
A Turbo Approach to Distributed Acoustic Detection and Estimation

Sean Robert Egger

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in
partial fulfillment of the requirements for the degree of

Master of Science

In

Mechanical Engineering

Michael J. Roan, Chairman

Dennis W. Hong

Martin E. Johnson

November 17, 2009

Blacksburg, Virginia

Keywords: multi-sensor array, lossless information fusion, acoustic simulation

Copyright 2009, Sean R. Egger

A Turbo Approach to Distributed Acoustic Detection and Estimation

Sean Robert Egger

ABSTRACT

 Networked, multi-sensor array systems have proven to be advantageous in the

sensor world. A large amount of research has been conducted with these systems, with a

main interest in data fusion. Intelligently processing the large amounts of data collected

by these systems is required in order to fully utilize the benefits of a multi-sensor array

system. A robust but flexible simulation environment would provide a platform for

accurately comparing current and future data fusion theories.

 This thesis proposes a simulator model for testing fusion theories for these acoustic

multi-sensor networks. An iterative, lossless data fusion algorithm was presented as the

model for simulation development. The arrangement and orientation of objects in the

simulation environment, as well as most other system parameters are defined by the user

before the simulation runs. The sensor data, including noise, is generated at the

appropriate time delay and propagation loss before being processed by a delay and sum

beamformer and a matched filter. The resulting range-Doppler maps are modified to

probability density functions, and translated to a single point of reference. The data is

then combined into a single world model.

 An iterative process is used to filter out false targets and amplify true target

detections. Data is fused from each multi-sensor array and from each simulation run.

Target amplitudes are gained if they are present in all combined world models, and are

otherwise reduced. This thesis presents the results of the fusion algorithm used, including

multiple iterations, to prove the algorithms effectiveness.

 iii

Acknowledgements

 I would like to thank my graduate advisor, and committee chair, Dr. Michael

Roan, for his support through graduate school. I appreciate the valuable advice he has

given me, and the understanding that he has always shown me. He provided me with an

opportunity to learn and grow, and the motivation to pursue it. I would also like to thank

the rest of the Virginia Tech faculty, including Dr. Dennis Hong and Dr. Martin Johnson

on my committee, for guiding me through a memorable and fulfilling college career.

 Thank you to Elizabeth Hoppe and Maximilian Opheim for being true friends. Liz

was always willing to answer my questions and offer help, regardless of how often I

needed it, and made lab a fun place to work each and every day. Max has been, and

always will be a true friend, and it’s an honor to know him. Thanks for everything my

friend, slowly but surely the merger continues!

 My parents, Robert and Deborah Egger, deserve more appreciation than I have

words for. Their guidance has prepared me for the world, while their never-ending

encouragement allowed me to always be myself. I lead a blessed life, and I owe it all to

my parents. I would also like to thank the rest of my family for their love and support,

including Cory, the best brother anyone could hope for.

 Most importantly, I would like to thank my wife Bree-anne. I would not be where

I am today without her next to me. Her support as a friend, and her love as a wife have

pushed me to be the best man I can be. She is the best woman I have ever met, and I look

forward to the rest of our lives together.

 And of course, thank you to Branagan, my son. You are my whole world. Thank

you for the daily playtime sanity breaks from a busy life. You amaze me.

 iv

Table of Contents

List of Figures ………….……………………………………….…………………….…vii

List of Tables…………………………………..…………………..……………..……….x

List of Variables…………………………………….……..…….……………….….……xi

Chapter 1: Introduction.………………………………………….……..…….....………...1

1.1 Thesis Outline…………………………….…………….……….….....………1

1.2 Motivation and Relevance of Research………………………...…….…...….2

Chapter 2: Background…………….………………………………………...…..….…….4

 2.1 Sound Propagation……………………………….….……..…………...……..5

 2.2 SONAR……………………………………………..…….…………….....…..8

 2.3 Beamforming………………………………………….………………….….13

 2.4 Matched Filtering…………………………….……….……....….…………..16

 2.5 Current Applications of Microphone Arrays………….………….………….17

Chapter 3: Simulation Development………………..…………...…….…………………19

 3.1 Overview of Simulation Code……………………………………………….19

 3.2 Establishment of Variables and Assumptions…..……………..…………….23

 3.3 Data Generation………………………………………….………………......34

 3.3.1 Signal Generation……………………………………………….….34

 v

 3.3.2 Noise and Propagation Loss Simulator………...……..……………37

 3.4 Signal Processing……………………………………………..……………...40

 3.4.1 Beamformer…………………………………..……..……………..40

 3.4.2 Matched Filter………………………..…………...………………..42

 3.4.3 False Target Generator…………………………....………………..45

 3.4.4 Impulse Substitution………………………....….…………………46

 3.4.5 Gaussian Convolution………….…………..…..………….……….48

 3.5 Target Processor………………………….…………...….….……………….52

 3.5.1 Range Correction………………….………..…….…………….….52

 3.5.2 Translation…………………………….…….……….……….……54

 3.6 Fusion of Data……………………………..………..………………….…….59

 3.6.1 Fusion…………………………….…………..……………….……59

Chapter 4: Summary and Conclusions……….………..…………..………………….….66

Chapter 5: Future Work…………………………..………………….…………….…….71

References………………………………………………………..…….……….………..74

Appendix A. Source Code………...……………….……………………….……………77

 A.1 VAL_simulator_main.m…………………………………………..……...…77

 A.2 angle_from_array.m…………………………………………………..…..…84

 A.3 Data_Ang_Gen.m……………………………………………….………..…85

 A.4 bform_b5.m………………………...…………………….………………….86

 A.5 bform_ang3.m………………...…………………..…………………………87

 A.6 peakfinder2D.m………………………….……………….………………….88

 A.7 wave.m……………………………………………..………………………..89

 vi

 A.8 spikemaker.m………………………………………………….…………….92

 A.9 peakfinder3D.m…………………….…………….………………………….94

 A.10 maxvalAngles.m…………………...………………………………………95

 A.11 combiner.m…………………………………...……………………………95

 vii

List of Figures

Figure 2.1. Demonstration of the planar wave assumption. If it is assumed that the array

is in the farfield and that the width of the array is significantly less than the distance of

transmission, then the sonar waves can be assumed planar at the sensor array. ………….7

Figure 2.2. Demonstration of the Doppler affect. The motion of the sound sources

compresses or expands the sound waves, resulting in a measured frequency shift at the

receiver…………………………………………………………………………………...12

Figure 2.3. Demonstration of time delay between sensors due to orientation. If the

microphone array is not oriented parallel to the planar sound waves, then the individual

sensors receive the signal at different time delays…………………………………….....14

Figure 3.1. Simulator Code Flow Chart. The simulator modules are divided up into 4

categories based on the type of information they process. This flow chart shows those

categories with color…………………………………………………………….…….…20

Figure 3.2. Simulation environment coordinate system. The simulation environment is

200m by 200m with the origin in the bottom, left corner. The x-axis is 0 degrees with

positive rotation being counter-clockwise……………………………………………….24

Figure 3.3. This figure shows the arrangement and orientation of the objects used in the

example simulation for most results in this thesis. The numerical information can be

found in Table 3.2 and Table 3.3…………………………………………………..…….27

Figure 3.4. Spectograms of the Beamformer module output using various signal types.

The graphs show a chirp signal, a ton, and white noise from left to right. ……….…….28

Figure 3.5. Output of the Data Generation section with various SNR values. From left to

right and top to bottom, the figures show SNR values of infinity, 20, 10, and 0.5. ….…31

Figure 3.6. Range-Doppler Map Output from Gaussian Convolution Module Using

Different Variance Values. The larger variance values result in a wider Gaussian curve,

and therefore larger target detection areas in the range-Doppler map. ………………….33

 viii

Figure 3.7. Output from the Signal Generator module showing a zero padded signal

received by the sensor array. The number of samples before signal in the data is

calculated based on the distance from the sound source to the sensor array, including

echo distance…………………………………………………………………….……….35

Figure 3.8. Detailed view of the output of the Signal Generator module. This view

shows the individual time-delayed signals from each microphone in the array. …….….37

Figure 3.9. Output of Noise and Propagation Loss Simulator module using a signal to

noise ratio of 0.5. The original signal is no longer visible at this signal to noise ratio

level………………………………...…………………………………………………….39

Figure 3.10. Output of the Beamformer module for Array 2, steered directly toward the

target at -45 degrees. There is no noise in the system. The output is a single signal as

opposed to signals for each individual microphone………………………………….…..41

Figure 3.11. Spectogram of the output of the Beamformer module for Array 2 at -45

degrees, The first graph shows the results using an SNR of 0.5, the second graph has all

noise suppressed. ………………………………………………………………………...42

Figure 3.12. Scaled image output of the Matched Filter module for Array 2 at -45

degrees. The first graph show the results of using an SNR value of 0.5, the second graph

has all noise suppressed……………………………………………………………...…..43

Figure 3.13. Cross section of the range-Doppler map from the Matched Filter module

for Array 2 at -45 degrees. This cross section is taken at a neutral Doppler value…..…..44

Figure 3.14. Cross section output of the False Target Generator module for Array 2 at -

45 degrees. This cross section is from a neutral Doppler value. The figure shows the

addition peaks added by the module…………………………………………………..…46

Figure 3.15. Cross section output of a range-Doppler map before and after the Impulse

Substitution module for Array 2 at -45 degrees. ……………………………………...…48

Figure 3.16. Range-Doppler map output of the Gaussian Convolution module for Array

2 at -45 degrees. This figure shows the peak at the true target range of 2230 samples….49

 ix

Figure 3.17. Detailed view of the output of the Gaussian Convolution module for Array

2 at -45 degrees. This view shows a close up of the peak at the true target location of

2230 samples……………………………………………………………………...……...50

Figure 3.18. A demonstration of perceived target distance due to echo effects. In order

to determine the true target distance, the echo distance must be calculated and

subtracted…………………………..……………………………………………… ……53

Figure 3.19. Output of the Translation module for Array 2, 45 degrees from the origin.

The map is a slice of the whole range-Doppler map at a neutral Doppler value, causing

the targets to appear as tall, narrow bands…………………………………………….....55

Figure 3.20. Cross sectional view of the output of the Translation module for Array 2 at

45 degrees from the origin. The highlighted box shows the area where the detailed view

in Figure 3.21 came from. ……………………………………………………………….56

Figure 3.21. Detailed view of the cross section output from the Translation Module for

Array 2 at 45 degrees from the origin. The true target location has been marked at 2230

samples. ……………………………………………………………………………..…...57

Figure 3.22. Maximum values for each angle from the origin of Array Model 2. The true

location at X=46 is highlighted in the figure…………………………………….………58

Figure 3.23. Maximum value for each angle from the origin of the World Model after a

single iteration. The true target location at X = 46 is shown in the figure ……………...60

Figure 3.24. World Model at 45 degrees from the origin after one iteration. The true

target distance at 2061 samples is shown in the figure………………………..…………61

Figure 3.25. Output from the Fusion module after various iterations From top to bottom

and left to right, the number of iteration of each figure are 1, 5, 10, 15, 20, and 25. A

single, definitive target can only be seen in the final figure after 25 iterations. …….…..63

Figure 3.26. World Model at 45 degrees from the origin after 25 iterations. The target is

determined to be 2069 samples from the origin, which is 8 samples, or less than 1 meter

away from the true target location…………………………………………………….....64

 x

List of Tables

Table 3.1. Chart shows the number of times that each module category gets called in a

single simulation iteration. The number of times they are called is dependent on the type

of data to be processed……………………………………………….…………………..21

Table 3.2. Table shows some of the user-defined parameters used in most of the example

simulation results in this thesis. The parameters for each microphone array are listed….26

Table 3.3. This chart shows some of the user-defined parameters used for most example

simulation results in this thesis. The parameters for the target and sound source are

listed……………………………………………………………………………………...26

Table 3.4. Table shows some of the user-defined parameters used in most of the example

simulation results in this thesis. The parameters for the signal, sampling, and noise are

shown……………………………………………………………………….……………30

 xi

List of Variables

 Laplace operator

p pressure

c speed of sound

t time

d density

k adiabatic index

T temperature

r propagation distance

s number of samples

fs sampling frequency

transv speed of transmitter

recv speed of receiver

f frequency of the signal

f perceived frequency shift

s(t) original signal

wi weight value

i time delay

m lag

x(t) received signal and noise

 xii

T signal duration

A peak amplitude

x0 curve center in x-axis

y0 curve center in y-axis

σx variance of curve in x-axis

σy variance of curve in y-axis

 1

Chapter 1:

Introduction

This chapter will serve as an introduction A Turbo Approach to Distributed

Detection and Estimation. This introduction will include a summary outline of the thesis,

followed by an explanation of the motivation for this thesis and the relevance to research.

