
Chapter 1: Introduction and Statement of Purpose

    1.1   Introduction

The bioaccumulation of mercury (Hg) and methylmercury (MeHg) has led to fish

advisory warnings in approximately 42 US states. Furthermore, large gaps remain in our

understanding of the mercury sources involved and the atmospheric and biogeochemical

processes that influence the bioaccumulation of Hg and MeHg (Burgess, Neil, 1998).

MeHg is a methylated form of Hg that is easily bioaccumulated and biomagnifies through

the food chain. Though Hg itself does not pose a substantial risk, MeHg represents a

neurotoxin that can have strong negative impacts on an area's biota. Many studies have

explored the impacts of elevated MeHg on wildlife (Evers, D. and Lane, 2000, Evers et

al., 2003, Kenow et al., 2003). It is well known that Hg is introduced to hydrologic

systems through air deposition as well as point sources. Other known causes of Hg

contamination include the construction of dams as seen by increased Hg levels following

the construction of several hydroelectric dams in Canada (Burgess, Neil, 1998). Several

studies have shown that runoff can deliver substantially varied amounts of Hg and MeHg

depending on the influence of impoundments, wetlands, agricultural lands, forest types,

and urban areas (USGS, and Vermont DEC, 1998). For the purpose of this study,

wetlands, agricultural lands, forest type, and other land cover classes will be used in an

attempt to relate MeHg (methyl-mercury) in the Common Loon (Gavia immer) to various

landscape factors. 

In Maine, especially the Rangeley Lakes (study area), MeHg represents a serious

risk. Currently, there are fish consumption warnings in almost all of Maine lakes due to

MeHg levels that are higher than the national average (Evers et al., 2003). The Rangeley

Lakes area also has a substantial amount of available data that has been collected by

Biodiversity Research Institute (BRI) over the last several years and provides adequate

sample coverage of the area. Lake Aziscohos, one of the reservoirs in the study area, has

levels in some territories that greatly exceed the national average further defining the

need to understand the processes that are contributing to the increased MeHg in the area. 

The Common Loon is being used in this analysis for a variety of reasons. First, the

territorial nature of the birds provides a unique method for segmenting the larger lakes

and reservoirs into smaller units for analysis and abundant data are available. A mated
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pair of loons will typically return to the same territory year after year (Evers et al, 2003).

This phenomenon provides scientists and biologists with a unique opportunity to collect

Hg (mercury) data year after year for the same pair of loons as well as to gain an

understanding of the variability that exists between adjacent territories and the variability

between breeding seasons. It also allows for scientists to monitor yearly change in MeHg

levels in the birds. Lake Umbagog, also a reservoir in the study area, has seen declines in

the Common Loon population for a number of years leading to increased efforts by the

Loon Preservation Committee (LPC) and Biodiversity Research Institute (BRI) to

understand the why the declines are happening (Evers, D.C., 2002). Increased MeHg

availability, a decrease in suitable nesting habitat, and other environmental stressors may

contribute to the decline.

Second, due to the ways that Hg bioaccumulates, the collection of blood samples

for analysis of MeHg levels provides insight into what is happening in each of the

territories. As a loon feeds, MeHg accumulates in the blood. Because MeHg will process

out of the blood and into the feathers over time, much of the MeHg that is found in the

blood has been accumulated from the individual territory and has not been brought in

during migration or over-wintering. Feather samples (not used in this analysis, but

important nonetheless) provide a pseudo-historic perspective of MeHg bioaccumulation

as they tend to receive much of the MeHg that gets processed out of the bird, and may

lead to a greater understanding of the winter stresses that the birds are exposed to. The

time at which the birds are captured is also a factor. The breeding season extends from

around the first of May until the end of August. Consequently, this also relates to the time

when MeHg availability is at its greatest. The collection of samples does not occur until

the loon pair has hatched chicks. This allows several months for the MeHg from other

sources to be processed out and the available MeHg from the territory to be accumulated

in the blood. 

The Common Loon is important in understanding not only the ways that MeHg

bioaccumulates, but also the behavioral ramifications of increased MeHg in the bird.

Studies by Evers et al (2003), have shown that there can be serious repercussions in the

breeding success of the Common Loon due to increased MeHg. Activities such as diving

and nest sitting are also negatively impacted leading to a potential increase in mortality

among the chicks (Evers et al., 2003). 
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The location of the Common Loon high in the food chain also presents a unique

opportunity to explore the effects of MeHg biomagnification. The Common Loon in

many cases will consume the same types of fish (though smaller in size) that a human

will consume. Data for the Common Loon are also readily available and in great

abundance, especially in the North East where Hg levels are currently above the

recommended safe amount. Piscivorous (fish-eating) birds such as the Common Loon are

thought to be excellent indicators of aquatic health and have been used as ecological

indicators in a variety of studies (Evers et al., 2003, Kenow et al., 2003). 

 

1.2   Statement of Purpose 

Over the past 30-40 years, levels of mercury (Hg) in aquatic and hydrologic

systems have increased greatly within the United States and Canada. Associated with this

has been the rise in the bioavailability of methylmercury (MeHG) to the extent that the

current levels pose risks to both human and aquatic health (Evers et al, 2003.). Past

studies indicate that environmental risk levels vary significantly in response to MeHg.

Factors that influence MeHg and Hg bioavailabilty include the associated hydrology,

biogeochemistry, habitat, topography, and relative proximity to airborne sources of Hg

and MeHg (Evers et al, 2003).

The following questions exist regarding Hg in the environment: 1) Is there a

correlation between Hg and MeHg in the Common Loon and land cover type? and 2) Can

a model be developed that relates Hg and MeHg levels in an ecosystem to these factors

such that levels can be accurately predicted by the analysis of geographic data? Once

these factors are determined, resource managers may be better suited to predict potential

"hotspots" of Hg bioaccumulation and the relative risk to the associated biota of an area,

as well as explore potential methods for reducing the risk.

The objective of this thesis is to develop a GIS-based decision support framework

that can identify areas in a watershed that represent the highest risk of mercury

bioaccumulation to the common loon. This thesis will use multiple linear regression as

the basis for the model development and will be discussed in further detail in the

methodology in chapter 3. The large number of samples available and the diverse

landscape of the Rangeley Lakes area should provide a unique opportunity to explore the

relationships that exist between MeHg, Hg, and the associated land cover characteristics.
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The model will be built on the ArcGIS framework and will incorporate the spatial

analytical tools for which GIS is strongly suited. Three major hypotheses will be explored

in this research and are outlined below:

1. Much of the current research addresses Hg bioaccumulation at the watershed

scale. Substantial variability, however, can exist within a particular watershed.

Examining the problem from a larger scale and analyzing the relationships that

exist within individual loon territories should better explain Hg risk as a function

of land cover characteristics.

2.If a reasonable model can be produced, will there be a marked drop-off in

accuracy of the model as we move further from the territory boundary?

3.If a reasonable model can be produced, we should gain a clearer understanding

of the impact of land cover types on the availability of Hg and the associated risk

to hydrologic systems as a function of distance from the individual boundary.
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Chapter 2: Literature Review

2.1 Introduction

The following chapter brings together three major points of interest in Hg risk.

The first point briefly details the history of Hg in aquatic systems, human components of

the overall problem we have today, and particular types of industries that are the culprits

of adding additional Hg to the environment. I also present a background of Hg in the

environment. The second point outlines the environmental phenomena that drive the

dissemination of Hg, and the subsequent bioaccumulation of that Hg into the local

ecosystem. The third point addresses the attempts being made at modeling and/or

understanding the phenomena that drives Hg's availability to local ecosystems and biota.

2.2 History and Background

Naturally occurring mercury has been historically used in alchemy, chemistry, and

manufacturing (Vermont Dept. of Env. Conservation, 1998). Of great significance in Hg

research, and most certainly what prompted the initial interest in understanding the

bioaccumulation and biomagnification of Hg, came about in the 1950's when aquatic

discharge of wastewater that contained Hg resulted in over one hundred deaths in

Minamata Bay, Japan (DTMC, 2002).   MeHg (the methylated form of mercury) is more

detrimental to an area's biota than Hg because it represents a neurotoxin that can be

biomagnified through the food chain, ultimately posing a risk to humans if mercury

contaminated fish are consumed.  Mercury (Hg) is released naturally into the environment

through a variety of weathering processes, such as the breakdown of cinnabar (HgS) from

bedrock, diagenesis of sediments and wet soils, and release into oceans from deepwater

crustal vents (Vermont Dept. of Env. Conservation, 1998). The bioaccumulation,

biomagnification, and subsequent risk of Hg to the local environment has led to fish

advisory warnings in over 40 states. Of those, many have issued statewide advisories

warning against consumption.  Recent research strongly suggests that activities since

industrialization have resulted in significant increases in Hg and MeHg (USEPA, 1997).

To date, the largest single anthropogenic source of Hg in the United States is from coal

burning power plants, which are estimated to account for over 45% of the total available

Hg in the environment (Air Quality Conference, 1999). Major point sources of Hg
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include coal wastes, medical wastes, and manufacturing (chlor-alkali facilities, cement,

and pulp and paper) (Vermont Dept. of Env. Conservation, 1998).  The Maine

Department of Environmental Protection estimates that in Maine the expected loading

rate for Hg from pulp and paper mills is approximately 3.1 lb/year, or an average

concentration of 13 parts per trillion (ppt). Another potential source of Hg contamination

can be found in Publicly Owned Treatment Works (POTWs), used for treatment of

wastewater  (US EPA, 2001). A report published in 1999 suggested that the average Hg

concentrations found in POTW effluents was around 7.25 ppt. (US EPA, 2001). Larger

regional sources of Hg in Maine may include cities such as Bangor and Portland

(Vermont Dept. of Env. Conservation, 1998), however much of the available Hg in

Maine is deposited through atmospheric deposition (Peckanham et al., 2002). Other

known causes of mercury contamination include the construction of dams as evidenced

by increased mercury levels following the construction of several hydroelectric dams in

Canada (Burgess, Neil, 1998). 

2.3 Environmental Factors

There are many environmental factors that contribute to the availability of Hg and

MeHg in hydrologic systems. Atmospheric deposition as mentioned above, has been

considered one of the driving forces of increased MeHg and Hg in the northeastern

United States. Considering one of the standard paths of the jet stream, which dips into the

rust belt before driving north again into New Hampshire and Maine, and then slamming

into the White mountains it is not surprising that we see elevated levels of contaminants

in that region. The contaminants are delivered by the dominant winds and then deposited

when the air is forced over the mountains. 

Many non-commercial fish, throughout the United States, have been measured for

Hg levels (Figure 2.1) by the United States Environmental Protection Agency (USEPA).

