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(ABSTRACT)

In this thesis, forward and inverse kinematic equations are developed for a
particular type of parallel, closed-loop manipulator known as the Variable Geometry
Truss or VGT for short. Widely recognized as adaptive or collapsing structures for space
and military applications, VGTs have not received due consideration as robotic
manipulators. VGTs undoubtedly represent an important sector of future manipulator
applications. VGTs are typically constructed using repeating identical cells or modules
and they have exceptional stiffness to weight ratios.

The data obtained from solving the forward kinematic equations is used for
animation of the VGT. For animation, three dimensional graphics software, graPHIGS
is used. Additionally, the kinematic analysis equations are used to map out workspace

of the VGT. An experiment is also carried out to verify the computational results.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

A new family of robotic manipulators known as Variable Geometry Trusses
(VGTs) has evolved in recent years. A VGT is a truss that has some variable length
members and therefore is capable of changing geometry. The degrees of freedom of the
truss are determined by the number of variable links of the truss. A VGT can be
described in simple terms as, a truss that can purposefully vary its geometric
configuration by changing length of its variable members. A well known mechanism
that can be considered to be a VGT is the Stewart platform. As shown in the Fig. I, the
Stewart platform consists of two plane platforms and six variable length links that
connect the two platforms through spheric-prismatic-spheric joints. Stewart’s platform
has six degrees of freedom and finds applications as an aircraft simulator, and a space

vehicle simulator.
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Figure 1. Stewart Platform
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VGTs have very high stiffness due to their truss structure. They are also capable
of being folded down and stored compactly, which enables a VGT to be folded down
during transportation and deployed at the sight of application. These properties make
VGTs an ideal candidate as a structural support member for space applications. Various
VGT geometries have been studied for their application in space as a structural member.
The report by Rockwell International [1] discusses in detail various VGT geometries
for their application in space structures. This report discusses various criteria such as
high stiffness, strength, and the variable geometry requirement in selection of the
deployable members. The report discusses and evaluates eight candidate structures. The
report also describes large deployable volumes such as Habitat modules, Tunnels, OTV
hangers, in which the VGT is an elementary member. The report by Cox and Nelson
[2] is similar to the report by Rockwell International. It discusses a VGT geometry in
detail and its potential uses in space. The paper by Miura and Furuya [3] discusses
concept of an adaptive structure for space applications. This paper suggests various
applications for the adaptive structure such as, structural members in space station
supports, large space systems, supports for space antenna etc. The report by Rhodes
and Mikulas [4] also discusses a candidate VGT geometry for use in space, its
controllablity and kinematics.

Although various VGT geometries have been studied extensively keeping in mind
their application in space, a less apparent but equally important application of VGTs
as robotic manipulators has not received enough attention. This thesis discusses a
specific VGT geometry, NASA’s Octahedral VGT, as shown in Fig. 2 for its application

as a robotic manipulator.
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Figure 2. NASA’s Octahedral VGT.
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NASA’s Octahedral VGT

The VGT shown in Fig. 2, consists of a repeating structure, called a module. In
the present case the VGT has two modules. In both the modules the links of the middle,
lateral plane are variable in length. The variable links of the first module are changed
using motor driven leadscrews, whereas the variable links of the second module are hand
adjustable. A stiff rod (AB) is fixed to the top plane of the VGT to act as an end effector.
Note that the VGT has only three degrees of freedom, corresponding to the three
independently varying, motor driven links. The length of variable links varies from 39
inches to 51 inches. This constraint is mainly due to hardware limitation.

Forward and inverse kinematic solutions are developed for this VGT. Using the
kinematic solutions, the workspace of the VGT is examined. The data obtained from the
forward kinematic solution is further used in animation of the VGT. For animation,

graPHIGS, three dimensional graphics software, is used.

1.2 Literature Review

This literature search focuses on two important areas. The first area is parallel
or closed loop robots and the second area is VGT configurations that have been studied
for their application as adaptive structures.