1.1 Thesis Outline

 This chapter discusses the motivation and significance of the research presented

in this thesis. Chapter 2 provides a brief background on the critical components of multi-

sensor array fusion for sonar. These components include sonar fundamentals, sound

propagation, special processing, matched filtering techniques, and data fusion theory.

Also provided in Chapter 2 are current and future applications for this technology. In

chapter 3, a detailed discussion of the simulation code is presented beginning with an

overview of the simulation code structure. The parameters and assumptions used in the

simulation code are also established in Chapter 3. Each subsequent section of Chapter 3

presents detailed descriptions of the simulator modules. The purpose of each module is

described, and graphical results are presented to validate the modules effectiveness and

 2

operation. The effects that the user defined parameters have on the output of the modules

is also presented in these sections. A summary and conclusions of the work are discussed

in chapter 4 of this thesis. Chapter 5 will wrap up the thesis by presenting suggestions for

future advancement of the research.

1.2 Motivation and Relevance of Research

 There has been a large volume of work performed in multi-sensor, networked

arrays in the past several years [1-22]. A networked system of multi-sensor arrays has

many advantages. Multi-sensor arrays are innately robust against imprecision of

individual sensors because post processing combines the data from all the sensors in the

array [13]. Because of this, the cost associated with multi-sensor systems can be lower

than that of single sensor systems where high fidelity hardware is required. The lower

cost of the sensors also translates to more readily available hardware, meaning quick

deployment in time sensitive applications. Sensor arrays can be used to accurately

determine the direction and velocity of a target of interest due to the separation of sensor

nodes. They can also be effectively used to gather information about very large areas of

interest.

 3

Currently, the main interest is in fusion of the sensor-level information collected

by each sensor array [17]. This is an advancement over fusion of post-processed data

(such as track fusion), which has an associated loss of information inherent in the

formation of tracks [11]. There is desire for lossless information fusion methods that are

robust to changes in environmental and situational factors, while also staying

computationally feasible in real world situations. A primary motivation for this thesis

was the paper “Lossless Information Fusion for Active Ranging and Detection Systems”,

by Sibul, Roan, Schwartz, and Coviello, which discusses a data fusion technique for

multi-sensor array networks [17]. This paper served as a basis for the simulator algorithm

model used in this thesis.

To accurately compare the many data fusion techniques currently in development,

a fully controlled but flexible testing environment is needed. In order to achieve this

environment, a robust simulator was developed. This thesis explores the development of

that simulator code, including example simulation results and a discussion of parameter

effects.

 4

Chapter 2:

Background

 Multi-sensor, networked arrays can be used to measure any wavefield type

depending on the particular type of sensors used. This thesis, however, will focus on

acoustic wavefields and the post processing of acoustic signals using distributed sonar

signal processing methods. The software discussed in this thesis simulates 2-dimensional

acoustic testing environments. Adaptation of the software to simulate other types of

wavefields (such as electromagnetic for distributed radar applications) or calculate 3-

dimensional environmental models is possible, and will be discussed in the final chapter

of this thesis. Due to the focus on acoustics, this section will present necessary

background information on acoustic processing. This discussion will cover sound

propagation characteristics and sonar, including different types of sonar and the methods

for measuring signals. An explanation of beamforming and matched filtering techniques

will also be presented, with a focus on the versions used in this simulation code.

 5

2.1 Sound Propagation

Acoustic waves are longitudinal pressure waves that propagate radially outward

from the sound source [14]. Sound waves can be modeled using the linear equation for

longitudinal waves presented below

 







 2

2

2
2 1

dt
pd

c
p (eq. 2.1)

where  is the Laplace operator, p is the pressure, c is the speed of sound, and t is time.

This equation represents acoustic wave propagation in two dimensions, which is

sufficient for all simulation calculations discussed in this thesis.

 Sound propagation is dependent on the signal frequency, the propagation

medium, and environmental factors. Sound requires matter to propagate, and the speed of

sound is dependent on the medium’s modulus of elasticity and density [14]. The example

simulations in this thesis assume air as the propagation medium. The speed of sound in

air is dependent on the temperature of the air, and can be calculated using the equation

 k
d
pc  (eq. 2.2)

 6

where p = pressure of air, d = density of air, and k equals the adiabatic index or ratio of

specific heats. Since the ratio of pressure to density of air is a constant, the equation can

be approximated to

 Tc 60.05.331  (eq. 2.3)

where T is the temperature in Celsius. The speed of the sound waves is determined by the

user prior to the simulation.

 When considering multi-sensor acoustic arrays, the sound field can be classified

into three different range-dependent regions. These regions are known as near field and

far field, with the area in between called the transition area. Sound propagation

characteristics are difficult to simulate and analyze in the near field because small

changes in distance and orientation of objects can result in large changes in sound

pressure levels. The distance to the transition area is dependent on the specific

characteristics of the microphone array used [7]. For all simulations in this thesis, the

width of the microphone array is considered significantly smaller than the distance of

transmission, and it is assumed all received signals are in the far field. This is typically

referred to as plane wave propagation.

Because all sources in the simulation are assumed to be far field sources, further

assumptions can be made about the wavefields received by the microphone arrays from

these sources. When the transmission distance is significantly larger than the sensor

 7

spacing in the multi-sensor array, then across the width of the array, the curve of the

wavefield due to spherical propagation is considered negligible. The sound waves are

assumed planar and parallel to each other for all calculations in this thesis. This

assumption is referred to as the plane wave approximation and is common in acoustic

analysis. This assumption also dictates that if the direction of the multi-sensor array is

exactly normal to the incoming wavefield, then all sensors in the array will receive the

signal simultaneously. A figure demonstrating this assumption can be seen below.

Figure 2.1. Demonstration of the planar wave assumption. If it is assumed that the array is in the farfield

and that the width of the array is significantly less than the distance of transmission, then the sonar waves

can be assumed planar at the sensor array.

 8

The energy of sound decays with distance and is dependent on the frequency of

the signal, the medium, and the propagation environment. The energy of the sound

waves is absorbed by the medium and into the surrounding surface areas as the sound

reverberates. This is especially true of higher frequency and ultrasonic sound waves [14].

Assuming a point source transmitter in a 3-dimensional environment, the sound waves

transmit spherically outward and the signal intensity can be generalized by the Inverse

Square Law [14]. The Inverse Square Law of sound dictates that the intensity of the

sound is inversely proportional to the distance the sound has travelled, or

2

1
r

I  (eq. 2.4)

where I is the intensity of the sound wave per given area, and r is the distance travelled.

Complex algorithms are used to represent additional sound propagation loss factors in

real world experiments. However, the simulator code uses a simplified sound

propagation-loss model.

2.2 SONAR

Sonar, which stands for SOund Navigation And Ranging, is a sensing method

that uses acoustic waves to gather information about a target or environment. There are

 9

two forms of sonar sensing, active and passive [9]. Passive sonar uses a receiver to

collect information about signals of interest. Target detection and classification can be

achieved by identifying particular acoustic signatures in the received signal. One main

challenge with passive sonar systems is that the characteristics of the incoming signal are

typically unknown. This has necessitated the development of complex classification

algorithms to distinguish signals of interest from background clutter [15].

 Active sonar systems use a transmitter to emit a specific signal, or ping, into an

environment and then listen for echoes of that signal to reflect back to the receiver. There

are three types of active sonar: monostatic, bistatic, and multistatic. An active system is

classified as monostatic when the active source and the receiver are co-located. A bistatic

system has a single active source and a single receiver separated in space, though

typically the active source is used as a pinger and a receiver. Multistatic systems have

multiple active sources and/or receivers that are also separated in space [14]. The

simulator developed for this thesis is customizable for any number and arrangement of

active sources and receivers, however at least one active source must be present.

 Active sonar ranging is achieved by measuring the time delay between when the

signal is transmitted and when the echo reaches a given receiver. Typically, sonar is used

in underwater environments because sound waves propagate easily underwater.

However, the example simulations presented in this thesis assume in air conditions, so

 10

the calculations shown will be performed using the speed of sound waves traveling

through air in ideal conditions at 343 meters per second. Assuming this, and the time

delay between transmission and reception, the distance to the target can be calculated

using

c
td  (eq. 2.5)

 where t is the time of transmission, and c is the speed of sound. If the number of samples

until reception is known, as is the case in the simulated environment discussed in this

thesis, the equation above can be modified as

sf

scd  (eq. 2.6)

where s is the number of samples before the ping is received, and fs is the sampling

frequency used in the simulation. Assuming a sampling frequency of 5000 Hz and that

the ping was heard after 7500 samples, the distance to the target can be calculated as

follows

 m
Hz

samplessm
f
scd

s

5.514
5000

7500/343 







The bearing of the target can also be determined when multiple receivers are

using together with each other in a multi-sensor array due to the time delay between

 11

received signals for each of the sensors. The process used in this thesis to analyze the

bearing is called beamforming and will be discussed later in this chapter.

The simulator assumes stationary transmitters and microphone arrays. However

an understanding of the Doppler Effect is required to understand the matched filtering

and fusion algorithms used. If the target is not stationary, then the velocity can also be

estimated by exploiting the Doppler effect. The Doppler effect is the change in frequency

of a signal due to the motion of the source or receiver. As a source or receiver move with

respect to the emitted wavefields, the waves undergo an expansion or compression,

resulting in the receiver measuring a perceived lower or higher frequency respectively

[9]. A figure demonstrating the Doppler effect can be seen below.

 12

Figure 2.2. Demonstration of the Doppler affect. The motion of the sound sources compresses or expands

the sound waves, resulting in a measured frequency shift at the receiver.

The change in frequency is referred to as a Doppler shift, and can be calculated

using the equation







 


c

vv
ff rectrans (eq. 2.7)

where transv and recv are the speeds of the transmitter and the receiver respectively, f is

the frequency of the unaltered signal, c is the speed of sound through the medium,

and f is the perceived frequency shift. Note that for situations where the motion of the

transmitter and receiver is angular with respect to each other, the velocities used in the

equation are the normal velocity components.

 13

 In an active sonar system where the transmitted signal is known, the velocity of

the target can be determined. A comparison is made between the signal received by the

sensor array and several frequency-shifted versions of the known signal, and the relative

velocity of the target can be calculated.

2.3 Beamforming

As discussed earlier in this chapter, it is assumed that as sound waves propagate

radially outward from the signal source, they reach the receiver in the far field as a plane

wave. If the orientation of multi-sensor array is not normal to the direction of the sound

source, then the distance between each individual microphone and the sound source will

vary along the array. Figure 2.3 below illustrates the geometry.

 14

Figure 2.3. Demonstration of time delay between sensors due to orientation. If the microphone array is not

oriented parallel to the planar sound waves, then the individual sensors receive the signal at different time

delays.

This difference in distance translates to a difference in the time of arrival of the

signal at each microphone in the array. Using this phase delay, a bearing estimate of the

signal source can be made using a process called beamforming. A beamforming

algorithm uses a calculated set of frequency dependent weights applied to each channel

of the array to focus the array towards a specific angle. The resulting weighted channels

are then summed together to provide a single output per angle of interest, or steering

angle. Selecting the correct set of weights will phase align all of the channels if the

 15

beamformer is steered toward the target and therefore coherently sum the signal at the

angle of interest for each channel. Signal sources at other angles result in out of phase

summation and are reduced.

There are several beamforming algorithms in use today, categorized as fixed or

adaptive. Fixed beamformers are signal independent, while adaptive beamformers use

properties of the incoming signal during processing to improve performance. Another

classification of a beamformer is whether they are narrowband or broadband.

Narrowband beamformers are valid for only a single frequency of interest while steering

the array. Beamforming at a specific frequency other than that of the incoming signal

frequency can result in significant signal distortion. Broadband beamformers involve

more complex algorithms to achieve beamforming across the desired spectrum of

frequencies without distorting the signal of interest [12].

The simulation developed for this thesis uses a conventional, narrowband, delay

and sum beamformer. This beamformer uses a Fourier transform to translate the raw data

into the frequency domain before applying the appropriate weight vector. Once the vector

is applied, the data is summed and transformed back into the time domain. While the

beamformer processes the data collected by each microphone in the multi-sensor array,

the output is a single arriving from the angle of interest. The beamformer output is

described by the equation

 16

   





1N

oi
iii tswtB  (eq. 2.8)

where  ts is the signal received by the microphone, iw is the weight applied to the

microphone, and i is the time delay.

