
Controlled English Commenting System

Pradeep Victor

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree o

Master of Science

in

Electrical and Computer Engineering

Dr. Walling R. Cyre, Chair

Dr. J. R. Armstrong

Dr. Robert Broadwater

February 5, 2001

Blacksburg, Virginia

Key Words:

Controlled English, Comment generation, Parsing,

GUI, Documentation.

 Controlled English Commenting System

Pradeep Victor

ABSTRACT

This thesis describes the implementation of a Controlled English Commenting (CEC)

system that aids a VHDL modeler in entering controlled English comments. The CE

system developed includes a graphical user interface (GUI). The interface permits

modeler to submit comments for insertion at user selected points in a text file containing

the model. A submitted comment is analyzed for vocabulary and syntax, and is then

inserted if it is controlled English. If it is not, the CEC system extracts all possible

controlled English comments that can be formed from the original comment and presents

them to the user for selection and entry into the model. The interface then queries the user

to complete any residual portions of the original comment until the user is satisfied. Until

the user becomes familiar with the constraints of the controlled language, significant

interaction is needed, particularly on complex comments. Preliminary experiments indicate

that users rapidly learn the language’s constraints and the need for interactive help declines.

iii

Acknowledgement

I would like to thank Dr. Walling Cyre for making this thesis possible and for all the

guidance he provided. I take this opportunity to thank Dr. Armstrong and Dr. Broadwater

for serving as members of my committee.

I am also thankful to my parents and the rest of my family for all the support they provided

me. Lastly, I wish to thank all my friends and all others who have directly or indirectly

helped me in my efforts.

iv

Table of Contents

Controlled English Commenting System.. ii

Acknowledgement ... ii

Chapter 1. INTRODUCTION ...1

1.1. Motivation and Goal ...1

1.2 Approach...3

1.3. Contributions ..4

1.4. Document Organization..6

Chapter 2. RELEVANT WORK ...7

2.1. Introduction..7

2.2. AECMA Simplified English ...8

2.3. Attempto - Controlled English as a specification Language...................................9

2.4. The Boeing Simplified English Checker10

2.5. Caterpillar Technical English..11

2.6. A Requirements Sublanguage for Automated Analysis12

Chapter 3. The CEC Design approach ..13

3.1. Language Theory and Grammar..13

3.2. The CE parser ...14

3.2.1. Lexical Analyzer…………………………………………………………..14

3.2.2. Parser………………………………………………………………………16

3.3. Analysis of ungrammatical comments...20

3.3.1. Chunk Collecting Phase…………………………………………………...21

3.3.2. Ungrammatical comment (UC) structure analysis………………………...24

3.3.3. Generation of CE comments………………………………………………24

3.3.4. Interaction phase…………………………………………………………..30

Chapter 4. IMPLEMENTATION ...33

4.1. The Unified Modeling Language..33

4.2. Class Overview...34

4.2.1. Class CECsystem………………………………………………………….34

v

4.2.2. Class CInteract…………………………………………………………….36

4.2.3. Class CChartFormer………………………………………………………36

4.2.4. Class CChunk……………………………………………………………..37

4.2.5. Class CLocate……………………………………………………………..38

4.2.6. Class CRuleFinder………………………………………………………...39

Chapter 5. USER INTERFACE ..41

5.1. Interaction dialog ..41

5.2. Help dialog box ..46

Chapter 6. EXPERIMENTS..47

6.1. Data collection ...47

6.2. Experiment results..50

6.3. Result analysis..51

6.3.1. Normal performance plots………………………………………………...53

6.3.2. Online performance plot…………………………………………………..56

6.4. Summary of experiments ...60

6.4.1. Ensemble plots……………………………………………………………61

6.4.2. Conclusion………………………………………………………………...64

Chapter 7. CONCLUSIONS AND EXTENSIONS ...65

7.1. System advantages ...65

7.2. System limitations ...66

7.3. Future extensions ...66

References..67

Appendix A. Users guide for Controlled English Commenting (CEC) System...........68

Appendix B. Experi ment results..75

Appendix C. Files used by the CEC system ...92

C.1. Rule.txt……………………………………………………………………...92

C.2. Rdict.txt……………………………………………………………………..97

C.3. Mdict.txt….…………………………………………………………………98

Appendix D. VHDL M odels...100

Vita...109

vi

vii

List of Figures

Figure 3.1 Construction of different parts in the chart generation phase.16
Figure. 3.2 Parse tree formed by using a bottom-up parser.. ...17
Figure 4.1 UML class diagram representing the relationships between the classes
CECsystem, CChunk, CLocate, CRuleFinder and CInteract . ..29
Figure 4.2 UML class diagram representing the relationships between the classes
CInteract and Parts. ..30
Figure 4.3 UML class diagram of CChartFormer..30
Figure 4.4 UML class diagram representing the relationships between classes CChunk,
CChartFormer and Parts...31
Figure 4.5 UML class diagram representing the relationships between the classes
CLocate, CChunk and Parts. ...32
Figure 4.6 UML class diagram representing the relationships between the classes
CRuleFinder, CLocate, Parts and Rule..33
Figure 5.1 Interaction dialog box. ...36
Figure 5.2 Sequence of events in the CEC system. ...37
Figure 5.3 Help Dialog Box ..38
Figure 6.1 Log file entry when the subject enters a CE comment...................................43
Figure 6.2 Log file entry when the subject enters an ungrammatical comment...............41
Figure 6.3 Plot showing time taken in seconds versus the comment number..................45
Figure 6.4 Plot showing number of unknown words versus the comment number...........46
Figure 6.5 Plot showing total number of words versus the comment number.47
Figure 6.6 Plot showing number of passes versus the comment number.........................47
Figure 6.7 Plot showing time taken in seconds versus the comment number..................48
Figure 6.8 Plot showing number of unknown words versus the comment number...........49
Figure 6.9 Plot showing total number of words versus the comment number.49
Figure 6.10 Plot showing number of passes versus the comment number.......................50
Figure 6.11 Plot showing time taken in seconds versus the comment number.................51
Figure 6.12 Plot showing number of unknown words versus the comment number.........52
Figure 6.13 Plot showing total number of words versus the comment number.53
Figure 6.14 Plot showing number of passes versus the comment number.......................53
Figure A.1 Code Window...60
Figure A.2 Interface dialog box...61
Figure A.3 CEC querying the user for a nominal to support a orphan predicate............62
Figure A.4 Interface dialog with a nominal being added to a orphan predicate.63
Figure A.5 Help dialog box. ..64
Figure B1 Plot showing time taken in seconds versus the comment number.66
Figure B2 Plot showing number of unknown words versus the comment number...........66
Figure B3 Plot showing total number of words versus the comment number..................67
Figure B4 Plot showing number of passes versus the comment number.........................67
Figure B5 Plot showing time taken in seconds versus the comment number...................68
Figure B6 Plot showing number of unknown words versus the comment number...........68
Figure B7 Plot showing total number of words versus the comment number..................69

viii

Figure B8 Plot showing number of passes versus the comment number.........................69
Figure B9 Plot showing time taken in seconds versus the comment number.70
Figure B10 Plot showing number of unknown words versus the comment number.........70
Figure B11 Plot showing total number of words versus the comment number................71
Figure B12 Plot showing number of passes versus the comment number.......................71
Figure B13 Plot showing time taken in seconds versus the comment number.72
Figure B14 Plot showing number of unknown words versus the comment number.........72
Figure B15 Plot showing total number of words versus the comment number................73
Figure B16 Plot showing number of passes versus the comment number.......................73
Figure B17 Plot showing time taken in seconds versus the comment number.74
Figure B18 Plot showing number of unknown words versus the comment number.........74
Figure B19 Plot showing total number of words versus the comment number................75
Figure B20 Plot showing number of passes versus the comment number.......................75
Figure B21 Plot showing time taken in seconds versus the comment number.76
Figure B22 Plot showing number of unknown words versus the comment number.........76
Figure B23 Plot showing total number of words versus the comment number................77
Figure B24 Plot showing number of passes versus the comment number.......................77
Figure B25 Plot showing time taken in seconds versus the comment number.78
Figure B26 Plot showing number of unknown words versus the comment number.........78
Figure B27 Plot showing total number of words versus the comment number................79
Figure B28 Plot showing number of passes versus the comment number.......................79
Figure B29 Plot showing time taken in seconds versus the comment number.80
Figure B30 Plot showing number of unknown words versus the comment number.........80
Figure B31 Plot showing total number of words versus the comment number................81
Figure B32 Plot showing number of passes versus the comment number.......................81

ix

List of Tables

Table 3.1 Sample dictionary ..13
Table 3.2 Sample chart..15
Table 3.3 Abbreviations used in the sample chart . ..29
Table 3.4 Set of CE comments generated by the CEC system for comments...................18
Table 3.5 Set of CE comments generated after the user selects the first CE comment
in Table 3.4. ..18
Table 3.6 Different chunks collected in the chunk collection phase................................20
Table 3.7 Data collected by the analysis phase..20
Table 3.8 Contents of CommentParts...21
Table 3.9 Contents of ‘ loctPtr’21
Table 3.10 Recursive algori thm used for generation of CE comments............................23
Table 3.11 Generated CE comments..24
Table 3.12 Information collected in the analysis phase..25
Table 3.13 Residual information collected by the interaction phase after user has made a
selection..25
Table 6.1 Results collected from log file ..43
Table 6.2 Online performance values for the data collected from the log file.................44
Table B1 Index of plots..65
Table C1 List of abbreviations used in rules.txt. ..86
Table C2 List of abbreviations used in rules.txt. ..87

- 1 -

Chapter 1

Introduction

1.1 Motivation and Goal

VHDL (VHSIC Hardware Description Language)[PelD] is a popular tool that helps to

capture complex digital circuit designs for both simulation and synthesis. A language

optimized for electronic circuit design, VHDL, is helpful in various levels of the circuit

design process. It can be used in the high-level design stage to capture performance and

interface requirements of a large system’s various components. In the design capture phase,

details of the system are entered in a computer-based design system using VHDL

descriptions that are combined with other representations, such as schematics, to form the

complete system. After design capture, the next step is to simulate the operation of th

circuit to find out if it will meet the functional and timing requirements developed in the

specification stage. The structured programming features of VHDL, along with its

configuration management features make VHDL a natural form in which to model a larg

and complex circuit.

Importance of VHDL Comments

The task of developing models is rather laborious and time consuming. If a circuit has been

modeled with no comments, developing the circuit further will be very difficult. For

example, assume that a designer returns after a long break to enhance a large circuit

developed using VHDL, there is a high possibil ity that the designer may not remember

why certain parts of the code exist. The possibili ty is even greater when a designer who ha

never worked on the design is asked to enhance it.

Importance of comments

“ Writing a comment makes one think harder about what his/her code is

doing.

- 2 -

A commenting style that requires a lot of busy work is a maintenance

headache: If the comments are hard to change, they won't be changed; they'll

become inaccurate and misleading, which is worse than having no comments

at all.

Second, commenting might be difficult because the words to describe what the

program is doing don't come easily. That's usually a sign that he/she doesn't

really understand what the program does. The time one spends "commenting",

is really time spent understanding the program better, time that needs to b

spent regardless of whether you comment or not.” [McCS93]

Importance of control led English comments

A Controlled English (CE) is a subset of natural English that is restricted in its syntax and

semantics for the purpose of readability and/or ease of processing by machine. A centra

goal for Controlled English is to eliminate ambiguity and help in machine understandabili ty

and machine translation. Controlled English has been used in technical documentation,

such as user manuals or maintenance manuals [WojR96] to make them easily understood.

For example, the Boeing Simple English [WojR96], a research project funded by th

Boeing Corporation aims at producing Controlled English maintenance documents for their

airplanes. This approach of using CE for their maintenance documents, has helped Boeing

render out its maintenance procedures in a non ambiguous manner, hence helping oversea

clients to easily understanding the procedures, rather than depending on the parent

company and hence saving both time and money. This research effort proposes the use of

CE as a commenting language for VHDL code. As earlier mentioned, use of CE as a

commenting language for the VHDL codes will help a user other than the program

developer to easily understand what the code is doing and helps in maintenance of th

code, either for bug fixing or enhancements. The Controlled English VHD Commenter

(CEC) has been developed for this purpose, and hence enables the program developer to

enter simple CE comments and ensure that the comments satisfy CE restrictions.

- 3 -

1.2 Approach

The CEC has been developed to help users write CE comments. The comments are firs

parsed by a CE parser, which contains around 150 grammar rules and a vocabulary of

4900 words. The CE parser uses a bottom-up chart parse to generate all valid parse trees

for its grammatical structure. If the CE parser fails to form a parse tree for a given

comment, the comment is not a well-formed CE comment and has to be modified to

conform.

The CE parser analyses the user comment and produces a chart, which contains the

different phrases that the CE parser constructed by its analysis. Each phrase is formed by

a grammar rule. These phrases are first collected and then subjected to an extensive

filtering process. (Refer to section 3.2.1 for more details). The filtered phrases are then

used to form CE comments by recursively applying each CE rule allowed by the CE

parser.

The CEC has a GUI (Graphical User Interface) system that helps the user to interact with

the system to enter CE comments. It can also break a complex comment into a number o

simpler CE comments that are then inserted into the VHDL code. The CEC has been

developed using Microsoft Visual C++.

1.3 Contributions

This section lists the research contributions made by this author.

Chunk collector : The phrases in the chart file generated by the CE parser are selected

and placed inside three vectors (Vector is a built in data type similar to an array provided

by the standard template library in C++) depending on the type of phrase (nominal,

predicate or adverbial) of phrase. These three vectors correspond to a nominal, predicate

and adverbial. After this collection is completed an extensive filtering procedure

(described later in chapter 3) decides which of the collected phrases should be retained

and which of these phrases have to be rejected.

- 4 -

Comment structure analyzer Once the phrases previously collected have been

selectively filtered, the comment structure analyzer forms a non-terminal equivalent o

the ungrammatical comment (UC) entered by the user. For example the comment C1, is

converted to the form

“Nominal / predicate / conjunction / predicate”.

The signal is generated by the processor P1 and is the input to the processor P2 (C1)

CE comment generator: A recursive algorithm has been developed for CE commen

generation. This procedure applies each of the CE rules for a CE comment to the non-

terminal equivalent structure of the ungrammatical comment formed earlier and tries to

form all possible CE comments. For every ungrammatical comment there is a possibili ty

of more than one CE comment being generated, from which the user can select a

comment depending on the information he/she is trying to convey.

