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(ABSTRACT) I

I
ln this thesis, forward and inverse kinematic equations are developed for a I

particular type of parallel, closed-loop manipulator known as the VariableGeometryTruss
or VGT for short. Widely recognized as adaptive or collapsing structures for space

and military applications, VGTs have not received due consideration as robotic
manipulators. VGTs undoubtedly represent an important sector of future manipulator
applications. VGTs are typically constructed using repeating identical cells or modules
and they have exceptional stiffness to weight ratios. I

The data obtained from solving the forward kinematic equations is used for
animation of the VGT. For animation, three dimensional graphics software, graPHIGS
is used. Additionally, the kinematic analysis equations are used to map out workspace
of the VGT. An experiment is also carried out to verify the computational results.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

A new family of robotic manipulators known as Variable Geometry Trusses
(VGTs) has evolved in recent years. A VGT is a truss that has some variable length
members and therefore is capable of changing geometry. The degrees of freedom of the
truss are determined by the number of variable links of the truss. A VGT can be
described in simple terms as, a truss that can purposefully vary its geometric
configuration by changing length of its variable members. A well known mechanism

that can be considered to be a VGT is the Stewart platform. As shown in the Fig. l, the
Stewart platform consists of two plane platforms and six variable length links that
connect the two platforms through spheric—prismatic-spheric joints. Stewart's platform
has six degrees of freedom and finds applications as an aircraft simulator, and a space
vehicle simulator.
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l
VGTs have very high stifTness due to their truss structure. They are also capable

of being folded down and stored compactly, which enables a VGT to be folded down
during transportation and deployed at the sight of application. These properties make
VGTs an ideal candidate as a structural support member for space applications. Various
VGT geometries have been studied for their application in space as a structural member.
The report by Rockwell International [1] discusses in detail various VGT geometries

for their application in space structures. This report discusses various criteria such as

high stifTness, strength, and the variable geometry requirement in selection of the
deployable members. The report discusses and evaluates eight candidate structures. The

report also describes large deployable volumes such as Habitat modules, Tunnels, OTV

hangers, in which the VGT is an elementary member. The report by Cox and Nelson
[2] is similar to the report by Rockwell International. It discusses a VGT geometry in

detail and its potential uses in space. The paper by Miura and Furuya [3] discusses

concept of an adaptive structure for space applications. This paper suggests various

applications for the adaptive structure such as, structural members in space station

supports, large space systems, supports for space antenna etc. The report by Rhodes

and Mikulas [4] also discusses a candidate VGT geometry for use in space, its

controllablity and kinematics.

Although various VGT geometries have been studied extensively keeping in mind
their application in space, a less apparent but equally important application of VGTs

as robotic manipulators has not received enough attention. This thesis discusses a

specific VGT geometry, NASA's Octahedral VGT, as shown in Fig. 2 for its application .
as a roboticmanipulator.l

rrrtreduetierr and Literature Review 3
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NASA’s Octahedral VGT
The VGT shown in Fig. 2, consists of a repeating structure, called a module. In

the present case the VGT has two modules. In both the modules the links of the middle,
lateral plane are variable in length. The variable links of the first module are changed
using motor driven leadscrews, whereas the variable links of the second module are hand
adjustable. A stiff rod (AB) is fixed to the top plane ofthe VGT to act as an end effector.
Note that the VGT has only three degrees of freedom, corresponding to the three
independently varying, motor driven links. The length of variable links varies from 39
inches to 5l inches. This constraint is mainly due to hardware limitation.

Forward and inverse kinematic solutions are developed for this VGT. Using the
kinematic solutions, the workspace of the VGT is examined. The data obtained from the
forward kinematic solution is further used in animation of the VGT. For animation,
graPHlGS, three dimensional graphics software, is used.

1.2 Literature Review

This literature search focuses on two important areas. The first area is parallel
or closed loop robots and the second area is VGT configurations that have been studied
for their application as adaptive structures.

Closed loop or parallel robotic manipulators is relatively a new concept as
compared to serial or open loop robotic manipulators. Serial robotic manipulators
evolved first because of simplicity in their construction. They are extensively used in
industry. The advantages of serial manipulators are their long reach, large range of
motion i.e. larger workspace, and their capacity to reach into small space due to their
compact sizes. But these manipulators also have some serious disadvantages. Serial

introduction and Literature Review 5
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manipulators are structurally a cantilever. This cantilever structure limits capacity of the
manipulators to carry load. This also poses constraints on the design ofthe robots in the
sense that the joint actuators, which are heavy, must be located near the robot base.
These manipulators are also difficult to control due to their kinematic indeterminancy.
As an alternative to serial manipulators, parallel manipulators were introduced. These
manipulators can be described as robot mechanisms in which the end effector is
connected to the ground link through two or more linkages. The main advantages of
parallel robots over the serial robots are, their ability to carry large loads due to their
high stiffness, which stems from their truss structure. These robots eliminate to a great
extent the problem of control due to kinematic indeterminancy as present in serial
robots. The main disadvantages of parallel robots are their small range of motion and
small length of reach as compared to serial robots. Note that VGTs can be considered
to be subset of the parallel, closed loop robot manipulators.

Various kinematic structures have been suggested as candidate geometries for
parallel manipulators. Hunt [5] suggested the use of a Stewart platform (a parallel
structure) as a robot manipulator. Following Hunt’s idea, Fitcher and McDowell [6]
presented a review and some preliminary design concepts for parallel manipulators. They
have given comparison of serial and parallel manipulators and have suggested various
applications for the Stewart platform based manipulator arm (SPMA). Yang and Lee
[7] in their paper, have the studied feasibility of platform type robotic manipulators
from a kinematic viewpoint. They have considered a specific geometric configuration of
the Stewart platform and studied the forward and inverse kinematics problem for that
configuration. Using the kinematic solutions they have also studied the range of motion
of the robot. Fitcher [8] has examined the kinematics of generalized Stewart platform
and has presented a set of equations which cover the gross motion as well the differential
motion of the platform. He has also studied the effect of some simplifying assumptions p

lIntroduction and Literature Review 6



for the geometric configuration, on the mathematics of kinematic equations of
themanipulator.He has considered various Stewart platform configurations that may be
used as manipulators.

Besides the Stewart platform, other closed loop, parallel mechanisms have also
been studied for their use as a robot manipulator. Hunt [9] has systematically studied
the in-parallel actuated robot arm. In this paper, he has reviewed many in-parallel
structures for their possible use as a parallel-actuated robot arm. He has also mentioned
the possibility of combining serial and parallel mechanisms. Earl and Rooney [10]
discuss various kinematic structures for use in robotic manipulator design. In this paper
they have considered general properties of these kinematic structures and have given
methods for combining two structures. They have also suggested some new designs.
Ardayfio and Qiao [ll] have studied forward and inverse kinematic solutions for
various mechanisms such as I) the in-parallel actuated robot arm 2) the multiple input
robot arm and 3) the parallel and serial input robot arm. Using the kinematic equations
they have also developed software for kinematic simulation for the mechanisms.

Trusses of the VGT family have been studied by researchers Sincarsin and
Hughes [I2], Miura and Furuya [3] for their use as robot manipulators. For solving
the kinematic equations they have used projections of the linkages on the base plane.
In this thesis for NASA’s Octahedral VGT, an intuitive approach is used. Chapter 2
describes formulation and solution of kinematic equations using this approach.

Introduction and Litcrnturc Rcvicw 7
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Chapter 2

Kinematic analysis of NASA’s Octahedral VGT

To control a robotic manipulator elfectively and to predict its behavior for a set
of input parameters (which vary from robot to robot), it is very important to have prior

knowledge of the following three aspects of the robot:

• Forward kinematic solution : Knowledge of the forward kinematic solution for a

robot means, to know position and orientation of the end effector of the robot for

a given set of input parameters.
• Inversc kinematic solution .· Knowledge of the inverse kinematic solution for a robot

enables user to know the values of input parameters for a given position and

orientation of the end effector.
• Workspace of the robot .· Workspace of a robot manipulator means the reach of the

robot for a given set of geometrical parameters. Knowledge of the workspace helps

in effectively adjusting robot position in its operating environment.

Kinematic analysis of NASA’s Octahedral VGT 9
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This chapter discusses these three important aspects for the NASA’s OctahedralVGT.2.1

Forward Kinematic Solution for NASA’s Octahedral
VG T

The forward kinematics problem for a robotic manipulator is defined as follows;
computation of the position and orientation of the end effector for given values of the link
parameters and the input actuators. For a typical serial robot manipulator, such as the
one shown in Fig. 4, the forward kinematics problem is to find position and orientation
of the end effector (AB) for given values of the link parameters (L,, L,) and the input
actuator parameters (6,, 6,).

For NASA’s Octahedral VGT, the forward problem is to calculate the
coordinates of the end effector (AB) for a given set of variable link lengths. Note that
the problem is solved in parts. This approach is taken because the VGT consists of
repeating modules. The forward problem is solved for one module and then repeated for
succeeding modules. The forward solution for a module is discussed in following
paragraphs.

Figure 5 shows the kinematic diagram of one module of the octahedral VGT on
loan from NASA’s Langley Research Center. As shown in the figure, the three links of
the triangle AlBlCl are independently variable in length, thus the module has three
degrees of freedom. The forward kinematics problem for one module of the VGT can
now be defined as; to find the position (coordinates) of thejoints A2, B2 and C2for a given ,
set of values of variable link Iengths AIBI, BIC], and CIA] (i.e. L,_ L,_ and
L,respectively).Kinemaric

analysis of NASA's Octahedral VGT 10
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As mentioned in the previous chapter, the forward problem has been solved using
projections of the links on the base plane [or robots of the VGT family [13,4] .
Although this basic approach is correct, the equations to be solved become unnecessarily
complicated. In the present thesis, a more intuitive approach is used to reduce the
complexity of the equations to be solved.

Three RSSR Mechanism Representation of the VGT
Figure 6 shows the lower half of the VGT of Fig. 5 modeled as a ten link

mechanism consisting of three revolute joints, three prismatic joints and six spheric
joints. This mechanism has six degrees of freedom as given by the Kutzbach equation,
[15] „

Degrees of Freedom = 6(IO - 1) - 6(5) - 6(3) = 6

Out of these six degrees of freedom, three degrees of freedom are idle rotations of the
two-link chains AlBl, BICI and CIAI between the spheric joints, hence el1“ectively the
mechanism has only three degrees of [reedoms. This gives a kinematic approximation
of VGT which is equivalent in terms of mobility. This mechanism can also be visualized
as consisting of three RSSR mechanisms A0-Al-B1-B0, B0-Bl-CI-CO, and
CO-C1—A1-A0, each having one degree of freedom. The reason for doing so is that the
RSSR mechanisms can be easily analyzed using known solution methods.

For the three RSSR mechanisms with a given set of lengths (L,, L2, and L2)
between the S-S joints, the unknowns are the three angles (8,,82, and 8,) the links
A0—Al, B0-Bl, and CO-C1 make with the ground plane (plane AOBOCO). Thus, the data
and unknowns for the forward problem using three RSSR mechanism representation of
VGT are:

Kinematic analysis ofNASA’s octalisilial vor 13



THREE RSSR MECHANISM APEROXTMATION
OE THE VGT

CI
A I L3 L2 B IO U O

Y

**-II|:H..IIII.q·-|!-' COAO mmm“
Z BO

THE THREE RSSR MECHANISMS ARE:

I) AO-AI—BI—BO

2) BO—BI—CI—CO
3) CO—CI—AI—AO

Figure 6. Three RSSR Mechanism approximation of VGT.

Kinematic analysis of NASA’s Octahedral VGT I4



Unknowns - ( 6,_6,, 6,).
Input Data - (L1, L2, L3).

l

The constraint used in solving for the unknowns is that all of the three RSSR
mechanisms should assemble simultaneously.

Kinematic Analysis of the RSSR mechanism
This section discusses kinematic analysis for one RSSR mechanism (mechanism

A0·Al-B1-B0). Equations using the known length between the two spheric joints are
written [16]. This concept is then simultaneously applied to all three of RSSR
mechanisms that comprise the VGT.

All of the links of the RSSR mechanism shown in Fig. 7 are defined in length.
The unknowns of this mechanism are the angles the two grounded links make with the
ground ( angles 6,_ 6, ). These two unknown angles can be correlated using the known
value of link length between the two spheric joints as given by the following equation,

Li-(6-1?)•(ä-5):0 [2.1]

where,

L, is the known length between the spheric joints.
E and I; are the position vectors of the two spheric joints.

Vectors E and Ä in equation (2.1) can be expressed in terms of the input and output
angles as follows:

F = [R0,,¤„](F1 — F1>)+(F0)

5 = LR., .7,,115, — 501 +1501

Kinematic analysis of NASA’s Octahedral VGT 15
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where,
50, Ä, are the vector locations of the revolute joints of the mechanism with respect to the
global coordinate system,
5,, Ä are the predefined starting positions of the spheric joints for 8, = 0 and 6, = 0,
51606 (im, L; = (6, — 5) 0 (6, - 5) 666,
I:R0_;:I is the axis rotation matrix expressing rotation around the unit vector ü by an
amount 9, [15].
The terms in equation (2.1) can be expanded and the equation can be written as,

L?—(Ü•Ü)—2(Ü•g)+(g•g)=Ü [2.2]

Expanding the terms containing the vector E in the equation (2.2) gives:

2(6 0 5) = 2((6 0 50) + 6 0 - 50)) [2.66]

and,

(5 0 5) = (50 0 50) + 250 0 - 50)

+ (ER0,_0,J(50 — 50)) · ([R0,_0,J(50 — 50)) [2053

The equation (2.3b) can further be reduced to,

(5 · 5) = (50 · 50) + 250 · ER0,_0,J(50 - 50) + (50 — 50) · (50 — 50) C200]

Substituting the equations (2.361) and (2.36) in equation (2.2) we get,

(6 · 6) — 2(6 · 50) + 2(50 - 6)ER0,0,J(50 — 50)

+ (50-50) + (50 50) — (60 — 50) · (60 — 50) = 0 [2003
Kinematic analysis of NASA’s Octahedral VCT 17



g This equation can further be expanded and written as,

tm) + <50 -50) + <50 - 50) ·<50 — 50) — 2<ä·50) — 02 — 50) · 02 — 50)
+ 2(F0 — ä>{<E/] — CQ.:,,]>(F) — 50) ¤¤S 96 Sin

50)} = 0 [2.6]

Equation (2.5) can be written in sirnplified form as,

Ecos92+Fsin62+G=O [2.6]

where,

E, F and G are functions of 8, as given below:

E= ta — 50) - [1- Q,:,](/$1- 50)

F= tä — 50) · [P0,J<50 — 50)

G = <ä — 50) · EQ0,J<50 — 50)

+ 06 >< Hä) — 5)) · ia, - 5.) - <ä— 50) · <ä— 50) — <50 — 50) · <50 — 50)]
and where,

0 — ¤00 uby
[PJ0] = **52 0 ‘ um

“ llby llbx 0

Kincmatic analysis of NASA’s Octahedral VGT l8



2
ubx ubxuby ubxubz

[QL,] = ubxuby ugy ubyubz

ubxubz ubxubz U9:

u,,„_u„ and ub, are the three direction cosines of the unit vector üb.
Equation (2.6) relates the unknown angles 9,_ 9, and can be expressed as,

FUNl(9l,92)=Ec0s 92-1-Fsin 92+ G=O [2.7]

Following the same analysis procedure for the other RSSR loops (mechanism
B0-Bl·Cl-CO and mechanism CO-Cl-Al-AO) two more equations are formed as given
below:

FUN2(92,93)=El cos 93+Fl Sin 93 + Gl =0 [:2.8]

where,

E1 = (5 — Fo) • U Fo)

Fo) · [P,:„](€1 — Fo)

G1 = (Ü — F0)·1ÄQ.:„](?1 — F11)

+ 0·5 X [(51- E1) ° (91 - E1) - (9- 90) °
(9-- 90)-921- E-0) ° (E1 - 50)]

and,

FUN3(93,9l)=E2cos 92 +F2sin 92+ G2=0 1:2.9]

Kinematic analysis of NASA’s Octahedral VGT 19
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where,

E2 = <@— an · U- Q„,J<Ei — «2„>

F2 = <E— Ea · EP.;„J<E. — Ea

G2 = (F — äo) —· äol

+O·5X[@1*'ä1)°(E1‘*ä1)“(E**ä0)°(E“ä0)**(ä1"ä0)°(ä1“äo);l

The three RSSR mechanism representation of the VGT approximation gives
three equations in terms of three unknowns. Equations (2.7), (2.8) and (2.9) are
transcendental in form and cannot be easily solved in closed form. For this reason, an
iterative method is used for solving these equations. In this thesis the Newton—Raphson
root finding method for multivariables is used for solving the equations. This procedure
is outlined below.