2.4 Matched Filtering

 A matched filtering process compares the known transmitted signal with the

received, beamformed signal to detect the presence of the known signal. The matched

filter cross-correlates the beamformer output for a given steering angle with hypothesized

versions of the transmitted signal that are both time shifted as well as Doppler shifted

[21]. The cross-correlation function for the matched filter is

       
T

dtmtxts
T

mR
0

1
 (eq. 2.9)

where m is the cross-correlation lag, T is the signal duration,)(ts is the original signal,

and)(tx is the combined signal and noise. The matched filter produces a 2-dimensional

matrix of values for the microphone array at the given steering angle of the beamformer.

This matrix represents the amplitude of the received signal per given range and Doppler

shift, and is referred to as a range-Doppler map. These range-Doppler maps are treated as

 17

sufficient statistics for each array at the angle of interest and form the basis for the world

models developed by the simulator.

2.5 Current Applications of Microphone Arrays

 Multi-sensor, networked arrays such as microphone arrays are currently being

used in a variety of ways, and new applications are continuously being developed for the

near and distant future. Military defense organizations and Homeland Security are some

of the primary users of multi-sensor networked arrays today [16]. Networked arrays have

proven very advantageous for underwater tracking such as torpedo defense systems on

submarines and mine searching [1]. These array systems provide a large area of sensing

coverage while also effectively providing robustness against false detections. Multi-

sensor arrays have also proven useful in applications where multiple sensors are required

for triangulation such as in sniper locating systems. Anti-terrorism technologies are also

currently in high demand and research is currently being conducted on how to further

apply networked multi-sensor arrays to the field [16].

 Networked, multi-sensor arrays can be easily deployed in a large variety of

environments, and therefore many additional potential applications for these systems

exist. When human interaction needs to be minimized due to inhospitable conditions,

 18

such as a nuclear waste site, these systems can be set up quickly and require little to no

interaction during data collection. Disposable data collection systems for highly

dangerous situations are also feasible with multi-sensor arrays due to their low cost.

Multi-sensor arrays are also ideal candidates for very large environments, such as deep

sea and outer space, because large coverage areas can be achieved by simply adding

additional multi-sensor arrays to the system. Search and rescue missions in particular are

dependent on quick deployment and a large coverage area, and can profit from the user of

multi-sensor array systems.

 19

Chapter 3:

Simulation Development

3.1 Overview of Simulation Code

 This section provides a detailed overview of the simulator software architecture

and development. This overview will assist in understanding the specific objectives of

each module in the simulator code. Specific details of the simulator modules will be

presented later in this chapter. The figure below shows a flowchart of the simulator

software architecture.

 20

Figure 3.1. Simulator Code Flow Chart. The simulator modules are divided up into 4 categories based on

the type of information they process. This flow chart shows those categories with color.

The software simulator can be divided into four main sections, based on the type

and level of data that is processed by that section. These sections are illustrated in Figure

3.1 above by color. The first section is referred to as Data Generation, and it develops the

data for each multi-sensor array in the simulation. The Signal Processor section, is called

 21

once for each angle step of each multi-sensor array, and is therefore lower level than the

Data Generation section. A third section, the Target Processor, is the lowest level section

because it handles each detected target for each angle handled by the Signal Processor,

and is called more times per simulation than any other section. The final section, the

Fusion section, has the highest level as it is only called once for each simulation run and

processes all multi-sensor data at once. The table below demonstrates the typical number

of times a section will be called in single iteration of the simulator.

Section
Type of Data
Processed Typical Step Size

Number of iterations
called

Data Generation array 3 3

Signal Processing angle 180 540

Target Processing target 35 18900

Fusion world model 1 1

Table 3.1. Chart shows the number of times that each module category gets called in a single simulation

iteration. The number of times they are called is dependent on the type of data to be processed.

The Data Generation section can be further broken down into two modules. The

first module, referred to as the Signal Generation module builds the signal received by

each sensor in each array at the appropriate phase for the sensor geometry and

orientation. The second module increases the realism of the simulated signal from the

 22

previous module by simulating noise and propagation loss. This module is referred to as

Noise and Propagation Loss Simulation. After being processed by this module, the phase

delayed signal matrices are also zero-padded to simulate echo distance from the signal

source to the receiving sensor via the target reflection. The output of the Data Generation

section is the simulated raw data that would be collected by each sensor array in a real

world experiment.

There are five modules that make up the Signal Processing section. Each of these

modules is called once per angle of interest for each multi-sensor array. The first module,

called the Beamformer, uses narrowband, delay and sum beamforming to increase the

signal to noise ratio of signals arriving from a specific angle of interest. The beamformed

data is then sent to the Matched Filter module where a range-Doppler map is generated

for each angle step. To increase realism and further demonstrate target localization

ambiguity, false targets are added to the range-Doppler map in the False Target

Generator module. This new range-Doppler map is then passed to the next module called

Impulse Substitution. It is thresholded and each remaining peak is replaced by a single

impulse of equal amplitude. The final module of the Signal Processing section is called

Gaussian Convolution. This module performs a matrix convolution with a 2-dimensional

Gaussian curve, resulting in a probability density map of target range versus Doppler

value.

 23

 The next simulator section processes each detected target in the probability

density map individually. The detected range of the target in the probability density map

needs to be recalculated to compensate for echo distances. The module that calculates

this is called Range Correction. Once the true target range has been determined, the

target location with respect to the environment origin is calculated for each target in the

map using the Translation module.

The origin-translated maps are then stacked into one 3-dimensional matrix for

each sensor array. Each of these matrices consists of target range versus Doppler versus

angle, with each element value representing signal amplitude. These 3-dimensional maps

are called “array models” as they represent all processed data received by each multi-

sensor array.

 The Fusion section has one module, also called Fusion, which combines the array

models for each sensor array into one model, referred to as the “world model”. This a

posteriori world model then becomes the a priori model for the next simulation iteration.

3.2 Establishment of Variables and Assumptions

Initialization of the simulation begins with a set of simulation parameters being

established by the user. This section discusses the variables required by the simulator, the

 24

level of control the user has on the variables, and what effect changing some of those

variables has on the simulation results. This section will also establish any major

assumptions in the simulator development.

The simulator environment is a 2-dimensional area of any size determined by the

user, with an origin defined at the bottom left corner when looking from an overhead

view. The positive x-axis is defined as 0° from the origin, and rotation is positive in the

counter-clockwise direction. For all demonstrations in this thesis, a 200m by 200m

environment is used. Figure 3.2 below establishes this simulator coordinate system.

Figure 3.2. Simulation environment coordinate system. The simulation environment is 200m by 200m with

the origin in the bottom, left corner. The x-axis is 0 degrees with positive rotation being counter-clockwise.

 25

The first set of parameters established by the user set up the initial location and

orientation of objects in the simulated environment. In real world applications, the

locations and orientations of these objects are very rarely completely controllable. Often,

equipment arrangement is subject to the type of equipment used, the desired target type,

and environmental limitations. For this reason, flexible orientation geometry in a

simulator is desirable. The number of sub-arrays to be used can be defined by the user,

and for each array there are 4 user-defined variables. These include the number of

sensors in each array, the x and y-coordinates of the array, and the orientation angle of

the array. The array element spacing is also user-defined, and is the same for all sub-

arrays in the simulation. The flexibility of these parameters allows the user to replicate

existing sensor equipment in the simulation. Also, controlled comparisons can be

performed between differing experimental set ups using these parameter controls.

For example simulation results generated in this thesis, three microphone arrays

are used, with 8 microphones per array, a spacing of 0.75 inches, arranged and oriented

according to the following table.

 26

Array Number of
Elements

Element
Spacing (in)

X Coord.
(m)

Y Coord.
(m)

Orientation
(degrees from x-

axis)

1 8 0.75 10 10 45

2 8 0.75 50 150 270

3 8 0.75 180 80 180

Table 3.2. Table shows some of the user-defined parameters used in most of the example simulation results

in this thesis. The parameters for each microphone array are listed.

The x- and y-coordinates of signal sources and targets in the simulation have to be

established as well. Orientation angle for sources and targets is not required because they

are always assumed to be omni-directional in the simulator. For example simulation

results used in this thesis, one signal source and one reflector target are used, arranged

according to the coordinates in the following table.

Object X Coord. (m) Y Coord. (m)

Target 100 100

Source 80 20

Table 3.3. This chart shows some of the user-defined parameters used for most example simulation results

in this thesis. The parameters for the target and sound source are listed.

A graphical representation of this example simulation environment can be seen in

Figure 3.3 below.

 27

Figure 3.3. This figure shows the arrangement and orientation of the objects used in the example

simulation for most results in this thesis. The numerical information can be found in Table 3.2 and Table

3.3.

Several other parameters must be established by the user in order to define how

data processing should be executed. Both the signal characteristics as well as the

sampling frequency can be individually set, though careful consideration should be taken

to ensure the sampling frequency is greater than or equal to the Nyquist rate of the chosen

signal, or

 28

2 ns ff (eq. 3.1)

where  is the highest frequency found in the signal with a non-zero energy. The Signal

Generator can take any signal type as an input, though generally a single tone, a chirp, or

white noise are used. The signal reaches amplitude and ends instantaneously and does not

ramp to or from the desired frequency. The signal must be fully defined by the user,

including the signal amplitude, frequency range, and length.

 Figure 3.4 below shows spectograms of three different signals after being

processed by the Beamformer module. The chirp signal increases from 1000 Hz to 2000

Hz, the tone is at 1500 Hz, and the white noise is Gaussian. All three signals last for 0.25

seconds, and there is no noise in the simulation.

Time

Fr
eq

ue
nc

y

Chirp

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

Time

Fr
eq

ue
nc

y

White Noise

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

-200

-150

-100

-50

0

Time

Fr
eq

ue
nc

y

Tone

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

-150

-100

-50

0

-140

-120

-100

-80

-60

-40

-20

0

20

Figure 3.4. Spectograms of the Beamformer module output using various signal types. The graphs show a

chirp signal, a tone, and white noise from left to right.

 29

For all three signal types, the fusion algorithm is successful in determining the

true target location. The signal type does not effect the number if iterations required to

make a determination.

Noise is generated in the simulator according to a desired signal to noise ratio that

is determined prior to the simulator running. Using the user-defined signal amplitude and

desired signal to noise ratio, the average noise amplitude is calculated and applied to the

signal with the following equation.

SNR
A
A

noise

signal 







2

 (eq. 3.2)

where A is the RMS amplitude and SNR is the signal to noise ratio. Solving for noise

amplitude gives the equation

SNR
A

A signal
noise  (eq. 3.3)

The user can opt for an infinite signal to noise ratio indicating no noise, or to have

any level of noise present in the system. Lower signal to noise ratios result in more

difficult detection of the target echo. This is desired to fully demonstrate the abilities of

the fusion method being tested in the simulator. The table below shows typical sampling,

 30

signal, and noise parameters for a simulation run. These parameters will be used and

referenced for many examples in this thesis.

Signal Type Signal Length
(sec)

Signal Freq
(Hz)

SNR Sampling Freq
(Hz)

Chirp 0.25 1000-2000 0.5 5000

Table 3.4. Table shows some of the user-defined parameters used in most of the example simulation results

in this thesis. The parameters for the signal, sampling, and noise are shown.

The following figure illustrates the effect that the chosen signal to noise ratio has

on the generated signal. The first graph shows a chirp signal with no noise effects. The

other graphs in Figure 3.5 show increasingly higher signal to noise ratio values,

demonstrating the effect noise has on obscuring the signal.

 31

0 5000 10000 15000
-0.5

0

0.5
No Noise

samples

A
m

pl
itu

de

0 5000 10000 15000
-1

-0.5

0

0.5

1
SNR = 20

samples

A
m

pl
itu

de

0 5000 10000 15000
-2

-1

0

1

2
SNR = 10

samples

A
m

pl
itu

de

0 5000 10000 15000
-5

0

5
SNR = 0.5

samples

A
m

pl
itu

de

Figure 3.5. Output of the Data Generation section with various SNR values. From left to right and top to

bottom, the figures show SNR values of infinity, 20, 10, and 0.5.

As the signal to noise ratio is decreases and the ambiguity of the signal in the data

is increased, more iterations of the fusion algorithm are required in order to determine the

correct target location.

