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(ABSTRACT)

A method has been developed which calculates two-dimensional, transonic, viscous flow in ducts.
The finite volume, time marching formulation is used to obtain steady flow solutions of the
Reynolds-averaged form of the Navier Stokes equations. The entire calculation is performed in the =

physical domain. The method is currently limited to the calculation of attached flows.

" The features of the current method can be summarized as fo\llows.»;Control volumes are chosen so
that smoothing of flow properties, typically required for stability, is not needed. Different time steps
are used in the different governing equations to improve the convergence speed of the viscous cal-
culations. A new pressure interpolation scheme is introduced which improves the shock papturing
ability of the method. A multi-volume method for pressure changes inv the bc;undary layer allows
calculations v‘ihich use very long and thin control volumes ( length/height = 1000). A special
discretization technique is also used to stabilize these calculations which use long and thin control
volumes. A special formulation of the energy equation is used to provideA improved transient be-

havior of solutions which use the full energy equation.

The method is then compared with a wide variety of test cases. The freestream Mach numbers
range from 0.075 to 2.8 in the calculations. Transonic viscous flow in a converging diverging nozzle
is calculated with the method; the Mach number up'e;trea.m of the shock is approximately 1.25. The
agreen‘iept between the cal;:ulated and measured shock strength and total pressure losses is good.
Essentially incompressible turbulent boundary layer flow in an adverse pressure gradient is calcu-

lated and the computed distribution of mean velocity and shear stress are in good agreement with



the measurements. At the other end of the Mach number range, a flat plate turbulent boundary
layer with a freestream Mach number of 2.8 is calculated using the full energy equation; the com-
puted total temperature distribution and recovery factor agree well with the measurements when a

variable Prandtl number is used through the boundary layer.
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1.0 INTRODUCTION AND LITERATURE

REVIEW

Computational Fluid Dynamics (CFD) has become a powerful tool in the past 20 years in pre-
dicting the fluid mechanics and heat transfef characteristics of certain flow fields. The advent of the
modern, high speed computer has been the major driving force for the evolution and success of
computational fluid mechanics. Because of the rapid decrease in computer costs as well as the
equally rapid increase in computer speed, the solution of many complex fluid mechanics problems
is possible on the digital computer. Computational fluid dynamics is used extensively in the aero-
space and turbomachinery industries to predict ﬁow over wings, around fuselages, through engine

inlets, as well as the flow through components within the gas turbine engine.

Computational fluid dynamics solves a fluid mechanics problem by first discretizing the flow do-
main using a grid network of some kind. The governing partial differential equations are approxi-
mated and an approximate form of the governing equations is used to soive for the discrete values
of flow properties at node points of the grid network. There are a number of ways of approximating
the governing equations (continuity, momentum, and energy) and the most common are the finite
- difference method, the finite element method, and the finite volume method. The net result of all

these methods is that the non-linear partial differential equations (governing equations) are replaced

1.0 INTRODUCTION AND LITERATURE REVIEW 1



by many simultaneous algebraic equations. These algebraic equations can then be solved for the
unknowns, which are the flow properties at the node points within the grid. This discrete solution

is an approximation of the continuous solution provided by nature.

Experimental and analytical methods are also used in the analysis of fluid mechanics problems.
Before the advent of the modern computer and modern computational algorithms, experimental
methods were used extensively and were the main téol by which fluid systems were studied. The
advantage of the experimental approach was and still is that it is capable of being the most realistic
model of the true flow situation. However, the experimental approach does have a few disadvan-
tages, namely (1) equipment is required to run the experiment (2) problems may arise in scaling the
model to the actual flow, (3) measurement difficulties may be encountered ,aﬁd (4) the cost of the

experiment may be excessive.

Analytical methods have the restrictions that they are typically limited to simple geometries and to
linear problems. They are usually restricted to linear problems because the mathematics invoived
becomes too unwieldy or the solution technique is not known. The exact solutions from analytical
methods can be used to measure the accuracy of various numerical methods. However, because
of the above restrictions on the geometry and lineatity; axialytical xﬁethods are of little practical use

in solving today’s complex engineering problems.

When compared to the previously described’ experimental and analytical methods, numerical
methods have the following advantages and disadvantages. Numerical methods have no restriction
on the linearity of the governing equations. Because of this, complicated physical situations can
be modeled. However, because of the discrete nature of the formulation, the solution accuracy is
limited because of truncation error. This truncation error is caused by the coarseness of a grid and
the type of discretization used in a particular algorithm. If the flow field is discretized using a finer
and finer grid , the truncation error will typically be reduced. However, as the grid becomes finer,
the cost of the computations may become excessive and the computer’s storage capacity may be

exceeded. Even though modern computational algorithms can be very powerful tools in the anal-
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ysis of fluid mechanics problems, there are practical limitations to the problems which can be

solved.

The numerical techniques used to solve for the flow properties within a flow field can be classified
into three main groups: they are (1) finite difference methods (2) finite element methods and (3)
finite volume methods. The dominant method presently used in fluid mechanics is the finite dif-
ference method. In the finite difference method, the continuous flow domain is “discretized” so that
the dependent variables (flow properties) are considered to exist only at discrete points or consid-
ered to the vary between grid points in a simple algebré.ic fashion (for example linearly). The gov-
erning equations in differential form are approximated by replacing the derivatives in these
equations with their approximate algebraic representations. The re.sulting algebraic equations are

then solved for the unknown flow properties using an appropriate algorithm.

The finite element method has been used extensively in the area of solid mechanics but it has not
enjoyed as much success and popularity in the fields of aerospace and turbomachinery fluid me-
chanics. In the finite element method, the flow domain is discretized into finite elements which vare
usually triangular in shape. The unknown properties are represented within each element by an
interpolating polynomial which is continuous and derivatives of the properties are also continuous
to a specified order within the element. As is typical of all finite element methods, information is
obtained on an elexhent by element basis and then this information is assembled into a global rep-
resentation of the problem. 'To solve the governing equations, ﬁnité element solution techniques

have used both the Galerkin method formulation and the variational formulation.

A popular way of solving fluid meéhaxﬁc§ problems in turbomachinery is the finite volume method.
As with the finite difference and finite element methods, there are a numbér of different approaches
which can be classified as finite volume methods. The identifying features of the finite-volume
method are that the flow domain is descretized into finite control volumes and the governing
equations in integral form are used to solve for the unknown properties at grid points within this

control volume network. When the equations of motion are written in integral form, the fluxes of

1.0 INTRODUCTION AND LITERATURE REVIEW 3



all quantities are identically conserved once the steady state is reached. If the finite difference for-
mulation is used, all quantities are not necessarily conserved. Another advantage of the finite vol-
ume method is its simplicity. Since the solution is obtained in a physical grid, no coordinate

transformations are necessary and therefore the method is more easily understood.

The finite volume method has been used extensively to solve the Euler equations for transonic flow
including flow at high Mach numbers. Potential flow methods have been used m the past for cal-
culations 6f inviscid transonic flow at Mach numbers close to one. Howevér, potential flow
methods assume that the flow is isentropic and therefore their solutions cannot satisfy the
Rankine-Hugoniot shock relations. Therefore, when the Mach nﬁmbcrs in the flow field become
greater than 1.2 to 1.3, the entropy increase across a shock wave becomes 'irnp'oriant .en_ough that
neglecting its effect would degrade the solution accuracy. For flows in which the Mach number
exceeds 1.2 to 1.3, the Euler equations or Navier Stokes should be used so that the calculations
correctly predict the shock strength and shock position within the flow field. However rather than
solving fust one second-order partial differential equation as is done for the two dimensional po-
tential methods, the Euler equation formulation must solve the continuity equation, x and y mo-
mentum. equations, and the energy equation simultaneously. The finite .Volume formulation is
preferred over the finite difference method for solving the Euler equations because of its property

of conserving mass and momentum.

When deciding upon a solution procedure which will calculate the properties at the node points in
a tré.nsonic flow field, it should be noted that ‘fhe steady form of the Euler equ#tions is elliptic in
nature when the flow is subsonic and hyperbolic m nature when the flow is supersonic. A different
algorithm is required in the subsonic and supersonic regions of the flow field. The unsteady form
of the Euler equations is always hjperbolic in nature; therefore the unsteady Euler equations may
be solved with the same algorithm for both subsonic and supersonic regions of the flow. Shock
waves in the flow field evolve as part of the solution. The solution to the steady problem is found
by marching the unsteady solution in time until it reaches a steady state. This is the time marching

method.
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In the area of external acrodynamics, the principal de§elopment of the time marching, finite voiume
method has been by A. Jameson (1). In Jameson’s method, as with all finite volume methods, the
differential form of the governing equations is converted to the integral form using some form of
Gauss’ theorem. The unsteady form of the governing equations is used in‘obtajning a steady state |
solution by taidng the asymptote of the unsteady solution. Jameson has solved the Euler equatidns
for transbnie flow over airfoils. The unsteady solution is advanced in time using an explicit 4-step
Runge-Kutta method. He discretizes the flow domain into finite qﬁadrilateral cells (see Fig. 1.1)
and places node points at the center of these cells. The properties at cell faces are determined by
taking the mean of the properties at adjacent cell centers. This discretization results in a simple
central difference scheme which must be augmented by the addition of dissipative terms which have
a magnitude determined by the local flow gradients. These dissipative terms are designed to sup-
press the tendency for odci and even point oscillations, and to lnmt the genération of wiggles and
overshoots near shock waves. Currently Jameson has limited the use of his finite volume method

to inviscid flow.

New methods whose shock capturing properties are based on flux splitting or flux vector splitting
(2) have been successfully applied to Navier-Stokes calculations over a variety of mainly external
flow configurations (3,4). These finite volume methods are naturally dissipative, 2nd order accurate
and do not add explicit artificial viscosities. They seem to be well Suited for future complex flow
problems, but more work needs to be done to @their accuracy for a wide variety of flow
problems. = |

In internal aerodynamics, McDonald (5) was the first investigator to use the time marching, finite-
volume method. McDonald’s method was limited to two-dimensions because of his choice of
control volumes. Denton (6) extended McDonald’s finite-volume method to three dimensions; the
shape of the control volume was simplified and the solution procedure for the governing equations

was modified to improve its accuracy.
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Fig, 1.1 Cell-Centered Nodes
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Versions of Denton’s method have been used in inviscid viscous interaction programs for
turbomachinery calculations. Singh (7,8) used Denton’s method to calculate the inviscid region of
- the flow. The boundary layer was calculated using an extended Pohlhausen approach for the
laminar flow. The turbulent region of the boundary layer was calculated using a method similar
to that of Green (9) (lag-entrainment). Calvert (10,11, and 12) also used Denton’s inviscid method
for turbomachinery calculations. The laminar boundary layer was calculated using a momentum
integral approach utilizing Thwaites” parameter. The turbulent boundary layer was calculated using
the method of Green et al. (13) which was further modified by East et al. (14) to handle regions

of separation. The separation region was handled using an inverse boundary layer type calculation.

Currently the principal workers using the finite volﬁme method for internal flow field calculations
are Denton(15,16,17), Van Hove(18), Holmes and Tong(19), Dawes(20) and Subramanian(21); all
use the time marching approach. The majority of these finite volume methods have solved the
Euler equations for inviscid transonic flow in turbomachinery blade passages [15,16,17,18,19 and
20]. Denton (16) has simulated the effect of the boundary layer using an inviscid-viscous interaction
method. Fluid is injected through the surface of the blades to simulate the blockage effect of the
boundary layer. An integral method is used to calculate the boundary layer. Dawes (20) has for-
mulated a method which solves the Navier Stokes equations in a transonic compressor cascade.

Each of these internal flow methods will now be discussed in more detail.

The method of Holmes and Tong (19) is based upon the scheme used by Jameson. Modifications
to the boundary conditions and the grid have been made to calculate flow in turbomachinery blade
rows. The code is capable of calculating three dimensional inviscid flow in turbomachinery blade
rows. The same fourth-order Runge Kutta scheme is used to advance the solution in time and the
node points are again cell centered. Holmes and Tong comment that because cell centered node
points are used, the accuracy of the scheme drops “precipitously” when a non-uniform grid is used.
A non-uniform grid results in control volumes of varying shapes and sizes. For inviscid calcu-
lations, a flow field can be discretized such tha@ the grid is fairly uniform. For viscous calculations,

however, highly stretched grids are réquired and the accuracy of the scheme could become suspect.
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The method of Subramanian(21) also uses Jameson’s finite-volume algorithm for inviscid

turbomachinery flow calculations.

Van Hove(18) has presented a finite-volume method for solving the Euler equations in a cylindrical
coordinate system; this method is capable of calculating three dimensional flow in axial
turbomachinery blade rows. Van Hove describes his method as a fully explicit, time marching,
corrected viscosity, finite volume metho‘d. Artificial dissipation is needed to stabilize the transient
solution, but if the artificial dissipation were retained at the steady state the solution accuracy would
be degraded. The corrected viscosity scheme is the means by which the artificial dissipation is re-
moved as the steady state solution is approached. Typically some viscosity is retained to allow the

capturing of shock waves without overshoots or undershoots.

Of the finite volume methods used for iurbomachinery calculations, the method of Dawes (20) is
the only one to solve the Navier-Stokes equations. The grid points in the computation are. cell
centered like those seen in Fig. 1.1. The properties at cell faces are determined by assuming that
the properties vary LinearIY between cell centers. This linear interpolation is contrasted with thc
method used by Jameson where properties at cell faces are the average of the cell centered proper-
ties. The interpolation is needed for these viscous calculations because of the highly stretched grids
used. A form of upwind diﬁ‘erencing is.used in the transient solution to enhance stability and is
called a defect operator. This defect operator is added to the spatial flux operator to make the
transient solution more robust and hence imprdve the stability of the method. The spatial flux
operator is the actual flux imbalance for a given time level. To improve the accuracy of the sol-
ution, this defect operator is reduced as the solution approaches a steady state. However, the
convergence rate of the method is degraded when the centered differencing is retained near the
steady state (see Fig. 1.2). The residual seen in Fig. 1.2 decreases rapidly when the defect operator
is used; however, when the defect operator becomes small the residual appears to approach a steady
state. This behavior is typical of the cell centered nodal stnicture when the artificial dissipation is
removed. In addition, separate residual steady state artificial smoothing is needed. This residual

smoothing is needed to capture shock waves and to prevent odd-even point oscillations. The
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method is implicit; however, the local time step cannot be unlimited and is typically set equal to

10 times the explicit CFL condition.

DENTON’S METHOD

The method of Denton(15,16, and 17) has been widely used in the turbomachinery area. The new
method to be discussed later in the body of this dissertation most closely resembles Denton’s
method. For this reason, his method will be discussed in more detail than the other finite volume

methods.

The control volumes are quadrilaterals cells with the node points located at the corners of the
control volumes(see Fig. 1.3). This contrasts with the cell centered node arrangement used by most
of the other workers. Properties for control volume faces are determined by taking the averages
of the properties at the node points corresponding to the ends of a control volume face. It should
be noted that Denton’s method is not restricted to two dimensions but the following description
of his method is based upon the assumption that we are dealing with a two dimensional coordinate

system.

In the previously described finite volume methods, the properties at node points are updated si-
multaneously over one time step either explicitly or implicitly. Denton updates the properties se-
quentially in the order of density, total energy per unit volume, pressure, (pu), and (pv) using the
continuity equation, energy equation, equation of state, x-momentum equation, and y-momehtum
equation respectively. Properties are used from the previous time level to evaluate all terms in the
governing equations except the updated pressure which is used in the momentum equations as soon

as it is available.
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If the true pressure at a node point were used inithe rnoment.umeqﬁations , the solution procedure
would be unstable. ,For this reason, Denton uses an effective pressure in the momentum equations.
This effective pressure is interpolated from sﬁrrounding grid points:and the interpolation‘function
does not include the actual grid point in its formulation. As the solution procedes towards a steady
state, the effective pressure is adjusted towards the actual pressure. » This adjustment is needed to
improve the accuracy of the final solution. However even at steady state, the effective pressure may
not equal the actual pressure. This correction towards the actual pressure at steady state is anofher

form of the defect operator used by Dawes.

Denton’s method is exphcxt in nature and he uses the CFL condition to detenmne allowable time
steps. The CFL condition has been the criterion used in explicit methods to determine a maximum
stable time step. Smoothing of flow properties is needed in Denton’s method to stabilize the sol-

ution. Typically this smoothing is iny‘_‘neede'd in the blade to blade direction.

Since Denton’s method does resemble the method currently under development, further details of
Denton ] method will be introduced in the body of the report  Denton’s scheme will then be

compared and contrasted w1th the current scheme. -

PRESENT CONTRIBUTION

The scope of the present work is to extend a finite-volume method like that of Denfon’s to be able
to calculate laminar or turbulent ﬂow in ducts. The method will have the capabxlxty to calculate
subsonic as well as transonic ﬂow. In the process of developing the necessary 1deas to extend
Denton’s inviscid method to viscous flow, the current work has also resulted in ixnproved expla-
nations for the inviscid methodology used by Denton. Some of the “art” used m Denton’s method

\

‘has been explained and explored.
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Some of the specific developments to be presented in the body of the report will be summarized
here. Control volumes have been introduced which remove the necessity to smooth flow properties
in the transverse direction. This development has significance in the reduction of numerical mixing
" and in the accurate modelling of viscous flows. A new pressure interpolation scheme has been de-
veloped which results in solutions for transonic flow which have vastly improved shock wave dcﬁ-
nition. In contrast to all previous time marching methods where the same tﬁne step is used in all
governing equations, different time steps are used in the continuity and momentum equatidns.

‘These time steps result in improved convergence rates for viscous flow calculations.

A method of discretization, called transverse upwind differencing, allows calculations to be made
with highly stretched control volumes which é.re used in the viscous boundary layers near walls
b(aspect ratio [length/height] greater than 1000). A multi-volume approach for pressure changes in
the boundary layer contributes to the stability of calculations with highly stretched control volumes
and variable time steps. A new updating procedure is used which updates the pressure directly from
the cdntinuity equation. All previous finite-volume methods have updated the density through the

continuity equation.

A number of test cases are used to evaluate the accuracy of the new method.  Test cases are also
used to illustrate the effects of certain features of the method. For the moment, the test cases will
just be listed. The details and purpose of each test case will be discussed later. Test cases 1 through
7 use the assumption of constant total temperature as the energy equation. Test cases 8 through

11 use the full energy equation. The test cases are

1. Laminar boundary layer flow with a zero-pressure gradient.

2. Inviscid transonic flow in Sajben’s diffuser (26).

3. Inviscid flow in a straight duct with inlet step profile in total pressure.

4. One-dimensional nozzle calculations to demonstrate the new pressure interpolation scheme.
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5. Laminar flow in a converging duct with the boundary layer on one wall only.
6. Turbulent boundary layer flow in an adverse pressure gradient approaching separation.
7. Attached boundary layer in transonic flow in Sajben’s diffuser.

8. Turbulent boundary layer in an adverse pressure gradient with an inlet freestream Mach

number of 0.55.
9. Flat plate turbulent boundary layer with a freestream Mach number of 0.95.
10. Sajben’s diffuser calculations including the energy equation.
11. Flat plate turbulent boundary layer with a freestream Mach number of 2.8.

Some of these cases will allow comparison with experimental or theoretical results (cases
1,2,4,6,7,10 and 11), some can be compared with other computational results (cases 2,4,5,6,7, and

10) and some can only be judged qualitatively (cases 3,8 and 9).
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2.0 ANALYSIS SECTION

2.1 GOVERNING EQUATIONS

* . The unsteady form of the continuity equation, the x-momentum equation, and the y-momentum
-equation, in integral form, are used to obta_.in a steady-state solution for flow through 2-dimensional
ducts by taking the limit of the unsteady solution as it approaches a steady value. The ideal gas
equation of state and the assumpﬁon of constant total temperature complete the govefning |

equations needed to solve for the unknown variables, p, 4, v, P, and T.

The unsteady continuity equation in differential form is

op -
74— Vepu=20 . (2.1.1)‘

To transform the governing equations from differential form to integral form Gauss’ theorem is

used. Gauss’ theorem says that
f[f7 - @ dVol = [ dd (2.1.2)
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where @ is an arbitrary vector and 4 is an outward normal area vector. When Gauss’ theorem is

| applied to the continuity equation (Eq. 2;1.1)», we get
1,.0P ) S cdd =0
jﬂ(w + V‘ pu) dVol = Eﬁjp dVol + ”pz_: d4 =10 . (2.1.3)

For a finite control volume where we can assign one value of density to the control volume, and

for a finite time step ,8¢, we get .

?5‘; Vol = — ﬁpu dA | ' (2.1.4)

So for one time step in our calculation, we get a change in density ,8p,

ntl _ no_ s .v.'n‘51 ‘
p p"=38p =[~ [[ou-dd] Vol (2.1.5)

where the integral is evaluated explicitly at the current time step, n. The term in the brackets is the

continuity error at time, n, therefore Eq. 2.1.5 can be rewritten as

op = (contmuxty error)

W ; (2.1.6)

Previous finite volume methods , like Denton’s (16), update the density after each time step ﬁsing
Eq. 2.1.6. When the density is updated in this way, the method will bé referred to as a density
- update method. The current method , however, updates the pressure directly from the continuity
équation for reasons which w1ll be discussed later. When the pressure is upda'ted"_ directly from the
~continuity error, we will refer to the method as a pressure update method. | In arriving at an ex-
pressioﬁ which relates the pressure change directly to the continuity error, we will assume that
changes in temperature are small in compari;son to other changes for one time step. With the above
assumption about temperature changes, we can relate changeé in pressure to changes in density

through the ideal gas equation of state, in other words,

8P = RTSp. (2.1.7)
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If at this point the alternative assumption was made that the changes in pressure were isentropic,

then
P = yRTdp . (2.1.8)

If Eq. 2.1.6 and Eq. 2.1.7 are combined we get,

= ot :
OP = ( continuity error ) RT—— Svel (2.1.9)

“In other finite volume methods, like Denton’s, the conservative form of the momentum equations
is used to update the velocities for a control volume. The unsteady conservative form .of the mo-

mentum equations is

Opu

T + Vepuu= — V PO+ V- uVu+ V. uVu (2.1.10)

where §; is the Kronecker delta. When Gauss’ theorem is applied to Eq. 2.1.10, we get

(p)" ! = (pu)" = S(py) =

[— ”puu d4 - ”PS,I d4 + H(p. Vu+pvu')dd~2— 8V 7 (2.1.11)
Another way of writing Eq. 2.1.11 is
S(pu) = ( momentum €rror ) (2.1.12)

8Vl

The velocity at the new time step , n+ 1, is found by

(pu)n+l
= pn+1

For the method introduced in the current work, a non-conservative form of the unsteady momen-

tum equations is used. The non-conservative form is used because it allows the current method to
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use different time steps for the continuity and momentum equations. The idea of different time
steps will be discussed in further detail in section 2.5 (TIME STEPS). The differences between the
non-conservative form and the conservative form of the unsteady momentum equations are asso-

ciated with the unsteady and convective terms. Specifically, we let

AeY) o p.puu=p

ou
— + pu* Vu . 1.
o pu- Vu (2.1.13)

ot

The right hand side of Eq. 2.1.13 can be rewritten as

P2t pu Pu=pLh ot 7 puu— UV -pu) - 2.1.14)

In the current method, the right hand side of Eq. 2.1.14 is used in the momentum equation.