• First, the values of unknown variables are guessed as, (9,_9,,9,)T
• Using the known values L,_ L,_and L, for link lengths and 9,_ 9,_ and 9, for the face

angles, values of the functions FUNI, FUN2 and FUN3 are calculated.
• Depending on values of FUNI, FUN2 and FUN3 corrections in the initial guesses

9,_ 9,_ and 9, are calculated from,

A9, FUN1
A92 =— [1]** FUN2
A9, FUN3

where,

Kincmatic analysis of NASA’s Octahedral VGT 20



I:./]·‘ : is the inverse of the jacobian matrix, the jacobian matrix is given as,

6FUN1 6FUN1 0601 60_ 6FUiV2 ÖFUN2U] - 0603 60armvs O öpufvs
601 603

The values of the initial guesses are then modified to give new guesses as

01 91 A01
02 = 82 + A02

03 03 A03

Corrections in the values of the initial guesses are carried out until the values of
all the functions FUN], FUN2, and FUN3 are less than a given tolerance limit (in this
case l0·’). If the number of iterations exceeds a specified maximum number of iterations,
then the iterations are halted and it is assumed that the assembly is not possible. When
the solution does converge, the corresponding values of the face angles are solution to
the three simultaneous equations.

The face angles (01, 03, 03) are then used in calculation of coordinates ofjoints
A1, Bl and C1 from,

Al = [R6,,,:,](äl — 176)+ äo

Bl = E10, .;,1151 — 56 + F.,

Cl=[R63,a,](?1· 50) + 50

where,

Kincmatic analysis of NASA’s Octahedral VGT 2l
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ü, = unit vector along AOBO.
üb = unit vector along BOCO.

E, = unit vector along COAO.

For calculating the coordinates of the joint A2, it is required to know angle
between planes (AOAICI & A2AlCl). Due to symmetry of the VGT geometry planes
AOAICI and AZAICI make equal angle ot with the plane AIBICI. Since the coordinates
ofjoints A0, Al, Bl, and Cl are known, the angle oz can easily be found as,

l

where,

Fi = , E is unit vector normal to plane AlBlClIßiA1 X cißi I

and,

H, = , El is unit vector normal to plane AOB1CllAlA0 X ClA1l

Using value of angle oz, the coordinates ofjoints A2 can be found as

A2 = ER2„,„;,,3<ä„ — am + E,

where,

ü„, = unit vector along CIAI .

Following the same analysis procedure angles ,8 between planes BOBIAI and AlB1Cl,
and y between planes COClBl and AIBICI are found as,I

j Kincmatic analysis of NASA’s Octahedral VGT 22



ß = <=¤S"‘<€i¥¥)
IM! lrrzl

—1< 'T ° F';
y = COSIHI Ia!

where,

172 = , 172 is unit vector normal to plane BOBIAI.IB11;0 X Aißi I

and,

:73 = , E3 is unit vector normal to plane COCIBI.|c1c0 X BICI I

Following the same procedure the as in calculation of A2 the coordinates of joints B2
and C2 are found as

B2 = EB.,1,.,„,J<50 — 51>+ gl

where,

17,,1 = unit vector along BIAI.

and,

17,1 = unit vector along Clßl.

This completes the forward kinematic solution for one module.

Kinematic analysis of NASA’s Octahedral VGT 23



The forward kinematic solution for the second module is same as that ofthe first
module. The second module is located on the top of the first module i.e. the base plane
of the second module coincides with the top plane of the first module. The following
method is used for calculating the coordinates of the second module in the global
coordinate system {1}:

• The forward problem is solved for the second module in the local coordinate system
{2} using the input data L,,_L,, and L3,.

• To calculate the coordinates of the second module in global coordinate system {1},
a transformation matrix [T], is formed as given below.

First, unit vectors ü„,, ü,,,, 17,, along X, Y and Z axes of coordinate system {2} are
calculated as,

- C2A2ual =
_°

|c2A2|

E __ A2C2 >< B2A2b2 — '"“'“—
IA2c2 X ß2A2I

üc2 = üa2 X üb2

These unit vectors are used to form the rotation matrix [IR],.

ualx ub2x uc2x

= ua2y ub2y uc2y

ua2z ub2z uc2z

Kinematic analysis of NASA’s Octahedral VGT 24
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N

Then the transformation vector locating the origin of the system {2} relative to system
(1} is calculated as,

(äz ‘ 50)

Combining the transformation vector and the rotation matrix and writing the result in
homogeneous coordinate form gives the transformation matrix [T]; as

ua2x ub2x uc2x tx

ua2y ub2y uc2y ty
[Til; =

ua2z ub2z uc2z tz

0 0 O l

Using [T]; matrix the coordinates of a joint of the second module are calculated as,

X1 x2
yl Y2= [ T];
Z1 Z2
l 1

This completely solves the forward problem for both the modules and defines
coordinates of joints of both the modules in global coordinate system (1} .

It is envisioned that some VGT manipulators will have many more modules, as
compared to two modules of the VGT under study. These more complex devices can be
analyzed using the theory presented above.

The coordinates of the tip (point B) of the end efTector (AB) can now be easily ·
calculated as,

. . A4 + B4 + C4Coordinates of the tip = L-—;j—l + L >< üb,

[
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l
where,

L = length of the rod,

üb, = is unit vector normal to plane A4B4C4.

2.2 Inverse Kinematics Solution for NASA’s Octalzedral
VG T

In robotics, the inverse problem is defined as follows; given the posi°tion and
orientation of the end ejfector of the manipulator, calculate all possible sets ofjoint angles
that could be used to attain this position and orientation. For a typical robotic manipulator
such as the one shown in the Fig. 3, the inverse problem is defined as finding the link
parameters (8,_ 9,) for a given position and orientation of the end effector.

In the present case, for NASA's octahedral VGT, the inverse problem reduces to
finding the variable link lengths (Ll, L2, L3), for a given set of coordinates (X, Y, Z) of
the tip ( point B ) of the beam. The input-data and the unknowns of the inverse problem
for the VGT are:

Unknowns · Ll, L2, L3

Input Data - X, Y, Z

The method used for solving the inverse kinematic problem for NASA’s Octahedral
VGT is outlined below.
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• First, starting guesses are made for the variable link lengths L,, L2, and L,.
• Using the values of the initial guesses for the lengths of the variable links, the

forward problem is solved and the coordinates of the tip of the beam (X1, Y1, Z1)
are calculated.

• These coordinates are then used to form the three functions Fl, F2 and F3 :

F1(Ll, L2, L3) = X- X1

F2(Ll, L2, L3) = Y- Y1

F3(Ll, L2, L3) = Z- Z1

where,

X, Y, Z are the desired coordinates of the tip of the beam (point B).

X1, Y1 and Z1 are the actual coordinates of the tip (point B), for the given values of
L1, L2 and L3.

The values of the functions Fl, F2 and F3 are compared with the specified
tolerance limit ( in this case 10**). If the function values are less than the tolerance limit
then the solution has converged, and the corresponding values of the link lengths
L,_L,_ and L, is the solution vector. lf any of the three function values is greater than the
tolerance limit, or if the number of iterations is less than specified maximum number of
iterations, then corrections are made in the initial guesses as follows,

L, L, AL,
bz = la + Ala i
L, L3 AL,

according to the function values and the forward program is solved again.
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Note that the problem of finding corrections in the link lengths is very sensitive

to the value of the initial guesses. For this reason the Newton—Raphson root Hnding

method is not used. In the present thesis the Quasi-Newton iteration method (Appendix

A) is used instead. This method is able to converge even when the initial guesses are far

from the solution.

2.3 Workspace of NASA’s Octahedral VGT

The workspace of a robotic manipulator can be defined as follows; the volume

of space that the end effector of the manipulator can reach. Workspace can also be

interpreted as the space in which a kinematic solution exists for the robotic manipulator.
The workspace of a manipulator can be further divided into Dextrous Workspace and

Reachable Workspace . Dextrous workspace means that the robot manipulator can reach

the volume with all possible orientations of the end effector, whereas the reachable

workspace is the volume of space which the end effector can reach with at least one

orientation.
The VGT under consideration has only three degrees of freedom. This limits the

scope of calculation of the workspace to reachable workspace . The method used in the

calculation of workspace is described below.

As mentioned in the previous chapter, the range of the three variable links is

between 39 inches to 51 inches. For generating the workspace, the three links were

varied from one extreme value to the other extreme value in the following two ways:

• One link is fixed in length in the range and the other two links are varied in length

from one extreme to the other extreme value and,
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• Two links are fixed in length in the range and the third link is varied in length from
one extreme to the other extreme.

The corresponding coordinates of the end efTector are then used for generating the
workspace. Figures 8, 9, 10 and ll show plots of the workspace.

As can be seen from the plots, the workspace has eight apexes. These eight
apexes correspond to the eight extreme positions of the link lengths as given in Table
1.

Table 1. Eight extreme values of link lengths

No. L1 inches L2 inches L3 inches

1 39 39 39
2 39 39 51
3 - 39 51 51
4 51 51 51
5 51 51 39
6 51 39 39
7 51 39 51
8 39 51 39
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Figure 10. Top view of the workspace of the VGT.
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SECTIONAL TDP VIEW OE THE WDRKSPACE
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PERPENDICULAR TO Z AXIS

Figure ll. Sectional top view of the workspace of the VGT.
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Chapter 3

Computer Implementation of Forward and Inverse

Kinematic Solutions.

This Chapter discusses the computer implementation of the forward and inverse

kinematic solutions developed in Chapter 2. The logic of the forward and inverse

solutions is explained with the help of flowcharts and descriptions of main subroutines.

The software is written in Fortran 77 and is run on a mainframe computer (IBM

4341-12). For the purpose of displaying the forward solution on computer screen,

graphics software graPHlGS is used.

Implementation of the Forward Kinematic Solution

Figure 12 shows the ilowchart of the forward kinematics program. This

tlowchart explains the forward kinematic solution for both modules of VGT. As shown

in the flowchart, the computer solves the forward problem for one module and calculates
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transformation matrix for transforming coordinates of the second module from the local
coordinate system {2} to the global coordinate system {1}. The forward problem is then
solved for the second module and its coordinates are transformed using the
transformation matrix.

Figure I3 shows the flowchart of the forward kinematics program for one module
of the NASA’s Octahedral VGT. The functions of the main subroutines used in the
program are explained below.

Subroutine VGTRUS defines coordinates of the base triangle. It then calls the
NEWTON subroutine. Coordinates of joints of the module are calculated using the data
obtained from the NEWTON subroutine. VGTRUS then passes data to the graPHlGS
routines for drawing the VGT geometry on a IBM 5080 graphics terminal. The VGT
geometry is drawn module by module i.e. as soon as coordinates of all the joints ofa
module are calculated that module is drawn.

Subroutine NEWTON solves the three functions FUNI, FUN2, and FUN3
described in Chapter 2, using the Newton-Raphson method. The solution vector is the
three face angles 6,_ 0,_ and 8, . This output is then passed back to the VGTRUS
subroutine for calculation of the joint coordinates.

Subroutines ANYRS, ANYRSI, and ANYRS2 are used to form and evaluate the
three functions FUNI, FUN2 and FUN3. These subroutines also calculate partial
derivatives of the functions with respect to the three variables 81_ 9,_ and 0, using a finite
difference method. The function values and the partial derivatives are then passed to the
NEWTON routine for further computation.

Computer Animation of NASA’s Octahedral VGT
Figure 14 shows flowchart of the logic used in animation of the VGT. For

animation, graPl—IIGS software is used [22;]. graPHIGS software is based on the
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Figure I3. Flowchart of Forward solution for one module.
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proposed 3-D graphics standard PHIGS. The main reasons in selection of this graphicssoftware are: l
• PHIGS is device independent.
• PHIGS is three dimensional graphics software. This aspect is very important to

completely represent the three dimensional VGT geometry.
• PHIGS provides a high level of interactivity, thus it is easy to use interactive data

input. The data is input using logical input devices.
• PHIGS can display and manipulate hierarchical data—structures and there is a

dynamic relationship between the databases. This aspect is very important in
animation of VGT.