Calibration constants are also defined by the user before simulation. The

calibration constants are included in the parameters to add flexibility to the simulation

and to allow the code to be adapted for real world experimentation. When using real

 32

world sensors, they typically have differing physical characteristics that can significantly

affect the sensor output in terms of gain and relative phase. The calibration constants

correct for these differences and ensure more accurate measurements. For a fully

simulated environment, all zeros are generally used as calibration constants. However,

these constants could be adjusted to simulate calibration errors and non-ideal data for

specific research.

In the simulation, a convolution with a 2-dimensional Gaussian curve is

performed in the generation of probability density maps. The Gaussian curve is

established during the initial call of parameters and the size and variance of the curve can

be easily controlled by the user. The 2-dimensional Gaussian curve is defined by the

function

 
   













 






2

2
0

2

2
0

22, yx

yyxx

Aeyxf 
 (eq. 3.4)

where A is the amplitude of the peak, x0 and y0 are the center of the Gaussian curve, and

σx and σy are the variance in the x and y directions.

Figure 3.6 below presents graphics using two different Gaussian variance values.

The first figure for each variance value shows the 2-dimensional Gaussian curve, while

 33

the second figure shows the range-Doppler map after the Gaussian Convolution module

processing.

Figure 3.6. Range-Doppler Map Output from Gaussian Convolution Module Using Different Variance

Values. The larger variance values result in a wider Gaussian curve, and therefore larger target detection

areas in the range-Doppler map.

 34

 Adjusting the variance values of the Gaussian curve is equivalent to changing the

precision of the collected data. Wider Gaussian curves provide more robust data fusion,

but result in less precise target location estimates.

3.3 Data Generation

3.3.1 Signal Generation

The Signal Generation module of the simulation code is called first after

establishing all user defined parameters. Data is simulated for each microphone array as

it would be received directly from each source and echoed from each target in the

simulation environment. The data is generated for each sensor individually in each of the

microphone arrays. This data is representative of the signal that each microphone would

receive based on the type of signal transmitted and the relative phase and distance from

the microphone to the target. It is stored in a matrix for each array consisting of a number

of rows equal to the number of microphones in the array. The cumulative data matrices

represent what a microphone array would produce after receiving a signal in ideal

conditions with no noise and no propagation loss.

 35

At this point in the simulation, the simulated data for each source and target is

combined into a single matrix for each microphone array. The resulting data for each

array is then is padded with zeros to simulate sound delay due to distance from each

source or target. The distance calculated for the target is the distance from the source to

the target plus the distance from the target to the microphone array. Figure 3.7 below

shows an example of zero padded signal data generated by the Signal Generator Module.

0 5000 10000 15000
-150

-100

-50

0

50

100

150

Range (samples)

A
m

pl
itu

de

X: 2232
Y: 0

Figure 3.7. Output from the Signal Generator module showing a zero padded signal received by the sensor

array. The number of samples before signal in the data is calculated based on the distance from the sound

source to the sensor array, including echo distance.

 36

For this example, the sound source was approximately 153 meters away from the

sensor array. In this simulation example, the sound waves are assumed to travel through

air at 20 degrees Celsius, and so a speed of 343 m/s for the sound waves is assumed. The

sound delay in samples can be calculated using the equation 2.6, which results in a sound

delay of 2232 samples before the signal begins.

As discussed in the Chapter 2, the orientation of the multi-sensor array causes the

individual microphones in the array to be at different linear distances away from the

signal source. These result in a small time delay between signal data received at each

microphone in the array. The Signal Generator captures this phase delay using the user-

defined object coordinates. This delay is used later in the Beamformer module as the

array is steered toward a specific direction. Note that no phase difference can be seen in

the data generated for Array 1 because the orientation of Array 1 is perpendicular to the

wave path of the signal from the target. This means that theoretically all microphones in a

multi-source array will receive the signal simultaneously so long as far field and planar

wave assumptions are used. Figure 3.8 shows a detailed view of the output of the Signal

Generator module, showing the data for each individual microphone in a 32 sensor array.

 37

4000 4000.5 4001 4001.5 4002 4002.5 4003
-100

-80

-60

-40

-20

0

20

40

60

80

100

Range (samples)

A
m

pl
itu

de

Figure 3.8. Detailed view of the output of the Signal Generator module. This view shows the individual

signals from each microphone in the array.

 The lines in the figure represent signal data for each sensor in the array. These

lines are not aligned due to the difference in time of arrival of the signal for each sensor.

3.3.2 Noise and Propagation Loss Simulator

 In order to more accurately represent real world acoustic phenomena, noise and

sound propagation loss are simulated. The noise in the received signal can be attributed

to environmental sounds as well as electrical noise in the equipment [4]. Propagation loss

is primarily attributed to spreading loss and energy absorption. The Noise and

 38

Propagation Loss Simulator module of the simulator code alters the data generated by the

Signal Generator to account for these factors.

Sound propagation loss in real world environments relies on many variables such

as the transfer medium, echo surface, ground reflections, wave propagation, and wave

interference. For this simulator, not all of these propagation loss factors were considered

individually. Calculating the exact intensity loss would require an excessive number of

variables to be defined by the user prior to the simulation run. To simplify the

calculation, the propagation loss was calculated using only the distance the signal has

traveled. This generalization provides adequate propagation loss accuracy for the

simulation environment. The propagation loss simulated in this simulation is simply

relative to other received signal amplitudes and is directly proportional to the distance

from the source to the microphone, including echo distance. The received signal for each

generated data matrix is divided by this distance before noise is generated and added.

Noise is simulated by generating a vector of Gaussian distributed, random

numbers from negative one to one, equal to the length of the array of data for each

microphone. This random integer array is then amplified or reduced according to the

desired signal to noise ratio, allowing the user to control the relative amplitude of the

applied noise floor. Separate noise matrices are generated for each microphone array and

 39

the noise is added to the Signal Generator data, simulating additive, Gaussian, white

noise.

Figure 3.9 below shows the signal output after the Noise and Propagation Loss

Simulator module is called. For this example, a Signal to noise ratio of 0.5 was used.

0 5000 10000 15000
-25

-20

-15

-10

-5

0

5

10

15

20

25

Range (samples)

A
m

pl
itu

de

Figure 3.9. Output of Noise and Propagation Loss Simulator module using a signal to noise ratio of 0.5.

The original signal is no longer visible at this signal to noise ratio level.

As Figure 3.9 shows, the propagation loss of the signal, and the addition of noise

completely obscure the signal by visual inspection. The difficulty in determining the

 40

presence of a received signal serves as proof of the need for intelligent data processing

for acoustic experimentation.

3.4 Signal Processing

3.4.1 Beamformer

Once the data has been processed by both the Signal Generator and the Noise and

Propagation Loss Simulator, the Beamformer module is called to begin processing. The

data for each microphone array is beamformed at every angle from -90 degrees to 90

degrees, in one degree increments. The beamformer applies a vector of weight factors to

the signals at each channel to steer the array towards the desired angle. These weighted

channel signals are summed together, resulting in a single output as opposed to signals

for each individual microphone. The output of the beamformer is a vector of data

directed towards the given beamforming angle. Figure 3.10 shows the output of the

beamformer function for Array 2 at an angle of -45 degrees from the normal plane

(directly towards the echo target) with no noise.

 41

0 5000 10000 15000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Range (samples)

A
m

pl
itu

de

Figure 3.10. Output of the Beamformer module for Array 2, steered directly toward the target at -45

degrees. There is no noise in the system. The output is a single signal as opposed to signals for each

individual microphone.

Spectograms of the beamformed data can be seen in Figure 3.11. The first figure

shows this data in the frequency-time domain with the addition of noise, the second

figure shows the data in the same domain but with noise suppressed.

 42

Time

Fr
eq

ue
nc

y

Spectogram of Beamformer Output With Noise

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Fr
eq

ue
nc

y

Spectogram of Beamformer Output With No Noise

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-200

-150

-100

-50

0

-25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 3.11. Spectogram of the output of the Beamformer module for Array 2 at -45 degrees, The first

graph shows the results using an SNR of 0.5, the second graph has all noise suppressed.

While the first figure clearly demonstrates the ambiguity of the detected target

location in a noisy environment, the second shows the detected signal at a specific time

delay with the sloped chirp frequency characteristic.

3.4.2 Matched Filter

 Each Beamformer output (beamformed data for each angle for each microphone

array), is processed by a matched filter that generates a range-Doppler map for the data.

This 2-dimensional map displays the amplitude of the received signal on a range versus

 43

Doppler matrix at a given beamformer angle. A scaled, color gradient image of the

range-Doppler map of the Array 2 data at an angle of -45 degrees from the normal plane

can be seen in Figure 3.12 with and without noise.

Figure 3.12. Scaled image output of the Matched Filter module for Array 2 at -45 degrees. The first graph

show the results of using an SNR value of 0.5, the second graph has all noise suppressed.

A target is detectable in the second figure by visual inspection, though this is

more ambiguous in the first figure with noise present. The target in this simulation

example is static, and so should have a zero Doppler return. However, some bleeding

 44

into other Doppler values is seen due to the chirp signal frequency characteristics. Figure

3.13 shows the cross section of the range-Doppler map at a zero Doppler value.

0 5000 10000 15000
0

1

2

3

4

5

6
x 10

5

Range (samples)

A
m

pl
itu

de

X: 2230
Y: 5.428e+005

Figure 3.13. Cross section of the range-Doppler map from the Matched Filter module for Array 2 at -45

degrees. This cross section is taken at a neutral Doppler value.

Inspecting the cross section of data at a Doppler value of 11 shows a clear peak

return at a range of 2230 samples, which is within two samples or 0.1372 meters of the of

the correct target range previously calculated to be 2232 samples. This is an acceptable

level of error when considering the size of the area in question is 200 meters by 200

meters.

 45

3.4.3 False Target Generator

Often in real world experimentation, environmental factors attribute to many false

positive returns that can obscure the true signal of interest. This is especially true in

underwater sonar applications due to the highly reverberating nature of these

environments and the large number of sporadic sources such as snapping shrimp [19]. In

order to represent this phenomenon, the simulator adds several spurious peaks to the

range-Doppler map. These peaks increase the difficulty of accurate target detection, and

represent echoes in real world situations. This also helps to demonstrate the effectiveness

of the fusion algorithms being analyzed. The peak locations are randomly generated and

their amplitude is proportionally larger than that of the signal of interest, to ensure

adequate obscurity. Figure 3.14 shows the cross section of data after 20 false positive

peak returns are generated.

 46

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Range (samples)

A
m

pl
itu

de

Figure 3.14. Cross section output of the False Target Generator module for Array 2 at -45 degrees. This

cross section is from a neutral Doppler value. The figure shows the addition peaks added by the module.

The arrow indicates the true target peak.

3.4.4 Impulse Substitution

 The next module of the simulator code processes each range-Doppler map

individually. When this module is called in the simulator, it steps through each range-

Doppler map from the Matched Filter, and replaces the peaks with a single impulse. A

complex algorithm repeatedly searches through the range-Doppler map data for

amplitude values above a certain threshold. The threshold is incrementally reduced until

the user-defined number of peaks is found in that search. The location of each peak found

above the threshold is then compared to the location of previously found peaks and

True
Target

 47

thrown out if within a specific user-defined range. This ensures that large peaks are not

replaced by multiple impulses due to trail-off values of that peak. All values below the

minimum peak threshold are reduced to zero. The number of peaks to replace, as well as

the minimum distance between peaks are both user-defined values. However, the user

should take care when selecting these parameters to ensure that all desired data will be

above the minimum threshold. A higher number of peaks to replace and a lower distance

between peaks will result in a lower risk of data loss

 The following figure shows the effects of the Impulse Substitution module. The

first graph in Figure 3.15 shows a cross section of a range-Doppler map, showing the

signal amplitude along the range axis. The second graph in the figure shows the same

cross section after the range-Doppler map has been processed by the Impulse Substitution

module.

 48

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Cross Section of Range-Doppler Map

Range (samples)

A
m

pl
itu

de

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Range (samples)

A
m

pl
itu

de

Cross Section of Range-Doppler Map After Impulse Subtitution

Figure 3.15. Cross section output of a range-Doppler map before and after the Impulse Substitution module

for Array 2 at -45 degrees.

3.4.5 Gaussian Convolution

 Once the range-Doppler map peaks have been replaced with impulses, a

convolution is performed between the modified range-Doppler map and a 2-dimensional

Gaussian curve. This step results in a new range-Doppler map with each impulse

replaced by a 2-dimensional Gaussian curve centered at the original location of the

impulse. Each of these Gaussian curves represents the probability of a target at the given

range and Doppler, and the new modified map is called a probability density function.

