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ABSTRACT 

 

 

 Networked, multi-sensor array systems have proven to be advantageous in the 

sensor world. A large amount of research has been conducted with these systems, with a 

main interest in data fusion. Intelligently processing the large amounts of data collected 

by these systems is required in order to fully utilize the benefits of a multi-sensor array 

system. A robust but flexible simulation environment would provide a platform for 

accurately comparing current and future data fusion theories.  

 This thesis proposes a simulator model for testing fusion theories for these acoustic 

multi-sensor networks. An iterative, lossless data fusion algorithm was presented as the 

model for simulation development. The arrangement and orientation of objects in the 

simulation environment, as well as most other system parameters are defined by the user 

before the simulation runs. The sensor data, including noise, is generated at the 

appropriate time delay and propagation loss before being processed by a delay and sum 

beamformer and a matched filter. The resulting range-Doppler maps are modified to 

probability density functions, and translated to a single point of reference. The data is 

then combined into a single world model.  

 An iterative process is used to filter out false targets and amplify true target 

detections. Data is fused from each multi-sensor array and from each simulation run. 

Target amplitudes are gained if they are present in all combined world models, and are 

otherwise reduced. This thesis presents the results of the fusion algorithm used, including 

multiple iterations, to prove the algorithms effectiveness. 
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Chapter 1:  

Introduction 

This chapter will serve as an introduction A Turbo Approach to Distributed 

Detection and Estimation. This introduction will include a summary outline of the thesis, 

followed by an explanation of the motivation for this thesis and the relevance to research. 

 

1.1 Thesis Outline 

 This chapter discusses the motivation and significance of the research presented 

in this thesis. Chapter 2 provides a brief background on the critical components of multi-

sensor array fusion for sonar. These components include sonar fundamentals, sound 

propagation, special processing, matched filtering techniques, and data fusion theory. 

Also provided in Chapter 2 are current and future applications for this technology. In 

chapter 3, a detailed discussion of the simulation code is presented beginning with an 

overview of the simulation code structure. The parameters and assumptions used in the 

simulation code are also established in Chapter 3. Each subsequent section of Chapter 3 

presents detailed descriptions of the simulator modules. The purpose of each module is 

described, and graphical results are presented to validate the modules effectiveness and 
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operation. The effects that the user defined parameters have on the output of the modules 

is also presented in these sections. A summary and conclusions of the work are discussed 

in chapter 4 of this thesis. Chapter 5 will wrap up the thesis by presenting suggestions for 

future advancement of the research.  

 

1.2 Motivation and Relevance of Research 

 There has been a large volume of work performed in multi-sensor, networked 

arrays in the past several years [1-22]. A networked system of multi-sensor arrays has 

many advantages. Multi-sensor arrays are innately robust against imprecision of 

individual sensors because post processing combines the data from all the sensors in the 

array [13]. Because of this, the cost associated with multi-sensor systems can be lower 

than that of single sensor systems where high fidelity hardware is required. The lower 

cost of the sensors also translates to more readily available hardware, meaning quick 

deployment in time sensitive applications. Sensor arrays can be used to accurately 

determine the direction and velocity of a target of interest due to the separation of sensor 

nodes. They can also be effectively used to gather information about very large areas of 

interest.   
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Currently, the main interest is in fusion of the sensor-level information collected 

by each sensor array [17].  This is an advancement over fusion of post-processed data 

(such as track fusion), which has an associated loss of information inherent in the 

formation of tracks [11]. There is desire for lossless information fusion methods that are 

robust to changes in environmental and situational factors, while also staying 

computationally feasible in real world situations. A primary motivation for this thesis 

was the paper “Lossless Information Fusion for Active Ranging and Detection Systems”, 

by Sibul, Roan, Schwartz, and Coviello, which discusses a data fusion technique for 

multi-sensor array networks [17]. This paper served as a basis for the simulator algorithm 

model used in this thesis.  

To accurately compare the many data fusion techniques currently in development, 

a fully controlled but flexible testing environment is needed. In order to achieve this 

environment, a robust simulator was developed. This thesis explores the development of 

that simulator code, including example simulation results and a discussion of parameter 

effects.  
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Chapter 2:  

Background  

 Multi-sensor, networked arrays can be used to measure any wavefield type 

depending on the particular type of sensors used. This thesis, however, will focus on 

acoustic wavefields and the post processing of acoustic signals using distributed sonar 

signal processing methods. The software discussed in this thesis simulates 2-dimensional 

acoustic testing environments. Adaptation of the software to simulate other types of 

wavefields (such as electromagnetic for distributed radar applications) or calculate 3-

dimensional environmental models is possible, and will be discussed in the final chapter 

of this thesis. Due to the focus on acoustics, this section will present necessary 

background information on acoustic processing. This discussion will cover sound 

propagation characteristics and sonar, including different types of sonar and the methods 

for measuring signals. An explanation of beamforming and matched filtering techniques 

will also be presented, with a focus on the versions used in this simulation code.  
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2.1 Sound Propagation 

Acoustic waves are longitudinal pressure waves that propagate radially outward 

from the sound source [14]. Sound waves can be modeled using the linear equation for 

longitudinal waves presented below 

 







 2

2

2
2 1

dt
pd

c
p       (eq. 2.1) 

where  is the Laplace operator, p is the pressure, c is the speed of sound, and t is time. 

This equation represents acoustic wave propagation in two dimensions, which is 

sufficient for all simulation calculations discussed in this thesis.  

