Developing an Automated Procedure
for Evaluating Software Development
Methodologies and Associated Products

James D. Arthur
Richard E. Nance

TR 87-16

Developing an Automated Procedure For Evaluating

Software Development Methodologies and Associated Productg*
James D. Arthur and Richard E. Nance

PREFACE

that task statement focuses on

(1) assessing the perceived strengths and weaknesses of the current procedure for evaluating

software development methodologies,

2) basing the evaluation brocess on statistical indicators rather than “surface” properties of
pProp

the product, and

(8) automating the evaluation process.
This report presents a brief overview of the evaluation Procedure, a summary of the initial validation
study, and individual discussions of the above three task jssues.

CR Categories and Subject Descriptors: D.2.1 [Software Engineeringl: Requirements/ Specifi-
cations; D.2.2 [Software Engineering]: Tools and Techniques :

Additional Keywords: Methodology, Evaluation, Linkages, Objectives, Principles, Attributes, Indi-
cators, Properties

* Work supported by the U.S, Navy through the Systems Research Center under the Basic
Ordering Agreement N60921-83-G-A165 B023

Developing an Automated Procedure For Evaluating

Software Development Methodologies and Associated Products

1. Introduction.

Over the past decade the demand for increasingly complex software systems has risen dramat.

ically [PARD 85]. Recognizing the fact that such systems cannot be developed effectively through

Process. For example, SREM [ALFM 85] and SADT [SOFT 76, ROSD 77] are methodology based
environments that focus on supporting particular phases of the software life cycle. SCR [CLEP 84,
HENK 78] and DARTS [GOMH 84], on the other hand, are methodologies that emphasize spe-
cific goals, €.g., reducing software development costs and designing real-time systerns, respectively,

This steady proliferation of design methodologies, however, is not without its price. In particular,

methodologies [ART]J 86].

Intuitively, the evaluation procedure is based on the observations that

(1) software development methodologies emphasize specific goals, and in particular, software

engineering objectives,

(2) to achieve these objectives, however, software engineers must utilize the proper set of
software engineering principles during the software development process, and

2

(3) the application of these principles induces software attributes considered desirable and
beneficial. These observations imply a natural relationship among objectives, principles,

and attributes that provides the basis for the evaluation procedure,

itive logic, part of the Initial research effort mentioned above focuses on verifying the individua]
relationships and ascertaining the actual effects of their collective interaction [ARTJ 86]. Results of
that effort, detailed in Section 2 of this Paper, indicate that the evaluation procedure does support

a well-defined process for assessing the adequacy of development methodologies. Moreover, the

most research efforts, however, new results (and their implications) foster additional concerns. In

particular, the following set of questions have risen.

(1) What are the strengths and weaknesses of the current evaluation procedure? The evaluation
procedure relies on gz well-defined set of linkages {or reiationships) among software engi-
neering objectives, principles and attributes. The extent to which these linkages reflect
the general opinion of software engineering experts is a measure of procedure’s accuracy

and adequacy.

(2) How can subjectivity and Personal bias be minimized during the evaluation process? Product

properties form a basis for determining the “usability” of a methodology. Unfortunately,

The organization of this paper reflects the major emphases of the review process. As back-
ground, the following section presents a brief outline of the evaluation procedure and the results of
applying the evaluation procedure to two Navy software development methodologies. N ext, Section
3 discusses a literature “verification” and the authors’ reassessment of perceived linkages among
the software engineering objectives, principles and attributes. Section 4 addresses the need for
and logical derivation of Software Quality Indicators. Finally, Section 5 discusses automating the
evaluation process. In particular, it describes why an automated evaluation process is necessary,
how one might achieve such a goal, and what difficulties must be overcome. As implied by the
brief descriptions of Sections 3 through 5, the topics discussed directly addressed the three issues

(or questions) presented above,
2. Background and Overview of the Current Evaluation Procedure

A methodology can be viewed as a collection of methods {or procedures}), chosen to complement
each other, and a set of rules for applying them. Generally, a methodology applies to one or
more phases of the software life cycle [BOEB 76]. In concert with the principal goal of software

engineering [BAUF 72|, a methodology should:

(1) embody sound engineering principles, that lead to
(2) the economic production of software, that is

(8) reliable and efficient on existing computers,

(4) assessed over the entire life of the software.

Although methodologies may differ in how this goal is to be reached, the goal should be apparent

in the objectives set forth by any methodology.

2.1 Linking Objectives, Principles and Attributes

Reflecting the above view, the rationale supporting a procedural approach to evaluating soft-

ware development methodologies is based on the argument that:

A set of objectives can be defined that should be postulated within any software engineer-
ing methodology. Achieving these objectives requires adherence to certain principles that
characterize the process by which software is created. Adherence to a process governed by
those principles should result in a product {program and documentation) that possesses

attributes considered desirable and beneficial,

Underlying this rationale is a natural relationship that links objectives to principles and principles
to attributes. That is, as illugtra,ted in Figure 1, one achieves the objectives of a software de-
velopment methodology by applying fundamental principles that, in turn, induce particular code
and documentation attributes. It is precisely this linkage that provides a basis for the evaluation

procedure.

Consider for example the single objective, reusability. Formally, reusability can be defined as
the extent to which a module can be used in multiple applications. Accepting this objective as a
goal of a software developrment methodology, Figure 2 illustrates the major principles (hierarchical
decomposition, functional decomposition, information hiding, and documentation) confributing to
the realization of that objective. Expanding the single principle, information hiding, we note the
five attributes (reduced coupling, enhanced cohesion, well-defined interface, ease of change, and low
complexity) that should be evident in software developed using a process governed by the principle
of information hiding. Narrowing our attention to one of these attributes, well-defined interface,
we identify an additional set of characteristics related to the well-defined interface attribute. These
characteristics form the set of observable properties which contribute to the claim that a piece of

software exhibits a well-defined interface.

NEEDS

' AND
OBJECTIVES <> REQUREMENTS
O O o
PRINGIPLES PROCESS
L
e —
REQUIREMENTS
DESIGN)
IMPLEMENTATION
TESTING _
MAINTENANGE PRODUCT

ATTRIBUTES

: 7

N
: ry)

' PROPERTIES

(DOCU'MENTATION) (PROGRAMS)

Figure 1
Hiustration of the Relationships Among Objectives, Principles, Attributes, and

Properties in the Software Development Process

provides an outline of the linkage foundation; a detailed discussion relating the complete set of

objectives, principles, and attributes can be found in [ARTJ 86].

Reusability ’

Hierarchical Functional Information Concurrent
Decomposition Decomposition Hiding Documentation
. Well-Defined Ease of .

i t
Coupling Cohesion Interfaces ’ Change] Complexity
Use of Global

Variables

Use of
Parameters
Parameteriess
Calis
Excessive #
of Parameters

Use of Data
Structures

Figure 2

Hlustration of the Evaluation Procedure

2.2 On Evaluating Methodologies and Products

Currently, the relationships (or linkages) among objectives, principles, and attributes support
several evaluation methods, each of which provides various kinds of information. Prominent among
these methods are the top-down and bottom-up evaluation processes. Together, they provide a basis
for judging the adequacy of a software dev’elopmenf methodology and to what extent a software

product conforms to the objectives of a methodology.

The Top-Down Evaluation Process

The top-down evaluation process allows one to evaluate a methodology in terms of its objectives
(goals). The first step in this process is to recognize the objectives emphasized by the methodology.
Based on the linkages among objectives and principles, the second step is an investigation of the
software development process. That is, given a stated set of methodological objectives, one asks:
What principles are supported by the methodology to achieve those objectives? The presence of
principles without corresponding objectives or vice versa should trigger an alarm. The third step
in the top-down scheme, formulating the set of expected product attributes, is based on the fact
that principles govern the process by which a software product is produced. That is, a given set
of principles should induce a corresponding set of product attributes. Hence, using the linkages
among principles and attributes, one determines the expected set of product attributes and asks -
are these attributes desirable? If the answer to this question is “yes” then the selected methodology
is deemed adequate. That is, it supports an underlying software development process for achieving

the desired software engineering objectives and product attributes.

The Bottom-Up Evaluation Process

With respect to the stated objectives of a software development methodology, the top-down
evaluation process amplifies deficiencies in the the software development; process, the bottom-up
evaluation process, however, reveals preduct anomalies. That is, the bottom-up approach enables
one to determine to what extent g software product conforms to the stated objectives of a software

development methodology.

Similar to the top-down approach, the bottom-up evaluation scheme also relies on the existence
of linkages among software engineering objectives, principles, and attributes, Unlike the top-down
process, however, the bottorn-up scheme (1) starts with the computed set of atiributes (based
on properties found to exist in the software product), and (2) using the defined linkages among

principles and attributes, infers the hecessary set of principles needed to induce the attributes,

8

and then (3) using the objective/principle relationship determines the overall set of objectives
that are stressed in coanstructing the software product. In effect, given the pronounced objectives
and supporting principles of a software development, methodology, one can apply the bottom-up
evaluation process to a specified product and determine if and to what extent the attributes of

that product reflects the goals and objectives stressed by the methodology.

2.3 Application of the Evaluation Procedure

A joint investigation of two comparable Navy software development methodologies and respec-

tive products is described in [NANR 85]. The investigation effort utilizes:

¢ four software development methodology documents for

1) identifying the pronounced software en ineering objectives principles, and attributes,
g) ples,

and

(2) assessing the adequacy of each methodology through the objective/ principle/attribute

linkages defined by the evaluation procedure, and

e eight software system documents and 118 routines, comprising 8300 source lines of code,

for

(1) determining the evident set of product attributes, and

(2) via the attribute/principle/objective linkages, empirically assessing the principles and

objectives emphasized during product development,.

of the procedural approach to evaluating software development methodologies. For simplicity, we
will refer to the software systems as system A and system B (and methodology A, methodology B,

respectively).

Methodology Methodology
A B

Objectives

Maintainability Yes

Correctness Yes

Reusability

Testability

Reliability Yes Yes

Portability

Adaptability Yes
Principles

Hierarchical Decomposition Yes

Functional Decomposition Yes

Information Hiding

Stepwise Refinement

Structured Programming Yes Yes

Documentation Yes

Life Cycle Verification
Attributes : None None

Figure 3
Pronounced Objectives, Principles, and Attributes

The initial step in the evaluation process is to perform a “top-down” analysis of methodologies
A and B. For each methodology, this reveals the set of pronounced software engineering objectives,
principles, and attributes. Because both methodologies are a product of evolution, however, a
clear statement of their respective methodological objectives is lacking. Nonetheless, as détaﬂed in
Figure 3, the documentation for methodology A does appear to stress the objectives of reliability
and correctness supported by the principles of structured programming, hierarchical decomposition,
and functional decomposition. Following the objective/principle relationships defined by the eval-
uation procedure, for each objective stressed in methodology A only three of the necessary four
principles are emphasized. The implication is, that unless the principles of life-cycle verification
and information hiding are implicitly assumed and utilized, correctness and reliability, respectively,

are compromised.

Using metric values and properties, a corresponding “bottom-up” examination of product A

10

Reduced
Coupling

Early Error Enhanced

Detection

Hierarchica)
Decomposition)
i Functional
Decomposition

Conecurrent

Doc¢umentation “

Visibility Reduced
of Behavior Complexity
Life-cycie ' Information
- Verification Hiding
Traceability Well-Defined
" Ingerface
Ease of Readabifity Structured Stepwise
- Change : Programming Refinement

(a}

(b)

Adaptabilit.Correctness

Reliability

Reusability

Methodology A _ _ _

Methodology B ___ _
Testability ‘

fc)

Figure 4

which each attribute is gssessed as present in the product. Note that (reduced) complexity attains
the highest rating (8.0), closely foliowed by readability (7.4) and cohesion (6.8). Based on the three
principles stressed in methodology A, the evaluation procedure predicts that (reduced) complexity,

readability, and cohesion should, in fact, be among the product attributes,

In concert with the stated objectives and principles for methodology A, Figure 4b reveals that
structured programming (7.7) is the prominent principle used in developing system A, followed
by stepwise refinement (6.7), hierarchical decomposition (6.4), and functional decomposition (6.4).
Figure 4c depicts the results of emphasizing these principles in the software development process.

In particular, reliability is rated as the major software development objective (8.7). Although

11

correctness is also stressed by methodology A, ascertaining correctness necessitates life-cycle verifi-
cation; this principle is neither emphasized by methodology A, nor evident in the software product.
As illustrated by Figures 4a, 4b and 4c, other objectives and principles are given some emphasis
during the software development process for system A. It is the authors’ opinions, however, that

because they are not explicitly stressed in methodology A, the associated product suffers.

For methodology B, the objectives enunciated in the documentation are maintainability, adapt-
ebility, and reliability. Structured programmang and documentation are the emphasized principles.

Like methodology A, however, a complete set of supporting principles are not stated; hierarchs-

and principles, all of the above principles (both stated and assumed) are required to achieve the

objectives explicitly stated in methodology B.

Subsequent analysis of product B and a “botitom-up” propagation of the results through the
linkages defined by the evaluation procedure reveals structured programming as the most prominent
principle (8.3), closely followed by documentation {7.0). Moreover, the evaluation also indicates
that the implicitly assumed principles of methodology B are highly utilized - stepwise refinement,
hierarchical decomposition, functional decomposition, and information hiding rate 6.9, 6.7 , 6.7, and
6.3, respectively. Finally, the results imply that during the development of product B the objectives
of maintainability, adaptability, and reliability are most emphasized. The above assessments are

illustrated in Figures 4a, 4b, and 4c.

To summarize, the evaluation procedure reveals that both methodologies lack a clear statement
of goals and objectives, as well as sufficient principles for achieving the objectives that are empha-
sized. Moreover, glaring deficiencies are apparent in both software development methodologies.
That is, both fail to actively support the principle of information hiding and also have difficulties
In incorporating the desirable attributes of traceability and well-defined interfaces in respective
system products. In general, the evaluation procedure does accurately assesses the software engi-

neering objectives, principles, and attributes espoused by methodologies A and B. Of particular

12

significance, however, is that the objectives and principles determined to be “emphasized” during
the product development process, yet not stated in the methodology documentation, are precisely
those that are implicitly assumed important by the software engineers developing products A and

B. A more detailed account of the evaluation can be found in [NANR 85].

The evaluation results described above expose inherent strengths and weaknesses of method-
ologies A and B. Although the appraised strengths are consistent with general perceptions, several
implied deficiencies are unexpected. The discrepancy between the perceived and assessed method-
ological traits underly stated concerns and are addressed in the following sections. In particular,
items discussed include (a) the adequacy of the sets of objectives, principles and attributes assumed
to be desirable and beneficial, (b) the sufficiency and validity of the linkages that bind objectives to
principles and principles to attributes, and (c) the subjectivity, assessment criteria and manpower

requirements inherent to the current evaluation process,

3.0 Strengths and Weaknesses of the Evaluation Procedure

The current procedure for evaluating software development methodologies is based on a set
of relationships (or linkages) that exist among software engineering objectives, principles and
attributes. The operational approach to assessing the adequacy of a given methodology entails
(a) an identification of the objectives, principles and attributes that a methodology claims to
support, and (b) a product analysis to determine the extent to which measurable characteristics
substantiate the claim. Results obtained from (a) and (b) are heavily influenced by the defined
sets of objectives, principles and attributes, and the perceived linkages among them. Accordingly,

any effort to substantiate or enhance the credibility of the evaluation findings must include:

(1) a comparison between the current evaluation procedure and others similar to it,

(2) a verification of elements fundamental to the evaluation process, i.e. the assumed sets
of objectives, principles, attributes and measurement, properties, as well as the linkages

among these sets, and

13

(3) @ reassessment of the the evaluation procedure based on the finding from (1) and (2).

As discussed below, current literature provides the material for the comparison and verification

effort.

3.1 A Comparison Among Procedures for Evaluating Methodologies

To develop a software product one begins with a set of requirements, proceeds toward a sat-
isfactory design and then translates the design into a system that satisfies those requirements.
This seemingly natural approach to developing software systems, however, has not always been at
the disposal of the software engineer. Barly software development practices were guided by “seat
of the pants” intuition and were not even questioned until the late 1960s [DIJE 68, BOHC 66).
Today, software development techniques, methods, and methodologies abound. Their diversity and
expansiveness, however, has prompted a real need for evaluating their applicability and adequacy
to specific problem domains. Unfortunately, a survey of current literature indicates that only
tangential issues pertaining to the evaluation of software development techniques and methodolo-
gies are being addressed. Tor example, researchers like Basili [BASV 84], Weiss [WEID 85), and
Shen [SHEV 85] discuss methods for detecting error-prone software and suggest techniques for
minimizing error occurrence. Although their results and conclusions are impressive, error detection
and error avoidance represent only one facet of the software development process. From a more
global perspective, Bergland [BERG 81], Colter [COLM 82|, and Peters[PETL 77] present com-
parisons ameng software development methodologies, Their criteria for selecting one methodology
over another, however, is based on matching the software engineers’ needs with espoused method-
ological capabilities. Unfortunately, this approach only emphasizes the benefits of employing a

methodological approach and lacks a procedural basis for comparing alternative approaches,

In summary, current literature does not suggest any procedural basis for evaluating software
development methodologies. Although published results do provide significant insights into the
evaluation of individual software development techniques, the studies treat each technique as an

isolated entity, divorced from any parficular methodological framework.