Replacing the impulse map with a probability density function provides robustness to

position and orientation uncertainties of the sub-arrays. Target values will be

compounded with each other during the fusion process even if the targets are not co-

 49

located in different sensor maps. The user-defined variance of the Gaussian curve

represents the precision of the data. Figure 3.16 shows the results of the convolution

between the impulse substitution output and the Gaussian curve. The range-Doppler map

presented is generated from Array 2 for an angle of -45 degrees from the normal plane.

Figure 3.16. Range-Doppler map output of the Gaussian Convolution module for Array 2 at -45 degrees.

This figure shows the peak at the true target range of 2230 samples.

 50

Figure 3.17 displays a detailed view of the true target located at 2230 samples.

This figure clearly shows the 2-dimensional Gaussian curve characteristic of the target

peak.

Figure 3.17. Detailed view of the output of the Gaussian Convolution module for Array 2 at -45 degrees.

This view shows a close up of the peak at the true target location of 2230 samples.

Changing the variance of the Gaussian curve before convolution is synonymous

with changing the uncertainty values of various parameters in the simulation. For

example, this uncertainty could be caused from position and orientation errors in the

 51

system. A larger Gaussian variance value results in a “wider” cross sectional bell curve,

which equates to a wider spread of peak locations. This is advantageous in situation when

peaks found from different arrays are determined to be close to each other, but not

exactly co-located. The overlapping tail values will still result in a high value after these

peaks are multiplied in the fusion process due to the wider bell curve. A larger Gaussian

variance can be used to represent less precision in the experimental environment or

instrumentation. In the same respect, a smaller variance for the 2-dimensional Gaussian

curve results in a “thinner” bell curve and can represent more precise localization results.

While a higher variance Gaussian curve results in a more robust fusion process, more

iterations are required to achieve a final accurate result.

 The number of target peaks displayed is user defined and is generally dependent

on the signal to noise ratio and the number of false positive peaks created. Each of these

peaks is then processed assuming it is a true target location and all data is retained for

fusion.

 52

3.5 Target Processor

3.5.1 Range Correction

The true geometric distance to each of these target peaks must be calculated

before their reference point of view can be translated. The distance perceived by the

microphone array to the target is not the correct distance between the target and the array,

but rather the distance between the target and the array plus the distance between the

target and the sound source. The range value for each target in each range-Doppler map

must be adjusted to account for this echo distance. The location of the multi-source

microphone array and the location of sound source are known, and the total distance from

the multi-source array to the target and then to the sound source is measured. The

distance from the sound source to the target must be subtracted from this total distance.

The figure below illustrates this.

 53

Figure 3.18. A demonstration of perceived target distance due to echo effects. In order to determine the

true target distance, the echo distance must be calculated and subtracted.

As Figure 3.18 shows, the sensed distance can be significantly different from the

actual target distance due to the echo. The Range Correction module calculates and

subtracts the echo distance from the sensed target distance to achieve the true target

position. It is assumed that because the multi-sensor arrays are networked, they are time-

synced and the time the sound signal is sent is known.

This algorithm will not affect the situation where the detected signal is actually

the active sound source as the echo distance is calculated to be zero, resulting in an

adjusted distance that is equivalent to the original distance.

 54

This geometrically corrected distance is calculated for each target detected at each

angle of attack for each multi-sensor array.

3.5.2 Translation

In order for the data from the microphone sub-arrays to be fused, the data from all

sub-arrays must be translated to a common frame of reference. The simulator translates

all data to the point of view of the origin. The distance and angle with respect to the

origin are calculated for each detected target of each range-Doppler map. During the

translation process, areas in the map where no target is present, the map amplitude values

are set to a baseline value of 0.5. This value ensures that targets not present in all array

models are reduced in the multiplication process, but not completely nullified after a

single iteration.

Figure 3.19 below shows a new range-Doppler map for an angle of 45 degrees

from the origin after each target distance has been calculated and the target peaks have

been translated to the proper location with respect to the origin in the map.

 55

Figure 3.19. Output of the Translation module for Array 2, 45 degrees from the origin. The map is a slice

of the whole range-Doppler map at a neutral Doppler value, causing the targets to appear as tall, narrow

bands.

 In the simulation, the geometrically corrected range-Doppler maps of the arrays

are trimmed to just the neutral Doppler value since all targets are assumed static. This is

done to reduce system memory usage and simulation run time. The resulting target

peaks, as shown in Figure 3.19, appear as narrow bands in the range-Doppler map, rather

than the round targets shown in Figure 3.17.

 56

 Figure 3.20 shows a cross sectional view of the same map at a zero Doppler

value, while Figure 3.21 shows a detailed view of Figure 3.20 locating the true target

location.

0 5000 10000 15000
0

2

4

6

8

10

12

14
x 10

4

Range (samples)

A
m

pl
itu

de

Figure 3.20. Cross sectional view of the output of the Translation module for Array 2 at 45 degrees from

the origin. The highlighted box shows the area where the detailed view in Figure 3.21 came from.

Figure P2

 57

1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12
x 10

4

Range (samples)

A
m

pl
itu

de
X: 2230
Y: 7.656e+004

Figure 3.21. Detailed view of the cross section output from the Translation Module for Array 2 at 45

degrees from the origin. The true target location has been marked at 2230 samples.

After geometric correction, there are 91 resulting range-Doppler maps for each

multi-sensor array, one for each angle from 0 degrees to 90 degrees with respect to the

origin. An angle of 0 degrees coincides with the positive x-axis, and an angle of 90

degrees coincides with the positive y-axis. These range-Doppler maps are stacked

together to form a 3-dimensional matrix called the Array Model with axis of Doppler,

range, and angle. It is difficult to adequately represent all of this information in a 2-

dimensional space in this thesis; however some visual analysis can still be performed.

 58

The figure below shows the maximum value for each range-Doppler map at each angle

for array 2.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

Angle From Origin

M
ax

im
um

 V
al

ue

X: 46
Y: 1.327e+005

Figure 3.22. Maximum values for each angle from the origin of Array Model 2. The true location at X=46

is highlighted in the figure.

As 3.22 shows, the true target angle cannot be definitively determined because

the amplitude of the target location is smaller than other peaks in the array model.

Typically in simulation, none of the peaks in this view will represent the true target

location, as the amplitude of the true target signal is less than the false target echoes.

 59

3.6 Fusion of Data

3.6.1 Fusion

At this point in the simulator code, a modified range-Doppler probability density

map is obtained for each angle step for each microphone array. These maps are stacked

together to form one 3-dimensional matrix for each microphone array in an array model.

These array models represent the angle from the origin, versus distance from the origin,

versus Doppler shift.

The array models are combined in an element by element multiplication process,

resulting in a single 3-dimensional matrix referred to as the world model by the

simulator. When the array models for each of the arrays are fused, some of the target

peak amplitudes are reduced if the peak is not present in all 3 of the array models. This is

because the peak values are multiplied by the baseline 0.5 value previously set in the

Translation module. Similarly, the targets peaks that are present in the same location in

all 3 of the world matrices are amplified as they are multiplied together. Figure 3.23

below shows the maximum value for each range-Doppler map at each angle for the world

model.

 60

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

15

Angle from Origin

S
ig

na
l A

m
pl

itu
de

Max Values at Each Angle for World Model (First Iteration)

X: 46
Y: 5e+014

Figure 3.23. Maximum value for each angle from the origin of the World Model after a single iteration.

The true target location at X = 46 is shown in the figure.

 The true target location is (100m, 100m) and so is located at 45 degrees from the

positive x-axis with respect to the origin. The first stack of the World matrix contains the

targets located at 0 degrees from the origin, while the second stack contains values

located at 1 degree from the origin, etc. Therefore the true target location at 45 degrees

should be present in the 46th matrix of the World matrix. As can be seen in Figure 3.23, a

peak value is present at the 46th maximum value.

 61

The true target distance from the origin is calculated below using the simulation

geometry and equation 2.6:

100m  2 141.4m

d
fs
c
141.4m

5000Hz
343m s

 2061samples

A plot of the peak locations at 45 degrees from the origin can be seen in Figure

3.24. The true target peak can be seen at 2061 samples, indicating that the true target is

present in the World matrix.

0 5000 10000 15000
0

1

2

3

4

5

6

7

8

9

10
x 10

14

Range (samples)

A
m

pl
itu

de

X: 2061
Y: 4.163e+014

Figure 3.24. World Model at 45 degrees from the origin after one iteration. The true target distance at 2061

samples is shown in the figure.

 62

Though a peak is present at the true target location determining a singular

definitive target location would not be possible, as many other potential target locations

are also still present in the World matrix. This problem is solved using an iterative

process. Experimental data is continually collected and processed into the World model.

The iterative process of data collection continually nullifies false positive values while

amplifying any common peaks among iterations. Figure 3.25 shows the maximum values

at each angle from the origin of the world model after various amounts of iteration.

 63

0 20 40 60 80 100
0

1

2

3

4
x 10

79

A
m

pl
itu

de

Angle from Origin

5 Iterations

0 20 40 60 80 100
0

1

2

3

4
x 10

122 10 Iterations

A
m

pl
itu

de

Angle from Origin

0 20 40 60 80 100
0

0.5

1

1.5

2
x 10297

A
m

pl
itu

de

Angle from Origin

25 Iterations

0 20 40 60 80 100
0

1

2

3

4
x 10231 20 Iterations

A
m

pl
itu

de

Angle from Origin

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

177

A
m

pl
itu

de

Angle from Origin

15 Iterations

0 20 40 60 80 100
0

1

2

3

4

5
x 10

10 1 Iteration

Angle from Origin

A
m

pl
itu

de

Figure 3.25. Output from the Fusion module after various iterations From top to bottom and left to right,

the number of iteration of each figure are 1, 5, 10, 15, 20, and 25. A single, definitive target can only be

seen in the final figure after 25 iterations.

 64

It can clearly be seen from Figure 3.25 that a single peak remains in the world

model at an angle of 45 degrees from the positive x-axis. Figure 3.26 below shows the

range-Doppler map at that 45 degree angle from the positive x-axis.

0 5000 10000 15000
0

2

4

6

8

10

12

14
x 10

296

Range (samples)

A
m

pl
itu

de

World Model at 45 Degrees from Origin

X: 2069
Y: 1.347e+297

Figure 3.26. World Model at 45 degrees from the origin after 25 iterations. The target is determined to be

2069 samples from the origin, which is 8 samples, or less than 1 meter away from the true target location.

 65

The target locations can clearly be seen at a location of 2069 samples, which

equates to 142 meters from the origin. This is within 1 meter from the true target location

of 141 meters.

 66

Chapter 4:

Summary and Conclusions

This chapter will review the topics already discussed, as well as offer some final

conclusions for this thesis. The focus of this research was to develop a simulation

environment for studying networked, multi-sensor microphone arrays using a lossless

fusion algorithm model. The simulator serves as a useful tool for comparing different

acoustic post-processing algorithms in a controlled, but flexible environment. A thorough

overview of the simulator code development was presented, along with an example

fusion method and the simulation results.

In chapter 2, background information in acoustic microphone arrays was

presented. This review provided a basic understanding of acoustic wavefield properties

and propagation. The methods for measuring an objects distance and velocity were

discussed with an explanation of active and passive sonar systems. The chapter also

included a discussion of beamforming and matched filtering, focusing on the specific the

algorithms used in the simulator. Chapter 2 concluded with an overview of current

applications and future applications for networked multi-sensor arrays.

 67

Chapter 3 consisted of an in depth explanation of the simulation code

development including graphical results for each for each module. After an overview of

the simulator architecture, a discussion of the code parameters was presented. These

parameters are user defined and their effects on the target detection results were

discussed. Each subsequent section of Chapter 3 discussed the specific modules of the

simulator in detail. Graphical results of each modules output were presented, and results

of the fusion algorithm after various numbers of iterations were also shown. These results

demonstrate a successful detection and estimation of the target using the fusion

algorithm.

The algorithms presented in this thesis provide a method to accurately simulate

active multi-sensor array testing. This thesis demonstrated the effectiveness of these

algorithms for detection and estimation across a broad range of acoustic environments

and situations. Flexibility and user customization were maintained, ensuring the

simulator is a valuable tool for a variety of applications. While further development is

needed for handling some more complex acoustic simulations, such as 3-dimensional

environments and dynamic targets, a base simulator model for acoustic multi-sensor

array testing was achieved.

