2616 Hz

2.2507 Hz

3.2814 Hz

Figure 5.12: Plot of the Characteristic Determinant for the Petroleum Drill String
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Figure 5.13: Petroleum Drill String Mode Shape Corresponding to a Natural
Frequency of 2.2507 Hz

5.6 Undamped Free-Vibration Analysis of an Automatic Vehicle
Transmission

The Torsion 1 computer program can be used to effectively model the torsional
free-vibration characteristics of a compound planetary gear train.  This capability is
demonstrated in the following example problem taken from Mandal, et al.54  Shown in
Figure 5.14 is a schematic representation of the lumped-parameter model used with
Torsion 1 to determine the torsional natural frequencies of an automatic transmission.
Included in Appendix B is a listing of the model parameter values for this automatic
transmission.  This transmission was designed by CVRDE (Combat Vehicles Research
and Development Establishment) for Indian Buses and Trucks.
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Torque
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Planetary Gear
Set 1

Planetary Gear
Set 2

Planetary Gear
Set 3

Output

Input

Sun Gear

Planet Gear

Planet Arm Ring Gear

Figure 5.14: Schematic Model Representation for the Automatic Vehicle
Transmission in Forward, First-Gear Configuration

Mandal, et al. describe the free-vibration analysis of a single-shaft equivalent
torsional model of the transmission using a finite element program to perform the
analysis.  This method entails the creation of a separate model for each speed setting of
the transmission, requires a significant number of equivalence calculations, and assumes
the gear teeth in the system are rigid.  In order to demonstrate that a Torsion 1 multi-rotor
model could be used to find results similar to those found using the equivalence
technique, a series of analyses were performed on models of the system with different
tooth stiffness values.  The resulting values of the first oscillatory natural frequency from
this analysis are shown in Figure 5.15.  Similarly, the values obtained for the second
oscillatory natural frequency of the system are plotted in Figure 5.16.  Note that in each
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case the natural frequency estimate from the Torsion 1 model approaches that of the
equivalence model as the gear tooth stiffness is increased.

Equivalence Model Estimate = 98.78 Hz

Figure 5.15: Variation of the Transmission’s First Oscillatory Natural Frequency
for a Range of Linear Gear Tooth Stiffness Values

Equivalence Model Estimate = 289.9 Hz

Figure 5.16: Variation of the Transmission’s Second Oscillatory Natural Frequency
for a Range of Linear Gear Tooth Stiffness Values
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From Figures 5.15 and 5.16 it becomes apparent the magnitude of the gear
stiffness values within a system can affect the system’s natural frequencies.  The
significance of that effect is dependent on the actual gear tooth flexibility.  Whether the
significance is large or small, Torsion 1 allows the user to easily include a tooth
flexibility in the system model.  Therefore, the multi-rotor models created using
Torsion 1 have the potential to more accurately represent a geared-torsional system.

This example demonstrates the capabilities of Torsion 1 not only to model a
system accurately but also to do so with ease.  Creating the system model shown in
Figure 5.14 requires no equivalence calculations, and the user-interface of the program
makes the model building process a straightforward one.  It should also be noted that in
order to model the second and third gear configurations of this system, only the boundary
conditions on the model shown in Figure 5.14 need be altered.  For example, to put the
system in its second gear configuration the right end of the ring gear in gear set 3 should
be “free” and the ring gear in gear set 2 should be “fixed”.  In the actual vehicle
transmission this process of making the gears “fixed” or “free” is accomplished with a
series of clutches.
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Chapter 6.  Conclusions and Recommendations

6.1 Conclusions

A computer-aided design tool for torsional analysis of multi-rotor systems has
been developed.  This computer program, Torsion 1, makes use of an extended transfer
matrix technique that allows the user to create an accurate system model with relative
ease.  Torsion 1 can be used to obtain forced-response results for torsional models with a
static or harmonically varying excitation.  The program also has the capability to
determine the eigenvalues and eigenvectors of systems with or without damping.  The
system eigenvalues can be found using a Muller-Method automatic root-search routine or
a user-guided false-position root-search algorithm.  Results are displayed in a graphical
format that is easy to interpret and can be exported to files for use with other programs.
The benchmark solutions in Chapter 5 verify that the program provides valid results that
can be compared with previous solutions.

The Torsion 1 program has the capability to model systems with a wide variety of
components or characteristics which include: lumped inertias, massless shafts, viscous
dampers, structural damping, uniformly distributed loads, pendulum absorbers, visco-
elastic dampers, shafts with continuously distributed mass, foundations with uniformly
distributed flexibility, gear meshes with a constant gear tooth stiffness, and planetary gear
trains.  These modeling capabilities allow the program user to create a system model that
is representative of the machinery or component being analyzed.

6.2 Recommendations for Future Work

The following is a list of suggestions for improving the computer program,
Torsion 1:

• The Model Editor form could be modified to aid the user in calculating such
model parameters as polar inertias or torsional constants based on the
geometry and dimensions of the system components.

• A material database could be included on the Model Editor form which could
store material properties such as the shear modulus and density for common
materials.