The sequence used for animation is as follows:

First the VGT geometry is drawn for predefined link lengths. The program then
waits for twenty seconds and checks for any graphical input. The graphical inputs used
are, valuators to input the link lengths and choice to exit out of the animation sequence.
lf any graphical input is read within twenty seconds then the program immediately
processes that input, else automatically shuts off any further interaction and stops
displaying the VGT geometry. lf the input is a changed value of link lengths, that set
of link lengths is input to the forward program. The forward program calculates the new
geometry for these link lengths, the original geometry is erased and the new geometry is
displayed. This sequence is fast, and it gives the effect of animation of the VGT. lf the
input is choice to exit out of the animation sequence then the geometry is erased and the
program is terminated.
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Figure I4. Flowchart for Animation sequence of VGT.
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Implementation of the Inverse kinematic solution

Figure I5 shows flowchart of the inverse kinematic solution. As shown in the
figure, the forward problem is first solved for initial guesses of the link lengths. Three
functions F l, F2 and F3 are then formed. These functions are solved iteratively using the
Quasi-Newton method. The solution of the inverse problem gives the link length vector.
The inverse kinematic program can be used for interactive input, or input can be read
from a data file.
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Figure 15. Flowchart of Inverse solution of VGT.
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Chapter 4

Experimental Verification of VGT Kinematics

The forward and inverse kinematic solution results were tested on NASA’s
octahedral VGT. The experimental setup, the experiment and the results obtained are
discussed in this chapter.

4.1 Experimental Setup

For the experiment, the VGT of Fig. 2, was tumed upside down as shown in Fig.
16. ln the experiment, the range of variable links was from 40 inches to 50 inches. The
length of the hand-adjustable links was fixed at 46.5 inches. A bar of length 77.5 inches
was fixed to the top plane of VGT to act as an end effector. A marking pen was fixed
to the free end of the rod, so that the path taken by the end effector could be traced on
paper.
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Figure l6. Arrangement of the VGT for the experiment.
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Link actuator Mechanism
The length of the Variable links is changed using leadscrews driven by small D.C.

motors, associated with each of the link. Figure 17 shows the diagram of the actuator
mechanism.

D/A IFFERENTIAL TO•
A CREWcowvsnron AMPLIFIER

I

D‘C‘

MOTORPOTENTIOMETERFEEDBACK
DEPENOING ON
PHYSICAL PCJSITION
OF THE BALLSCREW

Figure 17. Link Actuator Mechanism

As shown in the figure, the motor is driven by the output of the differential
amplifier. The input of the differential amplifier is the difierence of Voltage between the
output of the D/A convertor and the Voltage across the potentiometer. The Voltage
across each potentiometer is a function oflength of the corresponding Variable link.
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4.2 Experiment

The aim of the experiment carried out was: to demonstrate eßective and accurate

control of the end effector through the forward and inverse kinematic solution. For this

purpose it was decided that a set of letters of known, preselected dimensions be drawn

with the marking pen attached at the end of the rod. The letters NASA were selected for

this purpose. The letters NA and SA were required to be written on two different planes

separated by a small step in the vertical direction. This was done to demonstrate that

all the three degrees of freedom of the end of the rod could be controlled. These letters
were first drawn on the computer using CADAM software. The height of the letters was

fixed at five inches. These letters were then divided into points. Coordinates of these

points were the calculated in the global coordinate system which was located at the base

of the first module. These coordinates were then used as input to the inverse kinematics

program (Appendix C). Solution of the inverse problem gave link lengths corresponding

to each digitized point.

The values of the link lengths were then input to a computer program that

converts each link length value into a corresponding voltage value. These digital voltage

values were then converted into analog voltages using a digital to analog (D/A)

convertor. The analog voltages were then used as input to a differential amplifier, which

compares the voltages across the potentiometer and the output of the D/A convertor.

The output of the differential amplifier then turns the motor, which in turn rotates the

leadscrew associated with it. Thus the link lengths were changed and the end effector

assumed the specified position in the workspace.
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4.3 Results

Figure 18 shows the photograph of the NASA letters drawn by the marking pen
attached to end effector. It was found that the dimensions of the letters used as input
to the program and the dimensions of the output, the letters drawn on paper, matched
with each other accurately.

For the purpose of calculating the numerical value of accuracy, one more
experiment was carried out. In this case a simple planar geometry, a circle, was drawn
following the same procedure as in the experiment described above. In this case the circle
perimeter was divided into 360 points.

Table 2 lists the inaccuracy in the radius of the circle at twelve points. Note that
the accuracy calculations are done in the local coordinate system which is located at the
center of the circle.

Table 2. Inaccuracy in Forward and lnverse Kinematic Solutions.

Angle from lnaccuracy
X Axis in %

0 3.125
30 4.5
60 4.75
90 3.125
120 4.75
150 4.375
180 3.25
210 2.0
240 2.5
270 3.125
300 2.5
330 1.25

As can be seen from the table above the forward and inverse kinematic solutions
are accurate up to 95.25%.
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Chapter 5

Conclusions and Recommendations

The main purpose of this thesis was to study the feasibility of using the NASA’s
Octahedral VGT at Virginia Tech as a robotic manipulator. For this purpose kinematic
equations were developed, and the workspace of the VGT was computed. An experiment
was run on the VGT to check the accuracy of the results of the kinematic solution.
Following are the conclusions drawn from the results.

5.1 Conclusions

l) From the results obtained, it can be seen that the forward and inverse solutions are

accurate up to 95.25%. The possible sources of inaccuracy are,

• Clearances in the joints of the truss.
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I • Digital to Analog voltage conversion process.
• Approximation of motion by the actuator mechanism between two digitized points.
• Vibrations of the end effector and deflection at the support of the stiff rod.

2) It is obvious from the shape and dimensions of the workspace that, although the
length and width of the workspace of the VGT are large, the depth of the workspace is
small. For the VGT to be used as a robotic manipulator, the range of the variable links
must be increased substantially so that the depth of the workspace which is a function
of the range of the variable links will also increase proportionately.
Note that the range of length of the variable links is limited mainly because,

• The VGT has to accommodate the leadscrew and the actuator mechanism that
controls the variable links. This puts a lower limit on the link lengths, as the lengths
cannot be reduced below the actual physical dimension of the actuators.

• As the link lengths increase, the face angles oz, ß and y start decreasing. But the
angles cannot become negative as it would cause interference between the structural
members. Thus the lower values of the face angles put higher limits on the link
lengths.

5.2 Rccommendations

1) In the present case, out of the six variable links only three are actuated using motor
driven leadscrews. This limits the scope of the kinematic solution. Also it limits the
calculation of the workspace of the VGT to the reachable workspace only. In future,
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the three variable links of the second module will also be actuated. This will substantially
increase potential of the VGT for its likely use as a robotic manipulator.

2) For the VGT under study, in a module only three links are variable in length. This
means that a module has only three degrees of freedom. lf other links, such as the links
of the top lateral plane are made variable in length, the mobility of a module will
increase from three to six. Besides the links of the lateral, horizontal triangle being
variable in length, the links of other triangles can also be actuated as in the case of the
Stewart platform.

Note that as the number of variable links increases, dexterity of the truss
increases. But this also complicates the problem of control. Effective and accurate
control in such cases is a challenging task.
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Appendix A
Quasi-Newton Method

In this appendix the Quasi—Newton method used in the solution of the inverse problem

is discussed.

Given data :—

l) A set of nonlinear functions F(U) as

FI(U) Fl(xl,x2, ....,xr1)

F2(U) F2(xl, x2, ...., xn)

F( U) = =

FN(U) FN(xI, x2, ...., xn)

2) Initial Guesses as UO = (xl, x2, ....., xn)T

Goal :·

To find solution vector S, such that F(S) = 8 , where 9 is a null matrix.
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“ Solution Method :-
a) Calculate F(UO) using initial guess (UO) for the unknowns.
b) Check F(UO) against the specified tolerance limit. If F(UO) is less than the specified
tolerance limit, then it means the solution has been reached and the corresponding
values of the link lengths are the solution for the given input coordinates.
If this criteria is not satisfied then proceed as follows,
1) Calculate a descent direction p,„ using the following equation,
p,, = — J(UO)TF( UO)

2) Calculate A, such that the following equation is satisfied using this value
¢>(UO + «l,,p,„) < d>(UO) + 1O“‘l,„Vqb(UO)Tp,,

where,

awo) = llF(Z;0)l I2

Using the two values p,,_ and ,1,, calculated above, correction is made in the initial guess
vector as UO = UO + ,1,,,0,, .

Then compare the number of iterations with the maximum number of iterations. If the
number of iterations is greater than maximum number of iterations then stop the
iterations. This means that the solution is not possible. lf the number of iterations is less
than the maximum number of iterations then again repeat the steps (a) & (b) using the
corrected values of initial guesses.

Note that, the Quasi-Newton method differs from the Newton-Raphson method
in two ways

1. lt finds the descent direction, i.e. decides the direction in which to proceed for
finding the roots and,

Quasi—Newton Method ss
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2. lt calculates the amount of "step" to be taken in the descent direction.

More detailed description of the method can be found in a book by Johnson and Riess
[19].
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C THIS PROGRAM SOLVES THE FORWARD KINEMATICS PROBLEM FOR THE OCTAHEDRALC VGT AT VIRGINIA TECH ON LOAN FROM NASA'S LANGLEY RESEARCH CENTER.C THE COORDINATE DATA WHICH IS THE OUTPUT OF THE PROGRAM IS USED INC ANIMATION OF THE VGT. FOR ANIMATION A THREE DIMENSIONAL GRAPHICSC SOFTWARE, PHIGS IS USED.
C PROGRAMMER : D. P. GOKHALE.
C S.S. NO. 225 39 4388.

C DECLARATION OF TYPE OF VARIABLES AND CONSTANTS.
INTEGER IWSID, ISTART, INUM
INTEGER DEVID, STATUS, CHOICE, BREAK
INTEGER BLACK, WHITE, RED, GREEN, BLUE, GRAY, MAGENT, YELLOW, CYANINTEGER PRFORM, HIGHER, NOECHO, ECHO, CLIP, OFF, ON
INTEGER VIEWO, VIEW1, VIEW2, VIEW3
INTEGER VALUT, EVENT, REG
INTEGER VGTR
INTEGER TYPE
INTEGER INFLAG, NDEV, DEV(1l, UNITS
INTEGER ASIZE(3)
INTEGER I, J, K, L, M, N
INTEGER LNGT
INTEGER NUM, IKFLAG

REAL POSZIZ)
REAL PRP(3l, DIST, NEAR, FAR
REAL WINDO1(6), WINDO2l6)
REAL VPR1|6l, VPR2l6l, VPR3l6)
REAL COLORSIZ7)
REAL CSIZE(3), AREA1(6)
REAL*8 AL1(10), AL2l1D), AL3l1D)
REAL*4 AL11, AL12, AL13, ALI4, AL15, AL16
REAL*8 ALPHAl10), BETAI10), GAMMAIID)
REAL*8 AXl3), BX(3), CX(3)
REAL XYZ1(3,4)

CHARACTER*8 ERFILE, WSTYPE, CONNID
CHARACTER*41 MSG1
CHARACTER*41 MSG
CHARACTER*15 TXT, TXT1, TXT2, TXT3, TXT4, TXT5

C
C THE FOLLOWING VARIABLES ARE USED IN THE INPUT DEVICE INITIALIZATION.C

INTEGER ICHOI, ECHO1, ECHO2, DATAL, DATA1(35)
INTEGER VECHO, VDATAL
INTEGER PPATH(3), ACLASS(1)

REAL IPOSl3l
REAL IVAL1, IVALZ, IVAL3, IVAL4, IVAL5, IVAL6, IVAL7, IVAL8
REAL PAREA(6)

CHARACTER*16 VADAT1
C
C VALUES USED TO MANAGE THE EVENT INPUT.
C

INTEGER CLASS,DEVICE

C
C THIS WRITE STATEMENT IS USED FOR ECHO TYPE FOUR, USED IN THE VALUATORC INPUT. THE DATA IS WRITTEN IN A FILE IN UNFORMATTED FORM $0 IT ISC AUTOMATICALLY CONVERTED INTO BINARY FORM. IT IS THEN READ IN THE
C BINARY FORM INTO THE VADAT1 VARIABLE. WITH THE HELP OF THE VALUATOR
C TYPE FOUR WE CAN CORRELATE THE REVOLUTIONS OF THE DIAL AND THE VALUE

Ä
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C CHANGE.
C

NRITE(].Z)1;0;0;1
REWINDIIZ)
READ(12)VADAT1

C-———--—-—-·-—-----—--———-------—----——--—---——---—--------—--------•---C
C DATA DECLARATION AND DECLARATION OF CONTANTS.
C
C------------·—---——--—-—----·-----——-·-—--——---—---•--------—----------
C DEFINING THE ERROR FILE.

DATA ERFILE/'SYSPRINT'/

C DEFINING THE WORKSTATION TYPE.
DATA WSTYPE/'5080 '/

C DEFINING THE CONNECTION IDENTIFIER.
DATA CONNID/'IBM5080 '/

C DEFINING THE WORKSTATION IDENTIFIER.
DATA IWSID/1/

C DEFINING THE START INDEX FOR THE COLOR TABLE.
DATA ISTART/0/

C DEFINING THE NUMBER OF ENTRIES TO LOAD INTO THE COLOR TABLE.
DATA INUM/9/

C DEFINING THE ARRAY USED TO LOAD THE COLOR TABLE.

C BLACK — THE BACKGROUND COLOR.
DATA COLORS/ 0.0, 0.0; 0.0;

C WHITE
8 1.0, 1.0, 1.0,

C RED
8 1.0, 0.0, 0.0,

C GREEN
8 0.0, 1.0, 0.0,

C BLUE
8 0.0, 0.0, 1.0,

C GRAY
8 0.35; 0.35; 0.35;

C MAGENTA
8 1.0, 0.0, 1.0,

C YELLOW
8 1.0, 1.0, 0.0,

C CYAN
8 0.0, 1.0, 1.0/

C COLOR TABLE DATA DECLARATION.
DATA BLACK,WHITE;RED,GREEN;BLUE,GRAY,MAGENT,YELLOW,CYAN/

> Ü; 1; Z; 3; 4; 5; 6; 7; 8 /
C DEFINING THE HIGHER PRIORITY FLAG.

DATA HIGHER/1/
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C DEFINING THE NOECHO SNITCH.
DATA NOECHO/1/

C DEFINING THE ECHO SNITCH.
DATA ECHO/2/

C DEFINING THE THE CLIP ON VALUE.
DATA CLIP/2/

C DEFINING THE ACTIVE OFF VALUE.
DATA OFF/1/

C DEFINING THE ACTIVE ON VALUE.
DATA ON/2/

C DEFINING THE VIEN ID.
DATA VIEH1; VIEH2; VIEN3/1; 2; 3/

C DEFINING THE GRAPHICAL MODES.
DATA EVENT; REG/3; 1/

C DEFINING THE PERFORM UPDATE FLAG.
DATA PRFORM/2/

C DEFINING THE STATU VALUE FOR A BREAK ON CHOICE.
DATA BREAK/1/

C DEFINING THE PROJECTION TYPE; IN THIS CASE PARALLEL PROJECTION TYPE IS
C SELECTED.