 Sound propagation is dependent on the signal frequency, the propagation 

medium, and environmental factors. Sound requires matter to propagate, and the speed of 

sound is dependent on the medium’s modulus of elasticity and density [14]. The example 

simulations in this thesis assume air as the propagation medium. The speed of sound in 

air is dependent on the temperature of the air, and can be calculated using the equation 

 k
d
pc         (eq. 2.2) 
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where p = pressure of air, d = density of air, and k equals the adiabatic index or ratio of 

specific heats. Since the ratio of pressure to density of air is a constant, the equation can 

be approximated to 

 Tc 60.05.331        (eq. 2.3) 

where T is the temperature in Celsius. The speed of the sound waves is determined by the 

user prior to the simulation. 

 When considering multi-sensor acoustic arrays, the sound field can be classified 

into three different range-dependent regions. These regions are known as near field and 

far field, with the area in between called the transition area. Sound propagation 

characteristics are difficult to simulate and analyze in the near field because small 

changes in distance and orientation of objects can result in large changes in sound 

pressure levels. The distance to the transition area is dependent on the specific 

characteristics of the microphone array used [7]. For all simulations in this thesis, the 

width of the microphone array is considered significantly smaller than the distance of 

transmission, and it is assumed all received signals are in the far field. This is typically 

referred to as plane wave propagation.  

Because all sources in the simulation are assumed to be far field sources, further 

assumptions can be made about the wavefields received by the microphone arrays from 

these sources. When the transmission distance is significantly larger than the sensor 
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spacing in the multi-sensor array, then across the width of the array, the curve of the 

wavefield due to spherical propagation is considered negligible. The sound waves are 

assumed planar and parallel to each other for all calculations in this thesis. This 

assumption is referred to as the plane wave approximation and is common in acoustic 

analysis. This assumption also dictates that if the direction of the multi-sensor array is 

exactly normal to the incoming wavefield, then all sensors in the array will receive the 

signal simultaneously. A figure demonstrating this assumption can be seen below. 

 

Figure 2.1. Demonstration of the planar wave assumption. If it is assumed that the array is in the farfield 

and that the width of the array is significantly less than the distance of transmission, then the sonar waves 

can be assumed planar at the sensor array.  
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The energy of sound decays with distance and is dependent on the frequency of 

the signal, the medium, and the propagation environment. The energy of the sound 

waves is absorbed by the medium and into the surrounding surface areas as the sound 

reverberates. This is especially true of higher frequency and ultrasonic sound waves [14]. 

Assuming a point source transmitter in a 3-dimensional environment, the sound waves 

transmit spherically outward and the signal intensity can be generalized by the Inverse 

Square Law [14]. The Inverse Square Law of sound dictates that the intensity of the 

sound is inversely proportional to the distance the sound has travelled, or 

2

1
r

I          (eq. 2.4) 

where I is the intensity of the sound wave per given area, and r is the distance travelled. 

Complex algorithms are used to represent additional sound propagation loss factors in 

real world experiments. However, the simulator code uses a simplified sound 

propagation-loss model.   

 

 

2.2 SONAR 

Sonar, which stands for SOund Navigation And Ranging, is a sensing method 

that uses acoustic waves to gather information about a target or environment. There are 
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two forms of sonar sensing, active and passive [9]. Passive sonar uses a receiver to 

collect information about signals of interest. Target detection and classification can be 

achieved by identifying particular acoustic signatures in the received signal. One main 

challenge with passive sonar systems is that the characteristics of the incoming signal are 

typically unknown. This has necessitated the development of complex classification 

algorithms to distinguish signals of interest from background clutter [15].  

 Active sonar systems use a transmitter to emit a specific signal, or ping, into an 

environment and then listen for echoes of that signal to reflect back to the receiver. There 

are three types of active sonar: monostatic, bistatic, and multistatic. An active system is 

classified as monostatic when the active source and the receiver are co-located. A bistatic 

system has a single active source and a single receiver separated in space, though 

typically the active source is used as a pinger and a receiver. Multistatic systems have 

multiple active sources and/or receivers that are also separated in space [14]. The 

simulator developed for this thesis is customizable for any number and arrangement of 

active sources and receivers, however at least one active source must be present.  

 Active sonar ranging is achieved by measuring the time delay between when the 

signal is transmitted and when the echo reaches a given receiver. Typically, sonar is used 

in underwater environments because sound waves propagate easily underwater. 

However, the example simulations presented in this thesis assume in air conditions, so 
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the calculations shown will be performed using the speed of sound waves traveling 

through air in ideal conditions at 343 meters per second. Assuming this, and the time 

delay between transmission and reception, the distance to the target can be calculated 

using  

 
c
td          (eq. 2.5) 

 where t is the time of transmission, and c is the speed of sound. If the number of samples 

until reception is known, as is the case in the simulated environment discussed in this 

thesis, the equation above can be modified as 

 
sf

scd         (eq. 2.6) 

where s is the number of samples before the ping is received, and fs is the sampling 

frequency used in the simulation. Assuming a sampling frequency of 5000 Hz and that 

the ping was heard after 7500 samples, the distance to the target can be calculated as 

follows 

 m
Hz

samplessm
f
scd

s

5.514
5000

7500/343 





  

The bearing of the target can also be determined when multiple receivers are 

using together with each other in a multi-sensor array due to the time delay between 
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received signals for each of the sensors. The process used in this thesis to analyze the 

bearing is called beamforming and will be discussed later in this chapter.  