Closed loop or parallel robotic manipulators is relatively a new concept as
compared to serial or open loop robotic manipulators. Serial robotic manipulators
evolved first because of simplicity in their construction. They are extensively used in
industry. The advantages of serial manipulators are their long reach, large range of
motion i.e. larger workspace, and their capacity to reach into small space due to their

compact sizes. But these manipulators also have some serious disadvantages. Serial

Introduction and Literature Review 5




manipulators are structurally a cantilever. This cantilever structure limits capacity of the
manipulators to carry load. This also poses constraints on the design of the robots in the
sense that the joint actuators, which are heavy, must be located near the robot base.
These manipulators are also difficult to control due to their kinematic indeterminancy.
As an alternative to serial manipulators, parallel manipulators were introduced. These
manipulators can be described as robot mechanisms in which the end effector is
connected to the ground link through two or more linkages. The main advantages of
parallel robots over the serial robots are, their ability to carry large loads due to their
high stiffness, which stems from their truss structure. These robots eliminate to a great
extent the problem of control due to kinematic indeterminancy as present in serial
robots. The main disadvantages of parallel robots are their small range of motion and
small length of reach as compared to serial robots. Note that VGTs can be considered
to be subset of the parallel, closed loop robot manipulators.

Various kinematic structures have been suggested as candidate geometries for
parallel manipulators. Hunt [5] suggested the use of a Stewart platform (a parallel
structure) as a robot manipulator. Following Hunt's idea, Fitcher and McDowell [ 6]
presented a review and some preliminary design concepts for parallel manipulators. They
have given comparison of serial and parallel manipulators and have suggested various
applications for the Stewart platform based manipulator arm (SPMA). Yang and Lee
L7] in their paper, have the studied feasibility of platform type robotic manipulators
from a kinematic viewpoint. They have considered a specific geometric configuration of
the Stewart platform and studied the forward and inverse kinematics problem for that
configuration. Using the kinematic solutions they have also studied the range of motion
of the robot. Fitcher [8] has examined the kinematics of generalized Stewart platform
and has presented a set of equations which cover the gross motion as well the differential

motion of the platform. He has also studied the effect of some simplifying assumptions
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for the geometric configuration, on the mathematics of kinematic equations of the
manipulator. He has considered various Stewart platform configurations that may be
used as manipulators.

Besides the Stewart platform, other closed loop, parallel mechanisms have also
been studied for their use as a robot manipulator. Hunt [9] has systematically studied
the in-parallel actuated robot arm. In this paper, he has reviewed many in-parallel
structures for their possible use as a parallel-actuated robot arm. He has also mentioned
the possibility of combining serial and parallel mechanisms. Earl and Rooney [10]
discuss various kinematic structures for use in robotic manipulator design. In this paper
they have considered general properties of these kinematic structures and have given
methods for combining two structures. They have also suggested some new designs.
Ardayfio and Qiao [11] have studied forward and inverse kinematic solutions for
various mechanisms such as 1) the in-parallel actuated robot arm 2) the multiple input
robot arm and 3) the parallel and serial input robot arm. Using the kinematic equations
they have also developed software for kinematic simulation for the mechanisms.

Trusses of the VGT family have been studied by researchers Sincarsin and
Hughes [12], Miura and Furuya [3] for their use as robot manipulators. For solving
the kinematic equations they have used projections of the linkages on the base plane.
In this thesis for NASA’s Octahedral VGT, an intuitive approach is used. Chapter 2

describes formulation and solution of kinematic equations using this approach.
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Chapter 2

Kinematic analysis of NASA’s Octahedral VGT

To control a robotic manipulator effectively and to predict its behavior for a set
of input parameters (which vary from robot to robot), it is very important to have prior

knowledge of the following three aspects of the robot:

e  Forward kinematic solution : Knowledge of the forward kinematic solution for a
robot means, to know position and orientation of the end effector of the robot for
a given set of input parameters.

®  Inverse kinematic solution : Knowledge of the inverse kinematic solution for a robot
enables user to know the values of input parameters for a given position and
orientation of the end effector.

o Workspace of the robot : Workspace of a robot manipulator means the reach of the
robot for a given set of geometrical parameters. Knowledge of the workspace helps

in effectively adjusting robot position in its operating environment.
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This chapter discusses these three important aspects for the NASA’s Octahedral VGT.