DATA TYPE/1/

C DEFINING THE PROJECTION REFERENCE POINT.
DATA PRP/3.0; 0.0; 3.0/

C DEFINING THE VIEH PLANE DISTANCE.
DATA DIST/50/

C DEFINING THE EXTENT OF THE NEAR AND THE FAR CLIPPING PLANES.
DATA NEAR; FAR/100.0; -100.0/

C DEFINING THE THE VALUATOR DEVICE ECHO DATA.
DATA VDATAL/16/

C THE FOLLONING DATA IS USED FOR INPUT DEVICE INITIALIZATION.
DATA ICHOI; ECHO1; ECHO2/ 1; 1; 2/
DATA DATAL/140/
DATA DATA1/32; 0; 0; 1;1;1;1;

1)1)1)1)1)]~)
& 1;1;1;1;1;1;

8 1;1;1;2/

C NINDON AND VIENPORT EXTENT INFORMATION.
DATA NIND01/-150.; 150.; -150.; 150.; -150.; 150./
DATA HINDO2/-200.; 200.; -200.; 200.; -200.; 200./
DATA VPR1/O.Ü; 1.Ü; Ü.Ü• 1.Ü; Ü.Ü; 1.0/
DATA VPR2/0.0; 1.0; 0.0; 1.0; 0.0; 1.0/

C THE FOLLONING DATA DECLARES THE CHARACTER STRINGS TO BE DISPLAYED
C ON THE GRAPHICS SCREEN.

DATA LNGT/41/
DATA MSG/'PRESS LIGHTED KEY TO EXIT'/
DATA MSG1/'PRESS LIGHTED KEY TO CONTINUE'/
DATA TXT/'ANIMATION'/
DATA TXT1/'OF'/
DATA TXT2/'A'/ I
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) DATA TXT3/'VARIABLE'/
DATA TXT4/'GEOMETRY'/
DATA TXT5/'ROBOT'/

C—---———-------—·--------——-----————----———----—-------—-—--------------C THE FOLLONING BLOCK DEFINES THE VARIABLES FOR THE VARIABLE GEOMETRY
C TRUSS.
C---—-----——---—--—----—------—---—---————--—-----———--------—----------
C DEFINING THE TOTAL NUBER OF MODULES OF THE V.G.T.

NM = 2
C DEFINING THE FLAG OPTION. THIS FLAG IS USED IN THE VGTRUS SUBROUTINE.

IKFLAG = 0
C DEFINING THE INITIAL LENGTH OF THE VARIABLE LINKS.

DATA AL11;AL12;AL13/44.5;44.5;44.5/
DATA AL14;AL15;AL16/46.5;46.5;46.5/
DO 25 I = 1; NUM
AL11I) = 39.01
ALZII) = 39.01
AL3(I) = 39.01

25 CONTINUE
AL1(2) = 46.5
ALZIZ) = 46.5
AL3l2) = 46.5

C THE STARTING VALUES FOR ANGLES THETA-A; THETA—B; THETA-C.
DO 15 I = 1; NUM
ALPHAIII = 0.9
BETAII) = 0.9
GAMMAII) = 0.9

15 CONTINUE

C DEFINING THE INITIAL VALUE FOR THE VALUATOR.
IVAL1 = 32.0

C
C—--——------·———-----———--------——·---—·--—-—-——————----—----———---—---—-C OPENING AND INITIALIZATION OF PHIGS.
C--•··—-—-----•——-------—·------·•·—·-----•—------•—-----—-—-·-·----·—•——C

C CALL TO OPEN GRAPHICS.
CALL GPOPPHlERFILE; 0)

C CALL TO OPEN A 5080 GRAPHICS NORKSTATION.
CALL GPOPHSIIHSID; CONNID; NSTYPE)

C TO OBTAIN THE ACTUAL DISPLAY SURFACE SIZE OF THE NORKSTATION NHICH IS
C USED IN CALCULATION OF THE ECHO AREA.

CALL GPGADSKIHSID; ERRIND; 1; CSIZE; ASIZE)
IF(ERRIND.NE.0)GOTO 10

C THE ECHO AREA IS DEFINED IN THE FOLLONING BLOCK.
AREA1l1) = 0.0
AREA1(2) = C$IZEl1)
AREA1(3) = 0.95 * CSIZE12)
AREA1(4) = CSIZEIZ)
AREA1(5) = 0.0
AREA1(6) = CSIZE(3)

C CALL TO SET COLOR MODEL TO RGB.
CALL GPCML(IHID; 1)
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I

C LOADING THE COLOR TABLE INTO THE NORKSTATIONS MEMORY.
CALL GPCRIINSID, ISTART: INUM: COLORS)

C ACTIVATE THE FONT FOR USE IN THE TITLE. FONT NUMBER 11 IS USED.
CALL GPACFO(IHSID: 1: 11)

C———-—----——-—----——·—-—---——--—--------------—-—-—---------------------C
C THE FOLLONING BLOCK DISPLAYS THE INITIAL TITLE PAGE.
C
C-—--——---—-—-——--—-—----—--—-----··—-—----——-----—---------------------

C CALL TO OPEN STRUCTURE UMBER 1.
CALL GPOPST(1)

C CALLS TO SET THE CHARACTERISTICS OF THE TEXT TO BE DISPLAYED.
CALL GPTXPRII)
CALL GPCHH(l6.)
CALL GPTXFOl11)
CALL GPTXCIINHITEI

C CALLS TO SET THE CHARACTERISTICS OF THE BACKGROUND AREA.
CALL GPIS(2)

C THE FOLLONING DATA DEFINES THE EXTENT OF THE SHADOH AREA.
DATA XYZ1/-125.: -125.: 0.: 115.: *125.: 0.: 115.:

& 115., 0., -125., 115., 0./

C TO SET THE COLOR OF THE SHADON.
CALL GPICIIGRAYI
CALL GPPG3l1:4:3:XYZ1)

C TO DEFINE THE EXTENT OF THE BACKGROUND AREA.
XYZ1(1:1) = -120.
XYZ1(2:1) = -120.
XYZ1l3:l) = 0.0
XYZ1(1:2) = 120.
XYZ1l2:2) = -120.
XYZ1(5:2) = 0.0
XYZ1l1:3) = 120.
XYZ1(2:3) = 120.
XYZ1(3:3) = 0.0
XYZ1l1:4) = -120.
XYZIIZ,4) = 120.
XYZ1l3:4) = 0.0

C TO SET THE COLOR OF THE BACKGROUND AREA.
CALL GPICIIBLUEI
CALL GPPG3l1:4:3:XYZ1)

C CALLS TO NRITE OUT THE TEXT OF THE TITLE.
P0$2(1) = -78.
POS2l2) = 73.
CALL GPTXZIPOSZ: 15: TXT)

P0$2(1l = -20.
POS2(2) = 40.
CALL GPTXZIPOSZ, 15: TXT1)

P0$2(1) = -11.
P0$2l2) = 10.‘ CALL GPTX2(POSZ: 15: TXT2)

POS2I1) = -68.
P0$2(2) = -20.
CALL GPTX2(POS2: 15: TXT3)
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POSZI1) = -68.
POS2t2l = -50.
CALL GPTX2(POS2: 15: TXT4)

POS2(1) = -41.
POS2(2) = -80.
CALL GPTXZIPOSZ: 10: TXT5)

C CALL TO CLOSE THE TITLE DISPLAY STRUCTURE.
CALL GPCLST

C THIS BLOCK ASSCIATES THE TRUSS STRUCTURE NITH VIEH1.
CALL GPARV(INSID:VIEH1:1:1.0)
CALL GPVMP3(IHSID:VIEN1:NINDO1:VPR1:TYPE:PRP:0IST:NEAR:FAR)
CALL GPVCH(INSID:VIEN1:CLIP:CLIP:CLIP:OFF:0:N:NHITE:0N)
CALL GPUPNS(IHSID:PRFORM)

C REQUEST A PF KEY HIT FOR CONTINUATION OF THE PROGRAM.
CALL GPMSGIINSID: 41: MSG1)
CALL GPRQCHIINSID:1:STATU$:CHOICE)
CALL GPMSGlINSID: 0: MSG1)
IF(STATUS.EQ.BREAK)GOTO 10
CALL GPDRVlINSID:VIEN1:1)
CALL GPESTII)

C THE FOLLONING BLOCK DISPLAYS THE VGT GEOMETRY FOR PREDEFINED LINKC LENGTHS.
C CALL THE TRUSS SUBROUTINE TO CALCULATE THE COORDINATES OF THE NODES.C THE SUBROUTINE IS CALLED IN A DO LOOP TO CONSTRUCT THE MODULES.

DO 1 I = 1:NUM
CALL VGTRUSIALIII):AL2(I):AL3(I):

8 ALPHA(I):BETA(Il:GAMMA(I):NUM:IKFLAG)1 CONTINUE
C THIS BLOCK ASSOCIATES THE TRUSS STRUCTURE NITH VIEH1.CALL GPARVlINSID:VIEN1:1:1.0)

CALL GPARV(INSID:VIEH1:2:l.0)
CALL GPVMPSIINSID:VIEH1:NINOO2:VPR1:TYPE:PRP:0IST:NEAR:FAR)
CALL GPVCH(INSID:VIEH1:CLIP:CLIP:CLIP:OFF:0:0N:NHITE:0N1
CALL GPUPNSlIHSID:PRFORM)
CALL GPDRV(INSID:VIEH1:l)

C BLOCK FOR INTERACTIVE GRAPHICAL INPUT.
C THE FOLLONING BLOCK INITIALIZES THE VALUATOR DEVICE AND ASKS FORC AN INPUT FROM THE OPERATOR.

DO 20 I = 1:6
CALL GPVLMO(INSID:I:1:2)
CALL GPINVLIINSID:I:39.01:4:AREAl:39.0:51.0:16:VADAT1)
CALL GPVLMO(IHSID:I:3:2)
AREA1(3) = AREA1(5) - 0.01

20 CONTINUE

C THIS BLOCK INITIALIZES THE CHOICE DEVICE.
CALL GPCHMOlINSID:1:1:2)
AREA1(3) = 0.0
CALL GPINCH(INSID:1:1:2:AREA1:DATAL:DATA1)
CALL GPCHMO(INSID:1:3:2)

C REQUEST A PF KEY HIT TO EXIT OUT OF THE DO LOOP.
C DISPLAY A MESSAGE REQUESTING INPUT.

CALL GPMSG(IHSID:LNGT:MSG)
C CALL TO EMPTY THE STRUCTURE.
30 CALL GPEST(1)
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C THIS BLOCK READS THE GRAPHICAL INPUT AND CORRESPONDINGLY PROCESSES IT.C DEFINING THE TIME LIMIT.
TIME = 20.0
CALL GPANEVITIME;J»CLAS$»DEVICE)
IF(CLASS.EQ.3)GOTO 40

C THIS BLOCK LETS USER TO USE CHOICE TO EXIT OUT OF THE ANIMATIONC LOOP.
CALL GPGTCHICHOICE)
IFlCHOICE.EQ.32)GOTD 10
CALL GPDAST
GOTO 30

C THIS BLOCK PROCESSES VALUATOR INPUT .
40 CONTINUE

IFlDEVICE.EQ.1)CALL GPGTVL(AL11)
IF|DEVICE.EQ.2)CALL GPGTVLIALIZ)
IF(DEVICE.EQ.3)CALL GPGTVL(ALl3)
IF(DEVICE.EQ.4)CALL GPGTVLlAL14)
IF(DEVICE.EQ.5)CALL GPGTVL(AL15)
IF(DEVICE.EQ.6)CALL GPGTVL(AL16)

C DONNLOADING THE NEH VALUES.
AL1(1) = AL11
AL2l1) = AL12
AL3l1) = AL13
AL1(2) = AL14
AL2(2) = AL15
AL3(2) = AL16

C TO TEST IF THE THREE LENGTHS OF THE LATERAL TRIANGLE SATISFY THEC BASIC TRIANGLE RULE.
IF(lAL1l + AL12).LT.(AL13 - 2.5))GOTO 205
IF(lAL12 + AL13l.LT.(AL11 - 2.5))GOTO 205
IF((AL13 + AL11).LT.(AL12 - 2.5l)GOTO 205 ·
IF((ALl4 + AL15l.LT.lAL16 - 2.5))GOTO 205
IF((AL15 + AL16).LT.(AL14 - 4.0))GOTO 205
IF((AL16 + AL14).LT.lAL15 · 4.0))GOTO 205

C CALL THE VGTRUS SUBROUTINE TO DRAH THE FIRST MODULE.
C TO SET THE IKFLAG TO EQUAL TO ZERO.