14

3.2 Linkage Verification

As described in Section 2.2, assessing the adequacy of a software development methodology
is achieved through a “top-down” evaluation process that utilizes a formal description of the
methodology and a well-defined set of relationships (or linkages) that exist among objectives,
principles, and attributes. On the other hand, determining the usability of a methodology requires
a product evaluation that focuses on the identification of properties which imply the existence
of product attributes, followed by a “bottom-up” analytical process employing the same set of
linkages mentioned above. Implicit in both the top-down and bottom-up evaluation scenarios are

the assumptions that:

(1) the sets of objectives, principles, and attributes emphasized by the evaluation procedure
are consistent with those deemed most significant by the software engineering community,

and

(2) the objective/ principle, principle/attribute and attribute/property linkages do, in fact,
reflect a natural relationship underlying the achievement of objectives and the inducement

of product attributes, respectively.

For the interested reader, a literature confirmation for assumption (1) is outlined in Appendix 1

and detailed in [ARTJ 86]. Assumption {2) is discussed in the remainder of this sub-section.
The Objective/Principle Linkages

The relationships among objectives and principles imply that to achieve a particular software
engineering objective certain fundamental principles must be employed during the software devel-
opment process. For each objective, Table 1 of Appendix 1 enumerates the major principles that
contribute to the achievement of that objective. For example, maintainability is achieved and Jor
enhanced through (a) a design process that utilizes decomposition and stepwise refinement, (b) an

implementation phase that exploits (again) stepwise refinement, information hiding and structured

15

programming, and (c) concurrent documentation. Now, from a verification standpoint one should
ask ~ to what extent do other software engineers agree with the espoused objective /principle linkages
shown in Table 17 The answer to this question is found in Appendix 2. That is, for the objec-
tive/principle relationships defined by the evaluation procedure, literature references corroborating

all 32 linkages exist and are cited.

Based on the literature survey outlined in Appendix 2, the relationships defined among software
engineering objective and principles appear to be well-defined and reflect a compendium of opinions.
This set of relationships, however, is but one of three sets. The next discussion addresses the

verification of linkages defined among principles and attributes.
The Principle/Attribute Linkages

As stated above, a fundamental premise of the evaluation procedure is that to achieve specific
software engineering objectives, the software development process must be guided by the appropri-
ate software engineering principles. A direct ramification of this premise is that one can determine,
a priori, an expected set of product attributes. That is, whenever specific software engineering
principles are used during product development, particular product attributes are realized. For each
individual principle, Table 2 of Appendix 1 outlines the corresponding set of induced attributes.
For example, if one uses stepwise refinement during the software development process, one should
expect to (a) reduce coupling among the software modules comprising the product, (b) enhance
statement cohesion within each module, and (c) reduce overall product complexity. Again, the
appropriate question to ask is - do the principle/attribute relationships assumed by the evaluation
procedure agree with the published findings of software engineers? Referring to Appendix 3, all

assumed relationships are, in fact, substantiated in the cited literature articles.

As described in Section 2, the objective/principle and principle/attribute linkages are funda-
mental to assessing the adequacy of a software development methodology. Determining the extent
to which a methodology is followed during the development process, however, requires product

measurement based on resident properties and a set of relationships linking those properties to

16

the software engineering attributes discussed above. Understanding that product measurement
- methods do not fall within the scope of this research effort, the following discussion focusses on the

results of a literature search aimed at verifying assumed attribute /property linkages.
The Attribute/Property Linkages

Properties, also referred to as assessment factors in Appendices 4 and 5, are defined to
be observable qualities of a product that contribute to the claim that a piece of code or code
document exhibits pérticular attributes. Product properties and the set of attribute/property
linkages outlined in Appendix 4 play an integral roles in determining extant product attributes.
For example, the use of control structures and code indentation tends to lower code complexity.
On the other hand, properties that contribute to code complexity include the use of GOTOs and
multiple exit points from a module. The complete set of properties (of which there are 41) and their
relationships to the 9 attributes is presented in Appendix 4. Of the 74 linkages among properties
and attributes, only 9 remain unverified. The 65 substantiated attribute/property relationships

are presented in Appendix 5 along with appropriate references and lterature extractions.

1 i y linkages yet to be verified, an interesting observation

is that 6 of them are “comment” related and intuitive by nature. For example, the evaluation
procedure assumes that the use of bloék comments enhances readability. Similarly, the 3 non-
comment attribute/property linkages are also generally accepted, e.g. the use of parameterless
calls increases coupling between modules. Because literature references could not be found to
substantiated the 9 linkages, however, the authors did reconsider each individual linkage with

respect to its contribution and appropriateness. The resulting consensus was to keep all 9 linkages.

To summarize, substantiating the above mentioned linkages from a literature perspective has
proven quite fruitful. In particular, the anthors’ selection of objective/principle, principle/attribute
and attribute/property linkages appear to be consistent with other researchers and software en-
gineers. Moreover, the literature search also revealed particular linkages that needed to be re-

examined. The literature verification and reassessment of individual linkages, however, is only one

17

part of the research effort described m this report. The next step in ascertaining the strengths and
weaknesses of the current evaluation procedure is to individually consider the completeness and
adequacy of the enunciated sets of objective, principles and attributes. The Process and results of

that assessment are described jn the following section.

3.3 A Reassessment of Objectives, Principles and Attributes

The original identification and delineation of objectives, principles and attributes rely pri-
marily on the collective knowledge and experience of the three investiga,t.ors. While literature
references served to crystallize definitions and to promote convergence toward terminology choices,
the foundations of the evaluation procedure emerged as a Joint realization of what should be the
role of a methodology, The first task called for a thorough reexamination of the three component;

sets: objectives, principles and attributes. This reexamination focused on:

(1) completeness: should additions be made to any set?

(2) redundancy: should any set member be excluded because it overlaps excessively with

another member?

(3} accuracy: is the term properly defined, designated in the appropriate component set

(objective, principle, attribute), and its scope adequately represented?

3.3.1 Objectives

Reexamination of the original set of seven objectives led to no revisions. The early exclusion
of performance, based on the contention that such criteria represent a constraint imposed at the
systems level, has been reaffirmed. “Cost” in the form of development cost or the cost; of using z
particular methodology is excluded following the rationale that the entire evaluation procedure is to
establish the “life cycle cost.” How the two types of cost - that incurred today versus that deferred
until later — should be compared is a task beyond the software engineering domain. Perhaps our

attitude here is an expression of an earlier philosophical directive [DIJE 72, p. 6]:

18

My conclusion is that it is becoming most urgent to stop to consider programming
primarily as the minimization of a cost/performance ratio. We should recognize that
already now pProgramming is much more an intellectual challenge: the art of programming
is the art of organising complexity, of mastering multitude and avoiding its bastard chaos

as effectively as possible,

The review of terminology reintroduced some earlier discussion, e.g. is “extensibility” prefer-
able to “adaptability” or is the definition of reliability consistent with that used in the literature?

No convincing arguments proved persnasive to alter the earlier judgments.
3.3.2 Principles
3.3.2.1 Addition of Abstraction

Reexamination of the set of principles led to the addition of abstraction, which has been

identified as a principle by a number of authors:

Abstraction is the definition of each program segment at a given level of refinement, and

in terms of its relation as a unit to other program segments [GILP 82, p-248].

Abstraction, then, is the ability to see the whole problem, ignoring irrelevant detail; to

manipulate designs while they are general, without having to become specific [INFO 79).

The essence of abstraction is to extract essential properties while omitting inessential

details [ROSD 75, p. 22].

We should appreciate abstraction as our main mental technique to reduce the demands

made upon enumerative reasoning [DIJE 72, p. 11].

We find none of these definitions sufficiently descriptive of the meaning that we associate with the

principle that should be employed in developing software.

Hoare [HOAC 78, P-84] describes the process of abstraction as extending over four stages:

19

(1) Abstraction: the decision to concentrate on properties which are shared by many objects

in the real world, and to ignore the differences between themn.
(2) Representation: the choice of a set of symbols to communicate the abstraction.

(8) Manipulation: the rules for transformation of the symbolic representations as a means of

predicting the effect of similar manipulation of the real world,

(4) Axiomatisation: the rigorous statement of those properties which have been abstracted
from the real world, and which are shared by manipulations of the real world and of the

symbols which represent it.

We find this description of the abstraction Process instructive and at the same time indistinguish-
able from a characterization of “modeling.” We conclude that the definition of the principle of

abstraction must rely on the fundamental relationship with the modeling process.

Abstraction is the use of models of real world behavior that conform with a paradigm

representation, manipulation axiomatisation) to transform descriptions of behavior ul-
P ’ P s P

timately to realizations,

3.3.2.2 Revision for Concurrent Documentation

The principle of documentation as adopted in the early study proved troublesome in that no
evaluative basig is implied by the term. Clearly, the principle should not advocate “docurnentation
for the sake of documentation,” but the use of “good” as a modifier seerns unnecessary if not trivial.
The text by Tausworthe eliminated the difficulty in its definition of the principle of concurrent
documentation, which includes the properties of purpose, content, and clarity but also stipulates
that “the definition, design, coding, and verification phases of development cannot be regarded as
complete until the documentation js complete” [TAUR 77, p. 82]. The implication of the modifier
“concurrent” is precisely on target in that the principle should emphasize the recording of decisions,
assumptions, restrictions and numerous other items gs they are encountered not later subject to

the inaccuracy of human memory,

20

3.3.2.3 Primary and Consequent Principles

As the investigation of principles developed, a recognition of dependency among terms became

nore apparent. For example, both forms of decomposition (functional and hierarchical) emanate ..

from the employment of abstraction. As the progression is made from describing WHAT behavior
is to take place to HOW that behavior is achieved, the use of either decomposition form is
needed to impose a “boundary of understanding” and control the difficulty of the development
task. Recognizing this dependency led to the characterization of functional and hierarchical

decomposition as consequent principles of the primary principle of abstraction.
3.3.2.4 Other Issues Related to Principles

Several “principles” have been advocated in the literature that on examination are found
to be included among the set under another name or inappropriately tagged as applicable to
the process when the term describes an objective or attribute. The Software Cost Reduction
Project (SCR) endorses separation of concerns as a principle [NRL 84|, but the original use of
the term by Dijkstra [DIJE 786, P-56, p.203] clearly indicates that the originator is advocating
that preoccupation with (engineering) efficiency be avoided lest the (mathema,ticai) concerns with
correctness be undermined. More generally, Dijksta is admonishing the software developer to
avoid the temptation to permit implementation issues to unduly affect early specification decisions.
The SCR use of the term appears to reflect the same desired qualities that are associated with
application of abstraction; therefore, no separation of concerns is viewed as encompassed within

the principle of abstraction.

Modularity continues to be cited as a principle by some authors; however, these sources
generally appear to be older (e.g. [ROSD 75]). In fact, modularity is an attribute that can be
ascribed to code units to indicate whether they exhibit cohesion and coupling. Thus, the property of
“modularity” is subsumed by coupling and cohesion. This same argument extends to the “principle

of localization” [GILP 82, pp.247-248].

21

3.3.3 Attributes

The major result of the attribute review is the clarification of the attribute set as essentially
application independent software characteristics. This distinction originally caused much conster-
nation in that “software performance” was excluded as either a software development attribute

or objective, Rather, performance was viewed as a systems engineering decision that became

4. The Basis for Software Quality Indicators

“Software quality factors,” “software quality metrics,” and “software quality indicators” — g

The motivation for using statistical indicators of software quality stems from the qualified

successes in applying them to unmeasurable socia] concepts. This motivation ig described in

22

Section 4.1. Extension of the applicable theory and the derivation of software quality indicators is

described in Section 4.2, and the identification of some unresolved issues follows in Section 4.3,
4.1 Measuring the Unmeasurable: Social Indicators

Both economic and social indicators are based on the thesis that intangible qualitative condi-
tions can be indirectly assessed by measurable quantitative characteristics. The economic indicators
of a “good economy” are routinely discussed in business news. Social indicators of “safe streets”
or a “good neighborhood,” while less popular with the media, are often cited in cases where policy
considerations extend beyond economic boundaries, The concept of social indicators followed that

of economic indicators, and their development represents a more recent investigation.

A social indicator is defined ags & “statistic of direct normative interest which facilitates concise,
comprehensive and balanced judgment about the condition of major aspects of society” [DHEW

81]. Meier and Brudney provide a more instructive definition (MEIK 81, pp. 95-96]:

An indicator is a variable that can be measured directly and is linked to a concept through
an operational definition. An operational definition is a statement that tells the analyst

how a concept will be measured,

Slightly different connotations are ascribed to social indicators by Carlisle [CARE 1972, p.

25]:

(a social indicator is) the operational definition or part of the operational definition of
any one of the concepts central to the generation of an information system descriptive of

the social system.

The term “information system” is used far more restrictively here than commonly accepted in

computer science.

Two important characteristics of social indicators are stressed by Carley [CARM 81, p. 2]

23

(1) Social indicators are surrogates that do not stand by themselves — a social indicator must

always be related back to the unmeasurable concept of which it is a proxy.

(2) Social indicators are concerned with information which is conceptually quantifiable, and

must avoid dealing with information which cannot be expressed on some ordered scale.

A nagging problem is the establishment of the correlation between unmeasurable phenomena and

quantifiable surrogates [CARM 81 , p. 13].

4.2 Derivation of Software Quality Indicators (SQIs)

Cruickshank and Gaffney describe the use of quality indicators for assessment of the “goodness”
of software structure and prediction of the cost to complete a design. Software design indicators

belong to one of three classes ICRUR 80, pp. 1-2}:

1) Structural Composition — abstract characteristics of the design independent of a plication
P

or efficiency concerns,

(2) Degree of Design Detail — measurement of completeness of design and its satisfaction of

application requirements.

(3) Resource Utilization — degree of utilization of memory and time.

The emphasis on design prediction and the concerns for resource requirements introduce major
differences from the intended use of SQIs for methodology evaluation. Neither the second or third

class defined above applies in methodology evaluation.

A concern for social applications that is rendered moot for 8QIs is whether indicators should
measure phenomena amenable to policy manipulation [CARM 77, p. 24]. Certainly, SQIs are
applied to the result of a process that is totally subject to policy and operational control. Another
concern is not so easily dismissed: In the role of value Judgment, whose value of quality prevails in

the absence of agreement [PALT 73, p. 7]2

24

4.2.1 The Concept of a Software Quality Indicator

Based on the review of social indicators summarized above and the prior work in quality

factors and SQIs, we have adopted the following definition:

A softwere quality indicator (SQI) is a variable whose value can be determined through
direct analysis of product characteristics and whose evidential relationship to one or more

attributes is undeniable.

Consequently, a SQI must be

— measurable through analysis of programs and documentation, and

~ indicative of the presence or absence of one or more attributes.

Further, a SQI can be

- “raw” statistics extracted from code and documentation analysis, or

— variables computed using “raw” statistics.

~Finally, a SQI should be

~ simple, understandable, easily related to attributes,

—~ targeted at design information (documentation) and at implementation (code and docu-

mentation), and

—~ as objective as possible.

25

4.2.2 TImplications of Software Quality Measurement

The terms “measurement” and “quality” seem almost inconsonant. This perception stems
from an inherent view of measurement as possible only in a gquantitative sense which is to be
distinguished from a qualitative sense. A few reflections on common uses of the terms “quality
control” and “quality assessment” serve to dispel this notion. Product quality is commonly
measured in quantitative terms and the search for quantitative means of assessing product quality

continues.

Software development technology currently suffers from an indiscriminant unse of terms de-
scribing software quality (attributes) confounded with terms describing project goals (objectives),
which are interlaced with descriptives that apply to the development process (principles). The
discrimination of objectives, principles, and attributes provides a long-needed clarification and or-
ganization of the terminology. More importantly, the existence of valid SQIs can provide the basis
for specification of quality levels for deliverable products. Assuming that valid quality indicators
can be formed from quantifiable characteristics of the code and documentation, then the poten-
tial exists for a totally automatic, procedural assessment of software quality. That possibility is

extremely exciting and warrants further research.
4.3 Unresolved Issues in the Development of Software Quality Indicators

Recognizing that a SQI is a defined to be a statistical concept, then the usual problems with
error are encountered. That is, an indicator value js comprised of concept plus error. Consequently,
statistical accuracy requires that a determined effort be made to define indicators with minimal

error components.
indicator = concept + error

The challenge lies in the identification of indicators that apply to the concept and can be

measured with relatively small error such that

26

lim (error | n — o0) =0

where n is the sample size. The validation of social indicators has proved difficult, and the validity
of SQls appears to be an issue that hds received little attention from the software engineering
community. Such an investigation must form a prominent role in the use of SQIs in methodology
evaluation or in quality assurance of software products. Review of the different approaches to

validating social indicators would appear to be a logical point of departure.