2.1 Forward Kinematic Solution for NASA’s Octahedral

VGT

The forward kinematics problem for a robotic manipulator is defined as follows;
computation of the position and orientation of the end effector for given values of the link
parameters and the input actuators. For a typical serial robot manipulator, such as the
one shown in Fig. 4, the forward kinematics problem is to find position and orientation
of the end effector (AB) for given values of the link parameters (L,, L,) and the input
actuator parameters (8,, 6,).

For NASA’s Octahedral VGT, the forward problem is to calculate the
coordinates of the end effector (AB) for a given set of variable link lengths. Note that
the problem is solved in parts. This approach is taken because the VGT consists of
repeating modules. The forward problem is solved for one module and then repeated for
succeeding modules. The forward solution for a module is discussed in following
paragraphs.

Figure 5 shows the kinematic diagram of one module of the octahedral VGT on
loan from NASA’s Langley Research Center. As shown in the figure, the three links of
the triangle AIBICI are independently variable in length, thus the module has three
degrees of freedom. The forward kinematics problem for one module of the VGT can
now be defined as; to find the position (coordinates) of the joints A2, B2 and C2 for a given
set of values of variable link lengths AIBI, BICl, and CIAl (ie. L, L,and L,

respectively).
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As mentioned in the previous chapter, the forward problem has been solved using
projections of the links on the base plane for robots of the VGT family [13,4] .
Although this basic approach is correct, the equations to be solved become unnecessarily
complicated. In the present thesis, a more intuitive approach is used to reduce the

complexity of the equations to be solved.

Three RSSR Mechanism Representation of the VGT
Figure 6 shows the lower half of the VGT of Fig. 5 modeled as a ten link
mechanism consisting of three revolute joints, three prismatic joints and six spheric

joints. This mechanism has six degrees of freedom as given by the Kutzbach equation,

151,

Degrees of Freedom = 6(10 - 1) - 6(5) - 6(3) = 6

Out of these six degrees of freedom, three degrees of freedom are idle rotations of the
two-link chains A1B1, BIC1 and C1A1 between the spheric joints, hence effectively the
mechanism has only three degrees of freedoms. This gives a kinematic approximation
of VGT which is equivalent in terms of mobility. This mechanism can also be visualized
as consisting of three RSSR mechanisms AO0-A1-B1-BO, BO0-B1-C1-CO, and
C0-C1-A1-AQ, each having one degree of freedom. The reason for doing so is that the
RSSR mechanisms can be easily analyzed using known solution methods.

For the three RSSR mechanisms with a given set of lengths (L,, L,, and L,)
between the S-S joints, the unknowns are the three angles (6,, 6,, and 8,) the links
AO0-Al, BO-BI, and CO-C1 make with the ground plane (plane AOBOCO0). Thus, the data
and unknowns for the forward problem using three RSSR mechanism representation of

VGT are:
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Figure 6. Three RSSR Mechanism approximation of VGT.

Kinematic analysis of NASA’s Octahedral VGT 14




Unknowns - ( 6, 0,, 65).
Input Data - (L1, L2, L3).

The constraint used in solving for the unknowns is that all of the three RSSR

mechanisms should assemble simultaneously.

Kinematic Analysis of the RSSR mechanisin

This section discusses kinematic analysis for one RSSR mechanism (mechanism
A0-Al-B1-B0). Equations using the known length between the two spheric joints are
written [16]. This concept is then simultaneously applied to all three of RSSR
mechanisms that comprise the VGT.

All of the links of the RSSR mechanism shown in Fig. 7 are defined in length.
The unknowns of this mechanism are the angles the two grounded links make with the
ground ( angles 6, 6, ). These two unknown angles can be correlated using the known

value of link length between the two spheric joints as given by the following equation,
LE—(@-b)e(@—5)=0 [2.1]

where,
L, is the known length between the spheric joints.
@ and b are the position vectors of the two spheric joints.
Vectors @ and b in equation (2.1) can be expressed in terms of the input and output

angles as follows:
a=[Ry, z 1@ — @)+ (a)
b= (R, Eb](b—l — bo) + (bo)
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Figure 7. RSSR Mechanism.
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where,
@, b, are the vector locations of the revolute joints of the mechanism with respect to the

global coordinate system,

a,, b, are the predefined starting positions of the spheric joints for §, = 0 and 6, =0,
Note that, L? = (g, — b,) « (@, — b,) and,

LR, ;] is the axis rotation matrix expressing rotation around the unit vector # by an
amount 8, [ 15].