Interactive comment generat ion module: After the user has selected a CE commen

formed by the CE comment generator, this module removes the phrases used in the

selected comment and then tries to form CE comments from the remaining phrases. If it

is unable to form any other CE comment, and there are still phrases which have not been

used in any of the selected CE comments, it queries the user for information to form

another CE comment. Hence this module makes sure that al l of the information that the

user is trying to convey is conveyed in a CE form.

Graphical User Interf ace (GUI): A graphical user interface has been developed to help

users in entering CE comments. The GUI has comment entry field for the user to enter a

comment. A list box to show all the generated CE comments has been provided. The user

can select the CE comment by double clicking on the generated comment. An inser

facili ty has been provided to insert the selected CE comments into the code being

commented.

- 5 -

1.3 Document Organization

This section describes the organization of this thesis.

Chapter1 formally introduces the thesis. The motivation and the scope of the thesis ar

presented in this chapter. This chapter also presents a brief overview of the CEC system

developed in this thesis.

Chapter 2 summarizes the background and some other works and their relationship to this

project. The reader is introduced to the notion of controlled English that has been used to

develop the system. Works relevant to thi thesis, are also presented in this section.

Chapter 3 deals with the theoretical aspects of this thesis. This chapter explains the

algorithm used in this thesis from a theoretical perspective. In chapter 4, we talk about th

actual implementation of the system. Chapter 5 presents the user interface developed for

the CEC system. In Chapter 6, we walk through the testing process conducted with th

CEC system and the conclusions drawn from them. In chapter 7, we briefly explore the

limitations of the system and the scope for further improvement of this system.

- 6 -

Chapter 2

Relevant Work

2.1 Introduction

In this chapter, other research relevant to the effort of developing the CEC system i

reviewed. The field of controlled languages and in particular controlled English has been an

area of active research. Many organizations and individuals have contributed to this effort.

Some of the prominent contributions are discussed here along with their relationship to the

CEC system.

The AECMA (European Association of Aerospace Industries) has developed a simple

form of English that aids in the documentation of the various manuals in simple English.

Another related research effort is the Attempto Controlled English (ACE) a languag

designed to write specifications. ACE is more of a domain specific language as it has a

different set of knowledge bases for different product functionalities and has its vocabulary

developed for that particular domain. The ACE approach of cyclic activity (refer section

2.2) was helpful in designing the CEC interaction phase which helps the user to enter CE

comments.

The Boeing Simplified English Checker was developed for technical writers to check their

documents for compliance with AECMA (European Association of Aerospace Industries)

Simplified English, a writing standard for aerospace maintenance documentation. Another

closely related research effort is the Caterpillar Technical English developed to improve

and modernize its delivery of service information. The goal of the Caterpillar Technica

English is similar to the Boeing simpli fied English Checker as both try to produc

unambiguous simple English documents. Another interesting research effort is the

Requirements Sublanguage a research effort by the Automatic Design Research Group of

Virginia Tech. It developed the CE parser, which is used by the CEC system for the

analysis of user comments and in the generation of CE comments.

- 7 -

2.2 AECMA Simplified English

The AECMA Simplified English [FarG96] was developed by Airbus to produce all major

manuals for their Aircraft models in simple English. All vendors for the aircraft’

components also have to produce their component maintenance manuals in simplified

English.

The reason for the development of the Simple English was the increase in the complexity

of the aircraft that increased the size and complexity of the technical documentation. For

example, the Concorde maintenance manual has 28 volumes containing 28,000 pages and

Airbus offers its customers 48 different sets of manuals.

An increase in the number of non-English speaking customers also motivated the

development of Controlled English. These customers have difficulty in understanding

Standard English because of its large vocabulary and its feature of many synonyms for

particular word. For example, consider the procedural statement - “Round (verb) the edges

of the round (Adjective) cap. If it then turns round (Adverb) and round (Adverb) as it

circles round (Preposition) the casing, another round (Noun) of tests is required”. Th

Oxford English Dictionary has one whole page to explain the word ‘round’. AECMA

proposed to reduce these problems with a specification that ensured fewer words and

simplified structure.

AECMA uses approved words from the SE guide, Technical names and Manufacturing

process guide [FarG96] as its sources for word . The AECMA simple English has

restricted vocabulary of 950 words and 55 grammar rules. This idea of generating simple

English documents has helped in the development of the CEC system for generating simple

comments to aid in VHDL code documentation. CEC uses around 150 grammar rules and

4900 words in its vocabulary, offers more flexibility to the user and ensures that only CE

comments are inserted into the VHDL code.

- 8 -

2.3 Attempto - Contr olled English as a Specification Language

Attempto Controlled English (ACE) [FucN96] allows domain specialists to interactively

formulate requirements specification in domain concepts. ACE is expressive enough to

allow natural usage. The Attempto system translates specification texts in ACE into

discourse representation structures and optionally into Prolog. Translated specificati

texts are incrementally added to the knowledge base. The knowledge base can be queried

in ACE for verification and executed for simulation, prototyping and validation of the

specification. ACE is a computer processable subset of English for writing requirements

specifications.

Structural ambiguity is eliminated from ACE by two methods. First, the language does not

admit certain ambiguous sentences or provides unambiguous alternatives. However, all

ambiguous sentences cannot be eliminated in order to keep the language as natural a

possible. A second approach is then used to help in reducing the ambiguity. The sentence is

parsed deterministically according to a small number of rules associated with syntactic

constructions. A paraphrase is then generated to show how the sentence was parsed. If the

user does not find the paraphrase to coincide with what was intended, the user reformats the

sentence or decomposes the sentence into smaller unambiguous ones.

2.4 The Boeing Simplified English Checker

The Boeing Simplified English Checker [WojR96] helps technical writers check their

documents for compliance with AECMA (European Association of Aerospace Industries)

Simplified English.

The SE checker relies on a syntactic formalism that was inspired by the Generalized

Phrase Structure Grammar (GPSG). It produces fully ambiguous parse forests by means

of a Boeing-developed parser, a comprehensive English grammar and an extensive

lexicon. As a syntax-based system, the Boeing SE checker can support only the use of

AECMA SE. Using a word only in its approved meaning is a very important part of the

standard, but the SE checker described here only gives feedback on the part of speech

- 9 -

deviations. It does not help when a word is used in the correct part of speech but with an

unapproved meaning.

The Boeing Simplified English Checker makes use of Boeing Technical English

(BTE)[WojR98]. It deals more with the physical aspect of the system being discussed in

the controlled English documents, whereas, the CEC was designed for describing the

behavioral aspect. The approach taken by the CEC to check if a user comment is of the CE

form, is similar to that performed by the Boeing Simpli fied English Checker.

2.5 Caterpillar Technical English(CTE)

Caterpillar Technical English [HayP96] was developed by Caterpillar, Inc. to improve and

modernize its delivery of service information. The system consists of three parts, the

Caterpillar Technical English (CTE), CTE Checker and the Machine Translation System.

CTE is a type of controlled English designed to express Caterpillar’s service informati

in a way that meets the requirements of the translation technology for accurate

translation. CTE includes several thousand individual words, both general and technical,

most of which are restricted to a singular interpretation, several tens of thousands of

technical phrases, with only one unambiguous interpretation each and a collection of

syntactic rules.

The CTE checker known as th ClearChec tells the Caterpillar authors whether what the

write conforms to CTE and also helps them to make it conform if it does not. The machine

translation system called the AMT translates the English SGML (Standard Generalized

Markup Language) source documents into SGML source documents in other languages.

The CTE is concerned with describing the physical aspect of the machinery discussed in

the controlled English documents.

- 10 -

2.6 A Requirement Sublanguage for Automated Analysis [Cry95]

 This work explains the development of a restricted natural language for expressing

requirements. It supports readable specifications that can be analyzed for errors and

automatically interpreted. The specific language designed here is for specification of

digital systems. Semantics are represented in a type of semantic network constructed o

concepts and relations. The semantic basis, consisting of concept and relation types

together with semantic patterns is developed from an examination of several formal

specification and design notations and natural language statements selected from product

descriptions. The syntax of the language is developed from a syntactic analysis of natura

language statements and the productions of the grammar are selected to maximize

coverage of syntactic structures used in the selection. The grammar developed in this

study is used by the CEC system.

- 11 -

Chapter 3

The CEC Design approach

This chapter introduces the theoretical background necessary for understanding the

operation of the CEC system. In section 3.1, language theory and grammar are discussed to

introduce the reader to controlled English. Section 3.2 gives an overview of the CE parser

used by the CEC system and section 3.3 describes the algorithm and approach taken by th

CEC system to generate CE comments from ungrammatical comments.

3.1 Language Theory and Gramma

The alphabet of a language is the set of all possible indivisible symbols of that language.

A language is defined over an alphabet as a subset of the set of all strings obtained b

concatenating one or more symbols from the alphabet. In the CE used here, the alphabet

consists of {vocabulary, punctuation, numbers and identif iers} [WinT, LinP, ManM]. An

identifier may be a name of a component such as S1 for signal, or a word not found in the

vocabulary.

A formal language may be described by a grammar. A grammar G is defined as an

quadruple G=<V, T, S, P>, where,

V is a finite set of variables (non-terminals),

T is a finite set of terminal symbols also called the alphabet,

S is a special non-terminal that denotes a sentence or a top-level construct and

also represents a well-formed comment in this thesis, and

P is a finite set of productions (grammar rules).

A grammar rule or a production of a context free grammar (CFG) consists of a non-

terminal symbol on the left-hand side, and a sequence of constituents (terminals and non-

terminals) on the right-hand side. There are three categories of non-terminals. The firs

- 12 -

category includes the high-level non-terminals such as nominals, predicates, adverbials,

conjunctions and punctuation (stop, comma). The second category is the intermediate

non-terminals that includes noun phrases, active verb sequences and sub-ordinate

conjunctions. The third category is the part-of-speech (POS) non-terminals such as

nouns, verbs, determiners and prepositions (The entire l ist of non-terminals can be found

in the Appendix B). Terminals are composed of vocabulary and punctuation (‘ .’ , ‘ ,’).

3.2 The CE parser

The controlled English (CE) parser consists of two parts, the lexical analyzer and the

parser. The lexical analyzer tokenizes the comment entered by the user. The CE parser

attempts to form a parse tree for the commen .

3.2.1 Lexical analyzer

The lexical analyzer is responsible for tokenizing the input comment into individual

words, numbers and punctuation that are then looked up in the dictionary to determine

their corresponding part-of-speech non-terminals. The words in a comment are

categorized by one or more part-of-speech non-terminal symbols. For example, the word

‘processor’, machine’ , ‘i nput’ , and ‘output’ are categorized as nouns, the words ‘sends’,

- 13 -

and ‘receives’ are categorized as verbs. A dictionary for example comment C2 is shown

in Table 3.1. The first column is the token and the second column gives the parts of

speech for the token. A token is a symbol of the alphabet, i.e. a word, number or

punctuation. Comment C2, has 13 tokens. The output of the lexical analyzer is

“det / noun / verb / det / noun / noun / preposition / det / noun / preposition / det / noun /

stop”

The processor sends the output signal to the input of the machine. (C2)

Table 3.1 Sample dictionary

Token Part of speech

.
input
of
output
processor
machine
sends
signal
the
to

stop
noun
preposition
noun
noun
noun
verb
noun, verb, inf(Infinitive)
det
preposition

3.2.2 Parser

The parser generates one or more parse trees for each comment that is grammaticall

correct (a well-formed CE comment) under the CE grammar. A parse tree is a directed tree

in which each node is labeled with the left-hand side (variable) of a production and th

successor nodes represent the constituents of the right-hand side of a production.

Every sentence in a context-free language has at least one parse tree. If there is more than

one parse tree, it indicates an ambiguous grammar. Parse trees do not show the order in

which productions are applied. A parse tree can be developed by bottom-up or top-down

parsing. The CE parser uses bottom-up parsing. The parser scans the sequence of non-

terminals produced by the lexical analyzer and applies the grammar rules repeatedly unti

- 14 -

no new non-terminals can be produced. Parsing is successful if one or more ‘S’ type non-

terminals are generated.

The CE parser used in the CEC system forms a chart from which it extracts the parse tree

if the comment entered by the user is a well-formed CE comment. The chart generation

process is explained below.

Chart generat ion process:

The CE parser used in the CEC system, first, collects the non-terminals generated by the

lexical analyzer and assigns each of them a part number. For example, the node ‘earlier’

in comment C3 is tokenized by the lexical analyzer into an ‘adv’ and an ‘ adj’ . These two

tokens are given part numbers 1 and 2 respectively. Next, new parts are generated

applying the appropriate CE rules on the previously formed parts. For this example, part

3 (‘d’) is generated by applying the CE rule ‘d
�

adv’ on part number 1. Similarly, part 4

(‘adjs’) is generated by applying the CE rule ‘ adjs
�

adj’ on part number 2. The part, ‘the

processor’ (part 10), is formed by combining parts 5 and 7. The chart generated by the

parser for the comment C3 using the CE grammar is shown in Table 3.2 and is illustrated

diagrammatically in Figure 3.1, where each node represents the part number in Table 3.2.

Earlier the processor resets the register. (C3)

- 15 -

Table 3.2 Sample chart

Node Part Non-
terminal

Rule applied Constituent
parts

1 adv adv
�

 earlier -

2 adj adj
�

 earlier -

3 d d
�

 adv 1
earlier (chunk)

4 adjs adjs
�

 adj 2

the 5 det det
�

 the -

6 noun noun
�

 processor -

7 head head
�

 noun 6
8 np np

�
 head 7

processor
9 n n

�
 np 8

10 np np
�

 det head 5,7the processor (chunk)

11 n n
�

 np 10

12 verb verb
�

 resets -
13 avs avs

�
 verb 12resets

14 pred pred
�

 avs 13

earlier the processor resets 15 ss ss
�

d pred 3,11,14

the processor resets 16 ss ss
�

n pred 11,14
the 17 det det

�
 the -

18 noun noun
�

 register -
19 head head

�
 noun 18

20 np np
�

 head 19
register 21 n n

�
 np 20

22 np np
�

 det head 17,19
the register 23 n n

�
 np 22

resets the register (chunk) 24 pred pred
�

 avs n 13,23

. 25 stop stop
�

 . -

earlier the processor resets the register 26 ss ss
�

 d pred 3,11,24

the processor resets the register 27 ss ss
�

 n pred 11,24

processor resets the register 28 ss ss
�

 n pred 9,24

earlier the processor resets the register. 29 s s
�

 ss stop 26,25

the processor resets the register. 30 s s
�

 ss stop 27,25

processor resets the register. 31 s s
�

 ss stop 28,25

The abbreviations for the various non-terminals used in the sample chart in Table 3.2 are

shown in Table 3.3.