The simulator assumes stationary transmitters and microphone arrays. However 

an understanding of the Doppler Effect is required to understand the matched filtering 

and fusion algorithms used. If the target is not stationary, then the velocity can also be 

estimated by exploiting the Doppler effect. The Doppler effect is the change in frequency 

of a signal due to the motion of the source or receiver. As a source or receiver move with 

respect to the emitted wavefields, the waves undergo an expansion or compression, 

resulting in the receiver measuring a perceived lower or higher frequency respectively 

[9]. A figure demonstrating the Doppler effect can be seen below.  
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Figure 2.2. Demonstration of the Doppler affect. The motion of the sound sources compresses or expands 

the sound waves, resulting in a measured frequency shift at the receiver. 

 

The change in frequency is referred to as a Doppler shift, and can be calculated 

using the equation 







 


c

vv
ff rectrans       (eq. 2.7) 

where transv  and recv  are the speeds of the transmitter and the receiver respectively, f is 

the frequency of the unaltered signal, c is the speed of sound through the medium, 

and f is the perceived frequency shift. Note that for situations where the motion of the 

transmitter and receiver is angular with respect to each other, the velocities used in the 

equation are the normal velocity components.  
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 In an active sonar system where the transmitted signal is known, the velocity of 

the target can be determined. A comparison is made between the signal received by the 

sensor array and several frequency-shifted versions of the known signal, and the relative 

velocity of the target can be calculated.  

 

2.3 Beamforming 

As discussed earlier in this chapter, it is assumed that as sound waves propagate 

radially outward from the signal source, they reach the receiver in the far field as a plane 

wave. If the orientation of multi-sensor array is not normal to the direction of the sound 

source, then the distance between each individual microphone and the sound source will 

vary along the array. Figure 2.3 below illustrates the geometry.  
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Figure 2.3. Demonstration of time delay between sensors due to orientation. If the microphone array is not 

oriented parallel to the planar sound waves, then the individual sensors receive the signal at different time 

delays.  

 

This difference in distance translates to a difference in the time of arrival of the 

signal at each microphone in the array. Using this phase delay, a bearing estimate of the 

signal source can be made using a process called beamforming. A beamforming 

algorithm uses a calculated set of frequency dependent weights applied to each channel 

of the array to focus the array towards a specific angle. The resulting weighted channels 

are then summed together to provide a single output per angle of interest, or steering 

angle. Selecting the correct set of weights will phase align all of the channels if the 
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beamformer is steered toward the target and therefore coherently sum the signal at the 

angle of interest for each channel. Signal sources at other angles result in out of phase 

summation and are reduced.  

There are several beamforming algorithms in use today, categorized as fixed or 

adaptive. Fixed beamformers are signal independent, while adaptive beamformers use 

properties of the incoming signal during processing to improve performance. Another 

classification of a beamformer is whether they are narrowband or broadband. 

Narrowband beamformers are valid for only a single frequency of interest while steering 

the array. Beamforming at a specific frequency other than that of the incoming signal 

frequency can result in significant signal distortion. Broadband beamformers involve 

more complex algorithms to achieve beamforming across the desired spectrum of 

frequencies without distorting the signal of interest [12].   

The simulation developed for this thesis uses a conventional, narrowband, delay 

and sum beamformer. This beamformer uses a Fourier transform to translate the raw data 

into the frequency domain before applying the appropriate weight vector. Once the vector 

is applied, the data is summed and transformed back into the time domain. While the 

beamformer processes the data collected by each microphone in the multi-sensor array, 

the output is a single arriving from the angle of interest. The beamformer output is 

described by the equation 
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   





1N

oi
iii tswtB                  (eq. 2.8) 

where  ts  is the signal received by the microphone, iw is the weight applied to the 

microphone, and i is the time delay. 

 

2.4 Matched Filtering 

 A matched filtering process compares the known transmitted signal with the 

received, beamformed signal to detect the presence of the known signal. The matched 

filter cross-correlates the beamformer output for a given steering angle with hypothesized 

versions of the transmitted signal that are both time shifted as well as Doppler shifted 

[21]. The cross-correlation function for the matched filter is 

       
T

dtmtxts
T

mR
0

1
     (eq. 2.9) 

where m is the cross-correlation lag, T is the signal duration, )(ts  is the original signal, 

and )(tx is the combined signal and noise. The matched filter produces a 2-dimensional 

matrix of values for the microphone array at the given steering angle of the beamformer. 

This matrix represents the amplitude of the received signal per given range and Doppler 

shift, and is referred to as a range-Doppler map. These range-Doppler maps are treated as 
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sufficient statistics for each array at the angle of interest and form the basis for the world 

models developed by the simulator.  

 

2.5 Current Applications of Microphone Arrays 

  Multi-sensor, networked arrays such as microphone arrays are currently being 

used in a variety of ways, and new applications are continuously being developed for the 

near and distant future. Military defense organizations and Homeland Security are some 

of the primary users of multi-sensor networked arrays today [16]. Networked arrays have 

proven very advantageous for underwater tracking such as torpedo defense systems on 

submarines and mine searching [1]. These array systems provide a large area of sensing 

coverage while also effectively providing robustness against false detections. Multi-

sensor arrays have also proven useful in applications where multiple sensors are required 

for triangulation such as in sniper locating systems. Anti-terrorism technologies are also 

currently in high demand and research is currently being conducted on how to further 

apply networked multi-sensor arrays to the field [16].  