The Data Generation section of the simulator is able to accurately produce

simulated signals received by the microphone arrays based on the input parameters. The

 68

noise added to the signal is currently additive, Gaussian, white noise, but further

development could provide additional noise types to be simulated. The propagation loss

calculation is currently a simplified algorithm based solely on the objects distance from

the receiver. This idealized sound propagation loss is used to avoid over complicating the

number of user defined parameters required for the Data Generation section.

The Signal Processing section analyses a 180 degree spectrum, in single degree

increments, for each multi-sensor array in the simulation. A simple, narrowband, delay

and sum beamformer is used in for the Beamformer module because the signal types

transmitted fit this profile. A different beamformer type could be explored, and would be

required if broadband signal types were to be tested. The range-Doppler maps from the

Matched Filter module have proven to be accurate for all simulated cases tested.

 The processing performed by the Target Processing section of the simulator, has

also been reliably accurate in testing. The false positives that are generated in the False

Target Generator module are currently only added to a single Doppler shift value

because all targets are assumed to be static. Future versions of this simulator code, if

analyzing dynamic targets, could add false targets to the entire range-Doppler map. The

Impulse Replacement algorithm accurately detects peak values from the range-Doppler

map and replaces them with impulses. Currently, careful consideration must be used

when choosing the algorithm parameters to ensure that the signal of interest does not fall

 69

below the threshold. Code could be developed to determine the required parameters for

Impulse Replacement to avoid problems with erroneous parameter choices. The Gaussian

Convolution algorithm could also be developed further. An algorithm to determine the

proper variance of the Gaussian curve based upon the received signal could result in more

accurate simulations, because the precision of the target location would be determined

from actual data characteristics. One limitation to the Translation module is that if

detected targets are calculated to be near each other after translation, the Gaussian curves

could overlap each other in the world map. Currently the most recent target translated

will overwrite existing data from previously found targets if overlap occurs. This could

result in less accurate results, and future development could merge the two Gaussian

curves together more intelligently.

The fusion methods presented are capable of detecting and estimating the correct

target of interest from all the collected data after an adequate number of iterations. The

current number of iterations required is dependent on the simulated situation. Currently,

the number of iterations is considered adequate when a visual examination of the results

shows the correct target location as the only peak. Code could be written to determine

when adequate iterations have been achieved by comparing the current world model with

previous world models to detect changes at each iteration. The true target is assumed

found when the location of the target remains constant from one iteration to the next over

 70

several iterations. Due to the current fusion method, the amplitudes of the peaks in the

world model increase with each iteration as the maps are multiplied together. To improve

accuracy, an improved fusion algorithm could be developed to maintain peak amplitude

through iterations.

The world model design is a convenient way to package all known data about the

simulation environment after processing. However, it is difficult to represent this data

visually to the user due to the number of axis in the matrix. An additional program could

be used to analyze the final world model and present all the data in a visual method that

would facilitate easy studying of the results.

The simulator program presented in this thesis satisfies the research objectives

discussed. The flexible, controllable simulation environment produces accurate acoustic

representations that can be used in place of, or in support of real world testing. The

simulator will be an extremely valuable tool to future researchers in networked multi-

sensor acoustic arrays.

 71

Chapter 5:

Future Work

 The motivation for the work demonstrated in this thesis was to demonstrate a

lossless fusion algorithm using a simulated environment. A acoustic simulator was

developed that controlled comparisons to be performed in a flexible environment. The

simulator was also intended to serve as a basis for future research in acoustic signal

processing. This chapter will discuss future areas of development that can be explored to

further the simulator code functionality. Further development of the simulator code will

improve the robustness for complex simulated situations, as well as broaden the range of

specific algorithms that can be tested.

 Future work on the simulator would include developing the ability to process

dynamic targets, as the current version of the simulator code will only work for static

situations. The Matched Filter module estimates the Doppler shift of the target in the

creation of the range-Doppler maps, however the target is assumed static and no Doppler

translation calculations are performed. Because of this, all example simulations presented

in this thesis have a Doppler shift value of zero. The ability to process dynamic targets

would greatly broaden the functionality of the simulator, though several changes would

have to be addressed. The Translation module would need to be able to determine the

 72

velocity of the target relative to the origin based on the Doppler shift values in order to

perform the necessary translation. Also, the dynamic characteristics of the target would

need to be defined by the user as additional parameters. An advanced fusion algorithm

would also be required that could handle the drifting of the target location with each

simulation iteration.

To increase the realism of the simulator, white, Gaussian noise and a simplified

propagation loss model are used to modify the generated signal. Other noise profiles

could be added to the system using a more complex algorithm to simulate more specific

noise environments when needed. A variable noise could even be applied to the signal

that would change over the course of the simulation. Additionally the propagation loss

model could be expanded to reflect different sound decay characteristics for more

specific simulation testing. For example, simulated testing of acoustics near thermoclines

could be performed using more specific sound propagation characteristics.

 Currently the simulator environment is limited to 2 dimensions. Extending the

capabilities of the software package to handle 3-dimensional environments would greatly

increase the usability of the program. A 3-dimensional acoustic simulator would provide

a wealth of research opportunities in acoustic multi-sensor array testing. However,

adding a third dimension to the testing environment would significantly increase the

complexity of the algorithms used. The Array Models and World Models would require

 73

an addition dimension to hold the data, and the geometric calculations performed in the

simulator would increase in complexity. A more complex sound propagation behavior

would be required to realistically simulate sound in a 3-dimensional space. Additionally,

the simulator processing time would increase significantly per iteration, as the amount of

data to be processed would greatly increase.

 To increase the flexibility of the simulator, some of the current system constants

could be changed to user-definable parameters, offering more control over the simulation

environment. This would require additional algorithm development would be required to

handle the extra parameters. Currently the simulator assumes an in-air testing

environment in ideal conditions. Allowing the user to specify alternate propagation

mediums under various conditions would tailor the simulator to more specific acoustic

research. The simulator could be adapter to handle other wavefield types, such as

vibrational or electromagnetic, allowing hybrid wavefield simulations to be tested. These

additional user-defined parameters directly increase the usefulness and robustness of the

simulator program.

 74

References

[1] Benesty, J., Chen, J., Huang Y. “Microphone Array Signal Processing. Springer

Topics in Signal Processing”, v. 1. Berlin: Springer, 2008.

[2] Bell, K., “MAP-PF Tracking with a Network of Sensor Arrays,” Proceedings of

the Acoustic, Speech and Signal Processing, Vol. 4, 2005

[3] Chen J., Yao, K., Hudson, R. “Acoustics Source Localization and Beamforming:

Theory and Practice,” EURASIP Journal on Applied Signal Processing, vol. 4,

2003.

[4] Davenport, W., Root, W. An Introduction to the Theory of Random Signals and

Noise. New York: IEEE Press, 1987.

[5] Erling, J., Roan, M., Gramann, M. “Performance Bounds for Multisource

Parameter Estimation using a Multiarray Network,”

[6] Gold, B. “Performance Analysis of Active and Passive Multi-Array Sonar

Networks”

[7] Hoppe, E. “Improving Signal Clarity through Interference Suppression and

Emergent Signal Detection”

[8] Kagami, S., Mizoguchi, H,. Tamai, Y. “Microphone Array for 2D Sound

Localization and Capture,” Proceedings of the IEEE International Conference on

Robotics and Automation, ICRA 04, vol.1, 2004.

 75

[9] Kinsler, L.E., Frey A.R., Coppens, A.B., Sanders, J.V. Fundamentals of

Acoustics, 4th Edition. John Wiley and Sons, Inc. 2000.

[10] Leivs, P., Gay, D., Culler, D. “Active Sensor Networks,” Fuzzy Information

Processing Society, 1997.

[11] Li, D., Wong, K., Hu, Y., Sayeed, A. “Detection, Classification and Tracking of

Targets in Distributed Sensor Networks,” IEEE Signal Processing Magazine,

Vol. 19, No. 2, March 2002

[12] Li, J., Stoica, P. Robust Adaptive Beamforming Hoboken, NJ: John Wiley,

2006.

[13] McErlean, D., Narayanan, S. “Distributed Detection and Tracking in Sensor

Networks,” Proceedings, 36
th

Asilomar Conf. Signals, Systems & Computers,

Pacific Grove, CA, 2002

[14] Pierce, A. D. Acoustics: An Introduction to Its Physical Principles and

Applications. Acoustical Society of America. 1989.

[15] Poor, H. V., “An Introduction to Signal Detection and Estimation. Springer Texts

in Electrical Engineering”, New York: Springer-Verlag, 1994.

[16] Potamitis, I., Huimin, C., Tremoulis, G. “Tracking of Multiple Moving Speakers

with Multiple Microphone Arrays,” IEEE Trans. on Speech and Audio

Processing, Vol. 12, Sept. 2004

 76

[17] Sibul, L., Roan, M., Schwartz, S., Coviello, C. “Lossless Information Fusion for

Active Ranging and Detection Systems,” IEEE Transactions on Signal

Processing, Vol. 54, No. 10, Oct. 2006

[18] Stojanovic, M. “Recent Advances in High-Speed Underwater Acoustic

Communications.” IEEE Journal of Oceanic Engineering, Vol. 21. April 1996.

[19] Urick, R.J. Principles of Underwater Sound, 3rd Edition. Peninsula Publishing.

Los Altos, CA. 1983.

[20] Valenti, M. “An Optimal Soft-Output Multiuser Detection Algorithm and its

Applications”

[21] Van Trees, H., Optimum Array Processing, Detection, Estimation, and

Modulation Theory, Part IV. New York: Wiley, 2002.

[22] Wang Z., Li J., and Wu R. “Time-Delay- and Time-Reversal-Based Robust

Capon Beamformers for Ultrasound Imaging,” IEEE Transcript on Medical

Imaging, vol. 24, no. 10.

 77

Appendix A:

 Source Code

A.1 VAL_simulator_main.m
tic

for iter = 1:1

warning off

clear aDataZ aDataZn arrayDataS arrayDataT bformT bformTtest doppEnd
clear doppPeak doppSize doppStart newout newoutF newoutT newoutTtest
clear newouttest

clear nnoise peaks rangeEnd rangePeak rangeSize rangeStart sig t temp
clear tempsize world1 world2 world3

load falseTargLocs.mat

%workspace (0,0) at the bottom left corner

j = 0
numArrays = 3;

%tVars and sVars elements are x and y coords
tVars = [100,100];
sVars = [80,20];

%arrayVars elements = num of elements, x coord, y coord, orientation
arrayVars(1,:) = [32,10,10,45/180*pi,0,51.3/180*pi];
arrayVars(2,:) = [32,50,150,270/180*pi,-45/180*pi,18.4/180*pi];
arrayVars(3,:) = [32,180,80,180/180*pi,14/180*pi,-45/180*pi];
elemSpace = 0.025;
c = 343;

%G is the Gaussian curve that replaces the peak in newout
xg = 0:.1:40; yg = 0:.1:40; xgo = 20; ygo = 20;
for c1 = 1:length(xg)
 for c2 = 1:length(yg)
 G(c1,c2) = exp(-((((xg(c1)-xgo).^2)/(2*200))+(((yg(c2)-ygo).^2)/(2*200))));
 end

 78

end

fs = 5000;
cLength = 0.25;
t = 0:1/fs:cLength;
cMin = 1000;
cMax = 2000;
sig = 100*chirp(t,cMin,cLength,cMax);
%sig = 100*rand(1,100);
%sig = 100*sin(2*pi*t*1500);
noiseBool = 1; %use 1 for noise, use 0 for no noise
snr = 2; %noise variable
cali_tau = zeros(1,arrayVars(1,1)); %calibration constants
cali_amps = ones(1,arrayVars(1,1)); %calibration constants

for j = 1:numArrays
 j
 %determine angle from array to target and from array to source
 [at(j)] = angle_from_array(arrayVars(j,2:3),arrayVars(j,4),tVars(1:2));
 [as(j)] = angle_from_array(arrayVars(j,2:3),arrayVars(j,4),sVars(1:2));

 %determine distance from array to target and from array to source
 dSourceTarg = sqrt((tVars(2) - sVars(2))^2 + (tVars(1) - sVars(1))^2);
 dt(j) = sqrt((tVars(2) - arrayVars(j,3))^2 + (tVars(1) - arrayVars(j,2))^2) +
dSourceTarg;
 ds(j) = sqrt((sVars(2) - arrayVars(j,3))^2 + (sVars(1) - arrayVars(j,2))^2);