- 16 -

Table 3.3 Abbreviations used in the sample char t

Abbreviation Non-terminal

adv
adj
adjs
d
np
n
avs
ss
s

adverb
adjective
adjective string
adverbial
noun phrase
nomina
active verb sequence
simple sentence
simple sentence

Figure. 3.1 Construction of different parts in the char t generation phase

- 17 -

The parser extracts the parse tree after the chart has been formed. The example commen

C3 used here is a well-formed CE comment and a parse tree can be extracted from the

chart as shown in Figure 3.2.The part numbers are shown in parentheses.

Figure. 3.2 Parse tree formed by using a bottom-up parser.

3.3 Analysis of ungrammatical comments

This analysis phase is required only if the CE parser fails to form a parse tree. This is

possible if the comment entered by the user is not a well-formed controlled English

comment. The comment analysis phase attempts to form all controlled English comments

that are possible from the UC and presents it to the user. The user can choose one of the

controlled English comments generated by the analysis phase, or re-phrase the UC. If the

user accepts a controlled English comment generated by the comment analysis phase, the

CEC system selects the remaining parts of the UC and runs the analysis phase again to

determine if it is able to form other controlled English comments. This process continues

until no other controlled English comments can be formed.

For the ungrammatical comment C4, the CE comments generated by the system are

shown in Table 3.4. Table 3.5 shows the CE comments generated after the user selects

the first CE comment in Table 3.4.

- 18 -

A bit INTERRUPT 0 is an interruption signal and, when it is set, an interruption reques

signal is applied to the central processing unit. (C4)

Table 3.4 Set of CE comments generated by the CEC system for comments C4

CE Comments
a bit INTERRUPT 0 is an interruption signa
a bit INTERRUPT 0 is applied to the central processing unit
a bit INTERRUPT 0 is an interruption signal and is applied to the centra
processing unit
an interruption signal and is applied to the central processing unit
when it is set, an interruption request signal is applied to the central processing
unit
when it is set an interruption request signal is applied to the central processing
unit

Table 3.5 Set of CE comments generated after the user selects the first CE comment
in Table 3.4

CE Comments

an interruption signal and is applied to the central processing unit
when it is set, an interruption request signal is applied to the central processing
unit
when it is set an interruption request signal is applied to the central processing
unit

Sections 3.3.1 through 3.3.3 explain the various steps involved in generation of CE

comments from ungrammatical comments. Section 3.4 explains the interaction process

that aids in the generation of another set of CE comments after the user has selected a CE

comment from the previously generated set CE comments.

3.3.1 Chunk collecting phase

A chunk is a high level non-terminal of type nominal, adverbial, predicate conjunction or

punctuation, that is part of the actual UC under analysis. These chunks are required by the

comment generation phase for the generation of CE comments and are present in the chart

generated by the CE parser.

- 19 -

The chart produced by the parser is scanned and chunks corresponding to the three non-

terminals – nominal, predicate, and adverbial are collected. Nominal chunks that are

already accounted for as part of another nominal are ignored. For example, the phrase “A

bit INTERRUPT 0 " found in comment C4 is a nominal and "INTERRUPT 0" is a nomina

that is ignored as it is part of the nominal "A bit INTERRUPT 0” that has already been

collected.

The predicate chunks are then collected in the same fashion as the nominal chunks.

Nominal chunks that are part of the predicate chunks are removed from the previously

collected list of nominal chunks. In the example discussed above, “ is applied to the centra

processing unit” is a predicate chunk. The chunk “ the central processing unit” is a nomina

chunk that is removed from the previously formed nominal chunk list.

The chunk collector then collects all adverbial chunks and those adverbial chunks that ar

already part of a larger adverbial chunk are removed. The adverbial chunks that are inside

nominal and predicate chunks are also removed. For example, in the chunk "a high signal",

"high" is an adverbial chunk that is ignored. The nominal and predicate chunks that ar

already part of the larger adverbial chunks are removed from the previously collected list o

nominal and predicate chunks.

The chunk collector then examines the comment to see if there are any commas or

conjunctions that were not included inside the chunks that have been already selected. If

there are any commas and conjunctions that need to be handled, they are collected

separately.

It is possible in some situations, that a nominal chunk is also a predicate chunk, then, two

separate lists of chunks are formed with one list treating the chunk as a nominal and th

other list treating the chunk as a predicate. For example, consider the chunk “signal RD

from dmac” . This chunk can be interpreted in two ways depending on the usage of th

word ‘signal’ as a verb or as a noun. If the word ‘signal’ is a noun, the chunk under

consideration is a nominal, if it is a verb, the chunk is then considered a predicate

- 20 -

The different chunks formed for the complex comment C5 are shown in Table 3.6.

The output signal of the processor is received by the system and when the input signal is

received by the system, it goes to th saturation state. (C5

Table 3.6 Different chunks collected in the chunk collection phase

Chunk type Chunks

nominal(n) the output signal of the processor
it

predicate (pred) is received by the syste
goes to the saturation stat

conjunction (conj) and

comma (,) ,

adverbial (d) when the input signal is received by the syste

3.3.2 Ungrammatical comment (UC) structure analysis

This phase processes the chunks collected in the previous phase to determine the chunk

types and the location of the chunk in the actual comment. The data collected by the

analysis phase for the comment C6 is shown in Table 3.7. The first column is the chunk

type, i.e., nominal, predicate, adverbial, conjunction or comma. The second column gives

the actual chunks of the comment. The third column is the location (the character location

at which the chunk starts in the comment) of the chunks in the ungrammatical commen

entered by the user.

The processor tries to send a high input signal and it tries to do it quickly. (C6)

Table 3.7 Data collected by the analysis phase.

Chunk type Chunks Location

nomina the processor 0

predicate tries to send a high input signal 13

conjuncti and 45

nomina it 48

predicate tries to do it quickly 50

- 21 -

3.3.3 Generat ion of CE comments

In this phase the CEC generates all possible controlled English comments for a given

ungrammatical comment. The information collected by the analysis phase is used by this

phase to generate the CE comments. Each controlled English rule for a simple commen

is successively applied. The CE comment generation is a recursive process and is

discussed below.

The recursive algorithm

This section explains the algorithm used by the CEC system to form controlled English

comments from a UC. The algorithm makes use of two tables, table ‘ CommentParts’ and

table ‘ locPtr’. Table ‘CommentParts’ has three columns. The first column indexes the

location of the chunks in this table. The second column is the chunk type of the different

chunks in the UC entered by the user. The third column contains the chunks themselves.

Table ‘ locPtr’ has three columns. The first column is the index of the entries in this table.

The second column is the rule size (Rule size is the number of constituents that form the

rule. For example the rule size is 2 for the rule s
�

 n pred) and the third column contains

the location of the non-terminals in ‘Comment Parts’ table. For the example comment C7,

the ‘Comment Parts’ contents are shown in Table 3.8, and Table 3.9 shows the contents o

‘ locPtr’ for the rule “s
�

 n pred”.

Table 3.8 Contents of CommentParts

Ordinal Chunk type Chunks
0 nomina the processor
1 predicate tries to send a high input signal
2 conjuncti and

3 nomina it
4 predicate tries to do it quickly

Table 3.9 Contents of ‘ loctPtr’

Index Non-terminal
of rule

Non-terminal location in
CommentPart s (Lentri es)

0 n 0, 3
1 pred 1, 4

- 22 -

In Table 3.8, the index value of 0 corresponds to the non-termina nominal and index

value of 1 corresponds to the predicate non-terminal. The information in ‘locPtr’ states

that nominals are found at locations 0, 3 and predicates are found at locations 1, 4 in table

‘CommentParts’ . The recursive algorithm uses this data to form all combinations of

nominals and predicates to satisfy the rule s
�

n pred” .

The CEC system uses the recursive algorithm to form CE comments. The recursive

algorithm combines the chunks at locations 0 and 1 of the ‘CommentParts’ table to form

the CE comment “The processor tries to send a high input signal” , chunks at locations 0

and 4 to form the CE comment “The processor tries to do it quickly” and chunks at

locations 3 and 4 to form the CE comment “ it tries to do it quickly” . The comment formed

by chunks at locations 3 and 1 is not used as it results in a nominal that occurs in the latter

part of the sentence being used as a subject for an earlier predicate.

- 23 -

Table 3.10 Recursive algorithm used for generation of CE comments

Recurse(index, prevPos)
// For the first call index = 0, prevPos = -1
// index represents the row number for the ‘ loctPtr’ table
{

string S[x] // Dynamic array of CE comments being formed for this rule

Iterator = 0 // Used to iterate through the entries in the ‘Non-termina
 // location in CommentParts’ column (Lentries) in each row o
 // the ‘ loctPtr’ table.

While Iterator is less than the number of entries in the ‘Non-termina
 Location in CommentParts’ column in index’ th row of the ‘ loctPtr’ table.

 if location value a Lentries [Iterator] is greater than the
 previous location 'prevPos' of the chunk that was appended
 to the new CE comment under construction

 append to string 'S' the chunk form the ‘CommentParts’
 table corresponding to location value indicated by
 Lentries [Iterator]

 prevPos = 'Location'
endif

if index does not point to the last non-terminal (i.e., the last entry in
 the ‘loctPtr table’) of the rule

 recurse(index + 1, prevPos) // Call recurse again
 endif

Iterator = Iterator + 1
Endwhile

}

Example:

The controlled English comments formed by the comment generation phase using the

recursive function recurs and the simple English rules used to form them for th

ungrammatical comment C7 are shown in Table 3.11.

When CPU 511 receives the signal 524 from DMAC 512, it saves PC and PSW toward a

stack area, and starts the interruption processing program routine (C7)

-
24

 -

T
ab

le
 3

.1
1

G
en

er
at

ed
 C

E
 c

om
m

en
ts

C
E

 c
om

m
en

ts
 g

en
er

at
ed

C
E

 R
ul

e
us

ed

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

12
 it

 s
av

es
 p

c
an

d
ps

w
 to

w
ar

d
a

st
ac

k
ar

ea
s

� d
n

 p

re
d

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

12
 it

 s
ta

rt
s

th
e

in
te

rru
pt

io
n

pr
oc

es
si

ng
 p

ro
gr

a
ro

ut
in

e
s

� d
n

 p

re
d

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

1
2

 , i
t s

av
es

 p
c

an
d

ps
w

 to
w

ar
d

a
st

ac
k

ar
ea

s

� d
,

pr

ed

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

1
2

 , i
t

st
ar

ts
 th

e
in

te
rru

pt
io

n
pr

oc
es

si
ng

 p
ro

gr
a

ro
ut

in
e

s

� d
,

pr

ed

it
sa

ve
s

pc
 a

nd
 p

sw
 to

w
ar

d
a

st
ac

k
ar

ea
s

� n

 p
re

d

it
st

ar
ts

 th
e

in
te

rr
up

tio
n

pr
oc

es
si

ng
 p

ro
gr

am
 r

o
ut

in
e

s

� d
n

 p

re
d

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

12
 it

 s
av

es
 p

c
an

d
ps

w
 to

w
ar

d
a

st
ac

k
ar

ea
 a

nd
st

ar
ts

 th
e

in
te

rr
u

pt
io

n
pr

oc
es

si
ng

 p
ro

gr
am

 r
o

ut
in

e
s

� d

pr
ed

 c
on

j
pr

ed

it
sa

ve
s

pc
 a

nd
 p

sw
 to

w
ar

d
a

st
ac

k
ar

ea
 a

nd
 s

ta
rt

s
th

e
in

te
rru

pt
io

n
pr

oc
es

si
ng

 p
ro

gr
am

 r
ou

tin
e

s

� d

pr
ed

 c
on

j
pr

ed

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

12
 it

 s
av

es
 p

c
an

d
ps

w
 to

w
ar

d
a

st
ac

k
ar

ea
 ,

an
d

st
ar

ts
 th

e
in

te
rr

u
pt

io
n

pr
oc

es
si

ng
 p

ro
gr

am
 r

o
ut

in
e

s

� d

pr
ed

 ,
 c

on
j

pr
ed

w
he

n
cp

u
5

1
1

 re
ce

iv
es

 th
e

si
g

na
l 5

24
 fr

o
dm

ac
 5

1
2

 , i
t s

av
es

 p
c

an
d

ps
w

 to
w

ar
d

a
st

ac
k

ar
ea

 a
nd

st
ar

ts
 th

e
in

te
rr

u
pt

io
n

pr
oc

es
si

ng
 p

ro
gr

am
 r

o
ut

in
e

s

� d

pr
ed

 c
on

j
pr

ed

- 25 -

3.3.4 Interaction phase

In the interaction phase, the system interacts with the user to help enter controlled English

comments. When the user selects a controlled English comment produced by the CE

generation phase, the interaction phase collects the chunks that are not present in the

controlled English comment selected by the user. For example, if the user entered the

ungrammatical comment C8, the information collected by the analysis phase is shown in

Table 3.12.

The input signal for the system is the result of the output signal of the signal generator and

it tries to generate a high value output (C8

Table 3.12 Information collected in the analysis phase

Chunk Chunk type Location
the input signal for the system nomina 0
is the result of the output signal of the signal
generator

predicate 27

, , 83

and conj 85
it nomina 89

tries to generate a high value outpu predicate 91

If the user selects the controlled English comment “ the input signal for the system is the

result of the output signal of the signal generator” generated by the CE generation phase,

the residual information collected by the interaction phase is shown in Table 3.13.

Table 3.13 Residual information collected by the interaction phase after user has
made a selection.
Chunk Chunk type Location

, , 83
and conj 85

it nomina 89
tries to generate a high value outpu predicate 91

These residual chunks are used by the CE comment generation phase to form other possible

controlled English comments. The controlled English comment “ it tries to generate a high

value” was formed from the residual information in Table 3.12, collected by the interaction

phase after the user had made a selection.

- 26 -

Orphan Chunks

The interaction phase also controls how the system queries the user for informati

regarding orphan chunks. An orphan chunk is one that was not a part of any controlled

English comment selected by the user and cannot be used to form a CE comment by

combining it with other residual chunks. It is possible that after the user has selected from

the controlled English comments generated by the CEC there are a few chunks in the

original complex comment that are not used in any of the selected controlled English

comments. The CEC does not know what to do with these chunks and queries the user for

supporting information.