Many of these fish have Hg levels that should be of concern to those consuming them. In

addition, many commercial fish such as tuna also exhibit levels that are higher than

current health standards allow. 
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Research has shown a strong positive correlation between the total levels of Hg

and MeHg and the total amount of dissolved organic carbon in an ecosystem (Peckenham

et al., 2002, Lee et al., 1998, Bishop et al., 1995, and Evers et al., 2003). Therefore one

reason we may see elevated levels in and around dams is that they collect organic matter.

Slower moving bodies of water such as wetlands and lakes also collect organic matter and

may be important in understanding Hg and MeHg bioaccumulation and bioavailability.

As stated by the Mississippi Department of Environmental Quality in the June 26, 2000

version of the Escatawpa River Phase One Total Maximum Daily Load for Mercury:
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Figure 2.1
Mercury Levels in non-commercial fish (e.g. sport fish)
Source: US EPA (http://www.epa.gov/waterscience/fish)



The presence of sediments along with a ready source of 

biodegradable organic carbon resulting from plant production,

may explain why wetlands are a major locale for production

of  MMHg  (another  form  of  MeHg,  short  for  mono-methyl

mercury). Circulation with surface waters may make wetland

MMHg  available  for  uptake.  Emerging  insects  may  then

substantially increase transfer of MMHg produced in wetlands

to  predatory fish.  (Mississippi  Department  of  Environmental

Quality, 2000. pg. 9).

 

Other studies have shown that MeHg increases in watersheds with proportionally

greater areas in forest or wetlands, possibly due to the increased amount of dissolved

organic carbon and organic matter available. In undisturbed watersheds, total mercury

was commonly associated with the filtered phase, the point at which elements become

absorbed by suspended sediment particles, but became closely associated with particulate

matter in agricultural watersheds (Vermont Dept. of Env. Conservation 1998, and

Kamman and Engstrom, 2001). In general, the literature suggests that the presence of

wetlands is one of the most important variables affecting the availability of MeHg and Hg

in hydrologic systems. The presence of agricultural lands has also been found to related to

Hg and MeHg. However, the presence of this land cover type exhibits a negative

influence on Hg and MeHg availability.

Hg and MeHg accumulation appears to peak during midsummer when water

temperature biological growth rates, those times that growth occurs in hydrologic

systems, are high. This is also the time period when the common loon is breeding on

Maine lakes. Other factors that may influence bioavailability of Hg and MeHg and total

levels include spring snowmelt runoff and summer storms, implying that the best times to

collect data on Hg and MeHg levels occur during the summer months (Vermont Dept. of

Env. Conservation 1998). Several researchers have found recently that the amount of Hg

introduced to a system can vary widely due to individual storm events (Peckenham et al.,

2002). This suggests that local phenomena such as adjacent wetlands that become flooded

may contribute to increased levels in some places. 

8



In Canada, as well as in the state of Maine, particular bedrock geology types have

been correlated to Hg in the aquatic systems (Vaidya and Howell, 2001, and Peckenham

et al., 2002). The breakdown of some types of bedrock can lead to increased Hg

availability; Hg is known to exist in shale, granite, and limestone (Vaidya and Howell,

2001, and Faust and Aly, 1981). Some of the chemicals compounds found to be related to

Hg include aluminum, zinc, copper and lead. 

Bacteria also contribute to the methylation process (the conversion of Hg to

MeHg). Some studies have shown that sulfate-processing bacteria take up Hg and convert

it through metabolic processes into MeHg (USGS Fact Sheet FS-216-95, 1995). Many of

these bacteria reside in wetland environments further emphasizing the role that wetlands

play in Hg and MeHg availability. 

Figure 2.2 presents a representation of the mechanisms that drive the

dissemination and subsequent uptake of Hg in aquatic systems. As can be seen from

Figure 2.2, the processes that drive the bioaccumulation and biomagnification of Hg are

quite complex. Many factors contribute to the input, transfer, and subsequent

bioaccumulation and biomagnification of Hg in aquatic systems. 

Within the state of Maine, Hg levels in water appear to vary spatially as a function

of longitude and latitude, with concentrations rising as you move north and west

(Peckenham et al., 2002), depending on the flow state. This tendency in suggests that

using a geographically weighted regression may be useful in Maine. Interestingly, eastern

Canada (extending north from the Great Lakes and east to the Atlantic Ocean) has not

exhibited a similar pattern.
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Research Efforts

In an effort to understand the fate and transport of Hg in aquatic systems much

research has focused on understanding the mechanisms that contribute to the

bioaccumulation and biomagnification of Hg. Attempts to date have addressed the issue

through the use of various fate and transport algorithms, mass balance equations, and

various geographical analyses (Vaidya and Howell, 2001, DTMC, 2002, and Rencz et al.,

2002). 

Some of the research discussed below comprises standard statistical/numerical

models created using non-spatial data, while others include the use of Geographic

Information Systems (GIS) in an attempt to bring in the spatial component. Many of the

research efforts have also focused on using various piscivorous  birds as indicators of

aquatic health, however most of the GIS-based models make attempts at explaining the

MeHg variation in either fish tissue or in water and not in piscivorous birds. The use of

10

Figure 2.2
Mercury cycle in aquatic environment: from deposition and volatilization, to transport and
diffusion, to bioaccumulation and biomagnification.
Source: USGS (http://wi.water.usgs.gov/pubs/FS-216-95/f6.gif)



piscivorous birds as indicators is not an uncommon practice and has been used

extensively in attempts to explain the variability of MeHg in aquatic systems as well as in

attempts to evaluate the overall health of an aquatic ecosystem (Evers et al., 2001,

Thompson, 1996, and Wolfe et al., 1998). 

Spatial Models/Research

This section will briefly address some of the spatial models that have been

developed in an effort to understand the bioaccumulation and biomagnification of Hg.

Substantial effort has been undertaken by many state agencies as well as federal agencies

to provide a means of understanding the variability of Hg in hydrologic systems, to create

total maximum daily loads (TMDL's), and to assess potential risk. 

The mercury maps project developed by the United States Environmental

Protection Agency made an attempt to quantify the spatial relationships between air

deposition and fish tissue Hg concentrations. Previous modeling efforts conducted by the

United States Environmental Protection Agency made attempts to describe the fate and

transport of Hg in both the watershed and the aquatic ecosystem (U.S. EPA, 1997). One

of the previous models included the Mercury Cycling Model (MCM) and is documented

in the Mercury Study Report to Congress (MSRC) (U.S. EPA, 1997). The main

assumption of the Mercury Maps model states "that a ratio reduction in air dispersion

watershed loads will produce an equivalent ratio reduction in average fish tissue

concentration in that watershed, at steady state" (U.S. EPA, 1997). 

The USGS has developed the SPARROW model (Spatially Referenced

Regressions on Watershed Attributes). The SPARROW model was developed in an effort

to relate nutrient stream concentrations to pollutants and various watershed

characteristics, however its applicability to understanding Hg is now being investigated.

In New England, the SPARROW model has been applied regionally in collaboration

between the U.S. EPA and the New England Interstate Water Pollution Control

Commission (NEIWPCC)  to assess nutrient loading in New England Watersheds. The

SPARROW model has also been applied to the development of regional TMDLs and

various nutrient criteria studies. Efforts are currently underway to apply SPARROW to

Hg concentrations though its applicability is still unclear. 
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In the Pascagoula Basin in Jackson and George counties of Mississippi, Hg

TMDLs were developed for the Escatawpa River. The study addresses water body

identification, land use disruption, fish tissue data, and potential point source inputs of Hg

(Mississippi Department of Environmental Quality, 2000). From the executive summary:

The fresh water portions of the Escatawpa River are impaired

by mercury. Largemouth bass and catfish caught in these

segments have been sampled and the data show a definite

impairment due to levels of mercury in the fish flesh, which

exceed the FDA Action level. (Mississippi Department of

Environmental Quality, 2000. pg. viii).

The use of fish samples, as mentioned above, tends to be the way in which

organizations address Hg contamination. The Escatawpa river study is no different in that

the main objective is to address Hg levels in fish tissue. As of the date of the publication,

the model addresses only point source contributions to the water body (Mississippi

Department of Environmental Quality, 2000). As reported in the document, 

One of the major components of a TMDL is the establishment

of instream numeric endpoints, which are used to evaluate the

attainment  of  acceptable  water  quality.  Instream  numeric

endpoints, therefore, represent the water quality goals specified

in  the  TMDL.  (Mississippi  Department  of  Environmental

Quality, 2000. pg. 8).

The Sacramento River Watershed Program (SRWP) has been working on the

development of a model to address the fate and transport of Hg in the Sacramento River

Watershed (SRW). An initial conceptual model was developed and detailed in Appendix

2 of the original document. This portion of the literature review addresses Appendix 4,

the Mercury Models Report. The report specifies a series of four linkages needed to

develop a mercury model in the SRW. The first link addresses the atmospheric transport

and deposition to water bodies, the second addresses the transport and transfer in
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waterbodies, the third addresses the cycling of Hg to MeHg, and finally the

bioaccumulation in fish tissue (DTMC, 2002).

The following paragraphs address individual analyses or studies, not necessarily

models, which have been completed utilizing GIS techniques. These include using GIS to

randomly select study sites and to evaluate adjacent physical properties of the lakes.

Kamman et al. (2004) recently published research that assesses the mercury

distribution of sediments, water, and biota in Vermont and New Hampshire using a

geographically randomized design. Results of the study showed varying concentrations of

Hg in water across the states and varying concentrations of Hg in sediments that are in

agreement with other studies conducted within the state (Kamman et al., 2004). Within

the area of biota, fish tissue levels were analyzed in comparison with other water quality

variables in an attempt to develop a set of linear discriminant functions, per lake type, to

predict and evaluate Hg levels in yellow perch. An average age of 4.6 years was used in

the analysis. These linear discriminant functions are to be applied to lakes that fall outside

of the study area (Kamman et al., 2004). Yellow perch have been used frequently in

previous studies both to evaluate lake condition as well as to develop fish consumption

advisories (Kamman et al., 2004). The yellow perch also cover several trophic levels

depending on size. 

A fairly recent study in Canada completed by Vaidya and Howell (2001)

attempted to explain Hg concentrations of lakes in Kejimkujik National Park using GIS

and Statistics. A combination of principle components analysis and stepwise multiple

regression was used in attempt to explain the MeHg concentrations in the lakes (Vaidya

and Howell, 2001). The results from their study found positive correlations between mean

annual mercury levels in the lakes and lake surface area, lake basin area, lake basin area

to lake surface area ratio, granite bedrock, and negatively with greywhacke bedrock

geology. They further show that mercury in the study area originates within the watershed

(Vaidya and Howell, 2001).

In all cases, the models have attempted to relate the bioaccumulation of mercury

to fish tissue or water and have neglected the higher trophic level species such as the

Common Loon or other piscivorous wildlife. At this point I am not aware of a model

implemented in, either partially or fully, the framework of a GIS system that addresses

higher trophic level biota. All the models discussed above addressed the issue at a
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watershed level as well, averaging the concentrations across a lake. This methodology

does not lend itself to understanding the variability within lakes and the subsequent risk it

poses to higher trophic level species due to that variability.

