
Chapter 7

Profile Monitoring with Nonlinear

Mixed Models

Once the profiles are obtained, we propose to fit them with separate NL models or with a

NLM model. The NLM model has the advantage of pooling information from the profiles

together and allows us to model the random effects. When utilizing the NL approach, that

of fitting separate NL regression models to each profile, we have reduced the profiles to a

series of time-ordered vectors, θ̂i. For the NLM model we have reduced the profiles to the

estimated fixed effects vector, θ̂, and the vectors containing the estimated random deviations

from the fixed effects vector, b̂i.

7.1 T 2 Statistic for NL and NLM models

The T 2 statistic will be similar to those in (5.2) and (5.5) with the parameter estimators of

the NL and NLM approaches in place of those used for the LS and LMM approaches.

For the NL approach we use the θ̂i vectors to calculate the T 2 statistics. The T 2 statis-

tic for the separate NL regression models based on the sample mean vector and variance-
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covariance matrix is denoted by T 2
1,i,NL and the T 2 statistic based on successive differences

by T 2
2,i,NL. They are given by

T 2

1,i,NL = (θ̂i − θi)
′S−1

1,NL(θ̂i − θi)

= (θ̂i − θi)
′

[∑m

i=1
(θ̂i − θi)(θ̂i − θi)

′

m − 1

]
−1

(θ̂i − θi) for i = 1, 2, . . . ,m, (7.1)

where

θi =

∑m

i=1
θ̂i

m
, (7.2)

and by

T 2

2,i,NL = (θ̂i − θi)
′S−1

2,NL(θ̂i − θi)

= (θ̂i − θi)
′

[∑m−1

i=1
(θ̂i+1 − θ̂i)(θ̂i+1 − θ̂i)

′

m − 1

]
−1

(θ̂i − θi) for i = 1, 2, . . . ,m. (7.3)

Because the fixed effects vector, θ̂, is the same for all profiles in the NLM model, the T 2

statistic will only depend on the predicted random effects. In the NLM model the obtained

eblups will rarely sum to zero but nonetheless, it can be shown by a proof similar to that

of Theorem C.2 of Appendix C that the T 2 statistics based on the NLM model will only

depend on the eblups.

The T 2 statistic based on the NLM model will be denoted by T 2
1,i,NLMM and T 2

2,i,NLMM

and are respectively,

T 2

1,i,NLMM = (b̂i − b)′

[∑m

i=1
(b̂i − b)′(b̂i − b)

m − 1

]
−1

(b̂i − b) for i = 1, 2, . . . ,m, (7.4)

and

T 2

2,i,NLMM = (b̂i − b)′

[∑m−1

i=1
(b̂i+1 − b̂i)

′(b̂i+1 − b̂i)

2(m − 1)

]
−1

(b̂i − b) for i = 1, 2, . . . ,m, (7.5)

where

b =

∑m

i=1
b̂i

m
. (7.6)
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7.2 Simulation Study Setup

We now explain the general procedure for the simulation studies used to compare the NL

and NLM methods. To generate the multivariate normal errors and random effects we

first generated univariate normal data and used the Cholesky decomposition to transform

the generated univariate data to multivariate data. The multivariate data are then added

appropriately to the nonlinear function to get the generated values of the response variable.

The data are fit with separate NL regression models or a NLM model using the nlin and

nlmixed procedures of SASr with the correct model specification.

The control limit is established using the appropriate percentiles of the beta or χ2 dis-

tributions so that the probability of signal for the in-control data is .05, the nominal value.

The actual probability of signal is estimated by the proportion of datasets where there was

a signal. That is, a signal occurs when at least one of the T 2 statistics exceeds the control

limit.

When doing simulation studies with NL and NLM models, the frequency of non-convergence

will be much higher than for the LMM. As a result, it becomes more crucial to use good

starting values when obtaining the estimates in a NL or NLM model. We found that in

general, the more variability there is in the simulated data, either due to increased vari-

ability in the errors or larger variance components of the random effects distribution, the

more frequent the non-convergence. To reduce the frequency of non-convergence, it is often

recommended to use good starting values for the fixed parameters and components of the

variance-covariance matrix. The comments of Section 4.7 apply here so we used the known

parameter values used to generate the data as starting values of the iterative algorithm.