 %distance in terms of samples
 dts(j) = dt(j)/343*fs;
 dss(j) = ds(j)/343*fs;

 %generate mic array data from source and target and simulate decay
 arrayDataT{:,:,j} = Data_Ang_Gen(sig,fs,at(j),5,arrayVars(j,1),elemSpace,c);
 arrayDataT{:,:,j} = arrayDataT{:,:,j}./(dt(j));
 arrayDataS{:,:,j} = Data_Ang_Gen(sig,fs,as(j),5,arrayVars(j,1),elemSpace,c);
 arrayDataS{:,:,j} = arrayDataS{:,:,j}./(ds(j));
 sizeDataT = size(arrayDataT{:,:,j});
 sizeDataS = size(arrayDataS{:,:,j});

 %pad with zeroes to simulate distance and add noise
 aDataZ{:,:,j} = zeros(arrayVars(j,1), 1000/c*fs);
 tempDataZ = aDataZ{:,:,j};
 tempDataZ(:,dts(j):(dts(j)+sizeDataT(2)-1)) = arrayDataT{:,:,j};
 %tempDataZ(:,dss(j):(dss(j)+sizeDataS(2)-1)) = arrayDataS{:,:,j};
 aDataZ{:,:,j} = tempDataZ;
 clear tempDataZ;

 79

 if noiseBool == 1;
 aDataZn{:,:,j} = awgn(aDataZ{:,:,j}, snr);
 else
 aDataZn{:,:,j} = aDataZ{:,:,j};
 end

% find target angles
% bAngs = [-60, 5, 60];
% beamformer(:,:,j) = bform_v5(aDataZn{:,:,j}, bAngs, elemSpace, c, fs,
(cMin+cMax)/2, (cMin+cMax)/2, arrayVars(j,1), cali_tau,cali_amps);

% peakAngs = peakfinder2D(beamformer(:,:,j), 5, 3, 0.5);
 angStep = 1; %be sure to change angle calc if you change this
 numAngs = 180/angStep;
 bformTtest = bform_ang3(aDataZn{:,:,j}, 30,
elemSpace,c,(cMin+cMax)/2,arrayVars(j,1),cali_tau,cali_amps);
 newouttest = wave(bformTtest, sig, 0.9, 1.1, 0.01, 1, 0, 0); %only calculated to
determine size of newoutT
 temp = spikemaker(newouttest, 3, 20, .5, G, c, fs);
 tempsize = size(temp);
 newoutTtest = temp(round(tempsize(1)/2)-5:round(tempsize(1)/2)+5,:,:);
 clear temp;

 [r, rr, rrr, rrrr] = size(newoutTtest);

 if j == 1
 world1 = ones(r, rr, 91);
 world1 = world1./5;
 end

 if j == 2
 world2 = ones(r, rr, 91);
 world2 = world2./5;
 end

 if j == 3
 world3 = ones(r, rr, 91);
 world3 = world3./5;
 end

 for ang = 1:numAngs
 angle = -91 + (angStep*(ang));

 %beamform data at desired angles

 80

 bformT = bform_ang3(aDataZn{:,:,j}, angle,
elemSpace,c,(cMin+cMax)/2,arrayVars(j,1),cali_tau,cali_amps);

 %generate range-Doppler map of beamformed data
 newout = wave(bformT, sig, 0.9, 1.1, 0.01, 1, 0, 0);

 %simulate false targets
 newoutF = newout;
 trueTargAmp = max(newout(11,:));
 [E,R] = size(newoutF);

 for iii = 1:20
 falseLoc = falseTargLocs(ceil(rand*length(falseTargLocs)));
 falseAmp = 3*randn*trueTargAmp;
 newoutF(11, falseLoc) = falseAmp;
 end

 %this replaces the range-Doppler map peaks with Gaussian curves
 temp = spikemaker(newoutF, 35, 2, .1, G, c, fs);
 %tempsize = size(temp);
 newoutT = temp(9:13,:,:);
 %newoutT = temp;

 %geometry calculations to figure out true object location
 [peaks] = peakfinder3D(newoutT, 30, 20, 0.1);
 doppPeak = peaks(:,1);
 rangePeak = peaks(:,2);

 for u = 1:length(doppPeak)
 XY = rangePeak(u)/fs*c;
 angA = abs((arrayVars(j,4)-as(j)*pi/180) - (arrayVars(j,4)-(angle*pi/180)));
 W = sqrt(XY^2 + ds(j)^2 - 2*XY*ds(j)*cos(angA));
 angB = asin(ds(j)*sin(angA)/W);
 angC = pi - 2*angB;
 Ydist = W*sin(angB)/sin(angC);
 targDist = XY - Ydist; %actual distance between array and object
 if as(j) >= angle-angStep/2 && as(j) <= angle+angStep/2
 targDist = XY;
 end

 newAngt = arrayVars(j,4) - (angle*pi/180);

 if newAngt > 2*pi
 newAngt = newAngt - 2*pi;
 end

 81

 if newAngt < 0
 newAngt = newAngt + 2*pi;
 end
 if newAngt < pi/2
 yCoord = arrayVars(j,3) + targDist*sin(newAngt);
 xCoord = arrayVars(j,2) + targDist*cos(newAngt);
 elseif newAngt < pi
 newAngt = pi - newAngt;
 yCoord = arrayVars(j,3) + targDist*sin(newAngt);
 xCoord = arrayVars(j,2) - targDist*cos(newAngt);
 elseif newAngt < 3*pi/2
 newAngt = newAngt - pi;
 yCoord = arrayVars(j,3) - targDist*sin(newAngt);
 xCoord = arrayVars(j,2) - targDist*cos(newAngt);
 else
 newAngt = 2*pi - newAngt;
 yCoord = arrayVars(j,3) - targDist*sin(newAngt);
 xCoord = arrayVars(j,2) + targDist*cos(newAngt);
 end

%xCoord and yCoord are x and y coordinates of the object with respect to origin

 if yCoord >= 0 && xCoord >= 0
 targDFO = sqrt(yCoord^2 + xCoord^2); %object distance from origin
 targAFO = atan(yCoord/xCoord)*180/pi; %object angle from origin

 doppSize = 4;
 rangeSize = 200;
 doppEnd = doppPeak(u)+doppSize;
 doppStart = doppPeak(u)-doppSize;
 rangeEnd = rangePeak(u)+rangeSize;
 rangeStart = rangePeak(u)-rangeSize;
 rangeSize = [rangeSize,rangeSize];
 [d_map,r_map] = size(newoutT);

 if doppEnd > d_map
 doppEnd = d_map;
 end

 if doppStart < 1
 doppStart = 1;
 end

 if rangeEnd > r_map
 rangeEnd = r_map;
 rangeSize(2) = r_map - rangePeak(u);

 82

 elseif rangeStart < 1
 rangeStart = 1;

 rangeSize(1) = rangePeak(u) - 1;
 end

 if round(targDFO*fs/c) - rangeSize(1) <= 0
 rangeSize(1) = round(targDFO*fs/c) - 1;
 rangeStart = rangePeak(u) - (round(targDFO*fs/c)-1);
 end

 if round(targDFO*fs/c) + rangeSize(2) > r_map
 rangeSize(2) = r_map - round(targDFO*fs/c);
 rangeEnd = rangePeak(u) + (r_map - round(targDFO*fs/c));
 end

 if j == 1
 if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord > tVars(2)-7
&& yCoord < tVars(2)+7
 world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord >
sVars(2)-7 && yCoord < sVars(2)+7
 world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 else
 world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd);
 end
 end

 if j == 2
 if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord > tVars(2)-7
&& yCoord < tVars(2)+7
 world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord >
sVars(2)-7 && yCoord < sVars(2)+7
 world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 else

 83

 world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd);
 end
 end

 if j == 3
 if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord > tVars(2)-7
&& yCoord < tVars(2)+7
 world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord >
sVars(2)-7 && yCoord < sVars(2)+7
 world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;
 else
 world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) =
newoutT(doppStart:doppEnd, rangeStart:rangeEnd);
 end
 end
 end
 end

% if angle == 0 & j == 1
% figure, imagesc(newoutT)
% test1 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi,
angB*180/pi, angC*180/pi, W, targDFO, targAFO];
% elseif angle == -45 & j == 2
% figure, imagesc(newoutT)
% test2 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi,
angB*180/pi, angC*180/pi, W, targDFO, targAFO];
% elseif angle == 15 & j == 3
% figure, imagesc(newoutT)
% test3 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi,
angB*180/pi, angC*180/pi, W, targDFO, targAFO];
% end
 end
end

if (length(world1) > 14977)
 world1 = world1(:,1:14977,:);
end

 84

if (length(world2) > 14977)
 world2 = world2(:,1:14977,:);
end
if (length(world3) > 14977)
 world3 = world3(:,1:14977,:);
end

multString = sprintf('WORLD%d = world1.*world2.*world3;',iter);
eval(multString);
varString = sprintf('WORLD%d', iter);
saveString = sprintf('WORLDTESTFILE%d.mat', iter);
save(saveString, varString);
clearVar = sprintf('clear WORLD%d', iter);
eval(clearVar);
end

toc

%WORLDTEST = WORLD.^10;
%WORLD3 = WORLD;
%save('world3.mat','WORLD3');

A.2 angle_from_array.m

function [thetadeg] = angle_from_array(arraypoint,arrayangle,targetpoint)

a = [targetpoint(1)-arraypoint(1),targetpoint(2)-arraypoint(2),0];
b = [cos(arrayangle),sin(arrayangle),0];

theta = mod(atan2(a(1)*b(2)-b(1)*a(2),a(1)*b(1)+a(2)*b(2)),pi*2);
thetadeg = theta*180/pi;

if thetadeg > 180
 thetadeg = thetadeg - 360;
else
 thetadeg;
end

 85

A.3 Data_Ang_Gen.m

function [data] = Data_Ang_Gen(y1,fs,ang,op,n_elem,elem_d,c)

%y1 = ping signal
%fs = sampling freq
%ang = angle to target (zero is straight ahead, right pos)
%op = how many times do you want to upsample (suggested sample freq of 50k,
% upsample of 4)
%n_elem = number of elements in array
%elem_d = spacing between elements (in meters)
%c = speed of sound (m/s)
%will have to calculate the angle for each array to target. Will also have
%to zero-pad the output data for each array to simulate range. Will run
%program for each array.

y11 = resample(y1,op,1);
ang1=abs(ang);
tau1 = (elem_d*sind(ang1)/c)*(0:(n_elem-1));
samp1 = abs(round(tau1*(fs*op)))+1;

data = zeros(n_elem,length(y11)/op+1);
if ang>0
 n=1;
 for ui = 1:1:n_elem
 ddata = y11(samp1(ui):end);
 ddata = resample(ddata,1,op);
 data(n,1:length(ddata)) = ddata;
 n=n+1;
 end
elseif ang<0
 m=n_elem;
 for ui = 1:1:n_elem
 ddata = y11(samp1(ui):end);
 ddata = resample(ddata,1,op);
 data(m,1:length(ddata)) = ddata;
 m=m-1;
 end
elseif ang==0
 for ui = 1:1:n_elem
 data(ui,1:length(y1)) = y1.';
 end
end

data = data(:,1:end-max(samp1));

 86

if rem(length(data),2)~=0
 data = data(:,1:end-1);
end

A.4 bform_b5.m

function [conv1] =
bform_v5(X,angs,elem_d,c,fs,fc_old,fc_new,n_elem,cali_tau,cali_amps)

%X: data
%angs: [min angle, step angle, max angle]
%elem_d: distance between elements
%c: speed of sound
%fs: sampling frequency
%fc_new, fc_old: frequency desired, use same for both
%n_elem: number of elements on the array
%cali_tau, cali_amps: calibration constants
% nfft = 2.^(ceil(log(length(X))./log(2)));

nfft = length(X);
nifft = length(X);
bottom=(fs/2)/(nfft/2);
p_MID=fc_new/bottom; p_index=[p_MID*.95,p_MID*1.05];
ang_start=angs(1); ang_space=angs(2); ang_end=angs(3);
X2 = zeros(size(X));

for ui=1:n_elem
 X2(ui,:)=cali_amps(ui).*X(ui,:);
end

Xfft=fft(X2.',nfft); Xfft1=Xfft(1:nfft/2,:);
count=1; conv1=zeros(1,length(ang_start:ang_space:ang_end));

for jj=ang_start:ang_space:ang_end
 W=zeros(1,n_elem);
 %step through elements in steering vector calc

 for iji = 1:n_elem
 %calc the time delay and phase shift for the elements
 tau = ((iji-1)*elem_d./c).*sin(jj*pi/180);