Non-Spatial Models/Research

Non-spatial numerical/statistical models have attempted to explain MeHg levels

in higher trophic level biota. There are current efforts underway by BRI to develop a

wildlife criterion value for the common loon in an effort to assess the impacts of MeHg

on piscivorous wildlife (Evers et al., 2003). Researchers at BRI are also analyzing MeHg

concentrations in cavity nesting ducks, in particular the golden eye (Bucephala clangula),

the common merganser (Mergus merganser), the wood duck (Aix sponsa), and the

hooded merganser (Lophodytes cucullatus), and assessing the impacts of MeHg to mink

and river otter. 

Substantial efforts have also been directed toward understanding MeHg variation

in other species. Golet and Haines (2001) used snapping turtles as indicators of aquatic

health. Snapping turtles, common in many fresh water ecosystems, also bioaccumulate

Hg (Golet and Haines, 2001). Other research has shown that reptiles, such as American

Alligators in Florida and northern water snakes in Michigan, bioaccumulate Hg.

Other efforts have examined Hg levels in the horseshoe crab. Burger (1997a)

analyzed Hg levels in horseshoe crabs and found declining levels during the study period

ranging from 1993-1995. Results showed that there were higher levels in the horseshoe

crab eggs than in the adult female horseshoe crabs (Burger, 1997a). Burger (1997b) also

analyzed heavy metal concentrations in Herring Gulls and found substantial variation

among the groups studied. The study area ranged from eastern Long Island, New York to

Virginia and significant concentrations of Hg were found to be randomly distributed

throughout (Burger, 1997b). The study utilized bird feathers, which can make

interpretation of Hg source difficult at best, particularly because the birds are migratory.

In an effort to address that problem feathers from chicks were collected (Burger, 1997b).

The literature and research cited in this chapter is not comprehensive and is

intended to give an overview of recent Hg studies in the U.S. and Canada.  None of these

studies attempted to explain the variability that can exist within a watershed. Most of the

existing studies document the Hg and MeHg concentrations in fish and wildlife, and the
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mechanisms that contribute to those concentrations within the entire watershed. In the

case of the common loon, where there may be multiple nesting pairs with significantly

varying levels of MeHg, a watershed approach may be inappropriate to truly the explain

the within lake variability. For example, instead of looking at the problem from a

watershed level, it may be more appropriate to look at the problem as a function of

distance from the lake or loon territory.
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Chapter 3: Methods and Procedures

3.1   Location of Study 

The area of interest is the Rangeley Lakes region located in western Maine and

eastern New Hampshire (Figure 3.1). The study will examine the upper parts of the

Kennebec and Androscoggin rivers as well as the entire watershed that flows into Lake

Umbagog. The area is comprises thirty-four 7.5 minute USGS quadrangles that include

the following major lakes/reservoirs: Umbagog, Richardson, Mooselookmeguntic,

Rangeley, and Aziscohos. The study area was selected for several reasons. First it exhibits

Hg levels that are higher than the national average (Evers et al., 2003). Second,

significant amounts of Hg data are available for the area. The initial model will be based

on the Rangeley Lakes area because the majority of the Biodiversity Research Institute’s

research has been conducted in that region making data available. Once the initial model

was created, it was tested, cross-referenced with existing data, and validated against

known Hg levels. This was necessary to determine the reliability of the model in

predicting Hg levels and the associated risk those levels pose to the local biota.  Within

the study area, known point sources of Hg do not exist. Therefore, the main focus of this

thesis will be based on the assumption that the predominant influx of Hg is through non-

point sources, which include both dry and wet deposition.  
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Figure 3.1
Study area located in northwestern Maine and northeastern New Hampshire.
Area covers approximately 246,372 hectares.



3.2    Hardware and Software

The hardware used for development of the GIS based model was a standard

Pentium 4 computer. Software used included ArcGIS, ARC/INFO workstation, Statistix,

and MiniTab. Additionally, new Hg collection software (HgTracker) based on the Palm

operating system was tested and is described in the next section.  Collection of loon

sample locations was done using a Garmin12 GPS unit, Garmin ETrex GPS unit, or the

Magellan GPS for the Handspring Visor handheld computer, all of which collect only

autonomous GPS data (Figure 3.2). It should be noted that the Magellan Companion for

the Visor was integrated into the HgTracker field collection software that will be

discussed later in this chapter. Locations of water samples were collected in the same

manner using autonomous GPS technology. A brief description of loon capture

techniques can be found in the data collection section below.
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Figure 3.2
GPS units used for data collection. From left to right: Garmin Etrex, Garmin 12,
Magellan Companion for Handspring Visor



3.3 Field Data Collection (HgTracker)

Data collection in the field can introduce error into the spatial database. This error

can arise for a number of reasons including human perception at the time of information

gathering and variation in how the collected data are entered into the larger database. To

facilitate the seamless integration of multiple data sources it is necessary to implement

standards for how data are collected and managed. HgTracker is a software product

originally developed for the palm operating system that provides for seamless collection

and integration of Hg related data. The software was used during the summer of 2003 for

collection of individual loon territory data in lieu of the traditional, and often less

accurate pen and paper method. Data were collected during surveys of the area and

information was recorded in regards to loon territory fidelity, nesting and breeding

success, and general information in regards to behavior. Additional information about

intruding loons were collected as well.

The software provides a platform that requires the user to enter information about

loon age, band combination, nesting success, and territory fidelity in a manner that greatly

reduces the possibility of user entry error from mistyped keystrokes, abbreviations, or just

plain blunders. For example, in the existing database, collected by pen and paper method,

an adult loon may be coded as "adult", "adlt", or "A". This inconsistency in data entry

makes it difficult to query and analyze the database, therefore much of the attribute

information in the HgTracker software was made available through drop down menus,

checkboxes, or radio buttons in an effort to assure consistency. The HgTracker software

also provides a method for capturing GPS locations of nest bowls for individual loon

territories, which can be useful in locating the nests the following year, as well as in

facilitating implementation into a GIS system for additional spatial analysis. The basic

procedure for collecting loon territory information and samples is described in section 3.5

below.   

Lastly, the HgTracker software provides a seamless environment for integration of

the data into a Microsoft access database. This allows for data, collected by several

people or organizations, to be seamlessly integrated into one cohesive database with

minimal chance of user error or inconsistency in data entry methods. This also facilitates

a user friendly environment for data sharing among collaborating organizations and

agencies.
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3.4    Digital Data Collection and Preparation

Data were collected from a variety of sources. Table 3.2 provides a list of the data,

the data type, and the source of the data. The two main data sources were the Maine

Office of GIS and Biodiversity Research Institute. Other data sources included the Prism

website for collection of precipitation data and the New Hampshire GRANITE site for

collection of data that fell outside the state of Maine. The Hg sample sites were provided

by the BioDiversity Research Institute (BRI) located in Falmouth, Maine under the

direction of Dr. David Evers. Sample locations have been collected over the last several

years and are well distributed within the study area.

Initial geo-referenced data were collected in a variety of projections, however, the

predominant referencing scheme was based on latitude and longitude coordinate

locations. Scales varied depending on the source of the data and that information is

included in Table 3.1. Data layers that were collected at 1:24000 scale were downloaded

from either the Maine Office of GIS website or the New Hampshire GRANITE website,

then cleaned and built for topology using ARC/INFO workstation. The data were then

merged and dissolved using ARC/INFO workstation in order to provide seamless data

sets within the study area. Once the data sets were complete (e.g. merged and cleaned)

they were projected into the Maine Stateplane West coordinate system for the North

American Datum of 1983. All data used and the associated spatial analysis was done

using that coordinate system, the parameters of which are shown in Table 3.2. All data

that were in the ARC/INFO coverage format were converted to the ESRI shapefile format

to facilitate use of the model and data among those agencies that do not have full

ARC/INFO capabilities as well as to meet requirements set for by the Northeastern

Ecosystem Research Cooperative (NERC), which has requested that all spatial data be

delivered in ESRI shapefile format to facilitate data sharing among collaborative

organizations and to minimize a disparate number of data formats.

Tabular data (shown in Table 3.1) that included latitude and longitude information

were added as event themes in ArcGIS and then converted into shapefile format using

ArcGIS. The new shapefiles were then exported into the Maine Stateplane West

coordinate system for the North American Datum of 1983. This insured that all spatially

referenced layers used in the analysis were in the same projection within the GIS. 
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NAD 1983 UTM Zone 19N
Transverse
Mercator

False Easting: 500000.000000
False Northing:  0.000000
Central Meridian: -69.000000
Scale Factor: 0.999600
Latitude Of Origin: 0.000000
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Data Sets Data Type Data Scale Source

Precipitation

Rates

Raster 1:250,000 PRISM website

Wetland Type Raster 30m Raster Resolution Maine Office of GIS/ GRANITE
Forest Cover Raster 30m Raster Resolution USGS 
Land Use Polygon 30m Raster Resolution USGS
Slope/Topography Raster 30m Raster Resolution USGS
Hydrography Line 1:24000 Maine Office of GIS/ GRANITE
Hydrography Polygon 1:24000 Maine Office of GIS/ GRANITE
Loon Samples Point/Tabular Autonomous GPS Biodiversity Research Institute
Territory Point/Tabular Autonomous GPS Biodiversity Research Institute

Table 3.1
Data sets used in model. Data were collected from a variety of sources and represent various scales. Data
included both vector and raster data types.

Table 3.2
Projection parameters used in model. All data sets were projected to the above coordinate system.



3.5    Territory Surveys and Loon Sample Collection

Currently there are 199 loon mercury samples within the study area. However, of

the 199 samples, only 61 represented adult male loon samples. An explanation of why

only the adult male loon samples were used is provided later in this chapter. Figure 3.3

shows the spatial distribution of male loon samples currently collected by either BRI or

one of their collaborators.  Loon samples in general were collected using a method

developed by the Biodiversity Research Institute and represent a continuous sampling

methodology. Surveys were conducted during the breeding season (May – August) to

determine territory fidelity and to monitor and record information in regards to the

number of nesting loon pairs on each lake. The HgTracker software was used to gather

the survey information and seamlessly integrate it into a Microsoft Access database. The

basic method for collecting survey information is described below:

1. Loon territories were assigned to individuals at the start of the breeding

season, generally during the first two weeks of May.

2. Surveys were conducted every 7 to 10 days and information collected on

territory fidelity, nest locations, intruder information, and nesting success

(when appropriate), as well as the general activities of the pair such as

fishing or preening.

3. The Hg Tracker software was used to collect the above information and

the integrated GPS unit was used to record the location of the nest bowls,

hummock, man-made rafts, or scrapes.