 Networked, multi-sensor arrays can be easily deployed in a large variety of 

environments, and therefore many additional potential applications for these systems 

exist. When human interaction needs to be minimized due to inhospitable conditions, 
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such as a nuclear waste site, these systems can be set up quickly and require little to no 

interaction during data collection. Disposable data collection systems for highly 

dangerous situations are also feasible with multi-sensor arrays due to their low cost. 

Multi-sensor arrays are also ideal candidates for very large environments, such as deep 

sea and outer space, because large coverage areas can be achieved by simply adding 

additional multi-sensor arrays to the system. Search and rescue missions in particular are 

dependent on quick deployment and a large coverage area, and can profit from the user of 

multi-sensor array systems.  
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Chapter 3:  

Simulation Development 

 

3.1 Overview of Simulation Code 

 This section provides a detailed overview of the simulator software architecture 

and development. This overview will assist in understanding the specific objectives of 

each module in the simulator code. Specific details of the simulator modules will be 

presented later in this chapter. The figure below shows a flowchart of the simulator 

software architecture.  
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Figure 3.1. Simulator Code Flow Chart. The simulator modules are divided up into 4 categories based on 

the type of information they process. This flow chart shows those categories with color. 

 

The software simulator can be divided into four main sections, based on the type 

and level of data that is processed by that section. These sections are illustrated in Figure 

3.1 above by color. The first section is referred to as Data Generation, and it develops the 

data for each multi-sensor array in the simulation. The Signal Processor section, is called 
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once for each angle step of each multi-sensor array, and is therefore lower level than the 

Data Generation section. A third section, the Target Processor, is the lowest level section 

because it handles each detected target for each angle handled by the Signal Processor, 

and is called more times per simulation than any other section. The final section, the 

Fusion section, has the highest level as it is only called once for each simulation run and 

processes all multi-sensor data at once. The table below demonstrates the typical number 

of times a section will be called in single iteration of the simulator.  

 

Section 
Type of Data 
Processed Typical Step Size 

Number of iterations 
called 

Data Generation array 3 3 

Signal Processing angle 180 540 

Target Processing target 35 18900 

Fusion world model 1 1 

 

Table 3.1. Chart shows the number of times that each module category gets called in a single simulation 

iteration. The number of times they are called is dependent on the type of data to be processed. 

 

The Data Generation section can be further broken down into two modules. The 

first module, referred to as the Signal Generation module builds the signal received by 

each sensor in each array at the appropriate phase for the sensor geometry and 

orientation. The second module increases the realism of the simulated signal from the 
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previous module by simulating noise and propagation loss. This module is referred to as 

Noise and Propagation Loss Simulation. After being processed by this module, the phase 

delayed signal matrices are also zero-padded to simulate echo distance from the signal 

source to the receiving sensor via the target reflection. The output of the Data Generation 

section is the simulated raw data that would be collected by each sensor array in a real 

world experiment.  

There are five modules that make up the Signal Processing section. Each of these 

modules is called once per angle of interest for each multi-sensor array. The first module, 

called the Beamformer, uses narrowband, delay and sum beamforming to increase the 

signal to noise ratio of signals arriving from a specific angle of interest. The beamformed 

data is then sent to the Matched Filter module where a range-Doppler map is generated 

for each angle step. To increase realism and further demonstrate target localization 

ambiguity, false targets are added to the range-Doppler map in the False Target 

Generator module. This new range-Doppler map is then passed to the next module called 

Impulse Substitution. It is thresholded and each remaining peak is replaced by a single 

impulse of equal amplitude. The final module of the Signal Processing section is called 

Gaussian Convolution. This module performs a matrix convolution with a 2-dimensional 

Gaussian curve, resulting in a probability density map of target range versus Doppler 

value.  
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 The next simulator section processes each detected target in the probability 

density map individually. The detected range of the target in the probability density map 

needs to be recalculated to compensate for echo distances. The module that calculates 

this is called Range Correction. Once the true target range has been determined, the 

target location with respect to the environment origin is calculated for each target in the 

map using the Translation module.  

The origin-translated maps are then stacked into one 3-dimensional matrix for 

each sensor array. Each of these matrices consists of target range versus Doppler versus 

angle, with each element value representing signal amplitude. These 3-dimensional maps 

are called “array models” as they represent all processed data received by each multi-

sensor array.  

 The Fusion section has one module, also called Fusion, which combines the array 

models for each sensor array into one model, referred to as the “world model”. This a 

posteriori world model then becomes the a priori model for the next simulation iteration.  

 

3.2 Establishment of Variables and Assumptions 

Initialization of the simulation begins with a set of simulation parameters being 

established by the user. This section discusses the variables required by the simulator, the 
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level of control the user has on the variables, and what effect changing some of those 

variables has on the simulation results. This section will also establish any major 

assumptions in the simulator development. 

The simulator environment is a 2-dimensional area of any size determined by the 

user, with an origin defined at the bottom left corner when looking from an overhead 

view. The positive x-axis is defined as 0° from the origin, and rotation is positive in the 

counter-clockwise direction. For all demonstrations in this thesis, a 200m by 200m 

environment is used. Figure 3.2 below establishes this simulator coordinate system. 