IKFLAG = 0

C TO CALL THE VGTRUS SUROUTINE IN A DO LOOP TO CONTRUCT THE MODULES.
DO 2 I = lrPÄJM
CALL VGTRUSlAL1(I);AL2(I)>AL3lI)»

& ALPHA(I),BETA(I);GAMMA(I];NUM;IKFLAG)
2 CONTINUE

C THIS BLOCK ASSOCIATES THE TRUSS STRUCTURE HITH VIEH1.
CALL GPARVlINSID>VIEN1»1,1)
CALL GPARVlINSID>VIEN1»2»1)
CALL GPVMP3(INSID,VIEN1»NINDO2;VPR1•TYPE»PRP•DIST,NEAR»FAR)
CALL GPVCHlINSID,VIEN1,CLIP;CLIP,CLIP,OFF»0•ON•NHITE,0N)
CALL GPUPN$(INSID;PRFORM)
CALL GPORV(INSID,VIEH1,1)
CALL GPDAST
GOTO 30

205 CONTINUE
NRITEl15,§)'THE THREE VARIABLE LINKS DO

> NOT FOLLON THE BASIC TRIANGLE LAN'

10 CONTINUE

C CALL TO DEACTIVATE THE NORKSTATION.
CALL GPDAST
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C CALL TO CLOSE GRAPHICS.
CALL GPCLPH

STOP
END

C-—-—-----—-----——----—-—---——-·-----—----·-—---—------------------------C SUBROUTINE VGTRUS CALCULATES COORDINATES OF JOINTS OF THE VGT
C FOR GIVEN LENGTHS OF THE VARIABLE LINKS.
C———---——-—---—-——---————--—--—---—--—---—-----·-----—-—-~—-----—---—----

SUBROUTINE VGTRUS(AL1,AL2,AL$,
8 ALPHA,BETA,GAMMA,NUM,IKFLAG)

C TYPE AND DATA DECLARATION.
IMPLICIT REAL*8(A-H,O—Z)
COWMON/TRIAL/UA($),U8(3),UCl$),A0($),B0($),C0($l,

8 A1MAO($),B1MBO($),C1MCO($),A1B1MG,A1C1MG,C1B1MG

COMON PI

DIMENSION AJl$),BJ($l,CJ($)
DIMENSION PH( S 2S ) 2QMl S23 ) 2QIH( S 2S 1 2RH( S2S 22)
DIMENSION A($,$),B($)
DIMENSION ANORM1I$),ANORMZl$),ANORM$l$),ANORM4($)
DIMENSION BJMAJ($),CJMAJl$),CJMBJ($)
DIMENSION AOMAJ($),BOMAJ($l,COMBJ($),AJMA0l$)
DIMENSION AJPCJ($),AJPBJ($),BJPCJI$)
DIMENSION AOMACJl$),BOMABJ($),COMBCJ($)
DIMENSION ANODE7l$),ANODE8($],ANDE9($)
DIMENSION UD($),UE($),UFl$)
DIMENSION UAT($),UBT($),UN($),UZ($),TRANl$,$),D($)
REAL*4 XYZ1($,1$),XYZ2($,10),XYZ$($,$),XYZ4($,2)
DATA IN,IOUT /12,10/

C SQUARING THE LINK LENGTHS FOR EASE OF CALCULATIONS.
A1B1MG = AL1 * AL1
A1C1MG = ALZ * AL2
C1B1MG = AL$ ä AL$

C
C DEFINING THE CONSTANTS OF THE PROGRAM.
C

C THE TOLERANCE LIMIT, FOR NENTON-RAPHSON METHOD.
TOL = 0.00001

C DEFINING THE VALUE OF THE TRIGONOMETRIC CONSTANT PI.
PI = $.141592654

C REDEFINIG THE POSITION OF REVOLUTE JOINT A0.
A0l1)= 0.0
A0l2)= 0.0
A0($)= 0.0

C DEFINING THE POSITION OF REVOLUTE JOINT B0.
B0(1)=2$.25
B0t2)=0.0
B0($)=40.27018128

C DEFINING THE POSITION OF REVOLUTE JOINT C0.
C0(1)=46.5
C0(2l=0.0
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C0(3)=0.0

C THE POSITION OF VECTOR (A1 - A0).
A1MA0l1) = -10.45864780
A1MAO(2) = 0.0
A1MAOi3l = 32.8850964

C THE POSITION OF VECTOR (B1 - B0).
B1MB0l1l = 33.7086478
B1MBO(2) = 0.0
B1MBO(3) = -7.38509064

C THE POSITION OF VECTOR (C1 - CO).
C1MCO(1) = -23.25
C1MCO(2) = 0.0
C1MCO(3) = -25.5

IF(IKFLAG.NE.0)GOTO 1111
C THE UNIT VECTOR ASSOCIATED HITH A0.

UAl1) = -0.5
UM2) = 0.0
UA(3) = -0.86602543

C THE UNIT VECTOR ASSOCIATED HITH B0.
U8l1) = -0.5
UB(2) = 0.0
UB(3) = 0.86602543

C THE UNIT VECTOR ASSOCIATED HITH C0.
UCl1) = 1.0
UC(2l = 0.0
UCI3) = 0.0

1111 CONTINUE

C CALLING THE NENTON ROUTINE FOR SOLVING FOR VALUES OF THE ANGLES.
CALL NENTON (ALPHA,BETA•GAMMA»TOL»K)

C CONVERTING ALPHA BETA GAMMA INTO POSITIVE VALUES.
ALPHA = DABSKALPHA)
BETA = DABSIBETA)
GAMMA = DABSlGAMMA)

C TO FIND COORDINATES OF THE VERTEX AJ.
CALL RMAXIS lUA,ALPHA>RM»2)
CALL ROTATE (ÄJ;ÄÜ»RMrÄ1MÄÜ;Z]

C TO FIND COORDINATES OF THE VERTEX BJ.
CALL RMAXIS (UB;BETA>RM»2)
CALL ROTATE l8J,B0»RM,B1MBO;2)

C TO FIND COORDINATES OF THE VERTEX CJ.
CALL RNÄXIS (UC»GÄHMÄ>R„»2]
CALL ROTATE (CJ,C0»RM»C1C0,2)

C TO CALCULATE ORMAL TO THE LATERAL VARIABLE PLANE.
DO 7 I = lp;
BJMAJlI) = BJII) — AJ(I)

7 CJMBJ(Il = CJ(I) - BJlI)
CALL CROSS (AORM1;BJMAJ»CJBJ)

C
c----•--------—---—------—--—•—----—-----—----—---------------—---——----C COORDINATES OF NODE 7 ARE CALCULATED IN THE FOLLONING BLOCK.(Z--—-——-—-—--—-—---——-——---——————---—-—--—----—----—-——--—--------——--—-
C
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DO 8 I = 193
CJMAJII) = CJlI) - AJIII

8 AJMAOII) = AJII) - AOII) .
CALL CROSS lANORM2,AJMA09CJMAJl

C TO CALCULATE THE ANGLE BETNEEN THE LATERAL AND SIDE PLANES.
ANUM1 = DOT lANORM19ANORM2)
0EN1 = DABSIDSQRT (ANORM1(1)**2 + ANORM1(2)**2 + ANORM1l3)**2)) *S DABSIDSQRT (ANORM2(1)**2 + ANORM2(2)**2 + ANORM2(3)**Z))
THETA = DABSIDACOS (ANUM1/DEN1))
IF(THETA.GT.PI)THETA = 2.*PI - THETA
THETA = 2. * THETA

DO 9 I = 193
AJPCJII) = (AJII) + CJ(I)) / 2.

9 AOMACJII) = A0(I) - AJPCJII)

C TO FIND UNIT VECTOR ALONG THE LINK CJAJ.
ÜÜ 10 1 = 193

10 UDII) = CJMAJlI)/(DSQRTlCJMAJl1)**2 + CJMAJ(2)**2 + CJMAJl3)**2))
CALL RMAXIS lU0,THETA9RM92)
CALL ROTATE (ANO0E7»AJPCJ9RM9AOMACJ»2)

C
C·-—----—--—·—-—-----—-—-—------———---—--——-----·-·---—-——-—---—------—-C COORDINATES OF NODE 8 ARE CALCULATED IN THE FOLLONING BLOCK.
C—-----—----—··—-------—-—-—----—-·----•--·--—---•·—---—-—---—---—----——C

ÜÜ 12 I = 193
12 BOMAJII) = B0lI) - AJIII

CALL CROSS (ANORM3;B0MAJ9BJMAJ)

T ANUM2 = DOT IANORMLANORM3)
DEN2 = DABSlDSQRT (ANORM1(1)**2 + ANORM1(2)**2 + ANORM1l3)*-*2)) *S DABS(DSGRT (ANORM3(1)**2 + ANORM3l2l**2 + ANORM3(3)**2))
THETA1 = DABSIDACOS (ANUM2/DEN2))
IF(THETA1.GT.PI)THETA1 = 2.* PI — THETA1
THETA1 = 2. * THETA1

ÜÜ 13 I = 193
AJPBJIII = (AJ(I) + BJ(I)) / 2.

13 BOMABJII) = B0(I) - AJPBJII)

C TO FIND UNIT VECTOR ALONG THE LIN( BJAJ.
DO 14 I :193

14 UEII) = -BJMAJ(I)/lD$QRTlBJMAJ(1)**2 + BJMAJl2)**2 + BJMAJ(3)**Z))
CALL RMAXIS (UE;THETA19RM92)
CALL ROTATE lANODE8,AJPBJ»RM9B0MABJ»2)

C
C---—----—--—--—-—-------—-—----—----——-------——---————---———-----—-—---C COORDINATES OF NODE 9 ARE CALCULATED IN THE FOLLOHING BLOCK.
C-----——-——----·—•·—-----·--—-------—-•—------•-—---·-—----—--—------·--C

ÜÜ 16 I = 193
16 COMBJIII = COII) — BJ(I)

CALL CROSS (ANORM49C0IBJ9CJPBJ)

AMJM3 = DOT (ANORM1;ANORM4l
DEN3 = DABSKDSGRT (ANORM1(1)**2 + ANORM1l2)**2 + ANORM1(3)**2)) *S DABSIDSQRT (ANORM4l1)**2 + ANORM4(2)*-*2 + ANORM4(3)**Z))
THETA2 = DABSKDACOS (ANUM3/DEN3))
IF(THETA2.GT.PI)THETA2 = 2.*PI · THETA2
THETA2 = 2. * THETA2

DO 17 I = 193
BJPCJ(I] = (BJ(I) + CJ(I)) / 2.
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i 17 CDMBCJII) = C0(I) - BJPCJKIJ

C TO FIND UNIT VECTOR ALONG THE LINK CJBJ.
DO 18 I =l,5

18 UF(I) = -CJMBJII)/(DSQRT(CJMBJ(1)**2 + CJMBJ(2)¤··¤2 + CJMBJ(3)**Z))
CALL RMAXIS (UF;THETA2,RM>2)
CALL ROTATE (ANODE9»BJPCJ;RM»COMBCJ;2)

C CALL TO CHECK THE IKFLAG.
IF(IKFLAG.EG.0)GOT0 31

C TO CALCULATE THE UNIT VECTORS ALONG THE SIDE LENGTHS OF THE TOP
C LATERAL PLANE.

DO 49 I = 19 3
UATKI) = IXYZ3(I,1) - XYZ3lI»3))/46.5
UBT(I) = lXYZ3(I>2) - XYZ3(I»l))/46.5

49 CONTINUE

C CALLING CROSS SUBROUTINE TO CALCULATE NORMAL TO THE TOP PLANE.
CALL CROSSlUN;UAT»UBT)
UN(2) = UNIZ)/lSINlPI/3.))

C TO CALL THE CROSS SUBROUTINE TO CALCULATE UNIT VECTOR ALONG Z AXIS OF
C THE MOVING COORDINATE SYSTEM.

CALL CROSS(UZ>UN,UAT)

C TO DEFINE THE ELEMENTS OF THE ROTATION MATRIX.
TRAN(1»1) = -UATl1)
TRAN(2»1) = -UATI2)
TRANl3»1) = —UAT(3)
TRAN(1»2) = UN(1)
TRAN(2;2) = UNlZ)
TRANl3,2) = UN(3)
TRAN|1,3) = UZ(1)
TRAN(2»3) = UZ!2)
TRAN(3,3) = UZIS)

C TO DEFINE THE TRANSLATION VECTOR.
Dlll = XYZ3(1,1) — A0(1)
D(2) = XYZ3(2,1) - A0(2l
D13) = XYZ3(3,1) - A0l3)

C CALLING THE MATRIX MULTIPLICATION SUBROUTINE TO TRANFORM THE
C VERTEX COORDINATES FROM LOCAL TO GLOBAL SYSTEMS.

CALL MATMUL(TRAN•AJ»D)
CALL MATMUL(TRAN,BJ>D)
CALL MATMUL(TRAN»CJ>D)
CALL MATMUL(TRAN,ANODE7»D)
CALL MATMULlTRAN,ANODE8,D)
CALL MATMUL(TRAN;ANODE9;D)

C TO DEFINE BASE CORDINATES FOR THE REPEATING MODULES.
DO 3 I = 1,3
A0lI) = XYZ3(I»1)
B0(I) = XYZ3(I,2)
C0(I) = XYZ3(I;3)

3 CONTINUE

31 CONTINUE

C THE FOLLOWING BLOCK DOWNLOADS THE COORDINATES OF THE JOINTS.
DO 999 I =1>3
XYZ1(I>1) = A0(I)
XYZ1lI»Z) = BOII)
XYZ1(I,3) = C0(I)
XYZ1(I,4) = A0(I)
XYZ1(I;5) = AJ(I)
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I

XYZ1(I;6) = BJKII
XYZIII;7) = CJII)
XYZ1(I;8) = AJII)
XYZ1(I»9) = B0(I)
XYZ1(I,10) = BJII)
XYZ1(I,11) = C0(I)
XYZ1(I;12) = CJII)
XYZ1lI;l3) = AOIII
XYZ2(I,1) = ANOOE7lI)
XYZ2(I;2) = ANODEBII)
XYZ2(I»3) = ANODE9(I)
XYZ2(I•4) = ANODE7(I)
XYZ2(I,5) = CJ(I)
XYZ2(I>6l = ANODE9(I)
XYZ2(I;7) = BJII)
XYZ2(I;8) = ANODE8(I)
XYZ2(I,9) = AJII)
XYZ2(I,10) = ANOOE7(I)
XYZ3(I»1) = ANODE7lI)
XYZ3(I;Z) = ANODEBII)
XYZ3(I>3) = ANODE9(I)
XYZ4(I»1) = (ANODE7(I) + ANODE8(I) + ANODE9(I))/3.0
XYZ4(I>2) = 77.75 * UNII) + XYZ4(I;ll

999 CONTINUE

C CALL TO OPEN A STRUTURE FOR DRANING THE VGT.
CALL GPOPST(1)

C CALL TO DRAN POLYLINES DRANING THE V.G.T.
CALL GPLNSCIIO)
CALL GPPL3l13;3,XYZ1)
CALL GPPL3l10»3>XYZ2)

C CHECKING THE IKFLAG TO DETERMINE IF THE MODULE TO BE DRANN IS THE LAST
C MODULE.
C INCREMENTING THE FLAG.

IKFLAG = IKFLAG + 1
IF(IKFLAG.NE.NM)GOTO 1000

C CALL TO FILL UP THE TOP SURFACE OF THE TOP MODULE NITH BLUE COLOR.
C TO DEFINE ATTRIBUTES OF THE FILL AREA.

CALL GPEFl2)
CALL GPECIIII
CALL GPISIZ)
CALL GPICII4)
CALL GPPG3(1»3•3,XYZ3)
CALL GPPL3|2>3»XYZ4)

1000 CONTINUE
CALL GPCLST

RETURN
END

c--——-—--——·—-—---——-—-—-—-—--—----——-—-—-—---—-——---————----------------C
C SUBROUTINE ANYRS - FORMS FUNI AND CALCULATES PARTIAL DERIVATIVES.
C
ß------------—-----—--—-----——-—-—-----—----—---—-—-------------—-—------

SUBROUTINE ANYRS (ALPHA,BETA»GAMMA;FUNC1,DIFF1»DIF1J
C
C INPUT STATEMENTS
C
C TYPE DECLARATION.

IMPLICIT REAL*8(A-H;O-Z)
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C DECLARING THE COMMON BLOCK.
COMMON/TRIAL/UA(3),UBl3l,UCl3l,A0(3),B0l3l»C0(3),

8 A1MA0l3l,B1MBO(3),C1MC0l3),A1BlMG,A1C1MG>C1B1MG

COMMON PI

C DECLARIG THE DIMENSIONS.