Bowl: Nest approximately ½ meter in diameter and 12 cm in

height. The bowl is typically located on shore and is made of

grasses and mosses.

Hummock:    Very similar to the traditional bowl however it is

located in marshy areas on tufts of grasses sitting just above the

water.
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Man-made raft:   A raft is constructed of cedar posts and anchored

just offshore. This allows for the loons to build a nest that will

fluctuate with variations in water level allowing for increased

nesting success and increased protection from potential predators.

Scrape:   As described by BRI, a scrape is the “lazy” loon’s nest

generally consisting of only a small cleared area “scraped” out in

the sand or gravel. If the loons are feeling particularly energetic

they may place a few small sticks around the scrape in an effort to

delineate the nest from the surrounding area. 

4. Finally, if a pair was successful in their breeding attempt, the birds were

captured and samples collected for analysis of both blood Hg and feather

Hg levels. For consistency sake, blood was always drawn from the caudal

tibial vein in the leg located medially over the tarsal joint, and the second

secondary feather was clipped. Clipping of the second secondary insures

consistency in the data collection and does not inhibit flight.

5. Each adult bird was banded with an United States Fish and Wildlife

(USFWS) band and 3 colored bands representing an unique combination.

Juveniles were banded in the same manner however single color bands

were used if the tarsus was to small to accommodate two bands on each

leg.

6. Once samples were collected, they were labeled and sent out for analysis

using Cold Vapor Atomic Fluorescence Spectrophotometry (CVAFS)

technology.

Capturing the birds required a number of steps. Once the pair was found, a

combination of bright lights, electronic calls, careful maneuvering of the boat, and a

whole lot of luck was used to bring the loons in close enough to net. Collection of

samples was accomplished in a non-lethal manner. Information from the collected

samples were then entered into the model at the capture location.
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3.6    Model Development

Once the necessary data were collected, the conceptual framework for the model

(Figure 3.4) was developed. The creation of the framework involved a detailed project

schematic that outlined the individual steps needed to complete the project. Once the

steps were defined and the data collected, the flow model was put together to aid in

implementation of the individual steps of the process. 

There were five major steps involved in preparing the data necessary for statistical

analysis. Those steps are listed below and then defined in the following paragraphs.
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Figure 3.3
Spatial distribution of Male Loon samples within study area. The sample data was either currently existing
and supplied by Biodiversity Research Institute or collected
 during the summer of 2003 by this researcher.  



1. Created Thiessan polygons from point samples to form “loon territories"

necessary to begin the analysis. 

2. Buffered the polygons at 3 intervals (150m, 300m, 600m). This step

provided the areas within each of the 3 intervals needed to collect the land

cover information.

3. Reclassified the NLCD (National Land Cover Database) data into

individual land cover classes. This step provided the individual land cover

classes necessary to obtain percentages within the territories. These were

based on existing categories in the dataset.

4. Used a Zonal Statistics function to obtain percent of each land cover type.

5. Exported the resulting data to a dbase (*.dbf) file for import into MiniTab

for statistical analysis.

The individual point locations for the loon territories were converted into thiessan

polygons. A thiessan polygon can be described as a polygon developed in such a manner

that no location within that polygon is closer to any other sample point than the sample

point contained within the polygon. Thiessan polygons are also known as voronoi

polygons or Dirichlet polygons (Burrough, 2000). Because delineations of the polygons

are completely dependent upon the location of the sample points if a point was collected

near the edge of a loon territory the resulting polygon may not accurately depict the true

geographic area of the actual territory. In theory it should include most of the area.

Thiessan polygons were used to delineate loon territories within the GIS because spatially

referenced and delineated territories were currently not available. This method also

allowed for segmentation of the lakes in order to explain the variability of MeHg within

each of the territories. If there were multiple samples in the same territory, the values

were averaged. Multiple values can exist in a single territory because a particular bird

may be captured year after year. This allows for a value to represent the average available

MeHg in a particular location.
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Once the territories were created, a spatial join integrated the loon MeHg levels

from the individual loon sample points into the thiessan polygons. Figure 3.5 shows the

"territories" generated from the thiessan polygon procedure. Loon samples were

subdivided into three categories: Male Adult, Female Adult, and Juvenile. For the

purpose of this thesis the model was developed using the male loon samples. There are

several reasons to use only the male samples:

1. Males tend to exhibit the highest Hg levels and levels are not affected by

egg laying processes.

2. Females exhibit the next highest levels but may process out some the HG

from the burden of laying eggs. This may lead to erroneous estimates in

the regression model.
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Figure 3.4
Conceptual flow chart of model methodology. Developed prior to model development to aid in
implementation. The above chart represents the five major GIS operations used in the analysis.



3. Juveniles exhibit the lowest levels. This is potentially due to the fact that

the juvenile loons have not had the opportunity to bioaccumulate as much

Hg as their adult counterparts (Evers et al., 2003).
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Figure 3.5
Thiessan polygons developed to act as "Loon Territories" in the model. These polygons were also used to
obtain the buffered areas needed in the land cover analysis. The buffered area around each of the territories
is also included.



There were a total of 61 samples used in the analysis that accounted for 30.5% of

the total number of samples and 65.5% percent of the territories. The samples were then

randomly subset in ArcGIS using Geostatistical Analyst into a test data set and a training

data set allowing for 35 - 41 samples in each set. This process was repeated 30 times in

an effort to assess the sensitivity of the model.

Once the thiessan polygons were generated and the sample MeHg levels

incorporated, the individual territories were buffered at 3 intervals: 150m, 300m, and

600m. Individual land cover characteristics from each of the buffered zones were then

incorporated into the initial territory shapefile. As mentioned in the literature review,

wetlands have been determined to be a major contributor to the available MeHg in an

area. That being the case, it seems logical to assume that, if there is a larger percentage of

wetlands within a particular proximity to a territory, then the available MeHg will be

greater. By analyzing the land cover variability within certain proximities of the

individual territories we should be able to more accurately explain the variability of

MeHg within the common loon. Figure 3.5 also represents the buffered areas around each

of the individual loon territories. 

For each of the three distances, the percent landcover of each class was recorded

and spatially joined into the territory table using a zonal statistics function. This table was

then exported from ArcMap as a dbase file and then imported into Minitab for statistical

analysis. A basic Pearson Product Moment correlation test was run to determine the

relationship between the independent variables (landscape factors) and the dependent

variable (loon MeHg level). This was initially run on the entire sample set. Once the

individual relationships were determined, ordinary least squares regression was used to

create the regression equation based on the training data set. Upon completion of the

regression equation the resulting residuals were analyzed to insure that the assumptions of

ordinary least squares regression were met. This process was repeated for all three of the

buffered areas surrounding the loon territories.

Once the regression equations were created and the residuals analyzed the

regression equation was implemented in ArcGIS using the Raster Calculator. In order to

restrict the raster calculator results to the extent of the thiessan polygons the percent value

of each land cover class was converted into its own raster layer. This allowed for 8

different sets of raster layers based on the extent of the thiessan polygons to be input into
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the regression equation. Once this was completed, the variations between the new Hg

values calculated from the equation and the original measured Hg levels was assessed. 

In an effort to address the sensitivity of the model, the R2 values from all thirty

iterations were recorded and a 95% confidence interval calculated to determine the

number of iterations that fell within that confidence interval. This was again completed

for all distance classes. The residual plots were then examined for all thirty iterations in

an effort to determine if any one iteration did not meet the assumptions of ordinary least

squares regression. The range of R2 values was also analyzed for each distance class in an

attempt to explain the variation between each of the regressions.
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Chapter 4: Results and Discussion of Statistical Analysis

4.1   Introduction 

This chapter will present and discuss the statistical results from the analysis. They

will be presented in the order of the distance class from least to greatest. The last section

will address overall conclusions and the final results from the statistical analysis of this

thesis. This thesis utilized least squares regression and extensive effort was taken to

analyze and understand the residual distributions from the model. In order to meet the

normality requirements of least squares regression the dependent variable was log-

transformed (Figure 4.1).
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4.2   Basic Statistics: 150 meter Distance Class

Three variables were significantly correlated (p < 0.05) with Hg levels in the

Common Loon (Table 4.1) based on Pearson’s Product Moment Correlation Coefficient.

Three variables were also found to be significant in the regression model and the fourth

(wetlands) was included because it was found to be significant in Pearson’s test and

exhibits a p-value only slightly above 0.05 (Table 4.2).  The ANOVA indicates that the

regression model is significant (p < 0.05) however some of the variables were not

significant and do little to explain the variance of Hg in the Common Loon (Table 4.3).

The variables used in this model (n = 8) explain 53.3% of the Hg variance (R2 = 53.3).

The residual plots meet the assumptions of normality and are randomly distributed when

compared with the fitted values (Figure 4.2). The Durbin-Watson statistic (1.23901)
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Figure 4.1: Example of log-transformation used on the dependent variable (Hg). In order to meet the
normality requirements of ordinary least squares regression the transformation was necessary. The left graph
represents the measured Hg levels and the right graph represents the log-transformed values. The p-value
greater than 0.05 indicates significance (right graph).



indicates that the residuals do not exhibit autocorrelation and further suggest the model is

adequate at this distance class.   

           
Wetlan
d Shrub Mixed Decid Cult Conif Barren Precip

Hg_Log1
0   0.492 0.550 0.115 0.018 -0.300 0.200 0.164 0.155
 0.000 0.000 0.392 0.891 0.023 0.135 0.223 0.250

Predictor        Coef
   SE
Coef

 
T       P

Constant 0.1033 0.3658 0.28 0.779
Wetland 2.031 1.018 1.99 0.052
Shrub 52.05 11.36 4.58 0.000
Mixed 0.3208 0.4379 0.73 0.467
Decid -0.4124 0.6447 -0.64 0.525
Cult -8.245 3.558 -2.32 0.025
Conif -0.1494 0.2732 -0.55 0.587
Barren -3.035 1.08 -2.81 0.007

Precip
0.00487

2
0.00955

7 0.51 0.613

Analysis of Variance      
Source   DF        SS        MS      F       P
Regression 8 0.90952 0.11369 6.85 0.000
Residual Error 48 0.79637 0.01659   
Total 56 1.70589    
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Table 4.1
Pearson’s correlation coefficients from 150 meter distance class (n = 57). Significant correlations are shown in
bold. Cell contents show Pearson’s correlation coefficient (top) and the p-value (bottom). Shrub = Shrub land,
Mixed = mixed forest, Decid = deciduous forest, Cult = cultivated land, Barren = Barren land, Precip = average
precipitation.

Table 4.2
Regression coefficients, T-value, and P-values from 150 meter distance class (n = 57). Significant p-values are
shown in bold. 