 

Figure 3.2. Simulation environment coordinate system. The simulation environment is 200m by 200m with 

the origin in the bottom, left corner. The x-axis is 0 degrees with positive rotation being counter-clockwise.   
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The first set of parameters established by the user set up the initial location and 

orientation of objects in the simulated environment. In real world applications, the 

locations and orientations of these objects are very rarely completely controllable. Often, 

equipment arrangement is subject to the type of equipment used, the desired target type, 

and environmental limitations. For this reason, flexible orientation geometry in a 

simulator is desirable. The number of sub-arrays to be used can be defined by the user, 

and for each array there are 4 user-defined variables. These include the number of 

sensors in each array, the x and y-coordinates of the array, and the orientation angle of 

the array. The array element spacing is also user-defined, and is the same for all sub-

arrays in the simulation. The flexibility of these parameters allows the user to replicate 

existing sensor equipment in the simulation. Also, controlled comparisons can be 

performed between differing experimental set ups using these parameter controls. 

For example simulation results generated in this thesis, three microphone arrays 

are used, with 8 microphones per array, a spacing of 0.75 inches, arranged and oriented 

according to the following table. 
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Array Number of 
Elements 

Element 
Spacing (in) 

X Coord. 
(m) 

Y Coord. 
(m) 

Orientation 
(degrees from x-

axis) 

1 8 0.75 10 10 45 

2 8 0.75 50 150 270 

3 8 0.75 180 80 180 

Table 3.2. Table shows some of the user-defined parameters used in most of the example simulation results 

in this thesis. The parameters for each microphone array are listed.  

 

The x- and y-coordinates of signal sources and targets in the simulation have to be 

established as well. Orientation angle for sources and targets is not required because they 

are always assumed to be omni-directional in the simulator. For example simulation 

results used in this thesis, one signal source and one reflector target are used, arranged 

according to the coordinates in the following table.  

 

Object X Coord. (m) Y Coord. (m) 

Target 100 100 

Source 80 20 

Table 3.3. This chart shows some of the user-defined parameters used for most example simulation results 

in this thesis. The parameters for the target and sound source are listed. 

 

A graphical representation of this example simulation environment can be seen in 

Figure 3.3 below. 
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Figure 3.3. This figure shows the arrangement and orientation of the objects used in the example 

simulation for most results in this thesis. The numerical information can be found in Table 3.2 and Table 

3.3. 

 

Several other parameters must be established by the user in order to define how 

data processing should be executed. Both the signal characteristics as well as the 

sampling frequency can be individually set, though careful consideration should be taken 

to ensure the sampling frequency is greater than or equal to the Nyquist rate of the chosen 

signal, or  
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2 ns ff        (eq. 3.1) 

where  is the highest frequency found in the signal with a non-zero energy. The Signal 

Generator can take any signal type as an input, though generally a single tone, a chirp, or 

white noise are used. The signal reaches amplitude and ends instantaneously and does not 

ramp to or from the desired frequency. The signal must be fully defined by the user, 

including the signal amplitude, frequency range, and length.  

 Figure 3.4 below shows spectograms of three different signals after being 

processed by the Beamformer module. The chirp signal increases from 1000 Hz to 2000 

Hz, the tone is at 1500 Hz, and the white noise is Gaussian. All three signals last for 0.25 

seconds, and there is no noise in the simulation.  
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Figure 3.4. Spectograms of the Beamformer module output using various signal types. The graphs show a 

chirp signal, a tone, and white noise from left to right.  
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For all three signal types, the fusion algorithm is successful in determining the 

true target location. The signal type does not effect the number if iterations required to 

make a determination.  

Noise is generated in the simulator according to a desired signal to noise ratio that 

is determined prior to the simulator running. Using the user-defined signal amplitude and 

desired signal to noise ratio, the average noise amplitude is calculated and applied to the 

signal with the following equation. 

SNR
A
A

noise

signal 







2

      (eq. 3.2) 

where A is the RMS amplitude and SNR is the signal to noise ratio. Solving for noise 

amplitude gives the equation 

SNR
A

A signal
noise        (eq. 3.3) 

The user can opt for an infinite signal to noise ratio indicating no noise, or to have 

any level of noise present in the system. Lower signal to noise ratios result in more 

difficult detection of the target echo. This is desired to fully demonstrate the abilities of 

the fusion method being tested in the simulator. The table below shows typical sampling, 
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signal, and noise parameters for a simulation run. These parameters will be used and 

referenced for many examples in this thesis.  

  

Signal Type Signal Length 
(sec) 

Signal Freq 
(Hz) 

SNR Sampling Freq 
(Hz) 

Chirp 0.25 1000-2000 0.5 5000 

Table 3.4. Table shows some of the user-defined parameters used in most of the example simulation results 

in this thesis. The parameters for the signal, sampling, and noise are shown. 

 

The following figure illustrates the effect that the chosen signal to noise ratio has 

on the generated signal. The first graph shows a chirp signal with no noise effects. The 

other graphs in Figure 3.5 show increasingly higher signal to noise ratio values, 

demonstrating the effect noise has on obscuring the signal.  
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Figure 3.5. Output of the Data Generation section with various SNR values. From left to right and top to 

bottom, the figures show SNR values of infinity, 20, 10, and 0.5.  

  

As the signal to noise ratio is decreases and the ambiguity of the signal in the data 

is increased, more iterations of the fusion algorithm are required in order to determine the 

correct target location.  

Calibration constants are also defined by the user before simulation. The 

calibration constants are included in the parameters to add flexibility to the simulation 

and to allow the code to be adapted for real world experimentation. When using real 
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world sensors, they typically have differing physical characteristics that can significantly 

affect the sensor output in terms of gain and relative phase. The calibration constants 

correct for these differences and ensure more accurate measurements. For a fully 

simulated environment, all zeros are generally used as calibration constants. However, 

these constants could be adjusted to simulate calibration errors and non-ideal data for 

specific research. 