• The schematic model representation on the Model Editor form could be made
to recognize the selection of a model element by way of a mouse click.  This
would allow the user to interact more directly with the system model.

• Rather than modeling a visco-elastic damper with a point matrix as is
demonstrated in Section 2.5, Torsion 1 could be modified to model the
seismic mass as a separate rotor.  This technique would allow the program to
keep track of the response of the seismic mass as well as the main system.
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• The pendulum absorber transfer matrix could be modified to include the
effects of distributed pendulum mass using the relations developed for this
type of system by Mitchiner and Leonard55.

• The analysis capabilities of the program could be expanded to include a
frequency-response analysis module that would allow the user to determine
the forced response of a system over a range of excitation frequencies.

• The Muller-Method root-search routine could be modified to allow the user to
guide it in searching a particular range of frequencies for the roots of the
characteristic determinant.

• The forced-response capabilities of the program could be improved by
allowing the user to model a series of torques with different phase values.

• Currently the speed ratios of compound planetary gear trains can be
determined by making the output shaft “fixed” and applying a known torque
value to the input.  The speed ratio can then be determined as the inverse of
the torque ratio. This could be accomplished more directly if the program
allowed the user to prescribe a displacement for the input shaft.  The speed
ratio could then be calculated as the ratio of the displacement of any
component to the displacement of the input.  This method would not require
applying the artificial “fixed” boundary condition to the output, and the speed
ratios could be calculated simultaneously for all of the components rather than
just the output.  In fact, this type of analysis could be easily automated.

• The gear mesh forces for standard and planetary gear trains could be an
additional output of the program that would useful to a design engineer.

• A power flow analysis for complex gear trains could be another simple
adaptation of this transfer matrix technique.  Once a force analysis and a speed
ratio analysis have been performed, calculating power flows becomes a simple
matter.  Other techniques for performing this type of analysis have been
reported in the literature by Freudenstein and Yang56, Pennestri and
Freudenstein57, Saggere and Olson58, Sanger59, and Wojnarowski60.

• The planetary gear mesh transfer matrix could be developed for systems with
multiple planets.

• Axial and lateral vibration modeling capabilities could be coupled with the
torsional modeling capabilities demonstrated here to create a universal multi-
rotor transfer matrix program.

• A different programming platform could be used to improve the execution
speed of the program’s operations.  Visual Basic 4.0 is an interpreted language
such that an executable file is not processed by a computer as efficiently as is
possible with other languages.  Visual Basic 5.0 has eliminated this problem
and may be the logical solution.

• The process of assembling the global transfer matrix could be made more
efficient by a technique used to store and manipulate only the non-zero
quantities in the matrices.  For multi-rotor models with many shafts, a large
number of the transfer matrix elements can be equal to zero.  In such a case,
carrying those zero elements of the matrices along as the global matrix is
assembled can expend a lot of processing time unnecessarily.  This would be
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even more critical if the program’s capabilities were expanded to model axial
and lateral responses in addition to the torsional response.
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Appendix A.  Catalogue of Additional Transfer Matrices for
Torsional Systems

A.1 State Vector

The torsional state vector corresponding to the transfer matrices listed in this
appendix is given as follows:

(A.1)

A.2 Massless, Elastic Shaft with Uniformly Distributed Torque

Pilkey and Chang61 provide the transfer matrix shown in Equation (A.2).

(A.2)

                                               

t uniformly distributed
torque

(force*length/length)

l   length

J   torsional constant
           (length4)

G  shear modulus
       (force/length2)

Figure A.1: Massless, Elastic Shaft with Uniformly Distributed Torque
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A.3 Massless, Elastic Shaft on Elastic Foundation with Uniformly
Distributed Torque

Pilkey and Chang62 provide the transfer matrix shown in Equation (A.3).

(A.3)

Where:

GJ

K t=2β (A.4)

t uniformly distributed
torque

(force*length/length)

l   length

J   torsional constant
           (length4)

G  shear modulus
       (force/length2)

Kt  elastic foundation modulus
(force*length/length)

Figure A.2: Massless, Elastic Shaft on Elastic Foundation with Uniformly
Distributed Torque

A.4 Elastic Shaft with Continuously Distributed Mass and Uniformly
Distributed Torque

The following transfer matrix for an elastic shaft with continuously distributed
mass can be found in Pestel and Leckie63 without the extension column for loading.  The
same transfer matrix can be found in Pilkey and Chang64 with the additional loading
terms.  However, the reader should be aware that this transfer matrix is incorrectly
labeled in Pilkey and Chang as the transfer matrix for a “Rigid Bar”.
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(A.5)

Where:

GJ

rp
2ρ

ωβ = (A.6)

t uniformly distributed
torque

(force*length/length)

l   length

J   torsional constant
           (length4)

G  shear modulus
       (force/length2)

ρ    mass per unit length
(mass/length)

rp   polar radius of gyration
(length)

ω    oscillatory frequency
(angular displacement/

time)

Figure A.3: Elastic Shaft with Continuously Distributed Mass and Uniformly
Distributed Torque

A.5 Field Stiffness and Viscous Damping

The transfer matrix for a spring and viscous damper in parallel as shown in
Figure A.4 is given by Pestel and Leckie65 and is presented here in Equation (A.7).