Table 4.3
ANOVA table from 150 meter distance class. The P-value of 0.000 indicates that at this level the model is
adequate in predicting Hg in the Common Loon.
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4.2.1       150 Meter Buffer: Subset

The following sections detail the results from the 150 meter buffered area. The

results presented are for the initial subset of the data (n = 41). Hg levels were again log-

transformed. 

Within the subset data (n = 41) only two independent variables were found to be

significant to Hg levels in the Common Loon based on Pearson’s Correlation Coefficient

(Table 4.4). Three variables were found to be significant in the regression (Table 4.5).

The ANOVA indicates that the regression model is significant (p < 0.05), however,

similar to using all samples, some of the variables were not significant and do little to

explain the variance of Hg in the Common Loon (Table 4.6). The variables used in this

model (n = 8) explain 57.4% of the Hg variance (R2 = 57.4).  The residual plots meet the

assumptions of normality and are randomly distributed when compared with the fitted

values (Figure 4.2). The Durbin-Watson statistic (1.54323) indicates that the residuals do

not exhibit autocorrelation and further suggest the model is adequate at this distance

class. 
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Figure 4.2
Residual plots for the 150 meter distance class (n = 57). The residuals meet the requirements of least squares
regression as can be seen in the plots. 



   Wetland      Shrub      Mixed      Decid       Cult      Conif Barren
Hg_Log10 0.571 0.433 0.011 -0.112 -0.259 0.247 0.086

0.000 0.005 0.945 0.484 0.102 0.119 0.594

Predictor       Coef
  SE
Coef       T       P

Constant 0.5512 0.5003 1.1 0.279
Wetland  3.568 1.335 2.67 0.012
Shrub    46.67 12.89 3.62 0.001
Mixed    1.1616 0.6269 1.85 0.073
Decid    -1.2132 0.785 -1.55 0.132
Cult     -6.719 4.007 -1.68 0.103
Conif    -0.2068 0.2736 -0.76 0.455
Barren   -4.005 1.285 -3.12 0.004
Precip   -0.00785 0.013 -0.6 0.55

Analysis of Variance
Source DF SS MS F P

Regression 8 0.80077 0.1001 5.40 0.000
Residual Error 32 0.59325 0.01854

Total 40 1.39402
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Table 4.4
Correlation coefficients from 150 meter distance class (n = 41).

Table 4.5
Regression coefficients from 150 meter distance class (n = 41).

Table 4.6.  ANOVA table from 150 meter subset (n = 41).
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Sensitivity

To insure that the sample was not biased, the Hg data were randomly subset thirty

times using ArcGIS Geostatistical Analyst. Table 4.7 below lists the R2 values for each of

the thirty iterations within the 150 meter distance class. In all cases the Durbin-Watson

statistic was significant indicating there is no autocorrelation in the residuals. The average

R2 value for the thirty iterations was 57.80. The standard deviation was 6.183. Of the

thirty iterations, 22 fell within one standard deviation of the mean and all but one fell

within two standard deviations of the mean. 
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Figure 4.3
Residual plots for the 150 meter distance class subset (n = 41). Residuals are clearly
randomly distributed, and meet the normality requirements for least squares regression.



Iteration R2 DurbWat
1 55.0 1.78945
2 45.9 1.52792
3 59.7 1.45408
4 59.3 1.24533
5 48.7 1.33189
6 60.6 1.56090
7 61.0 1.95494
8 55.4 1.32029
9 62.7 1.74647

10 63.2 2.06829
11 48.8 1.15306
12 54.3 1.58161
13 58.6 1.38379
14 57.3 1.07329
15 72.7 1.66701
16 48.0 1.78674
17 62.4 1.58605
18 61.3 1.52193
19 64.9 2.05954
20 59.2 1.64102
21 55.7 2.01813
22 47.2 1.33813
23 63.4 1.76334
24 53.8 1.68581
25 61.1 2.16634
26 58.4 1.63442
27 67.6 1.19515
28 58.1 1.63904
29 56.8 1.37262
30 53.0 1.47709
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Table 4.7
Results for the 150 meter distance class from thirty iterations of data subsets.
Sample sizes varied based on how the subset was created and ranged from 34
samples to 43 samples.



4.2.2    Discussion:   150 meter Distance Class

Correlation

There were several relationships found within the 150 meter distance class (n = 57). The

positive relationship found between Hg and wetlands (0.492, p-value < 0.001), and the

negative relationship with cropland (agricultural) (-0.3, p-value < 0.05) is supported by

previous research done by Kamman et al. (2000). The strong positive relationship with

shrub land (0.55, p-value < 0.001) has not been documented in the literature. Within the

150 meter distance class using the subset data (n = 41), we find a shift in the significant

variables per their correlation coefficients and associated p-values. Using the subset data,

wetlands (0.571, p-value < 0.001) and shrub land (0.433, p-value < 0.05) still exhibit

significant relationships with Hg in the loon blood. We find using this subset of the data

that cultivated lands still exhibit a negative relationship (-0.259, p-value > 0.05),

however, it is not significant at the 95% confidence interval. Analysis of the thirty

iterations of subset data show cropland as significant in a number of cases. Due to the

relatively small amount of land used for agricultural purposes within the study area it is

quite possible that samples from the subset data did not include territories where there

was agricultural land within 150 meters.

Regression

The table of regression coefficients, t-values, and p-values indicates that there are

four variables of significance within the model. Those variables: wetlands (p-value >

0.05), shrub land (p-value < 0.000), crop land (p-value < 0.05), and barren (p-value <

0.05), exhibit the strongest influence in the model when using all of the samples. The

wetlands class was included (p-value = 0.052) because it was noted as a significant

variable in the Pearson correlation matrix. When the subset data were used we found that

three of the variables mentioned above were still significant (wetland, shrub land, and

barren land) and depending on the subset analyzed, croplands still show up as significant,

potentially due to the little amount of area actually being used for agricultural purposes.  

Results from the analysis of variance table for both the entire set of data and the

subset data show significance at the 95% confidence interval with p-values of < 0.001.

The f-statistic for both models also shows significance suggesting at least one of the

coefficients is different than zero. In both cases, the test for autocorrelation of residuals
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(Durban-Watson Statistic) is significant, as in both cases it is found to be larger than the

largest value in the dependent variable (DW = 1.239, and DW = 1.543) thus indicating

that no autocorrelation exists. 

Analysis of the residual distributions for each of the models at the 150 meter

distance class further suggests that the model is significant, exhibiting normal

distributions of residuals (p-value > 0.05). The residuals are also randomly scattered in

regards to the fitted values, suggesting that the error that does exist is randomly

distributed. 

Sensitivity

Analysis from all thirty iterations also suggests the model is not overly sensitive to points

selected, in regards to being well fit. It is sensitive, however, to point selection in regards

to its predictive capability. Further analysis revealed that the model is adequate at

predicting Hg levels in the Common Loon on larger reservoirs and subsequently

decreases in accuracy, within the subset data, when a larger proportion of the samples

come from smaller lakes (generally only one pair of nesting loons). When using all of the

samples the model appears to provide reasonable estimates of Hg risk to the Common

Loon. Residual plots from each of the iterations within the 150 meter distance class can

be found in Appendix A.

Conclusion

Based on the results presented above, the regression models Hg risk in the

Common Loon adequately. The assumptions of least squares regression have been met.

Output from the model will be presented at the end of this chapter. The regression model

was recalculated using only those variables found to be significant, and then implemented

into the GIS using the Raster Calculator available in ArcGIS Spatial Analyst. 
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4.3   Basic Statistics: 300 meter Distance Class

Within this distance class three independent variables were found to be significant

to Hg levels in the Common Loon based on Pearson’s Correlation Coefficient (Table

4.8). They are the same variables found to be significant in the 150 meter distance class.

Three variables were found to be significant in the regression (Table 4.9). Cultivated land

was included (the fourth variable included) because it was identified as having a

relationship with loon Hg levels from Pearson's Correlation Coefficient. The ANOVA

indicates that the regression model is significant (p < 0.05)(Table 4.10). The variables

used in this model (n = 8) explain 41.5% of the Hg variance (R2 = 41.5).  The residual

plots do not meet the assumptions of normality and are not randomly distributed when

compared with the fitted values (Figure 4.). The Durbin-Watson statistic (1.25224)

indicates that the residuals do not exhibit autocorrelation, however there should be some

concern over the lack of normality in the residuals. There also appears to be a clustering

around the fitted value of 0.3.

              Wetland    Shrub       Mixed     Decid     Cult     Conif Barren
Hg_Log10 0.350 0.481 -0.096 0.099 -0.293 0.110 0.179
 0.007 0.000 0.472 0.460 0.026 0.412 0.178

Predictor       Coef   SE Coef       T             P
Constant 0.114 0.4186 0.27 0.786
Wetland 2.1102 0.8878 2.38 0.021
Shrub 15.004 3.664 4.10 0.000
Mixed -0.3298 0.3228 -1.02 0.312
Deciduous 0.330 0.4812 0.69 0.496
Cultivated -4.670 2.369 -1.97 0.054
Coniferous -0.2082 0.2538 -0.82 0.416
Barren -2.602 1.202 -2.17 0.035
Precipitation 0.00586 0.01105 0.53 0.598
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 Table 4.8: Pearson's correlation coefficients. (n = 57). Significant 
variables are noted in bold. 

Table 4.9:
Regression coefficients, T-value, and P-values from 150 meter distance class (n = 57).
Significant p-values are shown in bold.



Analysis of Variance     
Source           DF        SS        MS      F       P
Regression 8 0.79672 0.09959 5.04 0.000
Residual Error 49 0.96802 0.01976   
Total 57 1.76473    
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4.3.1 300 meter Buffer: Subset

The following section presents the results from the initial subset of the data (n =

41). This is the same subset used to generate the data from the 150 meter distance class. 

Within the subset data (n = 41) three independent variables were found to be

significant to Hg levels in the Common Loon based on Pearson’s Correlation Coefficient

(Table 4.11). Of the three variables, wetlands missed significance slighty (p-value =
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Figure 4.4
Residual plots for the 300 meter distance class (n = 57). The normal
probability plot fails at p-value of less than 0.05

Table 4.10:
Anova table from the 300 meter distance class. 



0.08). Within the regression model for the subset data only shrub land was found to be

significant (Table 4.12). Mixed forest was also identified (p-value = 0.055). The ANOVA

indicates that the regression model is significant (p < 0.05) with at least one coefficient

that is equal to zero (Table 4.13). The variables used in this model (n = 8) explain 49.6%

of the Hg variance (R2 = 49.6).  The residual plots appear to meet the assumptions of

normality and are randomly distributed when compared with the fitted values (Figure

4.5). The Durbin-Watson statistic (1.04063) indicates that the residuals do not exhibit

autocorrelation. 