We note that the regression equivariance discussed in Appendix D that holds for the LMM
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does not hold for the NL and NLM models. The unfortunate consequence is the difficulty

in obtaining broad conclusions from a smaller set of simulation studies because the obtained

results will depend on the type of nonlinear function, its particular form, and the values of

its parameters. In order to investigate via simulation the differences obtained by using the

NL versus the NLM approach, we picked a nonlinear function related to a real data situation

to ensure that our results will hold when analyzing the corresponding dataset. We believe

that the conclusions obtained here will hold for other types of functions, but it would be

very difficult to make a general conclusion to all functions.

Figure 7.1: Fitted curves for dose response data of Williams et al. (2006a).

We considered the dose-response data described in Williams et al. (2006a) which can be

modeled by the 4-parameter logistic curve mentioned in (6.3) of Chapter 6. The fitted data

curves are shown in Figure 7.1. Note that the values for the dose were not equally spaced

but the log of the values of the dose were equally spaced.
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In considering these dose-response data curves, exploratory data analysis shows that

after eliminating several of the profiles due to lack of model fit, the median values of the 4

parameters are very close to Ai = .9, Bi = 2, Ci = .05, and Di = .4. We use this function and

its parameter values as typical for this particular application. We also considered the four

parameter logistic curve with two other sets of parameter values representing functions more

extreme than the median function which we denote the maximum curve and the minimum

curve. The maximum curve has parameter values of Ai = 1, Bi = 4, Ci = .05, and Di = 0

and has a steeper rate of change than the median curve with the asymptotes further apart

from each other. The minimum curve has parameter values of Ai = .75, Bi = 1, Ci = .05,

and Di = .5 and has a more gradual rate of change with the asymptotes closer together.

7.3 Uncorrelated Data with no Random Effects

We first investigated the probability of signal of the method of fitting separate NL regression

models as proposed by Williams, Woodall, and Birch (2003). We considered the situation

where there are no random effects and the errors are independent. For randomly generated

in-control data, we want to determine if the control limit based on beta or χ2
p distributions

is appropriate. Here the data are balanced and equally spaced. Ten thousand datasets were

generated for each run of the simulation studies.

Figure 7.2 shows the probability of signal for in-control data generated from both the

4-parameter logistic median and maximum curves. The horizontal axis is the number of

observations per profile, n, and the vertical axis is the probability of signal for various values

of m and σ2 for methods based on both T 2
1,i,NL and T 2

2,i,NL. We see that while the methods

based on T 2
1,i,NL and T 2

2,i,NL give similar performance, the probability of signal can be much
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Figure 7.2: Probability of signal for two T 2 statistics for simulated in-control data following
the median and maximum curve for various values of m, n, and σ2.

larger than the desired .05 level, particularly as σ2 increases. When there is little variability

in the errors the nominal probability of signal will be maintained.

The probability of a signal decreases as n increases. Thus, if there are more observations

per profile, the parameter estimators are more stable and the control limit based on the beta

or χ2
p distributions is appropriate. This is to be expected because the NL model parameter

estimators are only asymptotically (in n) normal. Normality is required for the T 2 statistics

in (7.1) and (7.3) to have a beta or χ2
p distribution, respectively. Thus when using a smaller

number of observations per profile it is not appropriate to use a control limit that requires
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the assumption of normality.

On the other hand, the probability of signal increases when m increases suggesting that

when there are more profiles present, it is more likely that at least one of them will be

declared an outlying profile than when there are not many profiles present.

Figure 7.3 shows the probability of signal for in-control data generated from the minimum

curve. The probability of signal was calculated only for a single, smaller value of σ2 = .001,

because larger amounts of variability of the errors made the probability of signal virtually 1,

and the algorithm had difficulty handling larger amounts of variability without convergence

problems.