DIMENION AJl3),BJl3)>CJ(3)
DIMENSION PM(3,3)»GM(3,3)»GIMl3,3)»RM(3•3;2)
DIMENSION T1l3)•T2l5)>T3(3l>T4t3l,T5I3)»T6(3l>T7l3),T8l3)
DIMENION V1(3)»V2l3)>V3l3);V4(3)»V5(3)»V6l3)

C POSITION ANALYSIS OF A0—A1—B1-B0 MECHANISM.

DALPH = 0.00000001
ALPH = ALPHA + DALPH
DBET = 0.00000001
BET = BETA + DBET

C
ÜÜ 24 I = 195
T1(I) = A1MAOiI)
T4lI) = A0(I) - B0(I)

24 TZII) = BIMBOII)

CALL RMAXIS (UA»ALPH»RM»2)
CALL ROTATE (AJ,A0,RM;T1>2)
ÜÜ Z5 I = 193
V1(I) = AJII) - A0(I)

25 VZII) = AJII) - B0(I)

CALL RMAXIS lUA,ALPHA•RM»2)
CALL ROTATE lAJ,A0»RM»T1»Z)
UO 26 I = 193
TSII) = AJ(I) - A0(I)

26 T3(I) = AJIII · B0(I)

CALL PMTX (UB;PM)
CALL GMTX lUB,QM)
CALL QIMTX (UB»GM»GIM)
CALL MTXVEC (T6>GIM»T2)
E = DOT lV2>T6)
E1 = DOT (T3,T6)
CALL MTXVEC (T7;PM»T2)
F = DOT (V2;T7)
F1 = DOT (T3>T7)
CALL MTXVEC (T8,GN,T2)
G = DOT(V2,T8) + .5 * (A1B1MG - DOT(V2,V2) - DOT(T2,T2))
G1 = DOT(T3,T8) + .5 * (A1B1MG — DOT(T3,T3) · DOTlT2,T2))APP1 = E * DCOSKBETAI + F * DSINIBETAI + G
FUNC1 = E1 * DCO$lBETA) + F1 * DSINIBETA) + G1
DIFF1 = (APP1 — FUNC1) / DALPH
APB = E1 * DCOSIBET) + F1 * DSIN(BET) + G1
DIF1 = (APB — FUNC1) / DBET

C
RETURN
END

C---—-----—---——·----—----—----—---·---—-—--——---—---——--———-—---------—-C
C SUBROUTINE ANYRS1 - FORMS FUN2 AND CALCULATES PARTIAL DERIVATIVES.C
C———--·----—·---——---—--———-———---•—---·—-——-----——-——————--—---——----———

SBROUTINE ANYRS1 (ALPHA•BETA;GAMMA>FUNC2;DIFF2;DIF2l
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C
C INPUT STATEMENTS
C

IMPLICIT REAL*8(A-H,O·Z)
COMMON/TRIAL/UA(3),UB(3)»C(3)»A0(3)>B0(3);CO(3),

& A1MAO(3]>B1MBO(3);C1MCO(3),A1B1MG;A1C1MG»C1B1MG
COMMON PI

DIMENSION AJ(3l,BJ(3)>CJ(3)
DIMENSION PM(5»3)>QM|3»3l»QIMl3»3l;RM(3•3•2)
DIMENSION S1(5l»S2(3),S3(3),S4(3)»S5(5),S6(3)»S7(3)•S8l3)
DIMENSION V1(3),V2(3)»V3l3)»V4(3);V5(3),V6l3)

C POSITION ANALYSIS OF CO-C1-A1—A0 MECHANISM .

DALPH = 0.00000000l
ALPH = ALPHA + DALPH
DGAMA = 0.00000000l
GAMA = GAMMA + DGAMA

C
ÜÜ 24 I = la;
$1lI) = ClC0(I)
S4(I) = COII) — AOlI)

Z4 SZII) = AIMAOII)

CALL RMAXIS (UC»GAMA>RM•2)
CALL ROTATE (CJ;C0¤RM»S1»2)
DO Z5 I = 1,3
V3(I) = CJ(I) - COII)

25 V4(I) = CJII) - A0(I)

CALL RMAXIS (UC»GAMMA»RM»2)
CALL ROTATE (CJ,C0•RM>S1»2)
ÜÜ 26 I = 113
$511) = CJII) - C0lI)

26 $311) = CJ(I) - AOII)

CALL PMTX (UA,PMl
CALL QMTX (UA»GM)
CALL GIMTX (UA»QM»0IM)
CALL MTXVEC (S6;GIM»S2)
E = DOT (V¢,$6)
E1 = DOT ($3,86)
CALL MTXVEC (S7>PM»S2)
F = DOT (V4;S7)
F1 = DOT (S3»S7)
CALL MTXVEC (S8;QH>S2)
G = DOT(V4>S8) + .5 * (A1C1MG - DOT1V¢;V4) — DOT(S2,S2))
G1 = DOT(S3,S8) + .5 * (A1C1MG - DOTlS3>S3) - DOT(S2•S2))
APP2 = E * DCOS(ALPHA) + F * DSINIALPHAI + G
FUNC2 = E1 * DCOSIALPHA) + Fl * DSINIALPHAJ + G1
DIFF2 = IAPPZ - FUNC2) / DGAMA
APG = E1 * DCOSlALPH) + F1 * DSIN(ALPH) + G1
DIF2 = (APG - FUNC2) / DALPH

C
RETURN
END

C-—-------------·•----••—---··--———-----------•———-——-—-—----—----—-----—C
C SUBROUTINE ANYRS2 - FORMS FUN3 AND CALCULATES PARTIAL DERIVATIVES.
C
C-—---—---———--——---—--—----•-—-—-•-——----—-——----——---———-—-----—--——---

SUBROUTINE ANYRS2 IALPHA;BETA;GAMMA»FUNC3»DIFF3»DIF3)
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C
C INPUT STATEMENTS
C

IMPLICIT REAL*8lA-H,O-Z)
COMMON/TRIAL/UA(3);UBl3)»UC(3)>AD(3);BDl3)»CDl3)7

& A1MA0(5);B1MB0l3),C1MCD(3l;A1B1MG7A1C1MG»C1B1G
COMMON PI

DIMENSION AJ(3)>BJ(3l,CJ(3)
DIMENSION PM(3,3l7QM(3»3)»QIMl373l»RM(3,3»2)
DIMENSION Nll3)>N2l3l;N3(3l•N4(3)•H5l3),N6(3l>N7(3l7N8(3l
DIMENSION V1(3),V2(3)>V3l3);V4(3),V5(3),V6(3)

C POSITION ANALYSIS OF B0-B1-C1—C0 MECHANISM.

DGAMA = 0.D000O0001
GAMA = GAMMA + DGAMA
DBET = 0.000000DDl
BET = BETA + DBET

C
ÜÜ 24 I = 173
HIII) = B1MB0lI)
N4(I) = B0(Il - C0(I)

Z4 NZII) = C1MCO(Il

CALL RMAXIS lUB•BET»RM»2)
CALL ROTATE (BJ;BD»RM»N1»2)
UO Z5 I = 173
V5lI) = BJII) — BDII)

25 V6(I) = BJlI) - CDII)

CALL RMAXIS (UB»BETA7RM72)
CALL ROTATE (BJ>B0»RM»H1»2)
DO 26 I = 173
H5(I) = BJ(I) · B0(I)

26 NSIII = BJII) - CDII)

CALL PMTX (UC¤PM)
CALL GMTX lUC»QM)
CALL QIMTX (UC7GN»GIM)
CALL MTXVEC (N6»GIM7H2)
E = DOT lV6,N6l
El = DOT (H3,N6)
CALL MTXVEC (H7>PM7HZ)
F = DOT lV6,N7)
F1 = DOT (N3,N7)
CALL MTXVEC (N8>QN7N2)
G = DOTlV6>H8) + .5*lC1B1MG · DOT(V6,V6) — DOT(H2>N2))
G1 = DOTlN3,N8) + .5*lC1B1MG - DOT(H3,N3l - DOT(N2,N2))
APP3 = E * DCOSIGAMA) + F ¤ DSINIGAMA) + G
FUNC3 = E1 * DCOSIGAMMA) + F1 * DSINIGAMA) + G1
DIFF3 = lAPP5 - FUNC3) / DBET
APB = E1 * DCOSIGAMAI + F1 * DSIN(GAMA) + G1
DIF3 = (APB - FUNCSJ / DGAMA

C
RETURN
END

C----——-——----•-—---•——-—-————--—•---——-—----——————--———--———--•—---—--·—
C FUNCTION DOT(V1»V2) COMPUTES VECTOR DOT PRODUCT V1*V2.
C—·---·-•—---—·—--·-·—---—•------—-----•—----—-----———--—————-——--—---——-

FUNCTION DOT (V1,V2l
IMPLICIT REAL*8IA-H,O—Z)
DIMENSION V1i5]»V2(3)
DOT = 0.0
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00 10 I = 1,3
10 DOT = DOT + V1(I]*V2lI)

RETURN
END

C·--——-----—---—----—------——---—---·—-----——---—-—-----—----------—-----C SUBROUTINE CROSS COMPUTES THE CROSS PRODUCT OF V1 AND V2
C—---—-—-—-—-—----—-·--——----—-——---—-———--—-———----—-—--—---—-----------

SUBROUTINE CROSS (ANORM;V1;V2)
IMPLICIT REAL*8(A-H;O·Z)
DIMENSION V1(3),V2(3);ANORMI3)
ANORMKI) = V1(2)*V2(3) — V1(3)*V2(2)
ANORMl2) = -(V1(1)*V2(3) - V1(3)*V2(1))
ANORMIS) = V1(1)*VZ(2) - V1(2)*V2(1)
RETURN
END

C————--——------———-—---—-—--—-——---———-—--—--——-—---——-------------------
C SUBROUTINE ROTATE
C ROTATES VECTOR (P1HG1) TO (PJMOJ)=lRM)*(P1MO1)
C COMPUTES PJ GIVEN P1•G1;GJ;RM
C-—-—-—--—---——-----•--—·—-----—-—-———-—-----———---———-—-----------------

SUBROUTINE ROTATE (PJ;GJ;RM;P1HQ1;J)
IMPLICIT REAL*8(A-H;O—Z)
DIMENSION PJ(3);QJ(3)»P1HG1(3);RM(3;3;2)
00 10 I = 1;}

10 PJII) = RMlI;1;Jl*(P1MQ1(1l)+RM(I;2;J)*(P1MG1(2)l+
9 RM(I;3•J)*(P1MQ1l3))+QJ(I)

RETURN
END

C--—-—·——-——-———-----—-——---—------·--—-—-----···——-—-——---—-----------·-C SUBROUTINE ROTVEC
C COMPUTES V2 = (RMl*V1C—-·———-——-———----—-——--—-------————-——-—--—-——-·—-----——-—----———-—-----

SUBROUTINE ROTVEC (V2;RM;V1;J)
IMPLICIT REAL*8(A—H;O—Z)
DIMENSION V2(3];RM(3;3;J);V1(3)
0Ü 10 I = 1,3
VZII) = 0.0
00 10 K = 1;3

10 V2(I) = RM(I,K;J) * V1(K) + V2(I)
RETURN
END

C-—-—-—--------—-————--——--——---————---------————--———-——-----—-—------——C SUBROUTINE PMTX
C COMPUTES P-MATRIX ELEMENTS
C—-——-——---—-----•——·-—---------—-··-•—•——----••——--·---—-——---·——--—--——

SUBROUTINE PMTX (U;PM)
IMPLICIT REAL*8(A-H•O-Z)
DIMENSION U(5);PM(3;3)
PM(l;1] = 0.0
PM(1>2) = -U(5)
PM(1;3) = U(Z)
PM(2;1) = U(3)
PM(2•2) = 0.0
PM(2;S) = -U(1)
PMl3;1) = -U(Z)
PM(3»2) = U11)
PM(3;3) = 0.0
RETURN
END
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C-------------------------------—-----—--—-----------—-—-———--—----------
C SUBROUTINE QMTX
C COMPUTES Q-MATRIX ELEMENTS
C----——--—---————-—··—-—----——-----—·———---—----------—-----—------------

SUBROUTINE QMTX (U»GM)
IMPLICIT REAL*8(A-H•O-Z)
DIMENSION U(3)»GM(3»3)
GM(1;1) = U(1)*U(1)
GM(1,2) = U(1)*U(2)
QM(1;3) = U(1)*U(3)
QM(2;1) = U(2)*U(1)
QM(2,2) = U(2)*U(2)
QM(2,3) = U(2)*U(3)
QM(3»l) = U(3)*U(1)
GM(3»Z) = U(3)*U(2)
GM(3»5) = U(S)*U(5)
RETURN
END

C———-—···—·—--—·————-·-·-·—-—··-—-·---——-——·——-—--------—-—----———----—--
C SUBROUTINE GIMTX
C COMPUTES (I-Q) MATRIX ELEMENTS
C—----—------—----—-----——---—--——-———-—------------------————————-—---——

SUBROUTINE QIMTX (U>QM»GIM)
IMPLICIT REAL*8(A-H»0-Z)
DIMENSION U(5)»OM(5»3)»GIM(3;3)
DO 10 I = 1,3
UO 10 J = 1,3

10 GIM(I•J) = ·GM(I»J)
QIMl1,1l = 1. + QIMl1»1)
GIM(Z;Z) = 1. + GIM(2»2)
GIM(5,3) = 1. + GIM(3»3)
RETURN
END

C---—-·-——--—·--•·---·—-·-—-------—----—----------------------------—----
C SUBROUTINE MTXVEC
C RETURNS PRODUCT OF A MATRIX AND A VECTOR IN TEMP
C-•---—---——-—--------——-—·-·•-··--•·---—··--•----————--—-—-—·-———·-——-———

SUBROUTINE MTXVEC (TEMP>A»VEC)
IMPLICIT REAL*8(A—H»O—Z)
DIMENSION A(S>3)»VEC(3)>TEMP(3)
ÜO 10 I = I:}
TEMP(I) = 0.0
OO 10 J = Ix}

10 TEMP(I) = TEMP(I) + A(I;J) ¤ VEC(J)
RETURN
END

C----—-—--—·-—-------—---—-—--———-·—-----•---~-···•-·-—•••••---·—————-——--
C SUBROUTINE RMAXIS
C COMPUTES ROTATION MATRIX ELEMENTS IN TERMS OF ANGLE PHI ABOUT U
C—-----··—---—---·—--------·—·——···-----··—··--·—·—-·-—·---·-—--—-———-—--