    Wetland    Shrub     Mixed     Decid     Cult     Conif Barren
Hg_Log10 0.277 0.558 -0.245 0.035 -0.310 0.108 0.350
 0.080 0.000 0.123 0.827 0.048 0.501 0.025

Predictor       Coef   SE Coef       T       P
Constant -0.5772 0.6311 -0.91 0.367
Wetland 2.032 1.361 1.49 0.145
Shrub 8.921 4.009 2.23 0.033
Mixed -0.6873 0.3453 -1.99 0.055
Decid 0.1349 0.5456 0.25 0.806
Cult -4.298 2.622 -1.64 0.111
Conif -0.0739 0.2274 -0.32 0.747
Barren -0.557 1.416 -0.39 0.696
Precip 0.02405 0.01666 1.44 0.158

Analysis of Variance
Source      DF        SS        MS      F      P

Regression 8 0.64965 0.08121 3.94 0.002

Residual Error 32 0.65933 0.0206

Total 40 1.30898
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Table 4.11
Correlation coefficients from 300 meter distance class (n = 41).

Table 4.12
Regression coefficients from 300 meter distance class (n = 41).

Table 4.13
ANOVA Table for 300 meter distance class (n = 41). 
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Sensitivity

In exactly the same manner as the 150 meter distance class, the Hg data were

randomly subset thirty times using ArcGIS Geostatistical Analyst. The same subsets that

were used to obtain the values for the 150 meter distance class were also used in the 300

meter distance class. This insured that each of the iterations used the same sample data

and allowed for further interpretation among the results. The average R2 value for the

thirty iterations was 54.24, substantially higher than when computed using all the

samples. The standard deviation was 5.87. Of the thirty iterations in this distance class, 21

fell within one standard deviation of the mean and all fell within two standard deviations

of the mean. The model itself is again sensitive to the selection of samples included.

Table 4.14 below lists the R2 values for each of the thirty iterations within the 300 meter

distance class.
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Figure 4.5
Residual plots for the 300 meter distance class (n = 41).



Iteration R2 DurbWat
1 43.0 1.80184
2 46.4 1.58457
3 55.4 1.43169
4 61.9 1.17079
5 49.8 1.30445
6 58.8 1.66368
7 62.4 1.80967
8 46.4 1.24119
9 57.9 1.71295

10 61.4 2.06697
11 49.6 1.04063
12 50.9 1.49732
13 57.0 1.36699
14 57.9 1.32299
15 62.2 1.46731
16 44.1 1.88232
17 56.1 1.52613
18 57.7 1.53604
19 58.6 1.92490
20 49.8 1.79160
21 58.0 1.97752
22 50.6 1.64036
23 57.5 1.61672
24 48.6 1.70506
25 51.4 1.91612
26 56.4 1.65349
27 65.0 0.97059
28 52.4 1.51609
29 51.6 1.38767
30 48.4 1.35549
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Table 4.14
Results for the 300 meter distance class from thirty iterations of data
subsets. Sample sizes varied based on how the subset was created but
ranged from 34 samples to 43 samples.



4.3.2    Discussion: 300 meter Distance Class

Correlation

At the 300 meter distance class (n = 57) I found significant relationships again with

wetlands (0.35, p-value < 0.05), shrub land (0.481, p-value < 0.001), and cultivated land

(0.293, p-value < 0.05). Within the 300 meter distance class using the subset data I found

that wetlands were no longer considered significant (0.277, p-value > 0.05) at the 95%

confidence interval. I still found a significant relationship with shrub land (0.558, p-value

< 0.001), and cultivated land (-0.31, p-value < 0.05). Barren land also exhibits a

significant relationship (0.35, p-value < 0.05). These results are similar to those found

within the 150 meter distance class. Analysis of all thirty iterations continue to show

some combination of these 4 variables as significant based on Pearson's Product Moment

correlation. 

Regression

Analysis of the regression model for the complete data set as well as all thirty

iterations of the subset data show marked differences in their ability to accurately predict

Hg in the Common Loon. The tables of regression coefficients, t-values, and p-values for

the 300 meter distance class from chapter four show 3 variables that are significant to the

model including wetlands (p-value < 0.05), shrub land (p-value < 0.001), and barren land

(p-value < 0.05). Cultivated land is found not to be significant at the 95% confidence

interval (p-value > 0.05), however, just barely misses the cut-off (p-value = 0.054).

Within the subset data we no longer find wetlands to be significant, croplands to be

significant, or barren land to be significant, which is contradictory to what was found in

the 150 meter distance class, as well as what is found in the literature. This could

potentially be attributed to a decrease in significance as a function of distance.

The analysis of variance tables still indicate that the models are significant at this

point (p-value < 0.001 and p-value < 0.05). The f-statistic in both tables is still

significant. The Durban-Watson statistic is still found to be significant, with all models

exhibiting a value greater than the highest value of the dependent variable. 

Analysis of the residuals suggests that this distance class may not be as

appropriate as the 150 meter distance class. The initial model exhibited a random

distribution of residuals, however, this assumption was not met by the subset data (p-
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value < 0.005). Similar problems were discovered when analyzing the residual plots from

all thirty iterations of subset data (Appendix B).

Sensitivity  

At this distance class the model is sensitive to both the data points selected in regards to

being well fit, as well as to the selection of points in its predictive capability. In all cases,

autocorrelation of the residuals did not exist. Because of the violation of the assumptions

that the residuals are normally distributed and randomly distributed versus the fitted

values, this distance class is not as accurate at making Hg predictions as the model based

on the 150 meter distance class. In many cases, there was a clumping of the residuals in

regards to the fitted values. We still find the same relationship with R2 values in regards

to territory size with the lower values corresponding to the smaller, single territory lakes.

Conclusion

The 300 meter distance class is far less robust, in many cases violating one or

more of the assumptions of least squares regression, than the 150 meter distance class. It

is more sensitive in point selection when using a subset of the samples, and in some

cases, variables known to be significant per previous research are found not to be

(wetlands, for example). This also supports the hypothesis that those variables considered

to be significant per previous research as well as those found to be significant in this

study exhibit a stronger influence if they are closer to the individual territory.

4.4 Basic Statistics: 600 meter Distance Class

The following section details the results from the final 600 meter distance

class. This represents the furthest extent out from the loon territories at which this

research looks. Within this distance class four independent variables were found to be

significant to Hg levels in the Common Loon based on Pearson’s Correlation Coefficient

(Table 4.15). Three variables were found to be significant in the regression (Table 4.16).

The ANOVA indicates that the regression model is significant (p < 0.0001) (Table 4.17).

The variables used in this model (n = 8) explain 48.0% of the Hg variance (R2 = 48.0).

The residual plots do not meet the assumptions of normality and are not randomly

distributed when compared with the fitted values (Figure 4.6). The Durbin-Watson
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statistic (1.34347) indicates that the residuals do not exhibit autocorrelation, however

there should be some concern over the lack of normality in the residuals. There again

appears to be a clustering of the residuals around the fitted value of 0.3.

    Wetland    Shrub     Mixed     Decid     Cult     Conif barren
    Hg_Log10 0.385 0.492 -0.162 0.155 -0.299 -0.031 0.263
 0.003 0.000 0.228 0.248 0.024 0.819 0.048
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Predictor      Coef  SE Coef       T       P
Constant 0.0588 0.4133 0.14 0.888
Wetland 2.3518 0.887 2.65 0.011
Shrub 13.159 3.457 3.81 0.000
Mixed -0.1361 0.317 -0.43 0.670
Decid 0.0846 0.364 0.23 0.817
Cult -2.593 1.453 -1.78 0.081
Conif -0.2052 0.2282 -0.90 0.373
Barren -2.454 1.146 -2.14 0.037
Precip 0.00679 0.01123 0.60 0.548

Analysis of Variance     
Source           DF       SS        MS      F       P
Regression 8 0.81884 0.10235 5.54 0
Residual Error 48 0.88705 0.01848  
Total 56 1.70589   

Table 4.15
Correlation coefficients from 600 meter distance class (n = 57).

Table 4.17
ANOVA table from 600 meter distance class (n = 57).

Table 4.16
Regression coefficients and ANOVA table from 600 meter distance
class (n = 41).



4.4.1 600 meter Distance Class: Subset Data

Within the subset of the 600 meter distance class four independent variables were

found to be significant to Hg levels in the Common Loon based on Pearson’s Correlation

Coefficient (Table 4.18). Only one variable was found to be significant in the regression

(Table 4.19). The variable identified was mixed forest, which has not shown up as

significant in any other model. The ANOVA indicates that the regression model is

significant (p < 0.05)(Table 4.20). The variables used in this model (n = 8) explain 54.9%

of the Hg variance (R2 = 54.9).  The residual plots do meet the assumptions of normality

and are randomly distributed when compared with the fitted values (Figure 4.7). The

Durbin-Watson statistic (1.06631) indicates that the residuals do not exhibit

autocorrelation.
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Figure 4.6
Residual plots for the 600 meter distance class (n = 57). The normal
probability plot fails at p-value of less than 0.05

Table 4.18
Correlation coefficients from 600 meter distance class (n = 41).
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    Wetland    Shrub     Mixed     Decid     Cult     Conif Barren
Hg_Log10 0.266 0.578 -0.36 0.14 -0.311 -0.036 0.453
 0.093 0 0.021 0.384 0.048 0.821 0.003
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Predictor       Coef   SE Coef       T       P
Constant -0.3321 0.6043 -0.55 0.586
Wetland 2.131 1.151 1.85 0.073
Shrub 4.803 3.643 1.32 0.197
Mixed -0.7849 0.3039 -2.58 0.015
Decid 0.3083 0.4245 0.73 0.473
Cult -1.784 1.555 -1.15 0.26
Conif -0.0793 0.2038 -0.39 0.7
Barren 0.422 1.296 0.33 0.747
Precip 0.01765 0.0161 1.09 0.283

Analysis of Variance     
Source           DF       SS        MS      F       P
Regression 8 0.69724 0.08715 4.87 0.001
Residual Error 32 0.57215 0.01788  
Total 40 1.26938   

Figure 4.7
Residual plots for the 600 meter distance class (n = 41).

Table 4.19
Regression coefficients 600 meter distance class (n = 41).

Table 4.20
ANOVA table from 600 meter distance class (n = 41).



Sensitivity

As was done for the two previous distance classes, the data were subset thirty

times in an effort to evaluate the sensitivity of the model in accurately predicting Hg

levels in the common loon. The average R2 for the thirty iterations within the 600 meter

distance class was 54.12, which is lower than both the 150 meter and 300 meter distance

classes. The standard deviation of the values was 5.76. Of the thirty iterations, 21 fell

within 1 standard deviation, and all fell within two standard deviations. Table 4.21

displays the R2values for the thirty iterations as well as some other supporting statistics.

