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Stochastic Geometry Perspective of Massive MIMO Systems
Priyabrata Parida
(ABSTRACT)

Owing to its ability to improve both spectral and energy efficiency of wireless networks,
massive multiple-input multiple-output (mMIMO) has become one of the key enablers of
the fifth-generation (5G) and beyond communication systems. For successful integration
of this promising physical layer technique in the upcoming cellular standards, it is essen-
tial to have a comprehensive understanding of its network-level performance. Over the last
decade, stochastic geometry has been instrumental in obtaining useful system design in-
sights of wireless networks through accurate and tractable theoretical analysis. Hence, it
is only natural to consider modeling and analyzing the mMIMO systems using appropriate
statistical constructs from the stochastic geometry literature and gain insights for its future
implementation.

With this broader objective in mind, we first focus on modeling a cellular mMIMO
network that uses fractional pilot reuse to mitigate the sole performance-limiting factor of
mMIMO networks, namely, pilot contamination. Leveraging constructs from the stochastic
geometry literature, such as Johnson-Mehl cells, we derive analytical expressions for the
uplink (UL) signal-to-interference-and-noise ratio (SINR) coverage probability and average
spectral efficiency for a random user. From our system analysis, we present a partitioning rule
for the number of pilot sequences to be reserved for the cell-center and cell-edge users that
improves the average cell-edge user spectral efficiency while achieving similar cell-center user
spectral efficiency with respect to unity pilot reuse. In addition, using the analytical approach
developed for the cell-center user performance evaluation, we study the performance of a
small cell system where user and base station (BS) locations are coupled. The impact of
distance-dependent UL power control on the performance of an mMIMO network with unity
pilot reuse is analyzed and subsequent system design guidelines are also presented.

Next, we focus on the performance analysis of the cell-free mMIMO network, which
is a distributed implementation of the mMIMO system that leads to the second and third
contributions of this dissertation. Similar to the cellular counterpart, the cell-free systems
also suffer from pilot contamination due to the reuse of pilot sequences throughout the
network. Inspired by a hardcore point process known as the random sequential adsorption
(RSA) process, we develop a new distributed pilot assignment algorithm that mitigates the
effect of pilot contamination by ensuring a minimum distance among the co-pilot users.
This pilot assignment scheme leads to the construction of a new point process, namely
the multilayer RSA process. We study the statistical properties of this point process both
in one and two-dimensional spaces by deriving approximate but accurate expressions for
the density and pair correlation functions. Leveraging these new results, for a cell-free
network with the proposed RSA-based pilot assignment scheme, we present an analytical
approach that determines the minimum number of pilots required to schedule a user with



probabilistic guarantees. In addition, to benchmark the performance of the RSA-based
scheme, we propose two optimization-based centralized pilot allocation schemes using linear
programming principles. Through extensive numerical simulations, we validate the efficacy
of the distributed and scalable RSA-based pilot assignment scheme compared to the proposed
centralized algorithms.

Apart from pilot contamination, another impediment to the performance of a cell-free
mMIMO is limited fronthaul capacity between the baseband unit and the access points (APs).
In our fourth contribution, using appropriate stochastic geometry-based tools, we model and
analyze the downlink of such a network for two different implementation scenarios. In the
first scenario, we consider a finite network where each AP serves all the users in the network.
In the second scenario, we consider an infinite network where each user is served by a few
nearby APs in order to limit the load on fronthaul links. From our analyses, we observe that
for the finite network, the achievable average system sum-rate is a strictly quasi-concave
function of the number of users in the network, which serves as a key guideline for scheduler
design for such systems. Further, for the user-centric architecture, we observe that there
exists an optimal number of serving APs that maximizes the average user rate.

The fifth and final contribution of this dissertation focuses on the potential improvement
that is possible by the use of mMIMO in citizen broadband radio service (CBRS) spectrum
sharing systems. As a first concrete step, we present comprehensive modeling and analysis
of this system with omni-directional transmissions. Our model takes into account the key
guidelines by the Federal Communications Commission for co-existence between licensed
and unlicensed networks in the 3.5 GHz CBRS frequency band. Leveraging the properties
of the Poisson hole process and Matérn hardcore point process of type II, a.k.a. ghost
RSA process, we analytically characterize the impact of different system parameters on
various performance metrics such as medium access probability, coverage probability, and
area spectral efficiency. Further, we provide useful system design guidelines for successful
co-existence between these networks. Building upon this omni-directional model, we also
characterize the performance benefits of using mMIMO in such a spectrum sharing network.



Stochastic Geometry Perspective of Massive MIMO Systems
Priyabrata Parida

GENERAL AUDIENCE ABSTRACT

The emergence of cloud-based video and audio streaming services, online gaming platforms,
instantaneous sharing of multimedia contents (e.g., photos, videos) through social networking
platforms, and virtual collaborative workspace/meetings require the cellular communication
networks to provide high data-rate as well as reliable and ubiquitous connectivity. These
constantly evolving requirements can be met by designing a wireless network that harmo-
niously exploits the symbiotic co-existence among different types of cutting-edge wireless
technologies. One such technology is massive multiple-input multiple-output (mMIMO),
whose core idea is to equip the cellular base stations (BSs) with a large number of antennas
that can be leveraged through appropriate signal processing algorithms to simultaneously ac-
commodate multiple users with reduced network interference. For successful deployment of
mMIMO in the upcoming cellular standards, i.e., fifth-generation (5G) and beyond systems,
it is necessary to characterize its performance in a large-scale wireless network taking into
account the inherent spatial randomness in the BS and user locations. To achieve this goal,
in this dissertation, we propose different statistical methods for the performance analysis
of mMIMO networks using tools from stochastic geometry, which is a field of mathematics
related to the study of random patterns of points.

One of the major deployment issues of mMIMO systems is pilot contamination, which
is a form of coherent network interference that degrades user performance. The main reason
behind pilot contamination is the reuse of pilot sequences, which are a finite number of known
signal waveforms used for channel estimation between a user and its serving BS. Further, the
effect of pilot contamination is more severe for the cell-edge users, which are farther from
their own BSs. An efficient scheme to mitigate the effect of pilot contamination is fractional
pilot reuse (FPR). However, the efficiency of this scheme depends on the pilot partitioning
rule that decides the fraction of total pilot sequences that should be used by the cell-edge
users. Using appropriate statistical constructs from the stochastic geometry literature, such
as Johnson-Mehl cells, we present a partitioning rule for efficient implementation of the FPR
scheme in a cellular mMIMO network.

Next, we focus on the performance analysis of the cell-free mMIMO network. In contrast
to the cellular network, where each user is served by a single BS, in a cell-free network each
user can be served by multiple access points (APs), which have less complex hardware
compared to a BS. Owing to this cooperative and distributed implementation, there are no
cell-edge users. Similar to the cellular counterpart, the cell-free systems also suffer from
pilot contamination due to the reuse of pilot sequences throughout the network. Inspired
by a hardcore point process known as the random sequential adsorption (RSA) process,
we develop a new distributed pilot assignment algorithm that mitigates the effect of pilot
contamination by ensuring a minimum distance among the co-pilot users. Further, we show
that the performance of this distributed pilot assignment scheme is appreciable compared



to different centralized pilot assignment schemes, which are algorithmically more complex
and difficult to implement in a network. Moreover, this pilot assignment scheme leads to
the construction of a new point process, namely the multilayer RSA process. We derive the
statistical properties of this point process both in one and two-dimensional spaces.

Further, in a cell-free mMIMO network, the APs are connected to a centralized baseband
unit (BBU) that performs the bulk of the signal processing operations through finite capacity
links, such as fiber optic cables. Apart from pilot contamination, another implementational
issue associated with the cell-free mMIMO systems is the finite capacity of fronthaul links
that results in user performance degradation. Using appropriate stochastic geometry-based
tools, we model and analyze this network for two different implementation scenarios. In the
first scenario, we consider a finite network where each AP serves all the users in the network.
In the second scenario, we consider an infinite network where each user is served by a few
nearby APs. As a consequence of this user-centric implementation, for each user, the BBU
only needs to communicate with fewer APs thereby reducing information load on fronthaul
links. From our analyses, we propose key guidelines for the deployment of both types of
scenarios.

The type of mMIMO systems that are discussed in this work will be operated in the
sub-6 GHz frequency range of the electromagnetic spectrum. Owing to the limited availabil-
ity of spectrum resources, usually, spectrum sharing is encouraged among different cellular
operators in such bands. One such example is the citizen broadband radio service (CBRS)
spectrum sharing systems proposed by the Federal Communications Commission (FCC). The
final contribution of this dissertation focuses on the potential improvement that is possible
by the use of mMIMO in the CBRS systems. As our first step, using tools from stochastic
geometry, we model and analyze this system with a single antenna at the BSs. In our model,
we take into account the key guidelines by the FCC for co-existence between licensed and un-
licensed operators. Leveraging properties of the Poisson hole process and hardcore process,
we provide useful theoretical expressions for different performance metrics such as medium
access probability, coverage probability, and area spectral efficiency. These results are used
to obtain system design guidelines for successful co-existence between these networks. We
further highlight the potential improvement in the user performance with multiple antennas
at the unlicensed BS.
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Chapter 1

Introduction

With the emergence of cloud-based streaming services, the ubiquity of handheld wireless
devices, and the desire to make the world more connected, the pursuit of higher throughput
seems never-ending. Moreover, the job of a wireless engineer has only become more difficult
as current and future wireless systems need to provide not only higher throughput but
also reliable ubiquitous coverage, uniform user experience, ultra-low latencies, better energy
efficiency, and secure communication links to name a few. These requirements are usually
conflicting in nature and need to be achieved by multiplexing a multitude of physical layer
technologies and designing the network that exploits the symbiotic relationships among them.
At the forefront of these technologies is massive multi-input-multi-output (mMIMO) that
facilitates many-fold improvement in spectral efficiency (SE), energy efficiency, and reliability
in communication links, especially in the sub-6 GHz spectrum, which has the preferred
frequency bands for mMIMO implementation. These attractive attributes of mMIMO have
propelled it to be a part of fifth-generation new radio (5G NR) standards. However, this is
not the end of the story for mMIMO rather the end of the beginning as there lie myriads
of challenges that need to be overcome for its successful integration into the future wireless
networks [1].

1.1 Background

Fundamentally, mMIMO is an extension of the conventional multi-user MIMO technique,
where a large number of antennas at the BSs simultaneously serve an order of magnitude less
number of users than the antennas. The promise of this technology lies in the fact that under
ideal conditions it eliminates the deleterious effect of channel fading and additive noise while
negating the effect of network interference using simple-to-implement linear beamforming
schemes [2, 3, 4]. The availability of accurate channel state information (CSI) at the BSs is
indispensable to perform beamforming/filtering operations. Since the number of antennas
in the network is much larger than the number of users, the usual approach is to estimate
the channel in the uplink through a set of orthogonal pilot sequences. Due to the limited
channel coherence interval, the number of orthogonal sequences is limited. As a result, the
pilot sequences need to be spatially reused throughout the network. In his seminal work [2],
Marzetta showed that using low-complexity but suboptimal linear processing schemes, such
as maximal ratio combining (MRC), the reuse of pilot sequences gives rise to an inherent

1
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mMIMO BS

Copilot users

Desired pilot signal
Interfering pilot signal

mMIMOAP
BBU

Fronthaul links

Figure 1.1: Two different architectures of mMIMO networks: the cellular architecture (left), the cell-free
architecture (right).

interference known as pilot contamination, which fundamentally limits the performance of
mMIMO networks. Further, in a cellular architecture (Fig. 1.1 (left)), where BSs do not
cooperate and transmit only to their associated users, the impact of pilot contamination is
more severe for the cell-edge users compared to the cell-center users. A promising approach
to overcome this disparate user experience is by deploying mMIMO in a distributed manner
as envisioned in the form of cell-free mMIMO [5, 6]. In the cell-free architecture (Fig. 1.1
(right)), a large number of geographically separated access points (APs), which are centrally
controlled by baseband units (BBUs) through finite capacity fronthaul links, serve users in
the network. This form of implementation eliminates the concept of cell-edge due to co-
operation among APs that results in a uniform user experience throughout the network.
Although cell-free mMIMO can be interpreted as an incarnation of the cooperative commu-
nications concept, along the same lines as coordinated multipoint (CoMP) and cloud radio
access network (C-RAN), it is different from these technologies from an operational point of
view. While in CoMP the cooperation is performed among a limited set of existing BSs in
a cellular network, in C-RAN all the APs in the network are connected to a “cloud” based
processor that performs all the baseband operation including joint precoding or decoding
of the data. Such implementations are not scalable owing to the overwhelming amount of
data and CSI sharing among the BSs or the APs and the cloud processor. On the other
hand, in a cell-free mMIMO network, each AP (possibly with multiple antennas) performs
beamforming/filtering operation using locally available CSI and forwards the I-Q symbols to
the BBU that performs the rest of the baseband operations. Although this functional split
is necessary, it is not sufficient to guarantee a scalable implementation especially when the
numbers of APs and users in the network grow. Moreover, in the limiting case of the num-
ber of antennas per unit area, pilot contamination becomes one of the performance-limiting
factors of the cell-free mMIMO network as well.

From the above discussion, it is immediately clear that the successful integration of both
the architectures of mMIMO in upcoming cellular networks requires a comprehensive under-
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standing of how pilot contamination affects network performance and what are the effective
ways to mitigate it. Further, as scalable implementation is a priority for cell-free architec-
ture, it is imperative to understand the impact of the fronthaul link capacity constraints on
system performance as the network size grows and provide useful guidelines for network di-
mensioning to enable scalable implementation. Additionally, the flavors of mMIMO that are
discussed in this dissertation are from the perspective of a network that operates in the sub-6
GHz spectrum. Since the available spectrum in these frequency bands is scarce, spectrum
sharing is encouraged. One such example is the proposal by the Federal Communications
Commission (FCC) under the banner of citizen broadband radio service (CBRS) at the 3.5
GHz frequency range. The proposal encourages co-existence between licensed and unlicensed
networks along with important deployment guidelines. It is imperative to understand the
improvement that can be obtained over omni-directional transmission if the spectrum shar-
ing entities employ mMIMO and if there lie any associated trade-offs that must be taken
into account during the deployment phase.

Although one can study the different types of mMIMO networks through extensive
system simulations and answer the questions highlighted in the previous paragraph, these
large networks simulations do not have a favorable computational scaling. A useful comple-
mentary approach is to contain the curse of dimensionality by modeling the node locations
with certain spatial distribution rather than assuming them to be deterministic. This allows
one to conveniently compute network-wide metrics by spatially averaging over all possi-
ble topologies using powerful tools from stochastic geometry and, in certain cases, obtain
tractable theoretical expressions that result in useful insights. Stochastic geometry has al-
ready been applied successfully to analyze different types of cellular networks over the last
decade [7, 8, 9, 10, 11, 12, 13]. Hence, following the natural course, in this dissertation,
we discover useful stochastic-geometry constructs in the literature that can be leveraged to
model, analyze, and provide implementation guidelines for mMIMO networks.

1.2 Selected prior works

Pilot contamination mitigation in cellular architecture: To address the issue of pilot
contamination in a cellular mMIMO, a number of works have focused on pilot contamination
suppression or mitigation methods that can be categorized into protocol-based methods [14],
base station (BS) coordination based methods [15, 16], and pilot reuse or hopping based
methods [17, 18]. While protocol and coordination-based methods are effective in removing
the pilot contamination, they are usually complex and require a higher degree of coordination
among BSs. On the other hand, the gains obtained by pilot hopping-based methods are
limited to scenarios with larger channel coherence times. Another promising method to
reduce the pilot contamination is to have orthogonal pilot sequences in neighboring cells
following a certain reuse factor. This is similar to frequency reuse in traditional cellular
networks. However, this scheme usually results in SE degradation compared to unity reuse,
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where all the available pilot sequences are reused in each cell of the network. A pilot reuse
scheme that partially inherits the benefits of fully orthogonal pilot reuse and unit reuse is
fractional pilot reuse (FPR). This scheme is more attractive due to its distributed and lower
complexity implementation [19]. The goal of the FPR scheme is to improve the performance
of the cell-edge users, which are more severely impacted by pilot contamination compared
to the cell-center users, at a minimal reduction in overall system throughput compared
to the unity pilot reuse. However, one of the important questions to answer to achieve
the above goal is how to partition the set of available pilots for cell-center and cell-edge
users. To reliably answer this question, we need to consider a large-scale multi-cellular setup
so that the effect of pilot contamination can be accurately captured. In Chapter 2 of this
dissertation, using the desired set of tools from the stochastic geometry literature, we answer
the aforementioned question of pilot partitioning.

Pilot contamination mitigation in cell-free architecture: The pilot contamination
mitigation methods for cell-free mMIMO is a completely different challenge owing to dif-
ferent network architecture. In this case, the optimal pilot assignment is non-deterministic
polynomial-time (NP)-hard in nature. Therefore, all the works in the literature focus on
heuristics-based algorithms, such as random pilot allocation [5] and random access type pi-
lot assignment [20], which are distributed in nature. Various centralized pilot allocation
schemes based on graph coloring [21, 22], K-means clustering [23], and meta-heuristics [24]
are also available in the literature. While the distributed random pilot allocation schemes
are inferior in performance compared to the centralized schemes, the centralized schemes
suffer from a lack of scalability, which is an important aspect of cell-free architecture. In
Chapter 6, we propose a distributed scalable pilot assignment scheme that is inspired by the
random sequential adsorption (RSA) process. As a consequence of the above pilot assign-
ment scheme, we construct a new point process, which is a variant of the multilayer RSA
process studied in the statistical physics literature [25, 26, 27, 28, 29]. To facilitate the theo-
retical evaluation of different performance metrics, such as pilot assignment probability and
network interference, in a cell-free mMIMO system, statistical characterization of the new
multilayer RSA process is necessary. Chapter 5 of the dissertation is dedicated to deriving
and understanding the statistical properties related to the multilayer RSA process that are
used in Chapter 6 to derive useful theoretical results for cell-free mMIMO systems.

Impact of limited fronthaul capacity in cell-free mMIMO: Apart from pilot con-
tamination, another performance-limiting factor of cell-free mMIMO is the finite fronthaul
capacity that introduces compression/quantization error into the system. The performance
of such networks are presented in [30, 31, 32, 33, 34, 35, 36, 37]. In [30, 31, 32, 34] authors
present the uplink (UL) performance of cell-free mMIMO with finite fronthaul capacity.
In [35], the authors study the performance of a cell-free network with hardware impairments
where the authors compare the performance of three transmission strategies between the
BBU and the APs through finite capacity links. The UL and downlink (DL) performances
of fronthaul constrained cell-free network with low resolutions ADCs are presented in [36].
Note that most of these works focus on traditional cell-free architecture where all the APs
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serve every user in the network. Since the user performance degrades with quantization/-
compression error, which depends on the number of users (load) per AP, each AP should
serve a subset of users in the network. A network-centric approach that achieves this goal
is proposed [31, 34]. However, from the scalability perspective, a user-centric architecture
is preferred [38, 39, 40, 20, 41, 42, 37] where a user selects its set of serving APs. Further,
a user-centric approach can also be implemented in a distributed manner. However, in the
literature, there are few works on the DL performance of the user-centric cell-free architec-
ture with finite fronthaul capacity. In Chapter 7, using tools from stochastic geometry along
with a spatial construct related to bipartite random geometric graphs, we analyze the DL
performance of user-centric cell-free mMIMO systems.

Spectrum sharing in the CBRS band: As mentioned earlier, one of our objectives is to
evaluate the benefits of using mMIMO in a sub-6 GHz spectrum sharing environment such
as the citizen broadband radio service (CBRS) system. To characterize the performance
benefits, we first need a holistic view of the system performance taking into account the
main FCC guidelines, such as protection zones around licensed BSs where unlicensed BSs
cannot operate, a spectrum sensing, and contention-based channel access mechanism by the
unlicensed BSs. While in the literature, networks with contention-based channel access are
modeled using Matérn hardcore process of type-II (MHPP-II) [43, 44, 45, 46], a completely
new point process is necessary to model the CBRS networks (to accurately capture the
unique implementation guidelines by FCC). In Chapter 8, we present a modified MHPP-II
process that is obtained from a parent Poisson hole process (PHP) to model and subsequently
analyze the CBRS network.

1.3 Contributions

Using tools from stochastic geometry along with scenario specific spatial constructs, we
model, analyze, and optimize the cellular mMIMO, the cell-free mMIMO, and the CBRS
spectrum sharing networks in this dissertation. The main contributions are summarized
below.

1.3.1 Pilot contamination mitigation in cellular mMIMO

In Chapter 2, we analyze the performance of the UL of an mMIMO network considering an
asymptotically large number of antennas at the BSs. We model the locations of the BSs
as a homogeneous Poisson point process (PPP) and assume that their service regions are
limited to their respective Poisson-Voronoi cells (PVCs). Further, for each PVC, based on
a threshold radius, we model the cell-center region as the Johnson-Mehl (JM) cell of its BS
while the rest of the PVC is deemed as the cell-edge region. We consider the FPR scheme
where two different sets of pilot sequences are used for the cell-center and the cell-edge
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users. For the above system model, we derive analytical expressions for the UL signal-to-
interferene-plus-noise ratio (SINR) coverage probability and average SE for randomly selected
cell-center and cell-edge users. In addition, we present an approximate expression for the
average cell SE. One of the key intermediate results in our analysis is the approximate but
accurate characterization of the distributions of the cell-center area, i.e., the typical JM cell
area, and the cell-edge area of a typical cell. Another key intermediate step is the accurate
characterization of the pair correlation functions (PCF) of the point processes formed by the
interfering cell-center and cell-edge users that subsequently enables the coverage probability
analysis. From our system analysis, we present a partitioning rule for the number of pilot
sequences to be used for cell-center and cell-edge users as a function of the threshold radius
that improves the average cell-edge user SE while achieving similar cell-center user SE with
respect to unity pilot reuse.

It is worth mentioning that the usefulness of the JM cell goes beyond modeling the
mMIMO system with FPR. The analytical methods developed for performance evaluation
of a cell-center user are also applicable to model and analyze the performance of a cellular
system with coupled user and BS locations where the users are clustered around each BS.
The results of this study are presented in Chapter 3. In the above system model for FPR, we
do not consider UL power control by the users. Since UL power control is usually desirable
in a cellular network, in Chapter 4, for the UL of an mMIMO network with unity reuse, we
introduce a new approach based on the application of the displacement theorem involving a
PPP to capture the effect of distance-dependent power control by the users. This result can
help analyze the soft pilot reuse (SPR) in an mMIMO network.

1.3.2 Pilot contamination mitigation in cell-free mMIMO

One of our key observations from the works in the literature that deal with pilot contamina-
tion mitigation in cell-free mMIMO is the co-pilot users in the network should have spatial
separation that is reminiscent of the repulsive point processes in the stochastic geometry lit-
erature. One such point process is the RSA process where the points have a certain minimum
distance among themselves. Hence, the algorithm that generates RSA process from a set up
PPP distributed points can be modified as a pilot allocation algorithm. While coming up
with the algorithm is relatively straightforward, the most challenging part is to understand
the statistical properties of this new multilayer RSA process, where each layer belongs to a
set of co-pilot users.

Statistical characterization of multilayer RSA process

In Chapter 5, we focus on the statistical characterization of the multilayer RSA process.
Our goal is to obtain the first-order statistic, namely the time-varying density. As our first
step, we focus on the one dimensional (1D) version of the problem, where the deposition of
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overlapping rods on a line is allowed only if they are assigned two different colors, where colors
are symbolic of orthogonal resources, such as frequency bands, in communication networks.
Owing to a strong spatial coupling among the deposited rods of different colors, finding an
exact solution for the density of deposited rods of a given color as a function of time seems
intractable. Hence, we propose two useful approximations to obtain the time-varying density
of rods of a given color. The first approximation is based on the recursive use of the known
monolayer RSA result for the indirect estimation of the density of rods for the multilayer
version. The second approximation, which is more accurate but computationally intensive,
involves accurate characterization of the time evolution of the gap density function. This
gap density function is subsequently used to estimate the density of rods of a given color.
To solve the more relevant two-dimensional (2D) version of this problem, we extend the first
approximation approach developed for the 1D case to estimate the time-varying density of
deposited circles of a given color as a function of time.

Pilot assignment schemes for cell-free mMIMO systems

In Chapter 6, we address the problem of pilot assignment for a cell-free mMIMO system
to reduce the effect of pilot contamination. Owing to the prohibitive complexity to get an
optimal solution, we focus on devising an efficient heuristic algorithm with a potential scal-
able distributed implementation. Our first algorithm, which is inspired by the RSA process,
achieves this objective while ensuring that a minimum distance is maintained among the
co-pilot users to limit the effect of pilot contamination. Leveraging the results of Chapter 5,
we present an analytical approach to obtain the density of the co-pilot users. One of our key
results is the accurate characterization of the probability of the event that a pilot assigned
to a typical user in the network. In addition, to benchmark the performance of the RSA-
based scheme, we propose two optimization-based centralized pilot allocation schemes. The
first centralized scheme, similar to the RSA-based scheme, only considers the user locations
during the decision-making process. This algorithm, namely the max-min distance-based
algorithm, partitions the set of users to maximize the minimum distance between two users
in a partition (a set of co-pilot users). On the other hand, the second centralized algo-
rithm takes both user and AP locations into account and provides a near-optimal solution
in terms of sum-user SE with the application of the branch-and-price algorithm. Through
extensive system simulations, we observe that the scalable RSA-based pilot assignment pro-
vides competitive performance in terms of user SE compared to the max-min distance-based
algorithm. Further, both the RSA and the max-min distance-based schemes perform as good
as the near-optimal scheme as the density of APs increases.

1.3.3 Impact of fronthaul capacity in cell-free mMIMO network

Apart from pilot allocation, one of the important problems related to cell-free mMIMO is
studying the impact of limited fronthaul capacity on system performance. In Chapter 7, we
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analyze the performance of the DL of a cell-free mMIMO system considering finite capacity
fronthaul links. Conditioned on the user and AP locations, we first derive an achievable rate
for a randomly selected user in the network that captures the effect of finite fronthaul capacity
in terms of compression error. From this expression, we establish that for the traditional
cell-free architecture where each AP serves all the users in the network the achievable rate
becomes zero as the network size grows. Hence, to have a meaningful system analysis, we
present the performance of the traditional cell-free architecture over a finite region. To be
specific, we model the user and AP locations as two independent binomial point processes
(BPPs) and provide an accurate theoretical result to determine the user rate coverage. To
reduce the load on fronthaul link for a larger (possibly infinite) network, we consider a user-
centric architecture where each user in the network is served by a specified number of nearest
APs. For this architecture, we model the AP and user locations as two independent PPPs.
Since the rate expression is a function of the number of users served by an AP, we need to
statistically characterize the load in terms of the number of users per AP. This problem is
equivalent to determine the degree distribution of a bipartite random geometric graph. As
the exact derivation of the probability mass function (PMFs) of the load is intractable, we first
present the exact expressions for the first two moments of the load. Next, we approximate
the load as a negative binomial random variable whose parameters are obtained through
the moment matching method. Next, using the derived load results and appropriate tools
from stochastic geometry along with a few subtle approximations, we present an accurate
theoretical expression to determine the rate coverage of the typical user. From our system
analyses, for the traditional architecture, we conclude that the average system sum-rate is
a quasi-concave function of the number of users in the finite network. Further, for the user-
centric architecture, we observe that there exists an optimal number of serving APs that
maximizes the average user rate.

1.3.4 Modeling and analysis of CBRS spectrum sharing system

Since the mMIMO networks discussed in this dissertation are for sub-6 GHz spectrum range,
in the near future, these networks can co-exists by spectrum sharing, especially in the under-
utilized CBRS band. In Chapter 8, we model and analyze a cellular network that operates
in the licensed band of the 3.5 GHz spectrum and consists of a licensed and an unlicensed
operators. Using tools from stochastic geometry, we concretely characterize the performance
of this spectrum sharing system. We model the locations of the licensed BSs as a homoge-
neous PPP with protection zones around each BS. Since the unlicensed BSs can not operate
within the protection zones, their locations are modeled as a PHP. In addition, we consider
carrier sense multiple access with collision avoidance type contention-based channel access
mechanism for the unlicensed BSs. For this setup, we first derive an approximate expression
and useful lower bounds for the medium access probability of the serving unlicensed operator
BS. Further, by efficiently handling the correlation in the interference powers induced due
to correlation in the locations of the licensed and unlicensed BSs, we provide approximate
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expressions for the coverage probability of a typical user of each operator. Subsequently,
we study the effect of different system parameters on area SE of the network. We have also
presented the intial result on the improvement in system performance due to MIMO-enabled
BSs at the unlicensed operators.
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Chapter 2

Stochastic Geometry-based Uplink
Analysis of Massive MIMO Systems
with Fractional Pilot Reuse

2.1 Introduction

In this chapter, we focus on a cellular mMIMO system with asymptotically large number of
antennas at the BSs. As shown in the seminal work by Marzetta [2], under the assumption of
independent and identically distributed (i.i.d.) Rayleigh fading across BS antennas and sub-
optimal low-complexity processing schemes such as maximal ratio combining (MRC), the
reuse of pilot sequences gives rise to an inherent interference known as pilot contamination
(PC), which fundamentally limits the performance of mMIMO networks. As discussed next
in detail, a significant amount of research effort has been focused on overcoming the effect
of PC. Amongst all the solutions, a relatively simple scheme, namely fractional pilot reuse
(FPR), stands out in reducing the effect of PC for the cell-edge (CE) users. In this chapter,
our objective is to analyze the performance of a mMIMO network that uses the FPR scheme
leveraging tools from stochastic geometry.

2.1.1 Motivation and related works

In the literature, PC suppression or mitigation methods can be broadly categorized into
protocol based methods [14], BS coordination based methods [15, 16], and pilot reuse or
hopping based methods [17, 18]. Please refer to [47] for a comprehensive survey on this
subject. While protocol and coordination based methods are effective in removing the PC,
they are usually complex. Further, these techniques require some degree of coordination
among BSs. On the other hand, the gains obtained by pilot hopping based methods is
primarily due to interference randomization and is hence limited to scenarios with larger
channel coherence times. In contrast, a low complexity and distributed scheme to counter the
effect of PC is to forbid reusing the same pilots in every cell, which requires no coordination
among BSs [48, 49]. The concept of pilot reuse is similar to the frequency reuse in cellular
networks. In [48], the optimal pilot reuse factor is obtained for a network with linear topology.
From the numerical simulations, authors show that higher than unity pilot reuse factor is

11
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beneficial for average cell throughput. In [49], for a hexagonal cellular network model, authors
show that reuse-1 may not be optimal in all scenarios. These works considered the use of
completely orthogonal sets of pilots in neighboring cells. However, the spectral efficiency
(SE) can be further improved by using a more aggressive pilot reuse scheme, namely FPR,
instead of completely orthogonal reuse across cells. Conceptually, FPR is similar to that
of fractional frequency reuse (FFR) used in LTE systems to mitigate the effect of inter-cell
interference. To the best of the knowledge of the authors, the concept of FPR was first
introduced in [19]. In FPR, similar to FFR, depending on the channel condition, users in
a cell are classified into two categories, namely cell-center (CC) and CE users. While the
set of pilots reserved for CC users are reused in every cell, the set of pilots for CE users are
reused in specific cells depending upon the reuse factor.

For the performance analysis of mMIMO systems with FPR, it is imperative to consider
a large-scale multi-cell setup so that the effect of interference on the performance can be
accurately modeled. For such problems, stochastic geometry provides a rigorous set of tools
for the spatial modeling and performance analysis, as discussed in detail in [12, 50]. For a
pedagogical treatment of the subject with emphasis on the application to cellular network,
interested readers are advised to refer to [12]. Although stochastic geometry has been used
for the performance analysis of mMIMO systems in [51, 52, 53, 54, 55, 56, 57, 58, 59, 60], the
analyses presented in these works cannot be trivially extended to analyze the FPR scheme.
To begin with, in contrast to our network topology, in [60] a cooperative mMIMO network
is considered. In [51, 52, 53, 54, 55, 56, 57], where a cellular topology is considered, the UL
interference field generated by the users from unity pilot reuse scheme is different from the
FPR scheme. Further, the analyses [52, 53, 54, 55, 56, 57] are limited to the consideration of
a fixed number of users in each BS which does not take into account the varying load (number
of users) in each cell. In this work, we propose a new approach to analyze the performance
of a cellular mMIMO network considering FPR scheme that results in the following key
contributions.

2.1.2 Contributions of the work

Analytical model for UL analysis of a mMIMO system with FPR

A new generative model is proposed to analyze the performance of the UL of a mMIMO
system in the asymptotic antenna regime under the consideration of FPR scheme. We model
the BS locations as a PPP. Based on a threshold distance Rc, we characterize the CC regions
as the Johnson-Mehl (JM) cells associated with the BSs. The complementary region in each
cell is modeled as the CE region. One important result in our analyses is the approximate
but accurate distribution functions for the CC and CE areas of a typical Poisson-Voronoi
Cell (PVC). These results are subsequently used to model the load (number of CC and
CE users) distribution of each cell. Using these distributions, we provide key intermediate
results, such as the pilot assignment probability to a randomly selected CC (CE) user and
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utilization probability of a pilot. These results are later used in the coverage probability and
SE analyses.

SINR coverage, average user and cell SEs analysis

We present SINR coverage probability of a user assigned to a given CC (CE) pilot. The
derivation of exact probability is difficult as the exact statistical characterization of the in-
terference field is extremely challenging. In fact, derivation of this result for a relatively
simpler scenario of the classical UL system, where the segregation between CC and CE users
is not present, is also intractable. Hence, to lend tractability to this problem, we resort to
a careful approximation of the interference statistics in the UL. Motivated by [61], first, we
derive the pair correlation function (PCF) of the interfering user locations with respect to
(w.r.t.) the BS of interest. Using this PCF, we approximate the point process formed by
the CC (CE) interfering users as a non-homogeneous PPP. Next, based on the dominant
interferer based approach, we provide useful theoretical expressions for the coverage prob-
ability of a user assigned to a CC (CE) pilot. This result is extended to obtain analytical
expressions for the average SEs of a randomly selected CC (CE) user and average SE of a
typical cell.

System design guidelines

Our analysis leads to following system design guidelines. First, our analyses show that for
a certain range of threshold radius by allocating 1 − exp(−c2πλ0R

2
c), where λ0 is the BS

density and c2 is a constant, fraction of pilots for the CC users, FPR scheme improves the
average SE of a CE user with marginal reduction in the average SE of a CC user compared
to unity reuse. Second, for a given threshold radius, it is possible to achieve higher average
cell SE using FPR scheme compared to unity reuse by a suitable partitioning (different from
the aforementioned rule) of the set of the pilots. Third, the coverage probability of a user
on a CE pilot decreases with increasing Rc in the higher SINR regime, however, the reverse
trend is observed for the lower SINR regime.

2.2 System model

2.2.1 Network model

BS and user locations

In this work, we analyze the UL performance of a cellular network where each BS is equipped
with M →∞ antennas. The locations of the BSs belong to the set Ψb = Φb ∪ {o}, where o
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represents the origin, and Φb is a realization of homogeneous PPP of density λ0. In this work,
we present our analysis condition on the location of the BS at o. By virtue of Slivnyak’s
theorem, the reduced palm measure of Ψb is equal to the original measure of Φb [10]. The
location of the j-th BS is denoted by bj ∈ Ψb, where the index j does not represent any
ordering and b0 = o. In a cell, the region that is within a distance Rc from its BS is defined
as the CC region. For the typical cell at the origin (referred to as 0-th cell hereafter), the
CC region is given as

XC(o, Rc,Ψb) = {x ∈ VΨb(o) : ‖x‖ ≤ Rc} = VΨb(o) ∩ BRc(o), (2.1)

where VΨb(o) = {x ∈ R2 : ‖x‖ ≤ ‖x − bj‖,∀bj ∈ Ψb} is the PVC associated with b0 and
BRc(o) denotes a ball of radius Rc centered at o. Note that the CC regions are equivalent
to the JM cells associated with the BSs [62]. These JM cells are usually defined from the
perspective of random nucleation and growth process. However, we follow (3.2) for simpler
exposition. The region of the cell that is beyond Rc from the BS is the CE region and is
given as

XE(o, Rc,Ψb) = {x ∈ VΨb(o) : ‖x‖ > Rc} = VΨb(o) ∩ BCRc(o). (2.2)

The locations of the CC and CE users attached to the j-th BS are uniformly and
randomly distributed within XC(bj, Rc,Ψb) and XE(bj, Rc,Ψb), respectively. We denote the
CC area of the j-th cell as XCj(λ0, Rc) = |XC(bj, Rc,Ψb)| and the CE area as XEj(λ0, Rc) =
|XE(bj, Rc,Ψb)|. If the typical cell does not have a CE region, then XE(bj, Rc,Ψb) = ∅ and
XEj(λ0, Rc) = 0. Let NCj and NEj be the numbers of CC and CE users present in the j-th
cell. We assume that both the random variables NCj and NEj follow zero-truncated Poisson
distribution with parameters λuXCj(λ0, Rc) and λuXEj(λ0, Rc), respectively. Accordingly,
conditioned on the CC (CE) area of the j-th cell, the PMFs of NCj and NEj for n > 0 are
given as

P [NCj = n|xcj] =
e−λuxcj(λuxcj)

n

n!(1− e−λuxcj)
,

P
[
NEj = n|xej, EC3

]
=
e−λuxej(λuxej)

n

n!(1− e−λuxej)
, (2.3)

where EC3 is the event that the j-th cell has a CE region and is defined in Section 2.3,
xcj and xej are the realizations of the CC and CE areas 1. The main motivation behind
consideration of the truncated Poisson distribution for users is to ensure that each BS in the
network has at least one CC and CE user within its Voronoi cell. Since mMIMO will be
primarily used for macro cells, from the system perspective, this is a reasonable assumption.
Further, this allows us to model the user point process (to be defined shortly) as a Type-I

1Throughout this manuscript, we have represented a random variable in capital letter and its realization
in small letter.
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process introduced in [61] facilitating a rigorous system analysis from the perspective of a
typical cell. Note that λu is used to vary the load (number of users) in a cell.

Let us define a point process Ψu,CC that is constructed by randomly and uniformly
distributing one point in the CC region of each cell. Mathematically, this can be expressed
as

Ψu,CC = {U(XC(bj, Rc,Ψb)) : ∀bj ∈ Ψb},

where U(B) denotes a uniformly distributed point in B ⊂ R2. On the other hand, let
ΨbE denote the set of BSs having a CE region that is defined as ΨbE = {bj : ∀bj ∈
Ψb,XE(bj, Rc,Ψb) 6= ∅}. Now, for the CE case we define the point process Ψu,CE =
{U(XE(bj, Rc,Ψb)) : ∀bj ∈ ΨbE}. Except the users attached to the BS at o, rest of the
users in the network belong to the interfering cells. Let the CC and CE point processes
formed by the points in the interfering cells be

Φu,CC = {U(XC(bj, Rc,Ψb)) : ∀bj ∈ Φb},
Φu,CE = {U(XE(bj, Rc,Ψb)) : ∀bj ∈ {ΨbE \ b0}}.

Table 2.1: Summary of notations used in this chapter.

Notation Description
Ψb and λ0 Homogeneous PPP modeling the locations BSs and density of Ψb

bj and ujk Locations of the j-th BS and a user in the j-th cell using k-th pilot
Rc and κ = Rc

√
πc2λ0 Threshold radius and normalized threshold radius

VΨb(bj) Voronoi cell associated with the j-th BS
XC(bj , Rc,Ψb) CC region of the j-th cell
XE(bj , Rc,Ψb) CE region of the j-th cell
XCj(λ0, Rc) CC area of a typical cell in a network of BS density λ0

XEj(λ0, Rc) CE area of a typical cell in a network of BS density λ0

ΦCC
u,k and λCCu,k(r, κ) Point processes of users using k-th CC pilot and its density function
ICC(j, k) Indicator variable for the usage of the k-th CC pilot in the j-th cell
ICE(j, l) Indicator variable for the usage of the l-th CE pilot in the j-th cell

A0,CC (A0,CE) Indicator variable for pilot assignment to CC (CE) user of interest
A0n,CC (A0m,CE) Indicator variable for n-th (m-th) pilot assignment to CC (CE) user

Dijk Random distance between the BS at bj and user at ujk
gijk ∼ CN (0M , d

−α
ijk

IM ) Channel vector between i-th BS and the user at ujk
SINR0k SINR of the user using the k-th pilot in the 0-th cell

PCCc,k and PCEc,l Coverage probability of a user using k-th CC and l-th CE pilots
B,BC , and BE Total number of pilots, number of CC, and number of CE pilots

Tc, B Length of coherence time and pilot sequence (in symbol durations)
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Pilot sequences

We restrict our analysis to a narrowband single-carrier system. Extension to a multi-carrier
system is straightforward and hence is skipped in favour of simpler exposition. In order
to get the CSI at the BS, in the j-th cell, each user is assigned a pilot (sequence) that is
selected from a set of orthogonal pilots Pj ⊂ P , where P = {p1,p2, · · · ,pB} and pi ∈ CB×1

for i = 1, 2, . . . , B, where B is the number of orthogonal pilots. Hence, the duration of
each pilot sequence is B symbol duration. For convenience, we denote the pilots by their
indices. Therefore, the set of indicies of the pilots used in the j-th cell is denoted as Kj ⊂ K,
where K = {1, 2, 3, . . . , B}. Owing to the limited channel coherence time of Tc symbol
duration, the cardinality of this set |K| = B ≤ Tc. While the pilots remain orthogonal in
each cell, due to the consideration of FPR, orthogonality among cells is not guaranteed. In
each cell, the pilots are partitioned into two different sets, i.e. for the j-th BS Kj = C ∪ Ej
where C = {1, 2, . . . , BC} contains the indices of the CC pilots that are reused in each cell.
Moreover, |C| = BC ≤ B. On the other hand, Ej contains the indices of the CE pilots used
in the j-th cell, which are reused in other cells depending on the reuse factor βf . Further,
|Ej| = BE and (B − BC)/βf = BE for all bj ∈ Ψb. The choice for BC , BE, and βf is made
such that all three are integers.

These pilots are assigned randomly to the user in a particular cell. For the k-th CC
pilot sequence in the j-th cell, where k ∈ C, we define a binary random variable ICC(j, k) as
follows

ICC(j, k) =

{
1, if k-th CC pilot is used in the j-th cell,
0, if k-th CC pilot is not used in the j-th cell.

(2.4)

On the similar lines, for the l-th CE pilot in the j-th cell, we define the binary random
variable ICE(j, l). Let ΦCC

u,k and ΦCE
u,l be the point processes formed by the interfering CC and

CE users that use the k-th CC and l-th CE pilots, respectively. Since the user locations in
ΦCC
u,k are uniformly distributed points in the CC region of their respective cells, ΦCC

u,k can be
defined to inherit the user locations from Φu,CC when ICC(j, k) = 1. Similar argument is true
for ΦCE

u,l and Φu,CE. Hence,

ΦCC
u,k = {u : u ∈ Φu,CC, ICC(j, k) = 1}, and

ΦCE
u,l = {u : u ∈ Φu,CE, ICE(j, l) = 1}. (2.5)

We defer the discussion on the statistical properties of these point processes to Section 2.5.
Note that the point process formed by the users using other pilot sequences in the network
can be defined on the similar lines as that of ΦCC

u,k(Φ
CE
u,l), where the points will be inherited

from a point process that has the same definition as Φu,CC(Φu,CE). In the illustrative network
diagram (Fig. 4.1), one CC pilot that is reused in each cell and one CE pilot that is reused
in a few of the cells.
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Distance distributions

Let the location of the user that uses the k-th sequence in the j-th cell be denoted as ujk .
The random distance between a user at ujk and a BS at bi is denoted by the random
variable Dijk = ‖ujk −bi‖ and dijk is its realization. To obtain the coverage probability of a
randomly selected user CC (CE) user, we need the distribution of the serving distance D00k

(D00l) between b0 and the CC (CE) user using the k-th (l-th) pilot in the 0-th cell. For
a typical PVC, the distance distribution between the BS and a randomly located point in
the PVC is approximated as Rayleigh distribution with scale parameter (

√
2πλ0c2)−1, where

c2 = 5/4 is an empirically obtained correction factor [63]. Since the user at u0k can not lie
beyond BRc(o), it is reasonable to approximate the distribution of D00k to follow truncated
Rayleigh distribution as given below

FD00k
(d00k |Rc) =

1− exp(−πc2λ0d
2
00k

)

1− exp(−πc2λ0R2
c)
, d00k ≤ Rc. (2.6)

On the other hand, the distribution of distance D00l can also be approximated as

FD00l
(d00l |Rc) = 1− exp(−πc2λ0(d2

00l
−R2

c)), d00l > Rc. (2.7)

At this point, in order to make Rc invariant to the BS density λ0, we define a normalized
radius κ as Rc = κ√

πc2λ0
, κ ∈ [0,∞). In Sec. 2.5, κ will be used in the statistical characteri-

zation of ΦCC
u,k(Φ

CE
u,l). Further, κ also provides perspective regarding the size of the CC region

without the knowledge of λ0. Next, we define the system parameters from the perspective

Figure 2.1: A representative network diagram (left) and a network realization illustrating the users using
the k-th CC and l-th CE pilot (right). In a few of the cells the CE pilot is not in use.

of the CC user using the k-th pilot sequence. The extension of these definitions for CE case
is straightforward.
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2.2.2 Channel model and channel estimation

Channel model

We consider a system where each link suffers from two multiplicative wireless channel im-
pairments, namely distance-dependent pathloss and multi-path fading. Consideration of
the effect of shadowing is left as a promising future work. The channel vector between
the user located at ujk and the M antenna elements of the BS located at bi is given as
gijk = d

−α/2
ijk

hijk(∈ CM×1), where α is the pathloss exponent, hijk ∼ CN (0M , IM) is a M × 1
complex Gaussian vector. We assume that these channel vectors exhibit quasi-orthogonality,
i.e.

lim
M→∞

1

M
hHijmhijn = 1(jm = jn). (2.8)

Further, we consider user transmit power ρu to be fixed for both pilot and data symbols.

Channel estimation

In a cell, using the orthogonal pilots, corresponding BS obtains the least square channel
estimate of the users attached to them. Hence, for the CC user using the k-th pilot, the
channel estimate at the 0-th BS is given as g̃00k =

√
ρug00k +

∑
ujk∈Φu,k

√
ρug0jk +v0 ∈ CM×1,

where v0 ∼ CN (0M , IM) is a complex Gaussian noise vector.

2.2.3 Asymptotic UL SINR of a CC (CE) user assigned to k-th
(l-th) pilot sequence

The received signal vector at the 0-th BS is given as

r0 = h00kx0kd
−α/2
00k

+
B∑

i=1,i 6=k

ICC(0, i)h00ix0id
−α/2
00i

+
B∑
i=1

∑
uji∈ΦCC

u,i

h0jixjid
−α/2
0ji

+ n0, (2.9)

where xji is the data symbol transmitted by the user using the i-th pilot in the j-th cell,
n0 ∼ CN (0M , IM) is a complex Gaussian noise vector. We assume that E [xji] = 0 and
E [‖xji‖2] = ρu. In order to estimate the symbol transmitted by the CC user of interest, the
0-th BS uses MRC detection scheme, where the filter coefficients are given as w0k = 1

M
g̃H00k

.
As demonstrated in various works in the literature (cf. [64]), the asymptotic SINR of a user
is independent of the detection scheme. Now, the detected symbol for the CC user using
the k-th pilot in the 0-th BS is given as x̂0k = w0kr0. As the number of antennas M →∞,
due to quasi-orthogonality of the channel, it can be shown that the detected symbol is only
affected by the interference from the users using the k-th pilot in other cells (a.k.a. pilot
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contamination). Hence, the SINR of the CC and CE users that are assigned the k-th and
l-th pilots, respectively, are given as

SINR0k = d−2α
00k

( ∑
ujk∈ΦCC

u,k

d−2α
0jk

)−1

, SINR0l = d−2α
00l

( ∑
ujl∈ΦCE

u,l

d−2α
0jl

)−1

. (2.10)

The proof of the above SINR expression is readily available in the literature (cf. [2, 53]).
Since the above expressions are independent of ρu, we assume ρu ≡ 1.

2.2.4 Performance metrics

In this work, the following metrics are considered for the network performance analysis.

1) SINR coverage probability: The SINR coverage probabilities of a CC and CE user
using the k-th and l-th pilots for a target SINR threshold T are

PCCc,k(T ) = P [SINR0k ≥ T |ICC(0, k) = 1] , and
PCEc,l(T ) = P

[
SINR0l ≥ T |ICE(0, l) = 1|EC3

]
, (2.11)

where EC3 is the event that the typical cell has a CE region (detailed discussion is in Sec. 2.3).

2) Average user SE: The average user SEs of the CC and CE users of interest are given
as

SEu,CC = ωE [A0,CC log2(1 + SINR0,CC)] , and

SEu,CE = ωE
[
A0,CE log2(1 + SINR0,CE)

∣∣∣∣EC3 ] , (2.12)

where ω = (1 − B/Tc) accounts for the fact that out of the total coherence time of Tc
symbol duration, B symbol duration is dedicated for channel estimation leaving only Tc−B
duration for data transmission. Note that while the coverage probability is defined for a user
conditioned on a pilot, the average user SE is defined for a randomly selected CC (CE) user
that can be assigned any one of the CC (CE) pilots. Hence, SINR0,CC and SINR0,CE is the SINR
of a randomly selected CC (CE) user that we term as CC (CE) user of interest. Further,
the indicator variable A0,CC = 1, if the CC user of interest is assigned a pilot sequence, and
A0,CC = 0, otherwise. Similarly, we define the indicator variable A0,CE for a random CE user
of interest.

3) Average cell SE: The cell SE of the 0-th cell is given as

CSE = ω

[ BC∑
n=1

ICC(0, n) log2(1 + SINR0n) +

BE∑
m=1

ICE(0,m) log2(1 + SINR0m)

]
, (2.13)

where ω = (1−B/Tc). Our metric of interest is E [CSE]. In the following sections, we derive
theoretical expressions for the aforementioned quantities.
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2.3 Distributions of the CC and CE areas of a typical
cell

As discussed in the previous section, the distribution of the number of CC (CE) users and
subsequently the pilot utilization in an interfering cell depends on its CC (CE) area. Since
exact characterization of CE area is challenging (it is an open problem), we provide an
approximate area distribution for the CE area using the well-known Weibull distribution. In
our approach, we first derive the exact expressions for the first two moments of the CE area of
a typical cell. In the second step, using moment matching method, we approximate this area
as Weibull distribution. We use the similar method to approximate the CC area distributions
as a truncated beta distribution. While the exact characterization of the distribution of a
typical JM cell area, hence the CC area, is given in [65], the expression of the probability
density function (PDF) involves an infinite summation over multi-dimensional integrations.
Further, the order of integration (hence the complexity of the expression) increases with the
increasing value of Rc. Hence, our approximate truncated beta distribution lends tractability
to the analysis. We validate the accuracy of the proposed distributions through Monte
Carlo simulations using statistical metrics such as Kulback-Leibler divergence (KLD) and
Kolmogorov-Smirnov distance (KSD). It is worth mentioning that the area of a typical PVC
is approximated to follow gamma distribution, whose properties are used to provide load-
based analysis of cellular networks [66, 67].