Three observations can be made about the right hand side of Eq. 2.1.14. First, the bvelocity 1s up-
dated directly from the momentum equation, rather than being updated indirectly through (pu).
Secondly, the second term in Eq. 2.1.14 is the conservative form of the convective terms used in
Eq. 2.1.10. Finally, the third term can be recognized as the continuity error contribution to the
momentum error. This term becomes zero at a steady state because the continuity equation at a

steady state becomes
Vepu=20 . (2.1.15)

When the new unsteady and convective terms are combined with the pressure and viscous terms

and Gauss’ theorem is applied, the momentum equations in integral form are

@ - @ = 8w =

= lou 5 5
[ = [fouu-dd + @ffou-dd = [[Poy-dd + [[(uVu+ pVu) - ddiimr . (2L16)

Another way of writing Eq. 2.1.16 is
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ot
pdVol

Su = ( momentum error ) (2.1.17)

The ideal gas equation of state
P=pRT ' (2.1.18)

is used in other finite volume methods to update the pressure. In the current method the ideal gas
equation of state is used to update the density since the pressure has already been updated through
~ the continuity equation. Typically, the energy equation is simplified to the assumption of constant
total temperature

(u2 + v2)

2C,

To=T+ = constant . (2.1.19)

A more detailed explanation of the energy equation is included in a separate section (ENERGY

EQUATION Section 2.10).

To maintain stability, the properties must also be updated in the proper sequehce. In Denton’s

method, the sequence was
1.  Update the density from the continuity equation.
2. Update the pressure from the equation of state.

3. Update the (pu) and (pv) from the momentum equations ‘using the new pressure and old ve-

locities and old density.
4. Update the temperature from constant total temperature.

In the current method, the sequence is

2.0 ANALYSIS SECTION 19



1. Update the pressure from the continuity equation.

2. Update the velocities from the momentum equation. using the new pressure and old velocities

and old density.

3.  Update the density from the equation of state.

>

Update the temperature from constant total temperature.

2.2 CONTROL VOLUMES

A new control volume 'hé.s been introduced for this method. To eliminate the need for smoothing
of flow properties, there mﬁst be as many control volumes across the duct as there are nodes where
these variables are calculated. We need as many equations as unknowns. The control volumes also
need to be located so that errors in continuity and momentum can correctly inﬂuence the changes
in pressure or density and velocity without smoothing. The current control volume accomplishes
this and is shown in Fig. 2.2.1. There are no nodes located along the wall. The nodes are located
in the middle of the upstream and downstre#m faces of the control volumes. When calculating the
flux through a streamwise face of an element, the values of the flow propertieé at the node on that
" face are used. This is equivalent to using step profiles on streamwise faces. When calculating the
flux through a cross-stream face, first the properties are calculated at the corners of the element
using linear interpolation, then the flux is calculated using the average of the flow properties at the

ends of that face.

Linear profiles on the streamwise face were also investigated. The results were essentially the same

for linear and step profiles. Since step profiles are simpler they are used. :

2.0 ANALYSIS SECTION . 20



L Ll LSS L

S S L LSS LSS L L L

° o
[ ®
® ®

A S e e

Fig.

2.0 ANALYSIS SECTION

-7 7 7 7 7 7 7 7 /7 7

2.2,1 New Control Volumes

21



The control volumes used by Denton (16) Jook like those shown m Fig. 2.2.2. Fluxes of mass and
momentum through each face are found by using averages of the flow properties stored at the ends
of each faée. However, since the number of nodes (unknowns) is greéter' than the number of con-
trol volumes (equations), smoothing of flow 'pfoperties'is neeciéd in the crossﬂéw direction to re-

move the dependence of the final solution on the initial guess.

If the current method were to be extended to three dimensions the following additions would need
to be made. An example of a typical three dimensional control volume is shown in Fig. 2.2.3.
The location of control volume boundaries are specified in the input data and the control volume
surfaces are constructed frbm this information. Once the control volume boundaries are known
then the grid points are placed in the middle of the upstream and downstream faces of the control
volume. The fluxes though the transverse faces of the control volume needed for the continuity
and momentum balances are determined from interpolated properties using the nodes adjacent to
the face. Fig. 2.2.4 shows two adjacent control volumes of different sizes. The procedure for cal-
culating the properties to be used in calculating the fluxes on the common boundary (face I) can
be shown in the following way. For face I, any property, X, is determined from the average of the
property at points A and B, whé:re the values of the properties X ", and X; are determined by linearly
interpolating between the values of the property at nodes 1 and 2, and‘ between the values of the

property at nodes 3 and 4, respectively.

Assuming that face II corresponds to a solid boundary, the values of a property at points C and
D are determined by linear extrapolation using the values of the property at nodes 1 and 2, and 3
and 4; respectively. For the present calculations, only the pressure needs to be calculated at the

solid boundaries since the fluxes of mass are set equal to zero through these solid boundaries.
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2.3 DISTRIBUTION OF PROPERTIES

The properties at node points are changed in the flow field after each time step .Because the conti-
nuity and momentum equations are not satisfied for a given control volume. The amount that
properties are changed at nodes depends upon the extent to which continuity and momentum are
not satisfied, the volume of the control volume, and the time step. A decision must also be made
about which node, either upstream or downstream (I or I+ 1 in Fig. 2.3.1), these changes should
be allocated to. The criterion to be used in determining where changes in properties should be sent
is that these distributions result in reduced errors in continuity and momentum. Let us start with

the momentum equations.

In the current method, the momentum equation specifies a change in velocity for the control vol-

ume based upon the momentum error (Eq. 2.1.17),

St
pdVol

6u = ( momentum error ) (2.3.1)

This change in velocity is assigned to the downstream node of the control volume. This change

will result in a stable calculation procedure and can be explained using a simple example.

Refering to Fig. 2.3.2, if we assume that the only contribution to the momentum imbalance is
caused by the convective terms through the streamwise faces, the momentum error for that control

volume is

momentum error = (pyApuy = (Pr4 14141+ D4+ - (2.3.2)

Suppose that the net momentum error for the control volume is positive (in other words,
(P ANy > (Pregtye1Ap+1)+1). Using Eq. 2.3.1, this error will result in an increase in velocity for
the control volume and this increase will be assigned to the downstream node(I+ 1). This increase

in velocity at I+ 1 will act through Eq. 2.3.2 to reduce the momentum error for the control volume.
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Therefore sending the velocity change to the downstream node is stable. If the change in velocity
(increase) was sent to the upstream node , the momentum error would increase and this distribution

would therefore lead to an unstable procedure.

When the conservative form of the momentum equation is used by Denton (Eq. 2.1.10), the x-
momentum error results in a change in (pu) for a control volume. For the same reasons as outlined

above, the change in (pu) is also sent to the downstream node.

In the current method, the pressure is updated directly from the continuity equation (pressure up-
date method) rather than the density being updated (density update method) . The pressure change
is assigned to the upstream node (I) (see Fig. 2.3.1) to satisfy stability considerations. The change

in pressure for a control volume is related to the continuity error by

ot
oVol

3P = ( continuity error )RT (2.3.3)

Refering to Fig. 2.3.3, if the error in continuity is due only to errors in streamwise velocity and

density then the continuity error for that control volume is
continuity error = puyd; = pryUr+14r+1 - (234

If, for example, the continuity error is positive for the control volume, the pressure will increase for
the control volume (see Eq. 2.3.3) and that increase will be assigned to the upstream node. Let us
assume for clarity that the momentum equation is initially balanced. This pressure increase will
change the surface force on the face of the control volume coincident with node I and this force
will unbalance the momentum equation and introduce a momentum error for the control volume
of interest and also for the upstream control volume. This increase in pressure at node I will result
in a positive momentum error for the control volume of interest and a negative momentum error
for the upstream control volume. The velocity at node I+ 1 will increase (3u;,, ( + )) and the

velocity at node I will decrease (61, ( — )) because of these momentum errors. These changes in
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velocity reduce the error in continuity (see Eq. 2.3.4), therefore sending pressure changes upstream

is a stable procedure.

In contrast, if the pressure change was sent downstream, the momentum equation would cause the
downstream velocity to decrease. This distribution causes the continuity error to increase and this

decision would result in an unstable calculation method.

In the current method, thé density used in the continuity and momentum equatibns may be dif-
ferent than that determined from the ideal gas equation of state. The reason for using an effective
density rather than the true density is that the densit'y‘Cha'nge at a node will be of the same sign as
the pressure change since 8P o 8pRT. These density changes may act to violate the stabi]ity cri-
terion that the distribution in propertiesﬂ resulis in improved conservation of mass and momentum.
Therefore an effective density which satisfies our stability criterion must be chosen. This topic will

be discussed in more detail in section 2.4 (PRESSURE INTERPOLATION METHOD).

In the finite volume method of Denton , if the continuity error for a control volume is not zero,
the continuity equation specifies a change in density for the control volume (density update

method)

3p = (continuity error) S?/tol (2.3.6)

and the change is typically sent to the downstream node (I1+ 1) shown in Fig. 2.3.1. This distrib- ‘
ution of density results in a stable calculation procedure because of the following reasoning (refer
to Fig. 2.3.4). If, for example, the continuity errof is positive, in other words, too much mass flows
into the control volume, then the continuity equation will specify an increase in density ; Eq.
(2.3.6). 'If the density at the downstream node is increased (8p;,, ( + )) then this increase in den-
sity will act through Eq. 2.3.4 fo decrease the continuity error. So sending density changes to the

downstream node will result in a stable method. In contrast, if the density change was sent up-
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stream (3p; ( + )) then the continuity error would increase. This decision would result in an un-

stable calculation method.

When Denton uses the density update method and sends changes in density to the downstream
node, the pressure used in the momentum equations is an effective pressure which may be different
from the pressure determined from the ideal gas equation of state using the density and temperature
at that node. This is because the density change at the downét;eam node will cause a pressure
change at that node in the same sense as the density change. This pressure change, acting through
the momentum equation, will cause the velocity to changev at the downstream node and this velocity
change will contribute towards violating the stability criterion. For example, the positive continuity
error discussed above would result in an increase in pressure at node I+ 1. This pressure change
would cause the momentum equation to have a negative momentum error. The downstream ve-
locity would decrease because of this error and a decrease in velocity at node 1+ 1 (see Eq. 2.3.4)
would increase the continuity error. It is because of this interaction between density changes aﬁd
pressure changes that the density update method must use an effective pressure in the ﬁomentum
equation which will satisfy our stability criterion. This topic will be covered in more detail in sec-

tion 2.4 {PRESSURE INTERPOLATION METHOD) .

In review, the current method uses the following sequence in updating properties over one time

step.

1.  the pressure is updated through the continuity equation and the pressure change is sent to the

upstream node.

2. the u and v velocities are updated through the momentum equations using the new pressure

and the velocity changes are sent to the downstream node.

3.  the effective density is updated through the ideal gas equation of state using an interpolated

pressure.
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4. the static temperature is updated from the assumption of constant total temperature.

In the finite volume method of Denton, the following sequence is used to update propérties over

one time step.

1. the density is updated through the continuity equation and the density ch;m,gé is sent to the

downstream nodes.
2. the pressure is updated using the ideal gas equation of state and the updated density.

3.  an effective pressure is calculated from an interpolation formula using the new pressures.

>

(pu) and (pv) are updated through the momentum equatioﬁs using the new effective pressure

and changes in (pu) and (pv) are senvt‘vto the downstream nodes.
5. the static temperature is updated from the éssumption of constant total temperature.

Both the sequence in which properties are changed and the nodes to which these changes are sent

are very important in maintaining stability for these finite volume methods.

2.4 PRESSURE INTERPOLATION PROCEDURE

As part of the updating procedure used by Denton (16), an effective pressure is used in the mo-
mentum equations rather than the true thermodjnarnic pressure determined from the equation of
stéte. This effective pressure is heedéd because if the true pressﬁre is used in the momentum
equations the solution may not converge. A simple explanation for this instability'is that pressure

“changes caused by the continuity error will act through the momentum equation to cause the error

- 2.0 ANALYSIS SECTION 34



in continuity to increase rather than decrease. As discussed in the section 2.3 (DISTRIBUTION

OF PROPERTIES) this will lead to an unstable calculation method.

In the current method, the density used in the continuity and momentum equations is ani effective
density which may be different than the density obtained using the ideal gas equation of state. The
use of an effective density is required because of stability considerations. If the actual density is used
in the continuity and momentum equations, the solution procedure may be unstable as mentioned

in section 2.3 (DISTRIBUTION OF PROPERTIES).

Stability of Denton’s Method: In order to achieve stability for Denton’s scheme the pressure used
in the momentum equations is not the true pressure but an effective pressure, P, which is only
an approximation to the true pressure. The use of the effective pressure is described by Denton (16)

in the following manner. Stability is obtained by setting
Pyry= Pryy + CFp (24.1)

where CF; is a correction factor which is an approximation to the difference in pressureibetween
node points I and I+ I(see Fig. 2.4.1). The scheme is unstable if CF; is foux_ld directly from the
difference in the true pressures, even if the changes in CF; are highly damped in time. However,
several stable methods of estimating CF, 7 are possible and two of them are used by Denton. With

reference to Fig. 2.4.1, a simple estimate of the correction is

(Pr—1 = Pr+1)
* 2

CF; = (2.4.2)

where a = 1 would give a centered difference st order accurate estimate of the correction. It
should be noted that the accuracy of the solution is determined by the accuracy of the _difference
in effective pressures between adjacent grid points and hence the above estimate will give a second

order accurate solution.
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An alternative scheme is to base the correction on a parabolic interpolation between points I+ 1,

[+2, and I-1. This leads to

- G(Pl—l = Pris)

CF, 3

(2.4.3)

which is second order accurate when o = 1. In order to provide sufficient numerical damping to
capture shock waves cleanly it is found desirable to make the value of a slightly less than 1, say 0.8
- 0.9. An optional alternative is to make the,‘ value of o depend on the density gradient in such a
way that o is automatically decreased in the region of a shock wave. The expression for o , based

upon the density gradient is,

a=(l- _p_l_t.l____,f,’!;}_) o (2.4.4)

P
This method provides additional stability in regions of large gradients in properties like those seen
through a shock. The density gradient co_rrection is applied only when there is an increase in den-

sity.

Stability of the Pressure Update Method: Cﬁrr’entl'y‘the pressure update method is used and an
effective density based upon an interpolated pressure can be used to stabilize the calculation pro-
cedure. Using a three point interpolation scheme, like Eq. 2.4.3 above, one possible expression for

calculating an effective density is

(P1+1"P1~_-2)}x< ]
3 RTp 4y

Pre1 = Pp+ , (2.4.5)

This effective density will result in a stable calculation procedure for all Mach numbers but will

smear a shock wave out over several grid points.

As mentioned previously, when the effective pressure or effective density used in the governing

equations is relaxed to ideal gas, the solution procedure may become unstable. In the remainder
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of section 2.4, this instability mechanism will be investigated, the above three point interpolation
~ schemes will be shown to be stable, and a new Machhumbet dependent interpolation scheme will

be introduced which gives much better shock capturing properties than the previously used two vic‘)r v
three point interpolation schemes. A 1-D inviscid flow example will be used as a yehicie to develop

these ideas. These ideas were developed by J.G. Moore in reference 22.

1-D Flow Example: For the geometry shown in Fig. 2.4.2, we are seeking a 1-D steady flow sol-

ution which satisfies the continui"ty eqtiation
Vopu=0 (2.4.6)
aﬁd the momentum equation
'V'pz_lz_t='— VP 4.7
an& wh1ch also sati;ﬁes the ideal gés' éé@étiqn of stgfe ‘and ir.naintai'ibls‘.cdxlistant total temperature

throughout the flow field.

Continuity: In discretized or ihtegrél form, the continuity equation for a converged 1-D solution

becomes,
P11 Arer—ppdAr=0 | (24.8)

where the superscript f stands for the final converged values.

For an intermediate solution the velocity will be u and the density will be p. The differences be-
tween the current properties and the correct properties are du and dp. The continuity equation,

v Eq. 2.4.8, can be rewritten as
(Pr+1 * 3pp+ D41 + Supy )Apy — (pp + Spp)(up + dupd; = 0. (24.9)

Expanding and rearranging, Eq. 2.4.9 becomes
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Pre1dr 18Uy = prASuy + up 1 Ap 134y — A Spy =
(pIuIAI ~ Pr+1¥r+ 1A1+1) + (5p15uIAI - 8p1+ 15111_.. 1A1+1). (2.4.10)

The first two terms on the right hand side of Eq. 2.4.10 represent the continuity error and the last
two terms are of the order 4% and will be negligible when the computation is nearly converged (i.e.

0p < < pand bu < < u).

Therefore Eq. 2.4.10 can be rewritten as
Pre1Ar+ 18Uy = prASY + Up Ap 13y — UADPL = Moy + small. (24.11)

In a time marching method, the left hand side of Eq. 2.4.11 can also be used to evaluate the change
in mass flow rate for one time step where the changes in properties in Eq. 2.4.11 are for one time

step.

In the density update time marching calculation procedure (Denton), the density is updated from
the continuity error. From the integral form of the unsteady continuity equation, the density on
the downstream side of the control volume is changed according to
80141 = Moprop ]~ (2.4.12)
error, 170 lI
The density change, 8p;.,, affects the change in mass flow rate directly, but it also acts through the

ideal gas equation of state to change the pressure. This pressure change then acts through the

momentum equation to change the velocity (du;,,).

In the pressure update time marching calculation procedure (Nicholson/Moore), the pressure is
updated directly from the continuity error. The pressure is changed at the upstream node according

to
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8PI = ’herror,IStcRT/ VOII . (2.413)

This pressure change acts through the momentum equation to change the velocities, %;,, and w,
and it also acts through the ideal gas equation of state to change the density. We will now look

at the discretized form of the momentum equation for our 1-D example.

Momentum: The steady state momentum equation discretized over the control volume between
points I and I+ 1 is

(pudir ey — (pud)yuyy= — [PrygApy — Pdp — Py —4pl (24.19)

where P, is the pressure acting on the sides of the control volume. Traditionally, the pressure has

been

P; _ (P 1+12+ P D (2.4.15)
Eq. 2.4.14 can therefore be rewritten as
(Ppud)isupe; — (pud)pyy = — (Pryq — P)(Apq + 4)))2. (2.4.16)
We may rewrite Eq. 2.4.16 as,
My Upeq — My = — (Pryq — PpVoly/dx; (2.4.17)

where i1 = pud is the local mass flow rate, Vol, = 8x/(A4;,, + A4;)/2 is the volume of the control

volume and 8x; = x;,, — X, is the grid spacing for the control volume, I. Eq. 2.4.17 may be re-

written as
(g = u)(igyy + (2 + (g q = ey + /2= = (Ppyq = PpVol/dx; (24.18)
or
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m(u1+1 - u,) + il-”.‘le,.ror’l = - (P1+1 - PI)'VOII/SXI . (2419)

In the current method, the continuity error term , s, , is omitted because of the non-
conservative form of the momenfum equation that is used (Eq. 2.1.16) . Therefore, the change in
velocity on the downstfea.m side of the control volume is changed in direct proportion to the mo-
mentum error. From the unsteady form of the momentum equation, the change in velocity at the

downstream node is
5u,+1 = [ - (P1+l + 8P[+l - PI - SPI)VOII/&XI - )h(ll[+] - uI)]St/(p1+1V011) (2.4.20)

where the pressure change, 3P, has been calculated from the continuity error.

In the method used by Denton, the conservative form of the momentum equation is used to cal-

culate the change in (pu) ;and that change is
d(pu)r+1 = w4 18Py + Pr41Oupey =
[ - (PI+1 + 6PI+1 - PI - SPI) VOII/SXI - m(uI+1 - uI) - ﬁme,,o,’IISt/Voll . (2.421)

By taking the mean velocity for the control volume , %, approximately equal to the velocity on the
downstream side , ¥;,,, we may subtract u times Eq. 2.4.12 from Eq. 2.4.21 to get the change in

velocity, 61, , for one time step. The resulting equation is
duppr = [ = (P41 + 8Ppyy — Py — SPPVoli dx; — mupy — upldt/(pp4 1 Volp) (2.4.22)

~ having assumed that the same time step is used in both density and velocity updates. This is the

same result that is obtained using the Nicholson/Moore method (Eq. 2.4.20).

Let us assume that at the beginning of a time step that the momentum equation is balanced except

for the pressure change introduced through the continuity error, in other words,
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mupyy = u) = = (Pryq — PpVolj/dx;. (24.23)

The momentum balances for both methods, Eq. 2.4.20 and Eq. 2.4.22, give us

Supsq = (8P; = 8Py )—L—. (2.4.24)
(Pr+18x))

In general, in the density update (Denton) method, the time step is calculated from the CFL con-

dition, which for 1-dimensional flow is

ox
(u+ ¢

8t < | (2.4.25)

where c is the speed of sound. In the pressure update method the time step for momentum is ob-

tained from the coefficient of #,,, in the steady flow momentum equation and is
o5t = 9% (2.4.26)

A more detailed description of the time steps is presented in section 2.5 (TIME STEPS) . We may

combine these two equations by saying

5t = —0X (2.4.27)
(u + ec)
where e=1 for the density update method and e=0 for the pressure update method. Eq. 2.4.24,

which is valid for both methods becomes,

3Py — 8Ppsy)

Pr+19Ury = (4 + ec)

(2.4.28)

The changes in density and velocity can now be substituted into Eq. 2.4.11 to evaluate the change

in mass flow rate for one time step.
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Change in Continuity for One Time Step: The left hand side of Eq. 2.4.11 may be used to evaluate
the change in mass flow rate for one time step. Substituting Eq. 2.4.28 into Eq. 2.4.11 to eliminate

pou yields

©P; = 8Pr4y) _ , (OP1-y = 3Py

I+1 (u + ec),.,.l = (u + ec),

+ w1 Ap 18y — WADPL = Mopanger  (24.29)

If we now rearrange Eq. 2.4.29 to order the coefficients of the 3P’s and 3p's , we gct

.....AI

—— oP;
(u + ec); I=1

A Aq .
[ + ] 8P, = ud = 1h . 2.4.30
wtedusy (e ! g 101 C”“”_g."’"' | ( )

4

-_— 8PI‘+V1 + up A 1374
(u+ ec)pq

For stability we require that the change in mass flow rate be of the same sign as the error in mass
flow rate. Note that this stability requirement is a necessary condition for stability but it may not

be a sufficient condition to ensure stability.

Stability of the Density Update Method Using Ideal Gas: The density update method updates the
density directly from the continuity error and then the pressure is updated through the ideal gas
eqﬁation of state. For an intermediate solution where there is a continuity error only between

nodes I and I+ 1, Eq. 2.4.12 yields

8ppeq = ’he"onl'r%z,' (2.4.31a)
Sp; = 0 (24.316)
Spy—; = 0 (2431¢)

and from ideal gas, assuming temperature changes over the time step are negligible,
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= =4 3t
8Pp4q = 3pp41RT = merror,IRTV‘;ll_

0P =dp,RT =0
SPI‘I = 8p1_1RT= 0.
Substituting these results into Eq. 2.4.30, we get

— A4 RT
(u+ o)y

Since for stability we require that #4,,,, and #,,,,, have the same sign, we must have

= RT

—t u1+l]AI+l >0 .
(u + C)I+l

“If we substitute c?/y for RT into Eq. 2.4.34, we get

—c?

or
Yup(u+ ey > €
For a y of 1.4, Eq. 2.4.36 will be satisfied if
u > 0.48c
or

M > 048 .