(A.7)
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k   torsional stiffness
(force*length/

angular displacement)

c   viscous damping
(force*length*time/

angular displacement)

Figure A.4: Torsional Spring and Viscous Damper in Parallel

A.6 Viscous Point Damping to Ground

Pestel and Leckie66 provide the transfer matrix used for modeling viscous
damping at a point as shown in Figure A.5.

(A.8)

                                           

c   viscous damping
(force*length*time/

angular displacement)

ω   oscillatory frequency
(angular displacement/

time)

Figure A.5: Viscous Point Damping to Ground
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Appendix B.  Listing of the Model Parameter Values for an
Automatic Vehicle Transmission

A listing of the model parameter values for the automatic vehicle transmission
discussed in Section 5.6 is presented on the following pages.  Figure B.1 shows the point
and shaft numbers of the transmission components that correspond to those in the model
listing.

(0,1)

(1,1)
(2,1) (3,1) (4,1)

(0,2) (0,3) (0,4)

(0,5)

(0,6)

(1,6)

(0,7)

(1,7)

(0,8)(Point Number, Shaft Number)

Figure B.1: Automatic Vehicle Transmission Schematic with Point Numbers
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Model Listing:

    Shaft  1:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Regular
        Polar Inertia..............................=   1.607E+00   kg-m^2

      For field # 1:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   1.2263E+05   N-m/rad

      For point # 1:
      Type of point..................................  Regular
        Polar Inertia..............................=   3.30182E-01   kg-m^2

      For field # 2:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   1.605E+05   N-m/rad

      For point # 2:
      Type of point..................................  Sun Gear
        Polar Inertia..............................=   6.027E-04   kg-m^2
        Gear Base Radius...........................=   3.700E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

      For field # 3:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   8.936E+05   N-m/rad

      For point # 3:
      Type of point..................................  Sun Gear
        Polar Inertia..............................=   2.186E-04   kg-m^2
        Gear Base Radius...........................=   2.700E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

      For field # 4:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   1.5864E+06   N-m/rad

      For point # 4:
      Type of point..................................  Sun Gear
        Polar Inertia..............................=   3.462E-04   kg-m^2
        Gear Base Radius...........................=   2.700E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m
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    Shaft  2:
    Boundary Conditions:  Free - Free

      For point # 0 :
      Type of point..................................  Planet Gear
        Polar Inertia..............................=   9.360E-05   kg-m^2
        Gear Base Radius...........................=   1.600E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

    Shaft  3:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Planet Gear
        Polar Inertia..............................=   2.828E-04   kg-m^2
        Gear Base Radius...........................=   2.100E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

    Shaft  4:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Planet Gear
        Polar Inertia..............................=   6.580E-04   kg-m^2
        Gear Base Radius...........................=   2.100E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

    Shaft  5:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Ring Gear
        Polar Inertia..............................=   3.64134E-02   kg-m^2
        Gear Base Radius...........................=   7.100E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

    Shaft  6:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Planet Arm
        Polar Inertia..............................=   4.7759E-03   kg-m^2

      For field # 1:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   1.000E+10   N-m/rad

      For point # 1:
      Type of point..................................  Ring Gear
        Polar Inertia..............................=   4.63192E-02   kg-m^2
        Gear Base Radius...........................=   7.100E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m
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    Shaft  7:
    Boundary Conditions:  Free - Fixed

      For point # 0:
      Type of point..................................  Planet Arm
        Polar Inertia..............................=   6.0934E-03   kg-m^2

      For field # 1:
      Type of field..................................  Spring-Damper
        Length of this section.....................=   1.000E+00   m
        Inline Stiffness...........................=   1.000E+10   N-m/rad

      For point # 1:
      Type of point..................................  Ring Gear
        Polar Inertia..............................=   6.16455E-02   kg-m^2
        Gear Base Radius...........................=   7.100E-02   m
        Gear Tooth Stiffness.......................=   1.000E+09   N/m

    Shaft  8:
    Boundary Conditions:  Free - Free

      For point # 0:
      Type of point..................................  Planet Arm
        Polar Inertia..............................=   4.00545E-02   kg-m^2

    Gear Connections:
        Planetary Gear Mesh  1:
              Sun Gear......(Point  2 , Shaft  1 )
              Planet Gear...(Point  0 , Shaft  2 )
              Planet Arm....(Point  0 , Shaft  6 )
              Ring Gear.....(Point  0 , Shaft  5 )
        Planetary Gear Mesh  2:
              Sun Gear......(Point  3 , Shaft  1 )
              Planet Gear...(Point  0 , Shaft  3 )
              Planet Arm....(Point  0 , Shaft  7 )
              Ring Gear.....(Point  1 , Shaft  6 )
        Planetary Gear Mesh  3:
              Sun Gear......(Point  4 , Shaft  1 )
              Planet Gear...(Point  0 , Shaft  4 )
              Planet Arm....(Point  0 , Shaft  8 )
              Ring Gear.....(Point  1 , Shaft  7 )

                            *** END OF LISTING ***
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