2.3.1 Distribution of CE area of a typical cell

To begin with, in the following lemma, we present the first two moments of the CE area.

Lemma 2.1. For a given Rc and λ0, the mean CE area of a typical Voronoi cell is

m1,XE0
(λ0, Rc) = E [XE0(λ0, Rc)] =

exp(−πλ0R
2
c)

λ0

, (2.14)

and the second moment of the area is m2,XE0
(λ0, Rc) =

E
[
XE0(λ0, Rc)

2
]

= 2π

∞∫
r1=Rc

∞∫
r2=Rc

2π∫
u=0

exp (−λ0V (r1, r2, u)) dur2dr2r1dr1, (2.15)

where V (r1, r2, u) is the area of union of two circles. The radii of these circles are r1 and r2,
and the angular separation between their centers with respect to origin is u. Further,

V (r1, r2, u) =r2
1

(
π − v(r1, r2, u) +

sin(2v(r1, r2, u))

2

)
+ r2

2

(
π − w(r1, r2, u) +

sin(2w(r1, r2, u))

2

)
, (2.16)
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where v(r1, r2, u) = cos−1

(
r1−r2 cos(u)√

r2
1+r2

2−2r1r2 cos(u)

)
and w(r1, r2, u) = cos−1

(
r2−r1 cos(u)√

r2
1+r2

2−2r1r2 cos(u)

)
.

Proof: Please refer to Appendix A.1.

Before proceeding further, some intuition on the type of distribution that provides an
accurate approximation is necessary. Note that a Voronoi cell has two characteristic radii
Rm and RM [68]. While Rm corresponds to the radius of the largest circle that completely
lies inside a Voronoi cell, RM is the radius of the smallest circle that encircles a Voronoi cell.
Using Rm and RM , we define following three disjoint events: (i) E1 = {Rc < Rm}, i.e. the
CC region completely lies inside the Voronoi cell, (ii) E2 = {Rm ≤ Rc < RM}, i.e. the circle
BRc(o) and the Voronoi cell VΨb(o) intersects, and (iii) E3 = {RM ≤ Rc}, i.e. there is no CE
region. So, the CE area PDF can be expressed as the sum of two components:

fXE0
(x) = fXE0

(x|E3)P [E3] + fXE0
(x|EC3 )(1− P [E3] ), (2.17)

Further, note that fXE0
(x|E3) is given as

fXE0
(x|E3) = δ(0), (2.18)

where δ(x) is the Dirac-delta function. Next we obtain P [E3] and fXE0
(x|E3). Since E3 = {RM ≤ Rc},

P [E3] = P [RM ≤ Rc] , where the distribution of RM is [68, Theorem 1]

P [RM ≤ r] = 1− e−4πλ0r2

(
1−

∑
k≥1

(−4πλ0r
2)k

k!
ξk

)
, r > 0. (2.19)

In the above expression,

ξk =

∫
k∑
i=1

ui=1,ui∈[0,1]

[
k∏
i=1

F (ui)

]
e4πλ0r2

∑k
i=1

∫ ui
0 F (t)dtdu,

where F (t) = sin2(πt)1(0 ≤ t ≤ 1
2
) + 1(t > 1

2
), where 1(·) is the indicator function. Based

on moment matching method, we approximate fXE0
(x|EC3 ) as Weibull PDF. Intuitively, the

CE area is likely to exhibit similar properties of the Voronoi cell area, especially when Rc

is small. Hence, the gamma distribution, which is used to approximate the Voronoi cell
area, is the first preference. However, for larger Rc, gamma PDF fails to capture the decay
of the PDF of CE area. Hence, Weibull distribution, which has similar Kernel as gamma
distribution2 along with the flexibility to control the decay factor of the PDF, is used for the
aforementioned approximation. Now, we present the mean and variance of XE0 conditioned
on EC3 .

2The kernel of gamma PDF is fG(x) ∝ xξ−1 exp(−x/θ), and Weibull PDF is fW (x) ∝ xξ−1 exp(−(x/θ)ξ).
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Lemma 2.2. The mean and variance of the CE area conditioned on EC3 are

E
[
XE0|EC3

]
= E [XE0] (P

[
EC3
]
)−1 and

Var
[
XE0|EC3

]
=

Var
[
XE0

]
P [EC3 ]

− P [E3] (E
[
XE0|EC3

]
)2.

Proof: The proof of this Lemma follows from law of total expectation and law of
total variance that are given as E [XE0] = E [XE0|E3]P [E3] + E

[
XE0|EC3

]
P
[
EC3
]
, and

Var
[
XE0

]
=Var

[
XE0|E3

]
P [E3] + P [E3] (1− P [E3])(E [XE0|E3])2

+ Var
[
XE0|EC3

]
P
[
EC3
]

+ P
[
EC3
]
P [E3] (E

[
XE0|EC3

]
)2

− 2E [XE0|E3]P [E3]E
[
XE0|EC3

]
P
[
EC3
]
.

Rearranging the terms and replacing E [XE0|E3] = 0 and Var
[
XE0|E3

]
= 0, we obtain the

expressions presented in the lemma.

The conditional PDF of XE0 is given as

fXE0
(x|EC3 ) =

η

ζ

(
x

ζ

)η−1

exp

(
−x

η

ζη

)
, (2.20)

where η and ζ are shape and scale parameters. These parameters are obtained by matching
the first two moments and solving the following system of equations:

ηΓ(1 + 1/ζ) = E
[
XEj|EC3

]
,

η2(Γ(1 + 2/ζ)− Γ(1 + 1/ζ)2) = Var
[
XEj|EC3

]
. (2.21)

Now, (2.20), (2.19), (2.18), and (2.17) together provide us the approximate PDF for CE area.

2.3.2 Distribution of CC area of a typical cell

Similar to the CE case, in the next lemma, we derive the first two moments of the CC area.

Lemma 2.3. For a given λ0 and Rc, the mean of the CC area a typical Voronoi cell is given
by

m1,XC0
(λ0, Rc) = E [XC0(λ0, Rc)] =

1− exp(−πλ0R
2
c)

λ0

, (2.22)

and the second moment of the area is given by m2,XE0
(λ0, Rc) =

E
[
XC0(λ0, Rc)

2
]

= 2π

∫ Rc

r1=0

∫ Rc

r2=0

∫ 2π

u=0

e−λ0V (r1,r2,u)dur2dr2r1dr1, (2.23)

where V (r1, r2, u) is the area of union of two circles given in (2.16).
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Proof: On the similar lines of the proof of Lemma 2.1, the mean CC area of the
0-th cell is

E [|XC(o, Rc,Ψb)|] = 2π

∫ Rc

r=0

exp(−πλ0r
2)rdr.

Similarly, the second moment of the j-th CC area is given as

E
[
|XC(o, Rc,Ψb)|2

]
= E

[∫
x∈R2

1(x∈VΨb
(o)∩BRc (o))dx

∫
y∈R2

1(y∈VΨb
(o)∩BRc (o))dy

]
,

On the similar lines as in Appendix A.1, after a few steps (2.23) follows from the above
expression.

Now, the PDF of the CC area can be expressed as

fXC0
(x) = fXC0

(x|E1)P [E1] + fXC0
(x|EC1 )(1− P [E1] ), (2.24)

where P [E1] = P [Rm > RC ] . Note that Rm is half of the nearest neighbor distance of a
PPP, which follows Rayleigh distribution with parameter (

√
8πλ0)−1 and CDF FRm(rm) =

1− exp(−4πλ0r
2
m). Hence, the probability of E1 is given as

P [E1] = P [Rm > Rc] = exp(−4πλ0R
2
c) = 1− P

[
EC1
]
. (2.25)

Observe that, the PDF of XC0 conditioned on E1 is

fXC0
(x|E1) = δ(πR2

c). (2.26)

Now, to approximate fXC0
(x|EC1 ), we have used generalized truncated beta distribution, i.e.

fXC0
(x|EC1 ) ≈g(x; v, w, y, z, γ, β) =

(x− y)γ−1(z − x)β−1

B(v, w, y, z; γ, β)
, 0 ≤ x < πR2

c , (2.27)

where γ and β are shape parameters; the support of the untruncted beta distribution is [y, z]
(since beta distribution has finite support); the support of the truncated beta distribution
is [v, w]; and the normalization factor B(v, w, y, z; γ, β) =

∫ w

v
(x− y)γ−1(z − x)β−1dx, where

v = v−y
y−z and w = w−y

z−y . The choice of beta distribution is motivated by the fact that the
distribution function of XC0 has a finite support [0, πR2

c ]. Based on this support set, we set
v = 0 and w = πR2

c for the PDF presented in (2.27). Another motivation behind selection of
beta is the presence of an additional shape parameter compared to conventional distributions
such as Gamma or Weibull, which are parametrized by a single shape parameter. Further,
we are introducing truncation to the above distribution that gives us an additional degree
of freedom to closely match any arbitrary shape of the actual PDF. Here, we set y = 0 and
z = 3/2πR2

c . To obtain the shape parameters γ and β using moment matching method, we
need the mean and variance of XC0 conditioned on EC1 , which is presented next.
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Lemma 2.4. The mean and variance of the area XC0 conditioned on EC1 is given as

E
[
XC0|EC1

]
=

(1− e−πλ0R2
c)λ−1

0 − πR2
ce
−4πλ0R2

c

1− e−4πλ0R2
c

,

Var
[
XC0|EC1

]
=
Var
[
XC0

]
P [EC1 ]

− P [E1]
(
E [XC0|E1]− E

[
XC0|EC1

])2
. (2.28)

Proof: The proof is done on the similar lines as that of Lemma 2.2. Using the law
of total expectation, we write

E
[
XC0|EC1

]
= (E [XC0]− E [XC0|E1]P [E1] ) /(1− P [E1]).

The mean of the conditional area in the Lemma is obtained by substituting E [XC0|E1] =
πR2

c ,P [E1] = e−4πλ0R2
c , and using the value of E [XC0] from Lemma 2.3. Further, the

conditional variance is obtained from the law of total variance and using the fact that
Var
[
XC0|E1

]
= 0 .

The parameters γ, β in (2.27) are obtained by solving the following simultaneous equa-
tions

B(v, w, y, z; γ + 1, β)

B(v, w, y, z; γ, β)
= E

[
XC0|EC1

]
,

B(v, w, y, z; γ + 2, β)

B(v, w, y, z; γ, β)
− E

[
XC0|EC1

]2
= Var

[
XC0|EC1

]
.

Substituting (2.25) and (2.26) in (2.24), the approximate CC area PDF is given as

fXC0
(x) = δ(πR2

c)e
−4πλ0R2

c + fXC0
(x|EC1 )(1− e−4πλ0R2

c), (2.29)

where fXC0
(x|EC1 ) is given in (2.27).

Remark 2.5. It is possible to approximate the PDF of the area of a typical Voronoi cell using
the expressions for fXC0

(x) in (2.17) or fXC0
(x) in (2.29). While in the former case, the

typical Voronoi cell area PDF is obtained by setting Rc = 0, in the latter case it is obtained
by setting a sufficiently large value of Rc such that P [E1] = exp(−πλ0R

2
c) ≈ 0.

2.3.3 Accuracy of the approximate distributions

The approximate theoretical results are validated through Monte Carlo simulations. We
use KLD (KSD) to compare the approximate and the true PDFs (CDFs) obtained through
simulations. In Table 2.2 these two metrics are presented for different values of Rc for both
CC and CE areas. The low values of KSD and KLD for different Rc verifies the accuracy of
the distributions. For visual verification, in Fig. 2.2, we compare the true and approximate
PDFs of CC and CE areas.
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Figure 2.2: The PDFs (left) of the CC area and CE area (right) of a typical cell. λ0 = 4× 10−6.

Rc|κ 100|0.4 200|0.8 250|1 300|1.2 500|2
KS Distance (CC) 0.0230 0.0238 0.0123 0.0104 0.002

KL Divergence (CC) 0.0125 0.0095 0.0055 0.0032 0.0007
KS Distance (CE) 0.0164 0.0107 0.0233 0.0347

KL Divergence (CE) 0.0098 0.0087 0.0160 0.0208

Table 2.2: Comparison between simulation and approximate PDFs and CDFs for different Rc. λ0 =
4× 10−6.

2.4 Pilot assignment and pilot utilization probability

In this section, we present theoretical expressions for the probability of assigning a pilot to
the CC (CE) user of interest (Lemma 2.6) and the probability that the k-th CC (l-th CE)
pilot is being used in the j-th cell (Lemma 2.7). As we will see in the following section,
the former quantity is useful in obtaining the average SE of the CC (CE) user of interest,
and the latter quantity is useful in determining the average cell SE as well as the density
function of interfering CC (CE) user point process. Before proceeding further, let us define
the binary variable A0n,CC = 1, if the CC user of interest is assigned the n-th pilot sequence,
and A0n,CC = 0, otherwise. Similarly, the indicator variable A0m,CE can be defined for CE user
of interest and the m-th CE pilot. Next, we present the probability of pilot assignment to
the CC (CE) user of interest.

Lemma 2.6. The probability that CC user of interest is assigned the k-th pilot is

E [A0k,CC] = P [A0k,CC = 1] =
P [A0,CC = 1]

BC

=

πR2
c∫

0

P [A0,CC = 1|xc0] fXC0
(xc0)dxc0

BC

,
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where

P [A0,CC = 1|xc0] =

BC∑
n=1

P [NC0 = n|xc0] +
∑
n>BC

BC

n
P [NC0 = n|xc0] (2.30)

is the probability that CC user of interest is assigned a pilot in the 0-th cell. Further, condi-
tioned on the event that the 0-th cell has a CE region, the probability of CE user of interest
is assigned the l-th pilot is given as

E
[
A0l,CE|EC3

]
= P

[
A0l,CE = 1|EC3

]
=

P
[
A0,CE = 1|EC3

]
BE

= B−1
E

∞∫
0

P
[
A0,CE = 1|EC3 , xe0

]
fXE0

(xe0|EC3 )dxe0,

where

P
[
A0,CE = 1|EC3 , xe0

]
=

BE∑
n=1

P
[
NE0 = n|EC3 , xe0

]
+
∑
n>BE

BE

n
P
[
NE0 = n|EC3 , xe0

]
.

Proof: The probability of assigning a pilot to the CC user of interest is given as

P [A0,CC = 1] = P
[
∪BCn=1{A0n,CC = 1}

]
=

BC∑
n=1

P [A0n,CC = 1] = BCP [A0k,CC = 1] ,

where the last step follows from the fact that the events {{A0n,CC = 1}, n = 1, . . . , BC} are
equi-probable. Conditioned on the CC area of the 0-th cell, the distribution of the number
of users in this region is given by (3.3). Hence, the probability that the CC user of interest
is assigned a pilot is given by (2.30). The final result is obtained by de-conditioning w.r.t.
CC area of the 0-th cell. The pilot assignment probability for the CE user follows from the
similar argument.

As discussed in Sec. 2.2, since our analysis is performed for the k-th CC (l-th CE) pilot,
the aggregate network interference perceived at the 0-th BS depends on the utilization of
the k-th CC (l-th CE) pilot in the interfering cells. In the following Lemma, we present the
probability of the usage of the k-th CC (l-th CE) pilot in an interfering cell.

Lemma 2.7. The probability that the k-th pilot is used in an interfering cell (say j-th cell)
is

E [ICC(j, k)] = P [ICC(j, k) = 1] =

∫ πR2
c

0

P [ICC(j, k) = 1|xcj] fXCj(xcj)dxcj, (2.31)
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where

P [ICC(j, k) = 1|xcj] =

BC∑
n=1

n

BC

P [NCj = n|xcj] +
∑
n>BC

P [NCj = n|xcj] . (2.32)

Similarly, conditioned on the event that the j-th cell has a CE region, the probability that the
l-th CE pilot is used in the j-th cell is given as E

[
ICE(j, l)|EC3

]
=

P
[
ICE(j, l) = 1|EC3

]
=

∫ ∞
xej=0

P
[
ICE(j, l) = 1|EC3 , xej

]
fXEj(xej|EC3 )dxej, (2.33)

where

P
[
ICE(j, l) = 1

∣∣EC3 , xej] =

BE∑
n=1

n

BE

P
[
NEj = n

∣∣xej, EC3 ]+
∑
n>BE

P
[
NEj = n

∣∣xej, EC3 ] .
Proof: For the CC case, first we condition on area of the j-th cell. Now, the

probability that the k-th pilot is used on the j-th cell is given by (2.32). The expression in
(2.31) follows from de-conditioning w.r.t. XCj. On the similar lines, (2.33) can be derived.

2.5 SINR coverage and SE analysis

In this section, we characterize the statistical properties of the point processes ΦCC
u,k(Φ

CE
u,l) to

obtain the coverage probability and SE of a randomly selected CC (CE) user.

2.5.1 SINR coverage analysis of a user assigned to the k-th CC pilot

As discussed in Sec. 2.2, ΦCC
u,k is obtained from Φu,CC. Therefore, the first step is to understand

the properties to Φu,CC, which is discussed next.

Density function of Φu,CC

Conditioned on the 0-th BS location, Φu,CC is isotropic. In addition, since Φu,CC is defined
excluding the point in Xc(o, Rc,Ψb) from Ψu,CC, it is non-homogeneous. Now, our objective
is to characterize Φu,CC conditioned on the 0-th BS location o. To achieve this objective,
we first determine the PCF g(r) of the points in Φu,CC w.r.t. o. Next, using this PCF, we
approximate the point process as a non-homogeneous PPP. The approach that we have
followed for the statistical characterization of Φu,CC is inspred by the work presented in [61],
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where the interfering users are uniformly distributed within the Voronoi cell of each BS. In
contrast, in our case the users are uniformly distributed within the CC region of each cell.
Hence, our result is slightly more general, i.e. for a sufficiently large value of κ we arrive
at the result presented in [61]. Further, as we will see shortly, the derivation of the PCF is
also not straightforward as the geometry of the region that we encounter is a little more
complex compared to the Voronoi cells considered in [61]. Note that in this case, the PCF

gλ(r, κ) is also a function of κ. By definition, gλ(r, κ) presents the likelihood of finding a
point of Φu,CC at a distance r from the 0-th BS in a network with λ0 = λ and threshold radius
Rc = κ/

√
πc2λ. Further, in this case, the PCF is scale-invariant, i.e. gλ(r, κ) = g1(r

√
λ, κ).

Using the scale invariance property, next, we present the PCF of Φu,CC w.r.t. origin for λ0 = 1.

Lemma 2.8. The PCF of Φu,CC w.r.t. the 0-th BS location is

gCC
1 (r, κ) ≈ 1− e−2πr2E[XC0(1,κ/

√
πc2)−1], (2.34)

where XC0(1, κ/
√
πc2) is the CC area of a typical cell of a PV tessellation with unity BS

density.

Proof: Please refer to Appendix A.2.
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Figure 2.3: PCFs of Φu,CC (left) and Φu,CE (right) for different κ. The approximation and curve-
fitting are based on (2.39) and (2.40), respectively.

In Fig. 2.3, we present the PCF gCC
1 (r, κ) for different values of κ. The approximate

theoretical expression presented in (2.34) is compared with the simulation results. Further,
following prototype function is also used to approximate the PCF for comparison purpose

ĝCC
1 (r, κ) = 1− exp(−ar2) + br2 exp(−cr2), (2.35)

where the values of the parameters a, b, c are obtained through curve fitting with simulated
PCF. Based on the figure, we make the following remark on the PCF in (2.34).
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Remark 2.9. For smaller values of κ, the PCF obtained from simulation indicates that Φu,CC

exhibits clustering behaviour. However, by approximating the PCF using the exponential func-
tion presented in (2.34), it is not possible to capture this clustering nature. More complicated
functions such as (2.35) can be used for this purpose. However, determining the values of the
parameters a, b, and c analytically is not tractable. Hence, we resort to the exponential PCF
for the rest of the analysis, which is accurate for smaller values of r, i.e. in the neighborhood
of the BS at o.

Using the PCF in (2.34), we approximate Φu,CC as a non-homogeneous PPP such that for

all f : R2 7→ R+, E
[∑

x∈Φu,CC
f(x)

]
≡ E

[∑
x∈ΦPPP

u,CC
f(x)

]
=⇒

λ0

∫
x∈R2

f(x)gCC
1 (‖x‖

√
λ0, κ)dx =

∫
x∈R2

f(x)λPPP
u,CC (‖x‖, κ)dx,

where the second step follows from the application of Campbell’s theorem and replacing the
intensity measure by the reduced second factorial moment measure [10, Chapter 8]. Hence,
the density function of Φu,CC, if approximated as a non-homogeneous PPP, is given as

λPPP
u,CC (r, κ) = λ0

(
1− e−2πλ0r2E[XC0(1,κ/

√
πc2)−1]

)
. (2.36)

Density function of ΦCC
u,k

Since ΦCC
u,k ⊆ Φu,CC, one can obtain ΦCC

u,k by independently thinning the points in Φu,CC with
probability 1− E [ICC(j, k)]. Note that due to correlation in CC areas of neighbouring cells,
the number of users in each cell, as well as the pilot utilization probability among neighbour-
ing cells are correlated. Hence, the independent thinning is an approximation. However, to
maintain tractability, this approximation is necessary. Approximating ΦCC

u,k as a PPP, in the
following Lemma, we present its density function.

Lemma 2.10. The density function of ΦCC
u,k is

λCCu,k(r, κ) = λ0E [ICC(j, k)]
(
1− e−2πλ0r2E

[
XC0(1, κ√

πc2
)−1
])
,

where E [ICC(j, k)] is given in Lemma 2.7. The intensity measure is

ΛCC
u,k(r, κ) = 2π

∫ r

0

λCCu,k(t, κ)tdt.

Proof: By independently thinning ΦPPP
u,CC with probability 1−E [ICC(j, k)], we arrive

at the expression for the density function.
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Remark 2.11. In the above expression, for κ → ∞, E
[
XC0(1, κ/

√
πc2)−1

]
≈ 7/5. This

corresponds to the interfering user density λPPP
u,CC (r, κ) ≈ λ0

(
1− exp

(
−14

5
πλ0r

2
))
, which is

the density function for interfering users in case of pilot reuse-1 [61].
Moreover, since limκ→∞ E

[
XC0(1, κ√

πc2
)−1
]
≤ E

[
XC0(1, κ√

πc2
)−1
]
, the intensity measure of

the user point process of pilot reuse-1 is less than ΛCC
u,k(r, κ). As a consequence, the distance

of the nearest interfering user in case of FPR is stochastically dominated by pilot reuse-1 for
a randomly selected CC user.

Coverage probability of the CC user of interest

In stochastic geometry-based works, for coverage analysis, one key intermediate step is to
characterize the interference by the Laplace transform (LT) of its distribution [12]. The main
advantage of this approach is that in the presence of exponential fading gain, the coverage
probability can be readily expressed in terms of this LT [12]. However, in the SINR expression
given in (2.10), the small scale fading term is absent due to spatial averaging. Hence,
the conventional LT based approach is not applicable in this scenario. Although classical
approaches such as Gil-Palaez inversion theorem [69, 70] can be used to obtain coverage
probability, it is computationally inefficient, hence, usually avoided wherever possible. A
more useful solution to this problem can be obtained by observing the fact that due to
pathloss the total interference is likely to be dominated by interference contributions from
a few dominant users [71]. Based on this intuition, we approximate the total interference
power as the sum of the interference power from the most dominant interferer and the mean
of the rest of the terms conditioned on the dominant term.

Dominant interferer approximation: Let D̂01k be the distance between the 0-th BS and
its nearest interferer. Then, the CDF and the PDF of D̂01k are given as

FD̂01k
(d̂01k |κ) = 1− e−ΛCC

u,k(d̂01k
,κ),

fD̂01k
(d̂01k |κ) = 2πd̂01kλ

CC
u,k(d̂01k , κ)e−ΛCC

u,k(d̂01k
,κ), (2.37)

which are obtained using void probability of the PPP [12]. Now, the total interference is
approximated as the sum of interference from the most dominant interferer and the ex-
pected interference from rest of the interferers in the network. Hence, we write Iagg,k =

D̂−2α
01k

+ E
[∑

ûjk∈ΦCC
u,k\û1k

D̂−2α
0jk

∣∣∣∣D̂01k

]
= D̂−2α

01k
+ E

[
Irem,k|D̂01k

]
, where û1k is the location

of the dominant interferer in ΦCC
u,k. In the following Lemma, we present an expression for

E
[
Irem,k|D̂01k

]
.

Lemma 2.12. Conditioned on the distance to the dominant interferer D̂01k , the expected
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interference from the rest of the interfering users is

E
[
Irem,k|D̂01k = d̂01k

]
= 2π

∫ ∞
d̂01k

r−2αλCCu,k(r, κ)rdr.

Proof: Above expression follows from the application of Campbell’s theorem.

With the knowledge of the expected interference and the distribution of D̂01k , in the
following proposition, we present the coverage probability for a CC user assigned to the k-th
pilot.
Proposition 2.13. Conditioned on the event that the k-th pilot is used in the 0-th cell, the
coverage probability of the user that is assigned this sequence is given as PCCc,k(T ) =

ED00k
,D̂01k

[
1

(
d̂−2α

01k
+ E

[
Irem,k|d̂01k

]
<
d−2α

00k

T

)∣∣∣∣ICC(0, k) = 1

]
, (2.38)

where fD̂01k
(d̂01k) is given in (2.37), and the CDF of D00k is given in (3.4).

Proof: Conditioned on ICC(0, k) = 1, the coverage probability of the user assigned
the k-th sequence is P [SINR0k > T |ICC(0, k) = 1] =

P

[
D−2α

00k

T
> Iagg,k

∣∣∣∣ICC(0, k) = 1

]

=E
[
1

(
d̂−2α

01k
+ E

[
Irem,k|d̂01k

]
<
d−2α

00k

T

)∣∣∣∣ICC(0, k) = 1

]
,

where the expectation is taken over D00k , D̂01k . This completes the proof of the above
proposition.

2.5.2 SINR coverage analysis of a CE user assigned to the l-th CE
pilot

Most of the intermediate steps necessary for the coverage probability result in this case can
be derived on the similar lines as that of the previous section. Hence, we omit a few of the
proofs to avoid repetition.

Density function of ΦCE
u,l

To begin with, we present the density function of the point process Φu,CE. Similar to the CC
case, we first present the PCF gCE

λ (r, κ) for Φu,CE w.r.t. the 0-th BS. Due to scale invariance,
we consider a network with unit BS density and threshold radius κ/√πc2. In the following
Lemma, we present the expression for gCE

1 (r, κ).
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Lemma 2.14. The PCF of Φu,CE w.r.t. the 0-th BS is given as

gCE
1 (r, κ) ≈ 1− e−π

(
r2− κ2

πc2

)
14
5
P[EC3 ] exp(κ2/c2)

, r ≥ κ
√
πc2

. (2.39)

Proof: Please refer to Appendix A.4.

Similar to the CC case, in Fig. 2.3, we present the PCF for different values of κ for Φu,CE.
The approximate theoretical expression presented in (2.39) is compared with the simulation
results. We use the following prototype function to approximate the PCF for comparison
purpose

ĝCE
1 (r, κ) = 1− e−a1(r2−R2

c) + b1(r2 −R2
c)e
−c1(r2−R2

c), (2.40)

where the values of the parameters a1, b1, c1 are obtained through curve fitting with simulated
PCF. Based on the figure, we make the following remark for the PCF in (2.39).

Remark 2.15. As κ increases, the PCF obtained from simulation indicates that Φu,CE exhibits
clustering behaviour beyond Rc. By approximating the PCF using the exponential function
presented in (2.39), it is not possible to capture this clustering nature. However, note that
from the network deployment perspective higher values of Rc may not be desirable, because
it would result in a higher fraction of cells without CE regions. Hence, the benefit of FPR
will be reduced due to unutilized CE pilots in the cells without the CE regions. Therefore,
the range of κ for which the approximation of PCF using (2.39) is poor is of lesser practical
importance.

Now, we approximate Φu,CE as a non-homogeneous PPP with density function

λPPP
u,CE (r, κ) = λ0P

[
EC3
] (

1− e−πλ0(r2−R2
c)P[EC3 ] 14

5
exp(κ2/c2)

)
, r ≥ Rc. (2.41)

Recall that ΦCE
u,l ⊆ Φu,CE contains the locations of the interfering CE users that use the l-

th pilot. Similar to the CC case, we approximate ΦCE
u,l as a non-homogeneous PPP whose

density function is presented in the following lemma.

Lemma 2.16. For r ≥ Rc, the density function of the ΦCE
u,l containing the locations of the

active CE interfering users is approximated as

λCEu,l(r, κ) ≈ λ0E [ICE(j, l)]P
[
EC3
] (

1− e−π
14
5

exp(κ2/c2)P[EC3 ]λ0(r2−R2
c)
)
,

and corresponding intensity measure is given as

ΛCE
u,l(r, κ) = 2π

∫ r

t=0

λCEu,l(t, κ)tdt.

Proof: The density function is obtained on the similar arguments as that of Lemma 2.10.
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Coverage probability of the CE user of interest

Using the intensity measure and density function of ΦCE
u,l, the CDF and PDF of the distance to

the dominant CE interferer are given as

FD̂01l
(d̂01l |κ) = 1− e−ΛCE

u,l(d̂01l
,κ), (2.42)

fD̂01l
(d̂01l |κ) = 2πd̂01lλ

CE
u,l(d̂01l , κ)e−ΛCE

u,l(d̂01l
,κ). (2.43)

Now, conditioned on the distance to the dominant interferer D̂01l , the aggregate interference
at the 0-th BS from the CE users is approximated as

Iagg,l = d̂−2α
01l

+ E
[ ∑

ûjl∈ΦCE
u,l\û1l

d̂−2α
0jl

∣∣∣∣d̂01l

]
=d̂−2α

01l
+ E

[
Irem,l

∣∣∣∣d̂01l

]
(a)
= d̂−2α

01l
+ 2π

∫ ∞
d̂01l

r−2αλCEu,l(r, κ)rdr,

where (a) follows from the application of Campbell’s theorem. Using the above expression
for aggregate interference, the coverage probability of the CE user of interest is presented
next.

Proposition 2.17. Conditioned on the event that ICE(0, l) = 1, the coverage probability of
a user assigned to l-th pilot is given as

PCEc,l(T ) =P
[
SINR0,l > T |EC3 , ICE(0, l) = 1

]
=ED00l

,D̂01l

[
1

(
Iagg,l <

d−2α
00l

T

)∣∣∣∣EC3 , ICE(0, l) = 1

]
.

Proof: The proof can be done on the similar lines as that of Proposition 2.13.

2.5.3 Average user SE and cell SE

Using the coverage probability results, in the following Proposition, we present the approxi-
mate expressions for average SE of the CC and CE users of interest, and average cell SE. It
is worthwhile mentioning that alternate methods such as the one presented in [72, 73] can
also be used to characterize the SE.

Proposition 2.18. The average SE of a randomly selected CC user is given as

SEu,CC ≈ωBCE [A0k,CC]

∫ ∞
t=0

PCCc,k(2
t − 1)dt, (2.44)
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where ω = (1−B/TC), PCCc,k(·) is presented in Proposition 2.13 and E [A0k,CC] is presented in
Lemma 2.6. Similarly, the average SE of a randomly selected CE user is given as

SEu,CE ≈ωBEE
[
A0l,CE|EC3

] ∫ ∞
t=0

PCEc,l(2
t − 1)dt. (2.45)

Proof: From (3.7), the average SE of the CC user of interest can be approximated
as

SEu,CC =ωE [A0,CC log2(1 + SINR0,CC)]

=ωE

[
BC∑
n=1

A0n,CC log2(1 + SINR0n)

]
(a)
=BCE [A0k,CC log2(1 + SINR0k)]

(b)
≈BCE [A0k,CC]E [log2(1 + SINR0k)] ,

where SINR0n is the SINR of the CC user of interest if it is assigned the n-th CC pi-
lot, (a) follows from the identical distributions of {A0n,CC log2(1 + SINR0n)}BCn=1, (b) fol-
lows from the independence assumption between A0k,CC and SINR0k . The expression in the
proposition follows from the last step using the fact that for a positive random variable
X, E [X] =

∫∞
0

P [X > t] dt. Similarly, the average CE user SE is derived. Similarly, the
average SE of the CE user of interest is given as

SEu,l =E
[
log2(1 + SINR0l)|EC3

]
= E

[
log2(1 + SINR0l)|I(0, l) = 1, EC3

]
P
[
I(0, l) = 1|EC3

]
,

and the final expression follows from the expectation of a positive random variable.

Proposition 2.19. The average cell SE of a typical cell is given as

CSE = ωBCE [ICC(0, k)]

∫ ∞
t=0

PCCc,k(2
t − 1)dt+ ωP

[
EC3
]
BEE

[
ICE(0, l)|EC3

] ∫ ∞
t=0

PCEc,l(2
t − 1)dt.

Proof: From (2.13), we write E [CSE]
(a)
=

ωE

[
BC∑
n=1

ICC(0, n) log2(1 + SINR0n)

]
+ ωP

[
EC3
]
E

[
BE∑
m=1

ICE(0,m) log2(1 + SINR0m)

∣∣∣∣EC3
]

(b)
≈ωBCE [log2(1 + SINR0k)|ICC(0, k) = 1]E [ICC(0, k)]

+ ωBEP
[
EC3
]
E
[
ICE(0, l)|EC3

]
E
[
log2(1 + SINR0l)|ICE(0, l) = 1, EC3

]
,

where (a) follows from the law of total probability and (b) follows from the fact that
{SINR0n}

BC
n=1 ({SINR0m}

BE
m=1) are identical, and for the final expression we assume inde-

pendence between the event {ICC(0, k) = 1} and SINR0k and use the identity E [X] =∫∞
0

P [X > t] dt.
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2.6 Numerical results and discussion

In this section, we validate the approximate theoretical results using Monte Carlo simula-
tions. Further, we study the effect of different system parameters on the SINR coverage
probability, average user and cell SEs. In our simulation framework, we consider the BS
density λ0 = 4 × 10−6, pathloss exponent α = 3.7, the coherence time interval Tc = 200
symbol duration, and the pilot length B = 100 symbol duration. For comparison purpose,
we also provide SE results corresponding to pilot reuse-1 at necessary places. Note that the
system model for reuse-1 is the same as described in Sec. 2.2. The key difference is that
there is no segregation in terms of CC (CE) pilots and the entire set of B pilots can be
assigned to any user attached to a BS. This complicates the pilot utilization analysis. To
be specific, to obtain the probability of the event that a CC (CE) user is assigned a given
pilot requires the consideration of the joint distribution of the number of CC and CE users.
This result does not directly follow from Lemma 2.6 and requires additional analysis, which
does not appear tractable as deriving joint distribution for the CC and CE areas of a typical
cell is challenging. The similar remark holds for the probability of pilot utilization in case of
reuse-1. Hence, to validate the efficacy of FPR scheme with respect to reuse-1, we rely on
simulation-based results for reuse-1.

2.6.1 SINR coverage probability of a user assigned to a given pilot

In this subsection, we study the effect of different system parameters on the coverage prob-
ability of a CC (CE) user that is assigned the k-th (l-th) pilot. The effect of λu on coverage
probability for CC and CE cases can be observed from Fig. 2.4 (left and right, respectively).
From the figures, we infer that with the increasing density, the coverage probability reduces
in both the scenarios. This is intuitive as with increasing λu, the pilot usage probability in
the interfering cells increases, thereby increasing the aggregate interference. The effect of
normalized threshold radius κ on coverage probability is presented in Fig. 2.5 for CC (left)
and CE (right) cases. As observed from Fig. 2.5 (left), with decreasing κ (equivalently Rc),
the coverage probability improves. This behavior is justified by the fact that with decreasing
Rc the serving distance also decreases. In addition, the pilot usage probability in interfer-
ing cells also reduces. Combination of both the effects results in SINR coverage probability
improvement. For a randomly selected CE user assigned a given CE pilot sequence, above
trend is observed for higher SINR thresholds. On the other hand, for lower SINR thresholds,
reverse trend is observed. One possible explanation behind this behaviour is that although
with increasing Rc serving distance increases, the number of interfering users reduces. This
results in improvement of coverage probability. In Fig. 2.6, we have presented coverage prob-
ability for different path loss exponent α. As expected with increasing path loss exponent,
the coverage probability improves due to less interference.
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Figure 2.4: Coverage probability of a CC user on a given CC pilot (left) and CE user on a given CE pilot
(right) for different λu. Markers and solid lines represent the simulation and theoretical results, respectively.
κ = 0.6, BC = 58, BE = 14, βf = 3.

Figure 2.5: Coverage probability of a CC user on a given CC pilot (left) and CE user on a given CE pilot
(right) for different Rc. Markers and solid lines represent the simulation and theoretical results, respectively.
BC = 58, BE = 14, βf = 3,E [ICC(0, k)] = E

[
ICE(0, l)|EC3

]
= 1.

2.6.2 Average CC (CE) user SE and cell SE

SE as a function of BC/B: In Fig. 2.7, the average SEs of CC and CE users of interest as
well as a typical cell are presented for different values of BC/B, where B = 100. For reference,
we have also presented the average CC and CE user SEs for unity pilot reuse. From Fig. 2.7
(left), we observe that FPR scheme performs better compared to unity reuse beyond a certain
BC/B. For both the curves (corresponding to κ = 0.8, 1), this value of BC/B lies in the
neighbourhood of 1−exp(−κ2). Intuitively, in case of unity reuse, the probability of assigning
a pilot sequence to a CC user is approximately 1−exp(−πλ0c2R

2
c) = 1−exp(−κ2). Hence, on

an average 1− exp(−κ2) fraction of pilot sequences are assigned to CC users. Therefore, by
choosing BC/B ≈ 1−exp(−κ2) in FPR case, the average SE for CC user of interest becomes
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Figure 2.6: Coverage probability of a CC user on a given CC pilot (left) and CE user on a given CE pilot
(right) for different path loss exponent α. Markers and solid lines represent the simulation and theoretical
results, respectively. κ = 0.8, BC = 49, BE = 17, βf = 3.

close to the SE of a CC user in unity reuse. On the other hand, from Fig. 2.7 (middle),
we observe that for a wide-range of BC/B the average SE of CE user of interest in FPR is
higher compared to average CE user SE in case of unity reuse. This result justifies the use
of FPR scheme as its main purpose is to improve the performance of CE users. Finally, the
average cell SE for FPR scheme is presented in Fig. 2.7 (right) for two different values of κ.
For comparison purpose, the cell SEs corresponding to reuse-1 is also presented. Depending
on the value of κ, for certain values of BC/B, sum-cell SE gains over reuse-1 is possible.

SE as a function of κ: The average SEs for the three cases of interest (CC user of
interest, CE user of interest, and sum-cell) are presented in Fig. 2.8 for different values of κ.
Based on the insights from the previous result, in order to achieve the same CC user SE as
reuse-1, we partition the pilot sequences into two sets such that BC/B ≈ 1−exp(−κ2). From
Fig. 2.8 (left), we observe that aforementioned partitioning rule results in marginal reduction
in CC user SE compared to reuse-1 scheme. On the other hand, in Fig. 2.8 (middle), we
observe that the CE user spectral efficiency of reuse-1 is better compared to the FPR scheme
for lower values of κ. This is because of the fact that when κ is low, more number of users
lie in the CE region. Since FPR employs reuse-3 scheme, the pilot assignment probability
to a randomly selected user reduces, which results in the reduction of user SE compared to
the reuse-1 scheme. However, for higher values of κ, FPR performs better compared to the
reuse-1 scheme, which is the desired outcome. From Fig. 2.8 (right), we observe that the
average sum-cell SE in case of FPR scheme is close to reuse-1 scheme for higher values of κ
with the above partitioning rule. System operation at this point is desirable as it improves
the CE user SE while providing comparable CC user SE.

SE as a function of B/Tc: From Fig. 2.9, we observe that average SEs are concave
functions of B/Tc. Note that with increasing B/Tc, the pilot assignment probability increases
and the SINR improves due to reduced pilot utilization in the interfering cells. On the other
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Figure 2.7: The average CC user SE (top), CE user SE (bottom-left), and sum-cell SE (bottom-right)
as functions of BC/B. The solid lines and marked dotted lines represent the theoretical and simulation
results, respectively. The dashed lines represent the simulated SEs corresponding to reuse-1. B = 100, λu =
150λ0, λ0 = 4× 10−6, βf = 3.

hand, the pre-log factor (1 − B/Tc) reduces with increasing B/Tc. Hence, the concave
behavior of the functions is justified. Further, we observe that using the proposed pilot
partitioning rule, there is a significant improvement in the CE user SE at the cost of marginal
reductions in average CC user SE and average sum-cell SE.

In Fig. 2.10, we show he effect of user density on SE. As expected, with increasing user
density, the average user SEs reduces while the sum-cell SE saturates.
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Figure 2.8: The average CC user SE (top), CE user SE (bottom-left), and sum-cell SE (bottom-right) as
functions of normalized radius κ. λ0 = 4 × 10−6, λu = 150λ0, BC/B ≈

(
1− exp(−κ2)

)
, βf = 3. The solid

lines and marked dotted lines represent the theoretical and simulation results, respectively.

2.7 Concluding remarks and outlook

In this chapter, we have analyzed the UL performance of a mMIMO system with fractional
pilot reuse. Using tools from stochastic geometry, we have presented approximate expressions
for the SINR coverage probability and average SE of a randomly CC (CE) user in a typical
cell. Our analysis begins with the accurate approximations of the area distributions of CC
and CE regions of a typical cell. These distributions are used to analyze the pilot assignment
probability for the user of interest and utilization probability of a given pilot sequence in a
typical cell. While the former quantity is directly used in average user SE evaluation, the
latter quantity is helpful in obtaining the average sum-cell SE and statistical characterization
of interfering user point processes for both CC and CE cases. All the theoretical results are
validated through extensive Monte Carlo simulations. From our system analysis, we arrive at
the conclusion that with proper selection of system parameters it is possible to improve the
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Figure 2.9: The average CC user SE (top), CE user SE (bottom-left), and sum-cell SE (bottom-right) as
functions of B/Tc. The solid lines and marked dotted lines represent the theoretical and simulation results,
respectively. κ = 0.8, βf = 3, BC/B ≈

(
1− exp(−κ2)

)
.

CE user SE with negligible performance degradation in the CC user SE and cell SE compared
to the unity pilot reuse. There are several possible extensions of this work. In this work, we
have considered an asymptotically large number of antennas at the BSs. Hence, a natural
extension of this work is to consider a system with finite number of antennas and evaluate
the efficacy of FPR. From stochastic geometry perspective, our analysis of interfering user
point process formed by CE users can be improved further by modeling this point process
as a cluster process or a Poisson hole process [74].
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Figure 2.10: Average user SE of a randomly selected CC user (top), CE user (bottom-left), and average
sum-cell SE (bottom-right) as a function of λu/λb. The solid lines and marked dotted lines represent the
theoretical and simulation results, respectively. B = 100, BC = 31, κ = 0.6, βf = 3.



Chapter 3

Johnson-Mehl Cell-based Analysis of
UL Cellular Network with Coupled
User and BS Locations

3.1 Introduction

In the stochastic geometry literature, the usual approach is to model the BS and the user
locations as two independent stochastic processes. The simplicity and tractability of this
model have led to its wide-scale acceptance in the cellular research community. Although it
is a good first-order model, it suffers from one key shortcoming of not being able to capture
inherent coupling in the user and BS locations, which results from the deployment of BSs in
more populated areas. In this chapter, using the approach presented in Chapter 2 to analyze
the performance of a cell-center user, we present the uplink (UL) performance for a small
cell system where the BS and user locations are coupled. Next, we review the state of the
art related to this work and lay out the contributions of this chapter.

3.1.1 Related works and contributions

Since in UL the sources of interference are users, it is necessary to have a thorough un-
derstanding of the point processes formed by them. Despite the traction that cellular UL
analysis using stochastic geometry has gained (cf. [75, 76, 77]), the understanding of the user
point process is still evolving. In a few recent works ([61, 78]), authors have analyzed the
statistical properties of the user process for a scenario where the BSs are PPP distributed
and the users are uniformly distributed within the Voronoi cell of each BS. While these
works take several important steps towards the accurate UL analysis, as mentioned earlier,
their model does not capture the real-world location coupling, where the user density will
be higher in certain region(s) (ideally in the proximity of a BS), which is a subset of the
Voronoi cell of the BS. Building on the analysis presented in [79] for a clustered device-to-
device network, the UL performance of a closed-access cellular system is presented in [80],
where the coupling in the locations is taken into consideration. To be specific, authors have
modeled the user point process as a Matérn cluster process (MCP), where their locations are
uniformly distributed within circles centered at cluster head (BS) locations, which follows

42



Priyabrata Parida Chapter 3 43

a Poisson point process (PPP). As a result, two clusters of users can overlap resulting in
some undesirable artifacts, such as higher density of users in the overlap region, which may
not be realistic in a real-world setting. This particular limitation of an MCP model can be
overcome by modeling user locations using Johnson-Mehl (JM) cells instead of just circular
disks. As shown in Fig. 3.1, this basically restricts the domain of the user locations within
circular segments instead of circular disks. Although more realistic, the UL analysis using
such a model is not straightforward due to the very fact that the statistical characterization
of the point process formed by the interfering users is challenging. As a matter fact, the
analysis can be done using the approach developed to analyze the performance of a cell-
center user in the previous chapter. In this chapter, on the similar lines as that of cell-center
user coverage probability of the previous chapter, we present accurate expression for the UL
coverage probability of a typical user in the network. In addition, using the cell-center area
distribution result of the previous chapter, we also characterize the average SE of a typical
user. Further, using Monte Carlo simulations, we compare the UL coverage in the MCP
based model used in [80] and the proposed JM cell-based model.

Figure 3.1: (Left) A realization of MCP. Overlapping regions have higher user density. (Right) A realization
of JM cell-based modeling that results in uniform user density in the clustered locations.

3.2 System model

3.2.1 Network model

We consider a single tier network, where the locations of the BSs belong to the set Ψb =
Φb ∪ {o}, and the locations in Φb form a realization of a homogeneous PPP of density λ0.
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By virtue of Slyvniak’s theorem, Ψb is also a homogeneous PPP of density λ0. The location
of the j-th BS is denoted by bj ∈ Ψb, where index j does not represent any ordering and
b0 = o = (0, 0) is at the origin. In order to capture the coupling among the user and BS
locations, we consider that users are uniformly distributed within the JM cell of each BS.
While the JM cells can be described from the perspective of random nucleation and growth
process [62], we present a more intuitive definition for the JM cell associated with a typical
BS. Recall that the locations of the BSs can be used as seed points to form a Poisson-Voronoi
tessellation (PVT) that completely covers R2 with convex sets known as Poisson Voronoi
cells (PVC). Mathematically, the PVC of the typical BS at the origin (0-th BS) is given as

VΨb(o) = {x ∈ R2 : ‖x‖ ≤ ‖x− bj‖, ∀bj ∈ Ψb}. (3.1)

For a given threshold radius Rc, JM cell of the typical BS is defined as the region of its PVC
that is within a distance Rc from its location, i.e. for the typical BS at the origin (0-th BS)
we define its JM cell as XC(o, Rc,Ψb) =

{x ∈ VΨb(o) : ‖x‖ ≤ Rc} = VΨb(o) ∩ BRc(o), (3.2)

where BRc(o) denotes a circle of radius Rc centred at o. We denote the area of the JM cell
associated with the j-th BS (or with slight abuse of notation any typical BS) asXCj(λ0, Rc) =
|XC(bj, Rc,Ψb)|. Let NCj be the number of users associated with the j-th BS. We assume
that NCj depends on the j-th JM cell area and follows a zero-truncated Poisson distribution
with parameters λuXCj(λ0, Rc). To be more precise, conditioned on the area of the j-th JM
cell XC , the probability mass function of NCj is given as

P [NCj = n|xc] =
exp(−λuxc)(λuxc)n

n!(1− exp(−λuxc))
. (3.3)

One of the motivations behind consideration of the truncated Poisson distributions is to
ensure that each BS in the network has at least one active user within its JM cell. Conse-
quently, this truncated Poisson distribution allows to model the user point process (to be
defined shortly) as a Type-I process introduced in [61]. Note that λu can be used to vary
the load (the number of users per JM cell) in the network.

We restrict our analysis to a narrow band single resource block system with bandwidth
B. Extension of the analysis to a system with multiple resource block is straightforward
and is skipped in favour of simpler exposition. Further, we assume that this resource block
is shared among all the users associated to a BS in round robin manner. Note that at any
given time, there is one active user in the JM cell of each BS. We present the performance
analysis for a randomly selected user associated with the 0-th BS that we term as the typical
user in the network. Let the point process formed by the locations of these active users be
denoted as Ψu, which is defined as

Ψu = {U(XC(bj, Rc,Ψb)) : ∀bj ∈ Ψb},
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Figure 3.2: A representative network diagram for the UL with a single active user in each JM cell. The
BS and user locations are denoted by squares and dots, respectively.

where U(B) denotes a uniformly distributed point in B ⊂ R2. From the construction, it is
clear that the density of Ψu is λ0. Except the typical user attached to the 0-th BS, rest of
the users in the network are interfering users. Hence, the point processes formed by these
interfering users is given as

Φu = {U(XC(bj, Rc,Ψb)) : ∀bj ∈ Φb}.

We defer the discussion on the properties of the point process Φu to Section 3.3.

Let the location of the active user attached to the j-th BS is denoted by uj. Then,
the distance between a user at uj and a BS at bi is given as dij = ‖uj − bi‖. In order
to characterize the coverage probability, the first step is the knowledge of the distribution
of serving distance D00 between the 0-th BS and the typical user. In case of a typical
PVC, the distance distribution between the BS and a randomly located point in the PVC
is approximated as Rayleigh distribution with scale parameter (

√
2πλ0c2)−1, where c2 = 5/4

is an empirically obtained correction factor [63, 61]. Since, in our case, the user can not
lie beyond the threshold radius Rc, it is reasonable to approximate the distribution D00 to
follow truncated Rayleigh distribution, which is given as

FD00(d|Rc) =
1− exp(−πc2λ0d

2)

1− exp(−πc2λ0R2
c)
. (3.4)

At this point, we redefine Rc in terms of normalized radius κ as Rc = κ/
√
πc2λ0, κ ∈ [0,∞).