Figure 7.3: Probability of signal of two T 2 statistic for simulated in-control data following
the minimum curve for various values of m and n, with σ2 = .001.

In conclusion, for this particular 4-parameter logistic model, the control limit based on
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beta or χ2
p distributions will not be appropriate for any of the three types considered unless

n is sufficiently large and σ2 is sufficiently small. Results not shown here for other values

of Ai, Bi, Ci, and Di concur with our conclusions here even though it should be noted that

because regression equivariance does not hold, there are some situations where the control

limit will be sufficiently accurate. Otherwise, the control limit will have to be simulated for

practical applications.

It would be possible to consider other data scenarios such as balanced, unequally spaced

data or unbalanced data but we do not pursue it here in light of the results obtained for the

LMM in Chapter 5. In other words, if the asymptotic control limit is inadequate for balanced,

equally spaced data then it will be even more inadequate for data that are unequally spaced,

or unbalanced.

7.3.1 Missing Data

Because the asymptotic control limit is inadequate for complete datasets, it will be even more

inadequate for profile data that have missing observations within the profile and make the

control limit of less use in the NL model. To illustrate, consider Figure 7.4, which shows the

probability of signal for T 2
1,i,NL and T 2

2,i,NL obtained from in-control data generated according

to the median curve. Missing data were introduced at random as we did in Section 5.7 and

the panel variables are %n and %m respectively. The median curve was used here with

m = 30 and σ2 = .001 so the results in Figure 7.4 can be compared with the upper left panel

of the median curve graphs in Figure 7.3. We see that increasing amounts of missing data

reduce the effectiveness of the control limit and that %n has a larger impact than %m. It

appears that the increase in the probability of signal due to missing data is much larger in

the NL approach than in the LS approach as was shown in Figure 5.6 and 5.7.
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Figure 7.4: Probability of signal for in-control data with missing observations for T 2
1,i,NL and

T 2
2,i,NL where the panel variables are %n and %m respectively. The median curve was used

with m = 30 and σ2 = .001.

7.4 Uncorrelated Data with One Random Effect

Because of the inherent difficulty in modeling multiple random effects as mentioned in Section

6.3, we next considered data where a single random effect is present. We wish to compare

the NL approach with a NLM approach when analyzing the 4-parameter logistic model. To

determine which parameter to set at random we analyzed the dose-response data of Williams

et al. (2006a) shown earlier in Figure 7.1. After initial data cleaning and testing of lack

of fit, there remained 36 profiles for analysis. We calculated the parameter estimates for

separate NL regression models for each profile. The mean and variance of the parameter

estimates for the 36 profiles are shown in Table 7.1.

It is clear that Bi has the largest amount of variability among the profiles and thus it is

the best candidate to be modeled as a random effect in a NLM model. We rewrite (6.3) as

yij = Ai +
Di − Ai

1 +
(

xij

Ci

)B+bi
+ ǫij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (7.7)
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Table 7.1: Mean and variance of the parameter estimates obtained from separate NL models
for the dose-response data of Williams et al. (2006a).

Parameter Mean Variance

Ai 0.8955 0.0003

Bi 2.0220 0.4300

Ci 0.0525 0.0003

Di 0.3911 0.0027

where bi is the random effect that represents how much the slope parameter of the ith profile

differs from the overall slope parameter, B.

To determine the values of σ2
B that we will use when generating the simulated data, we

chose to use values similar in magnitude to the estimated variance of the random effect from

Table 7.1. The values for σ2
B that we considered were all between .1 and .5 We generated in-

control data that followed the median 4-parameter logistic curve with one random effect and

uncorrelated errors. In one study, we set σ2 = .001 and σ2
B = .5 and performed one thousand

simulation runs. Table 7.2 shows the probability of signal when using the approximate control

limit for m = 30 and various values of n. A smaller number of runs was performed here

when modeling the random effect than when there was no random effect because of the larger

computational burden required to obtain estimates for the NLM approach.