In the simulation, a convolution with a 2-dimensional Gaussian curve is 

performed in the generation of probability density maps. The Gaussian curve is 

established during the initial call of parameters and the size and variance of the curve can 

be easily controlled by the user. The 2-dimensional Gaussian curve is defined by the 

function 

 
   












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
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
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2

2
0

2

2
0

22, yx

yyxx

Aeyxf 
   (eq. 3.4) 

where A is the amplitude of the peak, x0 and y0 are the center of the Gaussian curve, and 

σx and σy are the variance in the x and y directions.  

Figure 3.6 below presents graphics using two different Gaussian variance values. 

The first figure for each variance value shows the 2-dimensional Gaussian curve, while 
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the second figure shows the range-Doppler map after the Gaussian Convolution module 

processing.   

 

 

Figure 3.6. Range-Doppler Map Output from Gaussian Convolution Module Using Different Variance 

Values. The larger variance values result in a wider Gaussian curve, and therefore larger target detection 

areas in the range-Doppler map.  
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 Adjusting the variance values of the Gaussian curve is equivalent to changing the 

precision of the collected data. Wider Gaussian curves provide more robust data fusion, 

but result in less precise target location estimates.  

 

3.3 Data Generation 

 

3.3.1 Signal Generation 

The Signal Generation module of the simulation code is called first after 

establishing all user defined parameters. Data is simulated for each microphone array as 

it would be received directly from each source and echoed from each target in the 

simulation environment. The data is generated for each sensor individually in each of the 

microphone arrays. This data is representative of the signal that each microphone would 

receive based on the type of signal transmitted and the relative phase and distance from 

the microphone to the target. It is stored in a matrix for each array consisting of a number 

of rows equal to the number of microphones in the array. The cumulative data matrices 

represent what a microphone array would produce after receiving a signal in ideal 

conditions with no noise and no propagation loss.   
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At this point in the simulation, the simulated data for each source and target is 

combined into a single matrix for each microphone array. The resulting data for each 

array is then is padded with zeros to simulate sound delay due to distance from each 

source or target. The distance calculated for the target is the distance from the source to 

the target plus the distance from the target to the microphone array. Figure 3.7 below 

shows an example of zero padded signal data generated by the Signal Generator Module.  
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Figure 3.7.  Output from the Signal Generator module showing a zero padded signal received by the sensor 

array. The number of samples before signal in the data is calculated based on the distance from the sound 

source to the sensor array, including echo distance. 
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For this example, the sound source was approximately 153 meters away from the 

sensor array. In this simulation example, the sound waves are assumed to travel through 

air at 20 degrees Celsius, and so a speed of 343 m/s for the sound waves is assumed. The 

sound delay in samples can be calculated using the equation 2.6, which results in a sound 

delay of 2232 samples before the signal begins.  

As discussed in the Chapter 2, the orientation of the multi-sensor array causes the 

individual microphones in the array to be at different linear distances away from the 

signal source. These result in a small time delay between signal data received at each 

microphone in the array. The Signal Generator captures this phase delay using the user-

defined object coordinates. This delay is used later in the Beamformer module as the 

array is steered toward a specific direction. Note that no phase difference can be seen in 

the data generated for Array 1 because the orientation of Array 1 is perpendicular to the 

wave path of the signal from the target. This means that theoretically all microphones in a 

multi-source array will receive the signal simultaneously so long as far field and planar 

wave assumptions are used. Figure 3.8 shows a detailed view of the output of the Signal 

Generator module, showing the data for each individual microphone in a 32 sensor array. 
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Figure 3.8.  Detailed view of the output of the Signal Generator module. This view shows the individual 

signals from each microphone in the array.  

 

 The lines in the figure represent signal data for each sensor in the array. These 

lines are not aligned due to the difference in time of arrival of the signal for each sensor.  

 

3.3.2 Noise and Propagation Loss Simulator 

 In order to more accurately represent real world acoustic phenomena, noise and 

sound propagation loss are simulated. The noise in the received signal can be attributed 

to environmental sounds as well as electrical noise in the equipment [4]. Propagation loss 

is primarily attributed to spreading loss and energy absorption. The Noise and 
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Propagation Loss Simulator module of the simulator code alters the data generated by the 

Signal Generator to account for these factors.  

Sound propagation loss in real world environments relies on many variables such 

as the transfer medium, echo surface, ground reflections, wave propagation, and wave 

interference. For this simulator, not all of these propagation loss factors were considered 

individually. Calculating the exact intensity loss would require an excessive number of 

variables to be defined by the user prior to the simulation run. To simplify the 

calculation, the propagation loss was calculated using only the distance the signal has 

traveled. This generalization provides adequate propagation loss accuracy for the 

simulation environment. The propagation loss simulated in this simulation is simply 

relative to other received signal amplitudes and is directly proportional to the distance 

from the source to the microphone, including echo distance. The received signal for each 

generated data matrix is divided by this distance before noise is generated and added.  

Noise is simulated by generating a vector of Gaussian distributed, random 

numbers from negative one to one, equal to the length of the array of data for each 

microphone. This random integer array is then amplified or reduced according to the 

desired signal to noise ratio, allowing the user to control the relative amplitude of the 

applied noise floor. Separate noise matrices are generated for each microphone array and 



 

 39

the noise is added to the Signal Generator data, simulating additive, Gaussian, white 

noise. 

Figure 3.9 below shows the signal output after the Noise and Propagation Loss 

Simulator module is called. For this example, a Signal to noise ratio of 0.5 was used. 
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Figure 3.9.  Output of Noise and Propagation Loss Simulator module using a signal to noise ratio of 0.5. 