The terms in equation (2.1) can be expanded and the equation can be written as,
Ll—(@e@)=2@+b)+(b+b)=0 [2.2]
Expanding the terms containing the vector  in the equation (2.2) gives:

2@ +b)=2(@bo) + @+ [Ry,5, 15y — b)) [234]
and,

(b b) = (by + bo) + 2B + [ Ry, 7. N(b, — by)

+ {[Ro,,1(61 = B)} + ([ Ry, 7, 1(5) = by} [2.35]
The equation (2.35) can further be reduced to,

(b« b) = (By + Bo) + 2B + [ Ry, 7 1(By — By) + (By — By) » (by — by) [2.3¢]
Substituting the equations (2.3a) and (2.3¢) in equation (2.2) we get,

(@ @) = 2@ « by) + 2(by — @)[ Ry, 5, 1(By — by)

+ (6o + bo) + (b1 = bo) + (b = bg) = (@ — 1) + (@ — b,) =0 [24]
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This equation can further be expanded and written as,

(@ @) + (B + bo) + (by — bo) + (by — bo) = 2@ + by) = (@ — b)) - (@ — b))
+ 2(bo = @){(L1] ~ L0515, — by) cos 0, + [ P 1(b — &) sin 6)

+ [2(by — @) {005, 1(By — )} = 0

Equation (2.5) can be written in simplified form as,

Ecos@,+ Fsin0,+ G=0

where,

E, F and G are functions of 6, as given below:
E=(@—by)+[1-0;1(b - by)

F=(a—b)e [Pib](b_x —~ by)

G =(@—by)+ [0; 15, - &)

+0.5x [(@ — b))+ (@ — b)) = (@ — by) « (@ — by) — (b, — by) « (by — by)]

and where,
0 - Uy, uby
[Pab] = ubz 0 - ubx
- ley Upy 0

Kinematic analysis of NASA’s Octahedral VGT
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2

Upx UpxUpy  Upxllp,
[o:1= ;
Q"b - ubxuby uby ubyubz

2
UpxUp,  UpyxUp, Upz

u,, Uy, and u,, are the three direction cosines of the unit vector i,.

Equation (2.6) relates the unknown angles 6, 6, and can be expressed as,

FUNI(8,,8,) = Ecos 6, + Fsin 0, + G =0 [2.7]

Following the same analysis procedure for the other RSSR loops (mechanism
B0-B1-C1-CO and mechanism C0-C1-A1-A0) two more equations are formed as given

below:
FUN2(,, 85) = E1 cos 8; + Fl sin 0; + Gl =0 [2.8]
where,

El=(b-5)+[I1-0;1E - %)

Fl=(b-5)-[P; ]G -5)

Gl=(b-5)[0;1E - &)

+0.5x[(by=5) e (by =)= (B =) e (b — ) — (6, — &) + (&, — &) ]

and,

FUN3(6;,0,) = E2cos 0, + F2sinf, + G2 =0 [2.9]
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where,

E2=(C—a)-[1-0; 1@ - &)

F2=(—-a)-[P; 1@ — a)

G2=(C~a)+[Q; 1@ — a)

+0.5x[(E=a)e(@~@)=(E— @)+~ &)~ (@ — &) (@ — )]

The three RSSR mechanism representation of the VGT approximation gives
three equations in terms of three unknowns. Equations (2.7), (2.8) and (2.9) are
transcendental in form and cannot be easily solved in closed form. For this reason, an
iterative method is used for solving these equations. In this thesis the Newton-Raphson
root finding method for multivariables is used for solving the equations. This procedure

is outlined below.

® First, the values of unknown variables are guessed as, (0,0,0,)7

* Using the known values L, L,and L, for link lengths and 6, 6, and 6, for the face
angles, values of the functions FUN1, FUN2 and FUN3 are calculated.