SUBROUTINE RMAXIS (U>PHI»RM>J)
IMPLICIT REAL*8(A-H;O—Z)
DIMENSION RM(3•3»2)»U(3)
COMMON /PRNTR/PRNT
LOGICAL PRNT
C = DCOS (PHI)
S = DSIN (PHI)
V = 1. - C
RM(1»1>J) = U(1)*U(1)*V+C
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RM(1»2>J) = U(1)*U(2)*V-UI3)*S
RM(1,3,J) = U(1)*U(3)*V+U(2)*$
RM(2,1,J) = UI1)*U(2)*V+UI3)*S
RMI2>2,J) = U(2)*U(2)*V+C
RMI2•3;J) = U(2)*U(3)*V-U(1)*S
RM(3»1,J) = U(1)*U(3)*V—U(2)*S
RM(3»2;J) = UI2)*UI3)*V+UI1)*$
RM(3»3>J) = UI3)*U(3)*V+C
RETURN
END

C——----——--·------—-----——--——----—------·—--———————--—-—----------------C SUBROUTINE NEHTON - SOLVES THE THREE FUCTION FUN1, FUN2 AND FUN3
C ITERATIVELY USING NENTON—RAPHSON METHOD.
C——--——------------·———---——-—--—-—-——---------·——-——--——----—---•—--•---

SBROUTINE NENTON (ALPHA»BETA,GAMMA,TOL»K)

IMPLICIT REAL*8(A—H>O—Z)
DIMENSION UAI3)>A0(5),A1MAO(3);AJ(3)
DIMENSION UBIS),B0(3l,B1MBOI3)>BJ(3)
DIMENION UCI3);C0(3),ClMCOI3);CJI3)
DIMENSION A(3;3)»B(3)

C
C CALLING THE ANALYSIS SUBROUTINE FOR CONTRUCTING FUNCTION EQUATIONS
C FOR INPUT TO THE NENTON SUBROUTINE.
C

DO 10 K = 1»500
CALL ANYRS IALPHA;BETA»GAMMA•FUC1,DIFF1,0IF1)
CALL ANYRSIIALPHA;BETA,GAMMA,FUNC2,DIFF2)DIF2)
CALL ANYRSZIALPHA,BETA»GAMMA»FUNC3•DIFF3;DIF3)
IC = 0
IF IDABSIFUNCI) .LT. TOLI IC = IC + 1
IF IDABSIFUNCZ) .LT. TOL) IC = IC + 1
IF IDABSIFUNCS) .LT. TOL) IC = IC + 1
IF (IC .EQ• 3) RETURN

C
A(1»1) = DIFF1
A(1»Z) = DIF1
Ä(1»3) = 0.Ü
A(2;1) = DIFZ
A(2»2) = Ü„Ü
AI2»3) = DIFF2
AI3»1) = O.Ü
A(3•2) = DIFF3
A(3»3) = DIF3

C
BI1) = -FUNC1
BIZ) = —FUNC2
BIS) = -FUNC3

D = A(2,2) ä A(3>3) — A(2¤3) * A(3,2)
D1 = AIZ,1) er AI3,3) · A(3»1)¤· A(Z»5)
D2 = AI2,1) ¤ AI3,Z) · AI3•1) ¤ AI2,2)
DET = AI1,1) * D — AI1,2) * 01 + AI1,3) * 02
DETX = B(1) * 0 - A(1,2) * (BIZ) * A(3;3) — BIS) * A(2;3)) +$ A(1,3) * (BIZ) * A(3,2) - BIB) l A(2»2))
DETY = A(1,1)*IB(2)*A(3•3) - B(3)*A(2,3)) — B(1)*D1 +$ A(1;5)*(B(3)*A(2;1) - B(Zl*A(S»1))
DETZ = A(1;1)*(BI3)*A(2,2) - B(2)*A(3•2)) + B(1)*DZ -$ A(1;2)*(BI3)*A(2,1) · B(2)*AI5»1))

C
IF (DET .EG. 0) THEN
NRITEI6,*)'THE DETERMINANT IS ZERO'
GOTO 10
ENDIF
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ALPHA = ALPHA + DE'D< / DET
BETA = BETA + DETY / DET
GAMNA = GAMMA + DETZ / DET

10 CONTINUE

RETURN
END

C--··----·-----—----·----—----—---------~---·---—--——----——--—--—-------—C THIS SUBROUTINE TRANSFORMS A VECTOR FROM ONE COORDINATE SYSTEM TO THEC OTHER SEPARATED BY VECTOR D.
C-—----—--——----·—--—-——---—-—--——---—·--—--------—---—--—---—---—----—--

SUBROUTINE MATMULlA•B,D)

C TO DECLARE THE TYPE OF THE VARIABLES.
REAL*8 A(3•3)»B(3•1)»C(3•1)•D(3)
INTEGER I•K

DO 10 I = 1>3
C(I»1) = 0.0
ÜÜ 10 K = 1»3
C(I•1] = C(I»1) + A(I»K) * B(K;1)

10 CONTINUE
C TO DOWNLOAD THE C VECTOR INTO B VECTOR AND ADD THE TRANSFORMATIONC VECTOR.

ÜÜ 20 I = 1,3
B(I»1) = C(I•1) + D(I)

20 CONTINUE
ClI»1) = 0.0
RETURN
END
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xa*****************xxxäxxäxxxxxäxäxx************¤***********************
C THIS PROGRAM USES GUISI-NENTON ALGORITHM TO SOLVE A SET OFC SIMULTANEOUS EQUATIONS.
C PROGRAMMER : D. P. GOKHALE.

C VARIABLE TYPE AND DATA DECLARATION.
COMON/GUESS1/X; Y; Z»ALPHA,BETA»GAMMA

REAL*8 UO(12l;TDL»TYPX(1Z)>H(12);F(12)»PHI»U(12)
REAL*8 X>Y;Z»ALPHA;BETA;GAMMA
REAL*8 FJACK12;12l»PDIR(12)>LAMDAK
INTEGER N•MAXK»RMIN•KITR»IFLAG»TIME

C TO DEFINE THE VALUES OF ALPHA; BETA; AND GAMA.
ALPHA = 1.0
BETA = 1.0
GAMA = 1.0

C TO DEFINE THE NUMBER OF EQUATION TO BE SOLVED.
N = 3

C TO READ THE COORDINATES OF THE TIP OF THE BEAM.
NRITE(6»*l'ENTER THE POINT CORDINATES'

C TO READ IN THE INITIAL GUESSES FOR THE LINK LEGTHS.
NRITE(6•*)'ENTER THE INITIAL GUESSES FOR THE LINK LENGTHS.'U0t1) = 45.
UOIZI = 45.
U0l3) = 45.

C TO DEFINE THE MAXIMUM NUMBER OF ITERATION TO BE PERFORMED.
MAXX = 100

C TO DEFINE THE TOLERANCE LIMIT.
TOL = 0.001

C TO DEFINE THE TYPICAL VALUE OF XJ.
TYPXII) = 46.5
TYPXIZ) = 46.5
TYPX(3) = 46.5

C TO DEFINE THE MINIMUM NUMBER OF LINE SEARCH STEPS'
RMIN = 100

XITR = 1
32 DO 19 J = 1,N

IF(UO(J).GE.D.0DD)THEN
IFLAG = 1
ELSE
IFLAG = -1
ENDIF

HIJ) = 0.000
19 H(J)= 0.02D0*(DMAX1(DABS(U0(J]);TYPX(Jl))*IFLAG

LAMDAX = 1.000

CALL FCN(UO»N»F]
CALL EVLPHIlF,N,PHI)
CALL JACOB(H>N»UO;F;FJAC)
CALL NENTDR(FJAC•N,F,PDIR)
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CALL LINESRIRMIN;N»F»PHI•FJAC;UO,U,PDIR,LAMDAK)

DO 15 I =1>N
15 UO(I) = U(I)

CALL FCN(UO•N»F)
CALL EVLPHI(F,N,PHI)
IF(PHI.LT.TOL)GOT0 31
KITR = KITR + 1
IF(KITR.GT.MAXK)GOTO 31

IF((UO(1)+UOl2)).LT.U0(3))GOTO 35
IF(IUO(2)+UOI3)).LT.UOl1))GOTO 35
IFI(U0(3)+UO(1)).LT.UO(2)lGOTO 35
IF(UO(1).LT.0.0lGOTO 35
IF(UO(2).LT.D.0)GOTO 35
IF(Ol3).LT.0.0)GOTO 35
IF(UO(1).GT.51.0.0R.UOl1).LT.39.IGOTO 36
IF(UO(2).GT.51.0.0R.UO(2).LT.39.)GOTO 36
IF(U0(3).GT.51.0.0R.UOl3).LT.39.)GOT0 36

GOTO 32

36 CONTINUE
NRITE(8,*)'THIS LINK LENGTH IS BEYOND LENGTH LIMIT FOR V.G.T.'

35 CONTINUE
NRITE(8,*)°TRY AGAIN THIS POINT IS OUT OF THE NORKSPACE'

31 CONTINUE
C TO NRITE OUT THE SOLUTION OF THE INVERSE PROBLEM.

HRITEl8,30)U(1)>U(2);U(3l
30 FORMAT(F5.2»F5.Z»F5.2)
20 CONTINUE

STOP
END I

I C........................................................................
C THIS SUBROUTINE FORMS THE THREE FUNCTIONS F1; F2» AND F3.¢—-———-—---—--——---——--——----——-——-—-----—--———--———--—•--———---——----—--

SUBROUTINE FCN(U•N»F)

COMMON/GUESS1/X; Y, Z;ALPHA;BETA;GAMMA
REAL§8 U(12),F(12)•ALPHA;BETA;GAMMA•XYZ1(3);XYZ2l3),X•Y;Z
REAL*8 LEN1»LEN2»LEN3•ALPHA1>BETA1»GAMMA1
INTEGER N

C CALLING THE NEHTON ROUTINE FOR CALCULATION OF THE COORDINATES.IKFL = 0
CALL VGTRUS(U(1l;Ul2);U(3)>ALPHA•BETA;GAN1A•XYZ1 »IKFL)
IKFL = 1

C TO DEFINE THE VARIABLES FOR DRAHING THE SECOND MODULE.
ALPHA1 = 1.055899
BETA1 = 1.055899
GAMMA1 = 1.055899

LEN1 = 46.5
LEN2 = 46.5
LEN3 = 46.5
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CALL VGTRUSILEN1»LEN2»LEN3>ALPHA1;BETA1»GAMMA1;XYZ2>IKFL)

UÜ 1 I =19N -
1 F(I] = 0.000

C FORMING THE THREE FUNCTIONS.
F(1)= XYZ2l1) - X
FlZ)= XYZ2(2) - Y
F(3)= XYZZIS) - Z

RETURN
END

C--—--—----·------—----—--·---——--—------—---—-----—--——-—---------------C THIS SUBROUTINE FORMS PHI USING FUNCTION VALUES.
C--—---—-----------—----—--—-------—---—---—-—----—-—---—---—------—-----

SUBROUTINE EVLPHI(F>N;PHI)

REAL*8 F>PHI
INTEGER N

PHI = 0.000

Do 2 I = 1,N
Z PHI = PHI + 0.500 * FII) x FII)

RETURN
END

C------·—--——---—----—---—--~—---—-———--—--—————·--—--—------—----------—C THIS SUBROUTINE CALCULATES THE JACOBIAN MATRIX.
C----—-———---——---—--——--——--·—---——--—--—~---—---—--·-----——---—--------

SUBROUTINE JACOB(H;N>UO»F»FJAC)

REAL*8 U0(1Z);FJAC(1Z»12)»Hl12)•UR(12]>FR(12)>Fl1Z)
INTEGER N

DO 1 I = 1,N
00 2 J = 1,N

2 URIJ) = UOIJ)
UR(I) = UOII) + H(I)
CALL FCN(UR;N»FR)
DO 1 K = 1,N

1 FJAC(K»I) = (FR(Kl - F(K)) / H(I)

RETURN
END

C----·-—-—·----—----—-------—·---·----—--—·-------—---—--·-——-—--——----—-C SUBROUTINE GAUSS SOLVES THE SET OF EQUATIONS USING THE GAUSSC ELIMINATIDN METHOD.
C—---—------——---——·—----—-——·------—-—-—--—--——-—----—-——-—-——--·—--———-

SUBROUTINE GÄU$$(Ä»B>XyN1MÄINDM•IERRÜR;RNÜRH]

REAL*8 AlMAINDM>MAINDMl,8lMAINDM);X(MAINDM],AUG(50»51),RSG
REAL*8 RNORM;RESI

M11 = N - 1
NP1 = N + 1

C SETUP AUGMENTED MATRIX FOR AX = B
DO 2 I = 1,N
DO 1 J = 1,N
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I

I

AUG(I•J) = A(I;J)
1 CONTINUE

AUG(I>NP1) = B(I)
2 CONTINUE

C THE OUTER LOOP USES ELEMENTARY ROH OPERATIONS TO TRANSFORM THEC AUGMENTED MATRIX TO ECHELON FORM.

ÜÜ 8 I = 1,NMl

C SEARCH FOR THE LARGEST ENTRY IN THE COLUMN1, RONS I THROUGH N.
C IPIVOT IS THE RON INDEX OF THE LARGEST ENTRY.