The NL approach is the wrong approach here because it ignores the random effect, thus

we see that the probability of signal for the NL method is quite large and that the NLM

method does a much better job of keeping the probability of signal close to the nominal .05

level. Notice that the probability of signal for the NL approach is higher in Table 7.2 than it

was for the upper left panel of Figure 7.2. Additional variability in the nonlinear data (due to

the random effect) causes the performance of the NL approach to deteriorate. In contrast,

the NLM approach does not worsen because it is correctly accounting for the increased
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Table 7.2: Probability of signal for the four T 2 statistics for simulated data from a median 4-
parameter logistic curve with a single random effect. Here n ranges from 10 to 500, m = 30,
σ2 = .001, and σ2

B = .5.

n T 2
1,i,LS T 2

2,i,LS T 2
1,i,MIX T 2

2,i,MIX Non-convergence Non-convergence

in NL in NLM

10 0.740 0.606 0.070 0.043 0.0216 0.1240

20 0.692 0.586 0.040 0.031 0.0072 0.1245

40 0.681 0.557 0.037 0.033 0.0055 0.1361

50 0.674 0.587 0.038 0.035 0.0051 0.1613

60 0.708 0.585 0.030 0.023 0.0045 0.1670

80 0.685 0.592 0.030 0.017 0.0044 0.1763

100 0.667 0.566 0.036 0.031 0.0039 0.1808

200 0.679 0.581 0.033 0.028 0.0032 0.1737

500 0.676 0.570 0.043 0.028 0.0027 0.1750

variability. As a result the approximate control limit based on the asymptotic normality

assumption will not be very accurate for the NL approach when random effects are present.

As n increases, the NL method does not improve. This is because the asymptotic results of

the NL estimators does not necessarily hold in the presence of random effects. One concern is

that the frequency of non-convergence in the NLM method is higher and appears to increase

slightly as n increases, nonetheless, the NLM approach is still the preferred approach. The

probability of signal calculations for the methods based on T 2
1,i,MIX and T 2

2,i,MIX statistics

shown in Table 7.2 involve only the simulated runs where there was convergence in the

parameter estimation.

Now consider how the variability of the random effect impacts the results shown in Table

7.2. We repeated the same simulation study used to generate Table 7.2 with different values

of σ2
B used to generate the data. Figure 7.5 shows the probability of signal for the T 2 statistics

for different values of σ2
B where m = 30 and σ2 = .001. Figure 7.6 shows the proportion of
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non-convergence of the NLM approach as σ2
B varies where m = 30 and σ2 = .001.

Figure 7.5: Probability of signal for T 2
1,i,LS, T 2

2,i,LS, T 2
1,i,MIX , and T 2

2,i,MIX for in-control data
for the median curve where σ2

B varies from .1 to .5. In this case m = 30 and σ2 = .001.

From Figure 7.5 we see that as the variability of the random effect gets smaller, the

difference between the NL and NLM methods nearly disappears. This is because as σ2
B

decreases, the profiles are more similar to each other and the more similar they are to

profiles with no random effects. In addition, in Figure 7.6 we see that the proportion of

non-convergence decreases as σ2
B decreases. There are slight increases in the proportion

of non-convergence as n increases, likely due to the increased computational difficulty for

increased sample sizes.

We do not show specific results where σ2 changes but note that its impact on data with

random effects is the same as the impact on uncorrelated data with no random effects as was

shown earlier in Figure 7.2. That is, increasing σ2 will increase the probability of signal for

the NL approach with in-control data. We chose a smaller value of σ2 for the results in this

section, resulting in a smaller probability of signal for the NL method, in order to illustrate

the impact of changing σ2
B.
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Figure 7.6: Proportion of non-convergence in NLM approach for the median curve when
m = 30, σ2 = .001 and n and σ2

B vary.