Iteration R2 DurbWat
1 52.1 1.66278
2 46.4 1.59727
3 57.5 1.44636
4 63.8 1.37964
5 50.1 1.40566
6 61 1.77311
7 60.1 1.75133
8 43 1.17554
9 51.1 1.74053

10 56.3 2.02131
11 54.9 1.06631
12 58 1.69937
13 59.2 1.44741
14 53.8 1.4798
15 64.9 1.59661
16 46.8 1.9376
17 53 1.49428
18 56.5 1.50657
19 56.8 1.87189
20 49.3 1.58103
21 49 1.83264
22 44.4 1.49349
23 58.4 1.65445
24 49.2 1.67726
25 50 1.84092
26 53.3 1.60806
27 63.6 1.28122
28 49.5 1.63585
29 58.1 1.27587
30 53.4 1.56219
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Table 4.21
Results for the 600 meter distance class from thirty iterations of data
subsets. 



4.4.2     Discussion: 600 meter Distance Class

Correlation

Within the 600 meter distance class (n = 57) we find that all four of the variables noted as

significant earlier, either in the correlation matrices, or in the regression equation are still

significant. Wetlands (0.385, p-value < 0.05), shrub land (0.492, p-value < 0.001),

cultivated land (-0.299, p-value < 0.05), and barren land (0.263, p-value < 0.05) exhibit

similar relationships to those found in both the 300 meter and 150 meter distance classes.

Within the subset data I found that wetlands are again not significant (0.266, p-value >

0.05). Cultivated land (0.311, p-value < 0.05), shrub land (0.578, p-value < 0.001), and

barren land (0.453, p-value < 0.05) are found to be significant. Of interest is the negative

relationship found with mixed forest (-0.36, p-value < 0.05) indicating that at this level

mixed forest types exhibit an inverse relationship with Hg in Common Loon blood. 

Regression 

Similarly to the 300 meter distance class and the 150 meter distance class, the

regression model developed for all the samples (n = 57) and the regression models

developed for each of the thirty subsets were analyzed to determine if the assumptions of

least squares regression were met, as well as to determine the ability of the model to

predict Hg blood levels in the Common Loon. The tables of regression coefficients, t-

values, and p-values from Chapter 4 show marked differences between those for the 150

meter distance class and the 300 meter distance class. When using all of the samples we

find that wetland (p-value < 0.05), shrub land (p-value < 0.001), and barren land (p-value

< 0.05) exhibit some level of significance. From the initial subset of the data I found that

only one variable in the model exhibited a p-value less than the 0.05 confidence level.

This variable was mixed forest. In both cases the p-value from the analysis of variance

tables show significance, however, additional problems can be found upon further

investigation. 

Analysis of the residuals further suggests the model is not adequate. The residual

plots generated from using all of the data show that the residuals are not normally

distributed (p-value < 0.05), thus violating the assumption that residuals should exhibit a

normal distribution. I also found that there is a clustering of the residuals versus the fitted

values between the 0.2 and 0.4 range. Within the initial subset of the data I found that the
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residuals meet the normal distribution requirements (p-value > 0.05) and appear to be

randomly distributed versus the fitted values. Because at least one of the two models

shows robustness in the residuals all thirty were run. Marked differences exist in the

individual iterations with regards to residual distribution and normality.

Sensitivity

At this distance class the model is again sensitive to both the selection of the

points in regards to being well fit as well as in selection of the points in regards to its

predictive capabilities. In all cases there was not a presence of autocorrelation in the

residuals as noted by the Durbin-Watson statistics. In many cases, one or more of the

assumptions of least squares regression were violated. This suggests that this distance

class is inadequate at accurately predicting Hg levels in Common Loon blood as a

function of land cover type. In many cases there was a clumping of the residuals versus

the fitted values, or the normal distribution requirements of the residuals was not met. 

Conclusions

This distance class is not suitable for predicting Hg levels in Common

Loon blood. Many assumptions of least squares regression are violated when attempting

to fit a model. It is much more sensitive in point selection when using a subset of the

samples, and in some cases, variables known to be significant per previous research are

found not to be (wetlands, for example), while others not known to be significant are

identified as such (mixed forest). This further supports the hypothesis that those variables

considered to be significant per previous research as well as those found to be significant

in this study exhibit a stronger influence if they are closer to the individual territory.

4.5     Overall Conclusions: 150 meter, 300 meter, 600 meter 

Marked differences exist between the 150 meter, 300 meter, and 600 meter

distance classes. The differences found between the R2 values, adjusted R2 values, and

predicted R2 values for each of the distance classes when using all of the samples (n = 57)

(Table 5.1) indicates that the 150 meter distance class more accurately models Hg in the

Common Loon. If a model is well fit there should be little variation between the three R2

values produced by the model. The increase in the R2 value for the 600 meter distance
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class was slightly higher than the R2 value for the 300 meter distance class. The slight

increase n the R2 value for the 600 meter distance class represents an increase in

percentage of the positively correlated variables included in the model, potentially

because the 600 meter buffers extend into another territories 150 meter buffer picking up

significant variables that do not truly contribute to increased levels in the actual territory.

In all cases there is not a substantial difference between the three, however, the model is

more robust at the 150 meter distance class. In all cases the R2 values were computed

based on a revised model (Table 4.22) using only the four variables found to be

significant throughout the analysis.

The final regression equations used are presented below for each of the three distance

classes.

At 150 meters the regression equation is:

HG_Log = 0.290 + 1.89 WT + 55.0 SB - 7.05 CT - 3.03 BN

At 300 meters the regression equation is:

Hg_Log = 0.284 + 2.39 WT + 15.4 SB - 3.99 CT - 2.73 BN

At 600 meters the regression equation is:

HG_Log = 0.272 + 2.42 WT + 13.9 SB - 2.20 CT - 2.56 BN

where:
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 150 meter 300 meter 600 meter

R2 55.2 44.6 46

Adjusted R2 51.7 40.3 41.7

Predicted R2 49.51 36.33 36.83

Table 4.22. R2 Values for each distance class. The four variables used
in the revised model were wetlands (positive relationship), shrub land
(positive relationship), barren land (positive relationship), and
cultivated land (negative relationship).



Hg_Log =  the log-transformed mercury levels in the Common Loon blood

samples.

WT = the percent of wetlands within the buffer

SB = the percent of shrub land within the buffer

CT = the percent of cultivated land within the buffer

BN = the percent of barren land within the buffer

In addition to the discrepancies found among the R2 values there are other

assumptions that need to be met. The issue of multicollinearity between pairs of

independent variables should be addressed any time least squares regression is used. An

idea of the significance of multicollinearity can be assessed through analysis of the

variance inflation factors (VIF) for each of the three distance classes. In both the 150

meter and 300 meter distance classes the VIF's for each of the four variables was below

three. MiniTab suggests that if the VIF’s are greater than 5.0, the regression coefficients

are poorly estimated. The 600 meter distance class exhibits higher VIF's (> 3) indicating

that there is more likelihood that multicollinearity exists between two or more of the

independent variables. In no case did MiniTab provide a warning that multicollinearity

was an issue, because none of the individual VIF's for the independent variables was

above the critical value of  5.0.

In order to determine if the estimated values were significantly different from the

measured values, an F-test was used to determine whether equal variance existed around

the means, an assumption of parametric tests. Once equal variance was determined, a two

sample t-test was used to check whether the two sets of values were significantly

different. At 150 meters the F-test was significant (Test statistic = 1.37, p-value > 0.05)

since the p-value was above the confidence interval of 95%. The t-test showed that the

two sets of values did not vary either, with a confidence interval that spans zero

(-0.243867, 0.373320) and a test-statistic and p-value that were significant (t-value =

0.42, p-value > 0.05, DF = 112). At 300 meters the F-test was barely significant (Test

statistic = 1.69, p-value = 0.053) at the 95% confidence interval. The resulting t-test

showed that the two values did not vary, with a confidence interval that spans zero
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(-0.214204, 0.386593) and a test-statistic and p-value that were significant (t-value =

0.57, p-value > 0.05, DF = 112). Due to the f-test results there should be some concern

over the validity of the results. At 600 meters we find results that are dissimilar to those

from the 300 meter distance class. The F-test was significant (Test statistic = 1.57, p-

value > 0.05) and therefore meets the parametric assumptions of equal variance. Results

from the two sample t-test were significant showing a confidence interval that spans zero

(-0.219995, 0.379992) and acceptable values for the t-test (t-value = 0.53, p-value > 0.05,

DF = 112).

Overall, the 150 meter distance class is more robust at predicting Hg levels in

Common Loon blood when compared with the percentage of land cover classes within

particular distances. This supports the hypothesis that those land cover types that are

known to contribute to increased MeHg and Hg exhibit stronger influence if they are

closer to the individual loon territory. This also supports research done by Zillioux et al.

(1993) who suggested that only a small portion of the Hg deposited through atmospheric

deposition actually makes it to the water body, thus much of the Hg available will be

deposited either directly into the water, or in the immediate vicinity of the water. 

4.6      GIS Implementation/Output

Incorporation of the resulting fitted values back into the GIS required several

steps. This was completed using the model developed for all samples within the 150

meter distance class. First, in order to restrict the resulting raster layer to the extent of the

lakes within the study area, the percentage of individual land cover types were calculated

per loon territory. The resulting raster layers were then incorporated into the regression

equation using the Raster Calculator available in ArcGIS Spatial Analyst. Results from

the final output were anti-logged for display purposes and to allow for ranking based on

risk levels, as specified by Evers et al., 2003. This also allows for assessment of the

difference between the fitted values and the measured values (residuals) as a function of

lake size. This allowed for further comparison to determine how well the fitted values

estimate rank in regards to risk level and also allows for investigation into those lakes that

the model may not perform as well in. Figures 5.1 and 5.2 show the resulting output from

the Raster Calculator. Overall, at 150 meters the model appears to represent Hg levels in

Common Loon blood with reasonable accuracy. As mentioned earlier, the largest
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variation in residuals was found on the smaller lakes. The largest residual was found on

the northern end of Lake Aziscohos and is circled in Figures 5.1 and 5.2. It is thought that

the high Common Loon blood Hg level associated with this territory is influenced by a

contributing point source, and therefore not surprising that it represents the largest error.

Overall, the model presents a reasonable estimate of Hg levels in Common loon

blood and fits even better when those levels are categorized based on risk level (0-1 =

low, 1.1-3 = moderate, 3-4 = high, and >4 = extra high). Risk categories were developed

by BRI and can be found in Evers et al. (2003). When incorrect, the model overestimated

by one rank class in most cases. The largest error is again found in the northern end of

Lake Aziscohos (Figure 5.2 C., circled in red) where the risk category was off by 2

classes. Again, this is an area believed to be influenced by a point source. 
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A. B.

C.
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Figure 4.8. Results implemented in the GIS.
A. Estimated values based on the regression
equation, implemented in the GIS, B. Measured
values of Hg from the loon sample locations
displayed as a function of territory, and C. Residuals
from the analysis implemented to provide
information on error variance.