In Sec. 3.3, κ will be used to define the scale invariant pair correlation function (PCF) of Φu.
This scale invariant property provides the flexibility to obtain PCF for λ0 = 1, which can
later be scaled to get the density function of Φu for any value of λ0. An illustrative diagram
of the network is presented in Fig. 3.2.

The channel gain between a BS and the typical user depends on small scale fading gain
on the resource block, as well as the distance-dependent path loss. We assume that the small
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scale fading gain follows exponential distribution with mean 1 and the path loss between
two nodes at a distance d is d−α, where α is the path loss exponent. The consideration of
shadowing is left for future work. Under the above set of assumptions and in an interference
limited scenario, the signal to interference ratio (SIR) of the typical user associated with the
0-th BS is given as

SIR0 = h00d
−α
00 (

∑
uj∈Φu

h0jd
−α
0j )−1, (3.5)

where h0j is the small scale channel gain between the typical user and the j-th BS.

3.2.2 Performance metrics

In this work, the system performance is evaluated using the following metrics.

SIR coverage probability

The SIR coverage probability of the typical user for a target threshold T is defined as

Pc(T, κ, λ0) =P [SIR0 > T ] . (3.6)

Average user spectral efficiency

Considering round robin scheduling scheme, the average SE of a typical user is given as

SE(κ, λ0) = E
[
B

NC0

log2(1 + SIR0)

]
, (3.7)

where B is the system bandwidth, and NC0 is the number of users associated with the 0-th
BS. In the following sections, we present our approach to obtain approximate but accurate
theoretical expressions for the aforementioned quantities.

3.3 SIR coverage and SE analysis

In Section 3.2, we introduced the point process formed by the interfering user locations
Φu without providing any details regarding its statistical properties. For coverage analysis
the knowledge of the distribution of locations of users is essential. The objective of this
section is to characterize the statistical properties of Φu that is subsequently used to get the
coverage probability expression. As mentioned earlier, in this case, the point process formed
by the interfering users is same as the point process of interfering users corresponding to
cell-center region discussed in the previous chapter (please refer to Sec. 2.5). For the sake of
completeness, in the following lemma, we present the PCF of the interfering users.
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Lemma 3.1. The PCF of interfering user locations w.r.t. the 0-th BS is given as

g1(r, κ) ≈ 1− exp
(
−2πr2E

[
XCj(1, κ/

√
πc2)−1

])
. (3.8)

Proof: Please refer to Appendix A.2.

Using the above PCF, we approximate Φu as a non-homogeneous PPP such that for all
f : R2 7→ R+

E
[∑
x∈Φu

f(x)

]
= E

[ ∑
x∈Φ

(PPP)
u

f(x)

]

=⇒ λ0

∫
x∈R2

f(x)g1(‖x‖
√
λ0, κ)dx =

∫
x∈R2

f(x)λ(PPP)
u (‖x‖, κ)dx,

where the second step follows from the application of Campbell’s theorem and replacing the
intensity measure by the reduced second factorial moment measure [10, Chapter 8]. Hence,
the density of Φu, if approximated as a non-homogeneous PPP, is given as

λ(PPP)
u (r, κ) = λ0

(
1− e−2πλ0r2E[XC(1,κ/

√
πc2)−1]

)
. (3.9)

3.3.1 Coverage probability of a typical user

To obtain the coverage probability, we first present the LT of aggregate interference in the
following Lemma.

Lemma 3.2. The LT of aggregate interference at the 0-th BS is given as

LIagg(s) = exp

(
−2π

∫ ∞
r=0

λ
(PPP)
u (r, κ)rdr

1 + rαs−1

)
.

Proof: As per the definition, the LT of aggregate interference is given as

LIagg(s) =EΦu,{h0j} [exp(−sIagg)] = E

 ∏
uj∈Φu

Eh0j

[
exp(−sh0jd

−α
0j )
]

=E

 ∏
uj∈Φu

1

1 + sd−α0j

 = exp

(
−2π

∫ ∞
r=0

λ
(PPP)
u (r, κ)rdr

1 + rαs−1

)
,

where the last step follows from the application of PGFL of PPP.

Now using the LT of interference, in the following proposition, we present the coverage
probability of a randomly selected user associated with the typical BS.
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Proposition 3.3. For a target SIR threshold T , the UL coverage probability of a typical user
is given as

Pc(T, κ, λ0) =

Rc∫
r=0

LIagg(rαT )fD00(r|Rc)dr. (3.10)

Proof: The coverage probability for the typical user is defined as

P [SIR0 > T ] = P [h00 > dα00TIagg] = ED00

[
e−d

α
00TIagg

]
,

where (3.10) follows from deconditioning w.r.t. D00.

Using (3.10) and the area distribution of a typical JM cell (Sec. 2.3.2), in the following
proposition, we present the average achievable SE of a typical user.

Proposition 3.4. The average SE of a typical user is given as

SE(κ, λ0, λu) = BE
[
N−1
C0

] ∞∫
t=0

Pc(2
t − 1, κ, λ0)dt, (3.11)

where E
[
N−1
C0

]
=

πR2
c∫

xc=0

∑∞
n=1

P[NC0=n|xc]
n

fXc(xc)dxc.

Proof: Assuming independence between NC0 and SIR0, (3.7) can be approximately
expressed as

SE(κ, λ0) = BE
[
N−1
C0

]
E [log2(1 + SIR0)] .

The expression in (3.11) follows from the fact that for a positive random variable X,
E [X] =

∫∞
t=0

P [X > t] dt.

3.4 Results

In this section, we verify the accuracy of the approximate theoretical expressions using Monte
Carlo simulations. We consider the BS density λ0 = 4×10−6 BS/m2, and path loss exponent
α = 3.7. The system bandwidth B is taken to be 1 Hz to focus on user SE.

The SIR coverage probability of a typical user in UL is presented in Fig. 3.3 for different
values of κ (equivalently Rc). As observed from the figure, with increasing κ reduction
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in average serving distance results in coverage probability degradation. Further, in order to
highlight the usefulness of the proposed model, through Monte Carlo simulations, we present
the coverage probability (dashed black lines) of a typical user using MCP based model [80].
As observed from the figure, with respect to the proposed model, the MCP-based model
underestimates the coverage probability.

The average SE of the typical user is presented in Fig. 3.4. As observed from the
figure, the average SE decreases with increasing κ. This is justified by the fact that with
increasing κ the coverage probability reduces. Further, due to increasing number of users,
the typical user is assigned the resource block less frequently. From this figure, we also gain
insights regarding the achievable average user SE for given λu, κ. For example, a network
with λu = 200λ0 users/m2 and κ ≥ 0.2, cannot support an average user SE of 2 bits/s/Hz.
In both the figures, the theoretical results closely match with the simulation results, which
verifies the accuracy of the theoretical expressions.
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Figure 3.3: The SIR coverage probability of a typical user. Markers and solid lines represent the simulation
and theoretical results, respectively, based on the proposed model. The dashed line represent the coverage
probability of a typical user based on MCP model. λ0 = 4× 10−6 BS/m2, λu = 200λ0 users/m2.

3.5 Conclusion

In this chapter, we proposed a new model to analyze the UL performance of a cellular
network considering coupling between BS and user locations. This coupling is captured
by modeling the users to be uniformly distributed in the JM cells of each BS. The first
important result of this work is the approximate area distribution of a typical JM cell that
can be used to model the load distribution (in terms of the number of users) in a typical BS.
The second important outcome of this work is the statistical characterization of the point
process formed by the interfering user locations that is later used to derive the UL coverage
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probability for a typical user. The accuracy of the approximate theoretical expressions is
verified through Monte Carlo simulations using two key metrics: coverage probability and
average user spectral efficiency.



Chapter 4

Stochastic Geometry-based Analysis
of Uplink Massive MIMO with Power
Control

4.1 Introduction

In Chapter 2, from the perspective of tractability, we considered a mMIMO system without
uplink (UL) power control. However, in order to mitigate the near-far effect power control in
the UL is considered to be important. Fractional power control (FPC), which is a distance
dependent power control scheme, is one of the effective and distributed approaches prevalent
in the cellular network. The goal of this chapter is to analyze the UL performance of a
mMIMO cellular network with FPC. For simplicity, we restrict out attention to unity pilot
reuse.

4.1.1 Motivation and related Work

The stochastic geometry-based UL analysis of cellular networks has been performed in [75,
77, 81] with slightly different approaches. The key intermediate step in these works is the
characterization of network interference, which is usually modeled as a power-law shot-noise
field. While the characterization of Laplace transform (LT) of this shot-noise field is quite
tractable, the same is not true for the probability density function (PDF) or cumulative
distribution distribution function (CDF). Therefore, these works mainly rely on the Rayleigh
fading assumption under which the UL coverage probability can be directly expressed in
terms of the LT, thus circumventing the need for characterizing the PDF or CDF explicitly
[12]. On the contrary, in mMIMO systems, small-scale fading gets spatially averaged out
due to the presence of large number of antennas. Hence, in these scenarios the absence of
exponentially distributed term in the received power means that we cannot directly apply the
approaches developed in [75, 77, 81]. While the modeling approaches for the DL of a cellular
system in the absence of fading can be found in [82, 83, 84], the fundamental differences
between the UL and DL models make it difficult to apply them directly for the analysis of
UL.

51
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Having said that, authors in [51, 52, 53, 54, 55, 56] do attempt the mMIMO UL system
analysis, albeit under significant simplifications. While analysis in [51] is limited to the
consideration of exponential fading (shadowing), [52, 53, 54] does not incorporate UL power
control. In [55], author has analyzed the UL throughput distribution for a hexagonal cellular
layout. Authors in [56] have analyzed the performance of the UL massive MIMO system
with finite number of antennas. However, the interference field is modeled as a homogeneous
PPP beyond an exclusion zone. Further simplification in analysis is made by replacing the
aggregate inference by its expected value. Hence, the model does not capture variance of the
aggregate interference. We address these shortcomings by providing a more comprehensive
analysis in this work. The key contributions are summarized next.

4.1.2 Contributions

In this chapter, we present a comprehensive and accurate approach to the UL analysis
of mMIMO networks with asymptotically large number of antennas and fractional power
control. As discussed above, due to absence of fading, the conventional LT-based approach
to evaluate coverage probability is not directly applicable in this case. We use an alternate
approach based on classical Gil-Pelaez inversion theorem to obtain the coverage probability
from the characteristic function (CHF) of the interference. However, this method results
in significant computational burden. Hence, we propose a numerically efficient approach
that is based on approximate statistical characterization of the total interference power
as the sum of two terms: (i) the most dominant term, and (ii) the mean of the rest of
the terms conditioned on the dominant term. However, due to power control by users,
characterizing the distribution of the dominant interference term is not straightforward.
Further, the correlation in the user distances also imposes challenge to the analysis. In order
to circumvent these problems, we resort to the careful application of displacement theorem
to capture the effect of random UL power and the correlation of UL power of each user with
respect to its distance from the BS of interest. Using this approach, we derive tractable
and accurate expressions for both coverage probability and spectral efficiency of the typical
user. These results also enable the analysis of the ergodic and outage spectral efficiency for
different power control fraction.

4.2 System model

4.2.1 Network model

In this work, we focus on the performance analysis of the UL scenario of a cellular system
where BSs are equipped with M →∞ antennas. The locations of the BSs form a realization
of homogeneous PPP Ψb with density λ0. The location of the j-th BS is denoted by bj ∈ Ψb,
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Figure 4.1: A representative network diagram for the UL with K = 1. Diamonds and squares represent
BS and user locations, respectively. The typical user u01 is located at the origin and served by the tagged
BS located at b0.

where the index j does not represent any ordering. We assume that the user locations
follow a homogeneous PPP with density λa and independent of the BS process Ψb. In this
work, we consider that each user is attached to the nearest BS. Further, λa is assumed to be
sufficiently large to ensure that there are at leastK(< M) users that get attached to each BS.
Out of all the users that are attached to a BS,K users are randomly selected to transmit on a
specific resource block. We assume a slotted system in time and frequency such as orthogonal
frequency division multiple access, where by definition, the resource blocks are orthogonal
both in time and frequency. On the assumption that network interference and channel gain
across resource blocks remain i.i.d., we focus our analysis on an arbitrarily selected resource
block that we term the representative resource block. Exploiting the availability of multiple
antennas with suitable signal processing techniques, on the representative resource block,
each BS can simultaneously decode the signals transmitted by all the K users attached to
it.

For successful decoding of the transmitted data, BSs should posses the CSI of all K
users attached to it, which is facilitated by the use of K orthogonal pilot sequences. As a
typical consideration, these pilot sequences are reused in each cell. The location of the user
attached to the j-th BS and using the k-th pilot sequence is denoted by ujk . Without loss
of generality, we consider that the typical user uses the k-th pilot sequence and is located
at the origin. Further, the BS to which it is attached is known as the tagged BS and its
location is denoted by b0. The distance between a user at ujk and a BS at bi is given as
dijk = ‖ujk − bi‖. A representative diagram is presented in Figure 4.1 for K = 1. Since
each BS has one user attached to it that uses the k-th pilot sequence, we make the following
assumption regarding the random locations of these users.

Assumption 4.1. The locations of all the users using the k-th pilot sequence (typical and
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interfering) form a realization of a homogeneous PPP Ψuk with the same intensity λu = λ0

as that of the BSs. Apart from the typical user, the rest of the users in the network belong
to Φuk = Ψuk \ u0k .

Above assumption is very typical to the works that focus on the UL system analysis
(c.f. [77]). Note that due to the minimum distance associations policy, every user in Φuk

must satisfy the condition d0jk > djjk .

Since the users are attached to respective serving BS based on minimum distance cri-
teria, every user has to lie within the Voronoi cell of its BS. This gives rise to the inherent
correlation of the distances of the users from their attached BSs. Accurate characterization
of this correlation is a difficult task. Hence, motivated by the results presented in [75], we
make the following assumption regarding these distances:

Assumption 4.2. The distances of users, which use the k-th pilot sequences in each cell,
from their attached BSs are independently and identically distributed.

Since the users are connected to the nearest BS, the PDF of the djjk is Rayleigh and is
given as

fdjjk (x) = 2πλ0x exp(−πλ0x
2). (4.1)

4.2.2 Channel model

We consider a system where each link suffers from two multiplicative wireless channel impair-
ments, namely distance dependent path loss and multi-path fading. The effect of shadowing
can be formally included in the analysis using the displacement theorem [83], but is ignored
in favor of a simpler exposition. The channel vector between the user located at ujk and the
M antenna elements of the BS located at bi is given as

gijk = d
−α/2
ijk

hijk , (4.2)

where α is the path loss exponent, hijk ∼ CN (0M , IM) is a CM×1 complex Gaussian noise
vector. We assume that these channel vectors exhibit quasi-orthogonality, i.e.

lim
M→∞

1

M
hHijkhijl →

{
0 jk 6= jl

1 jk = jl.
(4.3)

Power control

In this work, we consider the FPC scheme [75]. In this scheme, the transmission power of
the user is chosen such that it either partially or fully compensates for the path loss with
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respect to the attached BS. Therefore, the k-th user attached to the j-th BS transmits at a
power level

pujk = ρud
αε
jjk
, (4.4)

where ε is the power control fraction with 0 ≤ ε ≤ 1, and ρu is a constant (open loop power).
When ε = 0, we deal with a system where the users transmit with a fixed power ρu. On
the other hand, when ε = 1, the received power at the attached BS is ρu irrespective of the
distance of the user. To maintain simplicity, we do not put any constraint on the maximum
transmission power of a user.

Channel estimation

Under the assumption that each pilot sequence is reused in every cell, the channel estimates
of the typical user at the tagged BS is a function of {g0jk}ujk∈Ψuk

, i.e. the channel vectors
of all the users in the network using k-th pilot sequence and the tagged BS. For simplicity,
we assume

g̃00k =
∑

ujk∈Ψuk

pujkg0jk + v0, (4.5)

where v0 ∈ CM×1 is a complex Gaussian noise vector.

4.2.3 Signal model and asymptotic SINR

Under the assumption of a perfectly synchronized network, the received signal vector at the
tagged BS is given as

r0 = d
−α/2
00k

h00kx0k +
K∑

i=1,i 6=k

d
−α/2
00i

h00ix0i︸ ︷︷ ︸
Intracell

+
∑
j∈Ψb

K∑
i=1

d
−α/2
0ji

h0jixji︸ ︷︷ ︸
Intercell

+n0, (4.6)

where xji is the data symbol transmitted by the user using the i-th pilot sequence in the
j-th cell. We assume that E [xji] = 0 and E [‖xji‖2] = puji . Further, n0 ∈ CM×1 is a complex
Gaussian noise vector whose elements are of zero mean and unit variance. In order to recover
the data of the typical user, the tagged BS use MRC detection scheme, where the filter
coefficients are given as w0k = 1

M
g̃H00k

. As demonstrated in various works in the literature
(cf. [64]), the asymptotic SINR of the typical user is independent of the detection scheme
used at the tagged BS. Now, the detected symbol for the typical user is given as x̂0k = w0kr0.
As the number of antennas M → ∞, due to quasi-orthogonality of the channel, it can be
shown that the detected symbol is only affected by the interference from the users using the
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k-th pilot sequence in other cells, a.k.a. pilot contamination induced interference. Hence,
the SINR of the typical user can be expressed as

SINR0k =
d

2α(ε−1)
00k∑

ujk∈Φuk

d2αε
jjk
d−2α

0jk

=
d

2α(ε−1)
00k∑

ujk∈Ψuk

d2αε
jjk
d−2α

0jk
1 (djjk < d0jk)

. (4.7)

A detalied proof of the above expression is readily available in literature (cf. [2, 53]). Since
the above expression is independent of ρu, without loss of generality, we assume ρu ≡ 1.
In order to simplify notation, we drop the subscript k in subsequent analysis. With the
availability of typical user SINR expression, in the next section we present the coverage
probability and user spectral efficiency expressions.

4.3 User coverage probability and spectral efficiency

This is the main technical section of the chapter, where we present the coverage probability
and spectral efficiency expressions for the typical user based on the discussed system model.

As highlighted earlier, in case of mMIMO systems, due to the spatial averaging of
small scale channel variation, the simpler evaluation of coverage probability leveraging LT

of interference in presence of exponential fading term in the desired link is not possible.
One alternate approach to get coverage probability is to invert the CHF of interference using
Gil-Pelaez inversion theorem [69, 70].

Inversion theorem based approach

From the previous section, it is clear that the UL aggregate interference (Iagg) at the tagged
BS is given by the denominator of (4.7). In the following Lemma we present the CHF of
aggregate interference.

Lemma 4.3. The CHF of aggregate interference is given as

ϕIagg(w) = exp

−2πλ0

∞∫
r=0

[
1− exp(−πλ0r

2)−
r∫

y=0

fdjj(y) exp(jw
r−2α

y−2αε
)dy
]
rdr

 (4.8)

Proof: The proof has been relegated to Appendix B.3.

Using the CHF of aggregate interference and Gil-Pelaez inversion theorem, in the follow-
ing proposition we present the expression for coverage probability of the typical user.
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Proposition 4.4. The coverage probability for the typical user at the origin for the assumed
system model is given as

Pc(ε, α, T ) =
1

2
− 1

π
Ed00

∫ ∞
0

Im
[
exp(−jwd2α(ε−1)

00 /T )ϕIagg(w)
]

w
dw

 , (4.9)

where d00 is the distance between the typical user and the tagged BS and its PDF is given in
(4.1).

Above proposition follows from the direct application of Gil-Pelaez inversion theorem
[69]. Numerical evaluation of the above expression requires significant amount of computa-
tional resources, which motivates us to propose our method based on approximate charac-
terization of interference.

Dominant Interferer Based Approach

A more useful solution to this problem can be obtained by observing the fact that due to
path loss the total interference is likely to be dominated by interference contributions from a
few dominant users. Hence, instead of exact statistical characterization of the interference,
we approximate the total interference power as the sum of the interference power from the
most dominant interferer and the mean of the rest of the terms conditioned on the value of
the dominant term. It is worth mentioning that this idea has been exploited in a few recent
works, albeit only for the downlink analysis [84, 71]. Note that due to the absence of fading,
in case of [84] and [71], the dominant interferer is the nearest interferer. On the contrary,
in our case, except for ε = 0, the users transmit with a power ρudαεjj . Due to this random
transmission power, the interfering user located nearest to the tagged BS may not be the
most dominant interferer. Hence, the approach in [84, 71] can not be trivially extended to
solve the problem at hand as we cannot rely on the Euclidean distance to determine the
dominant interferer.

From (4.7), we observe that the received interference power at the tagged BS from
the user attached to the j-th BS is given as ρud2εα

jj d
−2α
0j . In order to capture the effect of

transmission power of each user, we define an equivalent distance for the j-th interfering user
as d̂0j = d0jd

−ε
jj . This equivalent distance is the distance between the tagged BS and the j-th

interfering user whose location belong to a new point process µu. Note that there is one-
to-one correspondence between the points of Φu and µu that are governed by the rules: (1)
d̂0j = d0jd

−ε
jj , (2) d0j > djj. Further, µu is a non-homogeneous PPP with isotropic density

function. Using the above mentioned rules for djj and d0j along with the displacement
theorem for PPP [85], we characterize the point process µu by its intensity measure in the
following Lemma.
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Lemma 4.5. The new point process µu formed by the displaced interfering user locations is
a non-homogeneous PPP µu with intensity measure Λµ(B(0, t)) =

(πλ0)1−εt2ΓL

(
1 + ε, πλ0t

2/(1−ε))− ΓL

(
2, πλ0t

2/(1−ε)) , (4.10)

and radially symmetric distance dependent density (intensity function)

λµ(r) = λ1−ε
0 π−εΓL(1 + ε, πλ0r

2/(1−ε)). (4.11)

Proof: Please refer to Appendix B.1.

Based on Lemma 4.5, the following remark can be made for the special cases of ε = 0
and ε = 1.

Remark 4.6. When channel inversion based power control is employed, i.e. ε = 1, the
resultant PPP is a homogeneous PPP of density 1

π
beyond an exclusion radius of 1. On the

other hand for no power control scenario, i.e. ε = 0, we obtain a non-homogeneous PPP
with density λ0(1 − exp(−πλ0r

2)). Note that the remark for ε = 0, is consistent with the
approach followed in [77], where the location of interfering user is modeled according to a
non-homogeneous PPP based on distance dependent intensity function.

Now, using the expressions in Lemma 4.5, the PDF of the distance d̂01 of the nearest
interfering user is given as

fd̂01
(x) = 2πxλµ(x) exp(−Λµ(B(0, x))). (4.12)

The aggregate interference is given as Iagg =
∑

ûj∈µu
d̂−2α

0j . Now, based on the dominant
interferer approximation, we write Iagg ≈

d̂−2α
01 + E

 ∑
ûj∈µu\û1

d̂−2α
0j

∣∣∣∣d̂01

 = d̂−2α
01 + E

[
I2,∞|d̂01

]
, (4.13)

where û1 is the location of the dominant interferer. In the following Lemma, we present the
expression for the conditional expected interference in (4.13).

Lemma 4.7. Conditioned on the distance of the dominant interferer d̂01, the expected in-
terference from rest of the interfering users whose locations belong to the point process µu
is

E
[
I2,∞|d̂01

]
= 2π

∫ ∞
d̂01

r−2αλµ(r)rdr, (4.14)

which under the condition 2− α + αε > 0 reduces to
(πλ0)1−ε

(α− 1)
d̂2−2α

01 ΓL

(
1 + ε, πλ0d̂

2/(1−ε)
01

)
+

(πλ0)(α−αε)

(α− 1)
ΓU

(
2− α + αε, πλ0d̂

2/(1−ε)
01

)
, (4.15)

where ΓU is the upper incomplete gamma function and ΓL is the lower incomplete gamma
function.
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Proof: Please refer to Appendix B.2

With the knowledge of the expected interference and the distribution of d̂01, we present
the coverage probability expression based on dominant interferer approach in the following
Proposition.

Proposition 4.8. The coverage probability based on dominant interferer based approach for
the UL of the mMIMO system under consideration is given as Pc,Dom(ε, α, T ) =

Ed00Ed̂01

[
1

(
d̂−2α

01 + E
[
I2,∞|d̂01

]
<
d
−2α(1−ε)
00

T

)]
, (4.16)

where the PDF of d00 is given in (4.1), d̂01 is given in (4.12), and Iagg is characterized by
(4.13) and (4.14).

Proof: The proof follows from the standard definition of coverage probability, which
is given as Pc,Dom(ε, α, T ) =

P [SINR0 > T ] = P
[
d

2α(ε−1)
00 > TIagg

]
. (4.17)

Taking the expectation over d00 and d̂01, we get the expression in the Proposition.

Apart from coverage probability, another useful performance metric for the analysis of
mMIMO system is the average user spectral efficiency. On the same lines as Proposition 4.8,
we present the following Proposition for achievable average UL spectral efficiency of the
typical user at the origin.

Proposition 4.9. The ergodic UL spectral efficiency of the typical user attached to the tagged
BS is R̄ =

E [log2(1 + SINR0)] =

∞∫
t=0

Ed00Ed̂01

[
1

(
d̂−2α

01 + E
[
I2,∞|d̂01

]
<
d
−2α(1−ε)
00

2t − 1

)]
(4.18)

Proof: Since log2(1 + SINR0) is a positive random variable, the mean rate is given
as E [log2(1 + SINR0)] =

∞∫
t=0

P [log2(1 + SINR0) > t] dt =

∞∫
t=0

P
[
SINR0 > 2t − 1

]
dt. (4.19)

Using the coverage probability expression given in (4.17), we get (4.18).

This concludes the technical section of the chapter. In the following section, we analyze
the performance of the typical user in terms of coverage probability and average user spectral
efficiency using the expressions presented in this section.
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4.4 Numerical results

In this section, we validate the theoretical results by comparing the derived results with
Monte Carlo simulation results. Further, we study the effect of power control fraction on
user spectral efficiency as well. The simulation set up considers a BS density of λ0 =
4 × 10−6 BS/m2 within a radius of R = 10 km. Users are dropped uniformly at random in
the disk. In order to minimize the possibility of having an inactive BS, the user density λa
is considered to be 50 times λ0. As discussed in the system model, we only attach one user
(that is assumed to use the k-th pilot sequence) to each BS among all the users that lie in
the Voronoi cell of the BS. We have considered a path loss exponent of α = 3.7.

In Figure 4.2, we validate the coverage probability expression presented in Proposi-
tion 4.8. Further, the coverage probability expression for ε = 1 is obtained using Proposi-
tion 4.4. We find it pertinent to mention that due to highly oscillatory nature of the CHF, it
is difficult to evaluate the coverage probability using Proposition 4.4, which is, in the first
place, our motivation to resort to the dominant interferer based approach. As evident from
the figure, both theoretical and the simulation results are in close agreement with each other.
The ergodic spectral efficiency and outage spectral efficiency for the typical user is presented
in Figure 4.3 and Figure 4.4, respectively. The outage spectral efficiency for a given SINR

threshold T is defined as

Rout = Pc,Dom(ε, α, T ) log2(1 + T ) bits/s/Hz. (4.20)

From the figures it is clear that channel inversion based power control, i.e. ε = 1, has inferior
performance in terms of spectral efficiency compared to other less aggressive power control
schemes. This can be explained by the fact that the aggregate interference power is more in
case of ε = 1 compared to other values of ε.
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SINR Threshold (T) in dB
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Figure 4.2: Coverage Probability for different values of ε. Solid lines represent the theoretical results
generated using Proposition 4.8, dashed lines represents the theoretical result obtained using Proposition 4.4.
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Figure 4.3: Ergodic user spectral efficiency for different power control fraction (ε). Theoretical curve is
generated using Proposition 4.9.
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Figure 4.4: Outage user spectral efficiency for different ε v/s target SINR threshold. Outage SE is defined
in (4.20).

4.5 Concluding remarks

The analysis of the UL of a cellular system is a challenging problem due to UL power
control and the correlation among the user distances. All known results for the UL coverage
assume Rayleigh fading in order to conveniently express coverage probability in terms of
the LT of interference. However, in case of mMIMO due to spatial averaging of fading new
methods are required for coverage probability analysis, which was the main focus of this
work. The key contribution lies in carefully handling the interference power by splitting it
into two terms: (i) the dominant interference power term, and (ii) conditional average of
the rest of the terms. Due to the presence of power control, the geographically closest user
is not necessarily the most dominant, which has been addressed by the application of the
displacement theorem. Using the coverage result, the achievable user spectral efficiency is
also derived. The approaches presented in this chapter and in Chapter 2 can be combined
to analyze the UL performance of a soft pilot reuse mMIMO system.



Chapter 5

Multilayer Random Sequential
Adsorption

5.1 Introduction

Based on the discussion presented in the prior works section in Chapter 1, to mitigate the
effect of pilot contamination in a cell-free mMIMO system, one of the promising approaches
is to ensure a certain geographical distance among a set of co-pilot users. In this chapter, we
propose a variant of the random sequential adsorption (RSA) process that is inspired by this
pilot sharing philosophy where a certain minimum distance is ensured among the set of co-
pilot users. Moreover, due to the broadcast nature of the wireless networks, this philosophy of
resource allocation can be incorporated to reduce the effect of co-channel interference in any
other types of orthogonal resource sharing networks such as cellular networks with frequency
reuse. In this chapter, we present the preliminary but concrete results to understand the
spatial statistics of the co-resource users in such a system.

In order to make a more accurate connection of the above wireless setting with RSA, let
us focus on a certain observation window and assume the following: (1) the nodes appear in
the network as per a spatio-temporal Poisson point process (PPP), (2) each node transmits
on a certain frequency band, which is randomly selected from the set of available bands,
where a band is said to be available if it is not being used by any other nodes within a
certain minimum distance from this node, (3) a node for which the set of available bands
is empty because of the minimum distance violation (i.e., all bands are already being used
by the other nodes in its vicinity) is not admitted into the system, and (4) once a node is
admitted into the system, it will not leave the system. A natural question for this setting
is: at any given time what is the density of nodes transmitting on the same frequency
band? If we have only a single frequency band in the network, the setup reduces to the
well-studied monolayer RSA setting (which is the native setting of the Rény’s car parking
problem) because of which we can answer this question by using the well-known monolayer
RSA results [86, 87]. However, if there are multiple orthogonal resources, one can envision
the resulting point process of users as a multilayer RSA. As will be discussed shortly, even
though one can draw some similarities between this multilayer RSA and some known variants
of RSA studied in the literature, the underlying physical phenomenon that generates this
process has not been discussed in this context yet. Given the novel setting, we naturally

63
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need to derive new results to answer the above question, which is the main contribution of
our work.

With this general background, we are now ready to present our new variant of the RSA
process in the canonical 1D setting below. After deriving results for the 1D case, we will
also tackle the 2D case later in the chapter.

5.2 Problem statement and prior works

Consider a 1D line that is empty at t = 0. Hard rods of length σ are arriving uniformly
at random at rate ra per unit length. A rod is placed on the line irreversibly after being
assigned a color from a set of colors K = {c1, c2, . . . , cK}. From a communication network
perspective, rod centers represent communicating node locations, their lengths represent
the communication range, and the set colors represent the orthogonal frequencies. A color
is selected randomly from the set of available colors, where a color is available if it is not
assigned to already existing rods that overlap with the arriving rod. If no colors are available
for assignment, the arriving rod is not admitted into the system. An illustrative diagram is
presented in Fig. 5.1. The special case of K = 1 gives us the celebrated Rény’s car parking
problem. Our goal is to characterize the density of rods of a given color as a function of
time, denoted by ρk(t) for ck ∈ K.

Figure 5.1: An illustrative figure for the deposition of rods that are assigned either red or green color.
(Top) Arriving rod overlaps with a deposited rod of green color. Hence, it is assigned red color. (Middle)
Arriving rod overlaps with rods of both the colors. Hence, it is discarded. (Bottom) Arriving rods lies in an
empty interval. Hence, it can be assigned either of the two colors with equal probability.
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5.2.1 Related literature and contributions

The problem described above has similarity to some known multilayer variants of the RSA
problem [25, 26, 27, 28, 29]. While we briefly describe these variants next for completeness,
the differences in the geometric constraints and dynamics between these and the setup stud-
ied in this chapter forbid a direct application of these prior analyses to the current setup.
In [25, 26], authors have considered a sequential multilayer deposition of dimers on a lattice.
Using mean-field theory, approximate density results are presented by not considering the
screening1 effect from higher layers. Additional approximate results for the entire time range
based on empty interval probability2 rate equations were also presented. However, the results
are limited to the first two layers as the solution rapidly becomes cumbersome for higher
layers. Further, in [26] authors provide the large time asymptotic behavior of the densities
for different layers for the continuum case. In [27], the authors present asymptotic results
for a variant of the multilayer RSA with sequential deposition of objects without screening
effect. In addition, the authors consider the length of the objects to be random with a cer-
tain distribution. The asymptotic results are presented for 1D and 2D continuum cases that
suggest each layer approaches the jamming limit as a power law. In [28], the authors study
a variant of the continuum multilayer RSA where variable-length screening due to overhangs
from higher layers is considered. For this model, exact results are presented only for the first
layer. A generalized version of the multilayer RSA model in [28] is considered in [29] where
the three possible events of the particle deposition are taken into account namely adsorption,
desorption, and rolling of an object on the surface. Similar to the previous case, the exact
results are presented only for the first layer.

Another interesting line of works that are inspired by the process of frequency assign-
ment in wireless networks can be found in [88, 89, 90, 91]. In this variant, the sequential
assignment of frequencies gives rise to a space-time process that is similar to the multilayer
RSA process without the screening effect. In [88], through numerical simulations, authors
propose several conjectures related to the long term asymptotic behavior such as the num-
ber of frequency bands necessary to accommodate n users, i.e. the average number of layers
formed by deposition of the first n rods. Additional simulation-based results related to pack-
ing density are also presented. Inspired by the same model, in [89] a sequential two-layer RSA
process is considered on a discrete finite lattice where the arriving objects are dimers. The
model also takes into account both “no screening” and screening of dimers from the second
layer to the first layer. The density results are presented for local patterns, i.e. occupancy
in both the layers over three consecutive sites. In [91], authors extend the previous results
from two layers to higher layers for a finite lattice size of five sites where arrival is allowed
on consecutive three sites. The analysis is focused on obtaining the occupancy probability
of the center site for a given layer at the large time limit. Further, a few simulation-based

1Blocking of arriving objects by higher layers to the lower layers due to overhangs. This phenomenon is
not a characteristic of our model due to orthogonal frequency bands.

2The probability of finding an interval of n or more consecutive sites empty.
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results for systems with larger lattice sizes are also discussed.

From this discussion, two key characteristics of the prior works are noteworthy. First,
each variant of the multilayer RSA has unique geometrical and dynamical features that are
not universal and are strongly driven by the underlying rules of deposition of the objects.
Because of this, a unified analysis of all these variants, although desirable, is not possible.
As a result, understanding the characteristics of each process requires a unique analytical
treatment governed by its underlying physical model. Second, the exact characterization of
these features is extremely difficult due to the non-markovian nature of the process as well
as strong spatio-temporal interaction among different layers. Hence, accurate approximate
results are mostly our best hope unless one considers very specific limiting scenarios, such as
finite lattice size or large time system behavior. With this understanding, the contributions
of our work are summarized below:

1. as presented at the beginning of this section, we propose a new variant of the multilayer
RSA that is inspired from random orthogonal resource sharing in wireless communica-
tions networks.

2. Although each step in this variant is random, owing to the infinite memory of the
deposition process, it is non-markovian. Hence, obtaining exact results for the kinet-
ics is difficult. Therefore, to tackle this problem, we develop approximations that are
reasonably accurate for the entire time range. For the 1D case, we provide two use-
ful approximation methods to obtain the density of rods of a given color. The first
method recursively uses the monolayer RSA result with modified arrival rates to ob-
tain the density of rods of a given color. On the other hand, in the second method, we
approximately characterize the gap density function, which is later used to obtain the
density of rods. While the first approach is more amenable to numerical evaluation,
the second method is more accurate along with providing useful intermediate results.

3. We also accommodate the 2D version of the problem, which is solved using a method
that is similar to the first approximation method for the 1D case. From an application
point of view, we present a case study of orthogonal frequency band allocation in Wi-
Fi networks where the results derived for the 2D RSA are directly applicable for the
system analysis.

The rest of the chapter is organized as follows: in Sec. 5.3, we present the first approxi-
mation that leverages the monolayer RSA result to solve the problem. In Sec. 5.4 we present
our second approach to solve the problem using gap density function. The density results
for the 2D case using the first approximation is presented in Sec. 5.5. We provide concluding
remark in Sec. 5.6.
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5.3 Density Approximation of 1D Multilayer RSA: An
Iterative Approach

In this section, we present our first approach to approximate the density of rods of a given
color as a function of time. This approach is based on establishing an equivalence between
the proposed color assignment process and an alternate sequential color assignment process
that is described below. The equivalence between these two assignment processes is in terms
of total density of rods admitted into the system.

The rules for the alternate sequential color assignment scheme are as follows:

1. Let there be K colors K = {c1, c2, . . . , cK} with a predefined ordering. The coloring
scheme is sequential, i.e. for an arriving rod at x, color c1 is considered first. If a rod
of color c1 overlaps with Bσ/2(x)3, then color c2 is considered and so on.

2. If the arriving rod at x overlaps with rods of all the colors, i.e. centers of rods of all
colors are present in Bσ(x), then the rod is not admitted into the system.

Let ρ̃i(t) be the density of rods of color ci at time t. Due to the sequential nature of
the assignment scheme, it is clear that ρ̃1(t) ≥ ρ̃2(t) ≥ . . . ≥ ρ̃K(t). On the other hand, in
case of the random assignment of colors as proposed in the original problem (Sec 5.2), the
densities of rods of different colors are the same, i.e. ρ1(t) = ρ2(t) = . . . = ρK(t). Note that
at time t, in both the schemes, the total density of admitted rods of all colors is the same.
Hence, we write

K∑
k=1

ρk(t) =
K∑
k=1

ρ̃k(t)

⇒Kρi(t) =
K∑
k=1

ρ̃k(t)

⇒ρi(t) =

∑K
k=1 ρ̃k(t)

K
,∀i = 1, 2, . . . , K. (5.1)

To use the above equation to characterize the density of rods of color ci for the original
assignment scheme, we need information regarding ρ̃i(t), ∀i. Observe that the evolution of
density of rods for color c1, denoted by ρ̃1(t), is the same as the monolayer RSA. Hence, the
density of rods of color c1 is given as [87]

ρ̃1(t) =
1

σ

∫ raσt

0

exp

(
−2

∫ u

0

1− e−x

x
dx

)
du. (5.2)

3Throughout the manuscript, we denote a ball of radius σ/2 centered at x as Bσ/2(x).
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However, characterizing the exact density of rods of color cn, for n ≥ 2, is non-trivial. Hence,
we approximate ρ̃n(t) for n ≥ 2. In the sequential assignment scheme, at time t, ρ̃1(t) rods
per unit length have been assigned color c1. Hence, the number of arrivals per unit length
that have been considered for the allocation of color c2 is rat− ρ̃1(t). Similarly, the number
of arrivals per unit length considered for color c3 is rat − ρ̃1(t) − ρ̃2(t). To obtain ρ̃2(t), we
assume that the rods are arriving uniformly at random at a rate ra− ρ̃1(t)

t
. Note that although

reasonable, this assumption is an approximation. Further, assuming that the evolution of
color c2 happens similar to monolayer RSA, the density at time t is given as

ρ̃2(t) =
1

σ

∫ raσt−ρ̃1(t)σ

0

exp

(
−2

∫ u

0

1− e−x

x
dx

)
du. (5.3)

Proceeding on the similar lines, the density of rods of color cn for 2 ≤ n ≤ K is given as

ρ̃n(t) =
1

σ

∫ raσt−σ
∑n−1
i=1 ρ̃i(t)

0

exp

(
−2

∫ u

0

1− e−x

x
dx

)
du. (5.4)

In the following proposition, we summarize the density result presented in this section:

Proposition 1. The density of rods of a given color for the original random color assignment
problem is given as

ρi(t) =

∑K
k=1 ρ̃k(t)

K
,

where

ρ̃k(t) =
1

σ

∫ raσt−σ
∑k−1
i=1 ρ̃i(t)

0

exp

(
−2

∫ u

0

1− e−x

x
dx

)
du.

The validation of the accuracy of the above approximation is presented in Fig. 5.2.

Interestingly, once the equivalence between the original and the alternate sequential
color assignment processes was established in (5.1), this approach relied exclusively on the
known monolayer result. As we will discuss in Section 4, its tractability also makes it an
appealing choice for the RSA analysis in higher dimensions. That said, this approach suffers
from a gradual loss of accuracy as the number of colors increases. This motivates us to
present an alternate result that is more accurate compared to this approximation and has
an added advantage of providing useful intermediate results that have more information
regarding the kinetics of the process (whereas the above approach does not provide any
other statistical information about the original random color assignment process apart from
the time-varying density of rods of a given color).
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Figure 5.2: The evolution of the density of rods of a particular color as a function of time t for σ = 1.
Markers and solid lines represent simulations and theoretical results, respectively.

5.4 Density Approximation for 1D Multilayer RSA:
Gap Density Function-based Approach

In this section, we present our second approximation approach to obtain the density of rods
of a given color. It is based on the characterization of the gap density function, which is
one of the canonical methods to understand the kinetics of the RSA process as well as its
different variants. In our case, at time t, the gap density function Gi(l, t) is defined such that
Gi(l, t)dl gives the density of gaps of length between l and l + dl for rods that are colored
ci. Following properties of Gi(l, t) are useful in the derivation of density of rods of a given
color:

1. Since each gap corresponds to an admitted rod of color ci preceding it (or succeeding
it), the density of rods of color ci is given as

ρi(t) =

∫ ∞
0

Gi(l, t)dl. (5.5)

This direct relationship to the density makes gap density function more attractive to
work with compared to other intermediate quantities such as empty interval probabil-
ity [92].

2. At time t, the fraction of the length (average length over a unit interval) available for
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admitting a rod that can be assigned color ci is

Φi(t) =

∫ ∞
σ

(l − σ)Gi(l, t)dl. (5.6)

Above result can be interpreted as the probability of a rod arriving in a gap of length
l of color ci. This relationship is used later in the proposed approximation.

Instead of directly solving the problem for K ≥ 2 colors, we begin with the simpler
case of K = 2. The objective is to expose the underlying structure of the problem for the
simpler setting of K = 2, which will help in identifying key constructs that emerge from
the inherent spatial coupling of the RSA and will hence need careful approximations for a
tractable analysis. This will then inform our analysis of K ≥ 2.

5.4.1 Results for two layers (K = 2)

Consider the scenario where rods can be assigned either of the two colors K = {c1, c2}. As
mentioned in Sec. 5.2, the assignment of a color is random with equal probability unless
the arriving rod overlaps with an admitted rod of a given color. Owing to the random
assignment, at a given time t, G1(l, t) and G2(l, t) are identical. Hence, without loss of
generality, we just focus on deriving G1(l, t).

Our first step is to characterize the time evolution of G1(l, t). Consider a gap of length
l for rods of c1 (see Fig. 5.3). The allowable length on which a rod can arrive with the
possibility of getting the color c1 is the segment [σ

2
, l − σ

2
]. Let us denote this line segment

by Ll−σ. For a rod arriving at location x ∈ Ll−σ, we define the following events:

1. Ii(x, t) := {A rod arriving at point x during the time window (t, t+dt] will be assigned
ci.}

2. Ci(x, t, l) := {The rod arrives in gap of length l corresponding to color ci during time
(t, t+ dt].}

3. En(x, t) := {At time t, the segment Bσ/2(x) :=
[
x− σ

2
, x+ σ

2

]
overlaps with n deposited

rods}

The evolution of G1(l, t) depends on the following configurations in the vicinity of x:

1. the rod will be assigned color c1 (green in the illustrations) with probability 1/2 if
Bσ/2(x) is not partially (or fully) covered by rods of color c2 (orange in the illustrations),
and
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Figure 5.3: A gap of length l for rods of color c1 (green for the illustration purpose). New arrivals that
can destroy this gap are possible only over the segment Ll−σ = [σ2 , l −

σ
2 ].

2. the rod will be assigned color c1 with probability 1 if Bσ/2(x) is partially (or fully)
covered by rods of color c2. In the illustrative example of Fig. 5.3, the arriving rod will
be assigned color c1 with probability 1 as it overlaps with rod of color c2.

We write the following set of differential equations to capture the evolution of G1(l, t)
due to an arrival in the gap of length l for rods of color c1 during an infinitesimally small
time window (t, t+ dt]:

∂G1(l, t)

∂t
=



−ra
∫
x∈Ll−σ

G1(l, t)P[I1(x, t)|C1(x, t, l)]dx

+2ra

∫ ∞
y=l+σ

G1(y, t)P[I1(x, t)|C1(x, t, y)]dy l ≥ σ,

2ra

∫ ∞
y=l+σ

G1(y, t)P[I1(x, t)|C1(x, t, y)]dy l < σ.

(5.7)

To obtain (5.7), we first consider the case of l ≥ σ as it involves the rate of change
in the density of gaps between (l, l + dl] due to the destruction of such gaps as well as
creation of such gaps from gaps of larger length. The second case of l < σ involves only
the creation term that can be obtained using a similar logic as we present for l ≥ σ. The
first term on the right hand side (destruction term) captures the rate of change in density
G1(l, t) due to the average number of arrivals over unit length in a gap of length l and is
straightforward to obtain. The second term (creation term) captures the rate of change in
G1(l, t) due to average number of arrivals per unit length that can create a gap of length l
from a gap of length y > l+ σ. This expression can be derived as follows: for all the gaps of
length (y, y + dl], the fraction of available length for arrival of a rod is (y − σ)G1(y, t)dl. In
order to create a gap of length l, the rod needs to arrive on a thin length dy at a distance
l + σ/2 from either end of the gap y. Due to the uniform arrival of rods, the probability
of this event is dy/(y − σ). Further, this arriving rod will be assigned color c1 with certain
probability depending on the configuration of already deposited rods of color c2 in this gap.
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This probability is captured by the term P[I1(x, t)|C1(x, t, y)]. Hence, the fraction of length
that allows an arriving rod to partition y into two smaller gaps of lengths l and y − l− σ is

2dy

(y − σ)
(y − σ)[G1(y, t)dl]P[I1(x, t)|C1(x, t, y)]

= 2[G1(y, t)dl]P[I1(x, t)|C1(x, t, y)]dy,

which gives the desired integrand in (5.7) for the creation term in both the cases.

Our next step is to derive an expression for the probability term presented in (5.7).
Using Bayes’ theorem and law of total probability, we write P[I1(x, t)|C1(x, t, l)] =

P[I1(x, t), C1(x, t, l)]

P[C1(x, t, l)]

=

∑
n≥0 P[I1(x, t), C1(x, t, l)|En(x, t)]P[En(x, t)]

P[C1(x, t, l)]

=

∑
n≥0 P[I1(x, t)|C1(x, t, l), En(x, t)]P[C1(x, t, l)|En(x, t)]P[En(x, t)]

P[C1(x, t, l)]
. (5.8)

Note that the above conditional probability depends on the location of x ∈ Ll−σ. De-
riving an exact expression while considering this location dependence is intractable. This is
a manifestation of the spatial coupling because of which exact analyses of multilayer RSA
in most settings is intractable. Next we present our approximation approach that is based
on a few assumptions including the location independence.

First, we get P[En(x, t)], i.e. the probability of the event that the interval [x− σ
2
, x+ σ

2
]

overlaps with n deposited rods. Consider the following realizations of this event:

1. For n = 0 (Fig. 5.4 top): if the arrival occurs at x ∈ [σ, l − σ], then it is clear that
there has been no prior arrivals in (x − σ, x + σ) until time t. Otherwise, it would
have been assigned one of the colors. Hence, using empty interval probability of 1D
Poisson process, P[E0(x, t)] = e−ra2σt. On the other hand, if the arrival occurs at
x ∈ {[σ

2
, σ) ∪ (l − σ, l − σ

2
]}, then there is a non-zero probability that there has been

atleast one arrival in (x− σ, x+ σ) prior to time t. This arrival(s) has been discarded
as there are no colors left to assign. Exact evaluation of the probability of this event
is cumbersome. Hence, we approximate it as a Poisson arrival and write

P[E0(x, t)] = e−ra2σt, x ∈
[
σ

2
, l − σ

2

]
.

2. For n = 1 (Fig. 5.4 bottom): similar to the previous case, if the arrival occurs at
x ∈ [σ, l − σ], then it is clear that there is one arrival in (x − σ, x + σ) until time
t. Hence, we write P[E1(x, t)] = ra2σte

−ra2σt. However, when arrival occurs at x ∈
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Figure 5.4: An illustrative gap of length l for color green (c1). The arrivals at x ∈
[
σ
2 , l −

σ
2

]
are considered

for assigning color green.

{[σ
2
, σ) ∪ (l − σ, l − σ

2
]}, it is difficult to derive P[E1(x, t)] as it requires a cumbersome

enumeration. To circumvent this, similar to the previous case, we approximate the
arrivals in (x− σ, x+ σ) to follow a Poisson process and write

P[E1(x, t)] = ra2σte
−ra2σt.

3. For n = 2: Similar to the previous cases, we approximate that the process is Poisson
in (x− σ, x+ σ) for an arrival at x ∈ [σ

2
, l − σ

2
]. Hence,

P[E2(x, t)] =
(ra2σt)

2

2
e−ra2σt.

Note that P[En(x, t)] = 0 for n ≥ 3.

Next, we are interested in P[C1(x, t, l)|En(x, t)], ∀n. Let us define the event C1(x, t) as
the event that an arriving rod falls in a gap corresponding to color c1. As presented earlier,
the probability of this event is given as

P[C1(x, t)] = Φ1(t) =

∫ ∞
σ

(z − σ)G1(z, t)dz.