A second major issue is the inherent temporal nature of most “quality indicators” — their values
can change and sometimes rapidly. Sampling so as to account for temporal variations, induced or
potential autocorrelation, and relative versus absolute scaling in time are subissues that must be

addressed for SQIs.

The elimination of subjectivity is likely to be impossible, but the reduction of dependency on
human judgment, and the concommitant variability, is a paramount concern. Basic statistical data
drawn directly from the documentation and code provide objective but often inadequate candidates
for indicators. Composites formed from “raw” data, constructed from intuitive perceptions, are
difficult to confirm by literature references. As noted above, little work in SQI validation is to be
found. The most appealing strategy perhaps lies in the strategy of redundancy: seek to have at
least two indicators that reflect either the absence or presence of each attribute. More than two
are preferable, and antithetic relationships (one indicator measures on an inverse scale to another)

are especially desirable.

A final issue is the degree of independence that a SQI should exhibit from the semantic and
syntactic constructs of specification or implementation languages. Ideally, language independence
is the goal, but a more realistic expecta;.tion is to restrict the dependency to a manageable level
that requires “customized interfaces.”

27

5. Automating the Evaluation Process Through Product Evaluation

The literature verification and reassessment process discussed in Section 3 and the encouraging
results coming from the SQI research imply that the procedural approack to evaluating software
development methodologies is fundamentally sound. From an operational perspective, however,

additional concerns have risen. In particular, critical operational issues include:

(1) the manpower requirements for analyzing a methodology and associated product(s), and

(2) the potential for introducing bias during the data collection phase.

The significance of these two issues is magnified when one considers that, although a methodology
needs only be examined once for adequacy, product assessment is performed multiple times. Not
only is this aspect of the evaluation process manpower intensive, it is also the most susceptible
to human bias. One possible approach to dealing with the the manpower requirernents and data
bias is to automate the data collection phase of the evaluation process. Crucial to the automation
based approach, however, is that the entity being analyzed must possess a detectable structure
with which a meaning can be associated. The remainder of this section expands on the above
statement, describes current approaches to automating product assessment, and discusses several

difficnlties surrounding the automated process.

In developing a software system two major components are always stressed as deliverables:
the software code and the supporting documentation. It is natural to assume, therefore, that
a complete product analysis must include an examination of both of these components. Similar
views, although motivated from a system validation and verification perspective, are also expressed
by Taylor and Osterweil [TAYR 78] and Hammond [HAML 78]. A closer look at code and
documentation characteristics, however, reveals that product evaluation is facilitated by a further
partitioning code and documentation components. The refined partitioning consists of (1) the
source code language constructs (excluding comments), (2) documentation embedded in the source

code via commenting facilities, and (3) documentation external to the source code, e.g. document

28

manuals. With respect to antomated analysis, each of these components are individually discusses

below.

5.1 Analyzing Source Code Language Constructs

From an automated perspective source code analysis is probably the most well understood. For
example, compilers exploit formal parsing and translation techniques in their systematic analysis of
programs [AHOA 86]. Additionally, software systems like SOFTDOC [SNEH 85|, DAVE [OSTL 76
and Henry’s Information Flow Analyzer [HENS 87] synthesize source code properties based on
underlying langnage structures. In turn, these properties are used in detecting data fow anomalies,

computing information flow metrics and so forth.

Although current technology does support automated techniques for extracting data elements
based on language constructs, the validity of computational formulas utilizing those data elements,
and the interpretation of ensuing results, are still open issues. For example, excessive nesting of
control structure is perceived to adversely affect program complexity [CONS 86, ARTL 84]. The

point at which excessive nesting occurs, however, remains unclear,

To sumnmarize, automated techniques for analyzing source code language structures are well
known. Moreover, the rapid prototyping of such analyzers can be achieved through support facilities
like LEX and YACC [JOHS 78]. Hence, with respect to the evaluation procedure, an automated
process supporting the acquisition of data pertinent o source code analysis is both feasible and

practical with today’s technology.
5.2 Document Generation: Two Approaches

Documentation is recognized as being inextricably bound to all facets of project development,
ranging form conception, to design, to coding, testing, and so fort. As described by Tausworthe

[TAUR 77):

“The goal of documentation is communication. During the project, documentation serves

as a working vehicle to prevent distortion of ideas, promote project control, record design-

29

phase decisions, permit orderly sub-system development, and make the systemn visible,
- both in its capabilities as well as jis limitations. When the project is complete, it records
the history of development, serves as a tutorial guide to system operation, demonstrates
that the system works, and provides a means for maintenance and evaluation of obsolete

or amendable portions of the system.”

Clearly, the importance of documentation cannot be understated. Yet, the literature abounds
with articles describing the the need for better documentation techniques and facilities [HESS 81,

SNEH 85, IOWE 86].

One particular aspect of documentation that is currently receiving significant attention fo-
cuses on the need for documentation which can be analyzed and restructured through antomated
processes. According to Osterweil, Brown and Taylor [OSTL 79] past efforts in automating the
evaluation of documentation have failed because (1) written documents lack specification rigor and

design formats, and (2) they are not written with machine readability as an objective.

Today, the two more prominent approaches to developing documentation that admits to

antomated analysis are where

(1) the user specifies documentation through an eutomated process tailored for a particular

application domain and specification level, e.g. SADT [ROSD 77] and SREM [ALFM 83],

and

(2) the user writes documentation based on a predefined set of constraints and guidelines.
Both approaches are considered below.

Assuming an automated document specification system (approach 1}, the system enforces
document specification rigor by guiding the user through a predefined set of paths that lead to
a (hopefully) fully specified document. Moreover, because the document specification system

maintains control of how and when information units are coliected, the document can easily be

30

stored in a format that is machine readable and which facilitates automated analysis. Although
this approach does provide a mechanism for producing software that amenable to automated
analysis, because the user is forced to present document material in a predefined (and perhaps
unnatural) order, hAuman readability of the document is often sacrificed. That is, if the user is
unable to deviate from a standard, predefined progression of information solicitations, information
related to tangential but pertinent considerations can be lost. Moreover, documentation formats
as well as content play an important in the human readability of a document; in general, document
specification systems lack support for storing and disseminating non-textual information and often

textual information in non-prose formats.

The second approach to producing documentation amenable to automated analysis is based
on the documenter adhering to a predefined set of guidelines that embraces the necessary specifi-
cation rigor. This approach provides the flezibility to produce a complex document that is both
human readable and human understandable. Moreover, adherence to the specification guidelines
insures a basis for machine readability and automatic analysis. For this approach to be effective,
however, three elements must be present. First, the sct of stipulated guidelines for developing and
maintaining a document must be unambiguous and well-defined. The documenter must know kow
fo present the information as well as what to present. Second, the guidelines and constraints must
be designed with the human in mind. For example, imposing a complex traceability scheme is not
appropriate; let a computer algorithm infer global traceability based on simple, local references.
Finally, each documenter must strictly adhere to the documentation guidelines. Unfortunately, it

is this third element that is the most difficult to insure and enforce.

5.3 Automating Documentation Analysis

The two approaches to documentation described in the above section lie at different ends of
a spectrum: in one case, an automated process dictates and enforces documentation guidelines; in
the other, a set guidelines are defined but it is up to the documenter as to the extent they are

followed. Hybrid approaches reflecting the middle ground also exist. Although we recognize that

31

techniques will always exist for subverting documentation system dictates, we shall assume in the
remainder of this section that a well-defined, effective documentation procedure used. With this

assumption in mind, the appropriate questions now are:

(1) What elements are crucial in defining general documentation guidelines?

(2) With respect to the two major forms of documentation, i.e. source code comments and

document manuals, to what extent are these elements known a prior?

(8) How do (1) and (2) affect automatic document analysis?

In response to the first question, three major elements must guide documentation synthesis:

(1) The User of the Document. Knowing who is going to read the document enables the
documenter to determine the appropriate level of documentation defail, use the correct

document vocabulary set and stress system aspects pertinent to reader.

(2) Documentation Focus. The focus of a document is defined to be the topic or subject of the
document contents. In general, each document should have a single subject emphasis. A

subject can, of course, be described as a sequence of related subtopics.

(3) Documentation Purpose. The purpose of a document is viewed as the framework that
surrounds and guides a description of the document focus. For example, a document
might focus on a particular subject while its purpose is to provide an overview of that

subject.

Intuitively, a priori knowledge about the user of a document, the document’s focus and its purpose
should lead to documentation that clearly and consistently reflect collective characteristics stressed
by all three elements. Based on this assertion and in response question (2) posed above, the
following two subsections discuss source code comments and document manuals relative to a

document’s user, focus and purpose.

32

Source Code Comments

Consider the role of code comments in the documentation process. According to Munson
[MUNJ 78] source code comments should describe the functionality of a module, it limitations,
basic assumptions, algorithmic/implementation logic and so forth. With respect to the three

elements that guide documentation synthesis the following observations are made.

(1) Comments are embedded in the source code. Implicit in this observation is that the reader
(or user) of the source code documentation possesses a certain level of knowledge, i.e.

that of a software engineer.

(2) Comments describe external module relationships and internal source code characteristics.

That is, comments focus on documenting code and module characteristics,

(3} Documentation comments appear in three formats: header comments, block comments
and single line comments. Additionally, the purpose of each format is well-defined. For
example, header comments describe the computer program name, input/éutput infor-
mation, assumptions, and limitations and/or restrictions; block comments are used to

describe sections of code.

From the above observations one can surmise that, when documenting via code comments, the
reader (or user), focus and purpose of the documentation are know before the actual documentation

content is specified.
Documentation Manuals

Unlike source code comments, when one considers general documentation manuals, the user,
focus and purpose are not so well defined. In general, when one writes a document one first
determines the user group and then appropriately constrains the subject matter {or focus) of
the document and its presentation framework (or document purpose). Hence, with respect to

both the source code documentation and documentation manuals, three crucial ingredients must

33

be identified before product documentation can be synthesized: knowledge about the document
user, the focus of the document and its purpose, Only source code comments, however, possess
characteristics that assume knowledge about these three ingredients; for documentation manuals,
the focus and purpose are predicated on first defining the user group. Based on these observations

a more appropriate wording of the third question posed above is:

How does (a) knowing that documentation must be written with a focus and purpose that
reflects the intended user community and (b) knowing that only source code comments

presuppose such knowledge affect the automatic the analysis of documentation?

In addition to answering this question, the following discussion also addresses a more general

question — why is an automated approach to documentation analysis so difficult?

As alluded to earlier in this report and substantiated by Lamb [LAMS 78] and Taylor
[TAYR 78], problems with the automatic analysis of documentation stem from the lack of well
defined rules and procedures for developing documentation. In particular, if structure rules are
lacking then implied as well as éxplicit relationships among documentation elements will be dif-
ficult if not impossible to detect. We note, however, that general guidelines designed to support
the automatic analysis of source code documentation have been defined, see for example Munson
[MUNJ 78]. Unfortunately however, general guidelines exist primarily for source code documen-
tation and not for external documentation, i.e. text manuals. To understand why this situation
prevails we must .éxaz;nine the relationship between documentation and & prior? knowledge about
the document’s intended user, focus and purpose. In the case of source code documentation, (a)
the user cox;m;unity is well defined and assumed to be static, i.e., programmers, analysts and
software engineers, (b) the purpose of each documentation unit is well defined and limited fo three
major categories, i.e. header, block and single-line comments, and {c) the focus of each documen-
f,ation unit is a strict function of a program’s source code units relative to the three categories
described in (b). In the case of a documentation manual, however, none of this information is

known aprior:... the user community must be determined first, followed by the documents purpose

34

and focus. Although documentation guidelines have been devised based on selected user groups,
documentation focus and purpose, e.g. SADT’s SA language and SREM’s REVS, guidelines sup-
porting the structured synthesis of general documents suitable for automated ana.ljsis do not exist.
It is the authors’ opinion that this situation prevails because (a} defining one set of general purpose
documentation guidelines tailored for a irariety of user groups is extremely difficult, and (b) until
now, the motivation for automatic document preparation and analysis has been lacking. In partic-
ular, the complexity of today’s software systems demand up-to-date documents supporting system
overviews, functional capabilities, usage and maintenance aspects. Ploneering efforts by researcher
like Hester and Parnas [HESS 81], Sneed [SNEH 85] and Horowitz [HOWE 86], however, are pro-
viding significant insights into the functional partitioning of documentation as well as experimental

approaches for systematically storing, retrieving and automatically analyzing documents.

In summary, past efforts to produce documentation that is machine readable and which con-
tains sufficient structural information for local and global characieristic analysis have largely failed.
The results of a literature survey indicate that this trend is expected to continue until proper doc- .
umentation guidelines are defined and adherence to them are enforced. Although enforcement
can be controlied, the authors believe that the definition of general purpose documentation guide-
lines is inextricably bound to knowing the intended user of a document, the documents focus and
it purpose. Because these elements can vary widely, defining a univers#l set of &ocumentation
guidelines that supports automated analysis is difficult. Nenetheless, documentation guidelines as-
suming a homogeneous user community are being proposed. Documentation systems that enforce
these guidelines have met with limjted success. As outlined in the next sectioﬁ, however, general
documentation guidelines founded on “relational objects” may provide a basis for defining general

documentation standards and guidelines.
6. Tangential Research Issues

In the process of investigating the principle issues defined in this ressarch effort, additional
topics have surfaced and deserve discussion. This section briefly describes those topics and outlines

‘associated research issues.

35

Applying the Evaluation Procedure to Embedded Systems

The current evaluation procedure provides a method for assessing the adequacy and usability of
general software development methodologies. Embedded systems, however, mandate real-time con-
straints that stress specialized product structures and characteristics. For example, in embedded
systems applications software/software and software /hardware communications is often accom-
plished through tailored synchronization construets. These specialized communication constructs
are crucial to communicating processes and provide a mechanism for specifying and implementing
well-defined interfaces. Although a well-defined interface is a highly desirable product attribute
and an integral part of the evaluation procedure, determining the extent to which an embedded
system reflects this attribute is difficult within the scope of the existing evaluation procedure. The
present difficulty lies with the fact that well-defined interface 'assessment is based on “standard”
communication mechanisms like procedure calls ‘and global variables; synchronization constructs
like ADA’s entry /accept statements are not incorporated. Similarly, consider correctness, testabil-
ity and decomposition; related embedded systems characteristics that -dicta.te special consideration
include timing (temporal) constraints and concurrénéy. Recognizing and Assessing such character-
Istics require the identification of additional product properties (or indicators) specific to embedded

systems and the definition of linkages that reflect appropriate relationships.

With respect to the evaluation procedure, the above paragraph outlines three instances where
embedded systems dictate special considerations; certainly more exist. Additional research is
needed, however, to identify these special considerations and incorporate them into an evaluation

procedure tailored to the embedded systems domain,
Design Versus Code Level Factors

Fundamental to the concept of SQIs is the attribute/factor binding. That is, a factor by itself
has no real meaning; it must be always be viewed with respect to a particular attribute. For

example, the number of structure data types is a factor; attached to the attribute, well-defined

36

interfaces, one has a meaningful SQI that imparts what is being measured relative to what one
is attempting to assess. While investigating two particular attributes, coupling and cohesion, the
associated factors appeared to partition along design/code boundaries. That 1s, factors bound to
coupling can be traced back to design decisions; factors bound to cohesion, however, appear to
have their origin tied to the coding process. For example, the use of call statements with respect
to coupling reflects decisions made during design phase; the use of structured code as it relates to

cohesion is a decision made at implementation time.

Although no significance has yet been attached to the above observations, the partitioning
does indicate a possible SQI classification scheme based on life cycle phases. Moreover, if other
such partitionings exist, and they fit within some natural framework, then perhaps the partition

classes will provide Insights into the identification of additional factors and SQlIs.

Automatic Documentation Analysis Based on Relational Objects

As discussed in Section 5, automated documentation analysis requires adherence to 3 rigid
structure/content format. Although it is natural to view such constraints with respect to the user
of document, the document’s focus and purpose, a compromise approach based on a predefined
relational network is envisioned. The approach dogs not consider the user or document content.,
but simply a predefined set of relations that can be imposed on documentation objects (i.e.
documentation segments). Two such relations might be subsumes and preceded. Object B is said to

be subsumed by object A if object B describes an element of A in more detail. The “subsumption”

The “precedes” relationship, on the other hand, reflects a horizontal linkage between documentation
objects. For example, describing an Input/Process /Output relationship might be expressed as Input

Precedes Process and Process precedes Ouput. In general, object A precedes object B. Similar to

.37

subsumption, the “precedes” relationship denotes a natural relationship one would expect to find

between documentation segments.