The original signal is no longer visible at this signal to noise ratio level.  

 

As Figure 3.9 shows, the propagation loss of the signal, and the addition of noise 

completely obscure the signal by visual inspection. The difficulty in determining the 
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presence of a received signal serves as proof of the need for intelligent data processing 

for acoustic experimentation. 

 

3.4 Signal Processing 

 

3.4.1 Beamformer 

Once the data has been processed by both the Signal Generator and the Noise and 

Propagation Loss Simulator, the Beamformer module is called to begin processing. The 

data for each microphone array is beamformed at every angle from -90 degrees to 90 

degrees, in one degree increments. The beamformer applies a vector of weight factors to 

the signals at each channel to steer the array towards the desired angle. These weighted 

channel signals are summed together, resulting in a single output as opposed to signals 

for each individual microphone. The output of the beamformer is a vector of data 

directed towards the given beamforming angle. Figure 3.10 shows the output of the 

beamformer function for Array 2 at an angle of -45 degrees from the normal plane 

(directly towards the echo target) with no noise.  
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Figure 3.10.  Output of the Beamformer module for Array 2, steered directly toward the target at -45 

degrees. There is no noise in the system. The output is a single signal as opposed to signals for each 

individual microphone. 

 

Spectograms of the beamformed data can be seen in Figure 3.11. The first figure 

shows this data in the frequency-time domain with the addition of noise, the second 

figure shows the data in the same domain but with noise suppressed. 
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Figure 3.11.  Spectogram of the output of the Beamformer module for Array 2 at -45 degrees, The first 

graph shows the results using an SNR of 0.5, the second graph has all noise suppressed.  

 

While the first figure clearly demonstrates the ambiguity of the detected target 

location in a noisy environment, the second shows the detected signal at a specific time 

delay with the sloped chirp frequency characteristic.  

 

3.4.2 Matched Filter 

 Each Beamformer output (beamformed data for each angle for each microphone 

array), is processed by a matched filter that generates a range-Doppler map for the data. 

This 2-dimensional map displays the amplitude of the received signal on a range versus 
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Doppler matrix at a given beamformer angle. A scaled, color gradient image of the 

range-Doppler map of the Array 2 data at an angle of -45 degrees from the normal plane 

can be seen in Figure 3.12 with and without noise.  

 

 

Figure 3.12.  Scaled image output of the Matched Filter module for Array 2 at -45 degrees. The first graph 

show the results of using an SNR value of 0.5, the second graph has all noise suppressed. 

 

A target is detectable in the second figure by visual inspection, though this is 

more ambiguous in the first figure with noise present. The target in this simulation 

example is static, and so should have a zero Doppler return. However, some bleeding 
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into other Doppler values is seen due to the chirp signal frequency characteristics. Figure 

3.13 shows the cross section of the range-Doppler map at a zero Doppler value.  
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Figure 3.13.  Cross section of the range-Doppler map from the Matched Filter module for Array 2 at -45 

degrees. This cross section is taken at a neutral Doppler value. 

 

Inspecting the cross section of data at a Doppler value of 11 shows a clear peak 

return at a range of 2230 samples, which is within two samples or 0.1372 meters of the of 

the correct target range previously calculated to be 2232 samples. This is an acceptable 

level of error when considering the size of the area in question is 200 meters by 200 

meters.  
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3.4.3 False Target Generator 

Often in real world experimentation, environmental factors attribute to many false 

positive returns that can obscure the true signal of interest. This is especially true in 

underwater sonar applications due to the highly reverberating nature of these 

environments and the large number of sporadic sources such as snapping shrimp [19]. In 

order to represent this phenomenon, the simulator adds several spurious peaks to the 

range-Doppler map. These peaks increase the difficulty of accurate target detection, and 

represent echoes in real world situations. This also helps to demonstrate the effectiveness 

of the fusion algorithms being analyzed. The peak locations are randomly generated and 

their amplitude is proportionally larger than that of the signal of interest, to ensure 

adequate obscurity. Figure 3.14 shows the cross section of data after 20 false positive 

peak returns are generated. 
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Figure 3.14. Cross section output of the False Target Generator module for Array 2 at -45 degrees. This 

cross section is from a neutral Doppler value. The figure shows the addition peaks added by the module. 

The arrow indicates the true target peak. 

 

3.4.4 Impulse Substitution 

 The next module of the simulator code processes each range-Doppler map 

individually. When this module is called in the simulator, it steps through each range-

Doppler map from the Matched Filter, and replaces the peaks with a single impulse. A 

complex algorithm repeatedly searches through the range-Doppler map data for 

amplitude values above a certain threshold. The threshold is incrementally reduced until 

the user-defined number of peaks is found in that search. The location of each peak found 

above the threshold is then compared to the location of previously found peaks and 

True  
Target 
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thrown out if within a specific user-defined range. This ensures that large peaks are not 

replaced by multiple impulses due to trail-off values of that peak. All values below the 

minimum peak threshold are reduced to zero. The number of peaks to replace, as well as 

the minimum distance between peaks are both user-defined values. However, the user 

should take care when selecting these parameters to ensure that all desired data will be 

above the minimum threshold. A higher number of peaks to replace and a lower distance 

between peaks will result in a lower risk of data loss  

 The following figure shows the effects of the Impulse Substitution module. The 

first graph in Figure 3.15 shows a cross section of a range-Doppler map, showing the 

signal amplitude along the range axis. The second graph in the figure shows the same 

cross section after the range-Doppler map has been processed by the Impulse Substitution 

module.  
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Figure 3.15. Cross section output of a range-Doppler map before and after the Impulse Substitution module 

for Array 2 at -45 degrees.  