Example:

For the ungrammatical comment C9, the user selects the generated controlled English

comment “ the main idea of this process is to decide which signal to process”. The

interaction phase then finds an orphan predicate “generate an appropriate output signal”

and queries the user for a nominal to support the predicate chunk. Similarly, the system

queries the user for a predicate when it finds an orphan nominal. The above queries are

equivalent to the interaction phase querying the user, ‘W hat performs a particular

function?’ for a residue predicate, and ‘What is the function of this object?’ for a residue

nominal. The system processes the orphan chunks in the order in which they occur in the

UC entered by the user.

The main idea of this process is to decide which signal to process, and, generate an

appropriate output signal (C9)

Summary

This chapter was an overview of the approach taken by the CEC system to generate CE

comments from an ungrammatical comment and thus aiding the user to enter CE

comments. In the next chapter we will look at the actual implementation in terms of

classes for an object oriented implementation. The different classes, their purposes and

methods included in them are also discussed.

- 27 -

Chapter 4

Implementation

This chapter describes an object oriented implementation of the CEC system in the C++

programming language. The main classes used in this thesis include CChartFormer – to

form charts, CChunk – to form chunks, CLocate - to find the location of the various chunk

in the comment, CRuleFinder - to find the appropriate CE rule to be used in the generation

of CE comments, CInteract – to interact with the user to negotiate CE comments from an

ungrammatical comment (UC). The CECsystem class that uses the above classes. These

various classes are described in detail below. Code specific implementation details ar

omitted and only important methods and attributes of each class are shown in the class

diagrams.

4.1 The Unified Modeling Language (UML)

The various classes of the CEC system are described using a notation called the Unified

Modeling Language (UML) [Rational96]. An overview of UML class diagrams is

presented here.

In UML class diagrams, a box represents a class. Each box has three partitions. The first

entry at the top is the name of the class. Class attributes and class member functions ar

listed below the name. The "lock" icon is used to distinguish private attributes from th

public attributes.

The classes can have two types of relationships between them. These relationships are th

dependency relationship and the aggregate relationship. An arrow represents the

dependency relationship between two classes. The tail attaches to the client class and th

head of the arrow points to the server class. A dependency relationship is used to denot

“using” association between two classes. The aggregate relationship is used to show a

part/whole relationship between two classes. The class at the diamond end of the aggregat

relationship is called the aggregate class, and consists of instances of the other class.

- 28 -

4.2 Class overview

This section describes each of the primary classes used by the CEC system using a top-

down approach. The next subsection describes the main class of the CEC system and it

relation to the other classes. The other sub-sections describe the other classes in the CEC

system in much detail.

4.2.1 Class CECsystem

This is the main class that uses the other major classes. The CECsystem class constructor

first instantiates the CChartFormer class that runs the CE parser to generate the chart. I

the comment is ungrammatical, it constructs an instance of the CChunk class that is

responsible for the selection of the chunks from the previously formed chart to be used in

the generation of CE comments. The CECsystem class then instantiates CLocate class

that finds the location of the various chunks in the actual comment. The CRuleFinder

class that is instantiated next, finds an appropriate rule to be used to form a CE commen

and generates all possible CE comments. The attribute AllComments contains all the CE

comments that were generated. The CInteract is instantiated after the user selects a CE

comment to gather the required information to form other CE comments. The class

diagram for the CECsystem representing its relationships to the other classes is shown in

Figure 4.1.

- 29 -

Figure 4.1 UML class diagram representing the relationships between the classes
CECsystem, CChunk, CLocate, CRuleFinder and CInteract.

4.2.2 Class CInteract

The CInteract class is used in the user interface when the user selects a CE comment

generated by the CEC system. This class forms a differen parts data structure called

NewSentPar when a controlled English comment formed earlier by the CRuleFinder

class has been selected. This is done by the GetRemainParts method that removes the

chunks that are present in the selected comment from the previously formed parts data-

structure. The remaining chunks of the parts data structure are now used in generating

CE comments containing chunks that were not previously used. The class diagram for the

CInteract class is shown in Figure 4.2.

CChunk

Nom inalLis t
P redic ateLis t
A dverbialLis t
S entParts

dum p()
filter()
variable_rule_form er()
form _c om plex_rule()
replace_sc on_conj()

CLoc ate

S entParts

find_location()
fillO thers ()
orderChunk s ()

CRuleF inder

S entRule
S entParts
A llSent

get_all()
recurse()

CInterac t

P arts *NewS entP art

GetRem ainP arts ()

CChartForm er

c reate()
CE CS ys tem

Chart
Chunk
Locate
Rfinder
A llCom m ents

- 30 -

Figure 4.2 UML class diagram representing the relationships between the classes
CInteract and Par ts.

4.2.3 Class CChar tForme

Figure 4.3 UML class diagram of CChar tFormer .

This class has a method called create and has no attributes. This method is responsible

for executing the CE parser that parses the input comment and generates the chart used in

the collection of chunks by the chunk class.

4.2.4 Class CChunk

This class aids in producing a complex comment structure for an ungrammatical

comment (UC). This class has a dump method that is used in collecting the high-level

chunks from the chart generated by the CE parser. The high-level chunks collected by the

dump method are then filtered by the filter method, which decides whether a chunk

should be subsumed by another chunk. For example, a chunk ‘the process’ will be first

selected as a nominal. However, if this nominal is a part of the predicate chunk ‘starts the

process’ , the chunk is treated as part of a predicate and removed from the list o nominals

previously collected by the dump method. Similarly, nominal and predicate chunks tha

ChartForme

create()

CInteract

Parts *NewSentPart

GetRemainParts()

Parts

Chun
ChunkType
Location

- 31 -

are part of an adverbial chunk are removed from the list of nominal and predicate chunk

lists previously formed by the dump method. The chunks are then segregated into their

respective lists of chunk types and the variable_rule_former method is called. This

method is used when a nominal chunk can also be treated as a predicate chunk and two

separate chunk lists have to be formed with one list treating the chunk as a nominal and

the other treating the chunk as a predicate (Refer section 3.2.1). The form_complex_rule

method forms the parts data structure called SentParts. This data structure contains the

various chunks along with the chunk type that constitute the actual comment. The

replace_scon_conj method is used to collect the phrases that could not be classified and

to check if they are a sub-ordinating conjunction or a coordinating conjunction. The

selected chunks are stored in the vector of strings ‘NominalList’ , ‘ PredicateList’ , or

‘AdverbialList’ corresponding to their chunk types. This dependency relationship

indicates that this class depends on the chart generated by the CChartFormer class. The

class diagram for the CChunk class is shown in Figure 4.4.

Figure 4.4 UML class diagram representing the relationships between classes
CChunk, CChar tFormer and Parts.

4.2.5 Class CLocate

The CLocate class is responsible for determining the location of the chunks in the

ungrammatical comment (UC). This is done by the find_location method. The chunks are

then placed in the parts data-structure called SentParts in the order in which they occur in

the original complex sentence by the order_chunks method. The FillOthers method is

CChun

NominalList
PredicateList
AdverbialList
SentParts

dump
filter()
variable_rule_former
form_complex_rule()
replace_scon_conj

Parts

Chun
ChunkType
Location

CChartForme

create

- 32 -

used to substitute a non-terminal for the chunks that could not be determined by the

CChunk class. For example, if there is nominal “process” that has not been used in the

chunks formed by the CChunk class, the FillOthers method classifies this as a nominal

and records the location of the chunk in the parts data-structure. This class depends on

the CChunk class for the parts data structure that is used here. The class diagram for the

CLocate class is shown in Figure 4.5.

Figure 4.5 UML class diagram representing the relationships between the classes
CLocate, CChunk and Par ts.

4.2.6 Class CRuleFinde

This class utilizes the parts and rule data structure to form all possible controlled English

comments. The rule data structure contains the list of all the CE rules for a simple

comment. It implements a recursive method called recurse that recursively applies

controlled English rules for a simple comment to the parts data structure called SentParts

to arrive at different possible controlled English (CE) comments. The recurse method is

called by the get_all method for each CE rule that is applied for a simple comment. The

attribute all_sent is a list of all the CE comments that were generated. The fi lter method

P arts

Chunk
Chunk Ty pe
Loc at ion

CLoc ate

S entP arts

find_loc at ion()
fillO the rs ()
orde rChunk s ()

C Chunk

Nom ina lL is t
P redic a teLis t
A dverb ia lL is t
S entP arts

dum p()
fil te r()
variable_ rule_ form er()
fo rm _c om p lex _ rule ()
replac e_s c on_c onj()

- 33 -

removes the CE comments that occur more than once in all_sent. The class diagram for

the class CRuleFinder is shown in Figure 4.6.

Figure 4.6 UML class diagram representing the relationships between the classes
CRuleFinder , CLocate, Parts and Rule.

Rules

main_n_term
rule

Parts

Chun
ChunkType
Location

CRuleFinder

SentRule
SentPart
AllSent

get_all()
recurse()

CLocate

SentPart

find_location()
fillOthers()
orderChunks()

- 34 -

Chapter 5

User Interface

A graphical user interface has been developed for the CEC system that interacts with the

user to select the CE comments generated by the system, help the user to enter CE

comments and query the user for information regarding orphan non-terminals. The User

interface contains two parts, the Interaction dialog (Figure 5.1) and the Help dialog

(Figure 5.3) that helps the user to enter a CE sentence.

5.1 Interaction dialog

The flow of events that take place while using the CEC user interface are as follows:

The user selects the code region where he/she wants to insert the comment. Next the user

enters a comment in a text box of the GUI. The system then analyses this comment. The

comment entered by the user is of the controlled English form if the CE parser is able t

form a parse tree for the given comment. If the user comment is already in controlled

English form, the user is informed that the comment is of controlled English form and the

comment is inserted into the code. If the CE parser fails to parse, the comment is

classified as an ungrammatical comment and subjected to further analysis. Next, the

system sends the ungrammatical comment to the complex structure analysis phase. This

phase locates the chunks of the comment and forms the complex structure. The CE

comment generator then acts on this complex structure and generates the CE comments

that are given to the user. The user now selects one of the various CE comments

produced by the system. Once the user selects one of the comments, the system attempts

to form other CE comments from the remaining chunks of the actual comment. The user

is provided with the new set of CE comments, from which he/she can make another

selection of a CE comment. This process continues until the system cannot form further

CE comments, or the user decides that the selected CE comments are adequate. If the

system is unable to form any more CE comments, and there are still parts of the origina

comment that have not been handled yet, the system classifies them as ‘ orphan non-

terminals’ . The orphan non-terminals are of three types – predicate, nominal, and

- 35 -

adverbial. If the system finds an ‘orphan adverbial’ , it searches for CE comments within

the adverbial. In the case of ‘orphan predicates’ , the User Interface requests the user for a

subject to support the orphan predicate. The system also provides the user with a l ist of

nominals that helps the user to decide which nominal should support the residual

predicate. In the case of an orphan nominal, the system requests the user for a predicate to

support the orphan nominal.

For example, if the user had entered the ungrammatical comment C10, the system will

provide the user with a CE comment “The transfer is made one data word at a time”. If

the user selects this CE comment, the remaining part of the original comment that has not

been handled is the adverbial “where each word consists of eight bits with a leading

control bit and a trailing parity bit added”. The system then finds the CE comment, “each

word consists of eight bits with a leading control bit and a trailing parity bit added”,

which is again offered to the user.

The transfer is made one data word at a time, where each word consists of eight bits wit

a leading control bit and a trail ing parity bit added (C10)

Hence the CE comments equivalent to the original ungrammatical comment are “The

transfer is made one data word at a time” and “Each word consists of eight bits with a

leading control bit and a trailing parity bit added”. The interaction dialog box for the

above example is shown in Figure 5.1.

- 36 -

Figure 5.1 Interaction dialog box

The sequence of events explained above are represented in the collaboration diagram

shown in Figure 5.2. Each event in the sequence is indicated by its step number.

F
ig

ur
e

5.
2

S
eq

ue
nc

e
of

 e
ve

nt
s

in
 th

e
C

E
C

 s
ys

te
m

- 38 -

5.2 Help Dialog Box

The help dialog box is used to teach the user how different chunks, such as nominals,

predicates, and adverbials are formed and how they should be used to form a CE

comment. The user selects a non-terminal from the combo box. The example explanation

is then shown in the text window. The example presents the user with one of the CE

comment rules, followed by an example CE comment and parts of the comment tha

correspond to the parts of the rule. The buttons, “NEXT” and “PREVIOUS” buttons

allow the user to view the next or previous example for other CE comment rules.

Figure 5.3 Help Dialog Box

- 39 -

Chapter 6

Experi ments

The CEC system was tested to determine how users adapt to writing CE comments with the

help of the CEC system. Each subject was given a VHDL program to comment using the

CEC system. A total of five subjects were used and the results are shown in Appendix B.

Four dif ferent VHDL models were used for these experiments. Each of the five subjects

was given one of the three different VHDL models: a Histogram generator, a Johnson

counter, a Traffic light controller and the ALU model. These four VHDL models are shown

in Appendix D along with the comments entered by the five subjects. The subject (subject

5) discussed in this chapter was given a ‘Histogram generator’ model. One set of results for

the Histogram generator model is discussed in detail here, and the others are summarized.

The subjects selected for these experiments had English as their second language.

6.1 Data collection

The CEC system interaction in each experiment was logged in a file. The log fi le contains

information on the time taken by the user to arrive at a CE comment from an

ungrammatical comment, the number of unknown words in the dictionary that were used in

the comment, followed by the total number of words in each comment and the number o

passes (trials) taken by the user before arriving at a CE comment from an ungrammatica

comment. An example of the entry in the log file when the user enters a CE comment is

shown in Figure 6.1. Figure 6.2 shows an example entry in the log file when the user enters

an ungrammatical comment (UC).

- 40 -

** ** *** ** *** ** ** *** ** ** *** ** *** ** ** *** *** ** *** ** ****

Selected code to comment on : 10/11/2000 at 21:0:56

VHDL model : Histogram generator

** ** *** ** *** ** ** *** ** ** *** ** *** ** ** *** *** ** *** ** ****

VHDL code selected :

 constant MAXADDR : INTEGER := 2**A DDRLEN - 1;

Comment entered by the user :

the architecture has a few constants needed for the logic design

Comment Analyzed at : 21:1:28

Number of words not found in the dictionary : 1

Total number of words : 12

The Comment is of Controlled English form

The Comment has been inserted Comments Inserted into the code at : 21:1:31

Figure 6.1 Log file entry when the subject enters a CE comment.