The power of this relational approach is that relationships can be defined knowing only how
documentation is structured. For appropriately defined documents information retrieval, update
and analysis can be supported by a conventional relational database system. As initially envisioned,
only documentation segments are relationally bound. Word and phrase match algorithms would
be used to verify defined relationships among documentation objects. As mentioned in the opening
paragraph, however, this approach offers only a compromise solution to a difficult problem. The
compromise approach does not offer the complete analytical capabilities that a more structure and
content oriented system might. On the positive side, however, one is free to structure a document
as desired - realizing of course, that the amount of imposed structure and defined relationships are

directly related to the the analytical qualities of the document.
Automatic Hypothesis Synthesis and Verification

The increasing complexity of today’s software systems is forcing a hard look at current doe-
urnentation practices. Documentation trends are moving toward more structured formats that
support automated analysis. Based on the assumption that automatic analysis is feasible, an
additional research issue stemming from the current task involves automatic hypothesis synthesis
and verification. That is, we believe that it should be possible to formulate an hypothesis based
on source code analysis and then follow the hypothesis up the documentation chain to a point
to where the hypothesis can either be accepted or rejected. For example, based oﬁ source code
comments and file primitives, one can determine external files accessible to a given module. In
turn, this accessibility implies specific interface capabilities and characteristics. The validity of

such privileges can then be verified against interface requirements documents.

Once an hypothesis has been formulated a “bottom-up” analysis of code and documentation
leads to its acceptance or rejection. Ha hypothesis is rejected, then a related “top-down” document-

to-source code analysis is deemed appropriate. The top-down approach provides s mechanism for

38

ascertaining where document specifications begin to deviate from what is actually present in the
source code product. It must be stated, however, that this approach is highly dependent not only
on the capability to automate source code and documentation perusal, but also assessment through

precise defined and implied relationships.
7. Summary and Conclusions

Three major issues are addressed in this research effort:

Issue 1: Assessing the strengths and weaknesses of the current evaluation procedure,
Issue 2: Basing the evaluation procedure on software quality indicator, and

Issue 3: Automating the evaluation process.

The overall thrust of this research has been to examine the validity of the assumptions intrinsic to
the evaluation procedure, reassess fundamental relationships and chai-acteristics, refine the evalua-
tion procedure based on perceived inadequacies and reassessment results, and explore appropriate
measures for automating the evaluating process. The major results stemming from this research

effort are described below.

For Issue 1, assessing the strengths and weaknesses of the evaluation procedure, the authors
initiated a literature search to (a) identify other approaches to evaluating software development
methodologies and contrast them with the procedural approach, and (b) validate and reassess
'assumptlons concernmg the selected sets of objective, principles and attributes as well as the link-
ages defined among them. The literature survey revealed that the selected set of methodological
objective, principles and attributes are consnsten_t with those perceived most important by other
researchers in the software engineering domain. Even more significant, however, is that substanti-
ating references to every objective/principle and principle/attribute linkage was found. Moreover,
references supporting all but a few of the property /attribute were also discovered. From the re-

assessment perspective, the principle of abstraction has been added to the evaluation procedure and

39

lssues concerning “separation of concerns” have been resolved or satisfactorily clarified. The au-
thors were unable to find, however, articles that described techniques for evaluating single software
development methodologies — all related papers primarily focussed on comparing one methodology

to another.

In regard to Issue 2, basing the evaluation procedure on statistical indicators, significant strides
have been made toward the formal definition and integration of software quality indicators (SQI).
Based on statistical indicators, the definition of 3QIs has been formulated within a well-defined,
defensible framework. SQIs are expected to play an integral role in automating the evaluation

Process,

Finally, addressing Issue 8 has resulted in a better understanding of where the major problems
lie in automating the evaluation procedure. In addition to integrating SQIs into the evaluation
procedure and formalizing code analysis semantics, it is obvious that we must also address the
under-publicized, yet substantially difficult task of automating documentation analysis. Future
research efforts, however, can build on the newly acquired results that link the document user,
focus and purpose to document synthesis as well as exploit the possibility of defining relations

among documentation objects.

40

References

[ALFM 85] Alford, M., “SREM at the Age of Eight; The Distributed Computing Design System,”
IEEE Computer, Vol. 18, No. 4, April 1985, pPp. 36-54.

[AHOA 86] Aho, A., Sethi, R. and Ullman, J., Compilers: Principles, Technigues, and Tools,
Addison-Wesley Publishing Co., Reading, MA, 1986.

[ARTJ 76] Arthur, J., Nance, R. and Henry, S., “A Procedural Approach to Evaluating Software
Development Methodologies: A Foundation,” Technical Report TR-86-24, Virginia Tech,
1986.

ARTL 84 Arthur, L., Measuring Programmer Productivity and Software Qualit ; bp. 153, John
¥, bp
Wiley and Sons, Inc., New York, NY, 1984,

[BASV 84] Basili, V. and Perricone, B., “Software Errors and Complexity: An Empirical Investi-
gation,” Communications of the ACM, Vol. 27, No. 1, pp. 42-52, January 1984.

|[BAUF 72] Bauer, F., “Software Engineering,” Information Processing 71, North Holland Publish-
ing Company, 1972.

[BERG 81] Bergland, G., “A Guided Tour of Program Design Methodologies,” IEEE Computer,
pp- 18-36, October, 1981. '

[BOEB 76] Boehm, B., “Software Engineering,” IEEE Transactions on Computers, Vol. C-25, No.
12, December, 1976, Pp.1226-1241,

[BO_HC 66] Bohm, C., and Jacopini, G., “Flow Diagrams, Turing Machines, and Languages with
only Two Formation Rules,” Communications of the ACM, Vol. 19, No. 5, May 1966.

[CARM 77] Carley, M. “Needs and Outputs,” in Fundementals of Social Administration, Weisler,
E. (ed.), MacMillan, 1977,

[CARM 81] Carley, M. Social Measurement and Social Indicators, George Allen & Unwin, 1981.

[CARE 72] Carlisle, E. “The Conceptual Structure of Social Indicators,” in Social Indicators and
Social Policy, Shonfield, A. and Shaw, 8. (eds.), Hinemann Educational Books, 1972.

ICLEP 84] Clements, P., “Function Specifications for the A-7E Function Driver Module,” NRL
Memorandum Report 4658, Naval Research Laboratory, Washington, D. C., November, 27,
1984,

41

[CONS 86] Conte, S., Dunsmore, H. and Shen, V., Software Engineering Metrics and M odels, pp.
74, Benjamin Cummings, Reading MA, 1986.

[COLM 82] Colter, M., “Evolution of the Structured Methodologies,” Advanced Systems Devel-
opment / Feasibility Technigues, pp. 74-95, John Wiley and Sons Inc., New York, NY,
1982.

[CRUR 80] Cruickshank, R. and Gaffney, J. “Indicators for Software Design Assessment,” IBM
FSD Final Report on Creative Development Task 91, January 23, 1980.

[DHEW 81] U. S. Department of Health, Education and Welfare, Toward a Social Report, U. 8.
Government Printing Office, 1969.

[DIJE 68] Dijkstra, E., “Go To Statement Considered Harmfu],” Communications of the ACM,
Vol. 11, No. 3, pp. 149-150, March 1968,

[DIJE 72 Dijkstra, E., “Notes on Structured Programming,” Structured Programming, Dah],
O-J, Dijkstra, E., Hoare, C. A. R., Academic ‘Press, 1972,

[DIJE 76] Dijkstra, E., 4 Discipline of Programming, Prentice-Hall, 1976.
[GILP 82 Gilbert, P. Software Design and Development, SRA, 1982,

[GOMH 84] Gomaa, H. “A Software Design Method for Real-Time Systems,” Communications of
the ACM, Vol. 27, No. 9, September 1984, pp. 938-949, :

[GOON 87] Goodwin, N. “Functionality and Usability,” Communications of the ACM, Vol. 30,
No. 3, March 1987, pp. 220.233.

ITHAML 78] Hammond, L., Murphey, D. and Smith, M., “A System for Analysis and Verification
of Software Design,” Proceedings of COMPSAC 78, Chicago, IL, pp. 42-47, 1978,

[HENK 78] Heninger, K., Kallander, J., Shore J. and Parnas, D., “Software Requirements for the
A-TE Aircraft,” NRL Memorandum Report 3876, Naval Research Laboratory, Washington,

[HENS 85] Henry, S., Arthur, J. and Nance, R., “A Procedural Approach to Evaluating Software
Development, Methodologies,” Technical Report TR-85-20, The Department of Computer
Sciences, Virginia Tech, March 1985.

[HENS 87] Henry, 8., “A Technique for Hiding Proprietary Details While Providing Sufficient
Information for Researchers,” Journal of Systems and Software, to appear.

42

[HESS 81] Hester, 8., Parnas, D. and .Utter, D., “Using Documentation as a Software Design
Medium,” The Bell System Technical Journal, Vol. 60, No. 8, pp. 1941-1977, October, 1981.

[HOAC 72] Hoare, C. A. R. “Notes on Data Structuring,” Structyred Programming, Dahl, G-J .
Dijkstra, E., and Hoare, C. A. R. Academic Press, 1972.

[HOWE 86] Howoritz, E. and Williamson, R., “SODOS: A Software Docurnentation Support En-
vironment — Its Definition,” JEEE Transactions on Software Engineering, Vol. SE-11, No.
8, pp. 849-859, August 1986.

[INFO 79] Infotech, “Software Enginéering Techniques,” Infotech State of the Art Report, Infotech
International, Maidenhead, England, 1979,

[JOHS 78] Johnson, S. and Lesk, M., “Language Development Tools,” Bell System Technical
Journal, Vol. 57, No. 6., pp. 2155-2175, 1978,

[KEAJ 86] Kearney, J., Sedlmeyer, R., Thompson, W., Gray, M., and Adler, M., “Software
Complexity Measurement,” Communications of the ACM, Vol. 29, No. 11, November 1988,
pp. 1044-0150.

[LAMS 78] Lamb, S., Leck, V., Peters, L. and Smith, G., “SAMM: A Modelling Tools for Re-
quirements and Design Specification,” Proceedings of COMPSAC 78, pp. 48-53, Chicago IL,
1978.

[MEIK 81] Meier, K. and Brudney, J. Applied Statistics for Public Admainistration, Duxbury
Press, 1981.

IMUNJ 78] Munson, J . “Software Maintainability: A Practical Concern for Life Cycle Costs,”
Proceedings of COMPSAC 78, pp. 54-59, Chicago, IL, 1978,

[NANR 85 Nance, R., Arthur, J. and Dandekar, A., “Evaluation of Software Development Method-
ologies,” A Final Report of the Immediate Software Development Project, The Department
of Computer Sciences, Virginia Tech, December 1985,

INRL 84] Naval Research Laboratory, “Software Cost Reduction Methodology,” Brief 2, Infor-
mation Technology Review, 4 October, 1984.

[OSTL 76] Osterweil, L. and Fosdick, L., “DAVE - A Validation, Error Detection and Documen-
tation System for FORTRAN Programmers,” Software: Practice and EBzrperience, Vol. 8,
No. 4, pp. 473-486, October/December 1978,

[OSTL 79] Osterweil, L., Brown, J. and Stuck; L., “Asset: A Life Cycle Verification and Visibility
System,” Journal of System and Software, Vol, 1, No. 1, pp. 77-86, 1979,

43

[PALT 73] Palys, T. “Social Indicators of Quality of Life in Canada: A Practical Theoretical
Report,” Department of Urban Affairs, Manitoba, Winnipeg, 1973.

[PARD 85] Parnas, D., “Software Aspects of Strategic Defense Systems,” Communications of the
ACM, Vol. 28, No. 12, December 1985, pp. 1326-1335.

[PETL 77] Peters, L. and Tripp, L., “Comparing Software Development Methodologies,” Data-
mation, Vol. 23, No. 11, pp. 89-94, October 1977,

[ROSD 75] Ross, D., Goodenough, J. and Irvine, C., “Software Engineering: Process, Principles,
and Goals” JEEE Computer, Vol. 8, No. 5, pp. 17-27, May 1975,

[ROSD 77] Ross, D., “Structured Analysis: A Language for Communicating Ideas,” IEEE Trans.
actions on Software Engineering, January, 1977.

[SHEV 85] Shen, V., Yu, J. and Thebaut, S., “Identifying Error Prone Software — An Empirical
Study,” IEEE Transactions on Software Engineering, Vol. SE-11, No. 4, pp. 317-323, April
1985,

[SNEH 85] Sneed, H. and Merey, A., “Automated Software Quality Assurance,” JEEE Transac-
tions on SOftware Engineering, Vol. SE-11, Ne. g, PP. 909-916, September, 1985,

[SOFT 78] An Introduction to SADT: Structured Analysis an Design Technique SoftTech Inc.,
Document No. BCS-10167, 1978,

[TAYR 78] Taylor, R. and Osterweil, L., “A Facility for Verification, Testing, and Documentation
of Concurrent Software,” Proceedings of COMPSAC 78, Chicago, IL, pp. 36-41, 1978,

ITAUR 77) Tausworthe, R., Standardized Development of Computer Software, Prentice-Hall, En-
‘glewood Cliffs, NJ , 1977,

[WEID 85] Wiess, D. and Basili, V., “Evaluating Software Development by Analysis of Change:
Some Data form the Software Engineering Laboratory,” IEEE Transactions on Software
Engineering, Vol. SE-11, No. 2, pp. 157-168, February 1985, :

44

Appendix 1

An Overview of the Linkage Foundation

As discussed in [ARTJ 86] a broad review of software engineering literature leads to the

identification of seven objectives commonly recognized in the numerous methodologies:

(1) Maintainability — the ease with which corrections can be made to respond to recognized

inadequacies,
(2) Correctness — strict adherence to specified requirements,
(3) Reusability ~ the use of developed software in other applications,
(4) Testability — the ability to evaluate conformance with requirements,
(52 Reliability - the error-free use of software performance over time,
(8) Portability - the ease in transierring software to another environment, and

(7) Adaptability — the ease with which software can accommodate to change.

Achievement of these objectives comes through the application of principles supported (en-
couraged, enforced) by a methodology. The principles enumerated below are associated with the

creative process by which brograms and documentation are produced:

(1) Hierarchical Decomposition — components defined in a top-down manner.

(2) Functional Decomposition — components are partitioned along functional boundaries.
(8) Information Hiding — insulating the intema.l. details of component behavior.

(4) Stepwise Refinement — utilizing a convergent design.

(5) .Structured Programming - using a restricted set of control constructs,

(6) Documentation — management of supporting documents (system specifications, user man-

- ual, ete.) throughout the life cycle.

45

(7) Life Cycle Verification — verification of requirements throughout the design, development,

and maintenance phases of the life cycle,

The enunciation of objectives should be the first step in the definition of a software development
methodology. Closely following is the statement of principles that, employed correctly, lead to the
attainment of these objectives. The important correspondence between objectives and principles is

shown in Table 1.

Employment of well-recognized principles should result in software products possessing at-
tributes considered to be desirable and beneficial. A brief definition of each attribute is provided

below,

(1) Cohesion - the binding of statements within a software component.
(2) Coupling - the interdependence among software components.
(8) Complexity - an abstract measure of work associated with a software component.

(4) Well-defined Interface - the definitional clarity and completeness of a shared boundary

between a pair of software components.
(5) Readability - the difficulty in understanding a software component (related to complexity).
(6) Ease of Change - software that accommodates enhancements or extensions.

(7) Traceability - the ease in retracing the complete history of a software compenent from its

 current status to its design inception.
(8) Visibility of Behavior - the provision of a review process for error checking.

8) Early Error Detection - indication of faults in requirement’s specification and design prior
q 4

to implementation.
The relationships among attributes and principles are denoted in Table 2.

