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ABSTRACT

Lean-premixed combustion has the advantage of low emissions for modern gas
turbines, but it is susceptible to thermoacoustic instabilities, which can result in large
amplitude pressure oscillations in the combustion chamber. The thermoacoustic limit cycle is
generated by the unsteady heat release dynamics coupled to the combustor acoustics. In this
dissertation, we focused on reduced-order modeling of the dynamics of a laminar premixed
flame. From first principles of combustion dynamics, a physically-based, reduced-order,
nonlinear model was developed based on the proper orthogonal decomposition technique
and generalized Galerkin method. In addition, the describing function for the flame was
measured experimentally and used to identify an empirical nonlinear flame model.
Furthermore, a linear acoustic model was developed and identified for the Rijke tube
experiment. Closed-loop thermoacoustic modeling using the first principles flame model
coupled to the linear acoustics successfully reproduced the linear instability and predicted the
thermoacoustic limit cycle amplitude. With the measured experimental flame data and the
modeled linear acoustics, the describing function technique was applied for limit cycle
analysis. The thermoacoustic limit cycle amplitude was predicted with reasonable accuracy,
and the closed-loop model also predicted the performance for a phase shift controller. Some

problems found in the predictions for high heat release cases were documented.
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Nomenclature

Pre-exponent factor or the input velocity amplitude
Characteristic acoustic speed
Constant pressure specific heat
Combustor diameter in geometry
Matrix of partial derivatives with respect to states in x
Activation energy

Frequency in Hz

Transfer function

Imaginary number indices

Jacobian matrices

Wave number or control gain
Length of combustor or chimney
Describing function

Acoustic pressure

Total heat release rate (Watts)
Reaction rate term

Time variable

Temperature or period of oscillation
Total velocity

Spatial Variable

System output in time domain

Mass fraction of species

Dirac delta function

Density

Equivalence Ratio

Specific heat

Frequency in radians per second
Equivalence ratio
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Streamline coordinates
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Subscripts & Superscripts

(x)>  Perturbation of variable x

(X)  Mean variable x

(¥)  Fundamental component of signal x
(x)™  nth derivative of variable x

(x)r  Referring to at the flame location
(x)"  Transpose of matrix or vector x
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