- 41 -

**
Log Started on : 10/11/2000 at 20:49:25

**

**
Selected code to comment on : 10/11/2000 at 20:49:40
VHDL model : Johnson counter

**
VHDL code selected :

 library IEEE;
 use STD.textio.all;
 use IEEE.STD_LOGIC_MISC.all;
 use IEEE.STD_LOGIC_1164.all;
 use IEEE.STD_LOGIC_ARITH.all;
 use IEEE.STD_LOGIC_UNSIGNED.all;

Comment entered by the user :
The declarations below, are needed for including the various componen

libraries, which contain the various component declarations

Comment Analyzed at : 20:50:35

Number of words not found in the dictionary : 3

Total number of words : 20

Selected the CE comment : " the declarations are needed for including the various
component libraries " at : 20:50:44

Restructured Comment :
these libraries contain the various component declarations

Comment restructured at : 20:51:18

Number of words not found in the dictionary : 2

Selected the CE comment : " these libraries contain the various componen
declarations " at : 20:51:20

Comments Inserted into the code at : 20:51:21
**

 Figure 6.2 Log file entry when the subject enters an ungrammatical comment.

- 42 -

The subject’s level of adaptation at entering CE comments was evaluated by determining

the reduction in time taken by the user to arrive at a set of CE comments equivalent to the

original ungrammatical comment, number of unknown words per comment, number of

words per comment and number of passes (number of times a comment has to be re-

analyzed) a UC undergoes for an equivalent set of CE comments to be generated.

6.2 Experi ment results

The results obtained from the log file that is generated as the subject comments the VHD

code using the CEC system are shown in Table 6.1. The first column is the comment

number. This subject has entered 22 comments. The second column indicates the time

taken by the subject from the moment when the UC is entered to the moment an equivalent

set of CE comments is arrived at. The third column shows the number of unknown word

used in each comment. The fourth column gives the total number of words used in each

comment. The fifth column gives the number of passes per UC that were required to arrive

at the equivalent set of CE comments. A pass count of 0 indicates that the user’s comment

was originally in the CE form.

- 43 -

Table 6.1 Results collected fr om log file

Comment
Number

Time (Sec) Unknow
words

Total no. of
words

No. of Passes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

117
69
148
29
159
38
35
21
69
63
41
13
16
23
24
27
17
37
84
29
21
26

3
4
1
2
4
0
1
2
2
1
0
0
0
2
2
0
1
0
2
2
2
0

19
27
22
10
14
5
12
7
11
13
12
8
11
12
16
11
11
14
15
10
13
11

1
1
2
0
3
0
0
0
2
2
0
0
0
0
0
2
0
0
4
0
0
0

It can be observed in the above table that the user requires more passes towards the

beginning of the experiment than towards the end, and the number of unknown words

decreases towards the end of the experiment. Also, the number of words used per

comment starts in the twenties and settles at 11 – 16 words towards the end of the

experiment. These observations show that the subject’ s performance at writing CE

comments improves as time spent using the CEC system increases.

6.3 Result Analysis

In this section a systematic study of how one subject performed during the experiment is

described in detail. The example discussed in this section is a Histogram generator

model. Two types of plots are presented, one set of plots with the values as shown in

Table 6.1, and the other set of plots depicting online performance versus the comment

- 44 -

number. Online performance is the average of all function evaluations up to the present,

including the current trial (current comment).

Pon = (1/g) * sum (average g), (1)

where Pon is the online performance value and ‘g’ is the trial. The online performance

values for the results shown in Table 6.1 are tabulated in Table 6.2. Online performance

smoothens the data and helps explore trends.

Table 6.2 Online perf ormance values for the data collected from the log file

Comment
No.

Time (Sec) Unknown words Total no. of
words

No. o
Passes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

117
93
111
91
104
93
84
76
75
74
71
66
62
59
57
55
53
52
54
52
51
50

3
4
3
3
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1

19
23
23
20
18
16
16
15
14
14
14
13
13
13
13
13
13
13
13
13
13
13

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- 45 -

6.3.1 Normal per formance Plots

Figure 6.3 shows that the time spent by the subject in arriving at a CE comment varies

significantly from the beginning of the experiment to the end of the experiment. The time

taken to arrive at CE comments decreases after the mid-region, i.e., around the 12 th

comment. The plot shows a number of spikes near the start of the experiment. These are

attributed to the subject’s trying to adapt to entering CE comments with the help of the

CEC system. The spikes smoothen out with time. There is a spike at the 19th comment

due to a complex VHDL code segment that the subject has tried to comment. This VHDL

code segment involves the assertion of the various variables and wait statements involved

in the operation of a Histogram generator.

Figure 6.3 Plot showing time taken in seconds versus the comment number

Figure 6.4 shows the number of unknown words versus the comment number. The

average of the number of unknown words before the 10th sentence is more than the

number of unknown words after the 10th sentence, which is almost the mid-region of the

plot. The number of unknown words is seen to decrease as the subject’ s experience in

using the CEC system increases. The unknown words used by the subject are identifiers

of the form ‘P1’, ‘C10’, etc., that are not in the dictionary or words that are not allowed

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Com ment No.

T
im

e
(S

ec
)

- 46 -

by the CE vocabulary. Examples of unknown words used by this subject for one of the

comments are ‘CHIP-SELECT’ and ‘asserted’.

 Figure 6.4 Plot showing number of unknown words versus the comment numbe

Figure 6.5 plots the total number of words in each comment entered by the user against th

comment number. The total number of words in each comment entered by the user

decreases with increase in usage of the CEC system. At the beginning of the experimen,

the number of words in the comment are higher than at the end where the number of words

in each comment fluctuates around eleven words. The number of words in the comment is

higher at the start of the experiment because the subject was trying to explain the VHD

model and trying to accustom to writing CE comments. The VHDL model used by this

subject was a histogram generator. The average number of words in the first half of all the

comments is more than the average number of words in the second half of the comments.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 47 -

Figure 6.5 Plot showing total number of words versus the comment number

Figure 6.6 gives the number of passes required for each comment entered by the user to

arrive at the set of CE comments equivalent to the original ungrammatical commen

versus the comment number. The average number of passes before the mid-region of the

plot, i.e., around the 11th comment, is more than the average number of passes after the

11th comment. There is one spike in the plot around the 19th comment that indicates the

highest number of passes in this experiment. This spike is attributed to the subject trying

to comment the complex VHDL code segment that involves the assertion of the various

variables and wait statements needed for the operation of a Histogram generator.

Figure 6.6 Plot showing number of passes versus the comment numbe

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2

C o m m e n t n o .

N
o

. o
f

p
as

se
s

0

5

1 0

1 5

2 0

2 5

3 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2

C o m m e n t n o .

T
o

ta
l n

o
. o

f
w

o
rd

s

- 48 -

6.3.2 Online per formance plots

In the plot shown in Figure 6.7, it can be seen that the time taken for the comments to

reach their CE form is found to steadily decrease. The average performance towards the

end the curve smoothens out to an almost steady value of around 50 seconds per

comment. This is a significant improvement over the time of 120 seconds at the start o

the experiment. The subject’s performance at writing CE comments improves with time

spent using the CEC system.

 Figure 6.7 Plot showing time taken in seconds versus the comment numbe

Figure 6.8 plots the number unknown words in each comment entered by the subject

against the comment number. The curve can be seen to smoothen out to almost a straight

line towards the end of the experiment. The number of unknown words in the user

comment fluctuates between 3 and 4 at the start and reduces to around 1 or 2 words near

the end. This helps us to conclude that the average performance of the subject at writing CE

comments increases due to the smaller number of unknown words being used near the end.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Com m e nt No.

T
im

e
ta

ke
n

 (
se

c)

- 49 -

 Figure 6.8 Plot showing number of unknown words versus the comment numbe

Figure 6.9 shows the total number of words in each comment entered by the user plotted

versus the comment number. At the start of the experiment, the average number of words in

the comment is higher than near the end where it smoothens to a low value of around 13

words. The user’s performance at entering CE comments is thus seen to increase as a

smaller comments tends to have a higher probability of being a CE comment than a larger

comment.

Figure 6.9 Plot showing total number of words versus the comment number

0

1

1

2

2

3

3

4

4

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2

C o m m e n t n o .

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C o m m e n t n o .

T
o

ta
l n

o
 o

f
w

o
rd

s

- 50 -

Figure 6.10 plots the number of passes for each comment entered by the user before the set

of CE comments equivalent to the ungrammatical comment is arrived against the comment

number. The plot shows a number of spikes. These spikes are due to the actual values tha

are plotted (not rounded). The values in the Table 6.2 are rounded. There is a stead

decreas in the number of passes as the user moves towards the end of the experiment. This

shows that the average number of passes to arrive at a set of CE comments from an

ungrammatical comment decreases with time.

 Figure 6.10 Plot showing number of passes versus the comment numbe

6.4 Summary of exper iments

The data collected from the subject’ s experiments and the information obtained from the

analysis of the different plots indicate an increase in user performance at writing CE

comments as time spent in using the CEC system increases. The plots obtained for the

experiments done by the other subjects are available in Appendix B. The various plots of

the different subjects are similar and there is a trend of the subject using the CEC syste

getting accustomed to use CE comments towards the end of the experiments. An

ensemble plot (average) of all the five subjects for the normal performance is discussed

below.

0

0

0

1

1

1

1

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Comment no.

N
o

. o
f

p
as

se
s

- 51 -

6.4.1. Ensemble plots

This section discusses the ensemble plot (average) of all the five subjects for the normal

performance. The ensemble plot shows a similar trend of the subject’s abil ity in writing

CE comments improving with time using the CEC system.

Figure 6.11 shows that the time spent by the subject in arriving at a CE comment varies

significantly from that the beginning of the experiment to the end of the experiment. The

time taken to arrive at CE comments gradually decreases with a few spikes in between

comment. The plot shows a number of spikes near the start of the experiment. These

spikes were as a result of the subjects trying to adapt to entering CE comments with the

help of the CEC system. The spikes smoothen out with time. The spike around the 9th

comment is due to a complex VHDL code segment that the subjects have tried to

comment.

Figure 6.11 Plot showing time taken in seconds versus the comment numbe

Figure 6.12 shows the number of unknown words versus the comment number. The

average of the number of unknown words before the 9 th sentence is more than the number

of unknown words after the 9th comment. The spikes in this plot are due to the identifiers

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment no

T
im

e
(s

ec
)

- 52 -

used by the subjects to explain the various variables used in the VHDL models. The

number of unknown words is seen to decrease as the subject’ s experience in using the

CEC system increases.

Figure 6.12 Plot showing number of unknown words versus the comment numbe

Figure 6.13 plots the total number of words in each comment entered by the user against

the comment number. The total number of words in each comment entered by the user

decreases with increase in usage of the CEC system. At the beginning of the experiment,

the number of words in the comment are higher than at the end. The number of words in

the comment is higher at the start of the experiment because the subjects were trying to

explain the VHDL model and trying to accustom to writing CE comments. The spike

around the 9th comment is attributed to a complex functionality in the VHDL model tha

the subjects were trying to comment. The number of words used by the subjects

decreases towards the end, indicating that the users abil ity to write CE comments

improves with time spent in using the CEC system.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment no

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 53 -

Figure 6.13 Plot showing total number of words versus the comment number.

Figure 6.14 gives the number of passes required for each comment entered by the user to

arrive at the set of CE comments equivalent to the original ungrammatical commen

versus the comment number. The average number of passes before the mid-region of the

plot is more than the average number of passes after the mid-region. The spikes in the

plots are due to the complex comments entered by the subjects for complex VHDL code,

which in turn required more passes to arrive at equivalent CE comments.

Figure 6.14 Plot showing number of passes versus the comment number

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

0 .5

1

1 .5

2

2 .5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

C o m m e n t n o .

N
o

. o
f

p
as

se
s

- 54 -

6.4.2 Conclusion

The normal performance analysis shows that the user performance at using the CEC

system increases from the first half of the experiments towards the second half. The

online performance indicates that the average performance of the user increases graduall

with time as the subject’s experience in using the CEC system increases. The methods

that might be used to increase the efficiency of the CEC system in aiding the user to enter

CE comments are discussed in the next chapter.

- 55 -

Chapter 7

Conclusions and Extension

This chapter summarizes the advantages and disadvantages of the CEC system developed

for aiding users in writing CE comments for their VHDL models. Some suggestions to

improve the system performance are also recommended.

7.1 System advantages

This section explains the various advantages of using the CEC system. The importance o

comments for any programming language is generally accepted. Program developers

usually have to follow certain standards for commenting their program. A theoretica

standard with respect to structural representation (grammatical) can be laid out to th

developers, but the developers will find it difficult to remember these rules and use the

efficiently in their code. This difficulty can be overcome by using the CEC system as th

standard can be easily encoded as rules to be used by the CEC system in the generation o

CE comments.

The GUI provided by the CEC system aids the user in entering CE comments. Some of the

positive aspects of the GUI are, its presentation of the set of CE comments generated by the

CEC system, querying the user for data to complete CE comments, and the help system

aiding the user to construct CE comments

7.2 System limitations

One of the limitations of the system is that the CEC generated CE comments are not al

semantically correct. For example, if the user misspells a verb, then the CEC system treat

it as a noun because a word not found in the dictionary is treated as an identifier. This can

result in the CE parser forming parse trees for meaningless sentences and the CEC syste

generating meaningless CE comments.

- 56 -

The CEC system handles only the high-level non-terminals for the generation of CE

comments. A better performance might be achieved by using non-terminals at one leve

lower in the analysis of the ungrammatical comments and in the generation of CE

comments, i.e., in terms of intermediate non-terminals. A wider choice of CE comments

can be obtained by taking into consideration the intermediate non-terminals that may be

used to form new high-level non-terminals. For example the active verb sequence (avs)

‘sends’ in the predicate chunk ‘sends the signal’ may be combined with some other

nominal to form a different predicate chunk and thus forming a different CE comment.

7.3 Future extensions

The CEC system developed thus far does not include semantic analysis. Semantic

analysis, if incorporated along with the structural analysis used currently in the CEC

system can help in generation of CE comments that are semantically correct. Another

improvement in the CEC system will be the addition of a spell checker to dynamically

prompt the user when words are misspelled and prevent verbs from being used as nouns

as explained in section 7.2.

Development of a knowledge base for the CEC system to aid users in entering CE

comments will be very beneficial. The knowledge base has to have a measure of

probability in terms of frequency of a particular sentence structure being used in the CEC

system. This will help in providing the user with a l imited number of generated CE

comments and decreasing the time taken to arrive at a CE comment from an

ungrammatical comment.