Software attributes represent a collective and subjective Jjudgment of a characteristic. This

Judgment can be made more objective and qﬁantiﬁable by the definition of properties that reflect the

46

components. However, as

Table 1: Software Engineering Objectives and Corresponding Principles

Objective
Maintainability

Adaptability

Reusability

Portability

Testability

Reliability

Correctness

Principles

Stepwise Refinement
Documentation
Hierarchical Decomposition
Functional Decomposition
Information Hiding
Structured Programming

Stepwise Refinement
Documentation
Hierarchical Decomposition
Functional Decomposition
Information Hiding
Structured Programming

Documentation
Hierarchical Decomposition
Functional Decomposition
Information Hiding

Functional Decomposition
Documentation

Life-cycle Verification
Hierarchical Decomposition
Functional Decomposition
Information Hiding
Stepwise Refinement
Structured Programming

Hierarchical Decomposition
Information Hiding
Stepwise Refinement
Structured Programming

Hierarchical Decomposition
Life-cycle Verification
Stepwise Refinement
Structured Programming

Presence or absence of the attributé. For example, the use of subordinate indentation to demarcate
_ control statement ranges contributes to moré readable code. The utilization of block structuring and
the establishment of conventions for procedure invocations improve the coupling/cohesion among
is evident in these two examples, such indicators are highly dependent

on the_ programming language employed in implementation, documentation organization, and

47

Table 2: Software Engineering Principles and the Effects on Derived Attributes

Principle
Stepwise Refinement

Hierarchical Decomposition

Functional Decomposition

Structured Programming

Information Hiding

Documentation

Life-cycle Verification

formating conventions; therefore, the definition of indicators cannot be generalized but remains

specific to the instances of evaluation.

Effect on Attribute
Coupling/cohesion enhanced
Reduced complexity
Ease of Change
Coupling/cohesion enhanced
Reduced complexity
Ease of Change
Coupling/cohesion enhanced
Reduced complexity
Reduced Complexity
Readable code
Extensible software
Coupling/cohesion enhanced

Reduced complexity
Well-defined interfaces

Readable code
Traceability

Ease of Change
Reduced complexity

Visibility of behavior
Early error detection

48

Appendix 2

LINKAGES BETWEEN OBJECTIVES & PRINCIPLES

Objectives and principles and how they are related

In the following document (*) against a principle indicates identification of reference for the linkage.

44

ADAPTABILITY

Achieved by:
(a) Hierarchical Decomposition (*)
(b) Functional Decomposition (*)
(¢) Information Hiding (¥)
(d) Stepwise Refinement (*)
(e) Structured Programming (*)

(£} Documentation (*)

References:

(i) Wirth, N. (1871), “Program Development by Stepwise Refinement,” Communications of the
ACMVol. 14, No. 4, pp. 221-227.

(ii) Arthur, J.L. (1984), Measuring Programmer Productivity and Software Quality, John Wiley,
New York, NY.

(iii) Ross, D.T., I.B. Goodenough and C.A. Irvine (1975), “Software Engineering: Process, Prineci-
ples and Goals,” IEEE Computer, Vol. 8, No. 5, pp 17-27.

(iv) Gilbert, P. (1983), Software Design and Development, Science Research Associates, Chicago,
IL. .

{v) Bergland, G.D. and R.D. Gordon (1981), “Software Design Strakegies,” JEEE Compsac, pp
79-92,

(vi) Bullen, R.H. (1976), “Program Modularization,” Structured .Programmz'ng, Infotech State of

the Art Report, England.

NOTES

1. PP21/(iii}: In general, hierarchical decomposition is cited as helping to improve software reli-

ability, helping to allow multiple use of common designs and programs, and help-

ing to make it easier to modify programs. {Hierarchical Decomposition}

2. PP82/(vi): Functional decomposition increases inherent modifiability of a system. {Func-

tional Decomposition }

50

3. PP272/(iv):

5. PP226 /(i):

6. PP416/(iv):

- 7. PP403/(iv):

8. PP193/(ii):

The capability of hiding details of data elements from other modules is a principal
reason for the popularity of DBMS. Once the data elements have been have been
isolated, details of the structure of files_a,nd tables can be chahged as necessary
without affecting the collection of programs. The data base management modules
can also change the format of requested data items to meet the needs of the

requesting program. Thus isolation of data promotes flexibility . {Information Hid-

ing}

The degree of modularity obtained by using stepwise refinement determines the
ease or difficulty with which a program can be adapted to changes or extensions of
the purpose or changes in the environment (language, computer) in which it is

expected. {Stepwise Refinement}

Stepwise refinement is a design strategy that seeks to implant ease of understand-
ing, and ease of maintenance and modification into the program text. {Stepwise

Refinement}

Structured programming (SP) uses only three forms (sequence, choice and itera-
tion). Any programming calculation can be programmed using these forms. And
when only these forms are used, the resulting program is easily understandable to
programmers seeking it for the.first time. There are fewer intricacies and
“clevernesses” to be puzzled through., Thus maintenance personnel can discover
quickly which portions of the program require maintenance or modification.

{Structured Programming}

Flexibility is a function of modularity, sell-documentation etc. {Documentation}
Modularity provides a structure of highly independent modules, having sharply

defined interfaces that are tolerant to external changes. A module possessing func-

51

tional strength and data coupling hasrlittle to fear from the outside and its inter-
nal logic is often so easily understood that enhancing the module becomes simple.

Self-documentation identifies the software attributes that explain the function of
the software. Without a clear understanding of the code, the programmer will

have a hard time identifying where to insert new functions or to change or delete

old ones.

52

MAINTAINABILITY

Achieved by:
(a) Hierarchical Decomposition (*)
(b) Functional Decomposition (*)
(¢} Information Hiding (*)
{d) Stepwise Refinement (*)
(e) Structured Programming (*)

() Documentatioo (*)

References:

(i) Wasserman, AL (1976), “On the Meaning of Discipline in Software Design and Development,”
In: P. Freeman and AL Wasserman (eds.), Tulorial on Software Design T echniques, IEEE
Computer Society Press, Long Beach, CA.

(ii) Hosier, J. (1978), Structured Analysts and Design, Infotech international Ltd., England.

(iif) Ross, D.T., J.B. Goodenough and C.A. Irvine (1975), “Software Engineering: Process, Princi-
ples and Goals,” IEEE Computer, Vol. 8, No. 5, pp 17-27.

(iv) Pressman, R.S. (1982), Softwore Engineering: A Practitioner’s Approach, McGraw-Hill, New
York, NY, :

(v) Gilbert, P. (1983), Software Design and Development, Science Research Associates, Chicago,
IL.

NOTES

1. PP21/(iii): In general, hierarchical decomposition is cited as helping to improve software reli-
ability, helping to allow multiple use of common designs and programs, and help-

ing to make it easier to modify programs. {Hierarchical Decomposition }

2. PP37/(ii}: Another advantage to be achieved through the reduction of complexity by funec-
‘tional decomposition is that maiﬁtainability is enhanced. However, this benefit
arises when decomposition is carried out in the appropriate way. {Functional

Decomposition}

53

3. PP157/(iv):

4. PP416/(v):

5. PP403/(v}:

6. PP77/(i):

The use of information hiding as a design criteria provides greatest benefits when
modifications are required during testing and later, during software maintenance.

{Information Hiding}

Stepwise refinement is a design strategy that seeks to implant ease of understand-
ing, and ease of maintenance and modification into the program text. {Stepwise

Refinement}

Structured programming (SP) uses only three forms (sequence, choice and itera-
ﬁon). Any programming calculation can be programmed using these forms. And
when only these forms are used, the resulting program is easily understandable to
programmers seeking it for the first time. There are fewer intricacies and
“clevernesses” to be puzzled through. Thus maintenance personnel can discover

quickly which portions of the program require maintenance or modification.

{Structured Programming}

A good design document is not only essential for writing the program, but also for

the maintenance of the program over time. {Documentation}

54

CORRECTNESS

Achieved by:
(a) Hierarchical Decomposition {*)
(b) Stepwise Refinement (*)
{c) Structured Progfamming (*)

(d) Life-cycle verification (¥*)

References:

(i) Freeman, P. (1976), “Software Reliability and Design: A Survey,” In: P. Freeman and A. L.
Wasserman (eds.), Tutorial on Software Design T echniques, IJEEE Computer Society
Press, Long Beach, CA.

(ii) Bergland, G.D. and R.D. Gordon (1981), “Software Design Strategies,” IEFE Compsac, pp
' 79-92.

(iii) Fairley, R.P. (1985), Software Engineering Concepts, McGraw-Hill, New York, NY.

NOTES

1. PP105/(i): Construct programming is a term applied to any programming method that
attempts to produce correct programs without the usual testing and debugging
phases. Structured programming, top-down programming and stepwise refinement
are all constructive approaches that result in programs that are substantially
more correct than ones produced in less organized ways. {Structured Program-

ming, Hierarchical Decomposition, Stepwise Refinement}

2. PP80/(ii: The three basic constructs (sequence, iteration and selection} form the basis for

writing more understandable, correct programs. {Structured Programming}

3. PP267/(iii): Life-cycle verification activity helps assess and improve the quality of the work
products generated during development and modification of software. Quality

attributes of interest include correctness, reliability, usefulness, usability, effi-

A5

clency, conformance to standards and overall cost effectiveness. {Life-cycle Verifi-

cation}

56

REUSABILITY

Achieved by:
(a) Hierarchical Decomposition (*)
(b) Functional Decomposition (*)
(c) Information Hiding (*)

{d) Documentation (*)

References:
(i) Stevens, W.P. (1981), Using Structured Design, John Wiley, New York.

(ii) Ross, D.T., J.B. Goodenough and C.A. Irvine (1875}, “Software Engineering: Process, Princi-
ples and Goals,” IEEE Computer, Vol. 8, No. 5, pp 17-27.

(iii) Lanergrn, R.G. and D.K. Dugan (1981), “Software Engineering with Reusable Designs and
Code,” IEEE Compcon Digest of Papers, Fall Conference, pp. 296-303.

(iv) Arthur, L.J. (1985), Measuring Programmer Productivity and Software Quality, John Wiley,
New York, NY.

(v} Peters. L.J. (1981), Software Design: Methods & Techniques, Yourdon Press, New York, NY.

(vi) Freeman, P. (1983), “Reusable Software Engineering: Concepts and Research Directions,” In:
P. Freeman and A.l. Wasserman (eds), Tutorial on Software Design T echniques, IEEE
Computer Society Press, Siiver Spring, MD. '

{vii} Ramamoorthy, C.V., A. Prakash, W. Tsal and Y. Usuda (1984), “Software Engineering:
Problems and Perspectives,” IEEE Computer, Vol. 17, No. 10, pp. 191-210.

NOTES

- 1. PP21/(iii): In general, hierarchical decomposition is cited as helping to improve software reli-
ability, helping to allow multiple use of common designs and programs, and help-

~ing to make it easier to modify programs. {Hierarchical Decomposition}

2. PP199/(i): Documentation can benefit from increased flexibility, (rejusability and easier

maintenance. {Documentation}

57

3. PP296/(iii):

4. PP138/(iv):

5. PP180/(v):

6. PP71/(vi):

Techniques of functional modularity are employed to prepare modules for use in

multiple applications. {Functional Decomposition }

Reusability is a function of modularity, self-documentation. Modularity provides a
structure of highly independent modules. Typically single-function, well-
structured modules possessing functional strength and data coupling are reusable.

{Documentation, Functional Decomposition, Hierarchical Decomposition}

Self-documentation helps explain the function of the software. For any software to

be reusable, it must be documented. {Documentation}

The resulting modules (using information hiding) would be simple, reusable, and

easier to test, integrate, and maintain. {Information Hiding}

Reusability is enhanced by documenting the system adequately. As the range and
extent of computer applications rapidly increases, a simple way to facilitate their
construction is by providing some well-documented models of existing generic sys-

tems. {Documentation}

7. PP204/(vii):Standardization of software resources is nhecessary to permit engineers to design

the target system for reusability. It is also more important, however, to standard-
ize the interface than the programming styles or codes. Once the interface is fixed
we can ignore all the details inside each module, according to Parnas’ principle of

information hiding. {Information Hiding}

o8

TESTABILITY

Achieved by:
(a) Hierarchical Decomposition (*)
(b) Functional Decomposition (*)
(c) Information Hiding (*)
(d) Stepwise Refinement (*)
{e) Structured Programming (*}

(f} Life-cycle Verification (*)

References:

(i} De Marco, Tom (1979}, Concise Notes on Software Engineering, Yourdon Press, New York,
NY.

(if) Pressman, R.S. (1982), Software Engineering: A Practitioner’s Approach, McGraw-Hill, New
York, NY.

(iti) Fairley, R.P. (1985), Software Engineering Concepts, McGraw-Hill, New York, NY,

(iv) Lanergan, R.G. and D.K. Dugan (1981), “Software Engineering with Reusable Designs and
Code,” IEEE Compcon Digest of Papers, Fall Conference, pp. 296-303.

(v) Basili V.R. and A.J. Turner (1975), “Iterative Enhancement: A Practical Technique for

Software Development,” IEEE Transactions on Software Engineering, VOl. SE-1, No. 4,
pp. 390-396,

NOTES

1. PP157/(ii): The use of information hiding as a design criteria provides greatest benefits when
modifications are required during testing and later, during maintenance. {Infor-

mation Hiding}

2. PP39/(i) Boehm, Jacopini, Dijkstra and Warnier introduced structured coding to describe
the idea of building programs using limited control structures in order to enhance

readability and ease of testing. {Structured Programming}

59

3. PP144/(iii):

4. PP267 /(iii):

5. PP300/(iv):

6. PP390/(v):

A hierarchical structure isolates software components and promotes ease of under-
standing, implementation, debugging, testing, integration and modification of a

system. {Hierarchical Decomposition}

Life-cycle verification activity helps assess and improve the quality of the work
products generated during development and modification of software. Quality
attributes of interest include correctness, reliability, usefulness, usability, effi-
ciency, conformance to standards and overall cost effectiveness. {Life-cycle Verifi-

cation }

Functional modularity facilitates walk-throughs, testing, debugging and mainte-

nance activities. {Functional Decomposition}

Iterative enhancement is a practical means of applying stepwise refinement. This
technique as a methodology for software development facilitates the achievement
of modifiability and reliability.

A major component of the iterative process is the analysis phase that is performed
ot each successive implementation. Specific topics of analysis include such items
as the structure, modularity, modifiability, usability, reltability and efficiency of
the current implementation as well as an asse‘ssment.of the achievement of the

goals of the project. {Stepwise Refinement}

60

RELIABILITY

Achieved by:
(2) Hierarchical Decomposition (*)
(b} Information Hiding (*)
(c) Stepwise Refinement (*)

(d) Structured Programming (*)

References:

(i) Liskov, B.H. (1976), “A Design Methodology for Reliable Software Systems,” In: P. Freeman
and A.I. Wasserman (eds.), Tutorial on Software Design Technigues, IEEE Computer
Society Press, Long Beach, CA.

(ii) Baker, F.T. (1978), “Structured Programming in a Production Programming environment,”
In: C.V. Ramamoorthy and R.T. Yeh (eds.), Tutorial: Software Methodology, IEEE Com-
puter Society Press, Long Beach, CA.

(ili) Ross, D.T., J.B. Goodenough and C.A. Irvine (1875), “Software Engineering: Process, Princi-
ples and Goals,” IEEE Compuler, Vol. 8, No. 5, pp 17-27.

(iv) Basili V.R. and A.J. Turner (1975), “Iterative Enhancement: A Practical Technique for
Software Development,” IEEE Transaciions on Software Engineering, VOI. SE-1, No. 4,
pp. 390-396.

(v) Dietel, HM. (1984), An Introduction to Operating Systems, Addison-Wesley, Reading, MA.

NOTES

1. PP393/(ii): When carried to its fullest extent, top-down development has greater (better)
effects on reliability than any other component of the methodology. {Hierarchical

Decomposition}

2. PP21/(iii}: In general, hierarchical decomposition is cited as helping to improve software reli-
ability, helping to allow multiple use of common designs and programs, and help-

ing to make it easier to modify programs. {Hierarchical Decomposition}

3. PP82/(i): Structured Programming is a programining discipline which was introduced with

61

reliability in mind. {Structured Programming}

4. PP390/(iv): Iterative enhancement is a practical means of applying stepwise refinement. This
technique as a methodology for software development facilitates the achievement

of modifiability and reliability. {Stepwise Refinement}

5. PPIO3/(V): Information hiding is a system structuring technique that greatly facilitates the

development of more reliable software systems. {Reliability}

62

PORTABILITY

Achieved by:

References:

(a} Funetional Decomposition (*)

(b} Documentation (*)

(i) Arthur, L.J. (1985), Measuring Programmer Productivity and Softwdre Quality, John Wiley,
New York, NY.

(ii} Stern, M. (1978), “Some Experience in Building Portable Software,” Proc. 9rd International
Conference on Software Engineering, Atlanta, GA, pp. 327-332.

1. PP123/(i):

2. PP332/(ii):

NOTES

Port';a,bilit:y 1s a function of five underlying metrics; generality, hardware indepen-
dence, modularity, self-documentation, and software system independence.
Modularity provides a structure of highly independent modules. .Independent
modules are less likely to have input/output statements that are one of the banes
of portability.