 87

 W(iji) = exp(-(j)*2*pi*(fc_old)*(tau+cali_tau(iji)));
% W(iji) = exp((j)*2*pi*(fc_old)*(tau+cali_tau(iji)));
 end

 beam=ifft(W*Xfft1.',nifft);
 beam = real(beam)/(n_elem);
 [P1] = pwelch(beam,[],[],nfft,fs);
 conv1(count)=sum(P1(round(p_index(1)):round(p_index(2)),1));
 count=count+1;
end

A.5 bform_ang3.m

%% Beamform at Specific Angle
% Inputs:
% X : matrix of collected data
% ang : angle to be beamformed at
% elem_space : spacing between elements
% c : speed of sound
% fc : center frequency to be beamformed at
% n_elem : number of elements
% cali_tau : phase calibration constants for fc
% cali_amps : amplitude calibration constants for fc

function [beamed] = bform_ang3(X,ang,elem_space,c,fc,n_elem,cali_tau,cali_amps)

% nfft = 2.^(ceil(log(length(X))./log(2)));
nfft = length(X);
nifft = length(X);
X2 = zeros(size(X));

for ui=1:n_elem
 X2(ui,:)=cali_amps(ui).*X(ui,:);
end

Xfft=fft(X2.',nfft); Xfft=Xfft(1:nfft/2,:);
W=zeros(1,n_elem);

%step through elements in steering vector calc
for iji = 1:n_elem
 %calc the time delay and phase shift for the elements

 88

 tau = ((iji-1)*elem_space./c).*sin(ang*pi/180);
 W(iji) = exp(-(j)*2*pi*(fc)*(tau+cali_tau(iji)));
end

% beamed=ifft(W*Xfft.',2*nifft);
% beamed = real(beamed(1:nifft))/(n_elem);
beamed=ifft(W*Xfft.',nifft);
beamed = real(beamed)/(n_elem);
beamed = beamed./max(beamed).*max(max(X));

A.6 peakfinder2D.m

%will find a set number of peaks in a plot

function [peaks] = peakfinder2D(dataplot, numPeaks, dist, thresh)
%dataplot: data
%numPeaks: number of peaks you wish to find
%dist: minimum distance between peaks
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5
% to find all peaks above 50% of max peak

 maxval = max(dataplot);
 n = 1;
 Xm = find(dataplot >= maxval*n);
 scoord(1) = Xm;
 m = 1;

 while (m <= numPeaks & n > thresh)
 n = n - 0.01;
 Xm = find(dataplot >= maxval*n);

 for k = 1:length(Xm)
 a = length(scoord);
 count = 0;

 for r = 1:a
 if ((abs(Xm(k) - scoord(r)) < dist));
 count = 1;
 end
 end

 if count == 0
 scoord(a + 1) = Xm(k);

 89

 m = m + 1;
 end
 end
 end

 peaks = scoord;

A.7 wave.m

function [newout]=wave(sig, omw, smin, smax, ds, linr, shift, normal);

%WAVE Wavelet Transform
% WAVE(sig, omw, smin, smax, ds, linr, shift, normal) computes wavelet
% transform with with the following parameters:
%
% sig input signal
% omw mother wavelet
% smin minimum scale
% smax maximum scale
% ds scale increment
% linr 1 for linear scale increments, 0 for logarithmic
% shift 1 omw centered at time zero, 0 first sample anchored at time zero
% normal 1 for normalized, 0 for raw
%
% cfb 4 jun 1996

tic

global scaleindex
global delayindex
scaleindex=0;

if nargin == 1, omw=sig;, shift =1, linr=1, smin=.8, smax=1.2, ds=.01, normal=1, end
if nargin == 2, shift =1, linr=1, smin=.85, smax=1.15, ds=.01, normal=1, end
if nargin == 5, linr=1, shift=1, normal=1, end

lomw=length(omw);

omask = ones(1,lomw);
sigenergy=(abs(sig.^2));

 90

omwenergy=sqrt(omw*omw');

lsig=length(sig);
numscales=round((smax-smin)/ds);
scalemult=(smax/smin)^(1/(numscales-1));

pwr=0;
pwrflag=1;
tlen=lomw/smin+lsig+1;
while pwrflag==1
pwr=pwr+1;
if 2^pwr >= tlen, pwrflag=0;,end;
end
fftlen=2^pwr;
pwrflag=1;

delayindex=[1:1:fftlen];
if linr==1,scaleindex=smin:ds:smax;,end

q=0;

if linr==1
 for scale = smin:ds:smax
 scale;
 q=q+1;
 %subsampling--time domain compression if scale > 1
 %time domain dilation if scale < 1
 mw=zeros(1,round(lomw/scale));
 lmw = length(mw);

 for k = 1:floor(lomw/scale)
 mw(k)=sqrt(scale)*omw(round(scale*k));
 end

 mask=ones(1,length(mw));

 newsigenergy=[sigenergy zeros(1,fftlen-length(sigenergy))];
 newsig=[sig zeros(1,fftlen-length(sig))];
 newmw =[mw zeros(1,fftlen-length(mw))];
 newmask = [mask zeros(1,fftlen-length(mask))];

 if shift==1
 newmw = [newmw((round((length(mw)/2))+1):length(newmw)),
newmw(1:round((length(mw)/2)))];
 newmask = [newmask((round((length(mw)/2))+1):length(newmask)),
newmask(1:round((length(mw)/2)))];

 91

% newmw=cbrot(newmw,round((length(mw)/2)));
% newmask=cbrot(newmask,round((length(mw)/2)));
 end

 out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen)));
 norm=ifft(fft(newsigenergy,fftlen).*conj(fft(newmask,fftlen)));
 clear newsig newmw

% if ftshift==1
% wavtran(q,:)=fftshift(out(1:lsig));
% normtran(q,:)=fftshift(norm(1:lsig));
% else
 wavtran(q,:)=out(1:lsig);
 normtran(q,:)=norm(1:lsig);
% end
 end

else
 for q=1:numscales
 scale = smin*(scalemult)^(q-1);
 scaleindex(q)=scale;
 %subsampling--time domain compression if scale > 1
 %time domain dilation if scale < 1
 mw=zeros(1,round(lomw/scale));
 lmw = length(mw);

 for k = 1:floor(lomw/scale)
 mw(k)=sqrt(scale)*omw(round(scale*k));
 end

%
% newsig=[sig zeros(1,fftlen-length(sig))];
% newmw =[mw zeros(1,fftlen-length(mw))];
%

 mask=ones(1,length(mw));

 newsigenergy=[sigenergy zeros(1,fftlen-length(sigenergy))];
 newsig=[sig zeros(1,fftlen-length(sig))];
 newmw =[mw zeros(1,fftlen-length(mw))];
 newmask = [mask zeros(1,fftlen-length(mask))];

% if (rem(length(sig),2))==0
% newmw = cbrot(newmw,length(mw)/2);

 92

% newmw = [newmw((length(mw)/2+1):length(newmw)),
newmw(1:length(mw)/2)];

% else
% newmw = cbrot(newmw,fix(length(mw)/2));

 if shift==1
 newmw = [newmw((round((length(mw)/2))+1):length(newmw)),
newmw(1:round((length(mw)/2)))];
 newmask = [newmask((round((length(mw)/2))+1):length(newmask)),
newmask(1:round((length(mw)/2)))];
 end
% end

% out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen)));
 out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen)));
 norm=ifft(fft(newsigenergy,fftlen).*conj(fft(newmask,fftlen)));

% if ftshift==1
% wavtran(q,:)=fftshift(out(1:lsig));
% else

% wavtran(q,:)=out(1:lsig);
 wavtran(q,:)=out(1:lsig);
 normtran(q,:)=norm(1:lsig);
% end
 end
end

 if normal == 1
 newout=abs(wavtran)./(sqrt(abs(normtran))*omwenergy);
 else
 newout=wavtran;
 end

a=toc;
time=a/60;

A.8 spikemaker.m

function [newoutT] = spikemaker(data, numPeaks, dist, thresh, G, c, fs)

 93

%data: data
%numPeaks: number of peaks you wish to find
%dist: minimum Y distance between peaks
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5
% to find all peaks above 50% of max peak
%
% xg = 0:.1:10; yg = 0:.1:10; xgo = 5; ygo = 5;
% for c1 = 1:length(xg)
% for c2 = 1:length(yg)
% G(c1,c2) = exp(-((((xg(c1)-xgo).^2)/(2*5))+(((yg(c2)-ygo).^2)/(2*5))));
% end
% end

maxval = max(max(data));
D = size(data);
ttt = size(G);
spike = zeros(D(1),D(2));
%spike = spike./5;
targetsize = dist/c*fs;
n = 1;
[Xm, Ym] = find(data >= maxval*n);
scoord(1,:) = [Xm, Ym];
m = 1;

%note that this will not check the number of peaks or the percentage
% threshold until after it has ran through the current list of peaks,
% meaning that the resultant peak list could be larger than m.

while (m <= numPeaks & n > thresh)
 n = n - 0.01;
 [Xm, Ym] = find(data >= maxval*n);
 for k = 1:length(Xm)
 [a,b] = size(scoord);
 count = 0;
 for r = 1:a
 if ((abs(Ym(k) - scoord(r,2)) < targetsize));
 count = 1;
 end
 end
 if count == 0
 scoord(a + 1,:) = [Xm(k), Ym(k)];
 m = m + 1;
 end
 end
end

 94

[a,b] = size(scoord);
for g = 1:a
%>>>>>>>>>>>>>>>WATCH ACCURACY HERE IF YOU CHANGE SIZE OF G
 if scoord(g, 2) - ((ttt(1)-1)/2) <=0
 spike(scoord(g, 1),scoord(g, 2)) = data(scoord(g, 1),scoord(g, 2));
 else
 spike(scoord(g, 1),scoord(g, 2) - ((ttt(1)-1)/2)) = data(scoord(g, 1),scoord(g, 2));
 end
 %the (ttt(1)-1)/2 part of the equation ensures the peak of the gaussian curve is in the
correct location instead of the curve starting in the correct location
end

newoutT = conv2(G, spike);
%newoutT = spike;

A.9 peakfinder3D.m

%will find a set number of peaks in a plot

function [peaks] = peakfinder3D(dataplot, numPeaks, dist, thresh)

%dataplot: data
%numPeaks: number of peaks you wish to find
%dist: minimum Y distance between peaks
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5
% to find all peaks above 50% of max peak

maxval = max(max(dataplot));
n = 1;
[Xm, Ym] = find(dataplot >= maxval*n);
scoord(1,:) = [Xm, Ym];
m = 1;

%note that this will not check the number of peaks or the percentage
% threshold until after it has ran through the current list of peaks,
% meaning that the resultant peak list could be larger than m.

while (m <= numPeaks & n > thresh)
 n = n - 0.01;
 [Xm, Ym] = find(dataplot >= maxval*n);

 95

 for k = 1:length(Xm)
 [a,b] = size(scoord);
 count = 0;

 for r = 1:a
 if ((abs(Ym(k) - scoord(r,2)) < dist));
 count = 1;
 end
 end

 if count == 0
 scoord(a + 1,:) = [Xm(k), Ym(k)];
 m = m + 1;
 end
 end
end

peaks = scoord;

A.10 maxvalAngles.m

function [vals] = maxvalAngles(worldData)

for i = 1:91
 vals(i) = max(max(worldData(:,:,i)));
end

%vals(15) = 10000;

figure, plot(vals)

A.11 combiner.m

for i = 1:24
 if i == 1

 96

 load WORLDTESTFILE1.mat;
 load WORLDTESTFILE2.mat;
 bigworld = WORLD1.*WORLD2;
 maxvals1 = maxvalAngles(WORLD1);
 F(1) = getframe;
 maxvals2 = maxvalAngles(bigworld);
 F(2) = getframe;
 clear WORLD1 WORLD2
 else
 openString = sprintf('load WORLDTESTFILE%d.mat',i);
 eval(openString);
 multString = sprintf('bigworld = bigworld.*WORLD%d;',i);
 eval(multString);
 maxvalString = sprintf('maxvals%d = maxvalAngles(bigworld);',i);
 eval(maxvalString);
 F(i) = getframe;
 clearString = sprintf('clear WORLD%d',i);
 eval(clearString);
 end

end