The CEC system can be used as an efficient tool for CE documentation. The CEC system

can be modified to read every sentence in a document and with the help of interaction fro

the user can generate equivalent CE sentences for every ungrammatical sentence.

The CEC system can be modified to allow the user to first enter all comments into the

code and then analyze the comments in the code one by one to arrive at CE comments.

This will be helpful for users who would like to have an undisturbed flow of thought

while commenting their code. The CE comments that are then generated at the end wil

- 57 -

have all the required information that may otherwise be lost due to the users thought

stream fluctuating between writing a CE comment and giving all the required information

in the comment. This modif ication may result in considerable delay in the time taken for

the user to adapt to writing CE comments as the continuous learning advantage of the

current system is lost.

- 58 -

References:

[PelD00] David Pellerin ,“An Introduction to VHDL for Synthesis and Simulation”
Accolade Design Automation, Inc. http://www.acc-eda.com/h_intro.htm, 2000

[McCS93] Steve C McConnell, “Code Complete : A Practical Handbook of Software
Construction” , Microsoft Press, Redmond1993.

[WojR96] Richard H. Wojick and Heather Holmback, “Getting a Controlled Language o
the Ground at Boeing”, ” , First International Workshop on Controlled Languag
Applications (CLAW ’96), pp. 22 – 31, 26-27 March 1996.

[FarG96] Cordon Farrington, “AECMA Simplified English: an Overview of th
International Aircraft Maintenance Language”, ” , First International Workshop on
Controlled Language Applications (CLAW ’96), pp.1 – 21, 26-27 March 1996.

[FucN96] Norbert E. Fuchs and Rol Schwitter, “ Attempto Controlled English (ACE)” , ” ,
First International Workshop on Controlled Language Applications (CLAW ’96), pp.124 –
136, 26-27 March 1996.

[WojR98] Richard H. Wojick, Heather Holmback & James Hoard, “Boeing Technica
English” , International Workshop on Controlled Language Applications (CLAW ’98), pp.
114 - 122, 21-22 May1998.

[HayP96] Phil Hayes, Steve Maxwell and Linda Schmandt, “Controlled Language Support
for Translated and Original English Documents”, First International Workshop on
Controlled Language Applications (CLAW ’96), pp.84 – 92, 26-27 March 1996.

[CyrW95]Walling R. Cyre, “A Requirements Sublanguage for Automated Analysis” ,
International Journal of Intelligent Systems, pp. 665 – 689, July 1995.

[WinT83] T. Winograd, “L anguage as a Cogniti ve Process”, vol. 1 : Syntax, Addison –
Wesley, 1983

[LinP90] Peter Linz, “An Introduction to Formal Languages and Automat ” ,D.C Heath
& CO, Boston,1990

[ManM] Menakshi Manek, “Natural Language Interface to a VHDL Modeling Tool”,
Ms. Thesis, Virginia Tech, 1993

[Rational96] Rational Software Corp. Rational rose 4.0.3, http://www.rational.com/uml,
1991-1996.

- 59 -

Appendix A

User’s guide for Controlled English Commenting System (CEC)

This appendix explains in detail, how the user should use the CEC system as a tool for

commenting VHDL programs. A demonstration of how to use the CEC system is

provided, step by step. The demonstration starts with the explanation of how to use the

“code window” (window showing the VHDL code to be commented), followed by the

“ interface dialog” which interacts with the user to enter CE comments and then the “help

dialog” which helps the user to learn how a CE comment should be constructed.

Demonstration

Double clicking on the CEC.exe icon starts the CEC. The CE parser is incorporated into

the CEC and hence the commenter and the parser make one executable file. The files

used by the parser are stored in the same directory as the CEC executable file.

The different files used by the parser are:

rules.txt : This contains all the grammar rules used by the CE parser

rdict.txt : This is a single word dictionary used by the CE parser

mdict.txt : This is a multiword dictionary used by the CE parser

The formats of the above mentioned fi les are shown in Appendix C.

Code Window

An editable document window is presented to the user initial ly when the CEC is started.

The user can open the VHDL document that he/she wishes to comment using the ‘File –

Open’ option in the menu. The code to be commented in the opened VHDL document is

highlighted by using the mouse. The ‘Select’ option available in the ‘Tools’ menu is then

chosen.

- 60 -

Figure A.1 Code Window

Interf ace Dialog

Selecting the ‘Select’ tab in the ‘Tools’ menu opens an interface dialog that interacts with

the user in arriving at CE comments from the ungrammatical comments entered by the

user. The user enters the comment in the text field labeled “Enter Comment” and

indicates the end of a comment with a period ‘ .’ (The CEC appends the period if the user

fails to include it. This feature is made default because the CE parser recognizes the end

of a sentence by searching for the period). The interface dialog is shown in Figure A.2.

- 61 -

Figure A.2 Interface dialog box

When the user clicks the ‘Analyze’ button below the comment entry field, the CE

analyzer starts to analyze the comment the user has entered. The CEC forms all possible

CE comments and displays them in the list box below the heading - “Analyzed CE

Comments – Select one”. The user can go through the CE comments produced by the CE

and select one of them by double clicking on it. Once the user selects a CE comment, the

selected comment is added to the field below the heading - “Comments to be inserted”. The

CEC system then forms other CE comments and the user is prompted again to select one of

them. If the user is not satisfied with the CE comments generated by the CEC, he/she can

rephrase the comment in the field below the heading -“Enter the corrected CE comment”

and then click on the ‘Reanalyze’ button to have the comment analyzed again.

In Figure A.3, the CEC queries the user for subjects to support residue predicates, and

predicates to support residue nominals. This is possible if the CEC is not able to form any

- 62 -

more CE comments but still has orphan predicates or nominals that have not been used in

the CE comments previously selected.

Figure A.3 CEC querying the user for a nominal to suppor t a orphan predicate

The user can select a nominal from the drop box titl ed “List of Nominals” that has a lis

of all the nominals used in the original ungrammatical comment. Clicking on the “A dd

Nominal” button appends the selected nominal to the residue predicate in the field below

the heading - “Enter the corrected CE comment” . The ‘Reanalyze’ button is then clicked

to re-analyze the comment. The re-analyzed comment can now be selected. The interface

dialog after a nominal has been selected is shown in Figure A.4.

- 63 -

Figure A.4 Interface dialog with a nominal being added to a orphan predicate

The user then selects the CE comments and inserts the CE comments into the code b

clicking on the ‘ Insert’ button. The “Reset” button clears all the entries in the interface

dialog and allows the user to start afresh. The “Help” button opens up the help dialog that

helps the user to enter a controlled English comment.

Help Dialog Box

The user can get help in wri ting a controlled English comment by clicking on the “Help”

button on the interface dialog. This dialog helps the user in understanding how a CE

comment should be constructed. The help dialog box is show in Figure A.5.

- 64 -

Figure A.5 Help dialog box

The help dialog provides the user with details on how nominals, predicates, and

adverbials are constructed with various other lower level non-terminals. It also provides

the user with details on constructing the CE comments that make use of nominals,

predicates, and adverbials. The help dialog has a “Next” and “Previous” button that help

the user to traverse through various examples. The user can select appropriate help details

for nominals, predicates, adverbials, or for CE comments by selecting the appropriate

entry from the drop box provided in the help dialog and clicking on the “Show Example”

button.

- 65 -

Appendix B

Experi ment Results

This appendix shows the experiment results for the four subjects not discussed in detail in

chapter 6. Both normal performance plots as well as the online performance plots ar

shown here. Table B1 shown below indexes the various normal and online performance

plots for the respective subjects.

Table B1 Index of plots

Normal perf ormance plots Online perf ormance plotsSubject

Time Unknow
words

Total
no. o
words

No. o
passes

Time Unknow
words

Total
no. o
words

No. o
passes

1

2

3

4

B1

B9

B17

B25

B2

B10

B18

B26

B3

B11

B19

B27

B4

B12

B20

B28

B5

B13

B21

B29

B6

B14

B22

B30

B7

B15

B23

B31

B8

B16

B24

B32

- 66 -

Subject 1.

Normal perf ormance plot for Johnson counter and traffic light controller.

Figure B1 Plot showing time taken in seconds versus the comment numbe

Figure B2 Plot showing number of unknown words versus the comment number

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Com m e nt no.

T
im

e
ta

ke
n

 (
se

c)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Coment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 67 -

Figure B3 Plot showing total number of words versus the comment number

Figure B4 Plot showing number of passes versus the comment number .

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Comment No.

T
o

ta
l N

o
. o

f
w

o
rd

s

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Comment No.

N
o

. o
f

p
as

se
s

- 68 -

Online Performance plots for Johnson counter and tr affic light controlle

Figure B5 Plot showing time taken in seconds versus the comment numbe

Figure B6 Plot showing number of unknown words versus the comment numbe

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Comment No.

T
im

e
ta

ke
n

 (
se

c)

0

1

1

2

2

3

3

4

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 69 -

Figure B7 Plot showing total number of words versus the comment number

Figure B8 Plot showing number of passes versus the comment number .

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

0

0

1

1

1

1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Comment No.

N
o

. o
f

p
as

se
s

- 70 -

Subject 2.

Normal per formance plots for Histogram generator

Figure B9 Plot showing time taken in seconds versus the comment numbe

Figure B10 Plot showing number of unknown words versus the comment numbe

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
im

e
ta

ke
n

(s
ec

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 71 -

Figure B11 Plot showing total number of words versus the comment number.

Figure B12 Plot showing number of passes versus the comment number .

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

p
as

es

- 72 -

Online Per formance plots for H istogram generator

Figure B13 Plot showing time taken in seconds versus the comment numbe

Figure B14 Plot showing number of unknown words versus the comment numbe

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
im

e
ta

ke
n

 (
se

c)

0

1

1

2

2

3

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 73 -

Figure B15 Plot showing total number of words versus the comment number.

Figure B16 Plot showing number of passes versus the comment numbe

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

1

1

2

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

p
as

se
s

- 74 -

Subject 3

Normal per formance plots for ALU model

Figure B17 Plot showing time taken in seconds versus the comment numbe

Figure B18 Plot showing number of unknown words versus the comment numbe

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

T
im

e
ta

ke
n

 (
se

c)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Com ment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 75 -

Figure B19 Plot showing total number of words versus the comment number.

Figure B20 Plot showing number of passes versus the comment numbe

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

N
o

. o
f

p
as

se
s

- 76 -

Online per formance plots for ALU model

Figure B21 Plot showing time taken in seconds versus the comment numbe

Figure B22 Plot showing number of unknown words versus the comment numbe

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment no

T
im

e
ta

ke
n

 (
se

c)

0

1

1

2

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 77 -

Figure B23 Plot showing total number of words versus the comment number.

Figure B24 Plot showing number of passes versus the comment numbe

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

T
o

ta
l n

o
. o

f
w

o
rd

s

0

1

1

2

2

3

3

4

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comment No.

N
o

. o
f

p
as

se
s

- 78 -

Subject 4

Normal per formance plots for Johnson counte

Figure B25 Plot showing time taken in seconds versus the comment numbe

Figure B26 Plot showing number of unknown words versus the comment numbe

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
im

e
ta

ke
n

 (
se

c)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 79 -

Figure B27 Plot showing total number of words versus the comment number.

Figure B28 Plot showing number of passes versus the comment numbe

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment no

T
o

ta
l n

o
. o

f
w

o
rd

s

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

p
as

se
s

- 80 -

Online Per formance plots for Johnson counte

Figure B29 Plot showing time taken in seconds versus the comment numbe

Figure B30 Plot showing number of unknown words versus the comment numbe

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

T
im

e
ta

ke
n

 (
se

c)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment No.

N
o

. o
f

u
n

kn
o

w
n

 w
o

rd
s

- 81 -

Figure B31 Plot showing total number of words versus the comment number.

Figure B32 Plot showing number of passes versus the comment numbe

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment no

T
o

ta
l n

o
. o

f
w

o
rd

s

0

1

1

2

2

3

3

4

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment no

N
o

. o
f

p
as

se
s

- 82 -

Appendix C

Files used by the CEC system

This appendix describes the various files used by the CEC system in the generation of CE

comments for VHDL models. Three input files are used by the CEC system. They are th

“rule.txt” which contains the list of all CE rules used by the CE parser, the “rdict.txt” which

is a dictionary of all words allowed by the controlled English and the “mdict.txt” which is a

multiword dictionary, containing the list of multiwords allowed by the controlled English.

C.1 Rule.txt

This file contains the list of grammar rules used by the CE parser. Each rule consists of a

non-terminal symbol on the left-hand side, and a sequence of constituents (terminals and

non-terminals) on the right-hand side. The contents of the ‘ rule.txt’ is listed below

followed by Table C1 listing the abbreviations used in the rules.

s � ss .
s � sp .
s � sc .
ss � d n pred
ss � d , n pred
ss � n pred
sp � d n pred conj pred
sp � n pred conj pred
sp � d n pred , conj pred
sp � d , n pred conj pred
sc � ss conj ss
pred � avs
pred � avs
pred � avs n d
pred � avs n d d
pred � avs d
pred � avs d d
pred � pvs
pred � pvs
pred � pvs d
pred � pvs d d
pred � pvs d d d

- 83 -

pred � evs
pred � evs d
pred � evs n d
pred � evs adjs
pred � evs adjs d
pred � evs det d
avs � adv verb
avs � verb
avs � mod vinf
avs � mod adv vinf
avs � mod not vinf
avs � mod not adv vinf
avs � have
pvs � be ven
pvs � be not ven
pvs � be adv ven
pvs � be not adv ven
pvs � mod bei ven
pvs � mod adv bei ven
pvs � mod not bei ven
pvs � mod bei adv ven
pvs � mod not bei adv ven
evs � be
evs � be no
evs � mod not bei
evs � mod adv bei
d � adv
d � prep
d � scon n
d � scon ss
d � scon ss conj ss
n � np
n � np pp
n � np rest
n � np of n
n � np o np pp
n � nc
n � cl
n � cl conj cl
n � cl , cl conj cl
nc � np conj np
np � pdet det adjs head
np � pdet det head
np � pdet adjs head
np � pdet head
np � det ord # adjs head
np � det ord # head
np � det ord adjs head

- 84 -

np � det ord head
np � det # adjs head
np � det # head
np � det adjs head
np � det head
np � ord # adjs head
np � ord # head
np � ord adjs head
np � ord head
np � # adjs head
np � # head
np � adjs head
np � head
np � head range
np � pron
np � np #
np � (np)
np � np (np)
np � [np]
np � det ving head
np � np ving head
np � det ven head
np � det adv ven head
np � pdet head adjs head
head � noun
head � id
head � noun head
head � id head
head � # head
adjs � adj
adjs � adj adjs
adjs � adj conj adjs
adjs � adj , adjs
adjs � (adj)
pp � prep
pp � prep conj prep n
rest � rcon pred
rest � cl
cl � nvs
cl � nvs d
cl � n nvs
cl � n nvs d
cl � n xvs
cl � xvs
cl � n xvs d
cl � xvs d
cl � n ivs
cl � n ivs

- 85 -

cl � ivs
cl � ivs
cl � n ivs n d
cl � n ivs d
cl � ivs n d
cl � ivs d
cl � n gvs
cl � gvs
cl � gvs
cl � gvs n d
cl � gvs d
nvs � ven
xvs � to bei ven
ivs � to vinf
gvs � ving
noun � nounp
verb � verbp

- 86 -

Table C1 List of abbreviations used in “ rules.txt”

Abbreviation Non-terminal

adj
adjs
adv
avs
bei
cl
conj
d
evs
gvs
head
ivs
mod
n
np
nvs
ord
pdet
pp
prep
pred
pvs
rcon
rest
s
scon
ss
verbp
ven
vinf
ving
xvs

adjective
adjective sequence
adverb
active verb sequence
‘be’ (infinite ‘ to be’)
clause
conjuncti
adverbial
equative verb sequence
ving verb sequence (gerund)
head
infinitive verb sequence
modifier
nomina
noun phrase
past participle verb sequence
ordinal
pre-determiner
prepositional phrase
preposition
predicate
passive verb sequence
restricted clause
relative conjunction
sentence
sub-ordinate conjunction
simple sentence
verb phrase
past participle
verb infinitive
present participle
passive verb sequence

- 87 -

C.2 Rdict.txt.