A program with good informative comments will further improve the portability.
The person porting the code probably has littie knowledge of the original applica-
tion development, but does know the new machine. Clear, self—documenti.ng code
and good comments will speed the transfer of software from ope machine to

another. {Functional Decomposition, Documentation}

One class of portability questions relates to the installation, maintenance, and
portation of the product, rather than to its internal functions. One such problem‘
relates to the object module format, another question relates to the actual instal-
lation procedur.e. The finalzsystem dependent component of the program is its

operating documentation. {Documentation}

63

Appendix 3

LINKAGES BETWEEN PRINCIPLES & ATTRIBUTES

Principles and attributes and how they are related

In the following document an (*) against an attribute indicates identification of reference for the linkage.

64

HIERARCHICAL DECOMPOSITION

Induces:
(a) Coupling (*)
(b) Cohesion (*)
(c) Complexity (*)
(d) Ease of Change (¥*)
References:

(i) Pressman, R.S. (1982), Software Engineering: A Practitioner’s Approach, McGraw-Hill, New
York, NY,

(ii) Fairley, R.P. (1985) Software Engineering Concepts, McGraw-Hill, New York, NY.

(iii) Ross, D.T;, J.B. Goodenough and C.A. Irvine (1975), “Software Engineering: Process, Princi-
ples and Goals,” IEEE Computer, Vol. 8, No. 5, pp 17-27.

(iv) Yourdon, E. and L.L. Constantine (1979), Structured Design, Prentice-Hall, Englewood Cliffs,
NJ. '

NOTES

1. PP158/(i): The concept of module independence is the direct outgrowth of modularity and
the concepts of abstraction and information hiding.
Independence is measured using two qualitative criteria: cohesion and coupling.

{Coupling, Cohesion}

2. PP144/(ii): Hierarchical decomposition promotes ease of understanding, implementation,

modification. {Ease of Change}

3. PP21 /(iii.): In general, hierarchical decomposition is cited as helping to improve software reli-
ability, helping to allow multiple use of common designs and programs, and help-

ing to make it easier to modify programs. {Ease of Change}

A5

66

FUNCTIONAL DECOM:POSITION

Induces:

(a) Coupling (*)

(b) Cohesion (*)

(c) Complexity (*)

(d) Ease of Change (*)
References:

(1) Pressman, R.§. (1982), Software Engineering: 4 Practitioner ’s Approach, McGraw—HiH, New
k, NY.

(iv) Parnas, DI, (1972), “On the Criteria to be Used in Decomposing Systems into Modules,
Communications of the ACM, Vol. 15 No. 5, May 1972, pp. 1053-1058.

2. PP158/(1'):' The concept, of module independence s the direct outgrowth of modularity ang

pling, Cohesion}

67

two independent parts, complexity is reduced dramatically. {Complexity}

4. PP1053/(iv): The benefiis expected of modular programming (functional decomposition) are:
{1) managerial- development time should be shortened because separate groups
would work on each moduje with little need for communication; (2) product
flexibility- it should be possible to make drastic changes to one module without

a'need to change others. {Ease of change}

68

INFORMATION HIDING

Induces:
(a) Coupling (*)
(b) Cohesion (*)
(¢) Complexity (*)
(d) Well-defined Interface (*)
(¢) Ease of Change (*)
Eeferences:

(1) Pressman, R.S. (1982}, Sofrware Engineering: A Practitioner’s Approach, McGraw-Hill, New
York, NY.

(ii) Gilbert, P. (1883), Software Design and Development, Science Research Associates, Chicago,
IL.

(iv) Fairley, R.P. (1985), Software Engineering Concepts, McGraw-Hill, New York, NY.

(v) Parnas, DL, (1979), “‘Designing Software for Ease of Extension and Contraction,” JEEE
Transactions on Software Engineerin , Vol. SE-5, No. 2, pp. 128-138.

(vi) Peters, L.J. (1981), Software Design: Methods & T echnigues, Yourdon Press, New York, NY.
(vii) Heninger—Britton, KA., RA. Parker and D.L. Parnas (1981), “A Procedure for Designing

Abstract Interfaces for Device Interface Modules,” Proc. 5t IEEE International Confer-
ence on Software Engz'neerz'ng, pp. 195-204,

1. PP158/(i): The concept of module independence is the direct outgrowth of modularity and

the concepts of abstraction and information hiding.

Cohesion is a natural extension of the information hiding concept. A cohesive
module performs g single task within g software Procedure, requiring .little
interaction with procedures being performed ip other parts of @ program. {Cou-
pling, Cohesion}

69

2. PPIS?/(ii): Use of mformation hiding provides greatest benefits whep modifications are

required. {Ease of Change}

3. PPISO/(iii): This hiding is akin to eliminating the least desirable types of coupling, {Coupling}
This method {information hiding) addresses rea] issues such as how to design for

¢ase of change. {Ease of Change}

4. PP141 /(iv): When a software system is designed using the information hiding approach, each
module in the system hides the internga] details of jts Processing activities and

modules communicate only through well-defined interfaces, {Well-defined Inter-

5. PP131/(v): The crucial steps are:

. Identification of the items that are likely to change. These items are termed

‘secrets”.

by the interface.

It is exactly this that the concept of information hiding, encapsulation, or abstrae.

tion is intended to do for software. {Well-defined Interface)

6. PP180/ (vi): This “hiding” is akin to elixﬁinating the least desirable .type of coupling, and treat-

7. PPlQS/(vii): Much of the complexity of embedded real-time software is associated with cop-

trolling special-purpose hardware devices. Many designers seek to reduce this

70

complexity by 1solating device characteristics ip software device interface
modules, thereby allowing most of the software to be pProgrammed withouyt

knowledge of device detajls. {Complexity}

71

STEPWISE REFINEMENT

Induces:
(2) Coupling {(*)
(b} Cohesion (*)
{e) Complexity {*}
References:

NOTES

4. PP416/ (ii): Stepwise refinement js g design strdtegy that seeks to implant ease of understand-

g, and ease of maintenance and modification into the program text. {Complex-

2. PP226/(1): The degree of modularity obtained using stepwise refinement wilj determine the

PPISS/(iii): The concept of module independence is the direct outgrowth of modularity and
the concepts of abstraction and information hiding.
Independence is measured using two qualitative critepig. cohesion and coupling.

{Coupling, Cohesion}

72

STRUCTURED PRO GRAMMING

Effect on derived attributes:

References:

(a) Complexity ()

(b} Readability (*)

(i} Gilbert, P. (1983), Software Design and Development, Science Research Associates, Chicago,
IL.

(ii) De Marco, Tom (1979), Concise Notes on software Engineering, Yourdon Press, New York,
NY.

(iii) Bates, D. (ed.) (1976), Structured Programming, Infotech International Limited, England.

5. PP403/(i):

2. PP39/(ii):

3. PP24/(iii)

NOTES

Structured programming (SP) uses only three forms (sequence, choice and Itera-
tion). Any programming calculation can be programmed using these forms, And
when only these forms are used, the fesuiting program is easily understandable to
Programmers seeking it for the first time. There are fewer intricacies and
“clevernesses® to be puzzled through. Thus maintenance personnel can discover

quickly which portions of the program require maintenance or modification.

{C‘Omplexity, Readability}

Boehm, Jacopini, Dijkstra and Warnier introduced structured coding to describe
the idea of building programs using limited control structures in order to enhance

readability and ease of testing. {Readability}

73

LIFE_CYCLE VERIFICATION

Induces:
(2) Visibility of Behavior (*)

(b) Early Error Detection (*)

References:

(i) Osterweil, L.J, JR. Brown and L.G. Stucki (1979), “ASSET: A Life Cycle Verification and
Visibility System,” The Journal of Systems and Software, Vol. 1, No. 1, pp. 77-85.

(i) Ramamoorthy, GV, (1978), “Introduction,” In: .V Ramamoorthy and Y.T. Yeh (eds.),
Tutorial: Software Methodology, IEEE: Computer Society, Long Beach, CA,

(iif) Ross, D.T., J.B. Goodenough and C.A. Irvine (1975), “Software Engineering: Process, Prinei-
ples and Goals,” IEEE Computer, Vol. 8, No. 5, pp 17-27.

(iv) Hammond, LS, DL. Murphy and MK, Smith (1978), “A System for Aralysis and Verifics-
tion of Software Design,* Proc. Compsac 1978, Chieago, IL.

(v) Hoffnagle, G.F. and W.E. Beregi (1985), ‘Automating the Software Development Process,”
IBM Systems Journal, Vol. 24, No. 2, pp. 102-120.

NOTES

1. PP77/(i): Visibility is greatly enhanced by applying verification techniques throughout life

cycle. {Visibility of Behavior}

2. PP3/(ii): Because 3 methodology demands critical analysis at each phase of the develop-
ment, 1t reduces the amount of effort needed for testing and validation, and
reduces the errors ip problem definition which provoke g multiplicity of errors in

the implementation. {Early Error Detection}

3. PP23/(iii): Confirmability (Life-Cyele Verification)- Confirmability is a principle that directs
attention to methods {or finding out whether stated goals have been achieved,
Applied to design issues, confirmability refers to the structuring of a system so it

is readily tested. It must be possible to stimulate the constructed system in g

74

i
%"
T

4. PP42/(iv).

controlled manner so its Fesponse can be evaluated for correctness. Applied to
notational matters, confirmability means that a notation should require explicit
specification of constraints that affect the correctness of 3 design or implementa-
tion (e.g., data declarations that specify range of values and units of valne as well
as mode of representation). Applied to the practice of software engineering, confir-
mability refers to the use of such methods as structured walk-throughs of designs,
egoless programming, .and other methods that help to ensure that nothing has

been overlooked.

Verification and testing should not be viewed as g, development phase, but rather

as control activities occuring during each development phase.

5. PP110/(v): Continuous verification ensures that errors are found early and at least cost.

{Early Error Detection}

75

DOCUMENTATION

Achieves:
(a) Reduced Complexity (*}
(b) Improved Readability (*)
(c) Improves Ease of Change (*)
(d) Traceability (*)

References:

(i) Bates, D. (ed.) (1977), Software Engineering T echnigues, Infotech International Limited, Eng-
iand.

(ii) Gilbert, P.{1983), Software Design and Development, Science Research Associates, Chicago,
IL.

(i) Cave, W.C. and G.W. Maymon (1984), Software Life-cyele Management, Macmillan, New
York, NY.
(iv} Horowitz, E. and R.C, Williamson (1986), “SODOS: A Software Documentation Support

Environment - Its Definition®, JEEE T ransactions on Software Engineering, Vol, SE-12,
No. 8, pp. 849-859.

NOTES

1. PP18/(i): The whole system must be fully recorded on paper, so that each decision taken in
the development can be traced to its reasons, and every statement in the fina)
code can be traged to 3 corresponding element in the problem specification. {Tra-

ceability}

2. PP18/(ii}: Documentation should include features to aid debugging and planned changes or

extensions. {Ease of Change}

3. PP68/(iti): Documentation provides a clear understanding bebween user and developer about
what the system will do; and between designers and programmers about what the

program modules will do. {Complexity, Readabilitjr}

76

4. PP849/(iv): The advantage of documentation js that it permits traceability through all phases

of the software life cycle. {Traceability}.

i
_ |
77 : |

Appendix 4

Software Engineering Attributes
and

Their Related Assessment Factors

78

COUPLING.

Influenced by:
(a) Use of global variables (-)
(b) Use of structured data types as parameters (-)
(¢) Use of switches as parameters {-)
{d) Use of parameters {-)
(e) Use of parameterless procedure calls (-)
(f) Types of parameters- control vs data
(1) Control (-}
(2) Data (+)
(g) Multiple entry points in a routine {-)
(h) Fan-in to a routine {-)

(i} #Goto’s & use of Goto’s (=)

'COHESION.

Influenced by:
(2) Use of switches as parameters (-)
(b) Use of cont;'ol structures ()
(c) Maultiple entry points in a routine {-)
(d) Fan-in to & routine {+}
(e) Fan out (-)

{f} Modularization (+)

79

COMPLEXITY.

Influenced by:

(a) Use of structured data types as variables (+)

(b) Use of control structures (+)

(¢) Use of “excessive” nesting of control structures (-)
(d) “Excessive” use of control structures {-)

(e) Use of dynamic structures (-)

(f) Use of meaningful namés for routines, variables (+)
() Multiple exit points from loops (-}

(h) Multiple exit points from routines {-)

(i} Fan out (-}

(5) # Goto’s (.

(k) Use of recursive code (-}

(1) Use of negative/compound boolean expressions (-)

{m) Use of embedded alternate language ()

(n) Use of code indentation (+)

(0) Use of “excessive® code indentation)
{p) Length of routine/module (-)

(q) Total program length (-)

{r) Modularization (+)

(s) Use of “excessive® number of routines (-)
(t) Use of block comments (+)

(u) Use of comments (+)

v) Use of “excessive® # single line comments in line (-
E

- (w) Use of comments consistent with code functions (+)

(x) Completeness/Accuracy of documentation {(+)

80

WELL-DEFINED INTERFACE.

Influenced by:
(a) Use of global variables {-)
(b} Use of structured data types as parameters (+)
(¢) Use of “excessive” # parameters (-)

(d) Use of parameterless procedure calls (-)

READABILITY.

Influenced by:
{a) Use of control structures (+)
(b) Kse of symbolic constants (+)
(¢) Use of special characters (+)
(d) Use of meaningful names for routines, variables {-+)
(e) Multiple exit points from loops ()
(f) Multiple exit points from routines (-}
(g) # Goto’s & use of goto’s (-)
(k) Use of embedded alternate laqua,ge (-)
(i) Use of code indentation (+)
(i} Use of ‘excessive” code indentation (-)
(k) TLOC > ELOC (+)
(1) Length of routine ()
(m) Use of block comments (+)
(n) Use of comments {+)
- {0} Use of “excessive® # single line comments in line (-)
(p} Use of comments consistent with code functions {+)
(q) Grammatically correct comments/spellings {+)

81

(r) Completeness/Accuracy of documentation (-+)
(s) Use of “excessive” nesting of control structures (-)

(t} Use of parentheses around conditions ()

EASE OF CHANGE.

Influenced by:

(2} Use of global variables ()

(b) Use of parameters (-)

{¢} Use of dynamic structures (+)
(d) Use of symbolic constants (+)
{e) Fan out (-)

(f) Modularization (-+)

(g) Use of “sandwiching’ (+)

() Completeness/Accuracy of documentation ()

TRACEABILITY. i

Influenced by:

() Use of comments referencing project documentation (+)
(b} Use of comments referencing “who called me” (+)
(c) Consistency in use of variable names in code & documentation (+)

(d) Organizational consistency between code and documentation {+)

82

VISIBILITY OF BEHAVIOR.

Influenced by:
(a) Certification levels in “comments” (+)
(b) Awareness of validation & verification (+)
(c) Procedures of validation & verification (-+)
(d) Enforcement of validation & verification {+)

(e) Accessibility to results of validation & verification {+)

EARLY ERROR DETECTION.

Influenced by:
(a) Certification levels in “comments® (+)
(b) Awareness of validation & verification (+)
(¢) Procedures of validation & verification (+)
(d) Enforcement of validation & verification (+)

(e) Accessibility to results of validation & verification (+)

83

A

Appendix 5

ASSESSMENT FACTORS

The product attributes to which they are related and why

84

USE OF GLOBAL VARIABLES

Affect:
(a) Coupling (-}
(b) Well-defined Interface {-)
(c) Ease of Change {-)
References:

(i) Yourdon, E. and L. L. Constantine (1979), Structured Design, Prentice Hall, New Jersey.

(if) Troy, D.A. and S.H. Zweben (1981), “Measuring the Quality of Structured Design,” The Jour-
' nal of Systems and Software, Vol. 2, pp. 113-120,

(iii) Dunsmore, H.E. and J.D. Gannon (1978), “Programming Factors - Language Features that
Help Explain Programming Complexity,” Communications of the ACM, Vol. 21, pp 554-
560.

(iv) Page-Jones, M. (1980), The Practical Guide to Structured Design, Yourdon Press, New York.

NOTES

1. PP98/(i): Whenever two or more modules interact with a common data environment, those
modules are said to be common-environment coupled. Each pair of modules
which interacts with the common environment is coupled- regardless of the direc-

tion of communication or the form of reference. {Coupling}

2. PP115/(ii): Common environments increase level of coupling in the design. {Coupling}

3. PP556/(iti): Data Environment Ratio: The number of global variables divided by the total

number of variables (including parameters). {Well-defined Interf ace}

4. PP111/(iv}): Common Coupling

a} A bug in any module using a global area may show up in any other module

using that global area because global data is not protected. {Coupiing}

85

It is difficult to find what modules must be changed if a piece of {global}

data is changed, e.g. if a record in global area is changed from 96 bytes to

112 bytes, several modules will be affected. But which? You must check

every module in the system. {Ease of Change}

86

USE OF STRUCTURED DATA TYPES AS PARAMETERS

Affects:
(a) Coupling {-)

(b) Well-defined Interface (+)

References:

(i) Troy, D.A. and S.H. Zweben (1981), “Measuring the Quality of Structured Design,” The Jour-
nal of Systems and Software, Vol. 2, pp. 113-120.