Thus for low Mach number flows, this density update method is unstable.
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+ up 1 Ar e 1 ror Vol = Mepange,l

(2.4.324)

(2.4.32b)

(2.4.320)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37a)

(2.4.37b)
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Stability of the Pressure Update Method Using Ideal Gas: The pressure update method updates
the pressure directly from the continuity error and then the density is updated through the ideal gas

equation of state. Again, for an intermediate solution where there is a continuity error only between

nodes [ and I+ 1, Eq. 2.4.13 yields

8Py = Tityyon SURT/ Voly (2.4.38q)
Ppsy =0 (2.4.386)
5P1_1 =0 . (2.4.38C)

and from the ideal gas equation of state assuming that temperature changes over one time step are

negligible, we get

&P _ Y '
&p; = —R% = merror.IV_oc}I' (2.4.39q)
P
8preq = Prev g (2.4.39b)

. RT
Substituting these results into Eq. 2.4.30, we get

(AI"'I» + A, _ uIA, SICRT

_m W W)merror,l_m = mchange,b | (2.4.40)

For r,,,, and . to have the same sign, we will require that

Arey | A _ wd;
+ Y i’ A . 4.
U+ U RT 0 (2.4.41)

If we assume that the values of properties at node I are approximately the same as the values at

node I+ 1 and if we substitute ¢?/y for RT, Eq. 2.4.41 becomes

2 _ ‘
-5 0 (2.4.42)
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or

) 2 .
u< [ (2.4.43)

For y = 1.4, for stability to be maintained
u<12c (2.4.44q)
M<12 . | (2.4.44b)
Thus for high Mach number flows, this pressuré update method is unstable.
A Downwind Effective Pressure or an Upwind Effective Density Method: If an inconsistency in tﬁe
pressure-density relation (the ideal gas equation of stat‘e)» is introduced such that’the pressure used

in the momentum equation is offset by 1 grid point from the density used in the continuity

- equation, the equation of state may be written as

PI = p1+1RT (2.4.45)

In a density update method, the pressure used in the momentum equation, an effective pressure ,
is evaluated using properties downwind of the actual node. Similarly, in a pressure update method,
the density used in both continuity and momentum equations is evaluated using a pressure upwihd
of the actual node. For both the density and pressure update methods, the changes in density and

pressure are

DENSIT

dp;-1 =0 (2.4.46a)

: ot
8p1 = merror,l - 1—%}[— (2.4.46b)
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ot

opr+q = merror,lm (2.4.46¢)
PRESSURE
5Py = )he,,o,’;_,RT VO?{’_I‘ (2.4.46d)
8P = ’herror,IRT‘I,%tl—I' (2.4.46¢)
8P4 1 = Meppor,1+1RT Vol 1 (2.4.46/)
Eq. 2.4.30 now becomes,
- AP o -1
- ;41; )11+1 + -f'ec)I L b+ ;{x;m \ Slt/ljz) Pgrron.t = lighangey - (2447)
Arey 8tRT ron 1

(u+ ec)yy” Vol

From this equation we can see that the coefficient of m,,,,, is always positive and so the downwind
effective pressure method and the upwind effective density method both pass the simple stability
criterion (M., has the same sign as 7,,,,,; ) for all Mach numbers. It should also be noted that
the coefficients of m,,,,,;-, and m,,, ;+, are of the opposite sign to the coefficient of m,,,,,,; and it

is generally of a smaller magnitude. This further assures the stability of Eq. 2.4.45.

While the pressure-density relationship of Eq. 2.4.45 is stable, testing has shown that it results in

solutions with poor shock capturing. The calculated shock is spread over numerous grid points.
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Fig. 2.4.3 shows the calculated and theoretical pressure distributions for a 1-D calculation using

Eq. 2.4.45 with a nominal shock Mach number of 1.45.

Stability of a 3-Point Interpolation for the Effective Pressure: One of the pressure-density relations
which can be used in the density update method is a three point interpolation of the density used
in the ideal gas equation of state to obtain an effective pressure. If we assume that the temperature

is approximately uniform, we may write the interpolation formula as

Pr=(prs1 = (Pr+ ; Pr=1) oy | (2.4.48)

The change in pressure for one iteration is therefore

5 5p;—
5Py = (Bpysy — =22 + PLobypT (2.4.49)

Substituting this change of pressure into Eq. 2.4.30 and neglecting variations of A,u, and ¢ with x,

we obtain,

2 o Opr_;
—(—Ac——)(Bp _ OPr+1 + Pr 2)

(u+e) 3 3
24¢* 8prea . OPr_y o
+ (v + o) - + - = O 2}
G+ o) P ™ =3 3 )~ uddp, ange. (2.4.50)
- _ﬁ£2___ _ 8143 + dpr.
((Y(u o) )(3pr+2 —3 -t ;uASp,+I

Collecting terms of 8p and substituting the Mach number , M , for u/c, we get
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DENTON 1D EXAMPLE UPWIND DENSITY
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Fig. 2.4.3 Comparison of calculated and theoretical 1-D static

pressurg d%strlbutlopsf PW = P/?t,inlet'
theoretical; :

calculated using an upwind effective
density, Eq. 2.4.45.

-~ Grid s?aélng,'gx % 13 Pexit/Pt,inlet = 0.80.
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+ Ac/(3y(M + 1) 8pr+3

= 54c/(3y(M + 1)) Opr+2
+ Ac(T/Gy(M + 1) + M) 8ppyy
— Ac4/GYM + 1)) + M) B, (2.4.51)
+ 24/ M + 1)) 50— 1
~ Ac/Gy(M + 1)) 812
= Mihange,l -

We can see that the change in mass flow rate for the control volume between grid points I and I+1
is now dependent upon the the changes in density at 6 grid points. If there was only a mass flow
rate error for control volume (1,J) the simple test fbr stability would be satisfied. Since the coeffi-
cient of dp;,, is positive for all Mach numbers the change in mass flow rate would have the same

sign as the error in mass flow rate.

However, since the coefficients of 3p,.; and 3p,_, are also positive, a more sophisticated stability
criterion is appropriate. The stability criterion that we will apply is : the center point coefficient

must be greatef than the sum of the other positive coefficients.
3 ( centerpoint coefficient ) > ¥ ( other positive coefficients ) (2.4.52)
Applying this criterion to Eq. 2.4.51, stability requires that
Ac(T/Gy(M + 1)) + M) > 34c/(3y(M + 1)) (2.4.53)

This expression is always true, therefore Eq. 2.4.48 should be stable for all Mach numbers. The

experience of Denton and other users of his code confirms this.

Stability of the 3-Point Interpolation for the Effective Density: A similar analysis can be done for
the pressure-update effective-density method using a three point interpolation of pressure to obtain

the effective density
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(Pr+1 = Pr-7), 1

Pr+1 =[P+ 3 =T (2.4.54)
For the change in density, we get
3Py — 8P
Sppy g = (6P + OFrt1 ! 2, RIT (2.4.55)
and then substituting this change into Eq. 2.4.30, gives us
+ (A/S)( = 1M + yM3) 8P4
+ (4/S)2/M + 2yM[3) 5P,
= (4/c)(1/M + yM) OPy—y
(2.4.56)
= (d/e)(yM]3) ' 3P;_, :
+ (4/e)(yM[3) dP;_5
= Mepange, -

The center point coefficent is the coefficient of 8P, , since this is proportional to Mo, i the
pressure update method. In Eq. 2.4.56, the coefficient of 8P, is positive and greater than the sum

of the other positive coefficients; therefore Eq. 2.4.54 should be stable for all Mach numbers.

Mach Number Dependent Interpolation Formula for Effective Density: From experience, it has
been observed that when the Mach number is low, the pressure update method is stable with the
ideal gas equation of state satisfied at each grid point. Since this is the correct pres_sure-density re-
lation for ideal gases it should be used where feasible. In this section we will start with a generalized

pressure interpolation equation for the effective density

(Pr+1 ; Pr-y) az(PI+l - Pr_5). 1 (2.457)

pre1 =[P+ aPrey — P) + q 3 =7

and seek Mach number limitations at a,a, and g, using criterion (Eq. 2.4.52). Comparing equations

2.4.45 and 2.4.57, the upwind effective density. corresponds to @, = @, = a, = 0, the three point
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interpolation, Eq. 2.4.54, corresponds to @ =4, =0, a4=1 , and ideal gas to

4 = 1,4 = @ = 0. Substituting

- a ) a ) 1
Opr+1 = (1 — a)dP; + (a9 + 71 + 58P "2‘1‘5P1—1 ~ 3 0P ol (24.58)

into Eq. 2.4.30 and rearranging in terms of the coefficients of each 8P, @, a, and a, yields

N -UM  + yMay + (1M]Day + (YMI3)a)oP;

+ (2IM + YM — 2yMay — (YM[2)a; — (YM[3)a)5P;
(= UM = M + YMay = (YM/Da)8Pi—y 9= Hipange - (24.59)

(+ (yMP2)a = (1M/3)a)0P;

+ (+ (YMI3)2)5P;_3)

Let us first consider the case when ¢, = @, = 0 and find limiting values of @, From Eq. 2.4.57, it

is obvious that we should consider only va}.lues} 1n the range
0<g<1. (2.4.60)
The coefficient of 6P, is positive When
2/IM + yM — 2yMay > 0 . (2.4.61)
This gives ;1 limit on @, which is a function of the Mach number and the limit is
a < 1J(yM?) + 172 . (2.4.62)
But the coefficient of 3P,,, is positive when
- 1/M + yMay > 0, or M? > (yay) . (2.4.63)

In this region , from Eq. 2.4.52, we require that

2.0 ANALYSIS SECTION 53



2/IM + YM — 2yMay > —1/M + yMaq, v (2.4.64)
or
@ < 1(yM? + 1/3 . (2.4.65)

Valid values of a, based on these criteria are shown as a function of Mach number in Fig. 2.4.4.

Let us next consider limiting values of @, when a, and @, are zero. From Eq. 2.4.59 the coefficient

of 3P,
2IM + YM — yMayj2 > 0 | (2.4.66)
is positive for all Mach numbers in the range
0<a <1 (2.4.67)
The coefficient of 3P,_, is positive for all M and the coefficient of SP;H is positive when
— UM+ yMa;/2> 0 or M? > 2/(yay). (2.4.68)
For M2 < 2/(ya)) we then require the coefficient of 0P, to be greater than the coefficient of 6P,_,,
2/IM + yM — yMa,/2 > YMa,/2. (2.4.69)

With a, < 1, this is always satisfied. For M? > 2/(ya,) we require the coefficient of 6P, to be greater

than the sum of the coefficients of 3P;_, ahd P41,
2/IM + yM — yMa,/2 > yMa, — ||M (2.4.70)
or

a < 2/(yM*) + 23 . (2.4.71)
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STABILITY LIMITS, A1=R2=0
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Fig. 2.4.4 Acceptable values of a, as a function of Mach number
based on Eqs. 2.4.60, 2.4.62, 2.4.63, and 2.4.65
( for ¥ = 1.4).
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Thus we can have ¢, = 1 up to M2 = 6/y orup to M=2.07fory = 14. Fig. 2.4.5 shows the valid .

range of a, based on these criteria. -

We now consider combinations of @,, @, and g, In particular if
@+ a +a =1 (2.4.72)
the interpolation scheme is second order accurate. (See Appendix A.)

For Mach ‘numbers less ihan 2, g, = 1is stable. Therefore, for M < 2, we will choose

a2=

(2.4.73)
ao + al = ].
From similar stability analyses to those already given
@ < 2/(yM* - 1/3 . (2.4.74)
should be stable for M < 2.
For M > 2, we will choose
% =0
(2.4.75)
ata=1"
The stability analysis suggests that acceptable values of g, are
Ca < 04+ 36(GMD. | (2.4.76)

The stability criteria, Egs. 2.4.74 and 2.4.76, are shown on Fig. 2.4.6.
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STRABILITY LIMITS,
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Fig. 2.4.5

Acceptable values of a

1 as a function of Mach number

based on Eqs. 2.4.67, 2.4.68, 2.4.69, and 2.4.71

( for X =1.4).
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STABILITY LIMITS, RO+A1=1,R2=0; AD=0,A1+A2=1
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Fig. 2.4.6 Stability limits for a, when a, = 0 and ag + a; = 1,

and for al when ao = 0 and a1 + a2 =1,
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A set of equations for a,, @, and a,, which satisfy Eq. 2.4.72 and so give second order accurate in-
terpolation, and which satisfy Eqs. 2.4.73-2.4.76 so that they satisfy the stability criteria, have been

selected. These are:

(0.8/3)(4/M?* = 1)

%=
forM<2 { a=1-q (2.4.77)
a =0
a=0
for M >2 J a = 4M> | (2.4.78)
@ =1-a.

These Mach number dependent formulations for @, @, and @, are shown in Fig. 2.4.7. These

equations are tested in Section 3.4 where they are referred to as the M&M formula.

2.5 TIME STEPS

A unique feature of this method is the use of different time steps for the continuity and momentum
equations. Previous workers who have used explicit time marching methods have used the CFL
condition as a basis for determining allowable time steps which maintain stability. The general

form of the CFL condition for three dimensional inviscid flow is (24),

L] |v| le 1 L_ |-
o . N + 2.5.1
(8)crL [bx \/ (Sx) (5,1’)2 (82)” :I ( !

The same time step is used for both the continuity and momentum equations and typically the
governing equations are updated simultaneously rather than sequentially as is done with the current

method. The CFL condition is justified by requiring that the analytical domain of inﬂuencev'lie
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MACH NUMBER DEPENDENT R'S WITH ﬁO*H1+HZ=1

llllIIIIIIIIIIIIIIIII[III'II'I

lll'l'll]
P B B T

l]‘lllll]l

T I A I 74 B I X A _||l|a°1

A
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.80 1.60 1.80 2.00
o

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1,80 2.00 2.20 2.40 2.80 2.80 3.00

MACH

Fig. 2.4.7 M & M Mach number dependent values ( Egs. 2.4.77
and 2.4.78 ) for the coefficients in Eq. 2.4.57.
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within the numerical domain of ihﬂuence (24). The CFL condiﬁon can become very restrictive
when the grid becomes highly stretched (the 8y dimension is much less than the 3x dimension).

A highly stretched grid is needed in calculations with turbulent boundary layers.

The Denton code (16) uses a variation of the CFL condition (Eq. 2.5.1). The time steps are based
upon the following,

Stg”x.._(;s_.[)_min_

NALUN

(2.5.2)

where FT is a time factor typically between 0.2 and 0.5, 8/, is the minimum characteristic length
for a given control volume, and \/ YRT,, is a reference speed of sound based upon the inlet stag-
nation temperature. The same time step is used in the continuity and momentum equations. The
time steps can; however, be different for each control volume if only the steady-state solution ‘is
desired. If a time accurate solution is desired then the same time step must be used everywhere in

the flow and it must be based upon the control volume with the most restrictive time step.

The cﬁrrent method not only uses different time steps for each control volume but it also uses dif-
ferent time steps for the continuity equation and for the momentum equations. The advantage of
using different time steps is that for flows with thin boundary layers, the allowable momentum time
step can be significantly larger than that allowed by the CFL condition. These larger time steps
allow the boundary layer profiles to change more rapidly and enhances the convergence rate sig-
nificantly compared with a method which uses the CFL condition. To be able to have a calculation
method which uses different time steps for different equations, the usual conservative form of the
momentum equations cannot be used. The form of the momentum equations used for the current

method is

%J' Veopuu—u(Vepu)= = V-Po+ V-pVu+ V-p¥u . (2.5.3)

This is in contrast to the straight conservative form of the momentum equations which is
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dpu
ot

+ Vepuu=— V-Po+ VepVu+ V- Vi . (2.5.4)

By using Eq. 2.5.3 instead of Eq. 2.5.4, the u velocity vector is Lipdated directly from the momen-

tum error. Eq. 2.5.4 requires that you update (py) first and then calculate the new velocity from

= (u"tYpttt . (2.5.5)
The time derivative of (pu) , (gty) can be expanded, using the chain rule, as
olpy) _ Odu ap v
= P + == o (2.5.6)

The term dp/dt is also calculated from the continuity error. So to correctly update (pu) over .‘on‘ve
time step using the conservative form, Eq. 2.5.4, the same time step must be used for both the
continuity and momentum equations. However, Eq. 2.5.3 does not have that restriction. It shou‘ld
be noted that as the solution approaches a steady-state, (u( V - pu)) goes to zero, therefore Eq 2.5.3
then reduces to Eq. 2.54. In the current method, the expressions that are used to determine the

allowable time steps are; for the momentum equations

: 1
5t, < (2.5.7)
" |T|+|”eﬂ|+| 2|
p(8y)
and for continuity,
1 _
5, < » (2.5.8)
ot v
2RT] Ol 2 4| 4 |||
(Bx) (5},) RTdx RT3y

where 8¢, is the momentum time step, 3¢, is the continuity time step and v,; is an effective y-

component of velocity. The effective velocity, V7, is determined from the following equation,

_ | mass flux through north face| + |mass flux through south face|
"’ff _ 28xp

(2.5.9)
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where the north and south faces for a control volume are shown in Fig. 2.5.1. These 'tﬁne steps
are typically reduced by a factor of 2 té reflect tlr;e uncertéinty of the ‘rvlo'n-linear nature of the
equations and the non-uniformity of the grid. During the initial transients, a factor of up to 4 may
be needed. These reductions in the time Steps will be given the symbol TIMEF. In the following
two subsections, the logic behind these time steps will be presented. The time steps can be derived

based upon (1) the differential, or (2) the discretized form of the governing equations.

DIFFERENTIAL FORM

The x-momentum equation can be written in non-conservative form as

ou du ou oP o“u
KR 5.
P + pu - + Py 3 ua > (2.5.10)

assuming that viscous stresses can be represented by the simplified form shown. For stability we
require that the coefficient of the unsteady velocity be greater than the sum of the absolute value
of the coefficients which involve derivatives of the u-velocity. Let us rewrite Eq. 2.5.10 in terms
of changes du, 8t,, and the dimensions 6x, and, Sy,

du P 2 du

du ou _ _
Po, T PUEE Py T T YA T (2.5.11)

Now let us apply the above stability requirement to Eq. 2.5.11, and the result is

P_o | 0% 418V 4 |2 2.5.12
ot ox Ty (8y)2 , ( )
or in terms of &¢,,
1
8ty < . (2.5.13)
ISl + 3]+ 12
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Fig. 2.5.1
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The v-velocity used in Eq. 2.5.13 should be the effective velocity which was introduced in Eq. 2.5.9.

The time step used for the continuity equation is determined using a similar procedure, but because
of the sequential nature of the current method, extra care must be taken to quantify the interaction
bgtween the continuity and momentum equations. In the current method the pressure is updated
because of the continuity error and this new pressure is used in the momentum equation. This
pressure change must not be too large so as to upset the stability of the method. The continuity
equation can be written in differential form as |

_6_p_+ dpu + dpv

i el (2.5.14)

Expanding the derivatives using the chain rule, Eq. 2.5.14 becomes

ap du Gp v . 0p ,
— +p %+ + =0 . .5.15)
ot Pox ox p-67 VE 0 (2.5.13)

What we want to do now is to make each derivative in Eq. 2.5.15 in terms of a common variable.
Because we are using a pressure update method we will choose pressure as our common vvariable.
For our analysis we will assume that the fluid is an ideal gas and that temperature changes are small
in comparison to pressure changes over one iteration. That means that a change in density, 3p,

from one iteration to the next can be related to the change in pressure using

5 = % : | (2.5.16)

Rewriting Eq. 2.5.15 in terms of finite changés dp,du,dv, and 8¢, and finite dimensions

dx and oy ,

8 . Su. % . v .. % _. ’
—S-;c—+ x+U'6¥+p-8}7-+V-8y—'—'0. ‘ ' (2°5'17)

‘Substituting Eq. 2.5.16 into Eq. 2.5.17, we get
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1 oP , du , u_ 3JP & , v 08P _g

RT o,  Pox TR & TPy Y RT (2.5.18)

The momentum equation must be used to relate a given change in u, 3%, to a change in pressure,

OP. If the momentum equation, Eq. 2.5.11, is reduced to its steady form it becomes,

pudl. + pv-gl =88 4 0 (2.5.19)
(&)
Solving for du, and using absolute values to give conservative results,
dP .
Su = P (2.5.20)
4ol + 1]+ 12 s
P(3y)
then using Eq. 2.5.13, Eq. 2.5.20 becomes,
( )51
‘Similarly we can obtain
( )8:

Now we can substitute Eq. 2.5.21 and Eq. 2.5.22 into Eq. 2.5.18 and the resulting expression is

1 5P . PSP w 5P . p Plm  y 5P _
RT or Tt pox 1V RT o T oyl ey 4T 0. (2523)

Using the same stability requirement as was used for the momentum equations, we get

11 3t ‘u + Sty Verr 4
RT L |(8x) | + lRTBxl I(Sy | + IRTS | (;.5.2)
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which when solved for 8¢, becomes

5t, < 5 1 . (2.5.25)

Oty Im u v
+ + +
RTY| ) | + | (8y)2 | + | T5n | + | RTS [

DISCRETIZED FORM

Another way of determining the time step limitations for the continuity and momentum equations
is to analyse the discretized form of the steady momentum and continuity equations. The mo-

mentum equations will be analysed first to determine the momentum time steps.

MOMENTUM TIME STEPS: Integrating the steady flow x-momentum equation

. = -—a_P
v puu ax

+ VeuWu (2.5.26)

over the control volume shown in Fig. 2.5.2 and using Gauss’ theorem to obtain area integrals we

obtain

(fupu-dd = [P+ [[juVu-dd . (2.5.27)

- Discretizing this equation for the control volume shown in Fig. 2.5.2 and neglecting derivatives with

respect to X in the viscous terms, we obtain

(M) east, 1, g + (Ml)yest, g + Mporen,tg + (H)sounrg + (Prv,g = Pr%

B g T W) By T g -1)

[ - 5 ox =0 . (2.5.28)

The momentum fluxes, (#w),,,, and (#w),,,, can be represented as,
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Fig. 2.5.2 Typical Flux Arrangement for a Control Volume

2.0 ANALYSIS SECTION 68



(rhu)wesr = mwest x Uy (2.5.29)
and
("MW gast = Mggsy X Uty - (2.5.30)

Assuming that the grid spacing is uniform in the y-direction, the momentum fluxes J(F) . and

. (rU),,, are respectively,

()souin = 0.25 X Mgy * (Upy + upey g+ tupy—y + Uy 1) (2.5.31)
and

(Mporeh = 0-25 X Mpopy ¥ (g + Uppq g+ tpgey + e g41) (2.5.32)
Combining Egs. 2.5.28, 2.5.29, 2.5.30, 2.5.31, and 2.5.32, we get that

Meast X Up+1g F Myggy X Upg + 025 X Fpory X (upy + dpy g+ gy + ey g+1)

+0.25 X mgguun X (W g+ vy gt g gy )+ (Prery — Pry)oy

P g1 Y)Wy T Y1)
oy oy

]ax = RHS . (2.5.33)

For the converged solution, the right hand side (RHS) of Eq. 2.5.33 will be zero. For intermediate

solutions, the right hand side of Eq. 2.5.33 is equal to the momentum error.

The stability requirement to be applied to the discretized momentum equation (Eq. 2.5.33) is that
the change in velocity for node (I+ 1,J), 8u4,, , for one time step be less than the momentum error

divided by the sum of the coefficients associated with the centerpoint node (I1+ 1,J) , in other words,
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( momentum error )

du, < 2.5.34
I+1J ( sum of the coefficients of node I+ 1,J ) (2:5.349)

The coefficients associated with the velocity .., , from Eq. 2.5.33 are
3 (Coefficients) = ritggy + 0.25t15 + 0.25¢0,075 + 2;%15- . (2.5.35)

To reflect the uncertainty of the signs of the fluxes through the transverse faces, the transverse
contributions to the coefficients will be combined into a single transverse mass flux ,71; , defined

as
iy = 0.5 titgouen| + |titgorl] (2.5.36)
With this, Eq. 2.5.35 becomes

Y (Coefficients) = rhyqg + 0. 5mT + 2;1—5—— (2.5.37)

The mass flux through the east face, #,,,,, in terms of the fluid properties at the node point (1 + 1))

is,
Mogst = Pr+1,7 Ur+1,0 8 (2.5.38)

Therefore Eq. 2.5.37 can be written as,

(Coeffczents) = p1+1', Ur+g J 8_]} + 0.50 mT + 2}1—8—- (2.5.39)

To put the stability requirements of Eq. 2.5.34 in terms of time marching terminology, note that

from the above stability requirement that

momen?um error (2.5.40)
( sum of the coefficients of node I+ 1,J)

dupyy,g <
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and from time marching terminology that

_ ( momentum error ot ,
gy 1y = - s ) VO;L . (2.5.41)

Combining Eqs. 2.5.40 and 2.5.41, we get for a time marching method that

pVOII’J

8ty < (2.5.42)

( sum of the coefficients of node I+1,J)

Sﬁbstituting the value for the sum of the coefficients from Eq. 2.5.39 into Eq. 2.5.42, we get that

poxdy

<
Btm 4+ 2udx

pudy + 0.5mp 5

where Vol;; = 3x8y has been used. Simplifying Eq. 2.5.43, we get

1
w . 050y o

+
i§3c' | poxdy psy?