Above probability takes into account all the gaps of length greater than σ, where the
probability that the rod lies in a gap of length (l, l + dl] corresponding to color c1 is
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(l − σ)G1(l, t)dl. Please note that P[C1(x, t, l)|En(x, t)] = P[C1(x, t, l), C1(x, t)|En(x, t)] due
to the fact that C1(x, t, l) ⊆ C1(x, t) conditioned on En(x, t). Further, we assume that
P[C1(x, t, l)|C1(x, t), En(x, t)] = P[C1(x, t, l)|C1(x, t)] for all n. Using this relationship, for
n = 0, this conditional probability is simply the probability that Bσ/2(x) lies in a gap of
length (l, l + dl] of all the gaps and is given as

P[C1(x, t, l)|E0(x, t)] = P[C1(x, t, l), C1(x, t)|E0(x, t)]

= P[C1(x, t, l)|C1(x, t), E0(x, t)]P[C1(x, t)|E0(x, t)]

(a)
= P[C1(x, t, l)|C1(x, t)]P[C1(x, t)|E0(x, t)]

=
P[C1(x, t, l)]

P[C1(x, t)]
P[C1(x, t)|E0(x, t)]

(b)
=

(l − σ)G1(l, t)dl

Φ1(t)

where (a) follows from the aforementioned assumption, and (b) using the fact that P[C1(x, t)|E0(x, t)] =
1.

Now consider that the arriving rod Bσ/2(x) sees one deposited rod in the neighborhood.
Its arrival is in in a gap of color c1 only if the deposited rod is assigned color c2. The
probability of this event is 1/2. Following the similar principle as n = 0, we write

P[C1(x, t, l)|E1(x, t)] = P[C1(x, t, l), C1(x, t)|E1(x, t)]

= P[C1(x, t, l)|C1(x, t), E1(x, t)]P[C1(x, t)|E1(x, t)]

=
(l − σ)G1(l, t)dl

Φ1(t)

1

2
. (5.9)

The event E2(x, t) is more interesting compared to the previous cases. First, if the centers
of both the deposited rods are not separated by a distance σ, then these two rods need to
be assigned two different colors. Hence,

P[C1(x, t, l)]|E2(x, t), {Admitted rods are less than σ apart}] = 0

as the arrival is no longer in a gap of color c1. Hence, the event we are interested in is that
the centers of both the admitted rods are atleast σ distance apart and both these rods are
assigned color c2. The probability that the two arrivals are at least σ distance apart can be
evaluated using order statistics and it comes out to be 5/18. Further, the probability that
these two rods are assigned color c2 is 1/4. Overall, we write

P[C1(x, t, l)|E2(x, t)] = P[C1(x, t, l), C1(x, t)|E2(x, t)]

= P[C1(x, t, l)|C1(x, t), E2(x, t)]P[C1(x, t)|E2(x, t)]

=
(l − σ)G1(l, t)dl

Φ1(t)

1

4

5

18
. (5.10)
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Using the law of total probability

P[C1(x, t, l)] =
(l − σ)G1(l, t)dl

Φ1(t)

(
e−ra2σt +

1

2
(ra2σt)e

−ra2σt +
1

4

5

18
(ra2σt)

2 e
−ra2σt

2

)
. (5.11)

Above expression for P[C1(x, t, l)] is exact when

Φ1(t) = e−ra2σt +
1

2
ra2σte

−ra2σt +
1

4

5

18
(ra2σt)

2 e
−ra2σt

2
.

Since this is not the case, the result is an approximation whose accuracy is validated at the
end of this section.

To reach our final goal, we need to obtain P[I1(x, t)|C1(x, t, l), En(x, t)]. Owing to the
equi-probable random assignment of colors

P[I1(x, t)|C1(x, t, l), En(x, t)] =

{
1/2 n = 0,

1 n = 1, 2,
(5.12)

where for n = 2, we have the condition that both the arrivals are at least σ distance apart.

Substituting the conditional probability expressions in (5.8), we get

P[I1(x, t)|C1(x, t, l)] =
1
2
e−ra2σt + 1

2
(ra2σt)e

−ra2σt + 5/144(ra2σt)
2e−ra2σt

e−ra2σt + 1
2
(ra2σt)e−ra2σt + 5/144(ra2σt)2e−ra2σt

=
1 + ra2σt+ 5/72(ra(2σ)t)2

2 + ra2σt+ 5/72(ra(2σ)t)2
.

Using all the intermediate steps described so far, we arrive at the following result to
approximately characterizing the density of rods of a given color.

Proposition 2. For K = 2, the density of rods of a given color ci is given as

ρi(t) =

∫
l≥0

Gi(l, t)dl,

where the time evolution of Gi(l, t) is given as

∂Gi(l, t)

∂t
=



[
−ra(l − σ)Gi(l, t) + 2ra

∫ ∞
y=l+σ

Gi(y, t)dy

]
1 + ra2σt+ 5/72(ra(2σ)t)2

2 + ra2σt+ 5/72(ra(2σ)t)2
l ≥ σ,

2ra
1 + ra2σt+ 5/72(ra(2σ)t)2

2 + ra2σt+ 5/72(ra(2σ)t)2

∫ ∞
y=l+σ

Gi(y, t)dy l < σ.

(5.13)
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Following results verify the accuracy of the approximation. In Fig. 6.5, we present
Gi(l, t) as a function of l for different t. We have considered the length of a rod as σ = 1.
As evident from the figure, with increasing time, gaps of length l < 1 become relatively
dominant of all the gaps. This result is also intuitive since only gaps of length l < 1 remain
in the system as the system reaches the jamming limit. In Fig. 5.6, we present the density
ρi(t) of rods of a given color. We also observe that the simulations and approximated theory
results are remarkably close.
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Figure 5.5: The evolution of gap density function for rods of a particular color as a function of gap length
l for σ = 1. Solid lines and dotted markers represent theoretical approximation and simulations result,
respectively.
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Figure 5.6: The evolution of density of rods of a particular color as a function of time t for σ = 1.
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5.4.2 Results for generic K

Our next goal is to extend the previous approximation to K ≥ 2 layers. However, capturing
all the events mentioned in the previous subsection to characterize the rate equation for
the gap density function becomes increasingly tedious as the number of layers increases.
Therefore, to keep the numerical evaluation tractable, we make the following assumptions.
The first assumption is the same as the approximation we have used for the previous approach
that ignores the spatial dependence among prior arrivals beyond a certain range.

Assumption 5.1. The admitted rods in the neighborhood Bσ(x) of an arriving rod at x
are assumed to be deposited uniformly at random and independent of arrivals beyond Bσ(x).
Hence, these prior arrivals are assumed to follow Poisson process in Bσ(x).

Further, if two prior arrivals in Bσ(x) are separated by a distance σ, then there is non-
zero probability that these two arrivals can be assigned the same color. However, considering
this case exactly becomes cumbersome even for K ≥ 3. Hence, we make the following
assumption to make the rate equation for the gap density function tractable.

Assumption 5.2. If there are m < K admitted rods in Bσ(x), then these are assigned m
different colors irrespective of their relative distances.

With these assumptions, we propose following approximation to characterize the evolu-
tion of density of the rods of color ci.

Proposition 3. For a multilayer RSA process with K colors, the density of rods of a given
color ci is given as

ρi(t) =

∫
l≥0

Gi(l, t)dl,

where the time evolution of Gi(l, t) is given as

∂Gi(l, t)

∂t
=



−ra(l − σ)Gi(l, t) + 2ra

∞∫
y=l+σ

Gi(y, t)dy


K−1∑
n=0

(ra2σt)n

n!

K−1∑
n=0

(K − n) (ra2σt)n

n!

, l ≥ σ

2ra

K−1∑
n=0

(ra2σt)n

n!

K−1∑
n=0

(K − n) (ra2σt)n

n!

∫ ∞
y=l+σ

Gi(y, t)dy, l < σ.

(5.14)

Proof: The above proposition can be derived on the similar lines as the exposition
of the K = 2 case in the previous subsection. First, the rate of change equation for gap
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density function is the same as (5.7). Now the conditional probability expression in (5.7)
can be expanded as

P[Ii(x, t), Ci(x, t, l)]
P[Ci(x, t, l)]

=

∑
n≥0 P[Ii(x, t)|Ci(x, t, l), En(x, t)]P[Ci(x, t, l)|En(x, t)]P[En(x, t)]

P[Ci(x, t, l)]
. (5.15)

Using both the assumptions mentioned above, we write

P[En(x, t)] = e−ra2σt

K−1∑
n=0

(ra2σt)
n

n!
, 0 ≤ n ≤ K − 1.

Further, on the similar lines as discussed in the previous section

P[Ci(x, t, l)|En(x, t)] =
(l − σ)Gi(l, t)dl

Φi(t)

K − n
K

, 0 ≤ n ≤ K − 1.

Hence, using the law of total probability, we write

P[Ci(x, t, l)] =
K−1∑
n=0

(l − σ)Gi(l, t)dl

Φi(t)

K − n
K

(ra2σt)
n

n!
e−ra2σt.

Moreover, due to equi-probable assignment of colors

P[Ii(x, t)|Ci(x, t, l), En(x, t)] =
1

K − n
, 0 ≤ n ≤ K − 1.

Using the above four equations in (5.15), we get

P[Ii(x, t)|Ci(x, t, l)] =

K−1∑
n=0

(ra2σt)n

n!

K−1∑
n=0

(K − n) (ra2σt)n

n!

.

The final result is obtained using the relationship between the gap density function and the
density of rods of a particular color.

The density result using the above proposition is presented in Fig. 5.7. From the figure
we observe that the simulations and the approximate theoretical results are remarkably close.
Further, as expected the time required to reach the jamming limit increases as the number
of layers increases.
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Figure 5.7: The evolution of density of rods of a particular color as a function of time t. The length of
rods is σ = 1. Markers and solid lines represent simulations and theoretical results, respectively.

5.5 Extension to 2D Multilayer RSA

In this section, we present the 2D version of the proposed multilayer RSA problem. We
consider that circles with diameter σ arrive uniformly at random in R2. Let there be K
colors in the system K = {c1, c2, . . . , cK} that are assigned to these circles based on the
following rules:

1. An arriving circle that does not overlap with any of the admitted circles is assigned a
color uniformly at random from K.

2. If the circle overlaps with n < K colors, it is assigned a color uniformly at random
from the rest of the colors.

3. If the circle overlaps with all the colors, it is not admitted into the system.

Based on the above rules, an illustrative example is given in Fig. 5.8 where we have
considered K = 2. In the left figure, all the arrivals before a given time t are presented.
From a communications network perspective, the centers represent communicating nodes,
the range of each node is represented by a circle centered at the node. These nodes transmit
to their respective receivers (not shown in the illustration) on an orthogonal frequency band
out of the two available bands. In the right figure, nodes with the same color transmit on
the same frequency band. Hence, interference is reduced among nodes that are within the
communication range of each other.



Priyabrata Parida Chapter 5 80

Figure 5.8: An illustration of the frequency band assignment process in a 2D wireless network. (Left) All
the nodes that appear for transmission before a given time t. (Right) Nodes with the same color are assigned
the same frequency band for transmission. Since there are two orthogonal frequency bands, only two out of
three nodes with overlapping communication ranges are allowed to transmit. The node with a dotted circle
remains silent.

Similar to the 1D case, our goal is to obtain the density of circles of a given color. Since
the exact solution to the problem is extremely difficult to obtain even in the monolayer
case [93, 94], we resort to an approximation. It is natural to consider an extension of
either of the two approximation approaches developed for the 1D case. As mentioned in
Section 5.3, the first approximation based on the iterative application of the monolayer RSA
result is highly tractable, which makes it a promising candidate for extension to higher
dimensions. Even though the second approximation based on the gap density function
is slightly more accurate, its setup does not lend itself for a natural extension to higher
dimensions. Therefore, to obtain the density of circles of a given color, we rely on extending
the iterative approximation approach. In the sequel, we present this result for the 2D
multilayer RSA case.

5.5.1 Approximate density characterization

Since this approach requires the known density result for monolayer RSA to be invoked
repeatedly, for the sake of completeness, we first present this result from the literature [93].
Consider a 2D monolayer RSA process that is obtained from circles of diameter σ arriving
uniformly at random at rate ra per unit area per unit time. In the following lemma, we
present ρ(t), the density of the admitted circles at time t.



Priyabrata Parida Chapter 5 81

Lemma 5.3. The density ρ(t) is obtained by solving the following differential equation with
the initial condition ρ(0) = 0: ∫

dρ(t)

φ(κρ(t))
=
ra
κ
t+ C, (5.16)

where κ = πσ2

4
is the area covered by a circle, κρ(t) is the fraction of the area that is covered by

the retained circles at time t, φ(κρ(t)) is the probability that a circle arriving at an arbitrary
location in R2 is retained at time t, and C is the integration constant. The series expansion
of the retention probability in terms of density ρ(t) is given as [93, Eq. 30]

φ(κρ(t)) =1− 4πσ2ρ(t) +
ρ(t)2

2

∫ 2σ

σ

4πrA2(r)dr +
ρ(t)3

3

∫ 2σ

σ

2πrA2
2(r)dr

− Seq
3 +O(ρ(t)4), (5.17)

where Seq
3 = ρ(t)3

8
π
(√

3π − 14
3

)
σ6 + O(ρ(t)4), A2(r) is the area of intersection of two circles

of radius σ whose centers are separated by distance r.

Proof: For the detailed proof of this lemma, please refer to [93]. We just present
the proof sketch here. Note that κρ(t) is the fraction of area covered by the retained circles
at time t. Now, the rate of change of the fraction of the covered area depends on the number
of arrivals radt per unit area and the probability of an arrival being retained, which is given
by φ (κρ(t)). Hence,

d(κρ(t))

dt
= raφ (κρ(t)) . (5.18)

The expression for φ (κρ(t)) is derived in [93].

The result of the above lemma is accurate up to a coverage of about 35% by all the
admitted circles. Using the knowledge of the asymptotic coverage of the 2D RSA process at
the jamming limit, a unified equation for the retention probability is presented in [93] that
is accurate for the entire coverage range. This equation is given as

φFIT(ρ(t)) = (1 + b1x(t) + b2x(t)2 + b3x(t)3)(1− x(t)3), (5.19)

where x(t) = ρ(t)/ρ(∞) and ρ(∞)κ = 0.5474 is the fraction of the area that is covered at
the jamming limit as t → ∞. The coefficients b1 = 0.8120, b2 = 0.4258 and b3 = 0.0716 are
obtained by matching the order of ρ(t) in equations (6.12) and (6.13). Now the expression
for ρ(t) can be obtained by numerically solving the differential equation (6.11) using (6.13).

As mentioned earlier, we use the same approach as the 1D multilayer RSA presented
in Sec. 5.3 to approximate the density of circles of a given color. Let us extend the sequen-
tial color assignment process presented in Sec. 5.3 for 2D case, where an arriving circle is
considered to be assigned c1 before c2 and so on. Let ρ̃i(t) be the density of circles of i-th
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color under this sequential assignment scheme. In the following proposition we present the
approximate result to estimate the density of circles of a given color for 2D multilayer RSA
with the original random color assignment scheme.

Proposition 4. The density of circles of a given color for 2D multilayer RSA with random
color assignment scheme is given as

ρi(t) =

∑K
k=1 ρ̃k(t)

K
,

where ρ̃k(t) is obtained by solving the monolayer RSA problem using Lemma 6.2 with ad-
justed rate of arrival per unit area for the k-th layer as ra −

∑k−1
i=1

ρ̃i(t)
t
.

In Fig. 5.9, we present the fraction of the total area covered by circles of a given color as
a function of time. From the figure, we see the approximated theoretical result are in close
agreement with the Monte Carlo simulations result for different number of colors.
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Figure 5.9: The fraction of the area covered by a circle of a particular color for a 2D multilayer RSA as a
function of time t. Markers and solid lines represent simulations and theoretical results, respectively.

5.6 Conclusion

In this chapter, we introduced a new variant of the multilayer RSA process that is inspired by
the orthogonal resource sharing in wireless networks. For the 1D version of this process, we
presented two useful approximations to obtain the density of deposited rods for a given layer.
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While our first approach is more amenable to numerical evaluation, the second approach is
more accurate and provides useful information regarding the gap density function, which is
an important statistical quantity to understand the kinetics of the RSA process. We have
also extended the first approximation to obtain the density of a given layer for the 2D version
of this multilayer RSA process. In the next chapter, using the results derived for the 2D
version, we analyze the pilot assignment probability in a cell-free mMIMO network.



Chapter 6

Pilot Assignment Schemes for
Cell-Free Massive MIMO Networks

6.1 Introduction

Similar to cellular mMIMO networks, the channel state information (CSI) acquisition in
a cell-free mMIMO systems needs to be done through uplink (UL) pilot transmission due
to its scalability. Not surprisingly, under the assumptions of independent Rayleigh fading
and sub-optimal linear precoders, pilot contamination becomes one of the capacity limiting
factor of cell-free mMIMO networks [2, 5, 95]. Hence, judicious pilot assignment is essential
to reduce the effect of pilot contamination, which is the main focus of this chapter.

6.1.1 Related works

In general, the optimal pilot assignment problem for a cell-free mMIMO system is non-
deterministic polynomial-time (NP)-hard in nature. As a consequence the computational
resources required to obtain the optimal solution scales exponentially with the number of
users. Therefore, almost all the works in the literature focus on providing heuristics-based
algorithms to get an efficient solution. These algorithms can be broadly categorized into
centralized and distributed schemes. In [5], a distributed random pilot allocation and a
centralized greedy pilot allocation schemes are presented for a cell-free mMIMO network.
In [20] and [96], a distributed random access type pilot assignment scheme is proposed,
where a user is not served if its CSI cannot be estimated reliably. A centralized structured
pilot allocation scheme with an iterative application of the K-means clustering algorithm is
presented in [23]. A natural way to address the resource allocation problem is by framing
it as a graph coloring problem. This idea has been explored in [21] and [22]. In [21], a
centralized pilot sequence design scheme is proposed where the users in the neighborhood
of an access point (AP) use orthogonal pilot sequences. The problem is posed as a vertex
coloring problem and solved using the greedy DASTUR algorithm. [22] follows a similar
theme, where authors construct the conflict graph by having an edge between users that
are dominant interferer to each other. The graph coloring problem is solved using a greedy
algorithm. In [97], a dynamic pilot allocation approach is presented where two users can
be assigned the same pilot sequence if the signal to interference and noise ratios (SINRs) of

84
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both the users are above a certain threshold. While the aforementioned works, primarily
focus on reducing the interference due to pilot contamination, authors in [24] and [98], solve
pilot allocation optimization problems to maximize certain utility metric. Due to the NP-
hard nature of the problem, authors in [24] use the Tabu search to solve the pilot allocation
problem with the objective of maximizing sum-user spectral efficiency (SE). Further, in [98],
system throughput maximization, and minimum user throughput maximization problems
are solved using an iterative scheme based on the Hungarian algorithm. Most of these works
rely on the common underlying principle that the same pilot can be assigned to the users
that have sufficient geographical separation. This principle also motivates the main pilot
assignment scheme proposed in this work along with the additional objective that it should
be distributed as well as scalable in nature while providing competitive performance in terms
of user SE. Our contributions are summarized next.

6.1.2 Contributions

RSA-based pilot assignment scheme

First, we propose a random pilot assignment algorithm with a minimum distance constraint
among the co-pilot users to reduce the effect of pilot contamination. The algorithm is inspired
by RSA process, which has been traditionally used across different scientific disciplines such
as condensed matter physics, surface chemistry, and cellular biology, to name a few, to study
the adsorption of large-particles such as colloids, proteins, and bacteria on a surface. Apart
from proposing the algorithm with a potential distributed implementation in the network, we
have used the results of the multilayer RSA scheme presented in Chapter 5 to analyze/predict
the probability of a pilot assignment to a typical user in the network.

Two centralized pilot allocation schemes for benchmarking

To quantify the efficacy of the proposed RSA-based pilot allocation scheme, we also propose
two centralized algorithms. The first algorithm, similar to the RSA scheme, is agnostic
to AP locations and considers only the user locations. This algorithm, named the max-
min distance-based algorithm, partitions the users into sets of co-pilot users to maximize
the minimum Euclidean distance among the co-pilot users. This scheme is optimal from
the perspective of geographical separation between a set of co-pilot users. In the proposed
algorithm, the minimum distance is obtained through the bisection search subject to a set
of feasibility constraints. The second algorithm, which takes into account both AP and
user locations, maximizes the sum-user SE of the network subject to minimum user SINR

constraint. First, leveraging tools from spectral graph theory, the algorithm partitions the
users into a desired number of clusters based on similar path loss with respect to the APs.
Next, using the branch and price (BnP) algorithm, sets of co-pilot users are obtained with
the additional constraint that two users in the same cluster are not assigned the same pilot.
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This approach provides us with a near-optimal solution in terms of sum-SE at the cost of
a significant increase in computational complexity compared to the other two algorithms.
Therefore, it is more suitable to use this algorithm for benchmarking other pilot allocation
schemes than practical implementation.

Insights from numerical results

Through extensive system simulation, we conclude that the RSA-based pilot allocation
scheme provides competitive performance compared to the max-min distance-based pilot
allocation scheme, especially when the ratio of the number of users to the pilots is relatively
high. Further, both the RSA and the max-min distance-based schemes achieve close to near-
optimal performance with increasing AP density. In addition, we compare the performance
of RSA and the max-min scheme to a centralized pilot allocation scheme based on iterative
K-means algorithm available in the literature. While RSA performs as good as the K-means,
max-min distance based scheme marginally outperforms it.

6.2 System Model

6.2.1 Network model

We limit our attention to the downlink (DL) of a cell-free mMIMO system. The locations
of the APs form a Poisson point process (PPP) Φr of density λr. Similarly, the user point
process Ψu is also modeled as an independent PPP of density λu. Each AP is equipped with
N antennas and each user with a single antenna. The APs are connected to a BBU and
collectively serve users in the network. The distance between a user at uk ∈ Ψu and an AP
at rm ∈ Φr is denoted by dmk. In line with the mMIMO literature, where the number of
antennas is assumed to be an order of magnitude more than the number of users, we consider
that the antenna density Nλr � λu. Further, invoking stationarity of this setup, we analyze
the system performance for the typical user uo, which is located at the origin o.

Channel estimation: Let gmk =
√
βmkhmk be the channel gain between the m-th AP

and the k-th user, where βmk captures the large-scale channel gain and hmk ∼ CN (0, IN)
captures the small-scale channel fluctuations. We consider that the large-scale channel gain
βmk is only due to the distance dependent path-loss, i.e. βmk = l(dmk)

−1, where l(·) is a
non-decreasing path-loss function. While the analysis presented in this paper is agnostic to
the choice of l(·), we will need to choose a specific l(·) for the numerical results, which is
presented in Section 6.6.

In order to obtain the channel estimates, each user uses a pilot from a set of P orthogonal
pilot sequences P = [p1,p2, . . . ,pP ]T , where pi denotes the i-th sequence. The length of
each pilot is τp symbol durations, which is less than the coherence interval. Since we assume



Priyabrata Parida Chapter 6 87

that the P sequences are orthogonal to each other, P ≤ τp and pHi pj = τp1(i = j), where
1(·) denotes the indicator function. Due to finite number of pilots, the pilot set needs to be
reused across the network. Let the pilot used by the k-th user be p(k). During the pilot
transmission phase, the received signal matrix Ym ∈ CN×τp at the m-th AP is

Ym = τp
∑

uk∈Ψu

gmkp(k)T +Wm,

where ρp is the normalized transmit signal-to-noise ratio (SNR) of each pilot symbol and Wm

is an additive white Gaussian noise matrix whose elements follow CN (0, 1). At the m-th AP,
the least-square estimate, yml ∈ CN×1, of the channel of the users that use the l-th sequence
is

yml = Ymp
∗
l = τpρp

∑
uk∈Φul

gmk +Wmp
∗
l ,

where Φul is the set of users that use the l-th sequence. Further, the set of users that are
assigned a pilot is defined as Φu = ∪Pk=1Φuk. Assuming uo ∈ Φul, the minimum-mean-
squared-error (MMSE) estimate of the channel of the typical user at the m-th AP is given
as

ĝmo = E[ymlg
H
mo](E[ymly

H
ml])

−1yml =
βmo∑

uk∈Φul

βmk + 1
τpρp

yml = αmoyml. (6.1)

In this case, the error vector g̃mk = gmk − ĝmk is uncorrelated to the estimated vector. Now
the estimate and the error vectors are distributed as follows [6]:

ĝmo ∼ CN (0, γmoIN) , g̃mo ∼ CN (0, (βmo − γmo) IN) ,

where γmo = τpρpβ2
mo

1+
∑

uk∈Φul
τpρpβmk

. From the expression of γmo, it is clear that the quality of
channel estimates depend on the locations of the co-pilot users in Φul.

DL user SINR: Using the channel estimates, each AP precodes the data for all the users
in the network. In this work, we consider conjugate beamforming precoding scheme. Since
the m-th AP cannot distinguish among the channels of the users that use the l-th pilot,
it uses the normalized direction of yml for beamforming, i.e. the precoding vector used to
transmit data to the users that use l-th pilot is given as

wml = yml/
√

E[‖yml‖2] = ĝmo/
√

E[‖ĝmo‖2].

Now the data transmitted by the m-th AP is given as

xm =
√
ρd

P∑
p=1

w∗mp
∑

uk∈Φup

√
ηmkqk,
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where ηmk is the transmission power used by them-th AP for the k-th user and qk ∼ CN (0, 1)
is the transmit symbol of the k-th user. For each AP, we assume the following power
constraint: E[‖xm‖2] ≤ ρd. The symbol received at o (that uses the l-th pilot) is given as

ro =
∑

rm∈Φr

gTmoxm + no =
√
ρd
∑

rm∈Φr

(ĝTmo + g̃Tmo)
ĝ∗mo√
Nγmo

√
ηmoqo

+
√
ρd

P∑
p=1,p 6=l

∑
uk∈Φup

∑
rm∈Φr

gTmo
ĝ∗mp√
Nγmp

√
ηmkqk

+
√
ρd

∑
uk′∈Φ′ul

∑
rm∈Φr

(ĝTmo + g̃Tmo)
ĝ∗mo√
Nγmo

√
ηmk′qk′ + no,

where Φ′ul = Φul \ uo, the first term on the right hand side is the desired term, the second
term corresponds to multi-user interference due to non-copilot users, and the third term is
the source of interference due to pilot contamination.

6.2.2 Metrics for system performance analysis

DL power control and SINR of an arbitrary user

Since our objective is to propose a scheme to reduce pilot contamination, we focus on the
operational regime where pilot contamination dominates rest of the interference terms. In
the following lemma, we present the SINR expression of the typical user under the assumption
that the APs are equipped with N →∞ antennas.

Lemma 6.1. Conditioned on Φr and Φu, the asymptotic SINR of the typical user is given as

SINRo,∞ =

(∑
rm∈Φr

√
ηmoγmo

)2∑
uk∈Φ′ul

(∑
rm∈Φr

√
ηmkγmo

)2 . (6.2)

Proof: The estimated symbol at the typical user can be obtained as q̂o = ro/
√
N.

Now, using the law of large numbers, as N →∞, ĝTmoĝ
∗
mo

N
→ γmo, g̃Tmoĝ

∗
mo

N
→ 0, and gTmoĝ

∗
mp

N
→

0. Hence, the limiting SINR converges to (6.2).

In this work, we consider a distributed power control scheme [23] where the transmission
power used by the the m-th AP for the typical user at o is given as

ηmo =
γmo

P
∑

uk∈Φul
γmk

, (6.3)

such that
∑

uk∈Φul
ηmk = 1/P . We assume that the APs allocate equal power 1/P to serve

each set of co-pilot users. Now, we define the following metrics for the performance analysis:
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i. Pilot assignment probability of the typical user: Since the RSA-based pilot assignment
is stochastic in nature, for a given realization of user locations, a few of the users may not
be assigned a pilot. Hence, pilot assignment probability to the typical user is an important
metric to analyze for this scheme. Let {Io = 1} be the event that the user at o is assigned
a pilot. Then the aforementioned probability is given as

Mo = P[Io = 1] = E[1(Io = 1)], (6.4)

where the expectation is taken over Ψu. In Section 6.3.1, we present our proposed approach
to characterize the above quantity along with the RSA-based pilot assignment scheme. This
quantity can be used to get an estimate of the number of pilots necessary to satisfy target
pilot assignment probability for a given user density. Note that Mo = 1 for the max-min
distance-based and the BnP-based schemes proposed in this work.

ii. Average user spectral efficiency: It is defined as

SEo =E [Io log2(1 + SINRo)] = E
[
log2(1 + SINRo)

∣∣Io = 1
]
P[Io = 1], (6.5)

where the expectation is taken over Φr,Ψu.

iii. Sum-user spectral efficiency: In contrast to the above two quantities, sum-user SE
is defined for a given realization of Φr and Ψu over a finite observation window W ⊂ R2 and
given as

ΣSE =
∑

uj∈Ψu∩W

Ij log2(1 + SINRj), (6.6)

where Ij = 1 for the max-min and BnP-based schemes and Ij ∈ {0, 1} for the RSA-based
scheme.

6.3 RSA-based Pilot Allocation Scheme

Before delving into the proposed RSA-based pilot assignment scheme, we find it pertinent to
mention the complexity associated with pilot assignment problem that serves as a motivation
to propose a heuristic algorithm. The objective of any resource allocation algorithm is to
maximize a cost (reward) function subject to certain constraints due to a limited availability
of resources. In our case, we choose the cost function to be the sum SE. Hence, for a
given realization of the locations of APs and users, our objective is to maximize the sum
SE by judiciously selecting the set of co-pilot users. Inspired by the column generation
approach prevalent in the linear programming literature, the problem can be formulated in
the following way. We consider each potential set of co-pilot users as a column. In order to
have a finite dimension for the set of feasible solutions, it is imperative to consider a finite
observation window with Nu users S = {u1,u2, . . . ,uNu} and Nr APs. Let A denotes the
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set of all the potential co-pilot user sets avoiding the null and singleton sets. Hence, the
cardinality of A, which is also the total number of columns, is 2Nu −Nu− 1. As an example,
consider a set of users Ak = {u1,u2,u3}. The corresponding column for these co-channel
users is given as xk =

[
1 1 1 0 . . . 0

]T ∈ {0, 1}Nu . We define the matrix A, where each
column corresponds to a set in A. Further, the cost of a set Aj (equivalently, the cost of the
j-th column xj) is given as

c(xj) =

{∑
ui∈Aj log2 (1 + Γij) , if Γij ≥ Γmin ∀ui ∈ Aj

−M, if Γij < Γmin for any ui ∈ Aj
(6.7)

where the SINR of the i-th user in the j-th set is Γij =
(
∑

rm∈Φr

√
ηmiγmi)

2∑
uk∈{Aj\ui}(

∑
rm∈Φr

√
ηmkγmi)

2 , Γmin is

the minimum SINR threshold, and M is a large positive number. With this definition the set
of co-pilot users not satisfying the minimum SINR threshold even for a single user is (almost)
never selected. Now, we express the optimization problem as

max
Λ

|A|∑
s=1

c(xs)λs (6.8a)

s.t. AΛ = 1 (6.8b)
‖Λ‖1 = P (6.8c)
Λ ∈ {0, 1}|A|, (6.8d)

where Λ =
[
λ1, λ2, . . . , λ|A|

]T , (6.8b) ensures that each user is assigned exactly one pilot,
(6.8c) ensures that P columns are selected each representing a set of co-pilot users. Above
problem is NP-hard. Further, the feasible solution space of the problem is

(|A|
P

)
. Hence, if

we wish to obtain the optimal solution even for a moderately small system of 24 users with
6 pilots, we need to search over a feasible set of size approximately 3.1× 1040.

Owing to the complexity of the problem, it is natural to consider heuristic solutions,
albeit sub-optimal, that can be implemented efficiently in the network. In the following sub-
section, we present a sub-optimal pilot allocation algorithm that only considers user locations
to select the set of co-pilot users such that the pilot contamination-based interference is miti-
gated thereby implicitly improving the user SE as well as the sum SE. This algorithm, which
is inspired by the RSA process, can be implemented both in a centralized or distributed
manner and is easily scalable as the network size grows.

6.3.1 RSA-based pilot assignment algorithm

Our goal is to select the sets of co-pilot users among all the users in the network such that
a minimum distance Rinh is maintained between two co-pilot users. This can be achieved
by dependent selection of the users from the original user point process Ψu as outlined in
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Algorithm 1. The algorithm assigns a random mark tk, which is uniformly distributed in
[0, 1], to each point uk ∈ Ψu. Let BRinh

(uk), a circle of radius Rinh centered at uk, be defined
as the contention domain of the point at uk. For pilot assignment, the algorithm considers
each user in increasing order of their marks, i.e. the lowest mark is considered first. From
the available set of pilots, a pilot is randomly assigned to a user at uk, where the set of
available pilots are those which have not been assigned to the users in BRinh

(uk). Note that
to implement this algorithm, the BBU requires only the location information of the users,
which does not require any additional signaling overhead as this information is typically
present at a centralized node in the network such as the BBU. At the end of this subsection,
we also discuss a protocol for potential distributed implementation of the algorithm.

Input: User locations Ψu, the set of pilots P, inhibition distance Rinh

Result: Pilot assignment table T
Initialization: T = ∅, a random mark ti ∼ U(0, 1) for each ui ∈ Ψu;
Let Ψ̃u be the set of users in the increasing order of marks;
for User u ∈ Ψ̃u do

Set: P ′ = P;while User u is not assigned a pilot do
if P ′ == ∅ thenNo pilot can be assigned: T = T ∪ ∅;

Break;
else

Select a pilot sequence pk randomly from the set P ′;
end
if No other users in BRinh(u) are using pk then

Assign the pilot: T = T ∪ pk;
Break;

else
Remove pk from list of potential pilots: P ′ = P ′ \ pk;

end
end

end

Algorithm 1: The RSA-based pilot assignment algorithm in for a cell-free mMIMO
system.

For the system designers, it is useful to know the probability that a user will be scheduled
as a function of the density of users and the number of pilots in the system. Following sub-
sections present an approximate theoretical result that answers the aforementioned question
eliminating the need for a system simulation. It is worth-mentioning that the approximate
result is a new contribution to the RSA literature as the exact solution for counterpart of
this problem even in the case of 1D is unknown.
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Figure 6.1: Realizations of co-pilot user locations using Algorithm 1. Parameters: Rinh = 200, λu =
2× 10−6 (left), λu = 10−3 (center, right). Left and center figures represent realizations of co-pilot users for
P = 1. Right figure represents a realization of co-pilot users for P = 2.

Analysis of the pilot assignment probability

Recall that Φu is the set of users that are assigned a pilot (in this case by Algorithm 1), i.e.
Φu = ∪Pp=1Φup. Let to be the mark associated with the typical user. Now, the user at o is
assigned a pilot if |Φu ∩ BRinh

(o)| ≤ P − 1. This is ensured by the following two events:

• E1: there are at most P − 1 points in BRinh
(o) ∩Ψu that have marks less than to,

• E2: there are more than P − 1 points in BRinh
(o) ∩ Ψu that have marks less than to.

However, some of these points are not assigned a pilot as their contention domains
have more than P points with marks smaller than their respective marks.

While obtaining the probability of E1 is straightforward, characterizing E2 is highly non-
trivial even for P = 1. Note that for P = 1, the above formulation has been used to model
the CSMA-CA networks. However, due to the intractability of E2, Matérn hardcore process
of type-II (MHPP-II) has been used for approximate characterization for Φu [43]. Hence, one
may be inclined to extend the MHPP-II process for P ≥ 2. However, one of the limitations
of the MHPP-II process is that it underestimates the number of points in Φu [99]. Hence,
the extension of the MHPP-II model for P ≥ 2 will not result in an accurate estimation. On
the other hand, for P = 1, Φu is exactly modeled by the simple sequential inhibition (SSI)
process [99] or the RSA process [100]. Using this fact, in the sequel, we present an efficient
heuristic to estimate the pilot assignment probability.

Consider a finite observation window BRs(o) ⊂ R2, where Rs � Rinh. Let Nu =
|Ψu ∩ BRs(o)| be the total number of users and Ns = |Φu ∩ BRs(o)| be the number of users
that are assigned a pilot. Note that for a given Nu, Ns is a random variable as it depends
on the realization of Ψu as well as random marks associated with these points. Now, for a
given Nu > P , E[Ns|Nu] is the average number of users that are assigned a pilot. Hence,
the probability that the typical user out of the Nu users is assigned a pilot is E[Ns|Nu]/Nu.
On the other hand, for Nu ≤ P , the typical user is assigned a pilot with probability 1.
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Combining these two events, we write the pilot assignment probability as

P[Io = 1] =P [Nu ≤ P ] + ENu [E[Ns|Nu]N
−1
u

∣∣Nu > P ]P [Nu > P ]

≈P [Nu ≤ P ] + E
[
Ns|Nu = πR2

sλu
]
E[N−1

u

∣∣Nu > P ]P [Nu > P ] , (6.9)

where the second step is an approximation as instead of ENu [E[Ns|Nu]|Nu > P ], we deter-
mine E[Ns] by considering Nu = πR2

sλu, which is its expected value. Since Nu is Poisson
distributed with mean λuπR2

s,

E
[
N−1
u |Nu > P

]
=
λuπR

2
s −

∑P
n=0 Poi(λuπR2

s, n)

1−
∑P

n=0 Poi(λuπR2
s, n)

, (6.10)

where Poi(λuπR2
s, n) = e−λuπR

2
s

(λuπR2
s)n

n!
.

Next, we discuss our approach to analytically estimate E [Ns|Nu = πR2
sλu] leveraging

the rich theory of the RSA process. For convenience, we use the notation E [Ns] to represent
the above expectation. We first present the analysis for the special case of P = 1 followed
by its extension to the general case of P ≥ 2.

Pilot assignment probability for P = 1

Traditionally, the RSA process has been used across different disciplines, such as condensed
matter physics, surface chemistry, and cellular biology, to study the adsorption of different
substances, such as colloids, proteins, and bacteria, on a surface [100]. Next, we present a
brief overview of the RSA process before analyzing pilot assignment probability.

Random sequential adsorption process: An RSA process is defined as a stochastic space-
time process, where n-dimensional hard spheres sequentially arrive at random locations in
Rn such that any arriving sphere cannot overlap with already existing sphere. More formally,
for 2D case, let Ψ be a homogeneous space-time point process on R2×R+. The circles with
radii Rinh/2 are arriving at a rate of λΨ per unit area. Let Ψ(t) be the point process on R2

when Ψ is observed at an arbitrary time t. Observe that the density of Ψ(t) is λΨt. At time
t, an arriving point at x ∈ R2 is retained if there are no other points within BRinh

(x). Let
ϕ(t|Ψ) be a realization of the set of the retained points at time t. Clearly, ϕ(t1|Ψ) ⊆ ϕ(t2|Ψ)
for t1 ≤ t2. Moreover, there exists a time c ∈ R+ such that ϕ(ti|Ψ) = ϕ(tj|Ψ) for ti, tj > c,
i.e. no more points can be added to the system. This is known as the jamming limit. Observe
that the random marks assigned by Algorithm 1 can be thought of as the arrival times of
the points in Ψu. In this interpretation, the points that arrive early (have smaller marks)
are more likely to get an assignment.

Let Φ(t) be the point process of the retained points at time t and ρ(t) be the corre-
sponding density. In order to obtain the density of retained point process for a given density
of original point process, we need to observe the system at a specific time. For example, if
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we want to obtain the density of retained points for an original point density of 2λΨ, then
we need to observe the system at t = 2. Fig. 6.1 illustrates the realizations of co-pilot users
for different λu and P . In the left figure, the system does not reach the jamming limit due
to lower density of the original user point process Ψu. On the other hand, the center figure
(almost) reaches the jamming limit and there cannot be more co-pilot users in the system.
Notice the regular, almost grid-type, realization of points. The right figure illustrates the
jamming state for P = 2. In the following lemma, we present the density of Φ(t).

Lemma 6.2. The density ρ(t) of the point process Φ(t) is obtained by solving the following
differential equation [93] with the initial condition ρ(0) = 0:∫

dρ(t)

φ(κρ(t))
=
λΨ

κ
t+ C, (6.11)

where κ = πR2
inh

4
is the area covered by a circle, κρ(t) is the fraction of the area that is

covered by the retained circles at time t, φ(κρ(t)) is the probability that a circle arriving at
an arbitrary location in R2 is retained at time t, and C is the integration constant. The
retention probability is given as [93, Eq. 19] φ(κρ(t)) =

1− 4πR2
inhρ(t) +

ρ(t)2

2

2Rinh∫
Rinh

4πrA2(r)dr +
ρ(t)3

3

2Rinh∫
Rinh

2πrA2
2(r)dr − Seq

3 +O(ρ(t)4), (6.12)

where Seq
3 = ρ(t)3

8
π
(√

3π − 14
3

)
R6

inh, A2(r) is the area of intersection of two circles of radius
Rinh whose centers are separated by distance r.

Since the function (6.12) is difficult to work with, a fitting function is analytically
presented in [93] as φFIT(ρ(t)) =

(1 + b1x(t) + b2x(t)2 + b3x(t)3)(1− x(t)3), (6.13)

where x(t) = ρ(t)/ρ(∞) and ρ(∞)κ = 0.5474 is the fraction of the area that is covered at the
jamming limit as t → ∞. The coefficients b1, b2 and b3 are obtained by matching the order
of ρ(t) in equations (6.12) and (6.13). Now the expression for ρ(t) is obtained by solving the
differential equation (6.11). While the closed form solution of the equation is difficult, the
problem can be efficiently solved using standard numerical softwares. Now, with the help of
Lemma 6.2, we present pilot assignment probability to a user for P = 1.

Lemma 6.3. For a system with P = 1, the probability that the typical user is assigned a
pilot is

P[Io = 1] ≈ (1 + πR2
sλu)e

−πR2
sλu + (1− (1 + πR2

sλu)e
−πR2

sλu)(ρ(1)πR2
s)E

[
N−1
u |Nu > 1

]
,

where ρ(1) is determined using Lemma 6.2 and E [N−1
u |Nu > 1] using (6.10).
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Proof: Since the density of user process Ψu is λu users per unit area, as per the
RSA process definition, we can construct an equivalent space-time process where the arrivals
occur at λu users per unit area per unit time. Now, to obtain the density of Φu, we observe
this space-time system at time t = 1. Hence, the density of Φu is ρ(1). The final expression
is obtained by replacing E[Ns] = πR2

sρ(1) in (6.9).

Pilot assignment probability for P ≥ 2

For the general case of P ≥ 2, consider that Φu1,Φu2, . . . ,ΦuP contain the locations of
the users that are assigned the pilots p1,p2, . . . ,pP , respectively, by Algorithm 1. Since
Algorithm 1 has no preference regarding the pilots, the densities of Φu1,Φu2, . . . ,ΦuP are
the same. Let λΦuo be this density. In order to determine λΦuo , modifications in Lemma 6.2
are necessary. To be specific, for (6.12), the knowledge of virial coefficients for a mixture of
non-interacting hard spheres, and subsequently derivation of Seq

3 is necessary [93]. Since the
above steps appear extremely difficult for this case, we provide an approximate yet accurate
way to estimate the pilot assignment probability for P ≥ 2.

Input: User locations Ψu, the set of pilots P, inhibition distance Rinh;
Result: Pilot assignment table T ;
Initialization: Ψ′u = Ψu, T = ∅;
for Each pilot pk ∈ P do

for Each user u ∈ Ψ′u do
if No other users in BRinh(u) are using pk then

Assign the pilot: T = T ∪ pk;
Remove u from list of users: Ψ′u = Ψ′u \ u;

end
end

end

Algorithm 2: The regenerative algorithm for pilot assignment.

First, we present the regenerative pilot assignment algorithm (Algorithm 2) that is
essential for our approximate analysis. Different from Algorithm 1, in Algorithm 2, the
pilots are assigned to users sequentially, i.e. for the typical user the second pilot sequence is
considered if the first pilot has already been assigned to a user in its contention domain, the
third pilot sequence is considered if both the first and the second pilots have been used in its
contention domain, and so on. In order to proceed with our analysis, we make the following
remark:

Remark 6.4. The total number of pilot reuses required in BRs(o) to obtain a target pilot
assignment probability is the same for both Algorithms 1 and 2. In other words, the density
of users that are assigned a pilot is the same for both the algorithms.
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Let Φ̃u1, Φ̃u2, . . . , Φ̃uP contain the locations of the users that are assigned pilots p1,p2,
. . . ,pP , respectively, by Algorithm 2. Let λΦ̃u1

, λΦ̃u2
, . . . , λΦ̃uP

be the densities of Φ̃u1, Φ̃u2, . . . ,

Φ̃uP , respectively. We obtain these densities by sequentially using Lemma 6.2. First, the
density λΦ̃u1

of the users that are assigned the pilot p1 is directly obtained from Lemma 6.2
where the initial density of the process is λu. Now, to obtain the density λΦ̃u2

of the users
that are assigned the pilot p2, we approximate the initial density of users as λu−λΦ̃u1

. Also
note that the points in Ψu \ Φ̃u1 do not form a PPP. However, for simplicity we approximate
Ψu \ Φ̃u1 as a PPP. Similarly, to obtain λΦ̃u3

, we approximate Ψu \ {Φ̃u1 ∪ Φ̃u2} as a PPP
of density λu − λΦ̃u1

− λΦ̃u2
and use Lemma 2. The same approximation is made to get the

rest of the densities. In the next section, we will demonstrate that these approximations do
not compromise the accuracy of our results. Based on Remark 6.4, with the knowledge of
λΦ̃u1

, λΦ̃u2
, . . . , λΦ̃uP

, we can obtain

λΦuo =
P∑
l=1

λΦ̃ul
/P. (6.14)

In the next lemma, we present the pilot assignment probability for the general case of P ≥ 1.

Lemma 6.5. For a system with P ≥ 1, the pilot assignment probability for the typical user
is

P[Io = 1] ≈ P[Nu ≤ P ] + P[Nu > P ](PλΦuoπR
2
s)E[N−1

u |Nu > P ], (6.15)

where λΦuo is determined from (6.14) and Lemma 6.2, E[N−1
u |Nu > P ] is determined using

(6.10), and Nu is Poisson distributed with mean λuπR2
s.

Proof: The proof follows on the similar lines as that of Lemma 6.3.

6.3.2 Distributed implementation of the RSA-based pilot alloca-
tion scheme

The RSA based pilot allocation scheme can also be implemented in a distributed manner.
Consider the moment when a user uo enters the network. During the initial access phase, the
user senses the environment to get an estimate of active pilot transmission in the vicinity. Let
ro ∈ C1×τIA be the received signal obtained through sensing. Note that τIA should span over
multiple coherence time intervals τc to average out the effect of small scale fading. Assuming
synchronization has been established between the network and the user, the received signal
strength on k-th pilot can be estimated as

Pk =
1

τIA/τc

τIA/τc∑
m=1

ro[(m− 1)τc + 1 : (m− 1)τc + τp]
Hpk, (6.16)
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where τp is the duration of the pilot sequence. Once the received signal powers on all the
pilots are calculated, they are compared with a threshold power Pinh, which is a function of
Rinh. A pilot is randomly selected from the set of candidate pilots {pk : Pk ≤ Pinh}. If this
set is empty, then the user is not assigned a pilot. Algorithm 3 presents the above-mentioned
procedure.

Input: Power threshold Pinh, Received signal ro;
Result: Pilot for user uo;
Initialization: Candidate set of pilots Pc = ∅ ;
for Each pilot pk ∈ P do

Obtain Pk using (6.16) ;
if Pk ≤ Pinh then
Pc = Pc ∪ pk ;

end
end
if Pc 6= ∅ then

Select a pilot randomly from Pc.
end

Algorithm 3: The algorithm for an arriving user to select a pilot during initial access
phase.

6.4 Max-min Distance-based Pilot Allocation Scheme

While the proposed RSA-based scheme is a computationally efficient scheme with possible
distributed implementation, a natural question is how good is the quality of the solution.
In this section, we propose an algorithm that has the objective of maximizing the minimum
distance between the set of co-pilot users similar to the RSA-based scheme. However, in
contrast to the RSA scheme that can be implemented in a distributed manner, this algorithm
can only be implemented in a centralized way and does not have the scalability property of
the RSA-based scheme.

To have a meaningful problem formulation, we restrict our attention to a finite spatial
observation window W ⊂ R2. Let the set of users in this observation window be given as
S = {u1,u2, . . . ,uNu}. Our objective is to partition S into P sets S1,S2, . . . ,SP such that
the minimum distance between any two users in a partition is maximized. For a user un,
the binary variable ynk = 1 if the user belongs to Sk and 0 otherwise. We define the metric
dmin(Sk) := min{‖ui − uj‖ : ui 6= uj, yik = yjk = 1} as the minimum distance between two
elements in Sk. The problem of maximizing the minimum distance between users belonging
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to the same set can be written as

max
{ynk}

min
k=1,...,P

dmin(Sk) (6.17a)

s.t.
P∑
k=1

ynk = 1, ∀n = 1, 2, . . . , Nu, (6.17b)

Nu∑
n=1

ynk > 1, ∀k = 1, 2, . . . , P, (6.17c)

ynk ∈ {0, 1}, ∀n,∀k, (6.17d)

where (6.17b) ensures that each point belongs to exactly one partition, (6.17c) ensures
that each partition has more than two points, (6.17d) imposes the integrality constraint.
Note that (6.17c) can be modified to ensure more balanced partitioning. For example, if we
need each partition to have more than x ≤ Nu/P users then we can set the constraint as∑N

n=1 ynk > x, ∀k. This problem can be reformulated as

max
t,ynk

t (6.18a)

s.t. ‖ui − uj‖ > tyikyjk ui ∈ S,uj ∈ S, i 6= j, k = 1, 2, . . . P, (6.18b)
P∑
k=1

ynk = 1, ∀n = 1, 2, . . . , Nu, (6.18c)

Nu∑
n=1

ynk > 1, ∀k = 1, 2, . . . , P, (6.18d)

ynk ∈ {0, 1}, ∀n,∀k, (6.18e)

where (6.18b) ensures that two points belonging to the same partition are separated by
distance t and rest of the constraints are the same as the previous formulation. The afore-
mentioned problem can be solved in two steps. In the first step, a bisection search is used
to improve the objective function, and in the second step for a given t, a feasibility problem
is solved. The optimization routine to solve the problem is presented in Algorithm 4.