® Depending on values of FUN1, FUN2 and FUNS3 corrections in the initial guesses

6, 6, and 0, are calculated from,

A8, FUNI1

A8, | =—[J1Y FUN2

A8, FUN3
where,
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5FUN1 o
50, 2v
(/] 0 m; 2 5FUN2
SFUN3 02 5FU3V3
50, 50,

0FUNI

: is the inverse of the jacobian matrix, the jacobian matrix is given as,

The values of the initial guesses are then modified to give new guesses as

Corrections in the values of the initial guesses are carried out until the values of
all the functions FUNI1, FUN2, and FUN3 are less than a given tolerance limit (in this
case 10-%). If the number of iterations exceeds a specified maximum number of iterations,
then the iterations are halted and it is assumed that the assembly is not possible. When
the solution does converge, the corresponding values of the face angles are solution to
the three simultaneous equations.

The face angles (6,, 6,, 6,) are then used in calculation of coordinates of joints

Al, Bl and Cl1 from,

Al=[R, ;1@ - )+ 7
B1=[Ry 71(5, — by) + by
Cl= [Rgg,gc](gl =G+ G

where,
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u, = unit vector along 40B0.
4, = unit vector along BOCO.
4, = unit vector along C0AO.

For calculating the coordinates of the joint A2, it is required to know angle
between planes (AOAIC1 & A2A1C1). Due to symmetry of the VGT geometry planes
AOAI1CI1 and A2A1C1 make equal angle a with the plane A1BICI. Since the coordinates

of joints A0, A1, B1, and C1 are known, the angle a can easily be found as,

a=cos | ———+
|7l 17|

where,

BI1Al x C1B1
IB1A1 x C1B1]|

n=

, 1 is unit vector normal to plane A1BICl

and,

= _ _AlAO X CIAl
-
|A1A0 x C1A1]

, M1 1s unit vector normal to plane AOBIC1

Using value of angle a, the coordinates of joints A2 can be found as
A2=[R) ; 1@ -a)+a

where,
u, = unit vector along C141 .
Following the same analysis procedure angles f between planes BOB1A1 and A1BICI,

and y between planes COC1B1 and A1BIC]1 are found as,
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where,

ny = B1BO x AIBI , 1y 15 unit vector normal to plane BOB1AI.
|BIBO x A1B1]

and,

ny = CIC0 x BIC) , 3 1s unit vector normal to plane COCIBI.
|C1C0 x B1C1|

Following the same procedure the as in calculation of A2 the coordinates of joints B2

and C2 are found as
B2=[R,5 z 1(by— b)) + b,
C2= [Rzy_ gcl](Eo —-¢)+ ¢
where,

i, = unit vector along B1A41.
and,

u, = unit vector along C1Bl.

This completes the forward kinematic solution for one module.
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The forward kinematic solution for the second module is same as that of the first
module. The second module is located on the top of the first module i.e. the base plane
of the second module coincides with the top plane of the first module. The following
method is used for calculating the coordinates of the second module in the global

coordinate system {1}:

® The forward problem is solved for the second module in the local coordinate system
{2} using the input data L, L,, and L,,.
* To calculate the coordinates of the second module in global coordinate system {1},

a transformation matrix [ 7]} is formed as given below.

First, unit vectors @, u, u, along X, Y and Z axes of coordinate system {2} are

calculated as,

_ 242

27 | c2a2)

7, = _A2C2x B2A2
2 1A2C2 x B2A2|

Ug = Ugy X Uy

These unit vectors are used to form the rotation matrix LRI

Ugax Uprx Uax

1
[R:lz = | Uazy Upsy Ueay
Ugaz Ups, U2z

Kinematic analysis of NASA’s Octahedral VGT 24




Then the transformation vector locating the origin of the system {2} relative to system

{1} 1s calculated as,

1= (@ — &)

Combining the transformation vector and the rotation matrix and writing the result in

homogeneous coordinate form gives the transformation matrix [ 7]} as

- -

Uzax Upox Ueax Ix
[ T]l ua2y ub2y ucly [y
2=
Uzzz Upyz Ueaz L,
| O 0 0 1]

Using [ T]! matrix the coordinates of a joint of the second module are calculated as,

X Xy

Y1 Y2
=[r];

Zl 22

| 1] |1

This completely solves the forward problem for both the modules and defines
coordinates of joints of both the modules in global coordinate system {1} .