PIVOT = 0.000

ÜÜ 5 J = I,N
TEMP = ABSlAUG|J,I))
IF(PIVOT.GE.TEMP)GOTO 3
PIVOT = TEMP
IPIVOT = J

3 CONTINUE
IF(PIVOT.EG.0.000)GOTO 13
IF(IPIVOT.EG.I)GOTO 5

C INTERCHANGE RON I AND IPIVOT

DO 4 K = I,NP1
TEMP = AUGlI»K)
AUG(I•Kl = AUG(IPIVOT,K)
AUG(IPIVOT,K) = TEMP

4 CONTINUE

C ZERO ENTRIES (I+1»I)•(I+Z»I)»......;(N»I) IN THE AUGMENTED MATRIX.5 IP1 = I + 1
DO 7 K = IP1>N
G = -AUGlK»I)/AUG(I»I)
AUGIK;I) = 0.000
00 6 J = IP1,NP1
AUG(K;Jl = G * AUG(I,J) + AUG(K»J)‘ 6 CONTIUE

7 CONTINUE
8 CONTIUE

IF(AUG(N»N).EG.0.000)GOTO 13

C BACK SOLVE TO OBTAIN A SOLUTION TO AX = B
X(N) = AUGlN,NP1)/AUGlN•N)
DO 10 K = 1•NM1
G = 0.000
Do 9 J = 1,K
G = G + AUG(N-K>NP1-J)*X(NP1-J)

9 CONTINUE
X(N—K) = lAUG(N-K;NP1) · G )/AUGlN-K»N-K)

10 CONTINUE
C CALCULATE THE NORM OF THE RESIDUAL VECTOR; B - AX.
C SET IERROR = 1 AND RETURN.

RSG = 0.000
DO 12 I = 1>N
G = 0.000
ÜÜ 11 J = 1,N
G = G + A(I»J] * XIJ)

11 CONTINUE
RESI = B(I) - G
RMAG = DABSlRESI)
RSG = RSG * RMAG**2

12 CONTINUE
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RNORM = 0SQRTlRSO)
IERROR = 1
RETURN

C ABNORMAL RETURN IF THE MATRIX A IS SINGULAR.
13 IERROR = 2

RETURN
EN0

C--—----——--—---—----—---——--——-———---—--—---—-——--——---——--—-—-------—--C THIS SUBROUTINE CALCULATES THE NENTON DIRECTION.C--------—·--——-—·——-----——--———--——----——-—-——----——-----——--—----------

SUBROUTINE NEHTORlFJAC•N»F;POIR)

REAL*8 FJACI12>12)»F(12)»POIR(1Z)>F1(12];RNORM
INTEGER N•IERROR

UÜ I I = 1,N
1 F1(I) = -1.000 * F(I]

CALL GAUSS(FJAC,Fl»POIR;N;12»IERROR»RNORM)

RETURN
EN0

C-—-—-----——---—-—-—---—---·—---—------——---—--—--——--—--—-—•—-----——----C SUBROUTINE GRDPHI
C--—--———--—---———--——--—--·—---—---——-——---——-——-——-—-—--—------—---—---

SUBROUTINE GROPHIlF»FJAC»N;0ELPHI)

REAL*8 FI12)»0ELPHI(12l»FJAC(12•1Z) '
INTEGER N

00 1 J = 1,N
1 0ELPHI(J) = 0.000

UO Z J = 1,N
UO 3 I = 1,N
DELPHIIJ) = DELPHIKJI + FII) * FJAC(I;J)

3 CONTINUE
2 CONTINE

RETURN
EN0

C—-—-—-——--—--—----—--—-—--·---—-—--——--—--—·——-—--——--—----—--•—--—--—-—C SUBROUTINE LINESEARCH.
C-•—----——--—•---—-------—·-—·—---——---—--·—------—-—-——————-—--——-———-—-

SUBROUTINE LINESR(RMIN;N;F•PHI»FJAC>UO>UZ»POIR,LAMOAK)

REAL*B UOl12)•LAMDAK»POIR(12)»UZl12)»PHI»0ELPH,R
REAL*8 F1!12),FT1l1Z)>PHI1;0ELPHI(12)»LAMOA»FJACl12,12)

INTEGER N»IN0

PHI1 = 0.000
12 R = LAMDAK

D° 1 I = 1,N
F1(I)= 0.000
U2(I) = 0.000

1 U2(I) = UOII) + R * PDIRIII
CALL FCN(U2>N»F1)
CALL EVLPHI(F1»N•PHIl)
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CALL GROPHI(F>FJAC»N»0ELPHIl
DOT = 0.000
ÜÜ 1ÜI = 1,N

10 DOT = DOT + DELPHI(I) * POIR(I)
DOT1 = PHI + 0.000100 x R * DOT
IF(PHI1.LT.DOT1)GOTO 14
IND = IND + 1
IF(INO.GT.RMIN)GOTO 14
LAMDA = —0.500*DOT*R**2/(PHI1 - PHI - R*DOT)
LAMDAK = DMAX1(LAMOA»R/10.000)
GOTO 12

14 RETURN
END

C-——-—--—----—----—--—-----—•——-------—·—------——--——---——---------------C SUBROUTINE VGTRUS CALCULATES COOROINATES OF THE JOINTS OF THE VGT.
C——---·—-----—--—-------—--——-----——--——--———-———--——--———--————-—-------

SUBROUTINE VGTRUSIAL1»AL2»AL$•ALPHA>BETA;GAHMA»XYZ;IKFL)

IMPLICIT REAL*8(A-H•0-Z)
COMON/TRIAL/UA($),UB($l>UC($l»A0($]»B0($),C0($I;

& A1MAO($l»B1MBO($),ClMCO($),A1B1MG;AlC1MG»C1B1MG
COMMON PI

DIMENION AJ($);BJ($);CJ($)
DIMENSION PMl$•$);QM($»$)>GIM($»$)»RM($»$»2)
DIMENSION A($,$)»8($)
DIMENSION ANORM1($),ANORM2l$)>AORM$($);ANORM4l$)
DIMENSION BJMAJ($),CJMAJ($)>CJMJ($)
DIMENSION AOMAJ($l;BOMAJ($),COMBJl$l»AJMAO($)
DIMENION AJPCJ($),AJPBJl$)>BJPCJ($)
DIMENSION AOMACJ($),BOMABJl$)•COMBCJ($)
DIMENSION ANOOE7($l>ANOOE8l$);ANOOE9($)
DIMENSION U0($);UEl$l»UF($)
DIMENSION UAT(3l,UBT($l•UN($l»UZ($)»TRAN($>$l»Dl$)
DIMENSION XYZl$),XYZ1($),XYZ2($)»XYZ$($1

C SQUARING THE LINK LENGTHS FOR EASE OF CALCULATIONS.
A1B1MG = AL1 * AL1
A1C1MG = AL2 * AL2
C1B1MG = AL$ * AL$

C DEFINING THE CONTANTS OF THE PROGRAM.

C THE TOLERANCE LIMIT, FOR NEHTON—RAPHSON METHO0.
TOL = 0.0000001

C DEFINING THE VALUE OF THE TRIGONOMETRIC CONTANT PI.
PI = $.141592654

C REDEFINING THE POSITION OF REVOLUTE JOINT A0.
A0t1)= 0.0
A0l2)= 0.0
A0(3)= 0.0

C DEFINING THE POSITION OF REVOLUTE JOINT B0.
B0l1)=2$.25
B0t2)=0.0
B0l$)=40.27018128

C DEFINING THE POSITION OF REVOLUTE JOINT C0.
CO(1)=46.5
CO(2)=0.0
C0(3)=0.0
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I

C THE POSITION OF VECTOR (A1 - A0).
A1MAO(1) = -10.45864780
A1MA0l2) = 0.0
A1MAO(3) = 32.8850964

C THE POSITION OF VECTOR (B1 - B0).
B1MB0l1) = 33.7086478
B1MBO(2l = 0.0
B1MBO(3) = -7.38509064

C THE POSITION OF VECTOR (C1 - C0).
C1MCO(1) = -23.25
C1MCO(2) = 0.0
C1MCO(3) = -25.5

IF(IKFL.EQ.1)GOTO 1111

C THE UNIT VECTOR ASSOCIATED HITH A0.
UA(1) = -0.5
UAl2) = 0.0
UA(3) = -0.86602543

C THE UNIT VECTOR ASSOCIATED HITH B0.
UBl1l = -0.5
LBI2) = 0.0
UBI3) = 0.86602543

C THE UNIT VECTOR ASSOCIATED HITH C0.
UCt1l = 1.0
UCl2) = 0.0
UCISJ = 0.0

1111 CONTINUE

C CALLING THE NEHTON RUTINE FOR SOLVING FOR VALUES OF THE ANGLES.
CALL NENTON lALPHA,BETA»GAMMA•TOL»K)

C TO FIND COORDINATES OF THE VERTEX AJ.
CALL RMAXIS lUA;ALPHA;RM»2)
CALL ROTATE (AJ,A0»RM»A1MAO;2)

C TO FIND COORDINATES OF THE VERTEX BJ.
CALL RMAXIS (UB,BETA•RM»2)
CALL ROTATE (BJ;B0>RM,B1MBO•2)

C TO FIND COORDINATES OF THE VERTEX CJ.
CALL RMAXIS (UC,GAMMA,RM»2l
CALL ROTATE (CJ;C0»RM>C1MCO»2)

C TO CALCULATE NORMAL TO THE LATERAL VARIABLE PLANE.
ÜÜ 7 I = 1,3
BJMAJlI) = BJ(I) - AJ(I)

7 CJMBJlI) = CJIII - BJII)
CALL CROSS (AORM1•BJMAJ•CJMBJ)

(:—-——--—-—---—---—---—------——-----—------—--——----—-———-——-———----—----C
C COORDINATES OF NODE 7 ARE CALCULATED IN THE FOLLONING BLOCK.
C
ß-----———--—-———--——·—-—---—-—--·——·—-——-·—-----—-—-------——-——--—--—---

DO 8 I = 193
CJMAJII] = CJ(I] - AJ(I]

8 AJMAOII) = AJ(I) · A0lI)
CALL CROSS (ANORM2,A.JMA0 ,CJMAJ)

C TO CALCULATE THE ANGLE BETNEEN THE LATERAL AND SIDE PLANES.
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2
ANUM1 = DOT (ANORMLANORM2)
DEN1 = DABS(OSQRT (ANORM1(1)**2 + ANORM1(2)**2 + ANORM1(3)**2)) *S DABS(DSQRT (ANORM2ll)**2 + ANORM2l2)*—*2 + ANORM2(3)**2)l «
THETA = DABSIDACOS (ANUM1/DEN1)!
IF(THETA.GT.PI)THETA = 2.*PI — THETA
THETA = 2. * THETA

DO 9 I = 173
9 AOMACJlI) = A0lI) - AJII)

C TO FIND UNIT VECTOR ALONG THE LIN( CJAJ.
DO 10 I : 1,3

10 UD(I) = CJMAJII)/IDSQRTICJMAJI1)**2 + CJMAJ(2)**2 + CJMAJ(3)**2))
CALL RMAXIS (UD;THETA,RM»2)
CALL ROTATE (ANODE7»AJ»RM>AOMACJ•2)

C
C---•-—------—----•-•----·-----—·•----·—---——---•—---·—---—-----—--——---C
C COORDINATES OF NODE 8 ARE CALCULATED IN THE FOLLONING BLOCK.
C
C—---··—---—---—-----·—----------•·—----—---·-—--•·—---—----—---——----•—C

OU 12 I : 173
12 BOMAJII) = B0lI) - AJII)

CALL CROSS (ANORM3»BOMAJ;BJMAJ)

ANUM2 = DOT (ANORM1,ANORM3)
DEN2 = DABS(DSQRT (ANORM1l1)**2 + ANORM1(2)**2 + ANORM1l3)**2)) *S DABSIDSQRT (ANORM3(1)**2 + ANORM3l2)**2 + ANORM3(3)**2))
THETA1 = DABSIDACOS (ANUM2/DEN2))
IF(THETA1.GT.PI)THETA1 = 2.* PI - THETA1
THETA1 = 2. * THETA1

DO 13 I : 173
13 BOMABJ(I) = B0(I) - BJII)

C TO FIND UNIT VECTOR ALGIG THE LIN( BJAJ.
DO 14 I :173

14 UEII) = -BJMAJIII/(DSGRTlBJMAJI1)**2 + BJMAJ(2)*-*2 + BJMAJl3)*-*2))
CALL RMAXIS (UE;THETA1;RM•2)

~ CALL ROTATE (ANODE8>BJ>RM•BOMABJ•2)
C
C—-—·--—----··------------—--------—--•—-—-——--—-----—-----—---—--·-—-•—C
C COORDINATES OF PDDE 9 ARE CALCULATED IN THE FOLLOHING BLOCK.
C
C--·-———--·---—··——---------·—•-----•——·--·•-------·—-—---—----—-------—C

DO 16 I : 173
16 COPBJII) = C0lI) - BJII)

CALL CROSS (ANORM4>COPBJ>CJ}BJ)

ANJM3 = DOT lANORM1;ANORM4l
DEN3 = DABSIDSGRT (ANORM1l1)**2 + ANORM1(2)**2 + ANORM1(3)**2)) *S DABSIDSQRT IANORM4l1l**2 + ANORM¢•(2)*·¤2 + ANORM4(3)**2)l
THETA2 = DABSIDACOS (AMJM3/DEN3))
IF(THETA2.GT.PI)THETA2 = 2.*PI — THETA2
THETA2 = Z. * THETA2

DO 17 I : 173
17 COPBCJII) = COII) - CJ(I) A

C TO FIND LNIT VECTOR ALON3 THE LIN( CJBJ.
DO I :173

18 UFII) = -CJMBJII)/(DSQRTlCJtBJl1l**2 + CJrBJl2)*·¤·2 + C.JtBJl3)**2))CALL RMAXIS lUF,THETA2»RM»Z)
CALL ROTATE (ANODE9>CJ»RM»COMBCJ•2)
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C CALL TO CHECK THE IKFL.
IF(IKFL.EQ.0)GOT0 31

C TO CALCULATE THE UNIT VECTORS .
DO 49 I = 1,3
UAT(I) = (XYZ1(I) - XYZ3lI))/46.5
UBTII) = (XYZ2(I) - XYZ1(I))/46.5

49 CONTINUE

C TO CALL THE CROSS SUBROUTINE TO CALCULATE THE NORMAL.
CALL CROSS(UN>UAT;UBT)
UNIZ) = UNl2)/SINIPI/3.)

C CALL THE CROSS SUBROUTINE TO CALCULATE THE UNIT VECTOR ALONG THE Z AX.CALL CROSS(UZ;UN>UATl
C TO DEF. THE ROTN. MAT.

TRANl1>1) = -UAT(1)
TRAN(2;1) = -UAT(Z)
TRAN(3•1) = —UATl3l
TRANl1»2) = UN(1)
TRAN(2,2) = UN(2)
TRAN(3»2) = UN(3)
TRAN(1»3) = UZI1)
TRAN(2>3) = UZ(2)
TRAN(3•3) = UZI3)

C TO DEF. THE TRANS. VECTOR.
D11) = XYZ1l1) - A0(1)
D12) = XYZIIZ) - A0(2)
DIS) = XYZ1(3l - A0l3)

C CALLING THE MATRIX MULTIPLICATION SUBROUTINE.
XYZII) = (ANODE7I1) + ANODE8l1) + ANODE9l1))/3.0
XYZIZ) = lANODE7(2) + ANODE8(2) + ANODE9(2))/3.0
XYZ(3l = (ANODE7l3) + ANODE8(3) + ANODE9(3))/3.0
CALL MATMULlTRAN;XYZ»D)
XYZ(1) = XYZl1l + 80. ·¤· UN(1)
XYZIZ) = XYZIZI + 80. * UN(2)
XYZI3) = XYZ(3) + 80. * N(3l

31 CONTINUE
DO 999 I =1;3
XYZ1(I) = ANODE7lI)
XYZ2(I) = ANODE8(I)
XYZ3(I) = ANODE9(I)

999 CONTINUE

RETURN
END
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