Both the algorithms mentioned so far do not take into account the distances among the
users and the APs. As a consequence, two users that are separated by a reasonable distance,
but have a common set of dominant APs may be assigned the same pilot. In such a scenario,
both the users will experience performance degradation. This scenario is more likely to occur
when the density of APs is low. In order to overcome this performance degradation, in the
following section we propose a centralized AP location aware pilot allocation algorithm.
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Input: The values of tmin and tmax that defines the solution space for the bisection
search, tolerance parameter ε;

Result: Max-min separation distance;
Set t = tmin+tmax

2
. Solve the following feasibility problem: ;

K∑
k=1

ynk = 1 ∀n = 1, 2, . . . , N (6.19a)

N∑
n=1

ynk > 1 ∀k = 1, 2, . . . , P (6.19b)

yik + yjk ≤ 1 ∀‖xi − xj‖ < t, (6.19c)
ynk ∈ {0, 1} ∀n,∀k. (6.19d)

while |tmax − tmin| < ε do
if (6.19) is feasible then

Set tmin = t;
else

Set tmax = t ;
end

end

Algorithm 4: Solving the max-min distance partitioning problem
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6.5 AP Location Aware Pilot Allocation Scheme

In this section, we present a heuristic algorithm to solve the original pilot allocation problem
(6.8) presented in Sec. 6.3. Despite a few useful constraints that we introduce to the problem
to limit the size of the feasible solution space, the complexity of the problem still remains
high. Hence, the practical utility of the algorithm is somewhat questionable in a large
network (hundreds of users), but it provides an excellent opportunity for benchmarking any
pilot allocation algorithms for a smaller network with tens of users. Further, we use this
scheme to benchmark the RSA-based and max-min distance-based algorithms proposed in
the previous sections.

In order to reduce the space of good quality feasible solutions, we first use a clustering
algorithm to group the users that have a similar path-loss with respect to the set of APs. Once
the clusters of users are obtained, we use BnP algorithm to solve the sum SE maximization
problem with the additional constraint that users in the same cluster cannot be assigned the
same pilot. In the following two subsections, we discuss the clustering algorithm followed by
a brief overview of the BnP algorithm with application to the problem at hand.

6.5.1 AP location-aware user clustering based on spectral graph
theory

We use a spectral graph theory-based algorithm to cluster users with similar propagation
characteristics. Before proceeding further, we present a few graph theoretic notations and
definitions that are required for a rigorous exposition.

Graph definitions

Consider the weighted undirected graph G = (V , E ,W), where V = {v1, v2, . . . , vn} is known
as the vertex set, E = {eij}i,j=1,...,n is the edge set that contains the edges connecting these
vertices, and W = {wij}i,j=1,...,n is a set of non-negative weights assigned to each edge. If
two vertices i, j are connected then eij = 1 and wij > 0. Otherwise, eij = wij = 0. The
adjacency matrix of the graph G is denoted by A ∈ {0, 1}n×n and defined as A(i, j) = eij.
Further, the weighted adjacency matrix is given as W ∈ Rn×n and defined as W (i, j) = wij.
The degree matrix of a weighted graph G, denoted by D ∈ Rn×n, is a diagonal matrix whose
i-th diagonal element is given as D(i, i) =

∑n
j=1 wij. The Laplacian matrix of the graph G

is defined as L = D −W . The K-cut of the graph G is defined as

cut(V1,V2, . . . ,VK) =
1

2

K∑
i=1

∑
vl∈Vi,vm∈VCi

wlm,
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where Vi is the i-th partition of V . Further, ∪Ki=1Vi = V and Vi ∩ Vj = ∅ for i 6= j. The
volume of a partition Vi is defined as

Vol(Vi) =
∑
vj∈Vi

D(j, j).

The graph G is bipartite, if the vertex set can be partitioned into two sets X ,Y ⊂ V such
that the edges in E have one end point in X and another end point in Y . Further, the graph
G is a connected graph, if there is at least one path between any two vertices. Next, we
formulate the problem of clustering users with similar propagation characteristic, namely
the path-loss.

Graph theoretic formulation of the clustering problem

We consider a weighted bipartite graph where the vertices are the sets of users Ψ̃u = Ψu∩W
and APs Φ̃r = Φr∩W over the finite spatial observation windowW . An edge exists between
each AP and each user, but no edge exists among the APs or the users. The weight of an
edge is the path-loss between a user and an AP. In terms of the notations introduced earlier,
V = Ψ̃u∪Φ̃r, E = {emk = 1 : uk ∈ Ψ̃u, rm ∈ Φ̃u}, andW = {wmk = βmk : uk ∈ Ψ̃u, rm ∈ Φ̃r}.
As mentioned earlier, |Ψ̃u| = Nu and |Φ̃| = Nr. The degree matrix is given as

D =

[
Du 0Nu×Nr

0TNu×Nr Dr

]
∈ R(Nu+Nr)×(Nu+Nr),

where Du ∈ RNu×Nu is the degree matrix for the users and Dr ∈ RNr×Nr is the degree matrix
for the APs. Further, the weighted adjacency matrix for the considered bipartite graph is

W =

[
0Nu×Nu WUR

W T
UR 0Nr×Nr

]
∈ R(Nu+Nr)×(Nu+Nr),

where the rows of WUR ∈ RNu×Nr represent the weights associated with a user with respect
to all the APs. The problem of user clustering is based on the idea of partitioning the graph
into desired number of groups such that edges across the groups have the lowest weights.
In the current case, the output of the partitioning algorithm should be the clusters of users
along with corresponding set of dominant APs such that the sum of edge weights between a
set of clustered users and corresponding set of non-dominant APs should be minimum. The
problem can be formally stated as a min-cut problem presented below:

minimize
V1,V2,...,VK

cut(V1,V2, . . . ,VK) = minimize
V1,V2,...,VK

K∑
k=1

1

2

∑
vl∈Vk,vm∈VCk

wlm

subject to
K⋃
k=1

Vk = V ,
K⋂
k=1

Vk = ∅, (6.20)
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where Vk = Ψ̃k ∪ Φ̃k contains the nodes (both users and APs) corresponding to the k-th
cluster. Different algorithms exist to solve the above min-cut problem. However, one major
drawback of these algorithms is that they partition the vertices into unequal groups. To
circumvent this problem, normalized ratio cut (Ncut) is considered as the objective instead
of the cut presented in (6.20) [101]. Hence, the modified optimization problem can be written
as

minimize
V1,V2,...,VK

Ncut(V1,V2, . . . ,VK) = minimize
V1,V2,...,VK

K∑
k=1

1

2

∑
vl∈Vk,vm∈VCk

wlm

Vol(Vk)
,

subject to
K⋃
k=1

Vk = V ,
K⋂
k=1

Vk = ∅. (6.21)

The aforementioned problem is NP-hard in nature. However, an efficient approximate solu-
tion can be obtained by relaxing the above problem that is presented next.

Spectral graph theory to solve the Ncut problem

The general idea of the algorithm is composed of two steps. In the first step, user locations
are transformed into a space that captures the propagation characteristics between the set
of users and the set of APs. In the second step, user clustering is performed by K-means
algorithm to the transformed user and AP locations.

For the i-th cluster Vi, let us define the vector fi ∈ RNt×1 whose j-th element is given
as

fij =


1√

Vol(Vi)
, if vj ∈ Vi

0, if vj ∈ VCi ,

where Nt = Nu + Nr. Note that based on the definition of the degree matrix, fTi Dfi = 1.
Further, in case of the Laplacian matrix of the graph, fTi Lfi = cut(Vi,VCi )/Vol(Vi). Verifying
these statements is straightforward and we refer the reader to [101] (and the references
therein) for further insights on the graph Laplacian.

Let the matrix F = [f1, f2, . . . , fK ]. Now, the optimization problem in (6.21), can be
written as

minimize
F

Tr
(
F TLF

)
, subject to F TDF = IK . (6.22)

The optimal solution for the columns of F should only take discrete binary values. However,
due to the NP-hard nature of the problem, a relaxed version of the above problem is solved,
which is given as

minimize
F∈RNt×K

Tr
(
F TLF

)
, subject to F TDF = IK . (6.23)
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Substituting Z = D1/2F , we get

minimize
Z∈RNt×K

Tr
(
ZTD−1/2LD−1/2Z

)
, subject to ZTZ = IK . (6.24)

Note that the above problem is convex and can be solved by reducing it to an unconstrained
optimization problem using Lagrange multiplier [102]. In the following lemma, the solution
to the (6.24) is presented.

Lemma 6.6. The solution to (6.24) consists of K eigenvectors corresponding to the K
smallest non-zero eigenvalues of D−1/2LD−1/2.

Proof: The Lagrangian of (6.24) is given as [102]

L(Z,Σ) = Tr
(
ZTD−1/2LD−1/2Z

)
+ Tr

(
ΣT (ZTZ − IK)

)
.

Now, taking the derivative of L with respect to Z and equating it to zero we get

∂L(Z,Σ)

∂Z
= 2D−1/2LD−1/2Z − 2ZΣ = 0 =⇒ D−1/2LD−1/2Z = ΣZ. (6.25)

Above problem is the eigenvalue problem of D−1/2LD−1/2. Let Q contains the eigenvectors
of D−1/2LD−1/2 and Σ is a diagonal matrix consisting of the corresponding eigenvalues. For
our solution, Z contains the K columns of Q corresponding to the smallest K eigenvalues.

Let Z̃n ∈ RNt×K be the row normalized version of Z. The transformed locations of the
APs and users are the rows of Z̃n [103, 104]. We perform K-means clustering algorithm on
the rows of Z̃n to group the users and their dominant set of APs. Once the cluster of users
are obtained, we invoke the additional constraint of not assigning the same pilot to two users
in the same cluster. With this additional constraint, we solve the problem (6.8) using BnP
algorithm that is presented next.

6.5.2 Branch and price (BnP) algorithm

BnP is an efficient method to solve large integer programming problems and has been suc-
cessfully applied to many discrete optimization problems, such as generalized assignment
problem [105], graph coloring [106], and also to communication network problems of link
scheduling [107], [108]. The core idea of BnP algorithm is to traverse through a branch and
bound (BnB) tree. At each node of the tree, a smaller version of the original problem (by
optimizing over a reduced feasible space) and a pricing problem are iteratively solved. The
objective of the pricing problem is to add good quality feasible columns to the feasible space
of the smaller problem. The process is repeated until no good quality columns are found.
As a consequence of this iterative approach, a large number of (useless) columns are never
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considered in the entire process saving significant amount of computational resources. De-
pending on the nature of the problem, some branching constraint is used to traverse through
the tree. Similar to any BnB-based algorithm, the BnP algorithm terminates once there is
no improvement in the objective value in the remaining nodes of the tree compared to the
incumbent solution. An illustration of the BnP algorithm and flow of the column generation
process (using the pricing problem) is presented in Fig. 6.2.

Obtain the RMP 
form MP

Positive reduced 
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Current RLMP 
solution is optimal

Yes
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Figure 6.2: The branch and bound tree (left). The column generation algorithm flow chart (right).

Modified cost function and reduced linear master problem

Using the clustering algorithm presented in the previous section, we get K sets of clustered
user partitions given by {V1,V2, . . . ,VK}. To ensure that users in the same cluster are not
assigned the same pilot, we modify the cost function (6.7) as

c(xj) =


∑

ui∈Aj log2 (1 + Γij) , if Γij ≥ Γmin ∀ui ∈ Aj
−M, if Γij < Γmin for any ui ∈ Aj
−M, if |Vk ∩ Aj| > 1 for any k = 1, 2, . . . K,

(6.26)

where the last row ensures that the columns that have users from the same cluster are
(almost) never considered as good columns in the pricing problem. Based on the above
definition of the cost function, to make sure that the original problem remains feasible,
number of users in a cluster should be less than the number of pilots. Hence, we choose
K = max{P,Nu/P}. We call (6.8) with the modified cost function definition as the master
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problem (MP). Further, we refer to the problem with relaxed integer constraint (6.8d) of the
MP as linear master problem (LMP), which is expressed as

max
Λ

|A|∑
s=1

c(xs)λs (6.27a)

s.t. AΛ = 1 (6.27b)
‖Λ‖1 = P (6.27c)
Λ ∈ [0, 1]|A|. (6.27d)

As mentioned earlier, at each node of the BnB tree, we solve the problem with a subset
of all potential columns in A, and gradually keep adding good columns determined by the
pricing algorithm. We define the set H ⊂ A and the corresponding matrix as H, which
contains a few of the columns of A. We refer to this problem as the reduced linear master
problem (RLMP), which is given as

max
Λ

|H|∑
s=1

c(xs)λs (6.28a)

s.t. HΛ = 1 (6.28b)
‖Λ‖1 = P (6.28c)
Λ ∈ [0, 1]|H|. (6.28d)

Let Π = [π1, π2, . . . , πNu ] be the set of dual variables that correspond to the constraint
(6.28c) and β be the dual variable for the constraint (6.28d). Note that the optimal set of
dual variable for LMP is also the optimal set of dual variables for RLMP.

Pricing problem

At each node of the BnB tree, the RLMP is solved to optimality using any linear program-
ming method, such as the simplex, and the corresponding dual variables are used to obtain
new columns that can improve the objective of RLMP by solving a pricing problem. The
idea behind the pricing problem can be better understood from the Lagrange function of
LMP, which is given as

L(Π, β,Λ) =

|A|∑
s=1

c(xs)λs − ΠT (AΛ− 1)− β(‖Λ‖1 − P ). (6.29)

Note that if a given set of solutions Λ∗ is optimal for the LMP, then the first derivative of L
with respect to each variable is zero. On the other hand, for a given set of dual variables, if
we can improve the value of L by increasing the value of λj, then it must be the case that

∂L(Π, β,Λ)

∂λj
= c(xj)− ΠTxj − β > 0. (6.30)
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The quantity c(xj)−ΠTxj − β is known as the positive reduced cost of the column xj. This
provides us a direct way to add new columns to an RLMP that can improve its objective
function value. To be specific, for a given set of dual variables (Π, β) corresponding to a
RLMP, the pricing problem is given as

arg max
x∈A

c(x)− ΠTx− β, (6.31)

and the optimal column is added to the RLMP, thus obtaining an augmented matrix H̃.
The RLMP is solved again using H̃ and the new set of dual variables are used in the pricing
problem to get better columns. The procedure is repeated until there is no column in A
with positive reduced cost, i.e. c(x) − ΠTx − β ≤ 0 for all the columns in A \ H̃. The
flow of the column generation process is given in Fig. 6.2 (right). Note that even with the
linear relaxation (6.31) is a non-convex non-linear problem. Hence, solving it to optimality
in polynomial time is not possible. However, meta-heuristic algorithms such as the genetic
algorithm, or tabu search, can be used to get efficient solutions. In this work, we focus on
solving (6.31) with exhaustive enumeration over the set of feasible columns. This process
is significantly more efficient compared to solving the original problem through exhaustive
enumeration.

Note that the optimal solution of the RLMP, i.e. Λ∗, is not guaranteed to be an integral
solution. The following branching rule in the BnB tree ensures that the optimal solution to
the RLMP is an integer vector, thereby making Λ∗ an optimal solution to the original RMP
problem that has the integrality constraint.

Branching rule

The objective of the branching rule is to progressively introduce branching constraints such
that eventually the solution to the RLMP becomes integral [105]. The branching rule is
derived from a relatively well-known result in the linear programming literature that is
stated in the following lemma.
Lemma 6.7. Consider the linear maximization problem {max cTx : Ax = 1,x > 0}. If A
is a totally balanced matrix, then the optimal solution x∗ is integer valued.

For the proof along with detailed discussion of the result stated in the lemma, please refer
to [109]. After solving the RLMP and pricing problem to (near) optimality, the objective
is to introduce the branching constraints such that the augmented matrix of the RLMP
H̃ eventually becomes a totally balanced matrix as we traverse through the BnB tree. As
mentioned in [105], this can be achieved by the constraints h̃pk = h̃rk on one branch and
h̃pk = h̃rk = 0 or h̃pk 6= h̃rk on the other branch, where h̃pk is the element corresponding to
the p-th row and k-th column of H̃. The branching constraint implicitly ensures that on one
branch two users belong to the same column, while on the other branch the users belong to
two different columns. These branching constraints are introduced in the RLMP and also
used in the column generation process.
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Node pruning and termination criterion for the BnB tree

The backbone of the BnP algorithm is the BnB algorithm. To harvest full benefits of the
BnB tree, it is essential to introduce efficient node pruning criteria so that unnecessary nodes
are never visited. Let z∗MP, z∗LMP are the optimal values of the MP and LMP, respectively.
Further, z∗LMP ≤ zRLMP + Pc, where c is the maximum positive reduced cost of columns
for a given RLMP. When the RLMP along with pricing problem is solved to optimality,
z∗LMP = z∗RLMP, since there exists no column that can improve the value of z∗RLMP. Let zinc
be the incumbent solution, which is always integral in nature. If at a node of BnB tree,
we have z∗RLMP < zinc, subsequent nodes in the branch will not provide any better solution.
Hence, the pruning occurs at this node of the branch, i.e., subsequent nodes on the same
branch are not explored and the nodes on the other branches are explored. Once no nodes
with z∗RLMP > zinc are found, zinc is the optimal solution.

6.6 Results

In this section, through Monte Carlo simulations, we validate the theoretical analysis on
pilot assignment probability and assess the performance of the RSA-inspired pilot allocation
compared to other schemes presented in this work. The simulations environment for each
scenario is presented in the specific subsection.

6.6.1 Performance of the RSA-based pilot allocation scheme

In this case, for the simulations, we consider a network of radius 1500 m. In order to avoid
edge effects, points within 600 m are considered. The average user spectral efficiency is
reported for the typical user located at the center. We use the following non-line-of-sight
path-loss function [110]:

l(d) =161.04− 7.1 log10(W ) + 7.5 log10(h)− [24.37− 3.7(h/hAP)2] log10(hAP)

+ [43.42− 3.1 log10(hAP)][log10(d)− 3] + 20 log10(fc)− (3.2[log10(11.75hAT)2]− 4.97),

where W = 20, hAP = 40, hAT = 1.5, h = 5, fc = 0.45 GHz.

In Fig. 6.3 (left), the co-pilot user density as a function of number of pilots is presented.
As expected, the co-pilot user density decreases with increasing number of pilots. In Fig. 6.3
(center), we present the pilot assignment probability as a function of the number of pilots.
This result is useful in determining the number of pilots that is required to achieve a certain
assignment probability. Finally, in Fig. 6.3 (right), we present the average user SE as a
function of Rinh. To generate this result, we set the uplink pilot SNR ρp = 80 dB, length
of pilot sequence τp = P = 16. We observe that with increasing λu, the optimal Rinh that
maximizes user SE becomes smaller. Further, there exists a range of Rinh that provides
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higher user SE compared to the random pilot assignment scheme [5]. However, this range
shrinks as λu increases.
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Figure 6.3: The co-pilot user density as a function of P (top), Probability of pilot assignment as a function
P (bottom-left), and Average user SE as a function of Rinh (bottom-right). In the first two figure, markers
and solid lines represent simulations and theoretical results, respectively.

6.6.2 Performance comparison of RSA-based scheme to the max-
min distance-based scheme

In this subsection, we compare the performance of the RSA scheme to the max-min distance-
based scheme. Further, we also provide the relative performance between RSA and the
following two existing schemes in the literature: iterative K-means-based algorithm [97]
and the random pilot allocation algorithm [5]. In the case of the RSA-based scheme, for a
given λr and λu, the Rinh that maximizes the average user SE is selected. The simulation
environment remains the same as that of the previous subsection. In Fig. 6.4, we present
the ratio of the average user SEs of different schemes with respect to the average user SE of
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the RSA scheme. From the results, we conclude that the system performance is primarily
affected by (i) the average number of users per pilot and (ii) AP density. When the average
number of users per pilot is relatively low, the RSA scheme marginally outperforms the max-
min as well as the iterative K-means algorithms, especially at the low AP density. On the
other hand, with a relatively high average number of users per pilot, the max-min scheme
performs marginally better compared to both the RSA and iterative K-means algorithm. In
the case of the RSA, this slightly inferior performance can be attributed to the reduced pilot
assignment probability in a dense environment. All the three schemes provide significant
average user SE improvement over the random pilot allocation scheme.

Figure 6.4: The ratio of average user SEs of different schemes with respect to the RSA-based scheme for
different system configurations: (top) λu = 10−5, P = 16; (bottom-left) λu = 10−4, P = 16; (bottom-right)
λu = 10−5, P = 8.
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6.6.3 Performance comparison of the RSA-based scheme to the
BnP scheme

Since the AP location-aware heuristic scheme based on BnP algorithm exhibits significant
computational complexity for a large system (hundreds of users), we compare the perfor-
mance for a relatively small system with 48 users uniformly distributed over a circular area
of radius 400 m. Further, these users are simultaneously served by Nr APs distributed uni-
formly over the same area. The path-loss function remains the same as given in the previous
subsection. In Fig. 6.5, we present the cumulative distribution function (CDF) of the ratio of
sum user SEs for the RSA to BnP scheme. As observed from Fig. 6.5 (left), the performance
of the RSA scheme improves with the increasing number of APs in the system. However,
the effect of number of pilots on the relative performance of RSA compared to the BnP
scheme is negligible as evident from Fig. 6.5 (right), where RSA gives similar performance
for different number of pilots.

Figure 6.5: The CDF of the ratio of sum user SE of RSA to BnP scheme for different system configuration:
(left) Nu = 48, P = 10; (right) Nu = 48, Nr = 10.

6.7 Conclusions

In this chapter, we propose a pilot assignment algorithm to mitigate the effect of pilot
contamination for a cell-free mMIMO system. Our algorithm is inspired by RSA process,
which has been used to study the adsorptions of hard particles on a surface across different
scientific fields. Using the results derived in Chapter 5, we present an accurate analytical
expression for average pilot assignment probability for a typical user in the network. Further,
the performance of the proposed algorithm is compared to two centralized pilot allocation
schemes. With respect to the first centralized scheme, which partitions the users in the
network in such a way that minimum distance among the sets of co-pilot users is maximized,
the RSA-based scheme provides competitive average user SE performance. The second
centralized pilot allocation scheme, which is based on BnP algorithm, provides near optimal
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solution in terms of sum user SE for a relatively small system with tens of users. The
performance of the RSA-based scheme, despite its distributed implementation, is appreciable
with respect to the near-optimal BnP scheme. Owing to its competitive performance and
scalable distributed implementation, the RSA-based scheme is an attractive algorithm for
pilot allocation in a pilot contamination limited distributed mMIMO network. A promising
future direction of this work is to investigate efficient solution for the pricing problem used
in the column generation process so that the BnP-based scheme can used to benchmark the
performance of relatively large systems with hundreds of users.



Chapter 7

Downlink Performance Analysis of
Cell-Free Massive MIMO with Finite
Fronthaul Capacity

7.1 Introduction

In cell-free mMIMO networks, the APs perform a limited set of signal processing operations
such as precoding/filtering using the local channel state information (CSI) while most of the
baseband processing operations are carried out at centralized baseband units (BBUs). The
communication between the APs and BBUs is done through fronthaul links. In the previous
chapter, we presented the system performance assuming that the fronthaul links are ideal,
i.e., they have infinite capacity. However, in reality these links, such as optical cables, have
limited capacity. One of the direct consequences of having finite fronthaul links is that
the compression/quantization error gets introduced into the system and directly affects the
system performance. Hence, analyzing the network-wide performance of cell-free mMIMO
with finite fronthaul capacity is an important requirement for the successful integration of
this technology to the fifth generation (5G) networks. In this work, our goal is to model and
analyze such a system using tools from stochastic geometry and provide a few useful system
design guidelines.

7.1.1 Related works

We first discuss a few prior works that focus on devising compression algorithms while taking
into account the limited fronthaul capacity for other variants of cooperative cellular networks
such as coordinated multipoint (CoMP) and cloud radio access networks (C-RAN). In [111,
112], authors provide information-theoretic insights regarding the capacity of a backhaul-
constrained distributed MIMO system. Extending the insights obtained from information-
theoretic analyses, in other notable works, authors use optimization-based frameworks to
devise compression algorithms that efficiently utilize the fronthaul capacity constraints while
maximizing a certain performance metric (e.g., sum-rate) (cf. [113], [114]). A comprehensive
overview of such works can be found in [115, 116]. While the insights obtained from these
works are useful, some of the inferences may not hold true for a cell-free mMIMO system

112
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owing to its practical aspects such as beamforming based on local imperfect CSI at the
APs, time division duplex (TDD) mode of operation. This motivated a different set of
system analyses [30, 31, 32, 33, 34, 35, 36, 37] for cell-free mMIMO with finite fronthaul
capacity. In [30], the authors analyze the uplink performance using Bussgang decomposition
to capture the effect of quantization error introduced due to finite fronthaul capacity. The
authors present the effect of the number of quantization bits on the uplink outage probability.
In [31], the authors extend the framework of [30] and compare the uplink performance of
the scheme where both the quantized version of the received signal and quantized channel
estimates are available at the BBU to the scheme where the BBU has the quantized weighted
signal from each AP. In addition, an uplink max-min power allocation algorithm and an AP-
user assignment scheme to reduce the fronthaul load are also proposed. In [34], the authors
compare the uplink performances of perfect fronthaul links, the case when the quantized
version of the estimated channel and signal available at the BBU, and the case when only
quantized weighted signal is available at the BBU. The uplink energy efficiency analysis
of cell-free network with finite fronthaul capacity is studied in [32]. In [35], the authors
study the performance of a cell-free network with hardware impairments where the authors
compare the performance of three transmission strategies between the BBU and the APs
through finite capacity links. The uplink and downlink performances of fronthaul constrained
cell-free network with low resolutions analog to digital converters (ADCs) are presented
in [36]. Note that most of these works focus on traditional cell-free architecture where
all the APs serve each user in the network. Since the user performance degrades with
quantization/compression error, which depends on the number of users (load) per AP, each
AP should serve a subset of users in the network. A network-centric approach that achieves
the goal is proposed [31, 34]. However, from the scalability perspective, a user-centric
architecture is preferred [38, 39, 40, 20, 41, 42, 37] where a user selects its set of serving APs.
Further, a user-centric approach can also be implemented in a distributed manner. However,
in the literature, there are few works on the downlink performance of the user-centric cell-free
architecture with finite fronthaul capacity.

From the perspective of system analysis, a complementary approach to simulations-
based studies is theoretical analyses using tools from stochastic geometry. To this end, there
has been a lot of work that analyzes the performance of cooperative cellular networks, such
as CoMP and C-RAN (cf. [117, 118, 119, 120, 121, 122]). However, the system architecture
of cell-free mMIMO along with the practical constraints, such as imperfect CSI, local beam-
forming, finite fronthaul capacity, makes the signal-to-interference-noise (SINR) expression
different from the above-mentioned works. Hence, the analyses developed in these works
cannot be directly extended to performance analysis of cell-free mMIMO system. Further,
the performance of traditional cell-free architecture has been carried out in [20, 123, 124]
using tools from stochastic geometry. However, to the best of our knowledge, there is no
work in the literature, that presents the theoretical performance analysis of cell-free systems
with finite fronthaul capacity using tools from stochastic geometry. With this discussion on
prior works, our contributions are outlined next.
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7.1.2 Contributions

System modeling

In this work, we consider the downlink of a cell-free mMIMO system with finite capacity
fronthaul links. To capture the effect of finite fronthaul, we consider a point-to-point com-
pression scheme between an AP and the BBU. Further, we focus on both the traditional
cell-free mMIMO architecture where each AP serves each user in the network and a variant
of the user-centric cell-free architecture. Since the compression error is a function of the
number of users, to limit the effect of compression error, the traditional cell-free network
has to be of finite size. Hence, for this architecture, we model the AP and user locations as
two independent Binomial point processes (BPPs). On the other hand, for the user-centric
architecture, we model the AP and user locations as two independent homogeneous Poisson
point processes (PPPs) and assume that each user is served by a specified number of its
nearest APs. We restrict our attention to conjugate beamforming. Conditioned on the AP
and user locations, we derive an achievable rate expression for a randomly selected user that
is valid for both the architecture and captures the effect of finite fronthaul capacity.

Load characterization of user-centric architecture

Due to the dependence of compression error on the number of users served by an AP, the
statistics of the load in terms of the number of users is important for system analysis. While
for the traditional architecture this number of fixed, for the user-centric architecture the load
is a function of user and AP densities as well as the number of APs that serve a user in the
network. Hence, for the user-centric architecture, we first determine the load distribution
for the set of tagged APs that serve the typical user. Since an exact determination of the
probability mass function (PMF) of the number of users associated with each tagged AP is
intractable, we derive the first two moments of the load and then approximate load for each
of the tagged AP as a negative binomial random variable through the moment matching
method. This result is later used to derive the rate coverage of the typical user in the
user-centric architecture. Further, we use a similar methodology to derive the load result
for the typical AP in the network. This result is useful in network dimensioning, especially
determining the desired capacity of the fronthaul link between the typical AP and the BBU
to satisfy a certain signal to compression noise ratio SCNR. It is worth mentioning that this
result has a direct equivalence to the degree distribution in an AB random geometric graph.

Performance analysis of the traditional architecture

We first focus on deriving the downlink user rate coverage result for the traditional architec-
ture. Leveraging the relevant distance distributions for a BPP, we provide an approximate
expression to analytically evaluate the rate coverage averaged over the AP and user loca-
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tions. From our analyses, we infer that the average system sum-rate is a strictly quasi-concave
function of the number of users, and the optimal number of users to achieve the maximum
system sum-rate increases with increasing fronthaul capacity. Further, in contrast to the
established notion that fully distributed MIMO is superior to the collocated MIMO, our
results suggest that in the presence of high-quality CSI at the APs, a less distributed form
of cell-free mMIMO is better, i.e. for an equal number of antennas in the system, it is better
to deploy a fewer APs with more antennas per AP.

Performance analysis of the cell-free architecture

Using the load distribution result of the typical AP, we highlight the interplay between
different system parameters such as fronthaul capacity, the SCNR, the number of serving
APs. Further, exploiting the statistical properties associated with a PPP along with a few
subtle approximations, we derive the rate coverage result for the typical user when it gets
scheduled. In this process, we use the load distribution results for the tagged APs. All the
theoretical results are validated through extensive Monte Carlo simulations.

7.2 System Model

We limit our attention to the downlink of a cell-free mMIMO system. The sets of AP and
user locations are given by Φr and Φu, respectively. To capture the spatial randomness
in the AP and user locations, we model Φr and Φu by appropriate point processes. The
corresponding discussions on the point processes are relegated to the following sections as it
is not necessary for the results derived in this section. We assume that each AP is equipped
with N antennas. The distance between a user at uk ∈ Φu and an AP at rm ∈ Φr is
denoted by dmk. All the APs are connected to a BBU through a fronthaul network, where
the capacity of each link is Cf bits/s/Hz. As mentioned earlier, in the case of the traditional
cell-free architecture, all the APs serve all the users in the network. In contrast, in case of
the user-centric network architecture, we consider that each user is served by its nearest Ns

APs. Both type of architectures are illustrated in Fig. 7.1.

7.2.1 Compression at the BBU

Due to the limited fronthaul capacity, the BBU employs a lossy compression scheme to for-
ward user symbols to the APs. Consider an AP located at ro serves a set of Ko users Φuo ⊆
Φu. Note that in the case of traditional architecture, Φuo = Φu. Let qo = [q1o , q2o , . . . , qKo ]

T

be the signal vector consisting of the symbols to be transmitted to the users in Φuo. We
consider that qo is a circularly symmetric complex Gaussian random vector and qo ∼
CN (0Ko , ρqoIKo), where ρqo = E [|q1o|2] = E [|q2o |2] = . . . = E [|qKo |2]. Using a lossy compres-



Priyabrata Parida Chapter 7 116

mMIMOAP
BBU

Fronthaul links

Figure 7.1: (Left) A representative network diagram of the traditional architecture, where each AP
serves all the user in the network. (Right) A representative diagram for the user-centric architecture
over a finite observation window. In this case, each user is served by its nearest three APs as marked
by dotted circles.

sion scheme, the BBU transmits q̂o = [q̂1o , q̂2o , . . . , q̂Ko ]
T over the fronthaul links to the AP.

Similar to [111], we consider q̂o = qo + q̃o, where q̃o ∼ CN (0Ko , ρq̃oIKo) is the compression
error vector and ρq̃o = E [|q̃1o|2] = E [|q̃2o|2] = . . . = E [|q̃Ko|2]. Further, we assume that qo
and q̃o are uncorrelated. Since both are Gaussian random vectors, they are independent as
well. From the above exposition, it is clear that q̂ ∼ CN (0Ko , (ρq̃o + ρqo)IKo). If E [|q̂ko |2] is
the same for all k = 1, 2, . . . Ko, then both ρq̃o , ρqo depend on the fronthaul capacity Cf , as
discussed in the following lemma.

Lemma 7.1. For a fronthaul capacity Cf and number of users Ko served by the typical AP,
ρqo =

(
1− 2−Cf/Ko

)
E [|q̂ko|2] and ρq̃o = 2−Cf/KoE [|q̂ko |2].

Proof: The amount of information that can be transmitted from the BBU to each
AP is upper limited by the fronthaul capacity Cf . Hence, we write

I(q̂o;qo) ≤ Cf =⇒ h(q̂o)− h(q̂o|qo) ≤ Cf =⇒
Ko∑
i=1

h(q̂io)−
Ko∑
i=1

h(q̂io|qio) ≤ Cf

=⇒ log2(πe(ρqo + ρq̃o))− log2(πeρq̃o) ≤
Cf
Ko

,

where I(x; y) denotes the mutual information between two random variables x and y, h(x)
denotes the differential entropy of a random variable x, and the last step follows from the
fact that q̂is and q̃is are complex Gaussian random variables. Ideally, the BBU would like to
transmit the maximum information. Hence, we write

log2

(
1 +

ρqo
ρq̃o

)
=
Cf
Ko

=⇒ ρqo
ρq̃o

= 2Cf/Ko − 1.
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The expression in the lemma follows directly using the fact that ρqo + ρq̃o = E [|q̂ko|2]. If we
consider that E [|q̂ko|2] = 1, then ρqo =

(
1− 2−Cf/Ko

)
and ρq̃o = 2−Cf/Ko .

Remark 7.2. The SCNR, defined as ρqo
ρq̃o

= 2Cf/Ko − 1, is a decreasing function of the number
of users served by the AP. While in the case of the traditional cell-free mMIMO, the SCNR

can only be improved by increasing Cf , in the case of user-centric architecture, SCNR can also
be improved by limiting the maximum number of users that should be scheduled by the typical
AP. Hence, for a given Cf and target SCNR threshold Ts, the maximum number of scheduled
users Kmax should satisfy Kmax log2(1 + Ts) ≤ Cf .

7.2.2 Uplink channel estimation

Let gmk =
√
βmkhmk be the channel gain between the AP at rm and the user at uk, where

βmk captures the large-scale channel gain and hmk ∼ CN (0N , IN) captures the small-scale
channel fluctuation. We consider that the large-scale channel gain βmk is only due to the
distance dependent pathloss, i.e. βmk = l(dmk)

−1, where dmk is the distance between the
m-th AP and the k-th user, and l(·) is a non-decreasing pathloss function presented in
Section 7.6.

In order to obtain the channel estimates, we consider that each user uses a pilot from a
set of P orthogonal pilot sequences of τp symbol duration, which is assumed to be less than
the coherence interval. Further, the transmit signal-to-noise ratio (SNR) of each symbol in a
pilot is ρp. Since we assume that these P sequences are orthogonal to each other, τp ≥ P and
ψH
i ψj = 1(i = j), where 1(·) denotes the indicator function. Let the pilot used by the user

at uk be ψ(k). During the pilot transmission phase, the received signal matrix Ro ∈ CN×τp

at the typical AP is

Ro =
√
τpρp

∑
uk∈Φu

gokψ(k)T + Wo,

where each element of Wm is CN (0, 1). Let ĝok be the estimated channel vector at the
AP ro for the user uk ∈ Φuo that is obtained after performing minimum-mean-squared-
error (MMSE) channel estimation. Further, g̃ok be the estimation error vector. Using the
properties of MMSE estimation, we write [6]

ĝok ∼ CN (0N , γokIN) , g̃ok ∼ CN (0N , (βok − γok) IN) , (7.1)

where

γok =
τpρpβ

2
ok

1 + τpρp
∑

uj∈Φu
ψ(k)Hψ(j)βoj

. (7.2)
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7.2.3 Downlink data transmission

In this work, we consider that each AP employs CB based on the local CSI. Hence, the
precoded symbol transmitted by the AP at ro is given as

xo =
∑

ui∈Ψuo

√
ρdηoi

ĝ∗oi√
E[‖ĝoi‖2]

q̂io =
∑

ui∈Ψuo

√
ρdηoiwoiq̂io ,

where ρd is the DL transmit SNR, ηoi is normalization coefficient used by the typical AP for the
user at ui to satisfy the average power constraint Tr(E

[
xox

H
o

]
) ≤ ρd, and Ψuo ⊆ Φuo is the

set of scheduled users associated with the AP at ro such that |Ψuo| ≤ Kmax for the user-centric
architecture. Note that for the traditional architecture, Ψuo = Φuo = Φu and Kmax = Ko. We
observe that by setting ηmk = 1/Kmax and ρq̂o = E[|q̂io|2] = 1 above constraint is satisfied.
More sophisticated power allocation algorithms, such as max-min power allocation, can be
considered. However, the advantages of the above mentioned equal power allocation scheme
are its minimal complexity and distributed implementation. Furthermore, this scheme also
provides certain degree of tractability in the coverage analysis as we will see in the sequel.

7.2.4 An achievable rate for a randomly selected user

Now, we present an achievable rate for a randomly selected user in the network that is
applicable for both type of architectures. Consider that a randomly selected user is located
at uo and is served by the set of APs Φro ⊆ Φr. The received signal at this user is given as

ydlo =
∑

rl∈Φro

gTloxl +
∑

rj∈ΦCro

gTjoxj + no

=
∑

rl∈Φro

√
ρdηlo

gTloĝ
∗
lo√

Nγlo
q̂lo +

∑
rl∈Φro

∑
ui∈Ψ̃ul

√
ρdηlig

T
loĝ
∗
li√

Nγli
q̂li +

∑
rl∈ΦCro

∑
ui∈Φul

√
ρdηlig

T
loĝ
∗
li√

Nγli
q̂li + no,

(7.3)

where ΦC
ro = Φr \ Φro. In the following lemma, we provide an expression for an achievable

rate (a lower bound on capacity). Note that in favor of simpler exposition, we ignore the
constant pre-log factors such as bandwidth and fraction of DL transmission duration in a
TDD setup as we do not study the corresponding trade offs in this work.

Lemma 7.3. Conditioned on Φr and Φu, an achievable rate of the typical user at uo is given
as

SEo = log2 (1 + SINRo) bits/s/Hz, (7.4)
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where

SINRo =

ρdN

( ∑
rl∈Φro

√
γlo(1−2

−Cf/kl )
Kmax

)2

ρdN
∑

rl∈Φro

γlo
2
−Cf/kl

Kmax
+ ρd

∑
rl∈Φr

βlo + ρdN
∑

ui∈{Po\uo}

( ∑
rl∈Φri

√
γlo
Kmax

)2

+ 1

, (7.5)

where Po is the set of users that use the same pilot sequence as the typical user uo.

Proof: Please refer to Appendix C.1.

7.3 Rate Coverage for traditional cell-free mMIMO

In this section, we derive the rate coverage result for the traditional cell-free mMIMO system
where each AP serves all the users in the network. If we consider an infinite network on
R2, then as per the result of Lemma 1, the SCNR → 0 as Ko → ∞ and subsequently
SINRo → 0 as given in Lemma 7.3. Hence, for a meaningful analyses of the traditional
architecture, we need to consider a finite network, e.g., a shopping mall. Therefore, we
assume the system is limited to BRs(o), a finite circular region of radius Rs centered at o,
where the set of APs Φr = {r1, r2, . . . , rM} are randomly and uniformly distributed. Further,
Φu = {u1,u2, . . . ,uKo} contains the set of user locations that are uniformly and randomly
distributed in BRs(o) and are independent of AP locations. Note that by construction, Φr

and Φu form two independent BPPs. Alternatively, one can consider modeling Φr and Φu

as two independent PPPs over a finite region. However, in that case Ko becomes a Poisson
random variable that theoretically has an infinite support. Hence, in certain cases when Ko

is high, SINRo becomes undesirably low for a fixed Cf . Therefore, we consider a fixed number
of users and APs in the network by modeling them as BPPs. Moreover, most of the studies in
the cell-free mMIMO literature consider a fixed number of users and APs in the network. As
assumed in the cell-free mMIMO literature, we consider thatMN � Ko. Further, we assume
that the coherence block is sufficiently long to ensure that τp ≥ Ko. As a consequence, pilots
are not reused in the network eliminating the effect of pilot contamination. Under these
assumptions, using the result of Lemma 7.3, the achievable rate of a user at uo is given as
SEo,f = log2 (1 + SINRo,f ), where

SINRo,f =

ρd
N
Ko

(1− 2−Cf/Ko)

(
M∑
m=1

√
γmo

)2

ρd
N
Ko

2−Cf/Ko
M∑
m=1

γmo + ρd
M∑
m=1

βmo + 1

. (7.6)
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Our goal is to determine the rate coverage Rcf (Tr) = P[log2(1 + SINRo,f ) ≥ Tr] for a
randomly selected user in this finite network that requires averaging over the distances of
the APs from the user. Next, we present a few important distance distributions for a BPP.

7.3.1 Relevant distance distributions in a BPP

Let Ro be the distance of the user at uo from the center of the circle BRs(o). Since uo is
uniformly and randomly distributed in BRs(o), the cumulative distribution function (CDF)
and probability density function (PDF) of Ro is given as

FRo(r) =
r2

R2
s

, fRo(r) =
2r

R2
s

0 ≤ r ≤ Rs. (7.7)

Next, we present the distance distribution between uo to a randomly distributed AP in
BRs(o).

Lemma 7.4. Conditioned on the distance Ro, the CDF of the distance between the user at
uo and the AP at rm is given as

FDmo(d|ro) =
d2

R2
s

1(0 ≤ d < Rs − ro)

+ 1(Rs − ro ≤ d ≤ Rs + ro)

(
d2

πR2
s

(
θ∗ − sin(2θ∗)

2

)
+

1

π

(
φ∗ − sin(2φ∗)

2

))
,

and corresponding PDF is given as

fDmo(d|ro) =
2d

R2
s

1(0 ≤ d < Rs − ro) + 1(Rs − ro ≤ d ≤ Rs + ro)
2d

πR2
s

θ∗

where θ∗ = arccos
(
d2+r2

o−R2
s

2rod

)
, φ∗ = arccos

(
R2
s+r2

o−d2

2roRs

)
.

Proof: We provide the sketch of the proof of this lemma. Please refer to [125,
Lemma 1] for the detail proof. Without loss of generality, consider that uo = (ro, 0). Then,
conditioned on uo (equivalently ro), a uniformly distributed point in BRs(o) can lie either in
the circle BRs−ro(uo) or in the region BRs(o)\BRs−ro(uo). In the CDF expression of the lemma
both this conditions are captured by the indicator function and corresponding conditional
CDFs are presented. The expression for the PDF is obtained by taking the derivative of the
CDF with respect to d along with some algebraic manipulation.

Now, using the results from order statistics, we present the conditional distance distri-
bution between uo and its nearest AP.
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Lemma 7.5. Conditioned on the distance Ro, the CDF of the distance Doo between the uo
and its nearest AP is given as FDoo(doo|ro) =

P [Doo ≤ doo|ro] = 1− (1− FDmo(doo|ro))M ,

and the corresponding PDF is given as

fDoo(doo|ro) = MfDmo(doo|ro)(1− FDmo(doo|ro))M−1,

where fDmo , FDmo are presented in Lemma 7.4.

Note that conditioned on the distance Doo, rest of the APs in BRs(o) are uniformly and
randomly located in BRs(o) \ Bdoo(uo), where doo is a realization of Doo. In the following
lemma, we present the distribution of the distance between a randomly located AP in the
above region and uo.

Lemma 7.6. Conditioned Doo and Ro, the PDF of the distance D̂mo between a randomly
located AP in BRs(o) \ Bdoo(uo) and uo is given as

fD̂mo(d|doo, ro) =
fDmo(d|ro)

1− FDmo(doo|ro)
, doo ≤ d ≤ ro +Rs.

Proof: We provide the sketch of the proof for this lemma. For the detailed proof,
please refer to [125, Lemma 3]. Conditioned onDoo, rest of the APs are uniformly distributed
in BRs(o)\Bdoo(uo). Hence, the distribution of the distance D̂mo follows the lower truncated
distribution of Dmo, which is captured in the above expression.

Next, using the above distance distributions, we present the approximate expression for
rate coverage.

7.3.2 Approximate evaluation of average achievable user rate

The exact evaluation of rate coverage Rcf is challenging as it requires an (M + 1)-fold
integration to average it over the locations of all the M APs and the user at uo. Notice that
the SINRo,f in (7.6) has the following terms:

I1 =
M∑
m=1

√
γmo, I2 =

M∑
m=1

γmo, I3 =
M∑
m=1

βmo. (7.8)

Since there is no pilot contamination, γmk(dmk) = τpρpl(dmk)−2

1+τpρpl(dmk)−1 . Further, γmk is a decreasing
function of dmk. Due to path loss these terms are likely to be dominated by contributions
from a few nearest APs. Hence, we approximate I1, I2, and I3 as the sum of exact contribution
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from the nearest AP and the mean contribution from the rest of the APs conditioned on the
distance doo between uo and its nearest AP. Hence, we write

I1(doo, ro) =
M∑
m=1

√
γmo ≈

√
γoo + E

[ M∑
m=1,m6=o

√
γmo

∣∣∣∣doo, ro],
I2(doo, ro) =

M∑
m=1

γmo ≈ γoo + E
[ M∑
m=1,m 6=o

γmo

∣∣∣∣doo, ro],
I3(doo, ro) =

M∑
m=1

βmo ≈ βoo + E
[ M∑
m=1,m 6=o

βmo

∣∣∣∣doo, ro]. (7.9)

It is worth mentioning that this approach has been used for DL coverage probability analysis
in cellular systems (cf. [84]). Note that conditioned on Doo, distances between uo and rest
of the APs in the network are i.i.d. Hence, using Campbell’s theorem, (7.9) can be written
as

Î1(doo, ro) =
√
γoo + (M − 1)

∫ ro+Rs

r=doo

√
τpρpl(r)

−1√
1 + τpρpl(r)−1

fD̂mo(r|doo, ro)dr,

Î2(doo, ro) = γoo + (M − 1)

∫ ro+Rs

r=doo

τpρpl(r)
−1

1 + τpρpl(r)−1
fD̂mo(r|doo, ro)dr,

Î3(doo, ro) = βoo + (M − 1)

∫ ro+Rs

r=doo

l(r)−1fD̂mo(r|doo, ro)dr. (7.10)

With the above approximation, in the next Proposition, we present an expression to
evaluate the rate coverage of the typical user in this finite cell-free mMIMO network.

Proposition 5. For a given threshold Tr, the rate coverage of a randomly selected user in
the network is given as

Rcf (Tr) =

∫ Rs

ro=0

∫ Rs

doo=0

1
(
SINRApx

o (doo, ro) > 2Tr − 1
)
fDoo(doo|ro)fRo(ro)ddoodro,

where

SINRApx
o (doo, ro) =

ρd
N
Ko

(1− 2−Cf/Ko)(Î1(doo, ro))
2

ρd
N
Ko

(Î2(doo, ro))2−Cf/Ko + ρdÎ3(doo, ro) + 1
, (7.11)

the PDFs of Doo and Ro are presented in Lemma 7.5 and (7.7), respectively.

Proof: The result follows by first replacing different terms in the SINRo,f by their
approximations given in (7.10) to obtain SINRApx

o (doo, ro). In the next step, we decondition
over Doo and Ro to obtain Rcf (Tr).
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The result of the above proposition concludes the rate coverage derivation for a tra-
ditional cell-free mMIMO system with finite fronthaul capacity. Next, we focus on the
user-centric cell-free mMIMO. In this case, we model Φr and Φu as two independent homo-
geneous PPP. Further, each user is served by its nearest Ns APs. Observe that the SINR

expression of Lemma 2 is a function of the number of users served by each AP in the net-
work. Owing to the spatial randomness of both user and AP locations, the number of users
served by each AP is a random variable. Therefore, to derive the rate coverage expression,
we need the statistical properties of the load of associated with an AP in the network that
is presented in the next section.

7.4 Load Characterization in User-Centric Architec-
ture

Before proceeding further, we need to provide the distinction between the typical AP and the
set of tagged APs in the network. The typical AP is by definition a randomly selected AP
in Φr. On the other hand the set of tagged APs are the serving APs of the typical user that
is selected randomly from Φu. This random selection of the typical user makes it more likely
to be served by APs that have larger service regions. This effect is reminiscent of the waiting
time paradox in queuing system and the difference between 0-cell and the typical cell in a
Poisson-Voronoi tessellation [126, 127]. Since we are focusing on the performance analysis
of the typical user, we need the load distribution result associated with the set of tagged
APs. On the other hand, from network dimensioning perspective, such as provisioning of
fronthaul capacity, we need statistical information on the load associated with the typical
AP. In the next subsection, we derive the load distribution results associated with the set of
tagged APs.

7.4.1 The load of a tagged AP

The statistical metric that we are interested in is the PMF. The exact derivation of PMF is
intractable. Hence, we first derive the exact result for the first two moments of the number
of users for a tagged AP. Then we approximate the load though an appropriate random
variable using the moment matching method.

Determination of the first two moments

Since Φu is homogeneous PPP, it is translation invariant. Hence, we assume that the typical
user is located at the origin o. It is worth mentioning that the load associated with each
of the tagged APs are not identical. Hence, we need to present a generic result that is a
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function of the serving AP rank in terms of the distance from the typical user. Next, we
derive the first two moments of the load for the N -th nearest tagged AP.
Lemma 7.7. The first moment of the number of users (excluding the typical user) served
by the N-th nearest AP to the typical user at the origin is given as

E[KN ] = 2πλrλu

∫ ∞
ro=0

dro

∫ ∞
dx=0

ddx

∫ 2π

vx=0

dvx htag,m1(ro, dx, vx)dxro, where

htag,m1(ro, dx, vx) =
Ns−1∑
n=0

PosPMF(n, λrAoI2(ro, dx, vx))PosPMF(Ns − n− 1, λr(πr
2
o − AoI2(ro, dx, vx)))

PosCMF(Ns − n− 1, λr(πr
2
x − AoI2(ro, dx, vx))).

In the above expression rx(ro, dx, vx) =
√
r2
o + d2

x − 2rodx cos(vx) and AoI2(ro, dx, vx) is the
area of intersection of two circles is given as

AoI2(ro, dx, vx) = r2
o

(
vx −

sin (2vx)

2

)
+ r2

x

(
u(ro, dx, vx)−

sin (2u(ro, dx, vx))

2

)
, (7.12)

where

u(r1, r2, v) = arccos

(
r2 − r1 cos(v)√

r2
1 + r2

2 − 2r1r2 cos(v)

)
. (7.13)

The corresponding second moment is given as

E[K2
N ] = 2πλrλ

2
u

∞∫
ro=0

∞∫
dx=0

∞∫
dy=0

2π∫
vx=0

2π∫
vy=0

htag,m2(ro, dx, dy, vx, vy)dvydvxdyddydxddxrodro,

where htag,m2(ro, dx, dy, vx, vy) is given by (C.4) in Appendix C.2.