Sty <

(2.5.44)

Then substituting in the previously defined v, (Eq. 2.5.9), Eq. 2.5.44 becomes

. 1
0.5v
u eff 2u
r oy + 5
poy

O, <

(2.5.45)

2

which can be compared with Eq. 2.5.13 derived from the differential form of the governing

equations and is

1
Sty < . (2.5.46)
T u Ve 2|
5= ! + '“o‘ylI + ?;T
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-CONTINUITY TIME STEP: The continuity time step can also be calculated based upon the
discretized form of the momentum and continuity equations. The basic stability requirement used
in obtaining the continuity time step will be that over one time step that the change in mass flow
rate not be greater than the error in mass flow rate as defined in section 2.4. Because the degree
of complexity would be large to analyze the full form of the discretized continuity and momentum
equations for a generalized control volume, a simplified analysis will be used here whic_h analyzes
the x and y- direction . contributions to the continuity time step separately. The principle of

superposition will then be used to develop a complete expression for the continuity time step.

In the PRESSURE INTERPOLATION SECTION (2.4), the stability characteristics of various
pressure interpolation schemes were discussed. The stability of these various pressure interpolation
schemes were analyzed using the discretized form of the continuity equation and the x-momentum
equation in a 1-D example (see Fig. 2.5.3). One of the stability requirements introduced in this
analysis was that the error in mass flow rate and the change in mass flow rate as defined in that

section have the same sign.

In the pressure interpolation stability analysis, the discretized form of the steady continuity equation

was represented by Eq. 2.4.11, which is
Pre1Are 8y = prASUy + Up 1 Ape1pry — WADBPL = Meprory (2.547)

where the changes 6( ) are differences between the correct solution and the current solution. The
left hand side of this equation may also be used to evaluate the changes in net mass flow rate in
one time step if the changes 6( ‘) are changes in properties in one time stép. Over one time step,
the changes in pressure are determined from the continuity equation and the changes in velocity
are determined from the momentum eqﬁation. Changes in depsity are found through fhe ideal gas
quuation of state. For the one-dimensional example shown in F1g 2.5.3, if we are using the pres-
sure update time marching method, along with an upwind effective density, and if we assume that

only control volume (I,J) has a mass flow rate error, we can say that

2.0 ANALYSIS SECTION 72



NOILLDIS SISATYNY 0T

€L

u,Xx

I-1

Fig. 2.5.3

I I+1 I+2

1-D Geometry Used For Time Step Determination



8P} = Fitgrpor 5L,RT| Vol (2.5.48)

8Py =0 (2.5.49)
¥y =P4/RT=0 (2.5.50)

and
3pr+1 = OPYRT = tingyo, St/ Voly . (2.5.51)

The changes in velocity are determined from the discretized form of the momentum equation. The

resulting expressions for the change in velocity, u, were found to be

o, . 3¢,
Supyy = (8P; — 8P4 y) p1+1mx1 = [Merror 5’(;5771;] p1+1mx1 (2.5.52)
and
- - Oy, — . RT 3ty
8.111 = (5P1_1 SPI) Prox;_ = l Merror,1 Stcml ProxX; -1 (2.5.53)

having assumed that at the beginning of a time step that the momentum equation is balanced except
for the continuity error. Now if Egs. 2.5.50, 2.5.51, 2.5.52, and 2.5.53 are substituted into Eq.
2.547, we get

. RT ot
Pr+141+1 | Mepror,1 31, Vol,} it ,mbx,

: RT , 8
= PrArl = Merpor 01, “170'17]‘,—15}";1':

. 3¢, :
+ u1+1AI+1merror,1W(;l = Mehange - (2~5~54)
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* For our one-dimcnsional example,
Vol; = A5x;
Ay = 4
Sxp_q = 3x;
and
Pr+1 = pr -
Using Eqs. 2.5.55, 2.5.56, 2.5.57, and 2.5.58 and rearranging, Eq. 2.5.54 becomes,

. . 25tm u1+ 1
Mchange = 3R Tmerror,l [— ] .
. Sx‘-z 8x; RT

(2.5.55)
(2.5.56)

(2.5.57)

(2.5.58)

(2.5.59)

The upwinded density method (a, = 0, 4, = 0, @, = 0) has been used in our anélysis because it

results in the most conservative time step. Eq. 2.5.59 is used in the PRESS_URE INTERPO-

LATION SECTION to see under what conditions the error in mass flow rate has the same sign

as the change in mass flow rate. Now we want to find an equation which tests under what condi-

tions the change in mass flow rate is less than the error-in mass flow rate,

< m,

mchange,[ error,] *
Substituting Eq. 2.5.60, into Eq. 2.5.59 we get
205¢,
0 < [—£& “_|RT 8¢, .
10 “sx2  RTx €

Solving Eq. 2.5.61 for the continuity time step, &¢,, we get
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1

ot, < 2.5.62
¢ RT 258¢,, +_u (262
Sx2 RTdx
When the differential form of the governing equations was used, we got
1
dt, < . (2.5.63)
R Sm 4 Sty _u g |

Sxc? 8y2 RT6x RT%y

where the terms in Eq. 2.5.62 can be recognized as the x-momentum contributions to Eq. 2.5.63.

THE CFL CONDITION AND THE DENSITY UPDATE METHOD: When the density update
time marching calculation procedure is used by Denton (16), the same time step, the CFL condi-
tion, is used in both the cohtinuity and momeﬂtum equaﬁons. It will be shown using the stability
criteria for the continuity time step , (#uge < M.rror) that if the same time step is used in both the
momentum and continuity equations, Eq. 2.5.62 gives a result close to the CFL condition. It
should be noted though that the d‘ensi‘ty-‘update method is not necessarily restricted to using the

same time step.

Using an analysis similar to that used in the previous section, it can be shown that if the density
update method is used along with the downwind effective pressure, the resulting one dimensional

relationship between changes in mass flow rate and errors in mass flow rate is

* SxL;{T 1terror,1 8t RT = Mehange (2.5.64)

which is identical to Eq. 2.5.59. Now we want to determine what the limiting stable time step is

if we let 8¢, = 8¢, and 7y, < M, . The resulting expression for the time step is

5t < 451;CT[—u+ Ja& + 8RT] . (25.65)
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For our one-dimensional example, the CFL condition would set the time step as

- (2.5.66)

(u+ ¢

Fig. 2.5.4 shows a comparison of the (time steps/dx) calculated using Eqgs. 2.5.65 and 2.5.66 for a
Mach number range from 0.01 to 2.0. Over this range, the time steps calculated using these two
equations are within = 20 %. At Mach numbers greater than 0.4, the CFL condition gives a more
conservative time step than Eq. 2.5.65. Fig. 2.5.5 shows a comparison of the time steps calculated
using Egs. 2.5.65 and 2.5.66 with the different time steps for the continuity and momentum

equations calculated using Egs. 2.5.7 and 2.5.8 over the same Mach number range.

TRANSVERSE CONTRIBUTIONS TO THE CONTINUITY TIME STEP: When mass im-
balances are caused by incorrect mass fluxes through the transverse faces, the pressure changes from
the continuity error act through the y-momentum equation to correct these mass imbalances. An
analysis, similar to that just shown for the 1-D example, will be used to show how transverse fluxes

affect the continuity time step.

Fig. 2.5.6 shows four control volumes of identical dimensions at a fixed axial location. All errors
in transverse fluxes are assumed to be zero except between contol volumes (I,J) and (I,J-1). To the
right of the control volumes, in Fig. 2.5.6, is a plot of the static pressures at the upstream nodes for
the control volumes, before and after one time step. The static pressures at all nodes are assumed

to be initially the same (represented as triangles in Fig. 2.5.6).

The transverse fluxes shown in Fig. 2.5.6 will cause the pressure (represented as squares in Fig.
2.5.6) to increase at node (I,J-1) and to decrease at node (I,J) through the mass flow rate errors for
control volumes (I,J-1) and (I,J) respectively. These changes in pressure at nodes (I,J) and (I,J-1)
will induce pressure gradients in the transverse direction (represented by the dashed line in Fig.

2.5.6) which will cause the mass imbalance to correct itself. The pressure changes ; however, must
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not be so great so as to violate our stability requirement that the change in mass flow rate be less

than the error in mass flow rate.

Several simplifying assumptions are made throughout this part of the analysis to reduce its com-
plexity. Just as in the analysis in the PRESSURE INTERPOLATION SECTION, we will assume
here that the momentum equation is balanced initially for eaéh control volume except for the

continuity error. In Section 2.4, the x-momentum equation reduced to Eq. 2.4.24

Supyq = (8Py — 3Pp11)8t/(pr+18x)) (2.5.67)

when the momentum equation is balanced initially except for the continuity error. For the case

where the transverse fluxes cause the imbalance, the equivalent y-momentum equation is

8V1+1J =[0.25 X (SPI,J"' 8Pl+1’J+ SPI,J—I + 8PI+1’J_.1)

8
—0.25 % (8Pp; + 8Ppyy g+ OPpypy + OPreysen) —"’—] (2.5.68)
' (Pr+1,7 1)

Eq. 2.5.68 can be simplified for this uniform grid to

. ot
Oy = 1025 X BPry—q + 8Py 1) = 025 X (BPpyiq + 8PI+1,J+1)]FH__1;15J7;}"(2'5°69)

For the case that we are investigating,

8Py 1 = = Fitgror1 st RT|Voly (2.5.70)
8P1p1 -1 =0 | (2.5.71)

8Pryrs1 =0 (2.5.72)
8Prsiyer =0 . (2.5.73)
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Therefore, in this case, Eq. 2.5.69 becomes

8, RT . 8ty
Vol, * Pr+1,4 91

W1 = (= Fitgor X 025 X (2.5.74)

The same procedure can be applied to control volumes (I,J-1) and (I,J+ 1) and the resulting ex-

pressions for changes in v are

. Ot.RT o¢,
5V1+1,J-1 = (= Mgppor X 0.25 X 1;011 )P1+1,J": 1091 (2.5.75)
and
- 8t RT —~ 3¢
Vit 1g+1 = (Mgror, 1y % 025 ——) = (2.5.76)

Vol ;” Pr+1J+1 1

The change in mass flow rate due to the changes in v for control volume (I1J) is determined from
the continuity equation using the y-contribution equivalent to Eq. 2.4. 11 in Section 2.4, which

would be
'hchange = (pASV)ﬁorth’— (PAW)goum + "'(VAap)north = (vA3P)sourn - (2.5.77)

The change in mass flow rate for one iteration for our uniform grid is therefore,
p x 0.25 x 8xp x (Bvpy+ dvpry s+ vy + Oppgs40)

—p X 0.25 x 5x, X (8V1J+ 5V1+1J+ BvI,J—l + 5V1+1J_1)

mchange = (2.5.78)

+v.x 025 x 8x; X (8pyy + Oppe1y T P11 F OPr141)

= v X 025 x 8x; % (Bpys + 3pre1y+ 3 —1 + Spr1y-1)
assuming mean values for the density and v-velocity. The density changes for one iteration are

.Spl,l = merror,],J&c/VOII (2.5.79)
8Ps—1= = Merror,s St VOl . B (2.5.80)

2.0 ANALYSIS SECTION 82



Substituting Eqs. 2.5.74, 2.5.75, 2.5.76, 2.5.79, and 2.5.80 into Eq. 2.5.78, we get

rhclzange = [p (Mgppor 02, "éoTTI) = P (= Mgy 8¢, V I )]

e <. 3t
= v8x7 (= 0.25Mgrr0r,1 5 —V-ﬁl—) .

If Eq. 2.5.81 is rearranged, we get

0.25 X 7it,,, 81, RT  0.581,, 8,

ot 65\’.‘1 0252

v oxy

’hchange = Vo II L dy 1

For the control volumes used in this analysis,

VOII = 8x18y1 .

Applying the stability criteria, /71,5, < #,,,,,, and using Eq. 2.5.83, Eq. 2.5.82 becomes,

1255¢,, + 025

5y RT3y,

1.0 = 8¢,RT]

When Eq. 2.5.84 is solved for the continuity time step, 8¢, , we get

0.1256¢,, + 0250,

5y RTdy;"

ot, < 1/RT]

RT '~

- (2.5.81)

(2.5.82)

(2.5.83)

(2.5.84)

(2.5.85)

The mass flow rate error through the transverse face of control volume (I,J) causes the pressure to

change at node (1,J). This pressure change will also act through the x-momentum equation in ex-

actly the same manner as previously outlined in Eqs. 2.5.47-2.5.63.- When both the x and y con-

tributions to the continuity time step (Egs. 2.5.62 and 2.5.85) are combined together we get that
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5t, < __1 » . (2.5.86)

26¢, .1258¢
TI——m 4+ m o4 U 0.25v ,
R b s 5y° RTdx  RTSy

To insure that the time step we choose will result in a stable calculation procedure, the time step
that has been calculated using the differential form of the governing equations (Eq. 2.5.25) and the
time step derived from the discretized form of the governing equations (Eq. 2.5.86) have been
combined together and symmetry has been invoked and the resulting equation is Eq. 2.5.8 pre-

sented earlier,

dt, < v . . (2.5.87)
C S Sy _w Yoy
"ox? 8yt RTex  RTy

2.6 BOUNDARY CONDITIONS AND INITIAL

GUESS

BOUNDARY CONDITIONS

Along the upstream boundary, the total temperature, total pressure, and v-velocity are specified for
inviscid flow. Along the downstream boundary the static pressure is specified. For viscous flow,
at the upstream boundary, the total temperature, freestream total pressure, inlet boundary layer

velocity profile, and flow angle are specified.
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Pressures along the solid boundaries are determined from linear extrapolation. There is no mass
flux across element faces which coincid¢ with the solid boundaries. For viscous flow, the values

of the x-component and y-component of velocity are set equal to zero at solid walls.

For flow through cascades, the additional boundary condition of periodicity must be considered.
Fig. 2.6.1 shows a two dimensional projection of a typical grid system up to the leading edge of a
cascade blade. Note that a grid point is not located along the periodic boundary when the new
control volumes are used. The computational domain extends from the lower periodic boundary
to the upper periodic boundary. The missing calculation points outside the computational domain

are replaced by the corresponding points adjacent to the other periodic boundary.

INITIAL GUESS

The initial guess for the inviscid part of the flow field is determined from a 1-D inviscid solution.
A boundary layer is then added along the wall using a constant ratio of boundary layer thickness
to duct height throughout the duct. The velocity profile used in the boundary layer is the inlet
velocity profile. For certain geometries, an estimate of the blockage effect of the boundary layer is

used to specify an effective geometry for the calculation of the initial solution.

2.7 CALCULATION OF VISCOUS FORCES

The momentum equation for unsteady flow in differential form is

ot 6xk
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The normal stresses associated with second coefficient of viscosity, A, will be neglected in this
analysis and in any subsequent calculations. We will be concerned in this section with how the
viscous terms (V' *pVuand V -pVuT) are evaluated using the non-orthogonal, physical mesh

system that is incorporated in the present method.

In a control volume analysis of a flow field, we are interested in the actual forces which act upon
the control surfaces and the components of these force in the coordinate directions (x,y, and z)
rather than the derivatives of the shear stresses as seen in Eq. 2.7.1. To transform the governing
equations from differential form (Eq. 2.7.1) into an integral form, we use Gauss’ theorem. In terms -

of some arbitrary vector, @, Gauss’ theorem says,

[ff7-edvel = ffo-dd . (2.7.2)

The viscous terms (7 p Puand V - p¥Vu?) in Eq. 2.7.1, are converted from differential form to

control volume form using Eq. 2.7.2 and the result is,

[ff7-uvu+ vV -uVu")dVol = [[aVu-dd + uwva - d4) . (2.7.3)

The current two-dimensional scheme uses control volumes which are made up of four straight line
segments (see Fig. 2.7.1). The surface integral in Eq. 2.7.3 is simplified into a summation over the
four sides of the control volume. The integral over the surface in Eq. 2.7.3 can therefore be re-

presented as
[{wVu-dd +pVu' - dd) =

4 —_—
T (g nVu+ dg-uVu) . (2.7.4)
K=1

Each area vector in Eq. 2.7.4 is assigned a magnitude equal to the area of the face in question and
a direction which points in the outward normal direction. The evaluation of Eq. 2.7.4 results in the

net viscous forces in the x and y directions for a control volume.
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For laminar flow, the absolute viscosity, y, is used in Eq. 2.7.4 to evaluate the shear forces. For.
turbulent flow, an effective viscosity is used in Eq. 2.7.4. The effective viscosity that is used is the
sum of the absolute viscosity and an apparent eddy viscosity. The current method uses a Prandtl
mixing l,ength model to evaluate this eddy viscosity. This mixing length model is outlined in Table

2.7.1.
The details of this mixing length calculation wxll be presented later in this section.

The vélocity gradients , Vu;, needed in Eq. 2.7.4 can be determined within a non-orthogonal grid

by using,

__DyxDx 9w  DgxDy 9w DyxDy
D;*(D;xDg) 0 Dy+(DyxDg) & Dy-(Dy x Dy) 0K

Vu, (2.7.5)
~where D; D, and Dy are directional vectors along the grid directions (I,J, and K), see Appendix
B. For the two-dimensional case, 6uL/6K = 0and Dy is a vector spanning the height of the duct
(in the direction D; x D,).- Two typical two dimensional control volumes are shown in‘Fig. 2.7.2.
The directional vectors (D, and D)) are identiﬁed in Fig. 2.7.2. The magnitudes of the vectors are
dependent upon the grid spacing as can be seen in Fig. 2.7.2. The directional vectors that are shown
in Fig. 2.7.2 would be used to calculate the velocity gradients applicable to the boundary common

to both of the control volumes.

The derivatives of the velocities in Eq. 2.7.5 are taken with respect to the grid indices, in other

words,

7
Sk = e =~ (o) (27.6)

where (1), is the velocity at the beginning of vector D, and (1,),., is the velocity at the end of
vector D,. For the geometries and boundary conditions investigated in the present work, the gra-

dients in properties in the I direction are much smaller than gradients in the J direction. As a
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Table 2.7.1 Prandtl Mixing Length Model

Hegr = W+ e

o L4
= 72 du
W =pL &

L is the smaller of
0.08 times the width of the boundary layer .
0.41 times the distance to the nearest wall

Vén Driest Correction

L = 0.41%°(1 = exp[ = *y"\/p% /26u])

Near Wall Correction

Hoy = NTITETR
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consequence, only the J derivative contributions to Eq. 2.7.5 will be considered in the present work.

This is equivalent to using the thin-layer Navier-Stokes formulation.
FORCES ON THE SOUTH FACE OF A CONTROL VOLUME

In the actual calculations, for a non-uniform , non-orthogonal grid, the directional vectors are
slightly different than those shown in Fig. 2.7.2. For the south face of a control volume, the area
and directional vectors actually used are shown in Fig. 2.7.3. The directional vector ,D;, and the
velocity change are evaluated using the downstream nodal values because their use strengthens the
centerpoint coefficient of the matrix of unknown variables. The directional vector ,D,, is located
midway between the four nodes rather than at the boundary surface. This is because the viscosity
and velocity gradient used in calculating the shear forces on the south face are evaluated midway
between the two nodes. The shear stress is known to vary less through the boundary layer than the
velocity gradient or the mixing length squared. Therefore, it is preferable to calculate the shear
stress using a velocity gradient and mixing length midway between the grid points in the J-direction
and then assign the resulting shear force to the face of the control volume between the points. The
upper wall and lower wall control voiumes are shown in Figs. 2.7.4 and 2.7.5 , respectively with the
directional vectors identified. The shear stresses are evaluated midway between the wall and the
near wall point and then the shear forcesv are assigned to the wall surface. The effective viscosity
used to evaluate these wall shear forces is a combination of the laminar and turbulent viscosities

given by
Moy = /R T 1Y) - (2.7.7)

This relationship is used only at the wall and has been shown (Ref. 25) to allow a good calculation

of wall shear stress with a near wall point further away from the wall than is typically required.
Symmetry is used to calculate the forces on the north face of a control volume, in other words,

Fnorth,I,J == Fsouth,l,.l+1 (2.7.8)
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Fig. 2.7.4 TUpper Wall Control Volumes
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Fig. 2.7.5 Lower Wall Control Volumes
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where F,,, and F,,, are the shear forces on the north and south faces of the control volume re-

spectively.
FORCES ON THE WEST FACES OF A CONTROL VOLUME

The forces on the west face of the control volume are calculated by scalar multiplying an interpo-
lated shear stress with the west face area vector (see Eq. 2.7.4). Refering to Fig. '2.7.6, for a node
point (I,J) which is located on the west face of control volume (I,J), first the velocity gradient and
viscosity are calculated at the western edge of surfaces A and B which are midway between the node
points (I,J) and (I,J-1) and node points (I,J +1) and (IJ), respectively. The west sides of surfaces
A and B are also the locations where the shear stresses are calculated for the north and south faces -
of the control volume (I-1,J). The product of fhe velocity gradient and viscosity at node (I1,J) is

determined by linearly interpolating using the following interpolation formula,

22 (95 = 0. 19

JB
(T + 7)

01y = 94t

where ¢, and ¢, are the products of the velocity gradient and the viscosity at the west sides of
surfaces A and B respectively. Once these interpolated values have been calculated, Eq. 2.7.4 can
be used to calculate the components of the shear forces on the west face. The shear stress is in-
terpolated to node 1,J rather than interpoiating’the velocity gradient since the shear stress varies less

through the boundary layer than the velocity gradient. Similarly for the east face we have

—

Feast,I,J == Fwest,1+ 1J (2.7.10)

CALCULATION OF MIXING LENGTH AND VISCOSITY

When the mixing length model of Table 2.7.1 is used in the 0.41y region, a distance normal to the
wall, “y”, must be determined to calculate the mixing length. For a flat wall, the distance to the

wall from a point is, of course, measured along a line perpendicular to the wall. However, with the
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Fig. 2.7.7 Distances Normal to the Wall
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current grid system, grid lines and ﬁheé orthogonal to the wall are not coincident (see Fig. 2.7.7).
Fig. 2.7.7 shows 5 adjacent control volurhes. The normal disjtanég (L) between the north and south
faces of a control'volumé is eqﬁél to the volur;;; of the control vélqme‘ divided by the distance S)
between the east and west faces of .the gdntfol volume measured in fhe I grid‘ direction. The total
normal distance from the wall to the node point on the west face of a control volume (L,,,) is eqﬁal'
to the sum of all previous normal distances between that coﬁtrol volume‘ahd the nearest wall plus

one half of the normal distance for that control volume. We can represent that distance as

Lyws = :z_;lLk + 0.5 x L, - @7.11)
where n is the number of control volumes from the wall.