This file contains the dictionary used by the CE parser. The entire “ rdict.txt” file is very

large and is not listed here. Table C2 shows sample entries in the “rdict.txt” file. Each

word in the vocabulary is followed by the non-terminal it can be represented with, such

as noun and verb, followed by other information not used by the CEC.

Table C2 Sample entries in the “ rdict.txt” file

respond | verb _ vinf action `
responding | ving action `
responds | verb _ `
response | noun behavior `
responses | noun _ `
responsibility | noun attribute ̀
responsive | adj _ ̀
rest | verb _ vinf _ | noun _ `
restart | verb _ vinf _ ̀
restarted | ven action `
restorage | noun _ `
restore | verb _ vinf action ̀
restored | ven action ̀
restricted | ven _ ̀
restriction | noun _ ̀
rests | verb _ `
result | noun value | verb _ vinf state ̀
resultant | noun _ `
resulting | ving _ ̀
results | noun _ ̀
resume | verb _ vinf action ̀
resumed | ven _ ̀
resumes | verb _ `
resuming | ving _ ̀
resynchronize | verb _ vinf _ ̀
resynchronized | ven _ ̀
resynchronizes | verb _ `
retain | verb _ vinf action ̀

- 88 -

C.3 Md ict.txt

This file contains the list o multiwords allowed by the controlled English used in the CE

system. The “mdict.txt” file is listed below. . Each multiword in this file is followed by the

non-terminal it can be represented with.

result in | verb behavior | vinf behavior `
results in | verb _ ̀
consist of | verb _ | vinf _ ̀
consists of | verb _ `
each of | pdet _ ̀
some of | pdet _ ̀
all of | pdet _ ̀
many of | pdet _ ̀
a few of | pdet _ ̀
a number of pdet _ ̀
in spite of | prep _ `
instead of | scon _ ̀
pair of | # _ `
regardless of | prep _ `
along with | prep _ ̀
depend on | verb event vinf event `
depending on | prep _ | ving _ `
depends on | verb behavior `
synthetic aperture radar | noun _ ̀
control logic | adj _ ̀
farther than | adj _ ̀
faster than | adj _ ̀
fewer than | adj _ ̀
greater than | pdet _ ̀
less than | pdet _ ̀
according to | prep _ `
greater than or equal to | pdet _ ̀
less than or equal to | pdet _ ̀
by means of | prep _ `
and then | conj _ ̀
such as | prep _ `
according to | prep _ `
in accordance with | prep _ `
logic one | noun value ̀
logic zero | noun value _ `
multiples of | adj _ ̀
with respect to | prep _ `
in response to | prep _ `
because of | prep _ `
central processing unit | noun _ ̀
arithmetic logic unit | noun _ `

- 89 -

for the purpose of | prep _ `
half of | adj _ ̀
in order to | prep _ ̀
in the same way as | prep _ `
in accordance with | prep _ `
as long as | prep _ ̀
and so | conj _ ̀
and then | conj _ ̀
only when | scon _ ̀
shift register | noun _ `
program counter | noun _ `
index register | noun _ `
shift registers | nouns _ ̀
program counters | nouns _ ̀
index registers | nouns _ ̀
in lieu of | prep _ `
in spite of | prep _ `

- 90 -

Appendix D

VHDL models

This appendix shows the VHDL models commented by the various subjects using the

CEC system. Four different models are shown here: a Histogram generator, a Johnson

counter, a Traffic light controller and an ALU model. The comment numbers are shown

in parentheses. Comments having the same number in a model represent an

ungrammatical comment (UC) broken down into more than one controlled English

comment.

D.1 Johnson counter and Traffic light controller models commented by subject 1

D.1.1 Johnson counte

-- this is a structural implementation of a johnsons counter where behavioral components are
defined as components in the work library and been structurally instantiated from the library (1)

use work.all;

architecture STRUCTURAL of JOHNSONS_COUNTER is

-- these are internal wires that connect to the flip-flop outputs and are further used to analyze th
internal waveforms in the simulator (2)

signal INT1, INT2, INT3, INT0: BIT ;

-- These wires connect to the complemented outputs of the flip-flop and are used for simulation (3)

signal INT5, INT6, INT7, INT8: BIT ;

-- the signals int9 to int14 are used for parallel load implementation and self correcting logic (4)

signal INT9, INT10, INT11, INT12: BIT ;

--INT13 comes from self correcting logic (5)

signal INT13, INT14: BIT;

-- the various components required for the behavioral components are explained here (6)

component MY_AND2 is

- 91 -

port(I1, I2:in BIT; O:out BIT);

end component;

component MY_OR2 is

port(I1, I2:in BIT; O:out BIT);

end component;

component FF is

port(D, CLK, RESET:in BIT; Q, QC:out BIT);

end component;

component MY_MUX2 is

port(A, B, SEL:in BIT; O:out BIT);

end component;

-- the component associations are done in the following lines (7)

for all: FF use entity D_FLIP_FLOP(BEHAVIORAL);

for all: MY_AND2 use entity AND2(BEHAVIORAL);

for all: MY_OR2 use entity OR2(BEHAVIORAL);

for all: MY_MUX2 use entity MUX2(STRUCTURAL);

begin

C1: FF

port map(INT9, CLK, RESET, INT0, INT8);

C2: FF

port map(INT10, CLK, RESET, INT1, INT7);

C3: FF

port map(INT11, CLK, RESET, INT2, INT6);

C4: FF

port map(INT12, CLK, RESET, INT3, INT5);

-- the following code implements th combinational logic required for self correction (8)

C5: MY_OR2

port map(INT3, INT1, INT14);

C6: MY_AND2

port map(INT14, INT2, INT13);

C7: MY_MUX2

- 92 -

port map(DATA(0), INT1, LOAD, INT9);

C8: MY_MUX2

port map(DATA(1), INT13, LOAD, INT10);

C9: MY_MUX2

port map(DATA(2), INT3, LOAD, INT11);

C10: MY_MUX2

port map(DATA(3), INT8, LOAD, INT12);

OUTPUT(0) <= INT0;

OUTPUT(1) <= INT1;

OUTPUT(2) <= INT2;

OUTPUT(3) <= INT3;

end STRUCTURAL ;

D.1.2 Traffic L ight Controller

-- this is an algorithmic implementation of the classic highway intersection traffic controller which
has a user interaction facility (9)

use work.all;

use std.textio.all;

entity TEST_BENCH is

end TEST_BENCH ;

-- The test bench architecture has two processes running concurrently with the first process waiting
for the user input and the second process displaying the signal status (10)

architecture STRUCTURAL of TEST_BENCH is

-- The internal wires representing the highway and farmway are initialized (11)

signal C, ST, TRIG: BIT;

signal DN: BIT := '1';

signal HW: BIT_VECTOR(0 to 2) := "100";

signal FW: BIT_VECTOR(0 to 2) := "001";

signal INIT: BIT;

component FSM is

port(CLOCK, CART:in BIT;

HIGHWAY: out BIT_VECTOR(0 to 2);

FARMWAY: out BIT_VECTOR(0 to 2));

- 93 -

end component ;

component CLK is

generic(HOT, CT, FOT:time);

port(START:in BIT; DONE:out BIT; CLK:out BIT);

end component ;

for all:FSM use entity TRAFFIC_CONTROLLER(ALGORITHMIC);

for all:CLK use entity TIMER(BEHAVIORAL);

begin

C1: CLK

generic map(20 ns, 2 ns, 1 ns)

port map(ST, DN, TRIG);

C2: FSM

port map(TRIG, C, HW, FW)

-- This is the user interface process which is responsible for giving the status prompt to the user and
for receiving the car signal depending on the traffic (12)

USER_INPUT : process

variable TMP:character;

variable P_STR:string(1 to 15) := "ARRIVAL STATUS>";

variable UI, PROMPT: LINE;

begin

-- the user is prompted at the beginning for an input (13)

-- after subsequent clock cycles the user is given the prompt (13)

if(DN = '1' or INIT = '1') then

while(true) loop

write(PROMPT, P_STR);

writeline(output, PROMPT);

readline(input, UI);

read(UI, TMP);

-- this piece of code is for verification and execution (14)

if (TMP = 'q' or TMP = 'Q') then

wait;

- 94 -

elsif (TMP = 'c' or TMP = 'C') the

C <= '1' after 1 ns,

'0' after 2 ns;

ST <= '1' after 1 ns,

'0' after 2 ns;

exit;

end if ;

end loop ;

end if;

wait on DN, INIT;

end process USER_INPUT;

SIGNAL_DISPLAY: process(HW, FW)

variable FW_DISP, HW_DISP: string(1 to 25);

variable DISPLAY:LINE;

begin

-- This code prints the status of the highway signal (15)

case HW is

when "100" => HW_DISP := "HIGHWAY SIGNAL -> GREEN ";

when "010" => HW_DISP := "HIGHWAY SIGNAL -> YELLOW ";

when "001" => HW_DISP := "HIGHWAY SIGNAL -> RED ";

when others => HW_DISP := "OUT OF ORDER ";

end case ;

-- This code prints the signal status for th farmway (16)

case FW is

when "100" => FW_DISP := "FARMWAY SIGNAL -> GREEN ";

when "010" => FW_DISP := "FARMWAY SIGNAL -> YELLOW ";

when "001" => FW_DISP := "FARMWAY SIGNAL -> RED ";

when others => FW_DISP := "OUT OF ORDER ";

end case ;

write(DISPLAY, HW_DISP & FW_DISP);

writeline(output, DISPLAY);

end process SIGNAL_DISPLAY;

- 95 -

-- This process initiates the user prompt and quits (17)

INIT_PROC : process

begin

INIT <= '1' after 1 ns,

'0' after 2 ns;

wait;

end process INIT_PROC ;

end STRUCTURAL ;

D.2 Histogram generator model commented by subject 2

-- these are standard IEEE libraries that contain the corresponding library functions (1)

library IEEE;

use STD.textio.all;

use IEEE.STD_LOGIC_MISC.all;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

-- this defines the entity of histogram (2)

-- plots the number of instances of a particular value retrieved from a binary file stores it in the ra
(2)

entity HISTGRAM is

 generic(ADDRLEN, WRDLEN : INTEGER;

 RD_DEL, DIS_DEL : TIME;

 INFILENAME, OUTFILENAME : STRING);

-- the variables with the directions of electrical signals are declared here (3)

port(DATA : inout STD_LOGIC_VECTOR (WRDLEN-1 downto 0) := (others => 'Z');

 ADDR : out STD_LOGIC_VECTOR (ADDRLEN-1 downto 0);

 START : in STD_LOGIC;

 CS, RD, WR : out STD_LOGIC);

end HISTGRAM;

- 96 -

-- This is the algorithmic architecture of the histogram (4)

architecture KEEP_TRACK of HISTGRAM is

-- the constants required for this program is declared here (5)

constant MAXADDR : INTEGER := 2**ADDRLEN - 1;

constant TRISTATE : STD_LOGIC_VECTOR(WRDLEN-1 downto 0) := (others => 'Z');

signal DATAREG : STD_LOGIC_VECTOR(WRDLEN-1 downto 0);

begin

-- this is an example of a process without a sensitivity list (6)

-- wait-statements prevent infinte loops (6)

HGM : process

-- All variables and file declarations are sandwiched between the process and begin statement (7)

variable L : LINE;

 variable VAL : INTEGER;

 file INFILE : TEXT is in INFILENAME;

 file OUTFILE : TEXT is out OUTFILENAME;

 variable BITDATA : BIT_VECTOR(WRDLEN-1 downto 0);

 variable BITADDR : BIT_VECTOR(ADDRLEN- downto 0);

begin

-- wait-statement checks for a rising edge (8)

-- the process waits for this signal (9)

wait on START until (START = '1' or START = 'H');

-- The contents of the file are read till the end-of-file is sensed and it stores the number of
occurrences of a particular value (10)

while not(ENDFILE(INFILE)) loop

 READLINE(INFILE, L);

 READ(L, VAL);

-- The contents of the file are read till the end-of-file is sensed and it stores the number of
occurrences of a particular value (11)

ADDR <= CONV_STD_LOGIC_VECTOR(VAL ,ADDRLEN);

- 97 -

-- This enables the READ and CHIP-SELECT signals and waits for a definite amount of time befor
reading the data from the DATA signal (12)

RD <= '1'; CS <= '1'; WR <= '0';

wait for RD_DEL;

-- the variable is converted to an integer (13)

VAL := CONV_INTEGER(DATA);

-- Read signal is disabled with a logic zero and also chip select (14)

RD <= '0'; CS <= '0';

wait for DIS_DEL;

DATA <= CONV_STD_LOGIC_VECTOR(VAL+1,WRDLEN);

WR <= '1'; CS <= '1';

wait for DIS_DEL;

-- write and chip select signals and waits until dis_del turns logic high (15)