(ii) Lohse, J.B. and S.H. Zweben (1984), “Experimental Evaluation of Software Design Principles:

An Investigation into the Effect of Moduie Coupling on the system and Modifiability,?
Journal of Systems and Software, Vol. 4, pp 301-308.

NOTES

1. PP115/(i): Coupling also increases as the extraneous information irrelevant to a module’s

task is present in the interface. {Coupling, Well-defined Interface}

2. PP302/(ii}: A dimension of module coupling is whether simple data items or entire structures
are passed. (When a structured data type is passed, it induces extra coupling as a

result of passing some data items which are not necessary for computation} {Cou-

pling}

87

USE OF STRUCTURED DATA TYPES AS VARIABLES

Affects:
(a) Complexity (+)
References:
(i) Conway, R., D. Gries and E.C. Zimmerman (1976), A Primer on Pascal, Winthrop Computer

Systems Series, Cambridge, MA.

NOTES

1. PP215/(i): It takes a little longer to write such (data structures as variables) but they are
much clearer to the reader. Both the names and the grouping emphasize the rela-

tionships between variables. {Complexity}

88

USE OF SWITCHES AS PARAMETERS

Affects:
(a) Coupling (-)

(b) Cohesion (-)

References:

(i) De Marco, T. (1978), Structured Analysis and System Specification, Yourdon Press, New York.

NOTES

1. PP309/(i): Direction of some couples is relevant, e.g. downward passing switches have a
stronger linking effect than upward passing switches. This is because downward
passing switches tend to ruin the integrity of receiving module, by driving it from

above to do things whose significance it cannot fully understand. {Coupling}

2. PP312/(i): The downward passing switch is probably the simplest test of poor cohesion.

{Cohesion}

This is because when a switch is passed downwards the controlling module is not
aware as to how and how many modules are going to be affected by this switch.
On the contrary when a switch is passed upward the passing module knows
exactly which (one) module will be affected. when =z switch is passed upward the

passing module has complete visibility of its effects.

89

USE OF PARAMETERS

Affect:
(a) Coupling {-)

(b) Ease of Change ()

References:

(i} Yourdon, E. and L. L. Constantine (1979), Structured Design, Prentice Hall, New Jersey.

(ii) Lobse, J.B. and S.H. Zweben (1984), “Experimental Evaluation of Software Design Principles:
An Investigation into the Effect of Module Coupling on the system and Modifiability,?
Journal of Systems and Software, Vol. 4, pp 301-308.

(iii) Page-Jones, M. (1980), The Practical Guide to Structured Design, Yourdon Press, New York.

(iv) Stevens, W.P. (1981), Using Structured Design, John Wiley & Sons, New York.

NOTES

1. PP86/(i): Inter modular coupling is influenced by complexity of the interface. This is
approximately equal to the number of different items being passed {not the

amount of data}- the more the items, the higher the coupling. {Coupling}
2. PP302/(ii): The size of the interface {the number of items passed) affects coupling. {Coupling}

3. PP103/(iii): The fewer the connections there are between two modules, the less chance is for
the ripple effect (a bug in one module appearing as a symptom in another}. Cou-
pling through parameters (data coupling) is necessary for communication between

two modules. It is harmless so long as its kept to 2 minimum. {Coupling}

4. PP85/(iv}: It is usual for the usability of a module to increase as the number of parameters
decreases. The decreased coupling makes the module more functional and more
independent of its environment and thus more usable elsewhere. Flexibility
increases as the number of parameters is decreased. {Coupling, Ease of Change}

90

5. PP102/(iv): Most modules should have three or fewer parameters, with ERROR and EOF

parameters included in the count.

6. PP62/(iv): The primary goal is high module independence. Parameters are the most direct
measure of the amount of independence achieved. The amount of communication
needed between modules can usually be seen only through the process of specifying

the parameters necessary to make the structure meet the specifications. {Cou-

pling}

91

USE OF “EXCESSIVE” # OF PARAMETERS

Affect:

References:

(a) Well-defined Interface (-)

(i) Stevens, W.P. (1981), Using Structured Design, John Wiley & Sons, New York.

(ii) Fairley, R.F. (1985), Software Engineering C’oncepts McGraw-Hill, New York.

1. PP102/(i):

2. PP217 /(ii):

NOTES

Most modules should have three or fewer parameters, with ERROR and EQF
parameters included in the count. Too many parameters spoil the well-delined

interface. {Well-defined Interface}

Parameters bind different arguments to a routine different invocations of tﬁe rou-
tine. Parameters should be few in number. Long, involved parameter lists result in
excessive complex routines that are difficult to understand and difficult to use;
they result from inadequate decomposition of a software system.

A routine should not have more than five formal parameters. Selection of number
five as the suggested upper bound Is not an entirely arbitrary choice. It is well
known that human beings can deal with approximately seven items or concepts at
one time.

Fewer parameters and fewer global variables improve the clarity and simplicity of
subprograms. In this regard, five is a very lenient upper bound. In practice, we

prefer no more than three or four formal parameters, {Well-defined Interface}

92

USE OF PARAMETERLESS PROCEDURE CALLS

Affect:

References:

(2) Well-defined Interface (-)

{b} Coupling (-)

(i) Prats, T.W. (1984), Programming Languages- Desi'gn and Implementation, Prentice Hall, Inc.,
Englewood Cliffs, NJ.

1. PP47/(3):

NOTES

Implicit arguments: An operation in a program ordinarily is invoked with a set of
explicit arguments. However, the operation may access other implicit arguments
through the use of global variables or other nonlocal identifier references. Com-
plete determination of all the data that may affect the result of an operation Is

often obscured by such implicit arguments. {Well-defined Interface}

93

TYPES OF PARAMETERS- CONTROL vs DATA

Affect:
(a) Coupling
Control (-)
Data (+)
References:

(i) Yourdon, E. and L. L. Constantine (1979), Structured Design, Prentice Hall, New Jersey.

(it) Troy, D.A. and S.H. Zweben (1981), “Measuring the Quality of Structured Design,” The Jour-
nal of Systems and Software, Vol. 2, pp- 113-120.

NOTES

1. PP86/(i): Data-coupled systems have lower coupling than control coupled systems. {Cou-

pling}

2. PP90/(i): The communication of data alone is necessary and sufficient for functioning sys-

tems of modules. Control communication represents a dispensable addition. {Cou-

pling}

3. PP115/(ii): Coupling increases with “increasing complexity of the interface between tWwo

modules and increases as the type of interconnection varies from data to control.

{Coupling}

94

USE OF CONTROL STRUCTURES

Affect:
(a) Cohesion ()
(b) Complexity (+)
{c) Readability (+)
References:

(i) De Marco, T. (1979), Concise Notes on Software Engineering, Yourdon Press, New York.
(it) Yourdon, E. and L. L. Constantine (1979), Structured Design, Prentice Hall, New Jersey.

(iii) Troy, D.A. and S.H. Zweben (1981), “Measuring the Quality of Structured Design,” The Jour-
nal of Systems and Software, Vol. 2, pp. 113-120.

(iv) Conte, S.D., H.E. Dunsmore and V.Y Shen (1986), Software Engineering Metrics and
Maodules, Benjamin Cummins.

(v) Shneiderman, Ben (1980}, Software Psychology, Winthrop Publishers, Cambridge, MA.

NOTES

1. PP44/(i): Readability is enhanced by reformulating the logic to make it more nearly one-
dimensional. (When a control structure is used to represent some complex logic,

that piece of code is more like a unit with all relevant code encompassed in it).

{Readability}

2. PP73 /(i): Span of control flow affects complexity. It is the number of lexically contiguous
statements one must examine before one finds a black-box section of code that has
one entry point and ome exit point. A means of reducing this span to an almost

minimal length is by organizing the logic into combinations of ‘TF-THEN-ELSE’,

‘DO-WHILE' operations. {Complexity}

3. PP115/(iii): Cohesion - The goal here is to strive for modules whose elements (statements and

95

4. PP74/(iv):

5. PP79/(v):

functions) are highly related. {Cohesion}

Nesting allows the programmer to avoid excessive compound conditionals in any
one IF or WHILE statement by taking advantage of conditions in effect. {Com-

plexity, Readability}

One component of structured programming is the use of higher-level control struc-
tures such as IF-THEN-ELSE or the DO-WHILE statements to replace lower-level
GOTO statements. The higher-level control structures have the advantageous
‘one-in, one-out’ property which restricts entry and exit, facilitating composition

and comprehension by limiting complexity. {Complexity, Readability}

96

USE OF “EXCESSIVE® NESTING OF CONTROL STRUCTURES

Affects:

(a) Opmplexity (-)
(b) Readability (-)

References:

(i) Dunsmore, HE. and J.D. Gannon (1978), “Programming Factors- Language Features that
Help Explain Programming Complexity,” Communications of the ACM, pp 554-560.

(ii) McCall, J.A., P.K. Richards and G.F. Walters (1977), “Factors in Software Quality,” RADC
TR-77-369, Vol. 1.

(iii} Conte, S.D., H.E. Dunsmore and V.Y. Shen (1986), Software Engineering Metrics and
Modules, Benjamin Cummins.

(iv) Zolnowski, J.C. and D.B. Simmons (1981), “Taking the Measure of Programming Complex-
ity,” Proc. AFIPS National Computer Conference, pp 329- 336.

(v} Weissman, L. (1974), “Psychological Complexity of Computer Programs: An Experimental
Methodology,” AgM SIGPLAN Notices, No. 6, pp. 25-36.

~ (vi) Arthur, L.J. (1984), Measuring Programmer Productivity and Software Quality, John Wiley,
New York, NY,

(vii) Perry, E. (1985), Systems Analysis, Design and Development, HRW Publishers, New York,
NY. '

NOTES
1. PP556/(i): Nesting depth affects complexity. {Complexity}

2. PP6-45/(ii}: The greater the nesting level of decisions or loops within a module, the greater the

complexity. {Complexity}

3. PP74/(iii): Excessive nesting can lead to circumstances in which it is difficult for program-
mers to comprehend what must be true for a particular statement to be reached

(Especially w.r.t. conditionals and knowing what condition is applicable). {Com-

97

4

en

(=2

~1

8

plexity}

. PP75/(i); The higher the nesting depth, the more difficult it is to assess the entrance condi-

tions. {Complexity}
. PP333/(iv}): Depth of nesting is a measure of program complexity. {Complexity}
.PP28/(v): If the nesting is too deep, the program may become unintelligible. {Complexity}

. PP153/(vi): Decision and loop nesting complexity are two more code level metrics that help
indicate the difficulty involved in testing a piece of code. Nesting levels of three or
more are difficult to understand and, therefore, to test. The maximum nesting

level should be three or perhaps four. {Complexity}

. PP399/(vii): Avoid over five levels of nested IFs; they are too hard to read. {Readability}

a8

‘EXCESSIVE” USE OF CONTROL STRUCTURES

Affects:

(a) Complexity (-}

References:

(i} Arthur, L.J. (1984), Measuring Programmer Productivity and Seftware Quality, John Wiley,
New York. '

NOTES

1. PP63/(i); Each decision (IF-THEN-ELSE, DOWHILE, DOUNTIL, REPEAT UNTIL etc.)
has at least two program paths that must be tested. Each path adds complexity to
the program. Decision Density (DD) is defined as follows:

DD = (Total # Decisions)/ ELOC

Higher the DD, higher the complexity. {Complexity}

99

USE OF DYNAMIC STRUCTURES

Affects:
(a) Ease of Change (+)

(b} Complexity (-}

References:

(i) Weissman, L. (1974), “Psychological Complexify of Computer Programs: An Experimental
Methodology,” ACM SIGPLAN Notices, No. 6, pp. 25-36.

(ii) Dale, N. and D. Orshalick (1983), Introduction to Pascal and Structured Design, D.C. Heath
and Co., Lexington, MA.
(iii) Grogono, P. (1983), Programming in Pascal, Addison-Wesley, Reading, MA.

NOTES

1. PP257/(iii): Dynamic data structures, on the other hand, change in size during the execution

of the program. {Complexity}

2. PP29/(i): Programs containing pointers are felt to be more complex than those without.

{Complexity}

3. PP426/(ii): Using dynamic variables it is possible to overcome problems of insertion and dele-

tion of components. {Ease of Change}

100

USE OF SYMBOLIC CONSTANTS

Affects:

References:

(a) Readability (+)

(b) Ease of Change (-+)

(i) Kernighan, B.W. and Plauger P.J. (1981), Software Tools in Pascal, Addison-Wesley, Reading,

MA.

(ii) Hansen, P.B. (1977), The architecture of Concurrent Programs; Prentice-Hall, Inc., Englewood
Cliffs, NJ.,

1. PP11/(i):

2. pp25/(i):

3. PP36/(i):

4. PP265/(i):

5. PP31 /(ii):

NOTES

Symbolic constants contribute a great deal to the readability of the code. {Reada-

bility }
The constant declaration will be easy to find and change. {Ease of Change}

The purpose of symbolic constants is to retain mnemonic information as much as

possible. {Readability}

“Symbolic constants® like ENDFILE tell you what a number signifies in a way
that the number itself could never do: if we had written some magic value like -1
you would not know what it meant without understanding the surrounding co-

text. {Readability}

If a constant is used several times in a program, it is useful to define its value once
and refer to it elsewhere by an identifier. This makes it easy to change the value

later if necessary. {Ease of Change}

101

USE OF SPECIAL CHARACTERS

Affects:
(a) Readability (+)
References:
(i) Pratt, T.W. (1984), Programming Languages- Design and Implementation, Prentice Hall, Inc.,

Englewood Cliffs, NJ.

NOTES

1. PP310 /(1) Variations among languages are mainly in the optional inclusion of special charac-

ters such as .’ or -’ to improve readability and in length restrictions. {Readabil-

ity}

102

USE OF PARENTHESES AROUND CONDITIONS

Affects:
(a) Readability (+)
References:
(i} Perry, Edward (1985), Systems Analysis, Design and Development, HRW Publishers, New

York, NY.

NOTES

1. PP399/(i): To improve readability, place parentheses around conditions being tested. {Reada-

bility}

103

USE OF MEANINGFUL NAMES FOR ROUTINES, VARIABLES

Affect:
{a) Readability (+)

(b} Complexity (-+)

References:

(i) Kernighan, B.W. and P.J. Plauger (1978), The Elements of Programming Style, McGraw-Hill,
New York.

(ii}) Weissman, L. (1974), “Psychological Complexity of Computer Programs: An Experimental
Methodology,” ACM SIGPLAN Notices, NO. 6, pp. 25-36.

(iii) Conway, R., D. Gries and E.C. Zimmerman (1976), A Primer on Pascal, Winthrop Com-
puter Systems Series, Cambridge, MA.

NOTES

1. PP145/(i): Meaningful names serve to aid memory of the person reading the code. {Readabil-

ity}

2. PP27/(ii): Mnemonic variable names should make programs more understandable than non-

mnemonic variables. {Readability, Complexity }

3. PP19/(iii): You should choose variable names that suggest the role the variables play in the

program. {Readability, Complexity}

104

MULTIPLE ENTRY POINTS IN A ROUTINE

Affect:

References:

(a) Coupling (-)

{b) Cohesion (-)

(i} Yourdon, E. and L. L. Constantine {1979), Structured Design, Prentice Hall, New Jersey.

(ii) Perry, E. (1985), Systems Analysis, Design and Development, HRW Publishers, New York,
NY.

1. PP8s/(i):

2. PP110/(ii):

NOTES

Use of multiple entry points guarantees that there is more than the minimum
number of interconnections for the system. {Coupling}

If 2 medule has multiple entry points, it is implied that there are pieces of code in
the module that are performing single specific functions which in turn implies that

the module is not functionally cohesive. {Cohesion}

Program modules must remain single purpose, with single entry and exit points. A
program cannot jump into the middle of a module, nor can it leave the module
except via its sole exit. (Such) Modules that perform a single logical function are

called cohesive. {Cohesion}

105

MULTIPLE EXIT POINTS FROM LOOPS

Affect:
(a) Complexity (-)
(b) Readability (-)
(¢} Cohesion (-)
References:

(i) Kernighan, B.W. and P.J. Plauger (1978)‘, The Elements of Programming Style, McGraw-Hill,
New York.

NOTES

1. Avoid multiple exits from loops. Multiple exits from a loop have an adverse effect on com-
plexity and readability because they hamper the continuity of code from the reader’s point

of view. {Complexity, Readability}

106

MULTIPLE EXIT POINTS FROM ROUTINES

Affect:

References:

(a) Complexity {-)
(b} Readability (-)

(c) Cohesion {-)

(i) Arthur, L.J. (1984), Measuring Programmer Productivity and Software Quality, John Wiley,
New York, NY.

(ii) Perry, E. (1985), Systems Analysis, Design and Development, HRW Publishers, New York,
NY.