The total normal distance needed for calculating the mixing length for the south face of a control |

volume (L,,,,) is equal to the sum of all previous normal distances to the previous node (L,,,, ne1)

plus the equivalent normal distance half way between the two grid points in question. The proce-
dure used to calculate this length is shown in Fig. 2.7.8. We can represent this total distance as

(Ln—1 + Ly)
Lsouth,n = Lwesr,n—-l + "'—_IZ"'_n

(2.7.12)
‘To determine the mixing length in the outer part of the boundary layer, the bouhdary layer thick-
ness measured normal to the wall must also be determined. The lengths that were calculated above
‘can also be used in calculating the boundary layer thickness. The edge of the boundary layer is
determined by using the magnitude of the normalized local total pressure gradient as a measure of

its location. The normalized total pressure gradient used here is

AP, 1

normalized total pressure gradient = —— 3
“By” 0.5p u

(2.7.13)

where “Ay” is the normal distance between two grid points. The local freestream values of density

and veloéity are used in Eq. 2.7.13. The grid line that is considered the freestream is input into the
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method. Starting from the freestream the normalized total pressure gradient (Eq. 2.7.13) is calcu-
lated between grid points and is compared with a characteristic normalized total pressure gradiént.
The edge of the boundary layer is defined as where the magnitude of the calculated gradient is equal
© to the characteristic gradient. The exact distance is determined usiﬁg interpolation and is based
upon the distances normal to the wall. The characteristic normalized total pressure gradient is de-

termined by

AP tchar 1 - 1 (2 71 4)

"By 0.5p?  CL

where CL is some characteristic length of the flow field, typically the duct width.

Once the mixing length has been calculated, the apparent eddy viscosity is calculated using Eq. 1
in Table 2.7.1. The velocity gradient used in the eddy viscosity calculation is determined using the

following expression,

" _ \/{f_b Vup (4 Vvp (2.7.15)

where A is the area vector on the south side of the control volume. This formula gives the mag-

nitude of the total velocity gradient reflecting the non-orthogonality of the grid.

2.8 MULTI-VOLUME METHOD FOR PRESSURE

CHANGES

Preliminary calculations of boundary layer flows using the density update method (with non-

uniform gﬁd spacing) resulted in solutions which became unstable after only a small number of it-
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eration steps. After a detailed investigation of the nature of this instability, the cause could be
attributed to effects resulting from the large aspe‘ét ratio i)f the cdntfol volumes near the wall and
the large variation of properties in the boundary layer. The first contributing factor was the use of
different time steps for each control volume and for each equation. Near the walls where the con-
trol volumes were very thin and the velocities were low, the continuity timé steps that were used
for calculating the changes in density were small. The ratio of the momentum and continuity time
steps there was also very largé. The pressure in the outer part of the boundary layer was changing
much more rapidly than it was near the wall. This induced large transverse pressure gradients and
then lérge transverse velocities followed resulting in an unstable calculation procedure. It was felt
that to stabilize this calculation procedure, the changes in pressure through the boundary layer must
be coupled in some manner énd that the changes in pressure be only dependent on the continuity -
error and not on both the density change through the continuity error and the temperature change
through the momentum error and its resulting velocity change.’ We wanted to minimize transverse

pressure gradients in the intermediate solution to enhance stability.

The above realizations resulted in two changes. One change altered the way that the continuity
error is used to update the flow properties (see Section 2.3 DISTRIBUTION OF PROPERTIES).
Previously (15), errors in continuity were ﬁsed to update the density at the node points. - The
pressure was then calculated from the equation of state. An alternative proceduré has been devel-
oped which updates the pressure directly from the continuity error. The density is then evaluated

using the equation of state.

The second change is to group control volumes in the boundary layer to form a larger global con-
trol volume. The continuity error is calculated for this global control volume and changes in
pressure are assigned equally to each of the upstream nodes for each control volume making up the
global control volume. Initially the global control volume extends from the wall to the edge of the
boundary layer. Then the glo})al control volume is made successively smaller towards the wall.
This is shown schematically in Fig. 2.8.1. The entire pressure change for one iteration at each node

within the multi-volume region is determined by adding together all the pressure changes assigned
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to that node . If a non-uniform grid is used, the continuity time step for each global control volume
may based upon the continuity time step for the largest control volume within the global control
volume. A non-uniform grid is preferred for this multi-volume method so that pressure changes

for successively smaller global control volumes become smaller.

The multi-volume method propagates pressure changes rapidly through the boundary layer and -
minimizes large tranverse pressure gradients in the intermediate solution. The above changes allow
the calculation of boundary layer flows where the control volumes near the waﬂ can have aspect
ratios (length/height) of over 1000. Without the multi-volume method these aspect ratios could
not be used. The stability and convergence properties of various multi-volume approaches are in-

vestigated in section 3.5.

2.9 TRANVERSE UPWIND DIFFERENCING

When the control volumes become long and thin near the wall of the duct, the fluxes through the
top and bottom faces of the control volume become mofe significant in comparison to the fluxes
through the streamwise faces. Because the nodes of the control volumes are located in the middle
of these streamwise faces, the predominanf flow direction must be in the streamwise direction for
the discretization method used here to proberly reflect the convective nature of the; flow. When the
fluxes in the transverse direction become significant, the solution procedure may become unstable
because the diagonal terms in the coefficient matrix Become smaﬂer as the transverse fluxes increase.
This is because the velocities at the corners of the nodes are determined from interpolation. To
strengthen the diagonal dominance of the coefficient matrix, the momentum fluxes through the
transverse faces may be calculated using interpolated velocities upstream in the transverse direction
rather than the actual interpolated values. These velocities are multiplied by the mass fluxes

through the sides of the control volumes to get the total momentum flux. The direction and
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magnitude of the upwinding is determined from a criterion based upon the magnitude of the flux
ratio, FRATIO. FRATIO is the ratio of the mass flux through the transverse face divided by the

mass flux through the streamwise face. A criterion for upwinding is derived next.

The criterion for upwinding is based ﬁpon an analysis of the convective terms in the momentum
equations and how the discretization affects the dominance of the centerpoint coefficient. The

momentum equations for unsteady flow are

%+» Vepuu= — V- P+ V- pVu+ V’p—@T . (2.9.1)

When Gauss’ theorem is applied to the steady convective terms of Eq. 2.9.1 to transform the goV-

erning equations from differential to integral form, we get

[§§V -puudVol) = (fouu-dd . (2.9:2)
The convective terms in Eq. 2.9.2 can be rewritten as

B=p—g%+ Vepuu—uV pu . | (2.9.3)

When Gauss’ theorem is applied to the steady portion of Eq. 2.9.3, we get
C= [f§(V -puu = uV - pu) dVol = {fpuu-dd - @ffpu-dd (2.9.4)

where # is an average velocity for the control volume. The second term on the right hand side of
Eq. 2.9.4 can be recognized as the continuity error contribution to the momentum equation. We

use Eq. 2.9.4 in the current method, to evaluate the momentum fluxes.

If our computational domain is descrétizcd into finite quadrilateral control volumes, the convective
momentum fluxes can be identified as those associated with the north, south, east, and west faces
of the control volume (see Fig. 2.9.1). These momentum fluxes can be further classified into those

associated with the x-momentum equation ((#%) o (18)oumms (F11U) esiannd (#114),,,) and those asso-
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Fig. 2.9.1 Convective Momentum Fluxes for a Control Volume
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ciated with the y-momentum equation ((#1V)orm(F1V)coutns(H1V)yesrr aDA(#Y),,) . For example, the
momentum flux contribution to the x-momentum equation through the north face of the control

volume is
(M) poren, = xu pu-dd (2.9.5)

where 4 is an outward normal vector. A typical control volume with the x-momentum fluxes

identified is shown in Fig. 2.9.1.

The mass fluxes through the north, south, east, and west faces of a control volume are
Pooreh, Moouth, Megst, ANA M, Tespectively. The mass flux through the north face of the control

volume out of the control volume is
Porth = LPE ~d4 ‘ (2.9.6)

where positive ‘mass flux is defined here as a flux directed outward from the control volume. The

continuity error, #,,,,, for a control volume L) is
Perror = — ’hnorth,I,J - msouth,l,.l - mwest,I,J - ’heast,I,J . (2.9.7)
From symmetry, we can note that
mnorth,l,.l = - ’h;'outh,l,l+l (2.9.8)
and
’heast',IfJ‘ == ’hwest,1+ 1J - : (2.9.9)
Substituting Egs. 298 and'Zr.9.9 into Eq. 2.9.7, we getu
Merror 1] = msoyz(:,JJng = Moy 10+ mwest1+ 1 Pyest,1J - (2.9.10)
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From the momentum balance, the convective contributions to the x-momentum equation (see Eq.

2.9.4) for a finite control volume are

C = (Mnorn,tg + (Mh)sousn1,; + (Md)eastrs + (M)yest s + (UeMerror)r,s (29.11)

where (ugn,,,,);; is the continuity error contribution to the momentum error. The corrections to

the momentum error, (uz/,,,,);; and (i»Em,,,,,,) s » due to the continuity error are

(“egrror)1y = — uffpu-dd N (2.9.12)
and

_(vé'herror)IJ = = ffpu-dd - (2.9.13) |

where u; and v are effective velocities for a control volume and # and v are average velocities for
a control volume. The effective velocities may be different from the average velocities to improve

the stability of the method.
The momentum flux (1), 1S ,

= (pu- A)north,],,l Unorth,1,J
(’hu)north,l,.l = mnorth,l,.lunorth,l,.l

== rhsouth,l,.l +1Y%nortn,1.J (2.9.14)
Using a four point interpolation for u,,,
(rhu)nor_th,I,J == msouth,l,l +1 %

0.5[(u s + wp1) X (1 —gn) + (g1 + Yy 7+1) X & (2.9.15)
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where 0 < gy < 1. Similarly,
(M)sourh 1,0 = Msourn,1,g X 0-S\(upg—1 + Uppr,g-1) X (1 = gg) + (upy + i) ¥ 851 (2.9.16)
(MU yest, 17 = Myestrg X Urs (2.9.17)

(PM)ogsy 1y = = (MWyest1+10 = ~ Myeser+1,0 * Yr+17 : (2.9.18)

where gy and g are interpolati'on' pa.faxheters for the horth and south faces of the control volume
respectively. The interpolaﬁon parameters , gy and gs , are usually calculated from the position of
the control volume face relative to the two node points adjacent to that face (see 2.2 CONTROL
VOLUMES). We will call this the geometric interpolétion paranieter, g However when the
transverse fluxes become large enough in comparison to the streamwise fluxes, the centerpoint co-
efficient will not be dominant if these geometric interpolation parameters are used. Other more

‘'stable interpolation parameters must be determined.

Now substituting Egs. 2.9.10, 2.9.15, 2.9.16, 2.9.17, and 2.9.18 into Eq. 2.9.11, and grouping coef-

ficients with common velocities, we get

C=upyy 0 %[ = tsoumrgr1 X 0.5 % (1= gn) + tigoumpy % 0.5 % g5 = fyeg 141,41
+ oy X [ = Moy g1 X 0.5 X (1= gn) + Mgy gg % 0.5 % gg + Pogest 1]
tupger X 1= Moumgg+1 % 0.5 % gyl

f Urprg+1 % 1= Moumpr+1 % 0.5 % gyl

+up g X [Msoum gy % 0.5 % (1 — gg)l

+ U -1 X Msourn gy X 0.5 % (1 - g9l
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tug x [+ msouth,l,.l+1 _brhsoulh,IJ + mwest,1+l,J - mwest,l,.l] . (2.9.19)

The value of u; in Eq. 2.9.19 will depend upon the sign of the continuity error and its influence on

the strength of the centerpoint coefficient.
The last term in Eq. 2.9.19 is
+oug X [+ Mooy r41 = Msourmdg + Mwest+10 ~ Pest,r,i]
=+ up X [l -+ (2.9.20)

If the continuity error, #,,,,, is negative we will let

ug = up; - @2y

which reduces the magnitude of the non-centerpoint coefficients. If the continuity error, #,,,,, , is

positive we will let

Ug = llI.;_]’J (2.9.22)

which will strengthen the centerpoint coefficient. Both these decisions enhance the stability of the
method. It can be shown for forward flow and with this choice of the effective velocity, u; , that
_the coefficient of u;; is always negative if either #ir,,4,;, = 0 or 4,4 = 0. As will be seen,
the contribution of node I,J to the sum of the non-centerpoint coefficients will not need to be
considered further in this analysis. Also because of this choice of u;, the magnitude of the mass flux,

Myose 1 ,), does not detrimentally affect the stability of the scheme in forward flow.

To arrive at interpolation parameters which will probably result-in a stable calculation procedure,
we will investigate the stability of two simple examples. These examples assume 1) that the mass
flux through the north face of the control volume is zero and 2) that the mass flux through the

south face of the control volume is zero. Fiﬁally, more. conservative interpolation parameters will
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be determined which will take into account the possibility of arbitrary combinations of north and
south fluxes. This will be accomplished by using only 1/2 of the flux, m,,,;+,, in the calculation

of the interpolation parameters which satisfy the stability criteria.
CASE # 1

For this case, we have assumed that the mass flux through the north face of the control volume is
zero . This test case is shown schematically in Fig. 2.9.2. When the mass balance is applied we

get,

MeorrorgJ = — msouth,l,/ - mwe.\'t,l,J + mwest,l+1,.l . (2.9.23)

If the mass flux through the south face is positive and the continuity error is negative because of

this flux, then Eq. 2.9.19 becomes
C=ppqy %105 % g5 X Mooyt 17 = Mest1+17 + Merror]
+ oy X [0.5 X gg X Msouun 17+ Pyest 1]
"" ury—1 % (0.5 % Mgoyen rg x (1 = g9l
t g g-q1 % (0.5 X Aggypp g % (1= g5)] - (2.9.249)
All non-centerpoint coefficients are negative; therefore, the requirement for stability is
0.5 X g5 X Fitsourp 1.0 = Pest,1+1,0 + Hlerror 2 0 (2.9.25)

0.5 x gg % msoulh,I,J - mwest,I,J - msouth,l,l 20 . (2.9.26)

This will be satisfied for any value of g,.
For positive 7,4, and a corresponding negative continuity error, Eq. 2.9.19 becomes
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mSOuth,I,J+1 =.0.0
mweSt,I’J T '—mweSt,i+l,J
(1,9) @ @ (I+1,7)
\
~s=
i
south,l,J
(1,J-1) @ : @ (I+1,J-1)

Fig. 2.9.2 Schematic of Case #1
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C =ty * 105 % &5 X Pitsourn, 11 _‘mwext,l-f-l,ll

+oupy X (0.5 X g5 X Mgoup 1+ Maestrg  Merror)

+u o X [0.5 % msouzh,i,/"" (1 - g9l

+ -1 X (0.5 X tagouep g X (1= gs)l - | (2.9.27)
The requirement for stability is, therefore,

0.5 x 8s X msouth,I,J - mwest,l+1,l 2 msouth,I,J X (1 - gs) . (2-9'28)
In terms of FRATIO, 1, 1.5/ Myest.1+1.0 and g5, Eq. 2.9.28 becomes

1 + FRATIO

P 9.
85 = T1SFRATIO (2.9.29)

CASE #2

For this case, we have assumed that the mass flux through the south face of the control volume is

zero. When the mass balance is applied we get,

’herror,I,J =+ msouth,l,.l +1 = mwest,I,J + rhwest,l +1,J (2.9.30)

If the mass flux through the north face is positive, in other words, if #,,4;;+1 < 0 and m,,,,,;; is

negative then Eq. 2.9.19 becomes
C=pp1 g% [ = Mooy rs+1 % 0.5 X (1 = gn) = Myest+1,41
+oupy X [ = Mgy pg+1 % 0.5 % (1 = gy) + My rs + Herror]
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g X[ —gn % 05 X By g1l

Yy X0 éN x 0.5 x msotlzth,l,J;Fll . ' (2.9.31)
The requirement for stability is,

= Myoutmgg+1 X 0.5 X (1 = gn) = My 1110 2 = 8 X Muungg+1 - (2.9.32)
In terms of FRATIO and g, we get

gy < L+ 0.5 x FRATIO
N 1.5FRATIO

(2.9.33)

where in this case,

"
FRATIO = ——tLIt1

(2.9.34)
Myest,I+1,J

If the mass flux through the north face is negative, in other words, if 71,,4,;,4; > 0 and #,,,,.;, is

positive, then Eq. 2.9.19 becomes

C=uy 7% = Mgoumpgr1 X 0.5 % (1 = gn) = Myesr 1+ 10 + Merror]
oy X 1= Mgoungg+1 % 0.5 % (1= gn) + Aityes 1,1

ey X[ — 8y % 0.5 X Mgoumry+1]

*ouprr e X =88 % 0.5 X Mgoup pr+1) - (2.9.35)
The requirement for stability is,

= Moumry+1 % 0.5 % (1= gy) = Pyesti+1,0 + Mopror 2 0 (2.9.36)
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= Moy gs+1 % 0.5 X (1 = gn) = Myeser g + Msounpg+1 2 0 . (2.9.37)

This result is always satisfied for all values of gy.

- Since the north face of one control volume is the south face of another control volume,
&ss+1 = &vyo The most conseryative value for the ‘in'terpolation parameter is chosen from Egs.
2.9.29 and 2.9.33 so that we use a consistent interpolation scheme for a giv,eﬂ face. If the geometric
interpolation paranieter » &ivt» 18 more conservative than those specified in Egs. 2.9.29 and 2.9.33,

then it should , of course, be used.
ANY COMBINATION OF NORTH AND SOUTH FLUXES

If only 1/2 the mass flux, m,,,;;+,, is used in the determination of the interpolation parameters,
gy and g, it can easily be seen (looking at Eqgs. 2.9.28 and 2.9.32) that the corresponding interpo-

lation parameters become more conservative and are

0.5 + FRATIO

p-2 I,
8 = T15FRATIO (2.9.38)
_ 0.5+ 0.5FRATIO
< 9.
&n 1.5FRATIO (2.9.39)

This is equivalent to using twice the F RATIO in Egs. 2;9.29 and 2.9.33. The criteria for the in-
terpolation parameters, gs and gy, are summarized in Table 2.9.1. The above interpolation pa-
rameters are not assured to provide stable discretization for all possible combinations of mass fluxes
; however, these interpolation parameters have resulted in stable solutions for all the test cases in-
vestigated in this dissertation. ‘However, some of the solutions were unstable before this upwinding
was uéed. For all the test cases in this dissertation, upwinding was only needed in the transient

solution and at the steady state the geometric interpolation parameters were used.
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Table 2.9.1 Upwinded Interpolation Parameters

SOUTH FACE

L4

If msouth,i,j <0

no restriction on g

If g42 0.5 + FRATIO

1.5FRATIO

Insouth,:f.,j>0

where FRATIO = "south,i,]

m . s
west,i+1,j

NORTH FACE

(4

P .
mSOuth,i,j+l<0 g, ,%£0.5 + 0.5 FRATIO

1.5 FRATIO
m ' ) . .
if My outh, 1, 41 >0 no restriction on g
o
where FRATIO = "south,i,j+l

mwest,i+1,j

- noting that for consistency g for control volume j
n .
must equal 8 for control volume j+1

- reflecting symmetry and the geometric interpolation

parameters, .the most conservative value is chosen
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2.10 ENERGY EQUATION

For most of the calculations which are to be used as test cases in the present work, the assumption
of constant total temperature will be a sufficient representation of the energy equation in the flow
fields. By assuming constant total temperature, the computations are less expensive to run and the
computer storage requirements are less. An assumption of constant total temperature is satisfactory

because of these reasons:
1. an adiabatic wall is assumed in the calculations.
2. no work is done on the fluid at the solid boundaries.

3. the Mach numbers in the flow fields that are investigated are low enough that total btemperature

gradients within the boundary layer are small.

4. the turbulent Prandtl number of air is approximately 0.9. For a Prandlt number of 1.0, the
assumption of constant total temperature is valid, therefore a solution with a Prandtl number

of 0.9 should not deviate greatly from the constant total temperature assumption.

However, it was felt that the methodology required to include the energy equation in the governing
equations should be developed and simple test cases should be used to demonstrate its success.
Later in this dissertation, four test cases will be presented which use the full energy equation in their

calculations. These test cases will be

1. turbulent boundary layer flow in an adverse pressure gradient with an inlet freestream Mach

number of 0.55.

2. flat plate turbulent boundary layer with a freestream Mach number of 0.95.
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3. Sajben’s diffuser (23) including the full energy equation.
4, flat plate turbulent boundary layer with a freestream Mach number of 2.8.

Unless otherwise noted, the laminar Prandtl number for the calculations will be .73 and the tur-
bulent Prandtl number will be 0.9. For the moment, the integral form of the energy equation in-

corporated into this finite volume method will be presented.

The energy equation in differential form is

O,

=L+ VEu=—V-g+ VeluuVu+pVu)]— V-Pu (2.10.1)

where the total energy per unit volume ,E,, is
E = 1,2, 2\ =
= ple + ?(u + v%)) = pe; . (2.10.2)

The left hand side of Eq. 2.10.1 can be rewritten as

d(pey)

OE,
— . = + . .10.
n + V- Eu a7 V «peu (2.10.3)
and
F
(gf‘) + V- (peyu = p—%;—t- + pu- Ve, (2.10.4)

and then expanding the right hand side of Eq. 2.10.4, we get,

de,

de
p—=-+pur Ve =p—-

5 T Vopue = eV pu) . (2.10.5)

The procedure just outlined is identical to what was done to the unsteady and convective terms in

the momentum equations (see section 2.1).
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'The heat flux vector ,g, can be represented as
qg= —kVT . . (2.10.6)

Substituting Egs. 2.10.3-2.10.6 into Eq. 2.10.1 , we get
p—=—-=— V-pue+e(V-pw) — V(- kVT)

+ Velu-(uVu+pva) - V-Pu . (2.10.7)
Applying Gauss” theorem to convert to the integral form of the energy equation we get

p%?ti x §Vol = — J'J'pgepdA + E,Upwdg!_ - ” - kVT-d4

+ [flu wPu+ wVu]-dd ~ [[Pu-dd | (2.10.8)

where ¢, is an average value for the control volume. As with the momentum equations, Eq. 2.10.8

has a term, effpu * d4 , which removes the continuity error contribution to the energy error.

To enhance stability, the energy equation of Eq. 2.10.8 is not used from the initial solution. The
first 500 iterations of the calculation use the assumption of constant total temperature. After 500
iterations, the energy equation is added. Initially there are large errors in continuity and momentum
and these large errors act through the energy equation to cause errors in the total energy for a
control volume. This interaction is destabilizing therefore we let the calculation proceed until

continuity and momentum are reasonably satisfied before the energy equation is added.
The appropriate boundary conditions to be used with the energy equation in our calculations are:

1. Adiabatic wall, meaning that the heat flux through the solid walls is zero.
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2. There is no work done on the control volumes at the solid boundary due to viscous forces.

This is because the velocity at the wall is zero.

Because the energy equation has the same general form as the momentum equations, approximately
the same time step is used in the energy equation as is used in the momentum equations. More
will be said about this later in this section. The addition of the energy equation does destabilize the
solution somewhat when compared with the assumption of constant total temperature. For this
reason, the time step used for the energy equation is usually reduced by a factor of 2 compared to
the momentum equation time step. Transverse upwind differencing is also used for the specific
total energy , e,, in the energy equation in exactly the same manner as it was used for velocities in

the momentum equations.

An aitemative form of the energy equation has also been used and will be derived here. This al-
ternative form has enhanced convergence properties when compared with the above formulation.
Briefly, the energy equation is reformulated so that changes in total enthalpy ,A,, are calculated over
one time step rather than changes in total energy ,e, , which was done previously (Eq. 2.10.7). Also,
the energy error due to the continuity error and the momentum error are removed using this alter-

native formulation.