Proof: Please refer to Appendix C.2.
Remark 7.8. The load on a tagged AP depends on its distance from the typical user at the
origin. Using the results of the above lemma, we conclude that E[K1] > E[K2] > E[K3] > . . .,
and E[|K1|2] > E[|K2|2] > E[|K3|2] > . . . and so on.

Approximation of the load PMF

With the knowledge of the first two moments of the load, we approximate it as a negative
binomial random variable. The PMF of this random variable with parameters r and p is given
as

P[KN = k] =
Γ(k + r)

k!Γ(r)
pr(1− p)k,
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where E[KN ] = (1 − p)r/p and E[K2
N ] = (1 − p)r(1 + (1 − p)r)/p2. Using the results of

Lemma 7.7, we solve the aforementioned two equations to obtain the values of r and p.
The intuition behind consideration of negative binomial stems from the following fact: if we
consider that each user is served by its nearest AP, then the serving region of each AP is its
corresponding Poisson-Voronoi cell. The area of this cell is well approximated as a gamma
random variable [128]. Now, conditioned on the area of a cell, the number of users that fall in
this area follows Poisson distribution. This leads to a Poisson-gamma mixture distribution
for the number of users served by a tagged AP once we decondition over the serving area.
Since negative binomial distribution is a consequence of Poisson-gamma mixture distribution,
our choice to approximate the load with this distribution is justified. The results validating
the approximation is presented in Sec. 7.6.

7.4.2 The load of the typical AP

In this section, we derive the approximate PMF of the number of users served by the typical
AP in the network. Similar to the previous case, since exact characterization of the PMF is
intractable, we first derive the exact expression for the first two moments of the load for the
typical AP. Next, using moment-matching method, we approximate the PMF as a negative
binomial PMF. The derivation of the first two moments now becomes the special case of the
tagged AP result. In the following lemma, we present the first two moments.

Lemma 7.9. The first two moments of the number of users Ko served by the typical AP at
ro ∈ Φr is given as

E[Ko] = Ns
λu
λr

E[K2
o ] = 2πλ2

u

∫ ∞
rx=0

∫ ∞
ry=0

∫ 2π

u=0

htyp,m2(r1, r2, u)dur2dr2r1dr1 +Ns
λu
λr
,

where

htyp,m2(rx, ry, u) =
Ns−1∑
l=0

[
PosPMF(l, λrAoI2(rx, ry, vxy))PosCMF(Ns − l − 1, λr(πr

2
x − AoI2(rx, ry, vxy))

× PosCMF(Ns − l − 1, λr(πr
2
y − AoI2(rx, ry, vxy))

]
. (7.14)

In the above equation, vxy = arccos

(
rx−ry cos(u)√

r2
x+r2

y−2rxry cos(u)

)
, and AoI2 is given in (7.12).

Proof: Please refer to Appendix C.3.

Similar to the tagged AP case, we approximate the load of the typical AP by negative
binomial random variable.
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Remark 7.10. We observe that E[K2
o ] ≈ E[Ko]

2 + 1.2802Ns. This result is exact for Ns =
1 [129].

Remark 7.11. The load distribution result of the typical AP also characterizes the degree
distribution in a AB random geometric graph (AB-RGG). An AB-RGG is a bipartite random
graph between two sets of vertices A and B, where a point in A is connected to a few points
in B based on certain distance criteria [130, 131]. In our case, A = Φr, B = Φu and an
edge exists if x ∈ Φu is served by y ∈ Φr. It is worth mentioning that a simulation-based
approximation result for the degree distribution of this type of AB-RGG is recently proposed
in [132].

7.5 Rate Coverage for user-centric cell-free mMIMO

The achievable rate result derived in Lemma 7.3 is directly applicable to the user-centric cell-
free architecture. Recall that Φr and Φu are two independent homogeneous PPP. Further,
we consider that the typical user at the origin and its set of serving APs Φro consists of
the nearest Ns APs. Determining the distribution of the rate or SINR of the typical user
is intractable as each term in the expression are functions of a set of common distances.
However, a degree of tractability can be achieved for theoretical analysis by assuming that
the network is operating in a regime where pilot contamination is negligible. There are two
consequences of this assumption. First, we can ignore the pilot contamination interference
term in (7.6). Second, the variance of the channel estimate between AP at rm and user at
uk can be approximated as

γmk =
τpρpβ

2
mk

1 + τpρp
∑

uj∈Φu
ψ(k)Hψ(j)βmj

≈ τpρpβ
2
mk

1 + τpρpβmk
.

Remark 7.12. A system with a pilot allocation scheme that ensures that each AP serves
only one user per pilot is likely to operate in the regime where the above assumption holds,
especially, for the set of serving (dominant) APs. This pilot assignment is realizable in a low
mobility scenario, where the coherence block is sufficiently large. For example, if we consider
a coherence bandwith of 200 kHz and a coherence time of 2 ms, then the TDD coherence
block has 400 samples. Let us assume that each AP is served by the nearest Ns = 5 APs.
In such a scenario, the probability that the set of tagged APs, which serve the typical user,
collectively serve more than 30 users is less than 0.002. Hence, by reserving more than 30
symbols for pilot estimation in the coherence block above criteria is met.

With this assumption, we present the probability of coverage for the typical user.

Proposition 6. Conditioned on the links associated with the typical user is active, the rate
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coverage of the user is given as Rc = P[Ro > Tr] =

∞∫
doNs=0

doNs∫
doNs−1=0

. . .

do1∫
doNs−1=0

∞∑
k1=0

1

2πλr

∞∫
doNs

l(r)rdr ≤ hcov(k1, do1, do2, . . . , doNs)


× P[K1 = k1]

Ns−1∏
i=1

2doi
doNs

fDoNs (doNs)ddo1 . . . ddoNs ,

where hcov (k1, do1, do2, . . . , doNs)) =

N

(2Tr − 1)Kmax

(√
γo1(1− 2

−
Cf

min{k1+1,Kmax} ) +
Ns∑
l=2

√
γol(1− 2−Cf/K̄l)

)

− N

Kmax

(
γo12

−
Cf

min{k1+1,Kmax} +
Ns∑
l=2

γol2
−Cf/K̄l

)
−

Ns∑
l=1

l(dol)−
1

ρd
. (7.15)

In the above expression, do1 ≤ do2 ≤ . . . ≤ doNs , where doi is the distance between the typical
user and its i-th closest AP. The load of the closest AP is K1 and the mean load of the i-th
closest AP is K̄i, which is given as K̄i = 1 +

∑∞
ki=0 min{ki, Kmax}P[Ki = ki].

Proof: Please refer to Appendix C.5.

7.6 Results and Discussion

In this section, we validate the theoretical rate coverage result through extensive Monte Carlo
simulations. Further, we provide a few useful system design insights from our analyses.

7.6.1 Performance of traditional cell-free mMIMO

First, we validate the theoretical results derived for the traditional architecture in Sec. 7.3.
We have considered a finite circular region of radius Rs = 500 m. The path loss function
between any two nodes at a distance r is

l(r) =r3.71(r > 1) + 1(r ≤ 1). (7.16)

We consider the transmit SNR ρd = 100 dB1, transmit pilot SNR ρp = 100 dB. We consider
the TDD coherence block consists of 400 samples that corresponds to a coherence bandwidth

1The received SNR at the edge of the system from the center with the considered path loss model is 0.1381
dB.
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of 200 kHz and a coherence time of 2 ms. Further, the pilot sequence is of length τp = 80
samples unless stated otherwise. We consider that the users are assigned orthogonal pilot
sequences that is number of users in this finite system K ≤ τp. Note that as stated before
Lemma 7.3, we only present the user or system SE (in terms of bits/s/Hz). These values will
scale depending on the system bandwidth and the fraction of coherence block dedicated for
the downlink transmission. The choice of other system parameters are indicated at necessary
places. Using the rate coverage result of Proposition 5, the average user rate is expressed as

S̄Eo,f =

∫ ∞
t=o

tRcf (t)dt bits/s/Hz,

and corresponding average system sum-rate is KS̄Eo,f bits/s/Hz.

The effect of fronthaul capacity

In Fig. 7.2 (left), we have presented the rate coverage of the system for K = 20 users in
the system. As expected, the rate coverage improves with increasing SCNR threshold Ts as
it directly corresponds to higher fronthaul capacity Cf . Further, in Fig. 7.2 (right), the
average system sum-rate is presented as a function of the number of users K for different
fronthaul capacities. We have kept a high pilot transmission SNR ρp = 100 dB corresponding
to an almost perfect CSI scenario to highlight the effect of fronthaul capacity on the system
performance. As evident from the figure, the average system sum-rate is quasi-concave
function of the number of users. Further, for a given number of APs, the optimum number of
users that should be multiplexed to maximize the average rate increases with the increasing
fronthaul capacity. From the trend, we infer that when Cf has unlimited capacity, the
maximum average system sum-rate is obtained by serving all the users simultaneously.

Distributed vs. collocated

In Fig. 7.3 (left), we present the rate coverage of the system for different number of antennas
at the AP while keeping the total number of antennas in the system fixed, i.e. MN = 128.
We observe that conjugate beamforming along with the equal power allocation scheme results
in a more centralized architecture to be better than a distributed architecture. In Fig. 7.3
(right), we present the average user rate for different number of antennas at each AP while
keeping the total number of antennas in the service region fixed. We consider the SCNR

threshold Ts = 15 dB. We observe that for high ρp (i.e. high-quality CSI) as we move
towards a more collocated setup, average user rate increases. On the other hand, with low
ρp (i.e. low-quality CSI), the average user SE is a concave function of the number of antennas
per AP. This behavior is in contrast to the conventional MIMO results where a distributed
implementation is always preferred. The justification to this counter-intuitive trend can be
explained by the fact that due to ConjBF, we get a self-interference term from all the APs
as evident from the SINR expression in (7.6). Hence, with a distributed implementation, the
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desired signal power from the nearest AP increases and so does the self interference term.
Therefore, a more collated set up is preferred.
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Figure 7.2: The effect of fronthaul capacity on system performance. The solid lines are obtained using
the analytical results presented in Sec 7.3 and markers are Monte Carlo simulation results. The system
parameters are M = 32, N = 4, τp = 80, ρp = ρd = 100 dB.
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Figure 7.3: The effect of number of antennas per AP on rate coverage (left) and average user rate (right).
Solid lines and markers represent analytical and simulation results, respectively. We have considered MN =
128, τp = 80,K = 20, ρd = 100 dB, SCNR = 15 dB.

7.6.2 Performance of user-centric cell-free mMIMO

Now, we verify the theoretical results derived in Secs. 7.4 and 7.5 through extensive Monte
Carlo simulations. Further, we provide a few useful network dimensioning guidelines. For
the simulations, we consider the system radius to be 2000 m. The path loss is the same as
(7.16). Further, we consider the ρd = ρp = 100 dB and τp = 80. The choice of other system
parameters are indicated at necessary places.
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The load distribution result and insights

In Fig. 7.4, we validate the approximate theoretical PMFs obtained from Secs. 7.4.1 and 7.4.2,
respectively, by Monte Carlo simulations. In both the cases, theoretical and simulation
results are in remarkably close. In Fig. 7.5 (left), using the typical AP load distribution
result, we present the probability that SCNR for a user symbol is above a predefined threshold
Ts as a function of number of serving APs Ns for a given fronthaul capacity Cf . Formally,
we write

P[SCNR ≥ Ts] = P[2C/Ko − 1 ≥ Ts] = P[Ko ≤ Cf/ log2(1 + Ts)],

which is the cumulative mass function (CMF) of the typical AP load. As expected, the more
stringent the Ts, the lower the probability of having a SCNR more than Ts for a given number
of serving APs. Note that in this result we assume that all the users attached to the typical
AP are scheduled on the same resource while using different pilots. In Fig. 7.5 (right), we
present the required fronthaul capacity as a function of number of serving APs. As expected,
we observe a linear growth in Cf with increasing Ns. However, the rate of growth depends
on the stringency of the SCNR constraint.

The rate coverage result and insights
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Figure 7.4: The PMF of the number of users served by the nearest tagged AP (left) and the typical AP
(right) in the network. λr = λu = 10−4, Ns = 5.

In Fig. 7.6 (left), we present the rate coverage for the typical user for different SQNR

thresholds when it gets scheduled. As observed from the figure, for a fixed Cf , with increasing
Ts the rate coverage improves. Note that as per Remark 7.2, for a fixed Cf , maximum
scheduled user per resource unit increasing with decreasing Ts. As a result, the power is
equally divided among more users that results in the poorer coverage. In Fig. 7.6 (right), we
plot the rate coverage of the typical user for different Ns. The corresponding Cf is selected
using the result of Fig. 7.5 such that P[SCNR ≥ Ts] ≈ 0.95. From the figure, we observe that
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Figure 7.5: (Left) The number of serving APs to ensure a certain minimum SCNR for different Ts. Other
parameters: λu = λr = 10−4, Cf = 20 bits/s/Hz. (Right) The required fronthaul capacity as a function of
Ns to satisfy P[SCNR ≥ Ts] is above a certain threshold. Other parameters: λu = λr = 10−4, Ts = 15 dB.

service by more number of APs is not always advantageous. Hence, system should operate
at the optimum Ns for a given set of parameters.
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Figure 7.6: (Left) The rate coverage when the typical user for different Ts and fixed Cf = 45 bits/s/Hz.
Solid lines and markers represent theory and simulations, respectively. Other system parameters:λu = λr =
10−4, N = 10, Ns = 5, τp = 80, ρp = ρd = 100 dB. (Right) The rate coverage for different number of serving
APs (Ns). Other system parameters: λu = λr = 10−4, N = 40, τp = 120, ρp = ρd = 100, Ts = 15 dB.

7.7 Conclusion

In this chapter, we modeled and analyzed a cell-free mMIMO network with finite fronthaul
capacity using tools from stochastic geometry. We considered two different architectures of
cell-free mMIMO, namely, the traditional architecture where each AP serves all the users
in the network and the user-centric architecture where the typical user is served by a few
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nearest APs. For the traditional architecture, we provided the user rate coverage result
using the relevant statistics of BPPs. For the user-centric architecture, we characterized the
load distribution result for the typical AP as well as the set of tagged APs that serve the
typical user in the network. Further, using the statistical properties of PPPs, we presented
the rate coverage result for the typical user in the network. From our analyses, we conclude
that for the traditional architecture, in the presence of low-quality CSI at the APs, a more
collocated implementation of cell-free mMIMO is preferred over the fully distributed im-
plementation. Further, for the cell-free architecture, increasing the number of serving APs
does not necessarily improve the rate coverage. Hence, there exists an optimal number of
serving APs that depends on different system parameters. Promising future extensions of
this work include the determination of the scheduling probability of the typical user for the
user-centric architecture. This requires knowledge of the total number of users served by the
set of tagged APs. Further, the system behavior in presence of pilot contamination is also a
promising direction that can lead to useful guidelines for the pilot allocation.



Chapter 8

Stochastic Geometry-based Modeling
and Analysis of Citizens Broadband
Radio Service System

8.1 Introduction

In this dissertation, we have focused on the mMIMO system that operates in the sub-
6 GHz of the electromagnetic spectrum. Owing to the limited availability of frequency
bands, in this frequency range spectrum sharing is often encouraged by regulatory bodies.
An example of sub-6 GHz spectrum sharing is the recent proposal by the FCC to foster
co-existence of commercial cellular networks alongside the defense communication systems
[133] in the 3.5 GHz band, a.k.a. CBRS band. One of the main advantages of the CBRS
band is the mature hardware technology in the sub-6 GHz spectrum, which is suitable for
near-future system deployment. For successful co-existence, the CBRS ecosystem is divided
into three-tiered access systems: (1) incumbent access (IA) tier that consists of defense
systems, (2) priority access licensed (PAL) tier for the licensed networks, and (3) general
authorized access (GAA) tier for the unlicensed networks. Under key guidelines mentioned
in [133], recent studies have shown that the co-existence between IA tier and PAL tier can be
successfully achieved without violating the security and interference protection constraints
of the defense systems while achieving appreciable data rates for the licensed communication
networks [134, 135, 136]. However, from the commercial application perspective, the study
on successful co-existence of PAL and GAA networks (operators) is of prime importance,
which has not been addressed in the literature and is the main focus of this work.

8.1.1 Motivation and related works

One of the key elements of the FCC guidelines is that the communication links of the licensed
operator are to be protected from unlicensed BSs’ interference by creating protection zones
(PZs) around each licensed BS. Within these PZs, none of the unlicensed BSs are allowed
to operate. The overall system is controlled by a centralized node known as the spectrum
access system (SAS). While it is possible to centrally manage network operations such as
spectrum access and transmission power control for the unlicensed BSs, doing so may result

133
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in increased signaling overhead due to potentially large number of unlicensed BSs. Hence, a
preferable option is to perform some of the tasks, such as contention-based channel access
among the unlicensed BSs, in a distributed manner. Consideration of contention-based
channel access is also important since wireless LAN systems are likely to co-exist in this
band. While one can, in principle, study the performance of this system through extensive
simulations, simulators do not usually scale well with the growing number of nodes. As a
result, it is highly desirable to develop a tractable approach capable of exposing fundamental
performance trends of such large-scale systems.

One such approach that has received significant attention over the past few years is
to compute network-wide metrics by spatially averaging over all possible topologies using
powerful tools from stochastic geometry [7, 8, 9, 10, 11, 12, 13]. While it is natural to
think that the existing approaches for wireless network analysis may be directly applicable
to the analysis of the CBRS system, it is not quite true. In particular, there are two CBRS-
specific challenges that need to be overcome first: (1) the presence of PZs around licensed BSs
creates correlation among the locations of licensed and unlicensed BSs that ultimately results
in correlation among aggregate interference powers generated by the both sets of BSs; (2)
presence of PZs, as well as the consideration of contention-based channel access mechanism,
makes the statistical characterization of interference from unlicensed BSs a difficult task.

To the best of our knowledge, there exists no work in the literature that studies co-
existence of licensed and unlicensed networks considering both PZs around licensed BSs and
contention-based channel access mechanism among unlicensed BSs from the perspective of
stochastic geometry. However, the performance of wireless systems considering either one
of the above-mentioned key elements can be found in the literature. The performance of
IEEE 802.11 network that considers carrier sense multiple access with collision avoidance
(CSMA-CA) based contention access mechanism is presented in [43]. In the above work,
the active node locations are modeled as a Matérn hardcore process of type-II (MHPP-
II), and the performance analysis is presented in terms of the medium access probability
(MAP) and the signal to interference ratio (SIR) coverage probability. The extension of the
above approach to the performance analysis of cellular networks can be found in [46]. From
the perspective of co-existence between licensed and unlicensed networks, in [44] and [45],
MHPP-II is used to model contention-based channel access mechanism among primary and
secondary transmitters. However, the performance analysis is limited to a bipolar ad hoc
network. The extension of the above approach to a cellular setup for co-existence study
between LTE and Wi-Fi systems is presented in [137]. However, in these works, the key
system consideration regarding the node locations is in contrast to the FCC proposed model,
where the spatial separation between licensed and unlicensed BSs is strictly enforced through
PZs.

On the other hand, in order to capture the strict spatial separation among primary
(licensed) and secondary (unlicensed) transmitters (BSs), in [138] authors have introduced
Poisson hole process (PHP) and presented the performance analysis for a cognitive ad hoc
network. However, in the system model, the distance between a transmitter and receiver pair
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is considered to be fixed, and contention-based channel access among secondary transmitters
is not considered, which can degrade their performance considerably. To overcome the later
limitation of [138], in [139] performance analysis of a cognitive network is presented consider-
ing Aloha protocol for channel access for the secondary transmitters, and in [140] considering
exclusions zones around secondary transmitters so that two nearby secondary transmitters
can not access the channel simultaneously. The extension of [138] to the performance anal-
ysis of heterogeneous cellular can be found in [141]. However, in all the above-mentioned
works, the presence of holes (PZs) in the network is usually modeled by either thinning
the unlicensed (secondary) transmitter density or by approximating the PHP with a cluster
process. As a result, these approaches do not accurately model the correlation among the
node locations. A more refined approach to the performance analysis of a PHP network
in terms of coverage probability is presented in [142]. In particular, authors have provided
useful bounds for the Laplace transform (LT) of interference that help in accurate coverage
probability evaluation of a PHP network.

Unlike the prior art, where the effect of one of the two aspects of the FCC proposed
system model is handled in isolation, we propose a unified analytic approach that takes into
account the joint effect of both PZs and contention mechanisms. As we will see in following
sections, this joint analysis is significantly challenging and requires a careful handling of
several types of dependencies in the interference field to obtain accurate results for different
performance metrics. Therefore, in addition to the contributions summarized below, one
indirect consequence of our analysis is the detailed exposition of several key open problems
that appear in the performance analysis of a CBRS system.

8.1.2 Contributions

System modeling

We propose a stochastic geometry-based framework to analyze the performance of a network
that operates in the licensed band of the CBRS spectrum and consists of a licensed and an
unlicensed operator. To be specific, we model the locations of the licensed BSs as a PPP and
the locations of the unlicensed BSs as a PHP that takes into account the PZs around each
licensed BS. In addition, a CSMA-CA type contention-based mechanism is also considered
for medium access by the unlicensed BSs. This model captures the essential elements of
the FCC envisioned system, whose key goal is to facilitate the symbiotic co-existence of the
licensed and unlicensed operators.

System analysis

For the system analysis of the licensed operator, the performance metrics that we consider
are the SIR and the link rate coverage probability, as well as area spectral efficiency (ASE).
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Since ASE of the unlicensed operators depend on the MAP of their BSs, we derive an approxi-
mate expression and useful lower bounds for the MAP. Further, exact evaluation of coverage
probabilities is difficult due to correlation in interference induced by the dependency in the
licensed and unlicensed BS locations, as well as the presence of PZs. Hence, we provide
approximate but fairly accurate results for coverage probabilities by carefully capturing the
interference correlation and the effect of PZs in the vicinity of the typical user. In the process
of evaluating the MAP and the coverage probability, we also provide approximate expressions
for two useful distance distributions specific to the PHP network.

System design insights

Using the expressions for the MAP and the coverage probabilities, we study the impact of PZ
radius and unlicensed BS transmission power on the network performance in terms of ASE.
One important observation is that there exists an optimal operating point that maximizes
the ASEs of the unlicensed operator and the overall network with respect to unlicensed
BS transmission power. Another important observation is that the ASE of the unlicensed
operator saturates beyond a certain carrier sense threshold.

8.2 System model

8.2.1 Network geometry

We consider the DL of a cellular network that has two operators, namely Operator A (OpA)
and Operator B (OpB), operating in the licensed band of the CBRS spectrum. This band of
the spectrum is divided into multiple frequency bands (FBs) of smaller bandwidth. Without
loss of generality, we present our analysis for an arbitrarily selected FB (from amongst the
smaller frequency bands) that we call the representative FB. We assume that OpA has the
license to operate in PAL mode of operation, while OpB, as an unlicensed operator, can
only operate in GAA mode of operation. Each operator is assumed to have deployed a set
of citizens broadband service devices (CBSDs) (referred as BSs hereafter) in the region of
consideration. The locations of the OpA BSs follow a homogeneous PPP ΨA of density
λA. As per the FCC regulations, interference protection is provided to each OpA BS by
considering a PZ around it, where operation of OpB BSs is prohibited. One reasonable way
of modeling these interference protection zones is to assume that the OpB BSs form a PHP
with the hole centers being the locations of the OpA BSs. In this case, the locations of OpB
BSs in the PHP ΦB are obtained by considering a baseline PPP ΨB of intensity λB and
retaining only those points in ΨB that lie outside all the PZs, i.e.

ΦB =

{
x ∈ ΨB :

∏
y∈ΨA

1 (‖y − x‖ > Rpz) = 1

}
, (8.1)
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Table 8.1: Summary of notations used in this chapter

Notation Description
ΨA, λA Homogeneous PPP modeling the locations OpA BSs, density of ΨA

ΦB PHP modeling the locations of OpB BSs
ΨB, λB Parent homogeneous PPP for ΦB, density of ΨB

Rpz Protection zone radius
uAo ,u

B
o Locations of the typical OpA and OpB users

xAo ,x
B
o Locations of the tagged OpA and OpB BSs

RA
o Distance between a typical user and its nearest OpA BS

RB
o Distance between the typical OpB user and tagged OpA BS

DB
o Distance between the typical OpA user and its nearest active OpB BS

Ro,AB Distance between the tagged OpB BS and its nearest OpA BS
PA, PB Transmission power per unit bandwidth of OpA and OpB BSs
Pr(y,xi) Received power per unit bandwidth at a location y from a location xi
IBo Medium access indicator of the tagged OpB BS
MB

o Medium access probability of the tagged OpB BS
τcs Carrier sense threshold

SIRAo , SIR
B
o The SIR for the typical OpA and OpB user

P
(X)
c (T ) Coverage probability of typical typical OpX user for a SIR threshold T
Br(x) A circle of radius r centered at x.
NΨ(C) Number of points of the point process Ψ that lie in the region C
|C| The area of the region C

and the density of OpB BSs in ΦB is given as

λ̂B = λB exp(−πλAR2
pz). (8.2)

Above density follows from the null probability of PPP applied to ΨA that stems from the
fact that for a typical point x ∈ ΨB to be in ΦB, there should be no OpA BS within BRpz(x),
i.e. a circle of radius Rpz centered at x. Please refer [142, Lemma 2] for a formal proof.

We consider a closed-access system, where the OpA serves a set of end users (referred
as users hereafter) whose locations form a homogeneous PPP ϑA and OpB serves another
set of users whose locations form a homogeneous PPP ϑB. For simplicity, we assume that
ϑA and ϑB are independent of each other as well as ΨA and ΨB. A user of an operator gets
attached to its nearest BS belonging to that particular operator. In this work, we analyze the
performance of a typical user of OpA (OpB) whose location is denoted by uAo (uBo ). Without
loss of generality, we present the performance analysis considering uAo (uBo ) is placed at the
origin. The serving BS of the typical user is termed as the tagged BS and its location is
denoted as xAo (xBo ). In case of OpA, the distance RA

o = ‖xAo −uAo ‖ between the typical user
and the tagged BS follows Rayleigh distribution, which is given as

fRAo (rAo ) = 2πλAr
A
o exp(−πλA(rAo )2). (8.3)
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Above expression is the probability density function (PDF) of the contact distance for a ho-
mogeneous PPP [12]. On the other hand, for the OpB, the distribution of the distance
RB
o = ‖xBo − uBo ‖, between the typical user and the serving BS corresponds to the contact

distance distribution for PHP. Accurate characterization of this distance distribution requires
the consideration of the relative overlaps among the PZs, as well as the probability of the
PZs deleting the points of ΨB in a given region. Owing to its analytical complexity, char-
acterization of the contact distance distribution of PHP remains an open problem. Having
said that, in the literature, the PDF of RB

o is approximated as Weibull distribution (cf. [141])
and is given as

fRBo (rBo ;α, β) ≈ β

α

(
rBo
α

)β−1

exp

(
−r

B
o

α

)β
, (8.4)

where α is the shape parameter and β is the scale parameter of the function. Corresponding
CDF is given as

FRBo (rBo ;α, β) ≈ 1− exp

(
−r

B
o

α

)β
. (8.5)

The values of these parameters depend on λA, λB, and Rpz and are determined through
curve-fitting for a given set of system parameters.

An illustration of the CBRS network studied in this chapter is presented in Fig 8.1.
Further, a representative network diagram where a typical user of OpA (OpB) is served by

Protection zone

Licensed Operator BS

Unlicensed 
Operator BS Licensed user

Unlicensed user

Figure 8.1: As illustration of the CBRS network studied in this chapter.

the tagged OpA (OpB) BS is presented in Fig. 8.2a (Fig. 8.2b).

8.2.2 Propagation model

The representative FB is divided into a certain number of orthogonal time-frequency re-
sources known as resource blocks. We assume that the channel gain on each resource block
is affected by path loss and multi-path fading. Multi-path fading is assumed to be Rayleigh
distributed and independent across resource blocks. For simplicity, we ignore the effect of
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Protection 
Zone

(a) (b)

Figure 8.2: (a) Typical OpA user located at uAo served by the tagged OpA BS at xAo . (b) Typical OpB
user located at uBo is served by the tagged OpB BS located at xBo .

shadowing. Without loss of generality, we present our analysis for a representative resource
block. The transmission power spectral density, i.e. transmission power per unit bandwidth
of OpA (OpB) is PA (PB). Now, on the representative resource block, the received power
per unit bandwidth at a generic location y from a BS located at xi ∈ ΨA or ΦB is given as

Pr(y,xi) =
PTh(y,xi)

l(‖y − xi‖)
, (8.6)

where PT can be PA or PB, l(‖y − xi‖) is the path loss in linear scale, and h(y,xi) is the
multi-path gain of the channel between the BS at xi and the receiver node at y. We assume
that the multi-path fading gains are i.i.d. among links between different nodes. Since the
amplitude of multi-path fading is assumed to be Rayleigh distributed, the multi-path gain
h(y,xi) ∼ exp(1). In this work, we consider Urban Micro non-line-of-sight path loss model
[143], which is characterized as

10 log10(l(d)) = 36.7 log10(d) + 22.7 + 26 log10(fc), (8.7)

where d is the distance between the two nodes in meters and fc = 3.5 GHz is the carrier
frequency.

8.2.3 Contention-based medium access mechanism

For successful co-existence of OpB BSs in GAA mode of operation, a contention-based chan-
nel access mechanism is necessary. In this work, we consider CSMA-CA based channel access
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mechanism that is prevalent in Wireless LAN (WLAN) systems. This access mechanism is
divided into two phases, namely listen before talk (LBT) and contention. In the LBT phase,
a potential BS tries to detect the presence of other active BSs, where the detection is suc-
cessful if the potential BS is able to decode one of the received preambles from active BSs.
Successful decoding of a preamble requires the received signal strength to be above certain
threshold known as carrier sense threshold (τcs). If the received signal strength is more than
the carrier sense threshold, the potential BS waits till the end of the transmission followed
by contention phase. In contention phase, the potential BS does a random back-off, where
the back-off timer depends on the contention window size, which is a system implementation
parameter. On the other hand, if the potential BS observes the channel to be idle during
LBT phase (i.e. received signal strength from each of the active BSs is less than τcs), then
it reduces its back-off timer. This process continues until the back-off timer is zero after
which the BS transmits its data immediately. In case the back-off timers of two BSs are the
same, advanced protocols are used to avoid the packet collision. A flow chart of the above
procedure is presented in Fig. 8.3.

Potential 
Transmitter

Yes

No

Channel 
Idle?

Back-off 
timer = 0?

Transmit
Yes

Reduce Back-
off timer

No

Figure 8.3: A simplified flow chart of CSMA-CA. The green dotted rectangle corresponds to the LBT
phase and the red dotted rectangle corresponds to the contention phase.

Based on the above-mentioned channel access mechanism, to model the active OpB BSs
that access the channel simultaneously, we follow the same formulation as presented in [43].
We briefly describe this for the tagged OpB BS located at xBo ∈ ΦB. The tagged BS wins
contention w.r.t. a BS at xBj if either of the following events takes place:

1. The received signal strength from a BS at xBj is less than τcs, i.e. the BS at xBj does
not lie in the contention domain of the BS at xBo .

2. The received signal strength from the BS at xBj is more than the threshold τcs, but
its back-off timer txBj is larger than the back-off timer txBo of the tagged BS. Similar to [43],
we assume that the back-off timers are uniformly distributed between [0, 1].

Now if the BS at xBo wins contention w.r.t. all other BSs in ΦB, then it gets access to
the channel. Based on the above discussion, the medium access indicator of the BS xBo is
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given as IBo = ∏
xBj ∈ΦB\xBo

(
1Pr(xBo ,xBj )≤τcs + 1Pr(xBo ,xBj )>τcs1tBxj>t

B
xo

)
. (8.8)

where Pr(·, ·) is defined in (8.6). Now, the MAP of the tagged OpB BS is given as MB
o =

P
[
IBo = 1

]
=

E

 ∏
xBj ∈ΦB\xBo

(
1Pr(xBo ,xBj )≤τcs + 1Pr(xBo ,xBj )>τcs1tBxj>t

B
xo

) . (8.9)

8.2.4 Performance metrics

We evaluate the performance of OpA and OpB networks, using the following metrics:

1. Coverage Probability: Under the assumption of an interference limited network, the
SIR of a typical OpB user is defined as

SIRBo =
IBo Pr(uBo ,xBo )

IBBagg + IBAagg
, (8.10)

where IBBagg =
∑

xBj ∈ΦB\xBo

IBj Pr(uBo ,xBj ), and IBAagg =
∑

yAj ∈ΨA

Pr(u
B
o ,y

A
j ) are the aggregate inter-

ference powers received at the typical OpB user from the OpB and OpA BSs, respectively.
Now, the SIR coverage probability is defined as the probability that the SIR at the typical
user is greater than a target threshold T . In this work, we present the SIR coverage proba-
bility for the typical OpB user when the tagged BS is active, i.e. IBo = 1. Hence, for a target
SIR threshold T , this is formally expressed as

P(B)
c (T ) = P

[
SIRBo > T |IBo = 1

]
. (8.11)

Similarly, the link rate coverage probability of the typical OpB user for a target threshold T
is defined as

R(B)
c (T ) =P

[
Bw log2(1 + SIRBo ) > T |IBo = 1

]
=P
[
SIRBo > 2T/Bw − 1|IBo = 1

]
, (8.12)

where Bw denotes bandwidth.

On the other hand, for the typical OpA user, the coverage probability can be expressed
as

P(A)
c (T ) = P

[
SIRAo > T

]
= P

[
Pr(u

A
o ,x

A
o )

IABagg + IAAagg
> T

]
, (8.13)

where IABagg =
∑

xBj ∈ΦB

IBj Pr(uBo ,xBj ) is the interference received at the typical OpA user from

OpB BSs, and IAAagg =
∑

xAj ∈ΨA\xAo

Pr(u
B
o ,x

A
j ) is the interference received from OpA BSs. Similar
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to the previous case, for a target threshold T , the link rate coverage probability for the typical
OpA user is defined as

R(A)
c (T ) =P

[
Bw log2(1 + SIRAo ) > T

]
=P
[
SIRAo > 2T/Bw − 1

]
. (8.14)

2. Area Spectral Efficiency (ASE): In this chapter, we define the ASE of the network for
a target SIR threshold T as

A(T ) =
(
λ̂BMB

o P
(B)
c (T ) + λAP

(A)
c (T )

)
log2(1 + T ). (8.15)

Note that it is more precise to use the coverage probabilities and MAP computed from the
typical BS perspective in the above expression. However, in order to maintain tractability,
we use the ones computed for the tagged BS (equivalently the typical user), which provides
a reasonable approximation. While there is a subtle difference in the two viewpoints, either
is sufficient to expose macroscopic system-level trends, which is the main purpose of our
analysis.

From the definition of performance metrics it is clear that theoretical expressions for
following metrics are necessary: (1) MAP of the tagged OpB BSs, and (2) SIR coverage
probability of a typical OpA (OpB) user. In the next section, we characterize these quantities.

8.3 Medium access probability for the tagged OpB BS

Before deriving the main results, we present the following Lemma that is going to be useful
in the derivation of several relevant distance distributions and conditional density functions
of ΨA and ΦB in the subsequent sections.
Lemma 8.1 (Presence of a hole in a homogeneous PPP). Consider a homogeneous PPP Ψ
of density λ and a hole of radius R located at an arbitrary point y ∈ R2. Conditioned on the
distance ‖y‖ between the hole center and the origin, the intensity measure of Ψ is given as
ΛΨ(Bx(o)|‖y‖) = G(x, λ,R, ‖y‖) =

0 ‖y‖ ≤ R, 0 ≤ x ≤ R− ‖y‖
πλx2 ‖y‖ > R, 0 ≤ x ≤ ‖y‖ −R
λ(πx2 − A(x,R, ‖y‖)) |‖y‖ −R| < x ≤ ‖y‖+R

πλx2 − πλR2 x > ‖y‖+R,

(8.16)

where o = (0, 0) is the origin, and A(r, R, d) =

r2 cos−1

(
r2 + d2 −R2

2rd

)
+R2 cos−1

(
R2 + d2 − r2

2Rd

)
− 1

2

√
(r +R− d)(r +R + d)(d+ r −R)(d− r +R), (8.17)
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dA(r, R, d)

dr
=−

r2(1
d
− r2+d2−R2

2r2d
)√

1− (r2+d2−R2)2

4r2d2

+ 2r arccos

(
r2 + d2 −R2

2rd

)
+

Rr

d
√

1− (R2−r2+d2)2

4R2d2

− (r +R− d)(R− r + d)(r −R + d) + (R + r − d)(R− r + d)(R + r + d)

4
√

(r +R− d)(r +R + d)(r −R + d)(R− r + d)

+
(R + r − d)(−R + r + d)(R + r + d)− (R− r + d)(r −R + d)(R + r + d)

4
√

(r +R− d)(r +R + d)(r −R + d)(R− r + d)
.

(8.19)

which represents the area of intersection of two circles with radii r and R, and their centers
are separated by a distance d. Corresponding conditional density function is given as

λΨ(x|‖y‖) =
1

2πx

dΛΨ(Bx(o)|‖y‖)
dx

≡ E(x, λ,R, ‖y‖). (8.18)

The derivative of A(r, R, d) with respect to r is given in (8.19) at the top of the next page.

Proof: The intensity measure of a point process is defined as the average number of
points that lie within a given area [10]. In this case, we are interested in finding the average
number of points of Ψ that lie in Bx(o) \ {Bx(o) ∩ BR(y)}. Depending on the location of
the hole from the origin, the average number of points that lie in Bx(o) ∩ BR(y) would be
different, which is captured in (8.16). Fig. 8.4a represents the third case of (8.16). The other
cases of interest involve either complete overlap or no overlap between the circles Bx(o) and
BR(y), and illustrations are omitted to avoid repetition.

8.3.1 MAP of the Tagged OpB BS

In this section, we present the MAP of the tagged OpB BS, which is an important intermediate
metric as it is useful in obtaining the ASE of the OpB network. In (8.9), MAP is expressed
as the product of the indicator functions that represent the contention winning event of
the tagged BS w.r.t. the rest of the BSs in ΦB. In point process theory, this product
is evaluated using probability generating functional (PGFL) of the underlying point process
[10, Chapter 4]. However, the PGFL for a PHP is not known [138], and any attempt to
characterizing it involves exact consideration of relative overlaps among PZs, which is not
straightforward. The approach that is usually followed in the literature to circumvent this
problem is to approximate the PHP by a PPP. The density of the approximated PPP is either
set to the density of baseline PPP ΨB (by completely ignoring the PZs) or to λ̂B defined
in (8.2) (cf. [138]). However, it has been shown recently in [142] that the interference field
of a PHP can be accurately bounded by simply considering the exact effect of the closest
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(a) (b)

Figure 8.4: (a) Illustration of a PPP with a hole for Lemma 8.1. The blue squares represent the set of
points in Ψ. The red cross is the center of a hole with radius R. (b) A representative network diagram for
Lemma 8.2.

hole while ignoring the rest of the holes. In the context of our work, this means that we can
bound ΦB with the baseline process ΨB from where the points lying in the PZ nearest to
the tagged BS are removed. Clearly, the consideration of only the nearest PZ gives a lower
bound on the MAP as more number of points are taken into consideration for the contention
process than the actual number of BSs in ΦB.

Conditional MAP of the tagged OpB BS

In this subsection, we derive a lower bound on the MAP of the tagged BS conditioned on its
distance from the typical user and the nearest OpA BS, which is the center of its nearest
PZ.

Lemma 8.2. The MAP of the tagged OpB BS at xBo ∈ ΦB conditioned on its distances Ro,AB

from the nearest OpA BS and RB
o from the typical user is given as

P
[
IBo = 1

∣∣∣∣ro,AB, rBo ] ≥ 1− exp(−f1(ro,AB, r
B
o ))

f1(ro,AB, rBo )
, (8.20)

where

f1(ro,AB, r
B
o ) = 2

(
π

∞∫
0

λΨB(y|rBo )e
−τcsl(y)
PB ydy −

ro,AB+Rpz∫
ro,AB−Rpz

λΨB(y|rBo )e
−τcsl(y)
PB ϕpz(y|ro,AB)ydy

)
,

(8.21)
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ϕpz(y|x) = arccos
(
y2+x2−R2

pz

2xy

)
, and λΨB(y|rBo ) = E(y, λB, r

B
o , r

B
o ) as given in (8.18).

Proof: Please refer to Appendix D.1.

In order to obtain the final expression for MAP, we need to decondition the conditional
MAP result derived above w.r.t. the distributions of RB

o and Ro,AB. While RB
o is approximated

to follow Weibull distribution and given in (8.4), the distance distribution for Ro,AB is not
known. Further, as we discuss later in this section, RB

o and Ro,AB are dependent random
variables. Hence, the above deconditioning needs to be performed using the joint distribution
of RB

o and Ro,AB. In the following two subsections, we present an approximate expression
and useful lower bounds for the CDF of Ro,AB conditioned on RB

o , as well as lower bound and
approximate expressions for the MAP of the tagged BS considering the joint distribution of
Ro,AB and RB

o .

Lower bounds and approximate expression for CDF of Ro,AB

Since the tagged BS is a point in the PHP ΦB, there are no OpA BSs inside the circle
BRpz(xBo ). Now, for a given realization of RB

o (i.e. rBo ) between the typical user and the
tagged BS, the density of OpA BSs in the vicinity of the tagged BS beyond BRpz(xBo ) depends
on the following two events:

• Event-1 (Illustrated in Fig. 8.5a): The tagged BS at xBo is not the nearest point to the
typical user in the baseline PPP ΨB, i.e. points in ΨB closer to the typical user than
xBo are deleted by the PZ(s). This event indicates that there is at least one OpA BS in
BrBo +Rpz(u

B
o ) \ BRpz(xBo ) (hence in the vicinity of the tagged OpB BS) that has deleted

the points in ΨB. Therefore, in this case, the density of OpA BSs in the vicinity of
the typical user is likely to be higher than λA as the probability of having no OpA BS
in BrBo +Rpz(u

B
o ) is zero. Further, the higher density is also intuitively justified by the

argument that to ensure all the points of ΨB in BrBo (uBo ) are deleted, the density of
OpA BSs in BrBo +Rpz(u

B
o ) \ BRpz(xBo ) is likely to be larger than λA.

• Event-2 (Illustrated in Fig. 8.5b): The location of the tagged BS xBo ∈ ΦB is the nearest
point to the typical user in the baseline PPP ΨB. In this case, the locations of OpA
BSs follow a homogeneous PPP of density λA beyond the circle BRpz(xBo ). Further, in
contrast to Event-1, in this case, the knowledge of rBo does not convey any information
regarding the distribution of Ro,AB. Hence, RB

o is independent of Ro,AB.

Taking both the events into account, the CDF of Ro,AB conditioned on the distance to



Priyabrata Parida Chapter 8 146

Potential nearby points 
that got deleted

(a) An Illustration of Event-1 (b) An Illustration of Event-2

Figure 8.5: The diamond, crosses, and squares represent the locations of the typical OpB user, OpA BSs,
and OpB BSs, respectively. The location of the typical user is uBo = (0, 0) and the tagged OpB BS is
xBo = (rBo , 0).

the tagged BS RB
o is given in (8.22) is given as

FRo,AB(ro,AB|rBo ) =P
[
Ro,AB ≤ ro,AB|rBo , NΦB(BrBo (uBo )) = 0

]
=P
[
Ro,AB ≤ ro,AB

∣∣∣∣rBo , NΦB(BrBo (uBo )) = 0, NΨB(BrBo (uBo )) 6= 0

]
×

P
[
NΨB(BrBo (uBo )) 6= 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
+ P

[
Ro,AB ≤ ro,AB

∣∣∣∣rBo , NΦB(BrBo (uBo )) = 0, NΨB(BrBo (uBo )) = 0

]
×

P
[
NΨB(BrBo (uBo )) = 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
=P
[
Ro,AB ≤ ro,AB

∣∣∣∣rBo , E1(rBo )

]
P
[
NΨB(BrBo (uBo )) 6= 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
+ P

[
Ro,AB ≤ ro,AB

∣∣∣∣rBo , E2(rBo )

]
P
[
NΨB(BrBo (uBo )) = 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
,

(8.22)

where NΦB(BrBo (uBo )) and NΨB(BrBo (uBo )) represent the number of points of ΦB and ΨB in
BrBo (uBo ), respectively. Further, E1(rBo ) represents {NΦB(BrBo (uBo )) = 0, NΨB(BrBo (uBo )) 6= 0}
and E2(rBo ) represents {NΦB(BrBo (uBo )) = 0, NΨB(BrBo (uBo )) = 0}.

While the CDF of Ro,AB conditioned on Event-1 and Event-2, can be obtained in different
ways, in our case, we first condition on the distance RA

o between the typical user to its nearest
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OpA BS and then obtain the CDF expression. Hence, (8.22) can be further expanded as

P
[
Ro,AB ≤ ro,AB|rBo , NΦB(BrBo (uBo )) = 0

]
=

∞∫
rAo =0

P
[
Ro,AB ≤ ro,AB|rAo , rBo , E1(rBo )

]︸ ︷︷ ︸
K1

fRAo (rAo |rBo , E1(rBo ))drAo

P
[
NΨB(BrBo (uBo )) 6= 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
+

∞∫
rAo =0

P
[
Ro,AB ≤ ro,AB|rAo , rBo , E2(rBo )

]︸ ︷︷ ︸
K2

fRAo (rAo |rBo , E2(rBo ))drAo

P
[
NΨB(BrBo (uBo )) = 0

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
. (8.23)

From the above expression it is clear that to obtain the CDF of Ro,AB conditioned on RB
o ,

we need to compute the expressions for K1, K2 and the PDF of RA
o conditioned on Event-1

and Event-2. It is relatively simple to obtain the expression for K2 as ΨA is a homogeneous
PPP of density λA beyond BRpz(xBo ). On the other hand, as explained earlier, the condi-
tional CDF of Ro,AB given by K1 is not trivial to obtain as the conditional density of ΨA

in BrBo +Rpz(u
B
o ) \ BRpz(xBo ) is difficult to characterize. Hence, for Event-1, we assume ΨA

to follow homogeneous PPP of density λA in BrBo +Rpz(u
B
o ) \ BRpz(xBo ). In other words, we

approximate K1 by K2. Therefore, we are now left with the task to obtain the expression
for K2. To do so, consider the following two events:

1. The nearest OpA BS to the typical user is also the nearest OpA BS for the tagged
OpB BS. Let R̂o,AB denotes the distance between the OpB tagged BS and the nearest
OpA BS to the typical user. An illustration is provided in Fig. 8.6a. Note that the
nearest OpA BS to the typical user is located at xAo and there are no BSs in the circle
BR̂o,AB(xBo ), where

R̂o,AB =
√

(rAo )2 + (rBo )2 − 2rAo r
B
o cos(ΘA), (8.24)

where ΘA is the angle between the lines joining the points xBo ,uBo and xAo ,u
B
o (refer to

Fig. 8.6a for an illustration). Further, the randomness in R̂o,AB is due to ΘA.

2. The other event of interest is the scenario where the nearest PZ to the tagged BS
is different from the nearest PZ to the typical user, i.e. there is at least one BS in
BR̂o,AB(xBo ) as illustrated Fig. 8.6b.

Taking into account both the events, we can write

Ro,AB =

R̂o,AB NΨA

(
C1(R̂o,AB)

)
= 0

R̃o,AB NΨA

(
C1(R̂o,AB)

)
6= 0,

(8.25)
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(a) (b)

Figure 8.6: The diamond, crosses, and squares represent the locations of the typical OpB user, OpA BSs,
and OpB BSs, respectively. The location of the typical user is uBo = (0, 0) and the tagged OpB BS is
xBo = (rBo , 0).

where

C1(x) =Bx(xBo ) \
{
BrAo (uBo ) ∪ BRpz(xBo )

}
, (8.26)

R̃o,AB is the distance to the nearest OpA BS that lies in C1(R̂o,AB), and NΨA(C) denotes the
number of points of ΨA in the region C. Based on the above discussion, in the following
Lemma, we present the expression for K2, which is the CDF of Ro,AB conditioned on the
distances RA

o , RB
o , and Event-2.

Lemma 8.3. The CDF of the distance Ro,AB conditioned on distances RA
o , RB

o , and Event-2
is given as FRo,AB(ro,AB|rAo , rBo , E2(rBo )) =

P
[
Ro,AB ≤ ro,AB

∣∣∣∣rAo , rBo , E2(rBo )

]
= 1− EΘA

[
1(R̂o,AB > ro,AB) exp(−λA|C1(R̂o,AB)|)

]
,

(8.27)

where

fΘA(θA|rAo , rBo , E2(rBo )) =
1

2ϕAB(rAo , r
B
o , Rpz)

, |θA| ≤ ϕAB(rAo , r
B
o , Rpz), (8.28)

and

ϕAB(rAo , r
B
o , Rpz) =


π rBo −Rpz ≤ rAo , r

B
o ≥ Rpz,

arccos
(
R2
pz−(rAo )2−(rBo )2

2rAo r
B
o

)
rBo −Rpz < rAo ≤ rBo +Rpz,

π rBo +Rpz ≤ rAo .

(8.29)
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Proof: Please refer to Appendix D.2.

Our next objective is to get the conditional density functions of RA
o presented in (8.23).

Hence, in the following Lemma, taking both the events discussed in Section 8.3.1 into account,
we derive a lower bound on the CDF of RA

o conditioned on RB
o .

Lemma 8.4. Conditioned on the distance RB
o between the tagged OpB BS and the typical

user, the CDF of the distance RA
o between the typical user and its nearest OpA BS is

FRAo (rAo |rBo ) ≥ F LB
RAo

(rAo |rBo ) =
(
1− exp(−G(rAo , λA, Rpz, r

B
o ))
) exp(−πλB(rBo )2)

1− FRBo (rBo )

+ F LB
RAo

(rAo |rBo , E1(rBo ))

(
1− exp(−πλB(rBo )2)

1− FRBo (rBo )

)
. (8.30)

In the above equation

F LB
RAo

(rAo |rBo , E1(rBo )) =

{
0 rAo + rBo ≤ Rpz

1−exp(−λA|C2(rAo ,r
B
o ,Rpz)|)

1−exp(−λA|C2(rBo +Rpz ,rBo ,Rpz)|) rAo + rBo > Rpz,
(8.31)

where C2(rAo , r
B
o , Rpz) = BrAo (uBo ) \ {BrAo (uBo ) ∩ BRpz(xBo )}. Corresponding PDF f LBRAo (rAo |rBo ) is

obtained by differentiating F LB
RAo

(rAo |rBo ) w.r.t. rAo . FRBo (rBo ) is the CDF of the contact distance
of PHP.