A. B.
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Figure 4.9.
A. Estimated Risk based on the regression equation,
implemented in the GIS, B. Risk categories calculated
from the loon samples displayed as a function of
territory, and C. the difference between the ranked
groups. Note the red value in the upper center portion of
the third map (circled in red). This represents the
territory on Lake Aziscohos that may be influenced by a
point source of Hg.



Chapter 5: Conclusions and Discussion

5.1     Conclusions

Chapter five will tie together the results of this thesis in the context of the

previous research done and in regards to the hypotheses stated in chapter one. In many

cases, the variables found to be significant in this study were also noted in previous

research and will be discussed below. This work provides insight into some of the land

cover types that contribute to increased Hg and MeHg and the spatial relationship they

have with blood Hg levels in the Common Loon. The most notable find is that as the

percentage of wetlands within close proximity to a loon territory increases there will

likely be an increase in the Hg that is available to the loon in that territory and result in

increased blood Hg levels. The three major hypotheses of this thesis are listed below.

1. Much of the current research addresses Hg bioaccumulation at a watershed

level. Substantial variability, however, can exist within a particular watershed.

This being the case, by looking at the problem from a larger scale and analyzing

the relationships that exist within certain proximities of individual loon territories,

we should be able to better explain Hg risk as a function of land cover

characteristics.

2. If a reasonable model can be produced, we should see a marked drop-off in

accuracy of the model as we move further from the territory boundary.

3. If a reasonable model can be produced, we should gain a clearer understanding

of the impact certain land cover types can have on the availability of Hg and the

associated risk to hydrologic systems as a function of distance from the individual

boundary.

The model results indicate that the proximity of the contributing land cover types

influence the rate at which Hg is available to the Common Loon, and that as you move

further away from the loon territory these factors become less significant. This suggests

that a smaller scale approach, such as a watershed scale, may not be as valid or as robust

as analyzing the land cover at a larger scale, such as those areas immediately adjacent to

the territory in question. Research by Zillioux et al. (1993) showed that not all of the Hg
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deposited in a watershed actually makes it into the water body. It would follow that the

Hg deposited closer to a loon territory is more likely to become available to the loons

within that territory. In the context of this research, there should be an increase in loon

blood Hg as you increase the amount of wetlands and shrub land within 150 meters of the

loon territory. Conversely, there should be a decrease in the available Hg if there are high

concentrations of cultivated land or barren land within 150 meters. 

Of the four independent variables used in the model, wetlands and cultivated land

are documented in previous work as significant (Vermont Department of Environmental

Conservation, 1998, Burgess, 1998, Kamman et al, 2004). Shrub land and barren land

have not been previously documented as significant. Within the study area there is very

little land cover that is either barren or shrub. In some cases these could be misclassified

wetlands, or coincidental. These relationships should be explored further. 

As expected, there was a decrease in both the robustness of the model and the

validity of the model as you move further from the loon territories. The model based on

the 150 meter buffer exhibited the strongest R2 values and generally met the assumptions

of least squares regression, indicating that wetlands, shrub lands, cultivated lands, and

barren lands within 150 meters of the loon territory in question will have a far greater

influence on the amount of available Hg than those that are located farther away. 

At both the 300 meter distance class and the 600 meter distance class there is

some concern that variables from the adjacent territories, significant at 150 meters, are

being incorporated into the analysis. Overlap between the buffered areas, particularly

within the 600 meter distance class has the capability of incorporating land cover types

that are up to and possibly over a half of a kilometer away. For this reason, there should

be concern over using this distance class for any detailed analysis of Hg in Common Loon

blood, and further validates the notion that the closer the source of Hg the more likely it

will make it into the hydrologic system. 

This research provides a new method for analyzing the inter-lake variability of Hg

that can exist in the Common Loon. It provides a sound method for segmenting lakes in

an effort of understanding those factors that contribute to inter-lake loon Hg variability,

and the relationships found through this research should be explored further.

57



5.2     Uncertainty

As with any research that addresses environmental phenomena, error in the

analysis should be addressed. In the case of this study several aspects of uncertainty exist

and should be discussed. The use of the NLCD data restricted the analysis of land cover

to a 30 meter cell size resolution, covering approximately 900 square meters on the

ground. In addition, the most recent NLCD data for the study area was from 1992, though

not much has changed in the study area due to its location and accessibility. The starting

point of 150 meters for the analysis was chosen in order to obtain a buffer that was at

least five cells in depth. 

In regards to loon territories, it was difficult to accurately delineate them. The use

of thiessan polygons was chosen in an attempt to automate the delineation of loon

territories and though they do not truly represent the actual territory boundary, they

provide a reasonable estimate, from the scope of this thesis, of the contributing areas. It

should again be noted that thiessan polygons do not truly reflect the spatial extent of the

territories. 

Due to the time and effort required to collect loon blood Hg samples, the samples

used in this thesis span several years. This temporal difference in samples may not truly

reflect the current amounts in the loons. 

5.3    Future Work

Based on what was found in this study, the next step would be to incorporate

water quality variables known to influence Hg availability such as dissolved organic

carbon (DOC), total alkalinity, total phosphorous, and total nitrogen content. These

variables should be collected per loon territory and used in conjunction with the land

cover variables found to be significant within 150m of the individual territories. In

addition, future work should attempt to delineate a more accurate and up to date land

cover map utilizing a finer cell size resolution. This would allow for analysis within a

closer distance of the loon territories. For example, start at 60 meters and work out to 150

meters. Additionally, the buffers could be extended up the contributing streams to

account for the percentage of wetlands, croplands, shrub lands, and barren lands that are

adjacent to the contributing streams. Further analysis of the impact of certain land use

activities such as logging should also be considered as clear-cutting has the potential to
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increase over-land flow of water, and thus potentially increasing Hg, to and from the

territories. It would also be prudent to check the validity of the methods against an

adjacent set of lakes where samples are available such as the Flagstaff Lakes area of

Maine. Application of these methods at a statewide level would also be another avenue to

explore.
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Appendix A. Residuals Plots from Sensitivity Analysis

1.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 40
AD 1.151
P-Value <0.005

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.150.100.050.00-0.05-0.10-0.15

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

2.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 42
AD 0.378
P-Value 0.392

Fitted Value

R
es

id
ua

l

0.60.40.2

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

4035302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

63



3.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 38
AD 0.271
P-Value 0.655

Fitted Value

R
es

id
ua

l

0.60.40.2

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

4.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 40
AD 0.179
P-Value 0.911

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

64



5.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 43
AD 0.552
P-Value 0.146

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

12

9

6

3

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

6.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 38
AD 0.508
P-Value 0.188

Fitted Value

R
es

id
ua

l

0.60.40.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

12

9

6

3

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

65



7.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 37
AD 0.370
P-Value 0.408

Fitted Value

R
es

id
ua

l

0.60.40.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

8.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 40
AD 0.481
P-Value 0.220

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

66



9.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 34
AD 0.255
P-Value 0.707

Fitted Value

R
es

id
ua

l

0.60.40.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.150.100.050.00-0.05-0.10-0.15-0.20

8

6

4

2

0

Observation Order

R
es

id
ua

l

302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

10.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 38
AD 0.586
P-Value 0.118

Fitted Value

R
es

id
ua

l

0.60.40.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

67



11.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 41
AD 0.362
P-Value 0.427

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

12.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 37
AD 0.416
P-Value 0.316

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

68



13.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 41
AD 0.465
P-Value 0.242

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10 _hg

14.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 41
AD 0.349
P-Value 0.459

Fitted Value

R
es

id
ua

l

0.60.40.2

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

69



15.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 37
AD 0.361
P-Value 0.427

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

16.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 39
AD 0.307
P-Value 0.547

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

70



17.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 43
AD 0.424
P-Value 0.306

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

18.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 40
AD 0.496
P-Value 0.202

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

71



19.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 39
AD 0.263
P-Value 0.683

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

20.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 37
AD 0.246
P-Value 0.739

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

72



21.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 36
AD 0.509
P-Value 0.186

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

22.

Residual

P
er

ce
nt

0.40.20.0-0.2

99

90

50

10

1

N 40
AD 0.181
P-Value 0.908

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.4

0.2

0.0

-0.2

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

12

9

6

3

0

Observation Order

R
es

id
ua

l

4035302520151051

0.4

0.2

0.0

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

73



23.

Residual

P
er

ce
nt

0.40.20.0-0.2

99

90

50

10

1

N 39
AD 0.328
P-Value 0.508

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.2

0.0

-0.2

Residual

Fr
eq

ue
nc

y

0.30.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.0

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

24.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 41
AD 0.436
P-Value 0.285

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.0

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

12

9

6

3

0

Observation Order

R
es

id
ua

l

4035302520151051

0.2

0.0

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

74



25.

Residual

P
er

ce
nt

0.40.20.0-0.2

99

90

50

10

1

N 43
AD 0.410
P-Value 0.329

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.4

0.2

0.0

-0.2

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

4035302520151051

0.4

0.2

0.0

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

26.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 37
AD 0.286
P-Value 0.605

Fitted Value

R
es

id
ua

l

0.60.40.2

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

75



27.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 35
AD 0.192
P-Value 0.889

Fitted Value

R
es

id
ua

l

0.60.40.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

28.

Residual

P
er

ce
nt

0.40.20.0-0.2

99

90

50

10

1

N 39
AD 0.313
P-Value 0.534

Fitted Value

R
es

id
ua

l

0.600.450.300.150.00

0.4

0.2

0.0

-0.2

Residual

Fr
eq

ue
nc

y

0.30.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.4

0.2

0.0

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

76



29.

Residual

P
er

ce
nt

0.20.10.0-0.1-0.2

99

90

50

10

1

N 38
AD 0.351
P-Value 0.453

Fitted Value

R
es

id
ua

l

0.60.50.40.30.2

0.2

0.1

0.0

-0.1

-0.2

Residual

Fr
eq

ue
nc

y

0.20.10.0-0.1-0.2

8

6

4

2

0

Observation Order

R
es

id
ua

l

35302520151051

0.2

0.1

0.0

-0.1

-0.2

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

30.

Residual

P
er

ce
nt

0.300.150.00-0.15-0.30

99

90

50

10

1

N 40
AD 0.344
P-Value 0.469

Fitted Value

R
es

id
ua

l

0.60.40.2

0.30

0.15

0.00

-0.15

-0.30

Residual

Fr
eq

ue
nc

y

0.240.120.00-0.12-0.24

10.0

7.5

5.0

2.5

0.0

Observation Order

R
es

id
ua

l

4035302520151051

0.30

0.15

0.00

-0.15

-0.30

Normal Probability Plot Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for log10_hg

77



Appendix B. Residual Plots from Sensitivity Analysis (300m)
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Appendix C. Residual Plots from Sensitivity Analysis (600m)
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