The total enthalpy can be defined in terms of the total energy and the static temperature by starting

with the definition of totgl enthalpy
h,=h+—=e+%+—=e,+‘—- (2.10.9)
and for an ideal gas,
% = RT (2.10.10)
so that
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h =e + RT . (2.10.11)

Taking the derivative of both sides of Eq. 2.10.11 with respect to time , t , and multiplying by the

density, we get
I 4

ohy _ E!_+ 0T

5 - P PR, (2.10.12)

The static temperature T can be represented in terms of the total enthalpy and the absolute velocity

as
h 1%
T=-—-2Lt-2_ (2.10.13)
G 26,
therefore
or - 1 Sk _ v av
ot C, at C, at (2.10.19)
Therefore Eq. 2.10.12 can be rewritten as
ahy aét 1 Oh V_ oV
— = — + ———— T ——— — . .
a P ‘ PRI ¢, at G, at ! (2.10-13)
Now if we solve for the time derivative of the total enthalpy, we get
oh, ce,  pR _, 5V .
= v - .10.16
" TP T ¢, (2.10.16)

where vy is the ratio of speciﬁé heats and V is the magnitude of the velocity vector. The second term

on the right hand side of Eq. 2.10.16 is the momentum error contribution to the total enthalpy er-

ror. Substituting p—%et# from Eq. 2.10.7 into Eq. 2.10.16, we get
ohy _
P = [— Vpue, + eV pu) = V(= kVT)
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+ Velu-wPu+pvu)) - V-Pz_:]—LCR- ‘1—’[’ . (2.10.17)
A4

This equation may be rewritten, by using 4, = e, + P/p, as

oh
pt=y [ 7puh + AV o) = (= kFT)
=-T. P pR ., 3V
+ Voelu + - =V pul—- —V="7- . .10.
| Velur(uPu+pvu) o 14 Pl_l] C, & (2.10.18)
By noting that V" - pu = dp/dt, the last two terms of Eq. 2.10.18 are of the form,
ap av.
==+ : 10.

At the steady state, Eq. 2.10.18 becomes

0=y [~ Vi puhy— V- (=kVT)+ V-[u-uVu+pva) . (2.10.20)

Therefore, we may arbitrarily alter the variables | and m and the steady form of the energy equation,
Eq. 2.10.20, will be obtained for cdnverged solutions. The convergence of the solution is improved

by choosingl = m = 0 so that the transient energy equation used for each time step is,

aa_};'=y [— Vepuhy+ h(V pu) — V(= kVT)

+ V-[g--(p Vu + p’f{])]] . (2.10.21)

By settingl = m = 0, we remove the influence of the continuity and momentum errors to the
energy equation during transients in the solution. Applying Gauss” theorem to Eq. 2.10.21 we get

the integral form of the energy equation,

g SVol = 1 [~ Ifpuc dd + Biffpu-dd ~ f[—kPT-dd
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+ fflus Py + wTuN - dd] (2.10.22)

where 4, and P are average values for the control volume. The time step used in Eq. 2.10.22 must
be reduced by a factor of y compared with that used in Eq. 2.10.8. This reduced time step is needed -
to ensure the stability of the new formulation since the coefficient of the steady terms in the energy

equation have increased by a factor of y in the new formulation (see section 2.5).

It was found to be important in the irnplgmentatiog of the energy equation, that the heat flux term
and the work done due to shear forces term were evaluated con;istently. This means that the work
due to shear forces should be evaluated midway between the node points and not at the control
volume faces because the heat flux calculation by the nature of its discretization is valid at the

midpoint between the node points.

An interesting observation can be made from this form of the energy equation about boundary layer

flow over a flate plate with a Prandlt number of 1. For steady ﬂow, Eq. 2.10.22 becomes
0= — (fpuny-dd — ([ - kVT-dd

+ (flu-Vu+ WTEN]dd . | (2.10.23)

In addition, the viscous terms are simplified using the boundary layer approximation by noting that

| T\ ~ du aul2
. | + — — —  e——— . .
u-uVu ;,LV'u)_uua = (2.10.24)
and therefore
au?)2

dd, . . (2.10.25)

- flu @+ WP dd = [

For an ideal gas with constant specific heats,
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=_h
T ;, (2.10.26)
and the Prandtl number is defined as,
G
Pr= % (2.10.27)
therefore,
- (f - . = ((Erh.
” k V}T dA ” Br Vh-dd . (2.10.28)

Also if gradients in enthalpy in the x-direction are small compared to gradients in the y-direction,

then
B ph.edq ~ (L Gh
H L Vhedd = ” b oy dd, . (2.10.29)
Substituting Eqs. 2.10.24, 2.10.25, 2.10.28, and 2.10.29 into Eq. 2.10.23, we get
_ oh ou’|2
= — jjpl_lhtodﬁ + H‘ﬁ? -a-y-dAy + “pTdAy . (2.10.30)

The last two terms of Eq. 2.10.30 can be combined if the Prandtl number is taken as 1. The re-

sulting equation is
0= — [fouh-dd + [[utda 2.10.31
= HP_:_ ﬂu—@- y (2.10.31)
If the total enthalpy is constant in the flow, A, = 0, therefore
ohy o _
Hp.—éi)—dAy =0 (2.10.32)

and

2.0 ANALYSIS SECTION _ _ 124



~ (fpuh,+dd = — h([pu-dd =0 . | (2.10;33)
. | |

at the steady state. Therefore the speciﬁcétion of constant total enthalpy in the flow field is a sol-
ution to the energy equation for flow over a flate plate when the Prandtl number is 1. It should
be noted also that the term, | 5u—?y’—'—dAy, is a diffusion term in terms of the total enthalpy ,4,. The
energy equation and the momentum equation are therefore similar enough to justify the use of

approximately the same time steps for both the energy and momentum equations.
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3.0 RESULTS

3.1 FLAT PLATE BOUNDARY LAYER

A laminar boundary layer was calculated m a constant height duct. The boundary layer thickness
at the inlet was 15 % of the duct height. The freestre@ Mach number was 0.43. The inlet velocity
profile was the Blasius profile. The absolute viscosity was 0.01 kg/m s. The duct height as 44 mm
and the duct length was 112 mm. The geometry and the grid are showh in Fig. 3.1.1. The
Reynolds number based upon x varies from 5070 to 11840 along the duct. The duct is 17 inlet
boundary layer thicknesses long. Fig. 3.1.2 shows that the development of the velocity profile

compares very well with that predicted by theory.

3.0 RESULTS 126



SLTINS3d 0°¢

LT1

Fig. 3.1.1 Geometry and Grid For Flat Plate Laminar Boundary Layer Calculation




.00

+
A
o O X=0.08m
. +
o X = 0.143 m
A
+ X=0.196m
[an]
w +
o] —ee . BLASIUS
N |
-
~
oo
=t
5_1 +
(e ]
o
(qV]
C;_
(o]
(ew]
I
. 00 1.00 2. 00 3. 00 1. 00 5. 00

Fig. 3.1.2 Flat Plate Laminar Boundary Layer Velocity Profile

3.0 RESULTS ' 128



3.2 INVISCID CALC ULA TIONS OF SAJBEN'S

DIFFUSER

Sajben’s diffuser (26) will be used here as a test case to illustrate the difference in the results obtained
using the effective pressure and effective density methods (see section 2.4). R‘emember that an ef-
fective pressﬁre or an effective density is needed to stabilize the solution procedure for the density
update and the pressure update methods, respectively. The calculations in this section were made
using a three dimensional finite-volume code derived from the Denfon finite volume code (16) now
in use at NASA Lewis Research Center. This new code uses the current control volumes (see

section 2.2) in a three dimensional configuration.

The geometry and grid used in the calculations are shown in Fig. 3.2.1. There were 34 axial grid
points and 10 equally spaced radial grid points. The current calculations are made essentially two
dimensional by inputing the coordinates of the diffuser at a very large radius (900 m) in x-r coor-
dinates. The calculations begin at x/h=-3.6 and end at x/h=7.9, where h is the throat height. The
inlet total pressure is 135 kPa and the inlet total temperature is 300 K. The exit static pressure is
108 kPa. This gives a P,,;/P, ;.. =0.800. With these conditions, one dimensional isentropic flow

gives a shock with an upstream Mach number of 1.495 at the location marked in Fig. 3.2.1.

Multigridding (16) is used to improve the convergence speed.

Fig. 3.2.2 shows a comparison of the effective pressure and the thermodynamic pressure for this test
case when the the density update method was used. In regions where the flows varies smoothly,
the effective pressure and thermodynamic pressure are essentially equal but in regions of the flow
where there are large gradients in properties they can be substantially different (up to 10 %). Fig.
3.2.3 shows a compé.rison of the total pressure through the diffuser calculated using the
thermodynamic pressure and the effective pressure. The total pressure calculated from the effective

pressure is in much better agreement with the theoretical solution; however, current practice is to
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print out the total pressure calculated from the thermodynamic pressure. The exit P, , /P, i 1S
calculated to be .931 for both cases and it ”agreevé well with the one dimensional analytical value of

.9304.

Fig. 3.2.4 compares the bottom flat wall static pressures for calculations of transonic flow in
Sajben’s diffuser using the effective pressure méthod and the effective density method with the same
boundary conditions as specified above. The pressure shown in Fig. 3.2.4 from the density update
method is the effective pressure. Fig. 3.2.5 compares the total pressure for these two cases. The
effective density method gives a much more uniform total pressure upstream and downstream of

the shock; there are no overshoots in total pressure when the effective density method is used

In summary, much better total pressure distributions through shocks are obtained when the in-
terpolated effective pressure, needed to stabilize the density update solution procedure, is used to
calculate the total pressuré. This simple change largely eliminates the undershoot in total pressure
downstream of a shock. Overshoots and undershoots in total pressure can then be further reduced

by a factor of 10 by adopting the effective density method rather than the effective pressure method.

3.3 THE INFLUENCE OF TRANSVERSE
SMOOTHING ON A STEP PROFILE IN A

STRAIGHT DUCT

Transverse smoothing is required in Denton’s method with the control volumes shown in Fig.
2.1.2 because there are more grid points across the duct (unknowns) than there are control volumes
(equations). Smoothing formulae are used to add non-physical “extra equations”. Two forms of

transverse smoothing are used in the Denton code; these are linear smoothing, described in Table
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3.3.1, and non-linear smoothing,vde‘scribéd in Table 3.3.2 and Fig. 3.3.1. This transverse smoothing
of properties cause numerical viscosity to be introduced into the solution when large gradients in

the properties are seen across the duct.

For calculations where the gradients across the duct are small, little numerical viscosity would be
expected. However, in the boundary layer region of a viscous flow the gradients in properties can
be large and this smoothing could cause large numerical viscosity. As a severe test case, calculations
were made for a step profile in inlet properties in a straight duct. Both the control volﬁmes used
by Denton and the control volumes used in the present work were used in the Calculations. The
geometry can be seen in Fig. 3.3.2. A step inlet profile of total pressure is specified. The total
pressure at the centerline is 135 kPa and the tofal pressure is reduced to 120 kPa (

P, iel Prenterine = 0.889) at the sides (see Fig. 3;3.3). The exit static pressure in the duct is 108 kPa

(0'8P t.cmterline)'

i

Fig. 3.3.4 shows Mach number profiles at three axial locations along the duct for the case where
linear smoothing was used (with SF=0.02). The inlet step profile (x = 0.0 m) is quickly altered
into a parabolic type profile (x = 4.0 m). This parabolic profile then changes relatively little until
the end of the duct (x = 21.0). Fig. 3.3.5 presents the total pressure distribution along the duct.
The step profile causes an almost step change in the total pressure at the beginning of the duct and
then the total pressure decreases as in a viscous flow. Fig. 3.3.6 compares the Mach number profiles
at the end of the duct for calculations usipg linear smoothing (SF = 0.02) and non-linear

smoothing (SF = 0.02). Non-linear smoothing did not improve the profile.

Additional calculations were made using the same boundary conditions as above but using the new
control volumes and no smoothing. Fig. 3.3.7 compares the inlet Mach number and exit Mach
number profiles for this test case. The improvement over the previous results is dramatic.  The total
pressure distribution has also improved especially along the centerline of the duct as can be seen in

Fig. 3.3.8. These results show conclusively that the numerical scheme used to calculate flows with
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Table 3.3.1 Linear Smoothing of Flow Properties

D(J) = (1.-SF) * D(J) + SF*( D(J+1)+D(J-1))
2.

the variable D at node J is smoothed using this
equation. The smoothing factor is SF, typically
0.01 - 0.02. The variables are updated and then
smoothed. The variables that are smoothed are

/o,/DVx,/)Vr,/JrVe s and/e.
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Table 3.3.2 Procedure for Non-Linear Smoothing

1)
2)
3)
4)

5)

3.0 RESULTS

an average value of a property D is determined from
the neighboring nodes using linear interpolation.
AVG(J) - (see Eq. 1 Fig. 3.3.1)

the difference between the actual and average value of
a property D at a node is determined and assigned the
variable name CURVE(J). ( see Eq. 2 Fig. 3.3.1)

a variable SCURVE is determined from the average of the
variable CURVE from the neighboring nodes.
( see Eq. 3 Fig. 3.3.1)

the variable D at node I is smoothed using equation 4
in Fig. 3.3.1. The smoothing factor is SF,
typically 0.01 - 0.02.

this non-linear smoothing procedure results in no
smoothing added to linearly or parabolically varying
properties.
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D(J+1)

l D(J)
3 Ve
CURVE (J) k S
) AVG(J)
~<— x2 —>

FU(J)= X2/ (X1+X2)

FD(J)= X1/ (X1+X2)

1) AVG(J)=FD(J)*D(J+1)+FU(J)*D(J-1)
2) CURVE (J)=D(J)-AVG(J)
3) SCURVE (J)=FU(J) *CURVE (J-1)+FD(J) *CURVE (J+1)

4) D(J)= (1.-SF)*D(J)+SF*(AVG(J)+SCURVE(J))

Fig. 3.3.1 Non-Linear Smoothing
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large transverse gradients in properties , like those seen in turbulent boundary layers, must not have

smoothing of properties in the transverse direction.

3.4 1-D COMPUTATIONAL TESTS OF SHOCK
CAPTURING USING PRESSURE INTERPOLATION
FORMULAE TO CALCULATE EFFECTIVE

DENSITY

DENTON'S 1-D NOZZLE FOR TESTING SHOCK CAPTURING

Denton (15) has tested shock capturing with his finite-volume method in a convergent-divergent -
nozzle (see Fig. 3.4.1) designed to produce a linear variation of Mach number with distance for 1-D

isentropic flow. The equation for the Mach number variation with distance is
x=10.+45M—-1) . (3.4.1)

Denton considered flow which began at x = 1, where the Mach number was 0.8 and ended at
x =46, where the Mach number was 1.8. The throat (M = 1.0) was located at x = 10. He used
three back pressures with P,/ P, e = 0.85, 0.80, and 0.7, respectively. The theoretical 1-D sol-
utions for these flows are shown in Fig. 3.4.2. The maximum Mach numbers, just upstream of the
shock , are 1.268, 1.455, and 1.578, respectively. This is a range of shock Mach numbers typical

of turbomachinery flows.

These three pressure ratios are used with Denton’s 1-D nozzle to test shock capturing with three

of the pressure interpolation methods discussed in Section 2.4 (Pressure Interpolation).
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PRESSURE INTERPOLATION SCHEMES

The effective density method used in the current work uses an interpolated approximation for the
pressure in the evaluation of the density. A general form of the interpolation formula considered

in this thesis is
e = - i - % - :
Pivy = Pi+ a(Pryy = P) + 5Py = Piq) + 5-(Pivy = Piy) (34.2)

and this is used to evaluate the density as

Dray = Piy

(3.4.3)

This general form is a linear combination of a single-point interpolation, P,., — P, a 2 - point in-
A
terpolation, P;., — P,_,, and a 3 - point interpolation, P,,, — P,—,. The single-point interpolation,

of course, really gives the correct perfect gas equation and involves no approximation.

The coefficients a,, a,, and a, are here taken to be constants or functions of Mach number. Com-

binations, including individual terms of pairs of terms, for which the sum of the coefficients

are second order accurate, as shown in Appendix A.

Correct Perfect Gas Equation (a, =0,q, =0,andag,=0)

This scheme has the advantage that it involves no interpolation or approximation for the pressure.
Experience has shown that it is stable for subsonic flow. But the stability analysis of Section 2.4
shows that for Mach numbers above about 1.2 this scheme becomes unstable. Thus it could not

be used for the test cases of Denton’s 1-D nozzle.
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These observations about the use of the correct perfect gas equation are in agreement with Denton’s
findings for his scheme B (15). In that xﬁethod changes in density were sent to the upstream corners
of the element, which is equivalent to our sending pressure changes upstream. The method “proved
stable, without any correction factors or damping, at low Mach numbers but instability was found

to develop at Mach numbers around unity and above.”

2-Point Interpolation (¢ =0,q =1,a,=0)

The stability analysis presented in Section 2.4 shows the 2-point scheme to be stable for Mach
numbers up to about 2.0. Use of a 2-point scheme or a 3-point scheme has been suggested by

Denton in his recent ASME and AGARD Lecture Notes (13,14).

3-Point Interpolation (¢, =0,q =0,5,=1)

3-point schemes have been shown in Section 2.4 to be the most conservative (in terms of stability)
of the schemes considered in this thesis. Perhaps for this reason, such a method is used to stabilize
the current NASA version of the Denton code. Both 2-point and 3-point schemes provide second
order accuracy for a continuously changing pressure; they give correct interpolation values for linear

variations in pressure (assuming equally spaced grid points).

M&M Mach Number Dependent Interpolation

The advantages of the three schemes just considered are :
1. the accuracy and stability of the perfect gas equation for subsonic flow;
2. the stability of the 3-point interpolation at Mach numbers greater than 2.0;

3. the stability and reduced smearing of properties of the 2-point interpolation at supersonic

Mach numbers up to 2.0.
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These advantages have been combined in a single Mach number dependent interpolation scheme

in Section 2.4.

Inthisinethod
=08 4
4 =1-q
o =0
% =0
__4
02=1_al

7~ 1

M<20

M = 2.0

(3.4.4) |

The values of the three coefficients are shown graphically in Fig. 3.4.3. Note, once again, that the

sum of the coefficients is equal to one for all Mach numbers, so that this scheme is also second

order accurate. For the calculations presentéd here M was taken as the larger of M on the upstream

and downstream side of the control volume.

COMPUTATIONAL TESTS OF THRBE PRESSURE INTERPOLATION SCHEMES

Of the four schemes just considered, three are stable in the Mach number range 1.0 to 2.0. These »

are the 2-point, 3-point, and M&M interpolation methods. In this section, results of shock cap-

turing with these three methods are presented and compared for Denton’s 1-D nozzle.

The one-dimensional calculations were performed with 46 axial grid points with an equal axial

spacixig between grid points of 1 unit. The inlet Mach number was 0.8. The ratio of specific heafs,
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Y, was 1.4 and the gas constant , R , was 287. J/kg K. Calculations were made with P it Py inier Of

0.85, 0.80, and 0.75.

The variations of static pressure , Mach number, and total pressure are plotted for each interpo-
lation scheme using the same scales as for the theoretical solutions which can be seen in Fig. 3.4.2.
Fig. 3.4.4 shows the results for the 3-point scheme, Fig. 3.4.5 for the 2-point scheme, and Fig. 3.4.6
for the M&M method. The results from the 3-point and M&M schemes are shown together with

the theoretical solution on Fig. 3.4.7 for the pressure ratio of 0.80.

The calculated values of maximum Mach numbers upstream of the shock and total pressure ratios

are compared with the values from the theoretical 1-D solutions in Table 3.4.1.

The total pressure ratios across the shocks are well calculated by all three interpolation formulae
as shown in Table 2b. This is in spite of the fact that the calculated values for the maximum Méch
number upstream of the shocks are significantly different from the theoretical values. For example,
at the lowest back pressure, the theoretical Mach number upstream of the shock is 1.578 while the
3-point interpolation formula gives 1.501, the 2-point formula gives 1.526, and the M&M formula
~ gives 1.533. For this case the calculated values of total pressure ratio are 0.9029, compared with
the theoretical value of 0.9032. In general the M&M formula gives the closest agreement with the
upstream Mach number while the 3-point formula gives the worst results. Based on the maximum
calculated upstream Mach number for these cases , the M&M formula would give shock losses
from 16 to 41 percent too small, while the 3-point formula would give values from 27 to 67 percent
- too small. Interestingly the agreeement for shock losses based on maximum upstream Mach
number improves (for all three formulae) as the Mach number increases. However, these results
show that the peak calculated Mach number should not be used to predict shock losses and that
the calculated total pressure loss across the shock is accurate to bbetter than 0.1% and it should be

used.
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Table 3.4.1. Results of Calculations for Denton' 1-D Nozzle.

Table 3.4.la: Maximum Maéh number upstream of shock

Interpolation Formula

P
_exit Theoretical 3-Point 2-Point Mach Number
Pt inlet ' Dependent
0.85 1.268 _ “1.175 1.198 1.218
0.80 1.455 1.374 1.395 . 1.408
0.75 1.578 1.501 1.526 ‘1.533
Table 3.4.1b: Total pressure ratio, P .. /P ) »
t exit’' "t linlet
Interpolation Formula
P it
—exX= “Theoretical 3-Point 2-Point Mach Number
Pt inlet Dependent
0.85 0.9846 0.9845  0.9845 0.9845
0.80 0.9433 o 0.9431 0.9432 0.9432

0.75 0.9032 ‘ 0.9029 0.9029 0.9029
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The results in Figs. 3.4.4, 3.4.5, and 3.4.6 show that the interpolation formulae all act to smooth
properties upstream of the shocks. The smoothing is most noticeable in the static pressure and
Mach number distributions, especially with the 3-point interpolation scheme. The 2-point scheme

gives less smoothing while the M&M formula gives the sharpest and most accurate distributions.

Both the 3-point and 2-point interpolation schemes give overshoots in static pressure and under-
shoots in Mach number downstream of the shocks. Only the M&M interpolation formula shows -
no noticeable overshoots and undershoots and this'is because it has a better formulation for sub-
sonic flow; in fact, from Eq. 3.4.4, it can be seen that the M&beormula reduces to the correct

perfect gas equation for Mach numbers less than ‘0.918.

‘The M&M formula captures the shocks over about four grid points éentered around the theoretical
shock location. This is seen fér the pressure ratio of 0.8 in Fig. 3.4.7. In cqptrést, Fig. 3.4.7 shows
the 3-point scheme smearing the »'shoclic over_aboui ten grid poinfs with the‘s'h;c)_ck_ displaced slightly
downstream due to inadequate resolution of the subsbnic flow. Once again the 2-point scheme

gives results intermediate between those of the M&M and 3-point sch_émes.

3.5 LAMINAR BOUNDARY LAYER IN TWO

CONVERGING DUCTS

| A laminar boundary layer is calculated on the curved wall of two converging ducts. The other wall
is straight and was treated as inviscid in.the calcﬁlations. In all the calculations, the inlet boundary
layer thickness is 5% of the inlet duct height. The inlet velocity profile is the Blasius profile. The
inlet height of the duct is 44 mm and the exit h_eight is 31 mm. The length of the duct is 180.4

mm. The absolute viscosity is .001 kg/m s. The inlet freestream Mach number is 0.10.
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Two geometries are investigated with the basic dimensionS given above. For one geometry, the
curved wall radius is determined using a sine wave formulation. This geometry has a smooth
fransition from the inlet to the exit sections. The second geometry is essentially the same except
that the radius is not determined using an analytical function and the second deﬁvative of the wall
radius is discontinuous. Both uniform and non-uniform grids are used in the boundary layer region.
Figures 3.5.1 through 3.5.3 show the grid and geometry for the 3 arrangements to be investigated.