To illustrate the out-of-control performance of the NL and NLM methods we did power

studies similar to those of Chapter 5 for the LMM. With the 4-parameter logistic curve, a

shift in the profiles can be introduced in any of the 4 parameters. We considered a step

shift in B which represents a change in the steepness of the profiles. Figure 7.7 shows the

out-of-control performance for the median curve with T 2
2,i,NL and T 2

2,i,NLMM when there is

an increase in B after the fifth profile. Here m = 30, σ2 = .001, n varies from 10 to 60,

and the value of B increases by values ranging from 0 (the in-control case) to 5. We do not

show the results for methods based on T 2
1,i,NL nor T 2

1,i,NLMM because they have little ability

in detecting step changes as demonstrated by Sullivan and Woodall (1996). To obtain these

results in Figure 7.7, the control limit was simulated in order to ensure that the probability of

signal for in-control data is equal to .05. One thousand datasets were simulated to generate

the power curves.
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Figure 7.7: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data for the
median curve where σ2

B and n vary. Here m = 30 and σ2 = .001 and the step change in B

occurred after the fifth profile.

We see that the NLM approach clearly has a much higher probability of detecting the

change than the NL approach. The difference for the two approaches is larger when σ2
B is

larger because the difference between the power curves is larger for the bottom row of Figure

7.7 than for the top row. This is because the NLM approach is taking into account the larger

variability in the random effect that the NL approach ignores. As n increases, the closer

the two approaches will be because they are both fitting the nonlinear curves equally well.

When there is a smaller number of observations per profile, the NL approach will not fit

the curves as well whereas the NLM approach pools information together across profiles to

achieve a better fit. As an added bonus and not shown here, we found that the frequency
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of non-convergence decreased for the NLM as the size of the shift increased. Similar results

were obtained for the maximum and minimum curves, thus they are not presented here.

We do note that there is a dependence of the results on the location of the shift. Figure

7.8 shows the probability of signal for out-of-control data from the median curve for m = 30,

n = 20 and when the step change occurred at different locations. We see that the NLM

approach is always at least equivalent to the NL approach and often times far superior. The

closer the shift is to the beginning of the data collection procedure the better the NLM

approach will be.

Figure 7.8: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data from median
curve for various locations of the step change where there is an increase in B. Here m = 30,
n = 20, σ2

B = .1 and σ2 = .001.

To explain the dependence on the locations of the shift, recall that because of regression
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equivariance, the appropriateness of the approximate control limit depends on the values of

the parameters used in the function. For example, notice from Figure 7.2 that the probability

of signal for the NL approach is different for the maximum curve than for the median curve.

For each of the different locations where the step change occurs, there is a different mix

of curves with different parameter values, thus the difference between the NL and NLM

approaches is not the same across all values of the step change.

This lack of regression equivariance makes it difficult to generalize the conclusions re-

garding the increases to what occurs when there are decreases in B. To illustrate, compare

Figure 7.8 with Figure 7.9 which shows the probability of signal for decreases in B. An issue

to be concerned with when studying decreases in B is that when B value is close to zero, the

greater the chance that there will be instability in the numerical algorithms used to obtain

the results. Thus the generated curves used in Figure 7.9 are the same as the median curve

used to generate Figure 7.8, except that the in-control value of B = 7 instead of 2. We see

again that the probability of signal depends on the location of the shift. In Figure 7.9, the

difference between the NL and NLM approaches is largest for later shifts and negligible for

earlier shifts. Note that the results for step=5 in Figure 7.8 are similar to the results for

step=25 in Figure 7.9. This is because in the first case when step=5, the in-control curves

are equivalent to the out-of-control curves from the second case and vice versa.

7.5 Correlated Data With Random Effects

Now consider the situation where the profiles have correlated errors with random effects but

still are balanced and equally spaced. In our review of the literature on the NLM model,

we found that the Ri matrix is often assumed to be a diagonal or identity matrix, a fact
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Figure 7.9: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data for various
locations of the step change where there is a decrease in B. Here m = 30, n = 20, σ2

B = .1
and σ2 = .001.

also noted by Davidian and Giltinan (2003). This is because the variability between profiles

represented by the random effects has a bigger impact on the variability in the response than

does the correlation within profiles. This was noted for the linear mixed model by Verbeke

and Molenbergs (2000) and for the NLM model by Davidian and Giltinan (1995, 2003). As a

result software such as SASr and S-Plus do not allow specification of a correlation structure

of the errors in conjunction with integral approximation methods although they do allow for

correlation with linearization methods (Schabenberger and Pierce, 2002, p. 538).