1. PP224/(i):

2. PP110/(ii):

NOTES

Each paragraph may be analyzed for multiple exits in the form of GOTO's,
GOBACK, STOP RUN, and so on. Each of these exit points reduces the flexibility
and maintainability of the module. In-a well _structuréd program, essential com-
plexity will go to zero. By definition, a module with a single exit and no GOTOs
will have an essential complexity of zero; it can be reduced to improve flexibility

and maintainability. {Complexity, Readability}

Program modules must remain single purpose, with single entry and exit points. A
program cannot jump into the middle of a module, nor can it leave the module
except via its sole exit. (Such) Modules that perform a single logical function are

called cohesive. {Cohesion}

107

FAN-IN TO A ROUTINE

Affect:
(a) Cohesion (+)

(b) Coupling (-)

References:

(i) Troy, D.A. and S.H. Zweben (1981), ‘Measuring the Quality of Structured Desigr,” The Jour-
nal of Systems and Software, Vol. 2, pp. 113-120,

NOTES

1. PP115/(i): The following design features are measures of cohesion: {Cohesion}
a) The maximum fan-in to any box in the structure chart.
b) The average fan-in in the structure chart.
The rationale behind this probably is that more the fap-in o a routine more
specific, well-defined {single) function it is performing. In cohesion we are striving

for this attribute.

2. More who call more the coupling. {Coupling}

108

FAN-oUT

Affects:
(a) Ease of Change {-)
(b} Complexity (-)
(¢) Cohesion (-)
References-

(i) Stevens, W.P, (1981), Using Structured Design, John Wiley, New York.

(ii) Card, D.N., V.E. Church and W.W. Agresti (1986}, “An Empirical Study of Software Design
Practices,” JEEE T ransactions of Software Engineering, Vo, 12, No. 2, pp 115-139.

(iii) Miller, G.A. (1956), “The Magical Number Seven, Plus or Minus Two: some Limits op our
Capacity for Processing Information,” Psychological Review, Vol. 63, pp 81-97.

(iv) Perry, Edward (1985), Systems Analysis and Design, HRW Publishers, New York, NY.

NOTES

L PPO7/(i): Multiple calls from a module indicate g tendency toward too much control withiy

contained within the original module may need to he divided. {Ease of Change,

Complexity, Cohesion}

2. PP268/(ii): No module should call more thap 7 other modules. The formulation of this con-
cept is an adaptation of the ‘7 plus or minus two? rule (iii). {Ease of Change,

Complexity, Cohesion}

GOTO’s & USE OF GOTO’s

Affect:
{a) Complexity {-)
(b) Readability {-)
(c) Coupling (-}
References:

(i) De Marco, T. (1978), Structured Analysis and System Specification, Yourdon Press, NY.,

(ii) Dijkstra, E.W. (1968), “Go To Statement Considered Harmful,” Communications of the ACM,
Vol 11, No. 3, pp149-150.

(iti) Arthar, L.J. (1983), Programmer Productivity, John Wiley, New York.

NOTES

1. PP149/(ii): The ‘GOTQ’ statement as it stands is Just too much an invitation to make a mess

of one’s program. {Complexity, Readability}

2. PP309/(i): Use of GOTO to transfer control between modules couples them almost hope-
lessly; it makes a mockery of any attempt to deal with modules one at a fime,

since we cannot even tell under what circumstances any piece of code is entered.

{Coupling}

8. PP171/(iii): GOTOs are an unconditional branch to somewhere in the program. They violate
every law of structure ever written and make testing the module more difficult.

{Complexity, Readability}

110

USE OF RECURSIVE CODE

Affects:
(a) Complexity (-)
References:
(i} Boehm, B.W. (1984), “Software Life Cycle Factors,” In: C.R. Vick and C.V. Ramamoorthy

(eds.), Handbook of Software Engineering, Van Nostrand Rheinhold Co. NY, pp 494-518.

NOTES

1. PP498/(i): Recursive code increases complexity. {Complexity}

111

USE OF .NEGATIVE/COMPOUND BOOLEAN EXPRESSIONS

Affects:

{a) Complexity (-}

References:

(i) McCall, J.A., P.K. Richards and G.F. Walters (1977), “Factors in Software Quality,” RADC
TR-77-369, Vol 1.

i

NOTES

1. PP6-43/(i): Compound expressions involving two or more boolean operators and negation can
be avoided. These types of expressions add to the complexity of the module.

{Complexity}

112

USE OF EMBEDDED ALTERNATE LANGUAGE

Affect:
{a) Readability (-)

(b) Complexity (-)
References:
Justification:

Use of embedded alternate language forces programmer to change “logic of thought”. {Readabil-

ity}

113

USE OF CODE INDENTATION

Affect:
{a) Readability ()

{b} Complexity (+)

References:

(i) Arthur, L.J. (1984), Measuring Programmer FProductivity and Software Quality, John Wiley,
New York, NY.

(ii) Kernighan, B.W. and P.J. Plauger (1978), The Elements of Programming Style, McGraw-Hill,
New York.

NOTES

1. PP194/(i): Always indent nested code under an IF -THEN-ELSE statement to make the code

more readable. {Readability}

2. PP147/(ii): Indent to show the logical structure of the program. {Complexity, Readability}

114

“EXCESSIVE® USE OF CODE INDENTATION

Affect:
(a} Readability (-
(b) Complexity (-)
References:
Justification:

1. This can hamper readability in a deeply nested programs, as the code is severely shifted to the
right and may have to be split to accommodate margins. This would result in a hinder

ance rather than aid. {Readability, Complexity}

115

TLOC vs ELOC

Affects:

(a) Readability (+) -

References:

(i} Arthur, L.J. (1984), Measuring Programmer Productivity and Software Quality, John Wiley,
New York.

NOTES

L. PP /(i): It is possible to write an executable statement in one or more lines. In this case a
program with more lines of code is more readable than one where TLOC —
FLOC
(TLdO => Total Lines Of Code)

(ELOC => Executable Lines Of Code) {Readability}

116

LENGTH OF ROUTINE/MODULE

Affect:
{a) Complexity (-)

(b) Readability (-)

References:

- (i) Stevens, WP., G.J. Myers and L.L. Constantine (1974), “Structured Design,” IBM Systems
Journal, Vol. 13, No. 2, pp 115-13¢.

(ii) Card, D.N., V.E. Church and W.W. Agresti (1986), “An Empirical Study of Software Design
Practices,” IEEE Transactions of Software Engineering, Vol. 12, No. 2, pp 115-139.

(iii) Stevens, W.P, (.1981), Using Structured Design, John Wiley & Sons, NY.

NOTES

1. PP120/(i): A problem with large modules is understandability and readability. There is evi-
dence to the fact that a group of about 30 statements is the upper limit of what

can be mastered on the first reading listing. {Readability, Compiexity}

2. PP266/(ii): Many programming standards limit module size to one page (or 50-60 SLOC).

{Readability, Compiexity}

3. PP94/(iii): The objective of structured design is to divide programs into pieces that can be
| handled easily and independently. Psychologists have found that the standard
sheet of p‘aper. (8.5X11 in.) contains about the amounf of information people can

deal with comfortably at one time. In other words, one listing page of executable

code s a size that can usually be handled easily as a unit. {Complexity, Readabik

ity}

117

TOTAL PROGRAM LENGTH

Affects:

(a) Complexity (-)

References:

(i} Dunsmore, H.E. and J.D. Gannon (1978), “Programming Factors- Language Features that
Help Explain Programming Complexity,” Communications of the ACM, pp 554-560.

{ii) McTap, J.L. (1980), “The Complexity of an Individual Program,” Proc. AFIPS National
Computer Conference, pp 767-771.

NOTES

1. PP558/(i): Program length is important in determining the programming complexity that

will be experienced in constructing a program. {Complexity}

2. The features of program that can qualify for use in the measurement of program
complexity are:

a) the total # imperative statements

b) the average depth of ‘IF’ nesting

¢) the total # lines of source code

d) the total # entry points

e) the total # boolean variables declared

f) the average # parameters passed

g) the average # SLOC Jumped by a forward transfer of control
b} the total # lines of annotation in the source code. {Complexity}

118

MODULARIZATION

Affects:
(a) Cohesion (++)
(b) Ease of Change (+)
(c} Complexity (+)
References:

(i) Troy, D.A. and S.H. Zweben (1981), “Measuring the Quality of Structured Design,” The Jour-
nal of Systems and Software, Vol. 2, pp. 113-120.

(ii) Tausworthe, R.C. (1977), Standardized Development of Computer Software, Prentice-Hall,
Englewood Cliffs, NY.

NOTES

1. PP116/(i): The main goal of modularizing a design is to divide the software into pieces that
are functionally cohesive and independently modifiable. {Cohesion, Ease of

Change}

2. PP76/(ii): 1 have alluded to the need for modularity in program design as a means toward
organizing the program into subdivisions {which can be considered separately) o
cope with complexity during the development phase, and to cope with side effects

when later changes or corrections are made. {Complexity}

119

USE OF “EXCESSIVE* NUMBER OF ROUTINES

Affects:

{a) Complexity (-)

References:

(i) Yourdon, E. and L. L. Constantine (1979), Structured Design, Prentice Hall, New Jersey.

NOTES

1. PP73/(i): Complexity can be decreased by breaking the problem into modules, so long as
they are relatively independent. Eventually, the process of breaking pieces of the
system in smaller pieces will create more complexity than it eliminates, because of

inter-module dependencies. {Oomplexity}

120

USE OF “SANDWICHIN G*

Affects:

(a) Ease of Change {(+)

References:

(i) Parnas, D.L. (1979), *Designing Software for Ease of Extension and Contraction,” IEEE Tran-
sactions of Software Engineering, No. 3, pp 184-196. ,

LPP /(i) “Sandwiching” resolves the conflict resulted when two programs want to use each

other. {Ease of Change)

121

S s

USE OF BLOCK COMMENTS

Affects:
(a) Complexity (+)
(b) Readability (+)
References:
(i} McCracken, D.D. (1976), A Simplified Guide To Structured COBOL Programming, John
Wiley, NY.
NOTES

1. PP149/(i): We recommend sparing use of comments, since a well-written program ideally

ought to be understandable without them, but a brief description of the program

is a good idea.- {Complexity}

122

USE OF COMMENTS

Affects:
(2) Readability (+)

(b) Complexity (+)

References:

(i) Arthur, L.J. (1984), Measuring Programmer Productivity and Software Quality, John Wiley,
New York.

(ii) Weissman, L. (1974), “Psychological Complexity of Computer Programs: An Experimental
Methodology,” ACM SIGPLAN Notices, No. 6, pp. 25-36. :

(i) Conway, R., D. Gries and E.C. Zimmermar (1976), A Primer on Pascal, Winthrop Com-
puter Systems Series, Cambridge, MA.

NOTES

1. PP100/(i): Comment Density (OD) is defined as follows:

'CD = (# of Comments)/TLOC

Higher the CD, better the read.ability and less the complexity. {Readability, Complexity}

2. PP27/(ii): It is felt that comments can increase the ability to understand and maintain pro-

grams. {Complexity}

3. PP18/(iii}: Clarity and precision in defining the role (through comments) of each variable in 2
program is of vital importance in producing a correct and understandable pro-
gram. Many programming difficulties can be traced to f uzziness in the meaning of
key variables. This approach is aided by following a consistent practice of supple-

menting the declarations of each variable with comments. {Complexity}

123

USE OF “EXCESSIVE® # SINGLE LINE COMMENTS IN LINE

Affect:
(a) Readability (-)

(b) Complexity (—]

References:

(i) Arthur, L.J. {1984)

, Measuring Programmer .Productz'vity and Software Quality,
New York, NY.

John Wiley,

NOTES

-

1. PP194/(i): Use comments to clarify what the code is doing,

never to restate what is already

obvious. Too many comments can obscure the executable code, making mainte-

nance difficult, {Readability, Complexity}

124

USE OF COMMENTS CONSISTENT WITH CODE FUNCTIONS

Affect:
(2) Readability (+)

(b) Complexity (-+)

References:

(i) Kernighan, B'W, and P.J. Plauger (1978), The Elements of Programming Style, MeGraw-Hill,
New York.

if the code is well formatted, with good mnemonic identifiers and labels (if any are

needed), and a smattering of enlightening comments. {Complexity}

2. PP142/(i)}: The trouble with comments that do not accurately reflect the code is that they
may well be believed subconsciously, so the code itsell is not examined critically.

{Complexity}

125

GRAMMATICALLY CORRECT COMMENTS/SPELLINGS

Affect:

(2) Readability (-

References:

Justification:

1. Incorrect comments/spellings can lead to misunderstanding or non-understanding. {Readabil-

ity}

126

CERTIFICATION LEVELS IN ‘COMMENTS®

Affect:
(a) Visibility of Behavior (+)
(b) Early Error Detection {(+)
References:
Justification:

1. It tells one what has been tested and what has not been tested. It also provides mformation

about the location of error, thus pinpointing the segment of complex code.

127

USE OF COMMENTS REFERENCING PROJECT DOCUMENTATION

Affect:

(a) Traceability (4)

References:

Justification:

1. Traceabﬂity implies overall relationship to other routines which is enhanced by the commenis

referencing project documentation.

128

USE OF COMMENTS REFERENCING “who calied me”

Affect:

(a) Traceability (+)

References:

Justification:

1. “Who called me’ is otherwise not visible from code alone.

129

COMPLETENESS /ACCURACY OF DOCUMENTATION

Affect:
(a) Readability (+)
(b) Complexity (+)
(¢) Ease of Change (+)
References:

(i) Kernighan, B.W. and P.J. Plauger (1978), The Elements of Programming Style, McGré,w-HiH,
New York.

(ii) Tausworthe, R.C. (1977), Standardized Development of Computer Software, Prentice-Hall,
Engiewood Cliffs, NY.

NOTES
1. PP141/(i}: A comment is of zero (or negative) value if its wrong. {Readability, Complexity}

2. PP32/(ii): The documentation must describe the program elements not only so that the
design analysis and Programming functlons are exhibited clearly, but also so that
management has visibility into the technical, budgetary, and schedule implications
of system changes. It must contaln a system description that s user can
understand- function of the system, rules for use, domain of input, algorithms and
procedures that turn input into output, etc. It must tell how the program is to be
operated- the system environment, ﬁow much storage is used, how fast the pro-
gram rums, how to load and start after failure, how to keep the program main-

ta,med ete. {Complexity, Ease of Change}

130

UNCLASSIFIED

—_——
SECURITY CLASSIFICATION OF THIS PaGE Whan Dara Entersd)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

SRC-87-007 (¢S TR-87-16)

2. GOVT ACCESSION NQ.| 2, RECIPIENT'S CATALOG NUMBER

4. TITLE fand Subtitle)
Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated
Products :

5. TypPg OF REPORT & PERIOD COVERED
Firal Report
06/19/87 - /9/18/86

§. PERFORMING ORG. REPORT NUMBER

SRC 87-007 (¢S TR-87-16)

7. AUTHGRa)

James D. Arthur
Richard E. nance

8. CONTRACT GR GRANT NUMBER/a)

N60921-83-G-A165

5. PERFORMING ORGANIZATION NAME AND ADDRESS
Systems Research Center and Department of

Computer Science
Virginia Tech, Blacksburg, va 24061

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UN|T NUMBERS

1t CONTROLLING OFFICE NAME AND ADDRESS
Naval Sea Systems Command

SEA61E
Washington, DC 20362

12. REPORT DATE

15 April 1987

12. NUMBER OF PAGES

4. MONTTORING AGENGY NAME & ADDRESS{I different Trom Controiling Office)

- Naval Surface Weapons Center
Dahlgren, va 22448

1S. SECURITY CLASS, (of thia report)
Unclassified

1S5a, DECL ASS) FICATION/ DOWNGRADING
HEDULE

sC

‘16, DISTRIBUTION STATEMENT (ol thia Repory)

For internal distribution to the sponsors and to the project personnel,

18. SUPPLEMEN TARY NOTES

Linkages.

Methodology Evaluation, Software Engineering Objectives,
"Software Engineering Principles, Software Engineering Attributes,

process,

20. ABSTRACT fContinus on reverss gide if hecessary gnd tdentity by block P bar)

This research focuses op (1) assessing the perceived Strengths and weaknesses
of the current procedure for evaluating software development methodologies,
(2) basing the evaluation process on statistical indicators rather than
"surface" Properties of the product, and (3) automating the evaluation

DD ,forv 1473 eormion oF 1 nov s omsoLETE

UNCLASSIFTED

JAN 723
$/N 0102- LF. 0l4- 6801

BECURITY CLASSIFICATION OF THIS PAGE (Fhen Data Enteved)

	TR-87-16.pdf
	20050915142108837.pdf
	20050915142206953.pdf

	20050915142404196.pdf