The arrangements are

1. Smooth geometry using non-uniform grid ( Fig. 3.5.1)
2. Smooth geometry using uniform grid ( Fig. 3.5.2)
3. Non-smooth geometry using uniform grid ( Fig. 3.5.3)

A plot of the 2nd derivative of the wall radius as a function of axial position for the non-smooth
and smooth geometries is seen in Fig. 3.5.4. The location of the discontinuity is also identified in

Fig. 3.5.3.
The specific ideas which are to be illustrated using this test case are,

1. Comparison of skin friction coefficients calculated using the finite volume method with those

calculated using Thwaites method.
2. Comparison of skin friction coefficients calculated using uniform and non-uniform grids.
3. Comparison of skin friction coefficients calculated using smooth and non-smooth geometries.

4. Investigation of pressure variations across the duct comparing the uniform and non-uniform

grids results, and non-smooth geometry results.
5. Investigation of inlet and exit boundary condition specifications.
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6. Investigation of the convergence properties of uniform vs non-uniform grids, coarse vs fine

grids, and different multi-volume approaches.

The radial distribution of grid points for the coarse, uniform and non-uniform grids and the fine

non-uniform grid are tabulated in Table 3.5.1.

For the smooth geometry in Fig. 3.5.1, the skin friction coefficient along the duct was calculated
using the finite volume method and using the method of Thwaites (28). A coarse non-uniform grid
was used for the finite volume calculations. Thwaites method is an integral method used to calcu-
late the development of laminar boundary layers in incompressible flow. Using the wall static
pressure distribution from the finite volume calculation as a boundary condition, the skin friction

coefficient was calculated with Thwaites method. Fig. 3.5.5 compares the skin friction coefficients
obtained from the finite volume calculations with those obtained using Thwaites method. The
agreement is good for most of the flow ;however, near the exit of the duct there is a discrepancy.
This discrepancy may be due to the Ifact that the boundary layer has grown to over 25% of the duct

height at the exit.

The skin friction coefficients calculated with the finite volume method using uniform and non-
uniform grids are shown in Fig. 3.5.6. The agreement is cxéel.lent and it is concluded that grid

spacing does not affect the prediction of the skin friction coefficient for this laminar flow.

The skin friction coefficients for the flow through the smooth and. non-smooth geometries are
shown in Fig. 3.5.7. Superficially, the geometries in Figs. 3.5.2 and 3.5.3 look almost identical ;
however, for the non-smooth geometry the second derivative of the lower wall radius of curvature
is discontinuous (see Fig. 3.5.4) causing the solution to be erratic at the discontinuity. To ensuré

smooth calculations, geometries input into this program should have continuous second derivatives.

The cause for the rapid increase in the skin friction coefficient at the discontinuity can be seen in

Fig. 3.5.8. Fig. 3.5.8 is a plot of a transverse pressure coefficient which is defined as -
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Table 3.5.1 ATransverse Distribution of Grid Points
for Laminar Calculations

Uniform : Non-Uniform ‘ Non-Uniform

Grid Grid C Grid
Coarse Coarse Fine
y/h ~ y/h ‘ y/h
.005 L0024 0004
.015 .0071 .00115
.025 .0142 00225
.035 .0283 .0040
.045 | L0563 .0075
.060 .1125 .0150
.085 .225 .0300
.125 .400 | .0575
.200 .625 .1125
.375 .875 .225
.625 | - | .400
.875 - .625
- - .875
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P-P _
Cp, = ————{i | . (3.5.1)
0.5pu

where p-is the local static preséure at an axial location, P is the freestream static preséure at this
axial location , and 0.5pu2 is the dynamic pressﬁre at the inlet to the nozzie. The different curves
in Fig. 3.5.8 represent the pressure c‘oeﬁic'ientvat every other grid line from the wall to the freestream.
Because of curvature, the pressure gradie'nf across the duct first risé_s and then falls. The wall
pressuré (P1) is seen to change very rapidly at the point of the discontinuity. This large axial
pressure gradient results in a large change in velocity at the discéntixiuity and thus the large change

in skin friction coefficient that was seen in Fig. 3.5.7.

For the smooth geometry the transverse pressure coefficient is shown in Fig. 3.5.9. The pressure
changes are smooth throughout the entire length of the duct. The pressure coefficients shown in-
Fig. 3.5.9 are from calculations using a non-uniform grid. Fig. 3.5.10 shows identical results for

calculations made using a uniform grid in the boundary layer.

In Figs. 3.5.8, 3.5.9, and‘3.5.10, a small transverse pressure gradient can be observed at the inlet to
the duct. This small transverse pressure gradient is a result of specifying the inlet v-velocity to be
equal to zero. This boundary condition would be typical of inviscid calculations ; however, the
boundary layer in this viscous flow does have a finite v-velocity as a result of the growth of the
boundary layer. The growth of the vboundary layer for this test case is large because of the high
absolute viscosity used. An additional calculation was made by modifying the boundary condition
on the inlet v-velocity. From a preViqus calculation, the flow angles at the second axial station were
recorded. These flow angles were then used as the inlet boundary condition for the inlet flow angle
in a subsequent calculation. The transverse pressure coefficients for this case are shown in Fig.
3.5.11. The inlet transverse pressure coefficient is reduced considerably when compared with the
pressure coefficient shown in Fig. 3.5.9. When the Blasius solution was used to calculate the inlet
V-Qelocity distribution, the solution over compensated and the transverse pressure gradient was in -

the opposite direction to that calculated when a zero v-velocity was specified.
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It was also found to be important that the inlet and exit lengths of the straight portions of the duct
were long enough. Oscillations in the static pressure would occur at the inlet and exit if these

lengths were too short.

An additional pressure coefficient was calculated for each of the cases described above. The pres-

sure coefficient is defined as

cp=Ju =P 2” | | (3.5.2)
0.5pu” '

where P, is the freestream total pressure, p is the local static pressure, and O.Sp_u2 is the inlet dy-
namic pressure. This pressure coefficient again shows the effect of curvature on the pressure
through the boundary layer but it also shows the relative acceleration of the flow through the

nozzle. The plots are |

1. non-smooth geometry wjth uniform grid ({:Fig. 3.5.‘l>2 )

2. smooth geometry with non-uniform grid ( Fig. 3.5.13)

3. smooth geometry with uniform grid 'v( Fig. 35 14)

4. inlet flow angle specified with non-uniform grid ( Fig. 3.5.15)

This test case also provided us with an opportunity to investigaté the ‘stabi]ity and convergence

properties of various multi-volume approaches (see section 2.8) within the boundary layer. The

various strategies are
1. [MV1] no multi-volume used in a uniform grid
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2. [MV2] multi-volume used in a uniform grid with time steps based upon properties for the in-

dividual. control volume farthest away from the wall.

3.  [MV3] multi-volume used in a uniform grid with time steps based upon average properties for

the entire multi-volume region.

4. [MV4] multi-volume used in a non-uniform grid with time steps based upon properties for the

individual control volume farthest away from the wall.

5.  [MVS$] multi-volume used in a non-uniform grid with time steps based upon average properties

for the entire multi-volume region.

For the uniform and non-uniform grids, the multivolume approach was used for the 6 control

volumes nearest to the wall.

Two measures of convergence will be used in the following analysis. The maximum change in ve-
locity in the flow field for one iteration divided by an average velocity for the flow field all multiplied
by the time factor used in the time step determination will be our momentum residual, in other

words,

(un+l —

n
Wmax . TpEF (3.5.3)

momentum residual =
Uavg

The time factor, TIMEF, is included so that calculations using different time factors in the time step
determination can be judged on a common basis. A time factor of 4.0 was used for all of the laminar

calculations. The mass flow rate error is defined as

mass flow error = |M|mu x 100 (3.5.4)
o

The momentum residual for multi-volume approaches 1 through 4 are shown in Fig. 3.5.16. The

mass flow error for approaches 1 through 4 are shown in Fig. 3.5.17. The non-uniform grid shows
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superior convergence properties when compared with the uniform grid results. When the uniform

grid is used, approach MV3 is the best.

When the momentum residual and mass flow error for the non-uniform grid approaches MV4 and
MVS5 are compared in Figs. 3.5.18 and 3.5.19, the results are very similar. This agreement justifies
the use of the simpler multi-volume approach (MV4) for the non-uniform grid. The simpler

multi-volume approach uses less computer time in the multi-volume part of the program.

When a finer grid was used with the non-uniform grid arrangement in the boundary layer region
(twice as many control volumes), the skin friction coefficients were identical to those calculated
from the coarse grid (5 points in the boundary layer). The momentum residual and the mass flow
error for the coarse and fine grids are compared in Figs. 3.5.20 and 3.5.21 respectively. The con-

vergence properties are very similar.
The following conclusions can be reached from the above test case:

1. the geometries should be inspected for discontinuities in the second derivative to ensure

smooth solutions.
2. uniform and non-uniform grids give essentially identical results for this laminar boundary layer.

3. the non-uniform grid (with a factor of 2 change in spacing) has superior convergence proper-

ties.

4. the simple form of the multi-volume used with the non-uniform grid (MV4) is preferred be-

cause of the reduced computational effort required.
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3.6 SAMUEL AND JOUBERT INCOMPRESSIBLE

TURBULENT BOUNDARY LAYER

Incompressible turbulent boundary layer flow in a diverging duct was calculated for test 'casé 0141
of the Stanford Conference (Samuel and Joubert) (29). The geometry used by Moore (30) and the
grid used in the present calculations are shown in Fig. 3.6.1. With this geometry, the top wall is
treated as inviscid in the calculations. The inlet velocity is 26 m/s. The absolute viscosity is

0.000018 kg/ m s.

The duct height is 1 m at the inlet plane (x = 0.85 m). The length of the duct from the inlet to
the exit plzine is 3.3 m. The distribution of grid points across the duct and the inlet velocity profile
are presented in Table 3.6.1. In the present calculations, the inlet total pressure is 102 kPa and the
inlet total temperature is 300 K The exit static pressure was chosen to be 100 kPa so that the inlet

velocity in the freestream would be approximately 26 m/s.

Fig. 3.6.2 shows a comparison of the calculated skin friction coefficient with the experimental re-
sults and with the results from the Moore cascade flow program. The agreement is excellent. The

skin friction coefficient, defined here as

T
G =—"—, (3.6.1)

uses a reference velocity , U, of 27 m/s in its evaluation.

A comparison of the calculated turbulent shear stress distribution , W', with the experimental re-
sults is shown is Figs. 3.6.3 and 3.6.4. The shear stresses are normalized with respect to the local

freestream velocity. The agreement is very good.
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Table 3.6.1 Node Distribution and Inlet
Velocity Profile for Samuel and Joubert

¥y , - ulu,
0.000165 o 0.406
0.000665 0.574
0.00200 0.674
0.00500 - - 0.760
0.0110 0.880
0.0230 0.990
0.0470 1.00
0.0950 -
0.1910 -
0.3080 -
0.4145 -
0.5120 -
0.6275 | -
0.7340 -
0.8405 -
0.9470 -
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Fig: 3.6.5 shows a comparison of the calculated and measured velocity profiles at two locations in
the duct. The agreement is good at x= 2.87 m, however, the calculated boundary layer at x=23.40
m is thinner than the measurements. It is noteworthy that the program has been able to calculate

an essentially incompressible flow (M < 0.075).

3.7 SAJBEN'S DIFFUSER CALCULATIONS

The diffuser geometry (Model G) (26) is shown in Fig. 3.7.1; the throat height ,h, was 44 mm and
the ratio of the exit height to throat height was 1.513. The calculations begin at x/h=-3.6 and end
at x/h=28.2. Fig. 3.7.1 also shows the computational grid used which had 87 grid points in the axial
direction and 20 points across the flow. The radial distribution of grid points used is shown in
Table 3.7.1. The development of a turbulent boundary layer was modeled on both the curved and
the flat walls. The inlet boundary layer thicknesses were specified as 9 % and 4.5 % of the inlet
diffuser height for the curved and flat wall boundary layers, respectively. An absolute viscosity of
0.000018 kg/ m s was used. The inlet total pressure was 135 kPa and the inlet total temperature
was 300 K.

For this calculation, the ratio of the exit static pressure to the inlet total pressure was 0.826. This
computational exit static pressure is equal to the experimental exit static pressure plus a correction
in pressure for the side wall boundary layer blockage. Suction slots upstream of the throat and
downstream of the exit plane reduce the side wall boundary layer blockage and imprové tﬁe two-
dimensionality of the flow. ‘However, the side wall boundary layers do affect the effective flow area
of the diffuser and the two dimensional computations must reflect this when a suitable exit static
pressure is chosen. Therefore the exit static pressure of 0.826is 1.5 % greater than the éxperimental
static pressure because of the blockage effect of the side wall boundary layers. In the experiment,

this test point results in transonic flow in the diverging portion of thevduct with a Mach number
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Table 3.7.1 Iransverse Distribution of Grid Points
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0.0005

0.0020
0.0050

0.0110
0.0230

0.0470
0.0950
0.1910

0.3080

0.4305
0.5695
0.6920
0.8090
0.9050
0.9530

£ 0.9770

0.9890
0.9950
0.9980
0.9995
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of approximately 1.235 upstream of a nearly normal shock, and the flow remained fully-attaéhed

throughout the diffuser at this test condition.

A plot of static pressure contours is shown in Fig. 3.7.2. The shock can be seen in the diverging -
portion of the duct. The shock is well defined as illustrated by the high élustering of contours at
the shock. The M&M formula (see section 2.4) is used to calculate the the interpolated pressure
which is used in the calculation of the effective density. Fig. 3.7.3 shows a Mach number cdntour

plot for the calculations. The extent of the boundary layer can be seen from this figure.

The calculated and measured curved wall static pressures are compared in Fig. 3.7.4. The shock is
very well defined and no overshoot occurs in‘ the static pressure. ‘The static pressures do not agree "
so well downstream of the shock because the 2-D calculations do not reflect the rapid increase in
the side wall boundary layer thickness and its effective blockage. The point of minimum static
pressure in the calculations is located at x/h=1.5. This is taken to be the location of shock. The
Mach number upstream of the shock was determined to be 1.256 from the calculated total pressure

ratio across the shock in the freestream.

The computed and measured shock locations on the curved wall are compared in Fig. 3.7.5. The
variable x_, is the shock location on the curved wall and x_, is the shock location in the middle of
the duct. The Mach number upstream of the shock, determined from static pressure measurements,

is represerited by M,, in Fig. 3.7.5.

The Mach number distribution through the nozzle at a fixed y/h of 0.0905 is shown in Fig. 3.7.6.
This grid line was chosen because the maximum Mach number is located along it. The shock is

sharp and no overshoots or undershoots occur.

Comparisons of calculated and measured velocity profiles (see Ref. 27) at four axial locations along
the duct are shown in Figs. 3.7.7, 3.7."8, 3.7.9, vand 3.7.10. The axial locations are x/h= 2.31, 4.03,

6.34, and 8.2 respectively. The agreement is good especially at the two downstream stations. The
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velocities in Figs. 3.7.7-3.7.10 are normalized with respect to the maximum computeid or measured
velocity in the duct at that axial location, which ever is applicable. In the calculations, the edge of
the boundary layer is located where the normalized total pressure gradient is 25.0. It may be noted
that the present calculations give much better agreeement with the measured velocity profiles than
the calculations of Liou, Coakley, and Bergmann of Reference 31 (see Fig. 3.7.17). Other investi-
gators who have used Sajben’s diffuser as a test case have not shown a comparison of their com-

puted velocity profiles with the measurements of Ref. 27.

Fig. 3.7.11 shows static pressure contours for calculations which were made using the three-point
scheme for the interpolated pressure. The shock resolution is not nearly as well defined as that
obtained when the M&M formula is used. Fig. 3.7.12 shows the corresponding Mach number

contour plot when the three point interpolation scheme is used.

The distribution of loss generation in the diffuser will be presented in three ways. First, the losses
due to the curved wall boundary layer, the flat wall boundary layer, and the shock loss in the
freestream are compared in Fig. 3.7.13. These losses were detemﬁned by first calculating the mass
flow rates in the boundary layers and the freestream at the diffuser exit using the calculated
bdundary layer thicknesses as the boundaries between regions. Then the mass averaged total
pressure loss at each axial location was calculated by integraiing the total pressure loss out to these
fixed mass flow rate values and then normalizing these losses with respect to the inlet freestream
total pressure (see Table 3.7.2). All three losses are approximately the same. The curved wall
(bottom wall) boundary layer contributes the ‘:laxgest proportion to the total losses because the

boundary layer is thicker there.

The total pressure loss along an inviscid streamline is compared with the mass averaged total pres-
sure loss for the entire cross-section of the diffuser in Fig. 3.7.14. This figure allows another means
of comparing the shock and total losses. The total pressure loss through the shock is very well
defined. The mass averaged total pressure loss thxough the shock is approximately 30% greater

than the shock loss alone.
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Table 3,7,2 Example Calculation of Total Pressure

Loss for a Boundary Layer

oL~"g e
o

3 = Py _intet FPe-1ocar’ * Im
t-losses
Mtotal
* where m is the total mass flow rate through
total

a given cross-section of the diffuser, and ﬁs is the

mass flow rate in the boundary layer at the exit.
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The mass averaged total pressure divided by the inlet freestream total pressure at the diffuser exit
is calculated from the numerical results to be 0.9615. From data given to us by M. Sajben and T.
Bogar, the mass averaged total preséure calculated from the experimentally measured data is 0.965.
The experimental data used for this calculation was measured midway between the side walls. The

agreement is good.

The measured maximum Mach number in the exit plane of 0.51 agrees well with the calculated
value of .511. The boundary layer thicknesses are measured to be approximately 25% of the duct
height on the curved wall and 23 % of the duct height on the flat wall. The calculations determined
the boundary layer thickness on the curved wall to be 25% of the duct height and 23% of the duct
height of the flat wall.

The above calculations are after 5000 iterations using a TIMEF of 4.0. It may have been possible
to run the calculation with a TIMEF of 2.0 after the initial transients but because of computer cost
this option was not attemped for this test case. The momentum residual for this calculation is
presented in Fig. 3.7.15. The continuity error after 5000 iterations was less than .1%. The unusual
behavior observed between 3000-4000 iterations in Fig. 3.7.15 appears to be typical of the method
in general whén transonic flow in calculated. The same general convergence behavior is seen for
the 1-D nozzle (Ref. 15) in Fig. 3.7.16. A time factor of 2.0 was used for these 1-D calculations
but the same behavior is seen here on a smaller time scale. The total CPU time for the Sajben

calculations was approximately 35 minutes on the IBM 3031.

A number of other workers have used this test case to verify the accuracy of their computational
methods (31, 32, and 33). Liou, Coakley, and Bergmann’s (31) calculations were made using a
MacCormack type scheme in conjuction with a two-equation model for the turbulent stress pred-
ictions. For the weak shock case, they used an exit static pressure of 0.8 x P, .., . There was good
agreement between their computed and measured wall static pressures. However, the calculated
velocity profiles were not in good agreement with the experimental data. Fig. 3.7.17 shows a sample

of their results.
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Liu, Shamroth, and McDonald (32) used this test case to verify their compﬁtational method which
solves the governing equations using a consistently splif linearized block implicit scheme. A mixing
length model was used to model turbulent stresses. For the weak shock case, an exit static pressure
of 0.807 x P, was used. They compared their computed wall static pressures with the exper-
imental preséures and found good agreement (see Fig. 3;7.18). The variable ,0, referred to in Fig.
3.7.18 is the value of the értiﬁcial dissipation parameter used in their calculations. They found that
for values of ¢ less than 0.1 the solutioq was invariant. Also presented in Ref. 31 were static
pressure and Mach number contour plots for this weak shock case. These contour plots are similar
to those in Figs. 3.7.2 and 3.7.3. The shock definition in the present work is sharper than Liu et.
al. but fewer axial grid points were used in their calculations. No comparison was made by Liu,

Shamroth, and McDonald between the measured and computed velocity profiles.

Talcott and Kumar (33) also used the weak shock case for Sajben’s diffuser as a test of their com-
puter program’s accuracy. They used an implicit MacCormack scheme to solve the ngerning
equations and a Baldwin-Lomax mixing length turbulence model to predict the turbulent stresses.
They also used an exit static pressure of 0.807 x P, . Fig. 3.7.19 shows a sample of their results.
They present a static pressure contour plot for this weak shock case. As with Liu et. al., the shock
definition of Talcott and Kumar’s method is not as sharp as that obtained using the present method
but again they have used fewer axiai grid points in their calculatior_xs. Also, the static pressure
contours at the throat of the diffuser are erratic. A plot of wall static pressure is also presented.

No comparision was made between the computed and measured velocity profiles.

In summary, the following observations can be made about the present calculations of the weak

. shock case in Sajben’s diffuser.

1. There is better agreement between measured and calculated velocity profiles when the present

method and static pressure specification are used.
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2. The present method compares favorably with other methods in the areas of static pressure and

Mach number contour predictions and wall static pressure prediction.

3. The agreement between calculated and measured mass averaged total pressure losses for the

diffuser is excellent.

3.8 ENERGY EQUATION TEST CASES

A number of test cases will be used to explore various aspects of the more complete form of the
energy equation discussed in section 2.10 (ENERGY EQUATION). In order of presentation, the

test cases are

1. turbulent boundary layer flow in an adverse pressure gradient with an inlet freestream Mach

number of 0.55.
2. flat plate turbulent bouﬂndary layer with a frgestream Mach number of 0:.95.
3. Sajben’s diffuser calculations including the energy equation.
4. flat plate turbulent boundary layer with a freestream‘ Mach number of 2.8.

Unless otherwise noted, the turbulent Prandtl number is a constant of 0.90 and the laminar Prandt]

number is 0.73. The walls are adiabatic in all the calculations.
TURBULENT BOUNDARY LAYER IN AN ADVERSE PRESSURE GRADIENT

The geometry and grid used in this test case are identical to that used in .Section 3.6 (Samuel and

Joubert). The exit static pressure'was reduced to  0.91P,,,, so that the inlet freestream Mach
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number was increased to 0.55. The same inlet velocity profile was specified as in section 3.6. The
purpose of this test case was to illustrate the advantage of the new formulation of the energy

equation that was discussed in Section 2.10.

The work done due to pressure forces in the energy equation is

work done due to presSure forces = — J'J'Py ~d4 .

In the new formulation of the energy equation, the term
+ -E”pu- dA (3.8.1)
p)jpu-ad

was added to the calculation of the energy error for the transient solution. The purpose of including
this additional term, Eq. 3.8.1, was to remove the continuity error contribution to the energy error

caused by the work done due to pressure forces. If the base form of the energy equation

P%? x 8Vol = = ([pue, dd + &ffpu-dd — [ - kVT-d4

+ fflu- @Vu+ wVu)-dd - f{Pu-dd . (3.8.2)

is used in the current method, the transient solution results in a static temperature profile like that

shown if Fig. 3.8.1 (represented as +’s). If the new form of the energy equation

p-%}% x Vol = v [-—- ijyht.dd + E”PLl’d_A; - j‘J‘ —kVT-d4
+ fflu @+ uT?'T_F)]-dA] (3.8.3)

is used, the transient solution results in a static temperature profile like that shown in Fig. 3.8.1
(represénted as triangles). The results presented in Fig. 3.8.1 are from calculations after 500 iter-

ations. It can clearly be seen that the new formulation gives a better transient solution to the energy
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equation and results in improved convergence to the steady state solution. Fig. 3.8.2 shows the

corresponding total temperature profiles for the two formulations of the energy equation.
FLAT PLATE BOUNDARY LAYER AT M=0.95

A turbulent boundary layer was calculated on the bottom wall of the geometry shown in Fig. 3.8.3.
The height of the duct was 50 mm and the length of the duct was 200 mm. The computational
grid shown in Fig. 3.8.3 consists of 21 axial grid points and 13 transverse grid points. The transverse
distribution of grid points is shown in Table 3.8.1. The inlet boundary layer thickness was specified
to be 10 % of the duct height. This grid placed 8 node points within the boundary layer. An ab-
solute viscosity of 0.000018 kg/m s was used. The inlet total pressure was 105 kPa and the inlet
total temperature was 300 K. The exit static pressure was 0.559 x P,,,, which results in freestream

Mach number of approximately 0.95.