In addition, it was noted by Schabenberger and Pierce (2002) that modeling the corre-

lation concurrently with a random effect makes little difference in the results obtained but

can increase the likelihood of convergence problems. To model the correlation in the NLM

122



Table 7.3: T 2 statistics for the NL and NLM approaches for data with uncorrelated and
correlated errors. The generated data follow the median curve with m = 30, n = 20,
σ2

B = 0.5 and σ2 = .001.

ρ T 2

1,i,NL T 2

2,i,NL T 2

1,i,NLMM T 2

2,i,NLMM

0.0 0.6784 0.5680 0.0502 0.0378

0.1 0.6766 0.5642 0.0470 0.0366

0.2 0.6810 0.5660 0.0428 0.0336

0.3 0.6836 0.5706 0.0404 0.0295

0.4 0.6786 0.5638 0.0360 0.0288

0.5 0.6742 0.5602 0.0310 0.0277

0.6 0.6716 0.5594 0.0292 0.0263

0.7 0.6542 0.5498 0.0275 0.0258

0.8 0.6358 0.5286 0.0302 0.0279

0.9 0.6226 0.5090 0.0433 0.0332

approach would be difficult in practice. It would require one to program the numerical al-

gorithms to obtain the estimates because they are not readily available in SASr or S-Plus

when using the integral approximation approach. Thus, although theoretically possible, it

is not easy to obtain a NLM model fit with correlated errors. We present here empirical

evidence showing that it may be sufficient to simply model the random effects and not model

the correlation in our application.

For the median 4-parameter logistic curve we generated in-control data with uncorrelated

and correlated errors where there was a single random effect in Bi. In Table 7.3 we show the

probability of signal for the T 2 statistics based on the NL and NLM approaches for in-control

data following the median curve with m = 30, n = 20, σ2
B = 0.5 and σ2 = .001 and where

different amounts of correlation were introduced in the errors. There is a large difference in

the probability of signal for the T 2 statistics based on the NL approach when compared to

those based on the NLM approach, but there is little difference in the T 2 statistics as the

amount of correlation in the errors increases. Thus the modeling of the random effect has a
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large impact on the appropriateness of the control limit.

Figure 7.10: Probability of signal for T 2
2,i,NL and T 2

2,i,NLMM for out-of-control data following
the median curve where a step change occurred after the fifth profile. Here m = 30, σ2

B = 0.5
and σ2 = .001.

When considering the out-of-control case as done previously, we show in Figure 7.10 the

probability of signal for the methods based on T 2
2,i,NL and T 2

2,i,NLMM when a step change was

introduced in the profiles when the data have uncorrelated or correlated errors. We see that

the NLM approach gives us a higher probability of signal than the NL approach across the

levels of correlation.

We noted in Chapters 4 and 5 that we could model the correlation of the errors in the
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LMM and included references where it was recommended to model both levels of correlation.

In contrast, to summarize the results here, we see that the NLM approach that ignores the

correlation in the errors is superior to the NL approach even when the errors are correlated.

We note that this does not mean that we could not do even better with a NLM approach

that does model the correlation in the errors. While we do not believe the NLM approach

could be improved drastically by explicitly modeling the correlated errors, it remains to be

seen how much improvement could be gained.

7.6 Proposed Method

Our proposed method of Phase I analysis when considering nonlinear profiles uses both the

NL and NLM to determine outlying profiles. It builds on the approach of Williams et al.

(2006a) who proposed the following steps:

1. If there is replication of the points taken at each location along the profile, then the

homogeneity of variance can be checked. Profiles that do not have a homogeneous

variance across the locations within the profile are eliminated from the dataset after

inspecting the appropriate T 2 statistic, which is obtained by using a variance regression

model.

2. Determine the appropriateness of the choice of the nonlinear function through a lack-

of-fit (LOF) test. This test can be performed whether or not there is replication of the

points although when there is no replication, the lack-of-fit test is model based.