-- the process waits until dis_del turns logic high (15)

WR <= '0'; CS <= '0';

wait for DIS_DEL;

-- Data signal is tristated to prevent bus contention (16)

DATA <= TRISTATE;

end loop;

-- This loop reads the memory contents and writes it to the output file (17)

for I in 0 to MAXADDR loop

ADDR <= CONV_STD_LOGIC_VECTOR(I,ADDRLEN);

RD <= '1'; CS <= '1'; WR <= '0';

wait for RD_DEL;

VAL := CONV_INTEGER(DATA);

RD <= '0'; CS <= '0';

wait for DIS_DEL;

DATA <= TRISTATE;

 WRITE(L, I);

 WRITE(L, ');

 WRITE(L, VAL);

- 98 -

 WRITELINE(OUTFILE, L);

end loop;

-- This is the end of histogram process (18)

end process HGM;

end KEEP_TRACK;

D.3 ALU model commented by subject 3

-- this vhdl program describes the system built using the lower level models built (1)

-- the control memory and the control logic are the other low level models (1)

-- the data unit is another lower level model used (1)

-- The IEE std logic library is used in this model for simulation purposes (2)

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

-- the following user-defined libraries are used in this vhdl model (3)

use work.PRIMS.all;

use work.all;

-- the entity modeled is created here (4)

entity SYSTEM is

 port(X,Y:i std_logic_vector(3 downto 0);

 CLEAR,START,INSTRUCTION,CLK: in std_logic;

 STATUS:out std_logic);

end SYSTEM;

-- Definition of the architecture of the system is described below (5)

architecture STRUCTURAL of SYSTEM is

-- The address is initialized to 00000 (6)

signal B_ADDRESS:std_logic_vector(4 downto 0):="00000";

-- The CONTROL_DATA signal is a nine bit logic vector (7)

- 99 -

signal CONTROL_DATA:std_logic_vector(9 downto 0);

-- The component is mapped to a lower level model (8)

component CONTROL_LOGIC is

 port(CLEAR,START,INSTRUCTION,CLK: in std_logic;

 STATUS:out std_logic; OUT_ADDRESS:inout std_logic_vector(4 downto 0));

end component;

-- The component DATA_UNIT is mapped to a lower level model (9)

component DATA_UNIT is

-- the component input ports are mapped appropriately to the data bus (10)

-- the component output ports are mapped to the control bus (10)

port(DATA_X,DATA_Y:in std_logic_vector(3 downto 0);CONTROL_BUS: in std_logic_vector(9
downto 0);

 CLK:i std_logic);

end component;

-- The component CONTROL_MEMORY is mapped to a lower level model (11)

component CONTROL_MEMORY is

 port(ADDRESS:in std_logic_vector(4 downto 0);

 OUT_VALUE:out std_logic_vector(9 downto 0));

end component;

-- Th usage of the library components are defined here (12)

for CM:CONTROL_MEMORY use entity work.CONTROL_MEMORY(TABLE);

for CL:CONTROL_LOGIC use entity work.CONTROL_LOGIC(CONTROL);

for DU:DATA_UNIT use entity work.DATA_UNIT(BEHAVIORAL);

begin

-- The port mapping for the CONTROL-LOGIC module is done here (13)

CL:CONTROL_LOGIC

port map(CLEAR,START,INSTRUCTION,CLK,STATUS,B_ADDRESS);

-- the control memory port mappings are connected as required (14)

CM:CONTROL_MEMORY

- 100 -

 port map(B_ADDRESS,CONTROL_DATA);

-- The DATA_UNIT port mappings are made here (15)

DU:DATA_UNIT

port map(X,Y,CONTROL_DATA,CLK);

end STRUCTURAL;

D.4 Johnson counter model commented by subject 4

use work.all;

-- this entity generates the clock waveform to be used by the johnson counter (1)

-- the on- and off-period are controlled by the parameters hi_time and lo_time specified in the
testbench (1)

entity CLOCKGEN is

generic(HI_TIME, LO_TIME : time);

port(RUN : in bit; CLK : out bit := '0');

end CLOCKGEN;

-- this is the architecture for the entit clockgen (2)

architecture ALG of CLOCKGEN is

begin

-- this process is inside the architecture (3)

-- working for the architectur alg is defined here (3)

process

begin

-- this process waits for a logic high (4)

wait until RUN = '1';

-- when run-signal goes high the signal clk is made high for hi_time (5)

while RUN = '1' loop

CLK <= '1';

wait for HI_TIME;

CLK <= '0';

wait for LO_TIME;

end loop;

- 101 -

end process;

end ALG;

use work.all;

-- this entity defines the interface of Johnson counter (6)

entity JC is

generic(RDEL, CLKDEL, EXTDEL : time);

port(QOUT: inout bit_vector(3 downto 0); CLK : in bit; RESET: in bit; LOAD: in bit; EXTIN : i
bit_vector(3 downto 0));

end JC;

-- this is the behavioral model for the entit jc (7)

architecture BEHAVE of JC is

begin

-- the process contains the functionality for the architecture behavioral (8)

process(CLK, RESET, LOAD)

begin

-- the counter is reset when the reset-signal goes high (9)

if (RESET = '1') then

QOUT <= "0000" after RDEL;

-- the Johnson counter output is changed from one valid state to the next valid output state after
some delay. (10)

elsif (CLK'event and CLK='1' and LOAD='0') then

case QOUT is

when "0000" => QOUT <= "0001" after CLKDEL;

when "0001" => QOUT <= "0011" after CLKDEL;

when "0011" => QOUT <= "0111" after CLKDEL;

when "0111" => QOUT <= "1111" after CLKDEL;

when "1111" => QOUT <= "1110" after CLKDEL;

when "1110" => QOUT <= "1100" after CLKDEL;

when "1100" => QOUT <= "1000" after CLKDEL;

when "1000" => QOUT <= "0000" after CLKDEL;

- 102 -

when others => QOUT <= "0000" after CLKDEL;

end case;

-- if load-signal is high and the clock goes high, external input is transfered to the jc output (11)

elsif (LOAD = '1' and CLK'event and CLK='1') then

QOUT <= EXTIN after EXTDEL;

end if;

end process;

end BEHAVE;

use work.all;

architecture STRUCT of JC is

use work.all;

-- this defines a d flip-flop (12)

component D_FLIPFLOP

generic(CLKDEL, RDEL : time);

port(D, CLK, RST : in bit; Q, QC : out bit);

end component;

-- it gives the ports and delays associated with the 3-input and- gate used (13)

component GATE_AND3

generic(GDEL : time);

port(I1, I2, I3 : in bit; O : out bit);

end component;

-- this defines the two-input and-gate (14)

component GATE_AND2

generic(GDEL : time);

port(I1, I2 : in bit; O : out bit);

end component;

-- a two-input or-gate is defined (15)

component GATE_OR2

generic(GDEL : time);

port(I1, I2 : in bit; O : out bit);

- 103 -

end component;

component GATE_IN

generic(IDEL : time);

port(I1 : in bit; O : out bit);

end component;

-- these statements bind the components declared to the library model of the corresponding
component. (16)

for all : D_FLIPFLOP use entity FLIPFLOP(BEHAVE_FLIPFLOP);

for all : GATE_AND3 use entity EAND3(BEHAVE_AND3);

for all : GATE_AND2 use entity EAND2(BEHAVE_AND2);

for all : GATE_INV use entity EINV(BEHAVE_INV);

for all : GATE_OR2 use entity EOR2(BEHAVE_OR2);

signal DA1, DA2, DB1, DB2, DC1, DC2, DE1, DE2, LOADP, BCEZABEP, APCEZABC,
APBPEZBCE, APBPCPZAPCE, DA, DB, DC, DE, AP, BP, CP, EP, BCE, ABEP, APCE, ABC,
APBPE, APBPCP : bit;

begin

ffa : D_FLIPFLOP

generic map(CLKDEL => 11 ns, RDEL => 8 ns)

port map(D=>DA, CLK=>CLK, RST=>RESET, Q=>QOUT(3), QC=>AP);

ffb : D_FLIPFLOP

generic map(CLKDEL => 11 ns, RDEL => 8 ns)

port map(D=>DB, CLK=>CLK, RST=>RESET, Q=>QOUT(2), QC=>BP);

ffc : D_FLIPFLOP

generic map(CLKDEL => 11 ns, RDEL => 8 ns)

port map(D=>DC, CLK=>CLK, RST=>RESET, Q=>QOUT(1), QC=>CP);

ffe : D_FLIPFLOP

generic map(CLKDEL => 11 ns, RDEL => 8 ns)

port map(D=>DE, CLK=>CLK, RST=>RESET, Q=>QOUT(0), QC=>EP);

- 104 -

INV1 : GATE_INV

generic map(IDEL => 1 ns)

port map(LOAD, LOADP);

AND1 : GATE_AND3

generic map(GDEL => 3 ns)

port map(QOUT(2), QOUT(1), QOUT(0), BCE);

AND2 : GATE_AND3

generic map(GDEL => 3 ns)

port map(QOUT(3), QOUT(2), EP, ABEP);

AND3 : GATE_AND3

generic map(GDEL => 3 ns)

port map(ap, QOUT(1), QOUT(0), APCE);

AND4 : GATE_AND3

generic map(GDEL => 3 ns)

port map(QOUT(3), QOUT(2), QOUT(1), ABC);

AND5 : GATE_AND3

generic map(GDEL => 3 ns)

port map(AP, BP, QOUT(0), APBPE);

AND6 : GATE_AND3

generic map(GDEL => 3 ns)

port map(AP, BP, CP, APBPCP);

-- following gates select input signals and feeds them to the flip-flops used (17)

-- two and-gates are inputs to flipflop-a (17)

AND7 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOAD, EXTIN(3), DA1);

- 105 -

AND8 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOADP, BCEZABEP, DA2);

-- following two and-gates feed flipflop-b (18)

AND9 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOAD, EXTIN(2), DB1);

AND10 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOADP, APCEZABC, DB2);

AND11 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOAD, EXTIN(1), DC1);

AND12 : GATE_AND2

generic map(GDEL => 3 ns)

port map(LOADP, APBPEZBCE, DC2);

D.5 Histogram model commented by subject 5

-- the declartions are needed for including the various component libraries (1)

-- these libraries contain the various component declarations (1)

library IEEE;

use STD.textio.all;

use IEEE.STD_LOGIC_MISC.all;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

-- this is the begining of the entity declaration for the hitogram (2)

-- this describes the various input signals and the corresponding output signals (2)

entity HISTGRAM is

- 106 -

 generic(ADDRLEN, WRDLEN : INTEGER;

 RD_DEL, DIS_DEL : TIME;

 INFILENAME, OUTFILENAME : STRING);

-- the data is an inout type (3)

-- the addr signal contains the address location of the data(4)

-- chip select represented b cs (5)

-- the read signal is represented by rd and write represented b wr (5)

port(DATA : inout STD_LOGIC_VECTOR (WRDLEN-1 downto 0) := (others => 'Z');

 ADDR : out STD_LOGIC_VECTOR (ADDRLEN-1 downto 0);

 START : in STD_LOGIC;

 CS, RD, WR : out STD_LOGIC);

end HISTGRAM;

-- the architecture description starts here (6)

architecture KEEP_TRACK of HISTGRAM is

-- the architecture has a few constant needed for the logic design (7)

constant MAXADDR : INTEGER := 2**ADDRLEN - 1;

constant TRISTATE : STD_LOGIC_VECTOR(WRDLEN-1 downto 0) := (others => 'Z');

signal DATAREG : STD_LOGIC_VECTOR(WRDLEN-1 downto 0);

begin

 -- The process HGM represents the histogram generator (8)

 HGM : process

-- various variables required for the hgm are declared (9)

-- they are also initialized (9)

variable L : LINE;

variable VAL : INTEGER;

file INFILE : TEXT is in INFILENAME;

file OUTFILE : TEXT is out OUTFILENAME;

variable BITDATA : BIT_VECTOR(WRDLEN-1 downto 0);

variable BITADDR : BIT_VECTOR(ADDRLEN- downto 0);

begin

-- the process waits for the rising edge signal (10)

- 107 -

wait on START until (START = '1' or START = 'H');

-- this is a loop to read the contents of the input file (11)

-- it processes each input when it is read (12)

-- this process continues till the end of the file is reached (13)

while not(ENDFILE(INFILE)) loop

 READLINE(INFILE, L);

 READ(L, VAL);

-- the following statement converts the incoming address to a vector of typ std_logic (14)

ADDR <= CONV_STD_LOGIC_VECTOR(VAL ,ADDRLEN);

-- This enables the READ and CHIP-SELECT signals and waits for a definite amount of tim
before reading the data from the DATA signal (15)

RD <= '1'; CS <= '1'; WR <= '0';

 wait for RD_DEL;

 -- the data that is read is now converted to an integer (16)

-- it is then stored (16)

VAL := CONV_INTEGER(DATA);

-- The READ and CHIP-SELECT signals are now disabled and the system waits for some time (17)

RD <= '0'; CS <= '0';

wait for DIS_DEL;

-- the incremented value of the data is now placed back on the data signal (18)

DATA <= CONV_STD_LOGIC_VECTOR(VAL+1,WRDLEN);

-- the write and chip-select signals are asserted (19)

-- the memory stores the incremented data (19)

WR <= '1'; CS <= '1';

wait for DIS_DEL;

-- after waiting for some time the asserted signals are de-asserted (20)

-- the data signal is tri-stated so that other entities can write to it (21)

WR <= '0'; CS <= '0';

- 108 -

wait for DIS_DEL;

DATA <= TRISTATE;

end loop;

-- the procedure described reads the data from the memory in serial order (22)

for I in 0 to MAXADDR loop

ADDR <= CONV_STD_LOGIC_VECTOR(I,ADDRLEN);

RD <= '1'; CS <= '1'; WR <= '0';

wait for RD_DEL;

 VAL := CONV_INTEGER(DATA);

RD <= '0'; CS <= '0';

wait for DIS_DEL;

 DATA <= TRISTATE;

 WRITE(L, I);

 WRITE(L, ');

 WRITE(L, VAL);

 WRITELINE(OUTFILE, L);

end loop;

end process HGM;

end KEEP_TRACK;

- 109 -

VITA

Pradeep Victor is a graduate student, doing his MS in Computer Engineering at Virginia

Polytechnic Institute and State Universi ty (Virginia Tech), Blacksburg, Virginia.

He will be taking up a position as a software engineer at Lockheed Martin Global

Telecommunications in Maryland.