It is envisioned that some VGT manipulators will have many more modules, as
compared to two modules of the VGT under study. These more complex devices can be
analyzed using the theory presented above.

The coordinates of the tip (point B) of the end effector (AB) can now be easily
calculated as,

X Uy,

Coordinates of the tip = (Ad + B34 + C4)
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where,
L = length of the rod,

4, = 1s unit vector normal to plane A4B4C4.

2.2 Inverse Kinematics Solution for NASA’s Octahedral

VGT

In robotics, the inverse problem is defined as follows; given the position and
orientation of the end effector of the manipulator, calculate all possible sets of joint angles
that could be used to attain this position and orientation. For a typical robotic manipulator
such as the one shown in the Fig. 3, the inverse problem is defined as finding the link
parameters (6, 6,) for a given position and orientation of the end effector.

In the present case, for NASA’s octahedral VGT, the inverse problem reduces to
finding the variable link lengths (L1, L2, L3), for a given set of coordinates (X, Y, Z) of
the tip ( point B ) of the beam. The input-data and the unknowns of the inverse problem

for the VGT are:

Unknowns - L1, L2, L3

Input Data - X, Y, Z

The method used for solving the inverse kinematic problem for NASA’s Octahedral

VGT is outlined below.
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® First, starting guesses are made for the variable link lengths L,, L,, and L,

® Using the values of the initial guesses for the lengths of the variable links, the
forward problem is solved and the coordinates of the tip of the beam (X1, Y1, Z1)
are calculated.

® These coordinates are then used to form the three functions F1, F2 and F3 :

FI(L1,L2,L3) =X — X1
FALL, L2, L3)=Y - Yl

F3(L1,L2,L3)=Z—-Z1

where,

X, Y, Z are the desired coordinates of the tip of the beam (point B).

X1, Y1 and ZI are the actual coordinates of the tip (point B), for the given values of
L1, L2 and L3.

The values of the functions F1, F2 and F3 are compared with the specified
tolerance limit ( in this case 10-%). If the function values are less than the tolerance limit
then the solution has converged, and the corresponding values of the link lengths
L, L, and L, is the solution vector. If any of the three function values is greater than the
tolerance limit, or if the number of iterations is less than specified maximum number of

iterations, then corrections are made in the initial guesses as follows,

L] L | [aL

Ly|=|L|+|AL
L| |Ly| AL

according to the function values and the forward program is solved again.
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Note that the problem of finding corrections in the link lengths is very sensitive
to the value of the initial guesses. For this reason the Newton-Raphson root finding
method is not used. In the present thesis the Quasi-Newton iteration method (Appendix
A) is used instead. This method is able to converge even when the initial guesses are far

from the solution.

2.3 Workspace of NASA’s Octahedral VGT

The workspace of a robotic manipulator can be defined as follows; the volume
of space that the end effector of the manipulator can reach. Workspace can also be
interpreted as the space in which a kinematic solution exists for the robotic manipulator.
The workspace of a manipulator can be further divided into Dextrous Workspace and
Reachable Workspace . Dextrous workspace means that the robot manipulator can reach
the volume with all possible orientations of the end effector, whereas the reachable
workspace is the volume of space which the end effector can reach with at least one
orientation.

The VGT under consideration has only three degrees of freedom. This limits the
scope of calculation of the workspace to reachable workspace . The method used in the
calculation of workspace is described below.

As mentioned in the previous chapter, the range of the three variable link's is
between 39 inches to 51 inches. For generating the workspace, the three links were

varied from one extreme value to the other extreme value in the following two ways:

¢ One link is fixed in length in the range and the other two links are varied in length

from one extreme to the other extreme value and,
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® Two links are fixed in length in the range and the third link is varied in length from

one extreme to the other extreme.

The corresponding coordinates of the end effector are then used for generating the

workspace. Figures 8, 9, 10 and 11 show plots of the workspace.

As can be seen from the plots, the workspace has eight apexes. These eight

apexes correspond to the eight extreme positions of the link lengths as given in Table

1.

Table 1. Eight extreme values of link lengths

No. L1 inches L2 inches L3 inches
1 39 39 39
2 39 39 51
3 39 51 51
4 51 51 51
5 51 51 39
6 51 39 39
7 51 39 51
8 39 51 39

Ki