3. Fit separate NL regression models to each of the profiles to obtain individual profile

parameter estimates. Use the estimates for the basis of the T 2 statistics as in (7.3).

This step corresponds to the NL approach studied earlier.
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Our approach uses the first two steps of the approach outlined above and replaces step

3 with two new steps that utilize the NLM model. Thus the last two steps of our proposed

approach are given by:

3. Fit separate NL regression models to each of the profiles to obtain individual profile

parameter estimates. Compute the sample variances across the m profiles for each

of the parameters. Upon inspecting the sample variances for large values relative to

the other values, determine which parameters, if any, should be modeled with random

effects, trying to keep the number of random effects small. In many cases, there will

be one or two of the nonlinear parameters that have much larger variability than the

others; these should be prime candidates for inclusion of random effects.

4. Fit the NLM model using the determination of random effects from the previous step

to obtain the predicted random effects. Use the predicted random effects as the basis

for the T 2 statistics to determine outlying profiles as in (7.5). The control limit can

be obtained by using the corresponding percentiles of the appropriate distribution.

This step corresponds to the NLM approach studied earlier and compared with the NL

approach.

This proposed approach will be illustrated in the examples that follow in the next two

sections. We present one example with replicated data observations and one without repli-

cation.
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7.7 Example with Replicated Data Observations

To illustrate the proposed method when the data observations for a profile have replicate

measurements at each location, we use the dose-response data of Williams et al. (2006a)

that has been discussed previously. The original dataset had 44 profiles, each of which had

4 replicates measurements at 8 different locations. The fitted profiles from separate NL

regression models were shown in Figure 7.1.

The first two steps of our proposed method were performed by Williams (2005) and re-

sulted in the elimination of 8 profiles due to lack of fit and lack of homogeneity of variance.

For the third step the mean and variance of the remaining 36 profiles were calculated previ-

ously and shown in Table 7.1. We conclude that a single random effect in B is appropriate.

The final step is to fit the NLM model with the random effect in B. Figure 7.11 shows the

control chart based on the NLM model and Figure 7.12 shows the control chart that would

be done according to the approach of Williams et al. (2006a).

Figure 7.11: T 2 control charts for the NLM approach for the dose response data of Williams
et al. (2006a).

There are slight differences in Figures 7.11 and 7.12. We see that using the NLM model

approach gives one fewer signal than does the NL approach for both versions of the T 2
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Figure 7.12: T 2 control charts for the NLM approach for the dose response data of Williams
et al. (2006a).

statistic. Based on the earlier simulation results of this chapter, the NL approach would give

too many signals while the NLM approach preserves the appropriate probability of signal.

While it is not known whether or not the underlying process truly had outliers or not, we are

more confident in the charts of Figure 7.11 and would eliminate the profile corresponding to

week 46 prior to proceeding to Phase II.

7.8 Example with Unreplicated Data Observations

The second example that we use to illustrate the differences between the proposed approach

and the approach of Williams et al. (2006a) is the particle board data presented in Walker

and Wright (2002) and studied by Williams, Woodall, and Birch (2003). In the initial

analysis, there were 24 boards, each of which had 314 measurements along the profile. There

is only a single measurement at each location so there will be some adjustment of our

proposed method. The raw data profiles are shown in Figure 7.13.

Williams, Woodall, and Birch (2003) fit a nonlinear function requiring six parameters
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Figure 7.13: Raw data profiles for the particle board data of Walker and Wright (2002).

(a “bathtub” function) to the raw data profiles. These parameters consisted of a lower

asymptote, the center where the lower asymptote is achieved and four other parameters

determining the flatness of the center of the curve and the rate at which the curve increases.

This allows the curve to be asymmetric about the center. The model can be written as

yij =






E1,i (xij − Hi)
F1,i + Gi if xij > Hi

E2,i (−xij + Hi)
F2,i + Gi if xij ≤ Hi





for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (7.8)

where E1,i, E2,i, F1,i and F2,i represent the rate of increase and flatness in the profiles, Gi is

the lower asymptote, and Hi is the center point where the curve attains the lower asymptote.