Proof: Please refer to Appendix D.3.

While above lower bound captures the effect of both Event-1 and Event-2, as we will
see later this bound on the CDF of RA

o results in a relatively loose bound for the CDF of
Ro,AB. Hence, our next objective is to present an accurate approximate expression for RA

o

conditioned on RB
o . Observe that when the typical user is farther from tagged BS, the average

area of overlap between a protection zone (whose center is uniformly distributed over the
region BRBo +Rpz(u

B
o ) \ BRpz(xBo )) and the the circle BRBo (uBo ) is relatively small. Hence, the

average number of OpA BSs required in BRBo +Rpz(u
B
o ) to ensure that all the points of ΨB in

BRBo (uBo ) are deleted is likely to be larger than one. Considering the above observation, in
the following Lemma, we present an approximate expression for the CDF of RA

o conditioned
on the distance RB

o .
Lemma 8.5. Conditioned on the distance RB

o between the tagged OpB BS and the typical
user, the approximate CDF of the distance RA

o between the typical user and its nearest OpA
BS is given as FRAo (rAo |rBo ) =

P
[
RA
o ≤ rAo |NΦB(BrBo (uBo )) = 0, rBo

]
=1− exp(−G(rAo , λA, Rpz, r

B
o ))

exp(−πλB(rBo )2)

1− FRBo (rBo )

+ FRAo (rAo |rBo , E1(rBo ))

(
1− exp(−πλB(rBo )2)

1− FRBo (rBo )

)
,

(8.32)
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where approximate expression is obtained by replacing FRAo (rAo |rBo , E1(rBo )) by

FRAo (rAo |rBo , E1(rBo )) ≈


0 rAo + rBo ≤ Rpz

1−exp(−λAπ((rAo )2−(Rpz−rBo )2))

1−exp(−λAπ((Rpz+rBo )2−(Rpz−rBo )2))
rBo ≤ Rpz/2, Rpz − rBo < rAo ≤ Rpz + rBo

1−exp(−λAπ((rAo )2−max(0,Rpz−rBo )2))
1−exp(−λAπ((rBo )2−max(0,Rpz−rBo )2))

Rpz/2 < rBo ,max(0, Rpz − rBo ) < rAo ≤ rBo .

(8.33)

Corresponding conditional PDF of RA
o is

fRAo (rAo |rBo ) = fRAo (rAo |rBo , E2(rBo ))
exp(−πλB(rBo )2)

1− FRBo (rBo )
+ fRAo (rAo |rBo , E1(rBo ))

(
1− exp(−πλB(rBo )2)

1− FRBo (rBo )

)
,

(8.34)

where

fRAo (rAo |rBo , E2(rBo )) = 2πE(rAo , λA, Rpz, r
B
o )rAo exp(−G(rAo , λA, Rpz, r

B
o )). (8.35)

The approximate expression for the PDF is obtained by replacing fRAo (rAo |rBo , E1(rBo )) by the
derivative of FRAo (rAo |rBo , E1(rBo )) in (8.33). Further, the complementary CDF of RB

o in the
denominator is replaced by the approximate expression in (D.12). The expressions for
E(rAo , λA, Rpz, r

B
o ) and G(rAo , λA, Rpz, r

B
o ) were presented in Lemma 8.1.

Proof: Please refer to Appendix D.4.

In the following Lemma, using Lemmas 8.3 and 8.4, we derive a lower bound for the
CDF of Ro,AB.

Lemma 8.6. The CDF of the distance Ro,AB between the tagged BS and its nearest OpA BS
is lower bounded by

FRo,AB(ro,AB) ≥ F
(LB,1)
Ro,AB

(ro,AB) =

∞∫
0

∞∫
0

FRo,AB(ro,AB|rAo , rBo , E2(rBo ))f LBRAo (rAo |rBo )fRBo (rBo )drAo drBo ,

(8.36)

where FRo,AB(ro,AB|rAo , rBo , E2(rBo )) is given by (8.27), f LBRAo (rAo |rBo ) is obtained by differenti-
ating F LB

RAo
(rAo |rBo ) w.r.t. rAo presented in Lemma 8.4, and fRBo (rBo ) is the PDF of the contact

distance distribution of PHP.

Note that accurate evaluation of the above lower bound requires the exact expression
for the CDF of RB

o . Now, using Lemmas 8.3, and 8.5, we derive an approximate expression
for the CDF of Ro,AB, which is presented next.
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Lemma 8.7. The CDF of the distance Ro,AB conditioned on RB
o is given as

FRo,AB(ro,AB|rBo ) ≈
∞∫

rAo =0

FRo,AB(ro,AB|rAo , rBo , E2(rBo ))fRAo (rAo |rBo ) drAo , (8.37)

where FRo,AB(ro,AB|rAo , rBo , E2(rBo )) is given by (8.27) and fRAo (rAo |rBo ) is given by (8.34).

The marginal distribution of Ro,AB can be obtained by deconditioning the above expres-
sion w.r.t. RB

o whose PDF can be approximated as Weibull distribution (Refer to Section 2.2).

The expressions for lower bound and approximate CDF presented in (8.36) and (8.37) are
not in closed form and require a fair amount of computational resource for evaluation. In the
following Lemma, considering only Event-2 discussed in Section 8.3.1, we present another
lower bound on the CDF of Ro,AB that assumes a closed form expression.

Lemma 8.8. The lower bound on the CDF of the distance Ro,AB between the tagged OpB BS
and its nearest OpA BS is

FRo,AB(ro,AB) ≥ F
(LB,2)
Ro,AB

(ro,AB) = 1− exp
(
−πλA((ro,AB)2 −R2

pz)
)
,

which is a truncated Rayleigh distribution.

Proof: Please refer to Appendix D.5.

Approximate and lower bound expressions for the MAP of the tagged BS

Based on the distance distributions of Ro,AB presented in the previous subsection, in this
subsection, we present lower bound and approximated expressions for the MAP of the tagged
BS.

First, using the approximate conditional CDF of Ro,AB presented in Lemma 8.7, we derive
an approximate expression for the MAP of the tagged BS, which is presented in the following
Lemma.

Lemma 8.9. The MAP of the tagged OpB BS located at xBo ∈ ΦB is given as

MB
o = P

[
IBo = 1

]
≈

∞∫
rBo =0

drBo

∞∫
rAo =0

drAo

∞∫
ro,AB=Rpz

1− e−f1(ro,AB ,r
B
o )

f1(ro,AB, rBo )

× dFRo,AB(ro,AB|rAo , rBo , E2(rBo ))fRAo (rAo |rBo )fRBo (rBo ), (8.38)

where FRo,AB(ro,AB|rAo , rBo , E2(rBo )) is given by (8.27), fRAo (rAo |rBo ) is given by (8.34), and
fRBo (rBo ) is given in (8.4).
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Proof: The proof follows from deconditioning (8.20) in Lemma 8.2 w.r.t. Ro,AB and
RB
o . Above expression for the MAP can be evaluated using numerical integration technique

such as Monte-Carlo integration.

Now, instead of the approximate expression, if we consider any of the lower bound
expressions on the CDF to decondition the MAP in (8.20), then we obtain a lower bound on
the MAP of the tagged BS. Intuitively this is justified as follows: considering a lower bound
on the CDF of the distance implies that on an average, the distance to the nearest PZ center
is relatively larger than the actual distance. As a result, in the contention domain of the
tagged BS, relatively closer points in ΨB are considered during the evaluation of MAP. Based
on this observation, in the following Lemma, we present a lower bound expression for the
MAP of the tagged BS.

Lemma 8.10. A lower bound on the MAP of the tagged OpB BS located at xB0 ∈ ΦB is given
as

MB
o = P

[
IBo = 1

]
≥

∞∫
rBo =0

∞∫
ro,AB=Rpz

1− exp(−f1(ro,AB, r
B
o ))

f1(ro,AB, rBo )
dF

(LB,x)
Ro,AB

(ro,AB)fRBo (rBo )drBo ,

(8.39)

where fRBo is the PDF of the contact distance of PHP. Above expression can be evaluated using
either of the lower bound expressions for the CDF of Ro,AB presented in Lemmas 8.6 and 8.8.

Proof: Please refer to Appendix D.6.

In Fig. 8.7, the CDFs of Ro,AB obtained from Lemmas 8.6, 8.8, and 8.7 are compared
with simulation results for two different combinations of λA and λB. Note that to obtain the
lower bound on the CDF of Ro,AB using Lemma 8.6, we need the exact CDF of RB

o in (8.30). As
mentioned earlier, due to unavailability the exact expression for the CDF, we have used the
approximated cumulative CDF of RB

o given in (D.12). On the other hand, since the density
of OpA BS λA is fixed in both the cases, the lower bounds obtained using Lemma 8.8 are
the same irrespective of the value of λB. The results on the tightness of the lower bounds
and accuracy of the approximated MAP expression are presented in Section 8.6.

8.4 Coverage probability for a typical OpB user

Due to the consideration of Rayleigh fading, the small-scale channel gain in the desired
link follows exponential distribution. Hence, the coverage probability of the typical user
can be readily expressed in terms of the LT of aggregate interference [12]. However, in this
case, exact characterization of the LT of aggregate interference is not trivial because of the
following reasons:
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Figure 8.7: CDF of the distance between the tagged BS and its nearest OpA BS.

1. Based on our discussion in Section 8.3.1, conditioned on the distance between the
tagged BS and the typical user, characterizing the distance distribution between the typical
user and its nearest OpA interfering BS is not trivial.

2. Due to the presence of PZs around each OpA BS, there is dependency in the locations
of OpA and OpB BSs. This dependency leads to correlation in the interference power per-
ceived at the typical user from both sets of BSs. In addition, characterizing the interference
contribution from OpB BSs while taking the PZs into account is not trivial.

3. Conditioned on the event that the tagged BS is always active, the MAP of the inter-
fering OpB BSs in ΦB gets affected, i.e. any OpB BS in the contention domain of the tagged
OpB BS remains inactive, which affects the interference field.

Circumventing the above problems, we provide fairly accurate expression for the LT of
interference using the following steps:
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1. Note that in the previous section, we have already addressed the first problem. In
Lemma 8.5, we have presented an approximate expression for the CDF of the RA

o conditioned
on RB

o .

2. To capture the correlation in the interference powers from the BSs in the vicinity of
the typical user, we determine the density of interfering OpA BSs conditioned on RB

o and
RA
o (Refer to Lemma 8.11). Further, we approximate the PHP ΦB by a non-homogeneous

PPP conditioned on RA
o and RB

o (Refer to Lemma 8.12).

3. We obtain the MAP of an interfering OpB BS conditioned on the event that the
tagged OpB BS is active (Refer to Lemma 8.13). This conditional MAP provides the retention
probability of an interfering BS in ΦB.

A flow diagram of the above sequence of steps is presented in Fig. 8.8.

Conditional distance distribution to
nearest OpA BS from typical user
(Lemma 5)

Conditional density of
OpA Interferers (Lemma 11)

Condtional density of Potential
OpB Interferers (Lemma 12)

Conditional MAP of interfering
OpB BSs (Lemma 13)

Conditional LT of interference
at typical User (Lemma 14)

Tagged OpB BS at xB

o
is active

Figure 8.8: Sequence of steps to obtain the LT of aggregate interference at the typical OpB user conditioned
on the distance to the tagged BS and the nearest OpA interfering user.

Conditional density of interfering OpA BSs

As per the assumption made in the system model, the locations of the interfering OpA
BSs follow a homogeneous PPP of density λA. However, due to the presence of exclusion
zone BRpz(xBo ), the density of OpA BS is zero in BRpz(xBo ). As mentioned in Section 8.3.1,
conditioned on the distance RB

o , the density of OpA BSs in the vicinity of the typical user is
dictated by both Event-1 and Event-2. Since characterizing the density of ΨA conditioned
on Event-1 is difficult, we only take into account Event-2 to obtain the density of ΨA. In
the following Lemma, we present this conditional density of interfering OpA BSs.
Lemma 8.11. Conditioned on the distances RB

o and RA
o , ΨA is characterized as a non-

homogeneous PPP with the density function

λ̃ΨA(x|rBo , rAo ) = E(x, λA, Rpz, r
B
o )1(x > rAo ) (8.40)

where E is given by (8.18) in Lemma 8.1.
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Proof: Let xBo be the location of the tagged BS and rBo = ‖xBo ‖. Since the tagged
OpB BS is active, there are no interfering OpA BSs in BRpz(xBo ), i.e. BRpz(xBo ) is a hole
in the PPP ΨA (See Fig. 8.9a). Hence, the density function given in (8.40) follows directly
from the application of Lemma 8.1 and the fact that all the interfering BSs are at a distance
greater than rAo from the typical user.

In Section 8.6, we verify through Monte Carlo simulations that the effect of above
approximation is negligible on the coverage probability result. Note that the aggregate
interference is dictated by the most dominant interference term (cf. [137] for a simulation
based verification). In this case, the interference contribution from the nearest OpA BS,
which is likely to be the most dominant interferer, is captured reasonably accurately. This
leads to fairly accurate approximation of total interference from the OpA BSs.

(a) An illustration for Lemma 8.11. (b) A representative diagram for
Lemma 8.12.

Figure 8.9: The diamond, crosses, and squares represent the locations of the typical OpB user, OpA BSs,
and OpB BSs, respectively. The location of the typical user is uBo = (0, 0) and the tagged OpB BS is
xBo = (rBo , 0).

Approximation of ΦB as a non-homogeneous PPP

As discussed earlier, since the PGFL of a PHP is not known, characterizing the LT of aggregate
interference from the BSs in ΦB is not trivial. Hence, we approximate the PHP ΦB by a
non-homogeneous PPP. First, we consider the parent PPP ΨB and determine its density
function taking into account the nearest PZ to the typical user [142]. Then, to capture the
effect of rest of the PZs in the network, we introduce independent thinning of points in ΨB

beyond the nearest OpA BS. Based on the above discussion, conditioned on RA
o and RB

o , we
characterize the density of ΦB, which is presented next.
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Lemma 8.12. Conditioned on the distances RA
o and RB

o , we approximate ΦB as a non-
homogeneous PPP with piece-wise density function given as

λ̃ΨB(x|rAo , rBo )
1

2πx

dΛΨB

(
Bx(o)|rAo , rBo

)
dx

exp(−πλAR2
pz1(x ≥ rAo )), (8.41)

where ΛΨB

(
Bx(o)|rAo , rBo

)
= H(x, rAo , r

B
o , Rpz) is the conditional intensity measure of the

PPP ΨB and H(x, rAo , r
B
o , Rpz) =

λBπ(x2 − (rBo )2) rAo +Rpz < rBo
λB(π(x2 − (rBo )2)−A(x,Rpz, r

A
o ) +A(rBo , Rpz, r

A
o )) rBo −Rpz < rAo < rBo +Rpz, r

B
o ≤ x ≤ rAo +Rpz

λBπ(x2 − (rBo )2 −R2
pz +

A(rBo ,Rpz,r
A
o )

π ) rBo −Rpz < rAo < rBo +Rpz, x ≥ rAo +Rpz

λBπ(x2 − (rBo )2) rAo > rBo +Rpz, x < rAo −Rpz
λBπ(x2 − ((rBo )2 +

A(x,Rpz,r
A
o )

π )) rAo > rBo +Rpz, r
A
o −Rpz ≤ x ≤ rAo +Rpz

λBπ(x2 − (rBo )2 −R2
pz) rAo > rBo +Rpz, x > rAo +Rpz,

(8.42)
where A(r, R, d) is defined in (8.17) and x > rBo .

Proof: Let xAo ∈ ΨA and xBo ∈ ΦB be the locations of the nearest OpA BS to the
typical user and the tagged OpB BS, respectively. Further, rAo = ‖xAo ‖ and rBo = ‖xBo ‖. This
Lemma can be proved in two steps. In the first step, we consider the baseline PPP ΨB from
which ΦB is obtained. Considering only the nearest PZ and the distance to the tagged BS,
the conditional intensity measure of ΨB is the average number of points in the region

C3(x,xBo ,x
A
o , Rpz) = Bx(uBo ) \ {BrBo (uBo ) ∪ BRpz(xAo ), (8.43)

which is illustrated as the shaded region in Fig. 8.9b. Hence, the conditional intensity
measure of ΨB is given as

ΛΨB

(
Bx(o)|rAo , rBo

)
= λB|C3(x,xBo ,x

A
o , Rpz)|, (8.44)

where |C| denotes the area of the region C. uBo and o are interchangeably used as it is
assumed that the typical user is located at the origin. Depending on the relative distances
rAo , r

B
o , and x, the conditional intensity measure is a piece-wise function given in (8.42). Now,

the corresponding conditional density function of ΨB is

λΨB(x|rAo , rBo ) =
1

2πx

dΛΨB

(
Bx(o)|rAo , rBo

)
dx

. (8.45)

In the second step, to account for the rest of the PZs in the network, independent thinning
of the BS locations in ΨA beyond the nearest OpA BS is performed. Combining both the
steps, we get the conditional density function of ΦB in (8.41).
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Conditional MAP of the interfering OpB BSs

Except the tagged BS, each BS in ΦB acts as a potential interfering BS, but only those
BSs who win contention w.r.t. other OpB BSs in ΦB will actually interfere. However, this
contention process is conditioned on the event that the tagged OpB BS is always active. In
the following Lemma, we derive the conditional MAP of an interfering BS located at xBi ∈ ΦB.
Lemma 8.13. Conditioned on the events that the tagged OpB BS at xBo = (rBo , 0) is active,
the conditional MAP of an interfering OpB BS located at xBi = (‖xBi ‖ cos(θxBi ), ‖xBi ‖ sin(θxBi )) ∈
ΦB is given as M(xBi |rBo ) =

f3(rBo ,x
B
o )

1− e−f3(rBo ,x
B
o )

[
1− e−f3(rBo ,x

B
i )

f3(rBo ,x
B
i )

− 1− e−f4(rBo ,x
B
i )

f4(rBo ,x
B
i )

]
2
(

1− exp
(
− τcsl(‖xBo −xBi ‖)

PB

))
(f4(rBo ,x

B
i )− f3(rBo ,x

B
i ))

, (8.46)

where

f3(rBo ,x
B
i ) =

∫ ∞
x=rB0

∫ 2π

θx=0

λBe
−
τcsl

(√
x2+‖xB

i
‖2−2x‖xB

i
‖ cos(θx−θ

xB
i

)

)
PB xdx, (8.47)

and

f4(rBo ,x
B
i ) =

∫ ∞
x=rBo

∫ 2π

θx=0

λB

(
1−

(
1− e−

τcsl

(√
x2+(rBo )2−2xrBo cos(θx)

)
PB

)

×
(

1− e−
τcsl

(√
x2+‖xB

i
‖2−2x‖xB

i
‖ cos(θx−θ

xB
i

)

)
PB

))
xdx.

(8.48)

Proof: This proof follows on the same lines as that of [43, Proposition 2]. Here, we
provide a brief sketch. The main assumption that we have made in this case is to ignore the
effect of all the PZs. Let IBo and IBj be the medium access indicators of the tagged BS and
the OpB BS located at xBj . Now,

P
[
IBj = 1

∣∣∣∣IBo = 1, rBo

]
=

P
[
IBj = 1, IBo = 1

∣∣∣∣rBo ]
P
[
IBo = 1

∣∣∣∣rBo ] . (8.49)

From [43, Proposition 2], P
[
IBj = 1, IBo = 1

∣∣∣∣rBo ] =

[
1− exp(−f3(rBo ,x

B
i ))

f3(rBo ,x
B
i )

− 1− exp(−f4(rBo ,x
B
i ))

f4(rBo ,x
B
i )

] 2
(

1− exp
(
− τcsl(‖xBo −xBi ‖)

PB

))
(f4(rBo ,x

B
i )− f3(rBo ,x

B
i ))

, (8.50)

and
P
[
IBo = 1

∣∣∣∣rBo ] =
1− exp(−f3(rBo ,x

B
o ))

f3(rBo ,x
B
o )

. (8.51)

Replacing (8.50) and (8.51) in (8.49), we obtain M(xBi |rBo ) presented in the Lemma.
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8.4.1 LT of interference and coverage probability

Using Lemmas 8.11, 8.12, and 8.13, we derive the LT of interference at the typical OpB user
conditioned on its distance to the tagged OpB BS and the nearest OpA BS.

Lemma 8.14. The approximate LT of aggregate interference at the typical user conditioned
on the distances RA

o and RB
o is given as

LIBagg(s|r
A
o , r

B
o , IBo = 1) = LIBAagg (s|r

A
o , r

B
o )LIBBagg (s|rAo , rBo , IBo = 1), (8.52)

where IBAagg and IBBagg represent the total interference at the OpB typical user from the OpA
and OpB BSs, respectively. In the above equation,

LIBBagg (s|rAo , rBo , IBo = 1) = exp

(
−

∞∫
x=rBo

2π∫
θ=0

λ̃ΨB(x|rAo , rBo )M(x(x, θ)|rBo )

l(x)(sPB)−1 + 1
dθxdx

)
, (8.53)

and

LIBAagg (s|r
A
o , r

B
o ) =

1

1 + sPA
l(rAo )

exp

(
− 2π

∞∫
y=rAo

λ̃ΨA(y|rAo , rBo )

l(y)(sPA)−1 + 1
ydy

)
. (8.54)

Proof: Please refer to Appendix D.7.

Next, using the LT of interference, we derive the SIR coverage probability for a typical
OpB user in the following Proposition.

Proposition 8.15. The SIR coverage probability for a typical OpB user at the origin is given
as

P(B)
c (T ) =

∞∫
rBo =0

∞∫
rAo =0

LIBagg

(
T l(rBo )

PB

∣∣∣∣rAo , rBo , IBo = 1

)
fRAo (rAo |rBo )fRBo (rBo )drAo drBo , (8.55)

where the fRBo (rBo ) and fRAo (rAo |rBo ) are given by (8.4) and (8.34), respectively.

Proof: Conditioned on the distances RA
o and RB

o , the SIR coverage probability is
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given as

P
[

PBh

l(rBo )IBagg
> T

∣∣∣∣rAo , rBo , IBo = 1

]
=P

[
h >

Tl(rBo )IBagg
PB

∣∣∣∣rAo , rBo , IBo = 1

]

=E

[
exp

(
−
T l(rBo )IBagg

PB

)∣∣∣∣rAo , rBo , IBo = 1

]

=LIBagg

(
T l(rBo )

PB

∣∣∣∣rAo , rBo , IBo = 1

)
, (8.56)

where the last step follows from the definition of the LT. The expression for the LT is
presented in Lemma 8.14. Since the expression only depends on the distances RB

o and RA
o ,

the final coverage probability expression is obtained by deconditioning the LT using joint
distribution of RA

o and RB
o .

8.5 Coverage probability for a typical OpA user

In this section, we present the coverage probability expression for a typical OpA user, who
is served by the nearest OpA BS (the tagged OpA BS). Similar to the approach followed in
the previous section, we capture the correlation in the interference powers from OpA and
OpB BSs in the vicinity of the typical user. In addition, we evaluate the LT of interference
from OpB BSs following the similar method as described in the previous section. Most of
the theoretical expressions presented in this section such as conditional density of interferers
can be proved on the similar lines of the proofs presented in the previous section. Hence, to
avoid repetitions, instead of providing detailed proofs we just present proof sketches.

Approximation of ΦB as a non-homogeneous PPP

To begin with, in the following Lemma, we approximate the PHP ΦB by a non-homogeneous
PPP and derive its density function conditioned on the distance between the typical OpA
user and the tagged OpA BS.

Lemma 8.16. Conditioned on the serving distance RA
o between the typical user and the

tagged OpA BS, ΦB is approximated as a non-homogeneous PPP with density function

λ̃ΨB(x|rAo ) =
1

2πx

dΛΨB

(
Bx(o)|rAo

)
dx

exp(−πλAR2
pz1(x ≥ rAo )), (8.57)

where ΛΨB

(
Bx(o)|rAo

)
= G(x, λB, Rpz, r

A
o ) is the conditional intensity measure of the PPP

ΨB and G is defined in Lemma 8.1.
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Proof: Proof of this Lemma can be done on the similar lines as that of Lemma 8.12.
Let the tagged OpA BS is located at xAo and rAo = ‖xAo ‖. In the first step, we obtain the
intensity measure of ΨB conditioned on the location of the nearest PZ BRpz(xAo ) to the
typical user (Refer Fig. 8.2a). Since we are considering only the nearest PZ, i.e. BRpz(xAo ),
the conditional intensity measure is obtained directly by applying Lemma 8.1 and is given
as

ΛΨB

(
Bx(o)|rAo

)
= G(x, λB, Rpz, r

A
o ). (8.58)

Corresponding conditional density function is given as

λΨB(x|rAo ) =
1

2πx

dΛΨB

(
Bx(o)|rAo

)
dx

= E(x, λB, Rpz, r
A
o ), (8.59)

where E is defined in Lemma 8.1. In the next step, to account for the rest of the PZs, inde-
pendent thinning of the points in ΨB is performed with retention probability exp(−πλAR2

pz)
beyond the tagged OpA BS, which is at a distance rAo from the typical user.

Distribution of distance to the nearest active OpB BS

Conditioned on distance RA
o , we are interested in the statistical characterization of the

distance between the typical user and the nearest interfering OpB BS. In Fig. 8.2a, this
distance is denoted by dBo , which is a realization of the random variable DB

o . However,
obtaining the distribution of DB

o is not straightforward due to the following reasons:

1. the OpB BSs form a PHP process whose contact distribution is not known, and

2. due to contention based channel access, the nearest OpB BS in the PHP ΦB to the
typical user may not be the nearest active interfering BS.

To derive the distance distribution by exactly considering both the things mentioned above
is left as a promising direction for future work. Instead, in the following Lemma, we derive
an approximate distance distribution leveraging the conditional density function of ΦB (in
Lemma 8.16) and following the result presented in [144]. Note that, in contrast to our
scenario, in [144] the locations of the contending BSs follow a homogeneous PPP.

Lemma 8.17. Conditioned on the serving distance RA
o between the typical user and the

tagged OpA BS, the PDF of the distance DB
o between the typical user and the nearest active

OpB BS is given as

fDBo (dBo |rAo ) =2πλ̃ΨB(dBo |rAo )η(dBo |rAo )dBo exp

−2π

dBo∫
y=0

λ̃ΨB(y|rAo )η(y|rAo )ydy

 , (8.60)
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where λ̃ΨB(y|rAo ) is defined in Lemma 8.16, η(y|rAo ) is the probability that a point located at
a distance y from the typical user wins contention, which is given as

η(y|rAo ) =
1− exp(−f5(y, rAo ))

f5(y, rAo )
, (8.61)

and

f5(y, rAo ) =

∫ ∞
z=y

∫ 2π

θ=0

λ̃ΨB(z|rAo ) exp

(
−PBτcs

l(z2 + y2 − 2zy cos(θ))

)
dθydy. (8.62)
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Figure 8.10: (a) An illustration for Lemma 8.17. The dotted region represents the hypothetical contention
domain of the OpB BS at yBo . The contention shape is illustrated as irregular due to channel fading. (b)
CDF of the distance between the nearest active OpB interferer and the typical user. Rpz = 250 m, τcs = −80
dBm/10 MHz. Solid lines and markers represent the simulation and theoretical results, respectively.

Proof: Please refer to Appendix D.8.

Although an approximation, above distance distribution is valid for a useful range of
system parameters. In Fig. 8.10b, the theoretical CDF of DB

o is compared with simulation
results. The theoretical expression for FDBo (dBo ) is given as

FDBo (dBo ) =

∞∫
rAo =0

dBo∫
z=0

fDBo (z|rAo )fRAo (rAo ) dz drAo . (8.63)

The density of interfering OpA BSs

In order to get the LT of the aggregate interference from OpA BSs, we need to take into
account the distance to the nearest active OpB BS. In the following Lemma, we derive the



Priyabrata Parida Chapter 8 162

density function for the interfering OpA BSs conditioned on RA
o and DB

o .

Lemma 8.18. Conditioned on the distances RA
o and DB

o , the piece-wise density function of
ΨA is given as

λΨA(x|rAo , dBo ) =
1

2πx

dΛΨA

(
Bx(o)|rAo , dBo

)
dx

, (8.64)

where ΛΨA

(
Bx(o)|rAo , dBo

)
= H(x, dBo , r

A
o , Rpz) is the conditional intensity measure of the

PPP ΨA and H is given by (8.42).

Proof: The proof of this Lemma can be done on the similar lines as that of
Lemma 8.12, and is hence skipped.

Using the conditional density functions of OpA and OpB BSs, and the distance to the
nearest active interfering OpB BS, we present the coverage probability of a typical user
served by OpA BS in the following proposition.

Proposition 8.19. The SIR coverage probability for a typical OpA user at the origin is given
as

P(A)
c (T ) =

∞∫
rAo =0

∞∫
dBo =0

LIAagg

(
T l(rAo )

PA

∣∣∣∣rAo , dBo ) fDBo (dBo |rAo )ddBo fRAo (rAo )drAo , (8.65)

where the PDFs fRAo (rAo ) and fDBo (dBo |rAo ) are given by (8.3) and (8.60), respectively, and the
conditional LT of interference at the typical user is given as

LIAagg
(
s|rAo , dBo

)
= LIAAagg

(
s|rAo , dBo

)
LIABagg

(
s|rAo , dBo

)
. (8.66)

In the above equation

LIAAagg
(
s|rAo , dBo

)
= exp

(
−2π

∫ ∞
x=rAo

λΨA(x|rAo , dBo )

l(x)(sPA)−1 + 1
xdx

)
, (8.67)

where λΨA(x|rAo , dBo ) is given in (8.64). Further,

LIABagg (s|r
A
o , d

B
o ) =

1

1 + sPB
l(dBo )

exp

(
−
∫ ∞
x=dBo

∫ 2π

θ=0

λ̃ΨB(x|rAo )M(x(x, θ)|dBo )

l(x)(sPB)−1 + 1
dθxdx

)
, (8.68)

where λ̃ΨB(x|rAo ) is given in (8.57). The expression forM(x(x, θ)|dBo ) is provided in Lemma 8.13.

Proof: This Proposition can be proved on similar line with Lemma 8.14 and Propo-
sition 1.
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8.6 Results and discussion

In this section, the approximations made in the theoretical results are validated by simula-
tions. Further, the performance analysis of both OpA and OpB network is also presented in
terms of metrics discussed in the system model. The path loss model given in (8.7) is used
for the system evaluation. Other system parameters are specified at appropriate places.

8.6.1 Performance analysis of OpB network

1. MAP of the tagged OpB BS: The effect of carrier sense threshold and protection zone radius
on the MAP of the tagged OpB BS is presented in Figs. 8.11a and 8.11b. Note that to evaluate
the lower bound of MAP presented in Lemma 8.10, the PDF of the contact distance of PHP
is necessary. However, as mentioned in the system model, the contact distance distribution
of PHP is an open problem, and for a given set of system parameters it is approximated
as Weibull distribution. Hence, the results presented in Figs. 8.11a and 8.11b are not lower
bounds in a true sense. However, as evident from the figures, the MAP evaluated using
Lemma 8.10 and the approximated Weibull distribution acts as a tight bound with respect
to different system parameters. In this case, the lower bound on the distribution of Ro,AB

presented in Lemma 8.8 is used. Further, the approximate result for MAP obtained from
Lemma 8.9 matches closely with simulations. In Fig 8.11a, in accordance with intuition, as
τcs increases, the MAP also increases since lesser number of BSs lie in the contention domain
of the tagged BS. In addition, MAP of the tagged OpB BS for varying protection zone radii
Rpz is presented in Fig. 8.11b. The effect of Rpz on MAP is less prominent compared to the
carrier sense threshold, especially for lower density of OpA BSs. Further, from Fig. 8.11b,
we observe that as λB increases, MAP reduces since more BSs contend for the channel. On
the other hand, by increasing λA, the average number of OpB BSs decreases in the network,
which improves the MAP of the tagged OpB BS.

2. Coverage probability for a typical OpB user: The SIR and the link rate coverage
probabilities for a typical OpB user are presented in Figs. 8.12a and 8.12b. A close match
between simulation and theoretical results is observed. Further, in both the cases, the
coverage probability decreases with increasing λA. This can be justified by the fact that by
increasing λA more interference is introduced into the network by the OpA BSs. Further,
the serving distance between the typical user and the tagged OpB BS gets larger as the
average number of OpB BSs reduces. On the other hand, increasing λB results in coverage
probability improvement as the distance between the typical user and the tagged BS reduces,
which improves the desired signal power.

3. Normalized ASE for OpB network: The effect of different system parameters on
normalized ASE of the OpB is presented in Figs. 8.13a and 8.13b. The ASE is normalized
w.r.t. λ̂B. From Fig. 8.13a, we observe that by increasing λB or reducing λA, the normalized
ASE improves. From Fig. 8.13b, it is clear that the impact of τcs on ASE is negligible beyond
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Figure 8.11: MAP of the tagged BS. (a) Rpz = 250 m, and (b) τcs = −80 dbm/10 MHz.
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Figure 8.12: Markers represent simulation results and solid lines represent the theoretical results obtained
from Proposition 8.15. Rpz = 250 m, τcs = −80 dBm/10 MHz, PA = PB = 30 dBm/10 Mhz.

a certain threshold. The reason behind this behavior can be explained by the fact that
by increasing τcs, the MAP of interfering BSs becomes unity, and the average interference
contribution from the OpB BSs saturates. Hence, the overall coverage probability does not
change with τcs.
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Figure 8.13: (a) Normalized ASE for different target SIR thresholds. τcs = −80 dBm/10 MHz, Rpz = 250
m. (b) Normalized ASE for different carrier sense thresholds. Target SIR threshold is 0 dB, Rpz = 250 m.
Lines and markers represent theoretical and simulation results, respectively. The MAP of the tagged BS is
evaluated using Lemma 8.9.

8.6.2 Performance analysis of OpA network

The SIR and the link rate coverage probabilities of the typical OpA user are presented
in Figs. 8.14a and 8.14b. A close match between the simulation and theoretical results is
observed. As expected, by increasing λA, the coverage probability improves in both the
cases.
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Figure 8.14: Markers represent simulation results and solid lines represent the theoretical results obtained
from Proposition 8.19. Rpz = 250 m, τcs = −80 dBm/10 MHz, PA = PB = 30 dBm/10 Mhz.
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8.6.3 Network ASE analysis

The effect of PZ radius on the ASE of both the operators as well as the overall network ASE

is presented in Fig. 8.15a. From the figure, it is clear that by increasing Rpz, overall ASE of
the network goes down as a lesser number of OpB BSs are present in the network. The effect
of OpB transmission power on the ASE is presented in Fig. 8.15b. In this figure, in order to
evaluate coverage probability using Proposition 8.19, the joint PDF fDBo ,RAo is obtained from
Monte-Carlo simulations. From the figure, it is clear that OpB ASE is a concave function
of PB. Hence, proper optimization of PB is necessary to maximize both network and OpB
ASEs.
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Figure 8.15: (a) Effect of Rpz on ASE. T = 0 dB, PA = PB = 30 dBm/10 MHz, τcs = −80 dBm/10 MHz,
λA = 5 × 10−6, λB = 10−5. The MAP of the OpB tagged BS is evaluated using Lemmas 8.10 and 8.8. (b)
Effect of PB on ASE. T = 0 dB, PA = 36 dBm/10 MHz, τcs = −80 dBm/10 MHz, λA = 5×10−6, λB = 10−4.
The MAP of the OpB tagged BS is evaluated using Lemma 8.9.

8.6.4 Performance in presence of MIMO-enabled GAA BSs

The effect of the presence of multiple antennas at the GAA BS on average GAA user SE
is presented in Fig. 8.16. In the system model, we consider that in presence of multiple
antennas, the typical GAA BS at og is allowed to operate in a PZ, if it can successfully
nullify the interference for the PAL users that lie in BRpz(og). We assume that each GAA
BS has the perfect knowledge of the channels of the PAL users in its vicinity and employs
partial zero-forcing precoding scheme. Under these assumptions, for the typical GAA BS,
if the number of PAL users in BRpz(og) is equal to or more than the number of available
antennas then it will not be able to successfully cancel the interference to all the users. In
such scenarios, if the GAA BS lies in one of the PZs, then it stays silent. As observed from



Priyabrata Parida Chapter 8 167

the figure, with increasing number of antennas the average user SE improves owing to the
increase in the beamforming gain.
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Figure 8.16: Effect of number of GAA BS antennas on average GAA user SE. PA = PB = 30 dBm/10
MHz, τcs = −80 dBm/10 MHz, λA = 10−5, λB = 5× 10−5.

8.7 Conclusions and future extension

In this work, we have presented the first comprehensive analysis of the co-existence between
a licensed and unlicensed operator in the licensed band of the CBRS spectrum. Using tools
from stochastic geometry, we have modeled the network as per the key recommendations
from the FCC. Further, we have presented useful lower bound for the MAP of a serving
unlicensed BS and fairly accurate coverage probability expressions for typical users of the
licensed operator and unlicensed operator. The key technical novelty of this work lies in the
way the correlation in the interference powers from licensed and unlicensed users is captured
by accurately considering the local neighbourhood around the typical user. Using the derived
expressions, we have studied the effect of PZ radius and transmission power of the unlicensed
BSs on the area spectral efficiency of the network. One of the natural extensions of this work
is network performance analysis considering an open access policy, and cooperation between
the licensed and unlicensed operators. Further analysis is also possible in this direction by
considering the presence of a large number of antennas at the licensed and unlicensed BSs.
Other fundamental extensions include handling distance dependent power control by the
unlicensed BSs, and consideration of directional CSMA-CA protocol [145], which can be
used to study mmWave systems.



Chapter 9

Conclusion and Outlook

In this chapter, we summarize the main contributions of this dissertation and discuss a few
potential future directions.

9.1 Summary

Massive MIMO (mMIMO) is at the forefront of different technologies to meet the variegated
and often conflicting quality of service requirements of the 5G and beyond networks. There
are two different architectures to implement mMIMO: (1) the cellular architecture and (2) the
cell-free architecture. In both these architectures, due to the reuse of a finite number of pilot
sequences throughout the network, pilot contamination becomes one of the performance-
limiting factors. Hence, efficient techniques to mitigate pilot contamination are necessary,
which was one of the main objectives of this dissertation. Further, the performance of the
cell-free architecture is also limited by the finite capacity of the fronthaul links among the
BBU and the APs. Understanding the impact of the finite capacity fronthaul links on system
performance is necessary to provide useful system design guidelines. One can, in principle,
model and answer the relevant questions through a simulation-based framework. However,
the success of stochastic geometry over the last decade to model and analyze wireless net-
works makes it an appealing alternative to study the mMIMO systems as well. Hence, in this
dissertation using appropriate statistical constructs from the stochastic geometry literature
we modeled, analyzed, and provided design insights for both the architectures of mMIMO.
In addition, we also have provided a stochastic geometry-inspired pilot allocation algorithm
that highlights the versatility of these statistical tools to optimize wireless networks.

In Chapter 2, we considered a cellular mMIMO system with an asymptotically large
number of antennas at each BS such that the network operates at the pilot contamination-
induced interference regime. Further, to reduce the effect of pilot contamination, we con-
sidered the fractional pilot reuse (FPR) scheme, which is a low complexity and distributed
pilot allocation scheme. The optimal partition of the total number of available pilots for
the cell-center and cell-edge users is essential for the successful implementation of the FPR
scheme. To answer this question, we first modeled the network using a stochastic geometric
construct, namely the Johnson-Mehl (JM) cell, which results in a distance-based partition
of each Poisson-Voronoi cell in the network into cell-edge and cell-center regions. Further,

168
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we derived key properties, such as area distribution of the typical JM cell and the pair
correlation function (PCF) of interfering users in the network, that were useful in analytical
characterization of SINR coverage probability and average spectral efficiency (SE) of a ran-
domly selected cell-center/cell-edge user in the typical cell. From our system analyses, we
presented a pilot partitioning guideline that ensures that the cell-edge user performance can
be improved with negligible performance degradation for the-cell center users compared to
the unity pilot reuse.

The concept of JM cells presented in Chapter. 2, can be used to model a variety of
wireless networks such as fractional frequency reuse, soft pilot reuse (SPR). In Chapter 3,
we used JM cells to model a cellular network where the user and BS locations are spatially
coupled, i.e., the user locations are in the vicinity of its serving BS. Further, using the theory
developed in Chapter. 2, we derived the uplink SIR coverage probability and average SE of
the typical user in the network. One of the key conclusions of the work is that compared to
the proposed model the MCP-based model, which is popular for modeling clustered BS-user
location, underestimates the coverage probability.

As mentioned above, JM cells can also be used to model and analyze an mMIMO
system with SPR. The first step to do so is to capture the uplink power control in the
analysis, which was carried out in Chapter. 4. We considered a network with unity pilot
reuse and fractional power control (FPC) scheme. With the application of the displacement
theorem, we presented the coverage probability and average user SE for the typical user in
the network.

In the next part of the dissertation, we focused on the performance analysis of cell-free
mMIMO systems. Similar to the cellular architecture, pilot contamination becomes one of
the performance-limiting factors of the cell-free network as well. One useful approach to
reduce the effect of pilot contamination is to ensure a minimum distance among the set
of co-pilot users. A direct consequence of this pilot allocation scheme is the formation of
a new point process, namely the multilayer random sequential adsorption (RSA) process,
which constitutes the locations of the users that are assigned a pilot. To facilitate theoretical
analyses, we need information regarding the density and the pair correlation function of this
new point process. In Chapter 5, we formally defined the multilayer RSA point process as a
space-time process. For the 1D version of this process, we presented two useful approxima-
tions to obtain the density of deposited rods for a given layer. While our first approach is
more amenable to numerical evaluation, the second approach is more accurate and provides
useful information regarding the gap density function. We also extended the first approxi-
mation to obtain the density of circles in a given layer for the 2D version of this multilayer
RSA process.

Based on the multilayer RSA process of Chatper 5, in Chapter 6, we proposed a dis-
tributed pilot allocation scheme to reduce the effect of pilot contamination in a cell-free
network. Further, using the analytical result for the 2D version of the problem derived in
Chatper 5, we also presented an accurate analytical expression for the typical user pilot as-
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signment probability that is useful from the perspective of network dimensioning. To bench-
mark the performance of the RSA-based scheme, we also proposed two optimization-based
centralized pilot allocation schemes. With respect to the first centralized scheme, which
partitions the users in the network in such a way that minimum distance among the sets
of co-pilot users is maximized, the RSA-based scheme provides competitive average user SE
performance. The second centralized pilot allocation scheme, which is based on the branch-
and-price algorithm, provides a near-optimal solution in terms of sum user SE for a relatively
small system with tens of users. The performance of the RSA-based scheme, despite its dis-
tributed implementation, is appreciable with respect to the near-optimal branch-and-price
scheme. Owing to its competitive performance and scalable distributed implementation,
the RSA-based scheme is an attractive algorithm for pilot allocation in a cell-free mMIMO
network where the performance is limited by pilot contamination.

In Chapter 7, we modeled and analyzed a cell-free mMIMO network with finite fronthaul
capacity. Due to the finite capacities of the links, compression error gets introduced into the
system that results in user SINR degradation. Taking into account the compression error,
we derived an achievable user rate conditioned on the user and access point (AP) locations.
Further, using tools from stochastic geometry, we derived rate coverage expressions for a
randomly selected user in the network for the following two different architectures: the
traditional finite architecture where each AP serves all the users in the network and the
user-centric architecture where each user is served by a few nearest APs. An intermediate
useful result is the derivation of the load distribution results for the typical AP and the
tagged AP in the user-centric architecture. These results can also be used to study the
degree distribution in a bipartite random geometric graph.

The flavors of mMIMO that are discussed in this dissertation has already been and
will be implemented in the Sub-6 GHz frequency range. Owing to the sparsity of frequency
resources in this spectrum range, spectrum sharing is encouraged. In the final chapter of the
dissertation, we modeled and analyzed the performance of a spectrum sharing network that
operates in the CBRS band. Our key results were the derivation of useful lower bound for the
medium access probability of a serving unlicensed BS and coverage probability expressions
for the typical users of the licensed and unlicensed operators. Using the derived expressions,
we have studied the effect of protection zone radius and transmission power of the unlicensed
BSs on the area spectral efficiency of the network. Further, we also highlight the usefulness
of MIMO-enabled BSs over omni-directional transmission.
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9.2 Outlook

9.2.1 Performance analysis of soft pilot reuse scheme

In Chapter 2, we analyzed the performance of an mMIMO system that employs FPR to
reduce the effect of pilot contamination. A more promising method to reduce the effect of
pilot contamination for the cell-edge users is SPR, where instead of following a reuse pattern
for the set of cell-edge pilots, all the cell-edge pilots are used in each cell of the network.
However, the pilot transmission powers in adjacent cells are controlled using a certain reuse
pattern [146]. This scheme is reminiscent of the soft frequency reuse (SFR) scheme in the
LTE networks. One of the potential future works is to develop suitable theoretical results to
analyze the performance of the SPR scheme in an mMIMO network. The derived theoretical
results can also be applied to analyze other co-channel interference mitigation schemes such
as SFR. The result derived in Chapters 2 and 4 can be leveraged with suitable modifications
to achieve this objective.

9.2.2 Extension of the multilayer RSA process to three-dimension

In Chapter 5, we derived the density results for the 1D and 2D versions of the multilayer
RSA process. A promising future direction is to extend the results to the three-dimension.
Another promising direction is to derive the PCF results. The new set of results can be applied
to model contention-based channel access in an unmanned area vehicle (UAV) network.
Further, these results will also be useful in modeling and analyzing UAV-empowered cell-
free networks where the distributed pilot assignment scheme proposed in Chapter 6 is used.

9.2.3 Impact of fronthaul topology and compression method on
cell-free network

In Chapter 7, we considered a star topology for the fronthaul network where each AP is
connected to a central BBU. However, in most practical scenarios, laying out fiber to all the
AP from the BBU is not feasible. Therefore, a multihop topology is usually preferred [147].
It would be interesting to analyze the benefits of the multihop topology over the star topol-
ogy in terms of capital expenditure. Further, system analysis is more interesting as there
are more degrees of freedom in fronthaul capacity dimensioning compared to the star topol-
ogy. In addition, in this dissertation, we focused on a point-to-point compression scheme.
However, there are many sophisticated compression algorithms available in the literature.
Understanding the impact of these algorithms on cell-free mMIMO system performance is
also another promising research direction.
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9.2.4 Comprehensive analysis of mMIMO-enabled CBRS systems

In Chapter 8, we laid the foundation for modeling and analysis of the CBRS system that
takes into account the FCC guidelines. Further, we also provided the initial promising results
on the application of MIMO to improve the average SE of the users of the unlicensed network.
However, there lie many possible extensions of this work. First, in the presence of a large
number of antennas at unlicensed BSs, the contention-based channel access mechanism needs
modification so that the hidden node and exposed node problems can be mitigated. Further,
the impact of modified contention-based channel access on the unlicensed BS medium access
probability also needs to be analyzed. These new results can be used to gain insights on
the possibility of relaxing a few of the FCC recommendations leading to more opportunities
for spectrum sharing. Second, in Chapter 8, we have limited our focus to deriving the
area spectral efficiency result. In the future extension, the load distribution for the typical
unlicensed BS can be derived that will subsequently be used to obtain the average user SE.
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Appendix A

Proofs of Lemmas and Remarks of
Chapter 2

A.1 Proof of Lemma 2.1

The mean area of the CE region can be expresses as

E [|XE(o, Rc,Ψb)|] =E

 ∫
x∈R2

1(x∈VΨb
(o)∩BCRc (o))dx


(a)
=

∫
x∈R2∩BCRc (o)

exp(−πλ0‖x‖2)dx

=2π

∫ ∞
r=Rc

exp(−πλ0r
2)rdr,

where (a) follows from that fact that a point located at a distance ‖x‖ from the origin
belongs to VΨb(o), if there are no other BSs in B‖x‖(x). Solving the final integral gives us
the expression for the mean in (2.22). Similarly, the second moment of the CE area can be
expressed as

E
[
|XE(o, Rc,Ψb)|2

]
=E

 ∫
x∈R2

1(x∈VΨb
(o)∩BCRc (o))dx

∫
y∈R2

1(y∈VΨb
(o)∩BCRc (o))dy


=

∫
x∈R2

∫
y∈R2

E
[
1(x∈VΨb

(o)∩BCRc (o),y∈VΨb
(o)∩BCRc (o))

]
dxdy

(b)
=

∫
(x,y)∈R2∩BCRc (o)×R2∩BCRc (o)

e−λ0|B‖x‖(x)∪B‖y‖(y)|dxdy

=2π

∞∫
r1=Rc

∞∫
r2=Rc

2π∫
u=0

e−λ0V (r1,r2,u)dur2dr2r1dr1,

where (b) follows from the fact that if points x and y belong to VΨb(o), then there are
no other BSs in the region B‖x‖(x) ∪ B‖y‖(y), and the last step follows from changing the
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integration limits from Cartesian to polar coordinates.