The total temperature distribution through the boundary layer at the exit of the duct is shown in
Fig. 3.8.4. The total temperature at the near wall point (y/h = 0.0001665) is 296.63 K which results

in a recovery factor

_ (Taw - TOO) i

= 3.84
. (Tooo = Two) ( )

of 0.927, where T,, is the adiabatic wall temperature, T, is the fréestream static temperature, and
Ty is the freestream total temperature. The recovery factor for turbulent flow can be estimated

by
r=pr'i® . ' (3.8.5)

For a Prandtl number of 0.73, the recovery factor is calculated from Eq. 3.8.5 to be 0.90. If an
additional node point was located at y/h=0.000055, the total temperature distribution remained
~ essentially unchanged, however, the recovery factor changed to 0.910 because of the improved re-

solution of the flow near the wall. To calculate the recovery factor with reasonable accuracy, it
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Table 3.8.1 Transverse Distribution of Grid Points
For M = 0.95 Test Case

1 0.0001665
2 0.000665
3 0.0020
4 0.005
5 0.011
6 0.023
7 0.047
8 0.095
9 0.191
10 0.308
11 0.4675
12 0.6805
13 0.8935
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was found that the near wall control volume boundary in the calculations needed to be at a distance

of p* < 10.

Beginning at the wall, the total temperature éhown in Fig. 3.8.4 is first less than freestream total
temperature and then in the outer part of the boundary layer the total temperature becomes greater
than the freestream total temperature. Since energy should be conserved for this adiabatic wall case,
the mass averaged difference between the freestream and local total temperature should be con-

served in this boundary layer. The quantity,

_ <« puTy — Tow) Ay
H=Y——"—~ =5 3.8.6
Pootdoo Tooo ( )

is plotted in Fig. 3.8.5. The residual does not go to zero at the freestream, however, the mass av-

eraged total temperature for the bounda.ry layer was .999987 Tio-

When a laminar and turbulent Prandtl number _of 1 was used in the calculations, the total temper-

ature was essentially uniform throughout the boundary layer (7, = 0.999977,,).
SAJBEN’S DIFFUSER CALCULATIONS INCLUDING THE ENERGY EQUATION

Calculations were made in Section 3.7 of transonic flow in Sajben’s diffuser with the assumption
of constant total temperature. The calculations were restarted here at 5000 iterations with the en-
ergy' equation included. An additional 1500 iterations were required for these calculations to con-

‘verge sufficiently. The boundary conditions and grid are identical to those discussed in Section 3.7.

A plot of static pressure contours is shown in Fig. 3.8.6. Fig. 3.8.7 shows a Mach number contour
plot for the calculations. The results are essentially the same as those seen in Section 3.7 (see Figs.
3.7.2 and 3.7.3). The velocity profiles at an x/h=7.9 are compared in Fig. 3.8.8. Thev profiles are
very similar and the assumption of constant total temperature results in a solution which is only
slightly different than the calculations that were made using the full form of the energy equation.

Total temperatufe profiles are pfesented in Fig. 3.8.9 at two axial locations (x/h= 0.9 and x/h=2.3)
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in the diffuser. The freestream velocity is supersonic at x/h= 1.9 (before the shock) and subsonic
at x/h=23.5(after the shock). The calculated recovery factors of .95 and .98 are highe; than the
values of .93 and .97 expected from Eq. 3.8.5. The near wall control volume boundaﬁes in these
calculations were at p* = 32 and yp* = 23 for the locations x/h = 1.9 and x/h = 3.2, respectively.

These are greater than the minimum y’+ of 10 discussed earlier.
FLAT PLATE TURBULENT BOUNDARY LAYER AT M=2.8

Van Driest (33) presents the total temperature distribution within a flat plate 'turi)ulent boundary
layer with a freestream Mach number of 2.8. The experimental total temperature distribution is
shown in Fig. 3.8.10. The geometry and grid for these calculations are shown in Fig. 3.8.11. The
height of the duct was 63.5 mm and the length of the duct was 254 mm. The computational grid
shown in Fig. 3.8.11 consists of 21 axial grid points and 14 transverse grid points. The iransverse
distribution of grid points is shown in Table 3.8.2. The inlet boundary layer thickness of 1/4 inch
(6.35 mm) was 10 % of the duct height. The Reynolds number based upbn axial distance is ap-
proximately 10’. To stabilize theée supersonic calculations, the upwind effective density method
(see section 2.4) was used and the upstream boundary conditions were modified. The inlet velocity,
total temperature, and total pressure were specified at ;he upstream boundary. Three calculations
were performed with different assumptions about the turbulent Prandtl number. These assump-

tions were

1. Pr,=09 Pr,=0.73

2. Pr,=073 Pr,=0.73

3.  Pr, varies linearly through the boundary layer from 0.9 at the wall to 0.66 in the freestream.

The turbulent Prandtl number is typically set equal to a constant of 0.9 in calculations (24). The
calculated total temperature distribution through this boundary layer using a constant turbulent

Prandtl number of 0.9 is shown in Fig. 3.8.12 (represented as triangles). The recovery factor is
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Table 3.8.2 Transverse Distribution of Grid Points
’ For M = 2.8 Test Case

1 0.000055
2 0.00022
3 0.000665
4 0.0020
5 0.0050
6 0.0110
7 0.0230
8 0.0470
9 0.0950

10 0.1910

11 0.3080

12 0.4675

13 0.6805

14 0.8935
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calculated to be 0.920 which compares with the empirically determined value of 0.90. However, the
distribution of total temperature through the boundary layer does not compare well with the ex-
periment. If the turbulent Prandtl number is set equal to the laminar Prandtl number of 0.73 , the
total temperature distribution changes as seen in Fig. 3.8.12 (represented as +’s). The distribution
through the outer part of the boundary layer has improved but the recovery factor of 0.813 does
not compare well with the experimental value of 0.90. Schlichting (34) notes that the turbulent
Prandtl number is not constant through the boundary layer. The experiments of H. Ludwieg (35)
for turbulent flow through a pipe shows that the Prandtl number varies from approximately 0.9 at
the pipe wall to 0.66 at the centef of the pipe. This distribution is shown in Fig. 3.8.13. The var-
iation is almost linear. For the third set of calculations, the Prandtl number was assumed to vary
linearly through the boundary layer from 0.9 at the wall to 0.66 at the edge of the boundary layer.
The total temperature distribution for this case is shown in Fig. 3.8.12 (represented as X’s ). The
total temperature distribution calculated using a variable Prandtl number is compared with the ex-
perimental results in Fig. 3.8.14. Both the distribution of total temperature through the boundary
layer and the recovery factdr of 0.90 are in.good‘a'greement with the experimentally measured val-

ues.

The calculation of turbulent flow over a flat plate with a freestream Mach number of 0.95 was rerun
using this variable turbulent Prandtl number and these results are compared in Fig. 3.8.15 with the
- total temperatures which were obtained with a constant Prandtl number of 0.9. The recovery factor
was calculated to be 0.89 when a variable Prandtl number was used; this is in reasonable agreement

with the value of 0.90 expected using Eq. 3.8.5.
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4.0 SUMMARY AND CONCLUSIONS

A finite volume time marching method has been extended to allow the calculation of laminar and
turbulent flow in ducts. Both subsonic and supersonic flow can be calculated with the method.
The starting point for the current method was the finite volume method of Denton (15). Denton'’s
method is currently limited to inviscid flow. Viscous effects have been simulated by Denton and
others using inviscid-viscous interaction approaches. The method that is presented in this disser-

tation solves the Reynolds-averaged form of the Navier-Stokes equafions directly.

A number of features have been developed in the current work which allow the calculation of
viscous flow with the finite volume time marching method. Some insight has also been shed upon

the finite volume method in general in this work.

FEATURES OF THE FINITE VOLUME TIME MARCHING METHOD

The features which make the finite volume time marching method attractive can be summarized

as

1. The calculations are performed entirely in the physical domain. No coordinate transformations

are needed.
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2. Because of the finite volume formulation, mass and momentum are conserved for any grid.
3. The explicit approach is attractive because of its simplicity.

4. When the Euler or Navier Stokes equations are solved using the time marching approach,

~ shocks develop naturally as part of the solution.

ADVANCES MADE IN THE PRESENT WORK

Many changes were needed to create a finite volume time marching method capable of calculating
two dimensional laminar and turbulent flow. A much higher level of understanding of the method
was needed to extend the finite volume time marching method into the viscous flow regime. Fea-

tures which are new to this finite volume time marching method can be summarized as

1. Control volumes were introduced which allow calculations to be made without smoothing of
flow properties in the transverse direction. In particular, unlike Denton’s method, there are the

same number of control volumes as node points (same number of equations as unknowns).

2. Convective forms of the momentum and energy equations were used to update the velocity
and the total enthalpy. However, at the steady state, the governing equations returned to the

conservative form.

3. Time steps for use with the convective forms of the equations were derived. This resulted in
time steps for the momentum and energy equations which are different from the time steps for

the continuity equation. The time steps also vary spatially.

4. The pressure is updated directly from the continuity equation rather than through the equation

~of state to aid in the calculation of pressure gradients in boundary layers.
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5. A new pressure interpolation scheme was introduced which has improved shock capturing
properties when compared with the standard 2 and 3 point interpolation schemes. Pressure
interpolation is necessary for stability but here a stability criterion has been employed in de-

riving a Mach number dependent interpolation scheme.

6. Viscous forces that act on the control volume faces were calculated in the non-orthogonal

physical grid arrangement.

7. A multi-volume method for pressure changes in the boundary layer was introduced which al-
lowed calculations to be made with very elongated control volumes. The multi-volume pre-
serves the boundary layer approximation (static pressure changes through the boundary layer

are small compared with the free stream velocity head).

8. A method of discretization called transverse upwind differencing was developed to strengthen
the centerpoint coefficient of the equations. This differencing enhances the stability of the
method when the mass fluxés through the transverse faces become large compared with the

mass fluxes through the streamwise faces.

9. A new formulation for the energy equation was introduced which has improved transient be-
havior when compared with the standard formulation. The new formulation removes the in-
fluences of continuity and momentum errors from the energy equation during transients in the

solution.
TEST CASES

A number of test cases were used to illustrate the accuracy and the features of the new method.
A large range of flow conditions were studied in these test cases . The freestream Mach numbers
varied from 0.075 in the Samuel and Joubert test case ( section 3.6 ) to 2.8 in the Van Driest test

case ( section 3.8 ). The results obtained in this dissertation can be summarized as follows.
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L.

FLAT PLATE LAMINAR BOUNDARY LAYER: The velocity profiles in a laminar flat

plate boundary layer agreed well with the theoretical results.

INVISCID CALCULATIONS OF SAJBEN'S DIFFUSER: The density and pressure up-
date methods were compared here. When the density update method was used, the total |
pressure calculated using the eﬂ’eciive pressure agreed with the theoretical distribution better
than When the thermodynamic pressure Wﬁs used. The total pressﬁre distribution calculated

using the effective density method agreed the best with the theoretical results.

THE INFLUENCE OF TRANSVERSE SMOOTHING ON A STEP PROFILE IN A
STRAIGHT DUCT: A step profile in inlet Mach number was drastically alterred by the
transverse smoothing that is needed to stabilize the calculations using the old control volumes.

When the new control volumes were used instead, the inlet Mach number pfoﬁle changed very

little through the duct.

1-D COMPUTATIONAL TESTS OF SHOCK CAPTURING USING PRESSURE IN-
TERPOLATION FORMULAE TO CALCULATE EFFECTIVE DENSITY: Results from
calculations using the 2 point, 3 point, and M&M interpolation formulas were compared with
the theoretical 1-D solution through a converging-diverging nozzle. The new pressure in-
terpolation scheme gave improved shock capturing properties when compared with the usual
two and three point interpolation schemes. Overshoots and undershoots in properties were
essentially eliminated when the Mach number dependent interpolation formula was used. All

the interpolation formulae accurately predicted the overall total pressure loss through the

shock.

LAMINAR BOUNDARY LAYER IN TWO CONVERGING DUCTS: A laminar
boundary layer was calculated on the curved wall of two converging ducts. One of ducts had
a non-smooth geometry which resulted in solutions which were not smooth. In Fig 3.5.5, the

skin friction coefficients from the finite volume calculations were compared with the skin fric-
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tion coefficients calculated using the integral method of Thwaites and the agreement was good.
A number of multivolume methods and grid arrangements were investigated and a non-

uniform grid was found to have better convergence properties than a uniform grid.

6. SAMUEL AND JOUBERT INCOMPRESSIBLE TURBULENT BOUNDARY LAYER:
Incompressible turbulent boundary layer flow in an adverse pressure gradient was calculated
using the current method. The agreement between the calculated and measured skin friction‘

coefficient, turbulent shear stress distributions, and the mean velocity profiles was good.

7. SAJBEN’'S DIFFUSER CALCULATIONS: Transonic viscous flow through a converging
diverging nozzle ‘was calculated. The computed and measured velocity profiles were in good
agreeement especially near the exit of the nozzle. The computed and measured shock location
were compared in Fig. 3.7.6 and were found to be in good agreement. The ratio of P/P, .

was calculated to be .9615. This was in good agreement with the measured value of 0.965.

8. ENERGY EQUATION TEST CASES: Four test cases were used to investigate introduction
of the new formulation of the energy equation into the method. The new formulation was seen
to give improved transient behavior when compared with the standard formulation. For tur-
bulent flow over a flat plate with a freestream Mach number of 0.95, the calculated recovery
factor of .91 compared well with the empirically determined value ( see Eq. 3.8.5 ) of 0.90.
For flat plate boundary layer flow with a freestream Mach number of 2.8, the calculated total
temperature profile was improved by using a variable Prandtl number through the boundary
layer. The calculated recovery factor of 0.90 agfeed very well with the empically determined
value of 0.9.

CONCLUSIONS

The following important observations were made from these test cases and other experience with

the current method:
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1. The geometry of the duct used in the calculations must be smooth to obtain smooth solutions

(see section 3.5).

2. In the boundary layer region, a non-uniform grid in the transverse direction, with a factor of
2 ratio in grid spacing, is preferred for stability reasons. A factor of 2 spacing is preferred be-
cause the multi-volume procedure requires’ that pressure changes for each successively smaller

multi-volume region decrease rapidly.

3. If a factor of approximately 2 in gﬁdvspac'ing is used in the multi-volume region, the multi-
volume procedure may be simpliﬁed by using the control volume furthest from the wall as the

basis for the time step to be used for the entire multivolume region ( see section 3.5).

4. The new pressure interpolation scheme gives improved shock definition when its results are

compared with the results from the 2 and 3 point interpolation schemes (see section 3.4).

5. The total pressure loss through a 1-D shock is predicted well by all of the interpolation

schemes considered here(see section 3.4).

6. The Prandtl mixing length model for the eddy viscosity gave good results for all of the viscous

test cases investigated.

7. The skin friction coefficients, velocity profiles, and turbulent shear stress distributions were
calculated with good accuracy through the boundary layer with as few as 5 to 7 grid points in

the boundary layer as was seen from the Samuel and Joubert results (section 3.6).

8. Smoothing of flow properties, either linear or non-linear, as used by Denton, can greatly de-

grade the accuracy of the results when large gradients in properties exist (see section 3.3).

9. Transverse upwind differencing was needed to stabilize the transient solution of some of the

test cases, however, there was no upwinding retained at the stéady state.
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10.

11.

12.

13.

14.

15.

The height of the control volume just outside of the multi-volume region should be approxi-
mately equal to the sum of heights of the control volumes within the multivolume region.

This arrangement is not necessary but is preferred so that pressure changes in the multi-volume

“and freestream regions match propeily.

A time factor of 4.0 is typically required during the initial part of a solution, but the time factor

can typically be changed to 2.0 later in the solution.

When the full energy equation was used, the adiabatic wall temperature was predicted well if
a constant turbulent Prandtl number of 0.9 was used, however, the distribution of total tem-

perature through the boundary layer was not predicted well (see section 3.8).

The total temperature distribution in the outer part of the boundary layer was improved if a
simple linear variation in Prandtl number was assumed through the boundary layer (see section

3.8).

The new formulation of the energy equation gives improved transient solution behavior (see

section 3.8).

The assumption of constant total temperature used in test cases 3.1-3.7 should not adversely

affect the accuracy of those results (see section 3.8).

SUGGESTIONS FOR FURTHER WORK

The current work is limited to attached flow. An important contibution would be to extend the

method to be able to calculate regions of backflow. This would be especially important in the area

of transonic flow since when the Mach number upstream of a normal shock exceeds approximately

1.3 the flow will separate behind the shock. By the choice of control volumes, the flow direction

in the present method must essentially be in the I grid direction. Therefore to permit the calculation

of backflow, a different control volume arrangement may be needed.
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The method could also be extended to ‘calc‘:uiate the flow through turbomachinery blade rows or
blade rows as has been done by Dawes. The method may encounter problems at the leading and
trailing edges of such geometries because of the long and thin control volume seen at the surfaces
of the blades. By necessity, these long and thin control volumes xﬁust extend upstream and
downstream of the leading and tréiling edges, respectively. The current method hés shown that it
can calculate both laminar and turbulent. flows, however, a model for transition would be needed
if the method were to be applied to turbomachinery blade rows and cascédes. The control volumes
used in the present work have be extended to three dimensional inviscid flow (22), however, further
work would be required to allow viscous calculations in three dimensions. Three dimensional ef-
fects could be partially modelled by using a quasi-3-D approach; for example, the end wall
boundary layer effects could be modelled by including an axial velocity density ratio in the calcu-

lations.

As can be seen, there is @uch more to investigate in this area but the present contribution has
provided significant and unique contributions to the understanding of the time marching finite
volume method in general and what is required to extend the method to viscous flow in particular.
Hopefully, this work will provide insight to future workers in the bﬁinite volume area and will also

inspire workers to try approaches which are different than the current computational philosophy.
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Appendix A. TRUNCATION ERROR OF
PRESSURE INTERPOLATION EQUATION

The truncation error of the interpolated pressure used to calculate the density in Eq..2.4.57 may

be determined using a Taylor series analysis. The interpolated pressure P¢ is given by
Piey =P+ a(Prey = P+ @(Prey = P2 + a(Prey = Ppg)i3 - (4L

~and to determine the accuracy of P¢ we will look at the magnitude of P, — Pp.,. With grid

spacing h, and expanding about I+ I, we have

Pi_, = P = 3P + 9K 2)p" — O(K) (4.1.20)
Pi_y = P = 2hP" + 4R 2)p" — O(H%) (4.1.25)
Py =P — hP' + (W*2)p" — O (4.1.2¢)
Py =P (4.1.2d)

Therefore,
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Piy = Pryy = hay + ay + ay — DP" — (h22)(ay + 2a; + 3a, — 1)p” + O(A°). (4.1.3)
And if
aqt+tat+ta=1 ‘ (4.1.4)

then the difference between P and P is of the order of A%, so that P* is a second order accurate

approximation for P.
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Appendix B. VELOCITY GRADIENT IN A

NON-ORTHOGONAL GRID

To calculate the velocity gradient, Fu,, for a nonorthogonal grid systexﬁ, we must be able to
- transform gradients in the grid directions (I,J, and K) into gradients in the coordinate directions
(x,y, and z). From the transformation law of a vector, the gradient of a scalar in one coordinate
system can be related to the gradient in é.nother coordinate system using the direction cosines be-
tween the two coordinate syﬁtems. We will use the cartesian syétem as our base coordinate system
here. Let D,D, and Dy be directional vectors which have a direction parallel with the non-
orthogonal coordinate system and span a unit change in 1,J, or K respectively. iThese vectors are
shown in Fig. A 2.1. They can be described in terms of their cartesian components. In other

words, we can represent them as

Di=ai+bj+ck (4.2.1)
Dy = ai + by + ok (4.2.2)
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Fig. A2.1 Identification of Directional Vectors
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where i, j, and k are unit vectors in the cartesian coordinate directions, and a,b, and ¢ are the

magnitudes of the components of the directional vectors.

The change of a variable ,u, from one point to another within a grid system can be represented as

+
—%1‘— = Uy Y I 1dr Vu (4.2.4)
where r is a position vector between the two nodes. Rather than dealing with a local derivative in
a continuum , we are dealing with approximations of derivatives using finite changes. If the direc-
tional vector, D, is chosen such that its termini correspond to the nodes at which the properties

are evaluated in Eq. A.2.4, and taking Fu as uniform between grid points,

=(g+1 — ) Vu (4.2.5)

u
ar
But D, = 7,4, — r; therefore,
S~ p.vy : (4.2.6)
ar <
M =p.yy | (4.2.7)
o
QU =~ D Vu (4.2.8)
ok <K

where 1,J, and K are the coordinate indices for the non-orthogonal coordinate system. Expanding

equations A 2.6, A 2.7, and A 2.8, we get

Ou _ ,0u g4 0u . Ou
61 la bl ay G—=— oz (A.2.9)
Ou _ du
i a2 (7x b2 + 7 P (4.2.10)

Appendix B. VELOCITY GRADIENT IN A NON-ORTHOGONAL GRID 267



' all 5u au 6u
- + + 2.
‘——'b aK = a3--—-—,\ b3 a C3 a » (A 2 ll)

where a, = D;,, the x component of D;; b, = D, etc... Equations A.2.7, A.2.10, and A.2.11 can

be combined into a single matrix equation,

Ju du
g Yi aq bl < gx
u — - Oq_l‘-
g 7 |2 b, ¢ gy (4.2.12)
u ou
K B B

For the calculation of viscous stresses, Eq. 2.7.5, we need the gradients of velocity ,Vu,, in cartesian
coordinates. To obtain this gradient, we need to take the inverse of the above matrix [4], in other

words,

d
E a bl ] a—z; “
%;—=a2 b, c;»-g-j— 2D
g F ,
% %% o w

The inverse of matrix A , [4]~!, will now be determined. From linear algebra,

47! =

1
djl4 A.2.14
] (adjlA]) | ( )

where | 4| is the determinant of [4] and adj[4] is the adjoint of [4]. The determinant of [4] is

a; by ¢

det[A] =19 b2 G| =

a by o
16 o ) a b
by ¢ a ¢ a, byl
3 G 3 G 3 b
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ai(byc3 — b3¢y) — bi(aye3 — a3¢5) + ¢(ayh5 - aby) . (4.2.15)
 This can be identified as
det[d] = D;+(D; % Dg) (4.2.16)
Now let us represent the adjcﬁnt of A, adj[4], in the form

Ay Ay Ags
adﬂA] = A2l A22 A23 ) (A.2.17) )
A3 Az A

where the components of the adjoint matrix are

= b2C3 - b3C2 . (A.2.18)

HoWever, A,,, can be identified as the x-component of D, X D, , in other words,
byc3 — by, = x component of D; X Dp (4.2.19)

The components of the adjoint matrix, 4,, and 4,;,are the y and z components of D, x D,. Both

the results from the numerator and denominator of Eq. A.2.12, lead to the result that

DyxDg 0w, DgxDy Gy . DixDy Oy

V =
T DDy < D) o DDy x Dp) & Dy-(Dy x D) oK

(4.2.20)

This result can be generalized to the other two components of velocity, v and w. This is the result

that is used to calculate velocity gradients in the current program.
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