Because there is no replication of the points for the locations along the profile, we cannot

do the classical test of homogeneity of variance or test of lack of fit that was discussed in

Williams (2005). However, because we have multiple profiles we can use the the values across

the profiles to determine the viability of the test of homogeneity assumption and whether or
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not there is lack of fit.

To check for homogeneity and lack of fit, we use the residuals of the profiles from the

separate nonlinear regression models. They are given by

rij = yij − ŷij for i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (7.9)

where ŷij is the predicted value of the nonlinear function using the parameter estimates

obtained from separate NL regression model in (6.1). If homogeneity of variance is a valid

assumption, then a plot of the residuals versus the measurement location should show resid-

uals with a similar spread across the location. The plot of residuals versus the location for

the particle board data is shown in Figure 7.14.

Figure 7.14: Plot of the residuals versus the locations for the particle board data of Walker
and Wright (2002) to check homogeneity of variance and lack of fit for the 6-parameter
bathtub function.

Figure 7.14 shows that the model in (7.8) lacks fit. It is not clear what alternative

parametric model could be used to adequately describe the remaining unexplained variability

and a non-parametric model may be an appropriate alternative. To examine the homogeneity
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of variance, we show in Figure 7.15, boxplots of the residuals shown in Figure 7.14, where

the median of each location has been subtracted so that the boxplots are centered at their

medians. Subtracting the median removes the lack of fit apparent in Figure 7.14 and allows

one to view more clearly the viability of the homogeneity of variance assumption. The

variance across the locations in Figure 7.15 appears to be heterogeneous although this may

be due to outlying observations within profiles. One potential drawback to the graphs

shown in Figures 7.14 and 7.15 is that if there is lack of fit in a single profile, it is difficult

to determine which profile could be eliminated to remedy the situation.

Figure 7.15: Plot of the standardized residuals versus the locations for the particle board
data of Walker and Wright (2002) to check homogeneity of variance for the 6-parameter
bathtub function.

For purposes of illustration, we will show the remainder of the analysis ignoring the

lack-of-fit and heterogeneity of variance. Williams (2005) discussed a test for a “lack of

consistency” among the m profiles but we do not pursue it here.

Another alternative to test for lack of fit is to divide the points along the profile into

different groups and treat the points within a group as “pseudo-replicates”. This idea is
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discussed in Su and Yang (2006) and its references. We do not pursue this idea here because

the particle board data does not lend itself to natural groups within the profile.

Table 7.4: Mean and variance of the parameter estimates for the particle board data of
Walker and Wright (2002).

Parameter Mean Standard Deviation
E1,i 5173 6.445×107

E2,i 10752 6.958×108

F1,i 4.293 1.417
F2,i 5.128 3.843
Gi 44.425 3.037
Hi 0.2956 0.0017

The third step is to fit the separate NL models and obtain the parameter estimates

to determine which random effects to include. The mean and standard deviation of the

parameter estimates of the separate NL fits for the particle board data are shown in Table

7.4. We see that the variability of E1,i and E2,i are much larger than any other parameter.

Thus they are the most likely candidate for having a random effect.

The final step is to fit the NLM model and obtain the T 2 statistics from (7.4) and (7.5).

The resulting charts for the T 2 statistics based on the NLM model is shown in Figure 7.16.

One should compare Figure 7.16 with Figure 7.17 which shows the charts obtained for the

separate NL regression models from (7.1) and (7.3) and which corresponds to the method of

Williams et al. (2006a). We see that the use of charts based on T 2
2,i,NL and T 2

1,i,NL produce

a signal whereas the charts based on T 2
2,i,NLMM and T 2

1,i,NLMMdoesn’t produce any signals.

Thus we conclude that we can use all 24 profiles to obtain the parameter estimates on which

the Phase II control charts will be based.
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Figure 7.16: T 2 control charts for the NLM approach for the particle board data of Walker
and Wright (2002).

Figure 7.17: T 2 control charts for the NL approach for the particle board data of Walker
and Wright (2002).
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