A.2 Proof of Lemma 2.8

One approach to deriving gCC
1 (r, κ) is to first determine the Ripley’s K-function KCC

1 (r, κ)

and then use the following relationship: gCC
1 (r, κ) =

dKCC
1 (r,κ)/dr

2πr
. Note that points in Φu,CC

are likely to exhibit repulsion w.r.t. o as these points do not lie in VΨb(o). Since the
total interference is likely to be dominated by the nearby users, our main interest lies in
characterizing gCC

1 (r, κ) for small r. Note that gCC
1 (r, κ)→ 1 as r � 0. Recall that for a point

process Φ of density λ the Ripley’s K-function is defined as Kλ(r) = E [NΦ(Br(o))] /λ [10],
where NΦ(Br(o)) denotes the number of points of Φ that lie in Br(o). In this case, the
K-function is given as KCC

1 (r, κ) = E
[
NΦu,CC

(
∪x∈Φb(Br(o) ∩ XC(x, κ/

√
πc2,Ψb))

)]
. Now,

KCC
1 (r, κ) ' E

[
NΦu,CC (Br(o) ∩ XC(y, κ/

√
πc2,Ψb))

]
, r → 0, (A.1)

where ' denotes approximation that becomes better asymptotically, y is the nearest BS
to the typical BS at o. Without loss of generality, we assume that y = (‖y‖, 0). As per
our construction of Φu,CC, we are concerned with only one uniformly distributed point in
XC(y, κ/

√
πc2,Ψb) lying in the region Br(o)∩XC(y, κ/

√
πc2,Ψb). Hence, we write (A.1) as

KCC
1 (r, κ) 'E

[
|Br(o) ∩ XC(y, κ√

πc2
,Ψb)|

|XC(y, κ√
πc2
,Ψb)|

]
= E

[
SC(rm, r, κ)

XC0(1, κ√
πc2

)

]

≈ERm [SC(rm, r, κ)]E
[
XC0(1,

κ
√
πc2

)−1

]
,

where SC(rm, r, κ) denotes the area of the region Br(o) ∩ BRc(y) ∩ ((R− rm)+ × R), and
the last approximation follows from independence assumption between SC(rm, r, κ) and
XC0(1, κ/

√
πc2)−1. Now, using the result presented in Appendix A.3, we write

ERm [SC(rm, r, κ)] ' 1(Rc > r)
π2r4

2
+ 1(Rc ≤ r)π2R2

cr
2 − π2R4

c

2
, r → 0, (A.2)

where Rc = κ/
√
πc2. The first inverse moment of XC0(1, κ/

√
πc2) can be evaluated numeri-

cally using the approximated distribution presented in Sec. 2.3. Now, the K-function is given
as

KCC
1 (r, κ) '


π2r4

2
E
[
XC0(1,

κ
√
πc2

)−1

]
Rc > r, r → 0

(π2R2
cr

2 − π2R4
c

2
)E
[
XC0(1,

κ
√
πc2

)−1

]
Rc ≤ r, r → 0,
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and the PCF is given as

gCC
1 (r, κ) =

dKCC
1 (r, κ)

2πrdr
'


πr2E

[
XC0(1,

κ
√
πc2

)−1

]
Rc > r, r → 0

πR2
cE
[
XC0(1,

κ
√
πc2

)−1

]
Rc ≤ r, r → 0.

Note that as Rc → 0, the 0-th BSs observes user locations that are almost identical to BS
locations, which is a homogeneous PPP. In this case, when Rc → 0, E

[
XC0(1, κ/

√
πc2)−1

]
'

1
πR2

c
. Hence, gCC

1 (r, κ)→ 1 as expected for a homogeneous PPP.

Using the asymptotic result that 1− exp(−u) ' u as u→ 0, we write

gCC
1 (r, κ) '

(
1− e

−πr2E
[
XC0

(
1, κ√

πc2

)−1
])
1(r < Rc) + 1(r ≥ Rc),

as r → 0. Accordinng to the simulation based observation mentioned in [61], due to the
condition r → 0, the Voronoi cell VΨb(y) is skewed whose area is likely to be half of the
area of a typical Voronoi cell. Similar argument can be made for the area of the CC
region as well. Hence, a factor of 2 needs to be introduced for the first condition. Us-
ing this fact, for any value of r, a reasonable approximation for the PCF is gCC

1 (r, κ) ≈
1− exp(−2πr2E

[
XC0(1, κ/

√
πc2)−1

]
).

A.3 Proof of (A.2)

Depending on the value of Rc and r we have the following two cases of interest:
Case 1: r < Rc: The result for this case is obtained from [61, Lemma 2], and is given as

ERm [SC(rm, r, κ)] ' π2r4

2
, r → 0.

Case 2: r ≥ Rc: In this case, the area of the region Br(o) ∩ XC(y, κ/
√
πc2,Ψb) is given

as

SC(rm, r, κ) =


r2

(
u− sin 2u

2

)
+R2

c

(
v − sin 2v

2

)
−(wR2

c − rm
√
R2
c − r2

m), Rc ≥ rm

r2u− r2

2
sin 2u+R2

cv −
R2
c

2
sin 2v, Rc < rm,



Priyabrata Parida Appendix A 177

where Rc = κ/
√
πc2, u = cos−1

(
r2+4r2

m−R2
c

4rrm

)
, v = cos−1

(
R2
c+4r2

m−r2

4Rcrm

)
, and w = cos−1

(
rm
Rc

)
.

Averaging over the random variable Rm, we get

E [SC(rm, r, κ)] = πR2
c

(r−Rc)/2∫
0

fRm(rm)drm +

(r+Rc)/2∫
(r−Rc)/2

SC(rm, r, κ)fRm(rm)drm,

where we have used the fact that for r > 2rm +Rc, SC(rm, r, κ) = πR2
c . Further, note that for

2rm > r+Rc, SC(rm, r, κ) = 0. Hence, the upper limit is introduced to consider the values of
Rm for which SC(rm, r, κ) 6= 0. In addition, we use the asymptotic approximation fRm(rm) =
8πrm exp(−4πr2

m) ' 8πrm(1−4πr2
m), as rm → 0. After performing the integration, we obtain

E [SC(rm, r, κ)] 'π
2R2

cr
4

2
− π2R4

cr
2

2
+ π2R2

cr
2 −

(
π3R2

cr
4

2
+
π2R4

c

2
+
π3R6

c

2

)
' π2R2

cr
2 − π2R4

c

2
, r → 0.

This completes the proof of (A.2).

A.4 Derivation of Lemma 2.14

The proof can be done on the similar lines as that of Appendices A.2 and A.3. In this case,
the Ripley’s K-function is given as

KCE
1 (r, κ) ≈ ERm

[
SE(rm, r, κ)|EC3

]
E

[
XE0

(
1,

κ
√
πc2

)−1 ∣∣∣∣EC3
]
, r → 0, r > Rc.

Asymptotically, conditioned on EC3 , the distribution of Rm is given as

FRm(rm|RM > Rc) =
P [Rm ≤ rm, RM > Rc]

P [RM > Rc]
' P [Rm ≤ rm] , Rc → 0.

The condition Rc → 0 is of interest to us as our goal is to find the PCF for r → 0, and r > Rc.
Now, the following expectation

ERm
[
SE(rm, r, Rc)|EC3

]
'

r∫
0

A1(r, rm, Rc)dFRm(rm)−
(r−Rc)/2∫

0

A2(r, rm, Rc)dFRm(rm)

−
(r+Rc)/2∫

(r−Rc)/2

A2(r, rm, Rc)dFRm(rm)−
Rc∫
0

A3(r, rm, Rc)dFRm(rm)
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=
π2r4

2
+
π3r6

2
− π2R2

cr
4

2
+
π2R4

cr
2

2

− π2R2
cr

2 +
π3R2

cr
4

2
+
π2R4

c

2
+
π3R6

c

2

'π
2(r4 +R4 − 2R2

cr
2)

2
,

where the last step follows from neglecting the 6-th order terms. In the previous expression

A1(r, rm, Rc) =r2 arccos
rm
r
− rm

√
r2 − r2

m,

A2(r, rm, Rc) =

(
r2u− r2 sin(2u)

2
+R2

cv −
R2
c sin(2v)

2

)
1
(
|2rm − r| ≤ Rc

)
+ πR2

c1
(
rm <

r −Rc

2

)
,

A3(r, rm, Rc) =

(
R2
c arccos

(
rm
Rc

)
− rm

√
R2
c − r2

m

)
×

1 (rm ≤ Rc) .

Using the above result, the Ripley’s K-function is given as

KCE
1 (r, κ) ' π2 (r2 −R2

c)
2

2
E
[
XE0(1,

κ
√
πc2

)−1

∣∣∣∣EC3 ] , r > Rc, r → 0. (A.3)

Hence, the PCF is given as

gCE
1 (r, κ) =

dKCE
1 (r, κ)

2πr dr

'π
(
r2 −R2

c

)
E

[
XE0

(
1,

κ
√
πc2

)

)−1 ∣∣∣∣EC3
]

≈
14π (r2 −R2

c)P
[
EC3
]

5 exp(−πR2
c)

,

where the intuition for the approximation in the last step follows from Jensen’s inequality

E

[
XE0

(
1,

κ
√
πc2

)−1 ∣∣∣∣EC3
]
≥ 1

E
[
XE0

(
1, κ√

πc2

) ∣∣∣∣EC3 ] = exp(πR2
c)P
[
EC3
]
.

From [61], when Rc = 0,E
[
XE0(1, κ√

πc2
)−1
]
≈ 14/5. Hence, for Rc → 0, we approximate

E
[
XE0(1,

κ
√
πc2

)−1|EC3
]
≈ 14/5 exp(πR2

c)P
[
EC3
]

= 14/5 exp(κ2/c2)P
[
EC3
]
.

This completes the proof of the Lemma.
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Proofs of Lemmas and Remarks of
Chapter 4

B.1 Proof of Lemma 4.5

Proof: The intensity measure of the PPP is defined as Λµ (B(0, t)) = E [µu (B(0, t))]

= 2πλ0

∫ ∞
0

P
[
r/dεjj ≤ t, r > djj

]
rdr

= 2πλ0

∫ ∞
0

Edjj
[
1
(
djj < r ≤ tdεjj

)]
rdr

(a)
= 2πλ0

t
1

1−ε∫
y=0

fdjj(y)

[∫ tyε

y

rdr

]
dy

(b)
= (πλ0)1−εt2

πλ0t2/(1−ε)∫
0

uεe−udu−
πλ0t2/(1−ε)∫

0

ue−udu

(c)
= (πλ0)1−εt2ΓL

(
1 + ε, πλ0t

2
(1−ε)

)
− ΓL

(
2, πλ0t

2
(1−ε)

)
, (B.1)

where the (a) follows from interchanging integration and expectation, and taking the limits
of y to make sure that y ≤ tyε; (b) follows from solving the inner integral and replacing
πλ0y

2 = u; and (c) follows from the definition of lower incomplete gamma function. Note
that the intensity function and intensity measure are related by

2π

∫ t

0

λµ(r)rdr = λµ (B(0, t)) .

Hence, the intensity function is given as

λµ(t) =
d

dt

Λµ (B(0, t))

2πt
=

(πλ0)1−ε

cεπ
ΓL(1 + ε, πcλ0t

2/(1−ε)). (B.2)

This completes the proof of Lemma 4.5.
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B.2 Proof of Lemma 4.7

Proof: The expected interference conditioned on the distance of the most dominant

interferer is given as E
[ ∑
ûj∈µu\û1

d̂−2α
0j |d̂01

]

(a)
=2π

∞∫
d̂01

r−2αλµ(r)rdr = 2π

∞∫
d̂01

r−2α+1 (πλ0)1−ε

π
ΓL(1 + ε, πλ0r

2/(1−ε))dr

=2(πλ0)1−ε

∞∫
r=d̂01

r−2α+1

 πλ0r2/(1−ε)∫
u=0

uε exp(−u)du

 dr

(b)
=2(πλ0)1−ε

( πλ0d̂
2/(1−ε)
01∫

u=0

uε exp(−u)

∞∫
r=d̂01

r−2α+1drdu

+

∞∫
u=πλ0d̂

2/(1−ε)
01

uε exp(−u)

∞∫
r=(u/(πλ0))(1−ε)/2

r−2α+1drdu

)

where (a) follows from the application of Campbell’s formula, (b) follows from the change in
order of integration, and the expression (4.15) in the Lemma follows from solving the inner
integral and using definition of lower and upper incomplete gamma functions in the last step.

B.3 Proof of Lemma 4.3

Proof: Following the standard definition the characteristic function of aggregate
interference is given as

ϕIagg(w) = E
[
ejwIagg

]
= E

[
e
jw
∑

uj∈Ψu
d−2α

0j d2αε
jj 1(d0j>djj)

]
= E

[ ∏
uj∈Ψu

ejwd
−2α
0j d2αε

jj 1(d0j>djj)
]

(a)
= e−2πλ0

∫∞
0 (1−Edjj [exp(jwd2αε

jj r−2α1(djj<r)])rdr (B.3)

= e
−2πλ0

∞∫
r=0

(
1−

r∫
y=0

fdjj (y) exp
(
jw r−2α

y−2αε

)
dy−

∞∫
y=r

fdjj (y)dy
)
rdr

, (B.4)



Priyabrata Parida Appendix B 181

where (a) follows from the application of probability generating functional of PPP. The
expression in Lemma 4.3 follows from substituting the expression for the PDF of fdjj(y) in
the above expression.



Appendix C

Proof of Lemma of Chapter 7

C.1 Proof of Lemma 7.3

The proof of this lemma is based on a lower bound that is well known in the mMIMO
literature (cf. [148, Lemma 2], [149]). From (7.3), we write ydlo as ydlo =

√
ρd

∑
rl∈Φro

√
ηlo

E
[
‖ĝlo‖2

]
√
Nγlo

qol︸ ︷︷ ︸
T1: Desired signal

+
√
ρd

∑
rl∈Φro

√
ηlo

(
‖ĝlo‖2 − E

[
‖ĝlo‖2

])
√
Nγlo

qol︸ ︷︷ ︸
T2: Beamforming uncertainity

+
∑

rl∈Φro

‖ĝlo‖2√
Nγlo

√
ρdηloq̃ol︸ ︷︷ ︸

T3: compression error

+
∑

rl∈Φro

√
ρdηlo

g̃Tloĝ
∗
lo√

Nγlo
q̂ol︸ ︷︷ ︸

T4: chanenel estimation error

+
∑

rl∈Φro

∑
ui∈Ψul\{uo}

√
ρdηli

gTloĝ
∗
li√

Nγli
q̂il︸ ︷︷ ︸

T5: inter user interference

+
∑

rl∈ΦCro

∑
ui∈Ψul\Po

√
ρdηli

gTloĝ
∗
li√

Nγli
q̂il︸ ︷︷ ︸

T6: interfering AP signal

+
∑

ui∈{Po\{uo}}

∑
rl∈Φri

√
ρdηli

gTloĝ
∗
li√

Nγli
q̂il︸ ︷︷ ︸

T7: pilot contamination

+no, (C.1)

where we assume that the user uo has the average channel statistics with respect its serving
APs, Po contains the user locations that use the same pilot sequence as uo. From (C.1),
it can be shown that the desired signal term is uncorrelated to the rest of the terms. An
achievable rate is obtained by using the fact that mutual information is minimized when the
uncorrelated signals to the desired signal is replaced by independent Gaussian noise [149] with
variance equal to the sum of variances of undesired signals. Hence, the SINR corresponding
to this lower bound on capacity is given as

SINRo =
E [|T1|2]∑7

i=2 E [|Ti|2] + 1
.

In this case, note that E [Ti] = 0 for all i. Further,

E
[
|T1|2

]
= ρdN

 ∑
rl∈Φro

√
γlo(1− 2−Cf/kl)

Kmax

2

,E
[
|T2|2

]
= ρd

∑
rl∈Φro

γlo(1− 2−Cf/kl)

Kmax
,

E
[
|T3|2

]
= ρd(N + 1)

∑
rl∈Φro

γlo
Kmax

2−Cf/kl ,E
[
|T4|2

]
= ρd

∑
rl∈Φro

(βlo − γlo)
Kmax

,
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E
[
|T5|2

]
= ρd

∑
rl∈Φro

kl − 1

Kmax
βlo ≤ ρd

∑
rl∈Φro

Kmax − 1

Kmax
βlo, E

[
|T6|2

]
= ρd

∑
rl∈Φcro

≤ Kmax − 1

Kmax
βlo,

E
[
|T7|2

]
= ρd

∑
ui∈{Po\uo}

 ∑
rl∈Φri

βlo
Kmax

+N

 ∑
rl∈Φri

√
γlo
Kmax

2 .

Substituting these values, we obtain the expression presented in the lemma.

C.2 Proof of Lemma 7.7

The mean load of the N -th closest serving AP to the typical user at o is given as

E[KN ] = E

[∑
x∈Φu

1 (|Φr ∩ Brx(x)| ≤ Ns − 1)1 (|Φr ∩ Bro(o)| = N − 1)

]

= EΦu

[∑
x∈Φu

EΦr [1 (|Φr ∩ Brx(x)| ≤ Ns − 1)1 (|Φr ∩ Bro(o)| = N − 1)]

]
,

where ro = ‖r− o‖, rx = ‖r− x‖ =
√
r2
o + d2

x − 2rodx cos(vx), dx = ‖x− o‖ (please refer to
Fig. C.1 (left)). Conditioned on the location of the AP at r, we expand the inner expectation
as

E{Φr\r}

[
N−1∑
n=0

1(|Φr∩Bro (o)∩Brx (x)|=n)1(|Φr∩{Bro (o)\Brx (x)}|=N−n−1)1(|Φr∩{Brx (x)\Bro (o)}|≤Ns−n−1)

]

=
N−1∑
n=0

(λr|Bro(o) ∩ Brx(x)|)n

n!
e−λr|Bro (o)∩Brx (x)| (λr|Bro(o) \ Brx(x)|)N−n−1

n!
e−λr|Bro (o)\Brx (x)|

Ns−n−1∑
l=0

(λr|Brx(x) \ Bro(o)|)Ns−n−1

l!
e−λr|Brx (x)\Bro (o)|

=
N−1∑
n=0

PosPMF(n, λrAoI2(ro, dx, vx))PosPMF(N − n− 1, λr(πr
2
o − AoI2(ro, dx, vx)))

PosCMF(Ns − n− 1, λr(πr
2
x − AoI2(ro, dx, vx))) = htag,m1(ro = ‖r‖, dx, vx), (C.2)

where the second step follows from the fact that {Φr \r} is a homogeneous PPP with density
λr and the regions in each indicator function are non-overlapping. The final result follows in
two step: first we decondition over the point r, then we decondition over Φu. We write this
as

E[KN ] = EΦu

[∑
x∈Φu

∫
r∈R2

htag,m1(‖r‖, dx, vx)λrdr

]
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= EΦu

[∑
x∈Φu

2πλr

∫ ∞
ro=0

htag,m1(ro, dx, vx)rodro

]

= 2πλuλr

∫ ∞
ro=0

dro

∫ ∞
dx=0

ddx

∫ 2π

vx=0

dvxhtag,m1(ro, dx, vx)rodx,

where the last step follows from the application of Campbell’s theorem.

Figure C.1: The typical user is located at o, x,y ∈ Φu are random user locations. The red
triangles represent the serving AP locations of the typical user. The illustration is for the third
nearest serving AP for the typical user.

The second moment of the load for the N -th nearest serving AP to the typical user is

E[|KN |2] =E

∣∣∣∣∣∑
x∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bro (o)|=N−1

∣∣∣∣∣
2


=E

[∑
x∈Φu

∑
y∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]

=E

[∑
x∈Φu

x 6=y∑
y∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]

+ E

[∑
x∈Φu

1|Φr∩Brx (x)|≤Ns−11|Φr∩Bro (o)|=N−1

]
.

On the right hand side of the above equation, the second summation term is the mean E[KN ],
which has been derived above. We focus on deriving an expression for the first term (please
refer to Fig. C.1 (right)). Let is Using (7.13), let us define ux = u(ro, dx, vx), uy = u(ro, dy, vy),
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and

uxy =


ux + uy, {vx < π, vy > π},
ux + uy, {vx > π, vy < π},
|ux − uy|, Otherwise.

(C.3)

Further, let us denote the region of intersection of three circles as RoIoxy = {Bro(o)∩Brx(x)∩
Bry(y)}, the region exclusive to both the circles centered at o and x as RoIox = {Bro(o) ∩
Brx(x)} \ RoIoxy, the regions exclusive to both the circles at o and y as RoIoy = {Bro(o) ∩
Bry(y)}\RoIoxy, and the common region exclusive to circles at x and y as RoIxy = {Brx(x)∩
Bry(y)} \ RoIoxy. Conditioned on Φu and r, we write

E{Φr\r}
[
1|Φr∩Brx (x)|≤Ns−11|Φr∩Bry (y)|≤Ns−11|Φr∩Bro (o)|=N−1

]
(b)
=E{Φr\r}

[N−1∑
n=0

1|Φr∩RoIoxy|=n

N−n−1∑
m=0

1|Φr∩RoIox|=m

N−m−n−1∑
p=0

1|Φr∩RoIoy|=p1|Φr∩{Bro (o)\{Brx (x)∪Bry (y)}}}|=N−n−m−p−1

min{Ns−n−m−1,Ns−n−p−1}∑
q=0

1|Φr∩RoIxy|=q1|Φr∩{Brx (x)\{Bro (o)∪Bry (y)}}}|≤Ns−n−m−q−1

1|Φr∩{Bry (y)\{Bro (o)∪Brx (x)}}}|≤Ns−n−p−q−1

]
(c)
=

N−1∑
n=0

PosPMF(n, λrAoI3(ro, rx, ry, vx, vy))

×
N−n−1∑
m=0

PosPMF(m,λr(AoI2(ro, rx, vx)− AoI3(ro, rx, ry, vx, vy)))

×
N−n−m−1∑

p=0

PosPMF(p, λr(AoI2(ro, ry, vy)− AoI3(ro, rx, ry, vx, vy)))

× PosPMF(N − n−m− p− 1, λr(πr
2
o − AoI2(ro, rx, vx)− AoI2(ro, ry, vy) + AoI3(ro, rx, ry, vx, vy)))

×
min
{
Ns−n−m−1,
Ns−n−p−1

}∑
q=0

PosPMF(q, λr(AoI2(rx, ry, uxy)− AoI3(ro, rx, ry, vx, vy)))

× PosPMF(Ns − n−m− q − 1, λr(πr
2
x − AoI2(ro, rx, vx)− AoI2(rx, ry, uxy) + AoI3(ro, rx, ry, vx, vy)))

× PosPMF(Ns − n− p− q − 1, λr(πr
2
y − AoI2(ro, ry, vy)− AoI2(rx, ry, uxy) + AoI3(ro, rx, ry, vx, vy)))

= htag,m2(ro, dx, dy, vx, vy), (C.4)

where ri =
√
d2
i + r2

o − 2rodi cos(vi) for i ∈ {x, y}, the function AoI2 (·, ·, ·) is given in (7.12),
the area of intersection of three circles is evaluated as per the procedure presented in Ap-
pendix C.4. The step (a) follows from the fact that the regions in indicator functions are
non-overlapping and Φr \ r is a homogeneous PPP with density λr. Similar to the derivation
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of the first moment, we obtain the final expression for the second moment by deconditioning
over r and then over Φu by application of Campbell’s theorem.

C.3 Proof of Lemma 7.9

Much of the derivation can be done on the similar lines as that of Appendix C.2. Since Φr

is a homogeneous PPP, it is translation invariant. Hence, we assume that the typical AP is
located at the origin. The mean load of the AP can be written as

E[Ko] = E

[∑
x∈Φu

E
[
1
(
|Φr ∩ B‖x‖(x)| ≤ Ns − 1

)]]

= 2πλu

∫ ∞
r=0

Ns−1∑
l=0

(πλrr
2)l

l!
exp(−πλrr2)rdr

(a)
=
λu
λr

Ns−1∑
l=0

∫ ∞
u=0

ul

l!
exp(−u)du =

Nsλu
λr

,

where (a) follows from replacing u = πλrr
2. The second moment of the load can be written

as

E[K2
o ] =E

∣∣∣∣∣∑
x∈Φu

1
(
|Φr ∩ B‖x‖(x)| ≤ Ns − 1

)∣∣∣∣∣
2


=E

[∑
x∈Φu

x 6=y∑
y∈Φu

EΦr

[
1|Φr∩B‖x‖(x)|≤Ns−11|Φr∩B‖y‖(y)|≤Ns−1

]]
+ E

[∑
x∈Φu

E
[
1|Φr∩B‖x‖(x)|≤Ns−1

]]
︸ ︷︷ ︸

E[Ko]

.

The inner expectation in the first term on the RHS can be decomposed as

EΦr

[
1|Φr∩B‖x‖(x)|≤Ns−11|Φr∩B‖y‖(y)|≤Ns−1

]
=

=
Ns−1∑
l=0

EΦr

[
1|Φr∩{B‖x‖(x)∩B‖y‖(y)}|=l1|Φr∩{B‖y‖(y)\{B‖x‖(x)∩B‖y‖(y)}|≤Ns−l−1

× 1|Φr∩{B‖x‖(x)\{B‖x‖(x)∩B‖y‖(y)}|≤Ns−l−1

]
.

From the above expression, we obtain the expression for htyp,m2(rx, ry, u) by taking the ex-
pectation with respect to Φr. Now, with the application of Campbell’s formula, we get the
final expression of the lemma as

E

[∑
x∈Φu

x6=y∑
y∈Φu

htyp,m2(rx, ry, u)

]
= 2πλ2

u

∫ ∞
rx=0

∫ ∞
ry=0

∫ 2π

u=0

htyp,m2(rx, ry, u)durydryrxdrx,

where rx, ry, and u are as depicted in Fig. C.2.
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Figure C.2: x and y correspond to user locations and o correspond to the typical AP location.
The number of APs in each non-overlapping region follow independent Poisson distribution.

C.4 Area of Intersection of Three Circles

Note that owing to the constraint that three circles have a common point of intersection,
the common area of intersection will either of the following three cases: (1) a point with
area zero, (2) a lens, or (3) a circular triangle. All three cases are presented in Fig. C.3.
In the case, when the common area of intersection is a circular triangle (right most case in
Fig. C.3), the area is given as [150]

AoI3(ro, rx, ry, vx, vy) =
1

4

√
(c1 + c2 + c3)(c2 + c3 − c1)(c1 + c3 − c2)(c1 + c2 − c3)

+ r2
o arcsin

c1

2ro
− c1

4

√
4r2

o − c2
1 + r2

y arcsin
c2

2ry
− c2

4

√
4r2

y − c2
2

+ r2
x arcsin

c3

2rx
− c3

4

√
4r2

x − c2
3,

where c1, c2, c3 are chord lengths as denoted in the figure. Please note that the first two
cases are special cases of the third case, e.g. we can get the second case by replacing c2 = 0
and c1 = c3. Similarly, in the first case, c1 = c2 = c3 = 0. Further, cis are functions of
ro, rx, ry, vx, vy. The procedure to determine them is outlined in [150] that is followed in this
work.
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Figure C.3: Three possible configurations of three circle intersection with one common point of
intersection r. The fourth configuration in which the smallest circle lies inside the two bigger circles
has been ignored as it is a zero probability event. Different distances and angles are marked in the
Figure.

C.5 Proof of Proposition 6

Ignoring the pilot contamination term in the expression of achievable rate in (7.4), we can
write the rate coverage as

Rc = P
[
ρdN

2Tr − 1

( ∑
rl∈Φro

√
γlo(1− 2−Cf/kl)/Kmax

)2

− ρdN
∑

rl∈Φro

γlo2
−Cf/kl/Kmax

− ρd
∑

rl∈Φro

βlo − 1 ≥ ρd
∑

rl∈ΦCro

βlo

]
. (C.5)

To proceed further, we first condition on the distance to theNs-th serving AP doNs . Condition
on this distance, we replace

∑
rl∈ΦCro

βlo by its mean which is given as

EΦCro
[
∑

rl∈ΦCro

βlo] = 2πλr

∫ ∞
r=doNs

l(r)rdr.

The above result follows from the application of Campbell’s theorem. Note that using the
mean instead of the exact expectation has marginal impact on the accuracy of the result
as

∑
rl∈Φr

βlo is dominated by contributions from the nearest Ns serving APs. Hence, we can

write ∑
rl∈Φr

βlo ≈
∑

rl∈Φro

βlo + EΦCro
[
∑

rl∈ΦCro

βlo].
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Next, the loads among the serving APs are correlated. Hence, to get the accurate result,
we need to evaluate the (C.5) with respect to the joint distribution of {Ki}Nsi=1. However,
obtaining this joint distribution is extremely challenging and is not tractable. Hence, we
exactly consider the load of the nearest AP and replace the load of the rest of the APs
by its effective mean. For the i-th nearest AP, the effective mean is given as K̄i = 1 +∑∞

ki=0 min{ki, Kmax}P[Ki = ki], where Ki follows negative binomial distribution whose PMF

is determined using the moment matching method presented in Sec. 7.4.1. With the above
two approximation, condition on the distances to the serving APs and the load of the nearest
AP to the typical user, the link rate coverage is given as

Rc = Ek1,do1,...,doNs

1
2πλr

∞∫
doNs

l(r)rdr ≤ hcov(k1, do1, do2, . . . , doNs)


 , (C.6)

where hcov(k1, do1, do2, . . . , doNs) is given by (7.15). Note that conditioned on doNs , doi for
1 ≤ i ≤ Ns − 1 are i.i.d. distributed with following PDF [10]

fDoi(doi) =
2doi
d2
oNs

, 0 ≤ doi ≤ doNs .

Further, the PDF of DoNs is given as [10]

fDoNs (doNs) =
2

Γ(Ns)
(πλr)

Nsd2Ns−1 exp(−πλrd2
oNs).

We evaluate the expectation in (C.6) using the aforementioned distance distributions along
with the PMF of the load K1 associated with the nearest tagged AP.



Appendix D

Proofs of Lemmas and Propositions of
Chapter 8

D.1 Proof of Lemma 8.2

As discussed in Section 8.3, in order to evaluate the MAP, we ignore the effect of all the
PZs except the nearest one. In addition, due to the nearest neighbor connectivity, there
are no OpB BSs in BrBo (uBo ) (See Fig. 8.4b). Therefore, we consider the points in the set
{x ∈ ΨB : x /∈ {BRpz(yAoB) ∪ BrBo (uBo )}}. Using (8.9), the modified MAI of the tagged BS is
given as

ĨBo =
∏

xBi ∈ΨB\xBo

1xBi /∈{BRpz (yAoB)∪B
rBo

(uBo )}

(
1Pr(xBo ,xBi )≤τcs + 1Pr(xBo ,xBi )>τcs1tBxj>t

B
xo

)
. (D.1)

Without loss of generality, we make the tagged BS as our reference point (i.e. origin) as
shown in Fig. 8.4b. Let Ψ̃B = {x ∈ ΨB : x /∈ BrBo (uBo )}. With application of Lemma 8.1, the
density function of Ψ̃B is λΨB(x|rBo ) = E(x, λB, r

B
o , r

B
o ). Now, conditioned on the distances

RB
o and Ro,AB = ‖yAoB − xBo ‖, and the back-off timer of the tagged BS tBxo = t,

P
[
IBo = 1

∣∣∣∣t, ro,AB, rBo ]
(a)

≥P
[
ĨBo = 1

∣∣∣∣t, ro,AB, rBo ] = E
[
ĨBo
∣∣∣∣t, ro,AB, rBo ]

=E
[ ∏

xBi ∈Ψ̃B\{BRpz (yAoB)∪xBo }

E
[
1Pr(xBo ,xBi )≤τcs

+ 1Pr(xBo ,xBi )>τcs1t<tBxi

]∣∣∣∣t, ro,AB, rBo ]
(b)
=E
[ ∏

xBi ∈Ψ̃\{BRpz (yAoB)∪xBo }

(
1− t exp

(
−τcsl(‖x

B
i ‖)

PB

))]
(c)
= exp

(
−

∫
x∈R2\{BRpz (yAoB)∪xBo }

tλΨB(‖x‖|rBo )e
− τcsl(‖x‖)

PB xdx

)

190
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(d)
= exp

(
− t
(
2π

∞∫
0

λΨB(y|rBo )e
−τcsl(y)
PB ydy

− 2

ro,AB+Rpz∫
ro,AB−Rpz

λΨB(y|rBo )e
−τcsl(y)
PB ϕpz(y|ro,AB)ydy

))
, (D.2)

where (a) follows from the fact that we are considering more number of points in ĨBo than in
IBo , (b) follows from the fact that small scale fading is exponentially distributed and tBxi is
uniformly distributed between [0, 1], (c) follows from the application of the PGFL of the PPP,
(d) follows from changing Cartesian co-ordinates to polar co-ordinates, and ϕpz(y|ro,AB) =
r2
o,AB+y2−R2

pz

2yro,AB
. The expression for f1(·) in Lemma 8.2 is obtained after deconditioning over

tBxo , which is uniformly distributed in [0, 1].

D.2 Proof of Lemma 8.3

In this proof, we derive the conditional CDF of Ro,AB for Event-2, i.e. the probability denoted
by K2 in (8.23). For notational simplicity we do not mention the condition E2(rBo ) =
{NΦB(BrBo (uBo )) = 0, NΨB(BrBo (uBo )) = 0} and implicitly consider it for all the expressions.
Conditioned on RB

o , the location of the nearest OpA BS from the typical user is constrained
by the condition that it has to lie outside the circle BRpz(xBo ) (Refer to Fig. 8.6a). Now, at a
distance rAo , the location of the nearest OpA BS lies on a ring. Hence, its location is uniformly
distributed between the angles [−ϕAB(rAo , r

B
o , Rpz), ϕAB(rAo , r

B
o , Rpz)], where ϕAB(rAo , r

B
o , Rpz)

is given by (8.29). Now the CDF of Ro,AB conditioned on RA
o , RB

o , and ΘA is given as

P
[
Ro,AB ≤ ro,AB

∣∣∣∣rAo , rBo , θA]
(a)
=P

[
Ro,AB ≤ ro,AB

∣∣∣∣NΨA (C1(r̂o,AB)) = 0, rAo , r
B
o , θA

]
× P

[
NΨA (C1(r̂o,AB)) = 0

∣∣∣∣rAo , rBo , θA]
+ P

[
Ro,AB ≤ ro,AB

∣∣∣∣NΨA (C1(r̂o,AB)) 6= 0, rAo , r
B
o , θA

]
× P

[
NΨA (C1(r̂o,AB)) 6= 0

∣∣∣∣rAo , rBo , θA]
(b)
=1(r̂o,AB ≤ ro,AB) exp(−λA|C1(r̂o,AB)|)

+ P
[
R̃o,AB ≤ ro,AB|rAo , rBo , θA

]
× (1− exp(−λA|C1(r̂o,AB)|)), (D.3)
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where (a) follows from the application of law of total probability, and (b) follows from (8.25)
and the fact that number of points in C1(r̂o,AB) is Poisson distributed with mean λA|C1(r̂o,AB)|.
The second term in the summation is

P
[
R̃o,AB ≤ ro,AB|rAo , rBo , θA

]
=P
[
Ro,AB ≤ ro,AB|NΨA (C1(r̂o,AB)) 6= 0, rAo , r

B
o , θA

]
=
P
[
Ro,AB ≤ ro,AB, NΨA (C1(r̂o,AB)) 6= 0|rAo , rBo , θA

]
P [NΨA (C1(r̂o,AB)) 6= 0|rAo , rBo , θA]

=

{
1 ro,AB ≥ r̂o,AB
1−exp(−λA|C1(ro,AB)|)
1−exp(−λA|C1(r̂o,AB)|) ro,AB < r̂o,AB.

(D.4)

Substituting (D.4) in (D.3), we get

P
[
Ro,AB ≤ ro,AB|rAo , rBo , θA

]
=1(r̂o,AB ≤ ro,AB) exp(−λA|C1(r̂o,AB)|)

+ 1(r̂o,AB ≤ ro,AB)(1− exp(−λA|C1(r̂o,AB)|))
+ 1(r̂o,AB > ro,AB)(1− exp(−λA|C1(ro,AB)|))

=1(r̂o,AB ≤ ro,AB)

+ 1(r̂o,AB > ro,AB)(1− exp(−λA|C1(ro,AB)|)). (D.5)

The final expression in the Lemma is obtained by deconditioning (D.5) w.r.t. conditional
density function of ΘA given in (8.28).

D.3 Proof of Lemma 8.4

As per our discussion in Section 8.3.1 on Event-1 and Event-2, using the law of total proba-
bility, the distance distribution of RA

o can be written as

FRAo (rAo |rBo ) = P
[
RA
o ≤ rAo

∣∣∣∣NΦB(BrBo (uBo )) = 0, rBo

]
=P

[
RA
o ≤ rAo

∣∣∣∣E2(rBo ), rBo

]
︸ ︷︷ ︸

T1

P
[
NΨB(BrBo (uBo )) = 0|NΦB(BrBo (uBo )) = 0, rBo

]︸ ︷︷ ︸
T2

+ P
[
RA
o ≤ rAo

∣∣∣∣E1(rBo ), rBo

]
︸ ︷︷ ︸

T3
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P
[
NΨB(BrBo (uBo )) 6= 0|NΦB(BrBo (uBo )) = 0, rBo

]︸ ︷︷ ︸
T4

, (D.6)

where the conditional CDF for Event-2 and Event-1 is denoted by T3 and T1, respectively.

Now for Event-2, the locations of OpA BSs follow a homogeneous PPP of density λA
outside the circle BRpz(xBo ), which is equivalent to having a hole BRpz(xBo ) in ΨA. Therefore,
with application of Lemma 1, the conditional CDF of RA

o for Event-2 is
T1 = 1− exp(−G(rAo , λA, Rpz, r

B
o )). (D.7)

On the other hand, T3 corresponds to Event-1, where there is at least one OpA BS in
BrBo +Rpz(u

B
o ) \ BRpz(xBo ) (Refer Fig. 8.5a). Further, to ensure that all the points of ΨB in

BrBo (uBo ) have been deleted, the conditional density of OpA BS in the BrBo +Rpz(u
B
o )\BRpz(xBo )

is likely to be higher than λA. Accurate characterization of this density requires exact
consideration of number of PZs in the region and their relative overlaps, which is a difficult
proposition. Hence, we consider the density of ΨA in BrBo +Rpz(u

B
o ) \ BRpz(xBo ) to be λA and

obtain the CDF of T3 given in (D.8). Note that since we are underestimating the density of
ΨA, this conditional CDF is a lower bound on the actual CDF.

T3 = P
[
RA
o ≤ rAo

∣∣∣∣E1(rBo ), rBo

]
=

{
0 rAo + rBo ≤ Rpz

1−exp(−λA|C2(rAo ,r
B
o ,Rpz)|)

1−exp(−λA|C2(rBo +Rpz ,rBo ,Rpz)|) rAo + rBo > Rpz,
(D.8)

where C2(rAo , r
B
o , Rpz) = BrAo (uBo ) \ {BrAo (uBo ) ∩ BRpz(xBo )}.

In order to obtain the probabilities given by T3 and T4, we observe that, we first need to
determine P

[
NΦB(BrBo (uBo )) = 0

∣∣rBo ], which is the complementary CDF of the contact distance
of PHP, i.e. P

[
NΦB(BrBo (uBo )) = 0

∣∣rBo ] = 1− FRBo (rBo ). Now T2 can be expressed as

P
[
NΨB(BrBo (uBo )) = 0|NΦB(BrBo (uBo )) = 0, rBo

]
=
P
[
NΨB(BrBo (uBo )) = 0|rBo

]
P
[
NΦB(BrBo (uBo )) = 0|rBo

] =
exp(−πλA(rBo )2)

1− FRBo (rBo )
.

On the other hand, T4 denotes the probability of the complementary event of E2(rBo ) and its
expression is given as

T4 = 1− T2 = 1− exp(−πλA(rBo )2)

1− FRBo (rBo )
. (D.9)

This completes the proof of the Lemma.

D.4 Proof of Lemma 8.7

This Lemma can be proved on the similar lines as that of the proof of Lemma 8.4. First
we approximate the CDF of RA

o conditioned on Event-1, i.e. FRAo (rAo |rBo , E1(rBo )) presented
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in (D.6). As discussed earlier, conditioned on Event-1, the average number of OpA BSs
in BrBo +Rpz(u

B
o ) \ BRpz(xBo ) is likely to be larger than λAπ

(
(rBo +Rpz)

2 −R2
pz

)
. While more

rigorous approach can be used to obtain an accurate approximation for the above condi-
tional CDF, we resort to a heuristic method to provide a simpler approximate expression for
FRAo (rAo |rBo , E1(rBo )). First, we ignore the presence of the exclusion zone around the tagged
BS. However, note that when rBo < Rpz, there will not be any OpA BSs in BRpz−rBo (uBo ).
We take this into account to obtain the approximate expression. An illustration of the
above scenario is presented in Fig. 8.5a, where the dotted red circle represents BRpz−rBo (uBo ).
Second, for relatively larger values of rBo (> Rpz/2), the number of OpA BSs in BrBo (uBo )
is likely to be non-zero. Hence, we approximate that there is at least one OpA BS in
BrBo (uBo ) \ Bmax(Rpz−rBo ,0)(x

B
o ). Now, depending on the relative distances of rBo and Rpz, we

get the expression presented in (8.33). The expression for FRAo (rAo |rBo , E2(rBo )) is the same
the one given in (D.7).

Now our objective is to obtain approximate expressions for T2 and T4 in (D.6). The
complementary CDF of RB

o can be expressed as

P
[
NΦB(BrBo (uBo )) = 0|rBo

]
=
∞∑
n=0

P
[
NΦB(BrBo (uBo )) = 0|NΨB(BrBo (uBo )) = n, rBo

]
Poi(n)

= exp(−πλB(rBo )2) +
∞∑
n=1

P
[
NΦB(BrBo (uBo )) = 0|NΨB(BrBo (uBo )) = n, rBo

]
Poi(n), (D.10)

where
Poi(n) = exp(−πλB(rBo )2)

(πλB(rBo )2)n

n!
. (D.11)

In (D.9), presented in Appendix D.3, if we use the approximate CDF of RB
o given in (8.5),

then T4 can be negative with non-zero probability. This is justified by the fact that the
approximate expression cannot be decomposed into the total probability expression presented
in (D.10). In order to avoid this situation, we approximate the complementary CDF of RB

o as

1− FRBo (rBo ) =P
[
NΦB(BrBo (uBo )) = 0|rBo

]
≈ exp(−πλB(rBo )2) +

∞∑
n=1

(
1− exp(−πλAR2

pz)
)nPoi(n)

= exp(−πλB exp(−πλAR2
pz)(r

B
o )2). (D.12)

where the second step follows from the fact that there exists at least one PAL BS within Rpz

of each of the n points so that all the n points have been deleted. Since the relative overlaps
among protection zones are ignored, the above expression is an approximation. The third
step follows after some algebraic manipulation. Now, the complementary CDF of RB

o in the
Lemma can be approximated by the expression presented in (D.12).
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D.5 Proof of Lemma 8.8

Note that if we take into account only Event-2, then we are underestimating the density of
OpA BSs in the vicinity of the tagged OpB BS. Therefore, the actual distance is stochastically
dominated (first order) by the distance obtained considering only Event-2. Using this fact,
we derive the lower bound on the CDF that is presented next. From (8.22), using the law of
total probability we write

FRo,AB(ro,AB|rBo ) =P
[
Ro,AB ≤ ro,AB|rBo , NΦB(BrBo (uBo )) = 0

]
=P
[
Ro,AB ≤ ro,AB|rBo , E1(rBo )

]
P
[
NΨB(BrBo (uBo )) 6= 0|NΦB(BrBo (uBo )) = 0, rBo

]
+ P

[
Ro,AB ≤ ro,AB|rBo , E2(rBo )

]
P
[
NΨB(BrBo (uBo )) = 0|NΦB(BrBo (uBo )) = 0, rBo

]
(a)

≥P
[
Ro,AB ≤ ro,AB|rBo , E2(rBo )

](
P
[
NΨB(BrBo (uBo )) 6= 0|NΦB(BrBo (uBo )) = 0, rBo

]
+ P

[
NΨB(BrBo (uBo )) = 0|NΦB(BrBo (uBo )) = 0, rBo

])
(b)
=P

[
Ro,AB ≤ ro,AB|rBo , E2(rBo )

]
,

where (a) follows since we are considering only Event-2 and

P
[
Ro,AB ≤ ro,AB|rBo , E2(rBo )

]
≤ P

[
Ro,AB ≤ ro,AB|rBo , E1(rBo )

]
. (D.13)

In order to evaluate the probability in (b), note that the OpA BS forms a homogeneous PPP
of density λA beyond BxBo (Rpz). Further, as discussed in Section 8.3.1, for Event-2, Ro,AB is
independent of RB

o . Hence, using Lemma 4 in [142], we write

FRo,AB(ro,AB|rBo ) ≥ 1− exp
(
−πλA((ro,AB)2 −R2

pz)
)
,

and the final expression in the Lemma follows deconditioning w.r.t. RB
o .

D.6 Proof of Lemma 8.10

In order to prove this Lemma, we first need to show that deconditioning w.r.t. Ro,AB

using a lower bound on its CDF preserves the lower bound on the conditional MAP presented
in Lemma 8.2. To arrive at this conclusion, consider the expression in step (d) in (D.2)
presented in Appendix D.1. The lower bound on the MAP of the tagged BS conditioned on
Ro,AB, RB

o , txBo is given as

P
[
IBo |ro,AB, rBo , t

]
≥
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exp

(
− t
(
2π

∞∫
0

λΨB(y|rBo )e
−τcsl(y)
PB ydy − 2

ro,AB+Rpz∫
ro,AB−Rpz

λΨB(y|rBo )e
−τcsl(y)
PB ϕpz(y|ro,AB)ydy

))
= exp

(
− tf1(ro,AB, r

B
o )
)
.

Since f1(ro,AB, r
B
o ) is an increasing function w.r.t. ro,AB, conditioned on RB

o and txBo we write

∞∫
ro,AB=0

e−tf1(ro,AB ,r
B
o )dFRo,AB(ro,AB|rBo ) ≥

∞∫
ro,AB=0

e−tf1(ro,AB ,r
B
o )dF LB,x

Ro,AB
(ro,AB|rBo ), (D.14)

where F LB,x
Ro,AB

(ro,AB|rBo ) denotes the lower bounds on the CDF of Ro,AB presented in Lem-
mas 8.6 and 8.8. Now, de-conditioning the above expressions w.r.t. txBo and RB

o , we get

P
[
IBo |ro,AB, rBo , t

]
≥

∞∫
rBo =0

1∫
t=0

∞∫
ro,AB=0

e−tf1(ro,AB ,r
B
o ) × dF LB,x

Ro,AB
(ro,AB|rBo )fRBo (rBo )dtdrBo .

Changing the order of integration between ro,AB and t, and deconditioning w.r.t. txBo we
arrive at the result presented in the Lemma.

D.7 Proof of Lemma 8.14

Since the density functions in Lemmas 8.11 and 8.12 are conditioned on the distances to
the nearest OpA BS and the tagged OpB BS, the correlation in node locations is effectively
captured by these conditional densities in the vicinity of the typical user. Hence, conditioned
on RA

o and RB
o , we assume that these interference powers are independent of each other.

Now, the conditional LT of the aggregate interference can be expressed as the product of
the conditional LTs of interference from OpA and OpB BSs. Following the similar approach
as presented in [43], the LT of interference from the interfering OpB BSs conditioned on RA

o ,
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RB
o , and IBo = 1 is given as LIBBagg (s|rAo , rBo , IBo = 1) =

E

[
e
−s
∑

xj∈ΦB\x
B
o

PBI
B
j h(uBo ,xj)

l(‖xj‖)

∣∣∣∣rAo , rBo , IBo = 1

]

=E

 ∏
xj∈ΦB\xBo

E

[
e
−sIBj PBh(uBo ,xj)

l(‖xj‖)

] ∣∣∣∣rAo , rBo , IBo = 1


(a)
=E

 ∏
xj∈ΦB\xBo

1

1 +
sIBj PB
l(‖xj‖)

∣∣∣∣rAo , rBo , IBo = 1


(b)
= exp

− ∞∫
x=rBo

2π∫
θ=0

λ̃ΨB(x|rAo , rBo ))M(x(x, θ)|rBo )

l(x)(sPB)−1 + 1
dθxdx

 ,

(D.15)

where (a) follows from the moment generating function (MGF) of the exponential fading term
h(uBo ,xj), (b) follows from the application of the PGFL of PPP and the retention probability
of a point in ΦB derived in Lemma 8.13. Similarly, the conditional LT of interference from
the OpA BSs is LIBAagg (s|r

A
o , r

B
o ) =

E

e
(
−sPAh(uBo ,x

A
o )

l(‖xAo ‖)
−

∑
yj∈ΨA\x

A
o

sPAh(uBo ,yj)

l(‖yj‖)

)
=Eh

[
e
−sPAh(uBo ,x

A
o )

l(rAo )

]
EΨA

 ∏
yj∈ΨA\xAo

Eh

[
e

(
−
sPAh(uBo ,yj)

l(‖yj‖)

)]
=

1

1 + sPA
l(rAo )

exp

(
− 2π

∞∫
y=rAo

E(y, λA, Rpz, r
B
o )

l(y)(sPA)−1 + 1
ydy

)
,

where the last step follows from the application of the PGFL of PPP, and the conditional
density of ΨA is presented in (8.40).

D.8 Proof of Lemma 8.17

As illustrated in Fig. 8.10a, consider an OpB BS located at yBo and let y = ‖yBo ‖. Note
that Fig. 8.10a presents a representative diagram for ΦB that has been approximated as a
non-homogeneous PPP using Lemma 8.16. Hence, we have already captured the effect of all
the PZs in the network. If we do not take into account the contention process among the
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BSs in ΦB, then the CDF of the distance between the typical user and the nearest interfering
BS conditioned on RA

o is given as

FDBo (dBo |rAo ) = 1− P
[
NΦB(BdBo (uAo )|rAo ) = 0

]
= 1− exp

(
−2π

∫ dBo

y=0

λ̃ΨB(y|rAo )ydy

)
,

(D.16)

which follows from the nearest neighbor distribution of a non-homogeneous PPP. One way
of interpreting this result is that all the BSs in ΦB have a retention probability 1. On the
other hand, if contention process is considered among the BSs in ΦB, then all the BSs are
not going to be active (retained), which depends on the MAP of a BS in ΦB. Hence, the
nearest BS in ΦB may not be the first active interfering BS. In order to obtain the distance
distribution to the nearest active BS, we follow the similar assumption as presented in [144,
Section IV]. As per the assumption, the contention domain of a BS located at a distance y
from the origin (in our case the typical OpA user) lies beyond By(uAo ). Hence, the medium
access indicator for the BS at yBo is given as IByo =∏

xBj ∈ΦB\By(uAo )

(
1Pr(yBo ,xBj )≤τcs + 1Pr(yBo ,xBj )>τcs1tBxj>t

B
yo

)
. (D.17)

Now using the similar steps as presented in Appendix D.1, the MAP of a BS at a distance y
from the origin is given as

η(y|rAo ) = E
[
IByo = 1

]
=

1− exp(−f5(y, rAo ))

f5(y, rAo )
, (D.18)

where f5(y, rAo ) is presented in (8.62). Above MAP can be interpreted as the retention probabil-
ity of the point at yBo ∈ ΦB as an active interferer. Using the above retention probability, we
assume that the active BSs in ΦB form a non-homogeneous PPP of density λ̃ΨB(y|rAo )η(y|rAo ).
Hence, the CDF of distance to the nearest active OpB interfering BS conditioned on rAo is
given as

FDBo (dBo |rAo ) = 1− exp

(
−2π

∫ dBo

y=0

λ̃ΨB(y|rAo )η(y|rAo )ydy

)
. (D.19)

The conditional PDF in the Lemma is obtained by taking the derivative of the above CDF

w.r.t. dBo .
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