 

3.4.5 Gaussian Convolution 

 Once the range-Doppler map peaks have been replaced with impulses, a 

convolution is performed between the modified range-Doppler map and a 2-dimensional 

Gaussian curve. This step results in a new range-Doppler map with each impulse 

replaced by a 2-dimensional Gaussian curve centered at the original location of the 

impulse. Each of these Gaussian curves represents the probability of a target at the given 

range and Doppler, and the new modified map is called a probability density function. 

Replacing the impulse map with a probability density function provides robustness to 

position and orientation uncertainties of the sub-arrays. Target values will be 

compounded with each other during the fusion process even if the targets are not co-
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located in different sensor maps. The user-defined variance of the Gaussian curve 

represents the precision of the data. Figure 3.16 shows the results of the convolution 

between the impulse substitution output and the Gaussian curve.  The range-Doppler map 

presented is generated from Array 2 for an angle of -45 degrees from the normal plane.  

 

Figure 3.16.  Range-Doppler map output of the Gaussian Convolution module for Array 2 at -45 degrees. 

This figure shows the peak at the true target range of 2230 samples. 
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Figure 3.17 displays a detailed view of the true target located at 2230 samples. 

This figure clearly shows the 2-dimensional Gaussian curve characteristic of the target 

peak.  

 

Figure 3.17.  Detailed view of the output of the Gaussian Convolution module for Array 2 at -45 degrees. 

This view shows a close up of the peak at the true target location of 2230 samples. 

 

Changing the variance of the Gaussian curve before convolution is synonymous 

with changing the uncertainty values of various parameters in the simulation. For 

example, this uncertainty could be caused from position and orientation errors in the 
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system. A larger Gaussian variance value results in a “wider” cross sectional bell curve, 

which equates to a wider spread of peak locations. This is advantageous in situation when 

peaks found from different arrays are determined to be close to each other, but not 

exactly co-located. The overlapping tail values will still result in a high value after these 

peaks are multiplied in the fusion process due to the wider bell curve. A larger Gaussian 

variance can be used to represent less precision in the experimental environment or 

instrumentation. In the same respect, a smaller variance for the 2-dimensional Gaussian 

curve results in a “thinner” bell curve and can represent more precise localization results. 

While a higher variance Gaussian curve results in a more robust fusion process, more 

iterations are required to achieve a final accurate result.  

 The number of target peaks displayed is user defined and is generally dependent 

on the signal to noise ratio and the number of false positive peaks created. Each of these 

peaks is then processed assuming it is a true target location and all data is retained for 

fusion.  
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3.5 Target Processor 

 

3.5.1 Range Correction 

The true geometric distance to each of these target peaks must be calculated 

before their reference point of view can be translated. The distance perceived by the 

microphone array to the target is not the correct distance between the target and the array, 

but rather the distance between the target and the array plus the distance between the 

target and the sound source. The range value for each target in each range-Doppler map 

must be adjusted to account for this echo distance. The location of the multi-source 

microphone array and the location of sound source are known, and the total distance from 

the multi-source array to the target and then to the sound source is measured. The 

distance from the sound source to the target must be subtracted from this total distance. 

The figure below illustrates this. 
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Figure 3.18. A demonstration of perceived target distance due to echo effects. In order to determine the 

true target distance, the echo distance must be calculated and subtracted. 

 

As Figure 3.18 shows, the sensed distance can be significantly different from the 

actual target distance due to the echo. The Range Correction module calculates and 

subtracts the echo distance from the sensed target distance to achieve the true target 

position. It is assumed that because the multi-sensor arrays are networked, they are time-

synced and the time the sound signal is sent is known.  

This algorithm will not affect the situation where the detected signal is actually 

the active sound source as the echo distance is calculated to be zero, resulting in an 

adjusted distance that is equivalent to the original distance. 
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This geometrically corrected distance is calculated for each target detected at each 

angle of attack for each multi-sensor array. 

 

3.5.2 Translation 

In order for the data from the microphone sub-arrays to be fused, the data from all 

sub-arrays must be translated to a common frame of reference. The simulator translates 

all data to the point of view of the origin. The distance and angle with respect to the 

origin are calculated for each detected target of each range-Doppler map. During the 

translation process, areas in the map where no target is present, the map amplitude values 

are set to a baseline value of 0.5. This value ensures that targets not present in all array 

models are reduced in the multiplication process, but not completely nullified after a 

single iteration. 

Figure 3.19 below shows a new range-Doppler map for an angle of 45 degrees 

from the origin after each target distance has been calculated and the target peaks have 

been translated to the proper location with respect to the origin in the map. 
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Figure 3.19.  Output of the Translation module for Array 2, 45 degrees from the origin. The map is a slice 

of the whole range-Doppler map at a neutral Doppler value, causing the targets to appear as tall, narrow 

bands.  

 

 In the simulation, the geometrically corrected range-Doppler maps of the arrays 

are trimmed to just the neutral Doppler value since all targets are assumed static. This is 

done to reduce system memory usage and simulation run time. The resulting target 

peaks, as shown in Figure 3.19, appear as narrow bands in the range-Doppler map, rather 

than the round targets shown in Figure 3.17. 
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 Figure 3.20 shows a cross sectional view of the same map at a zero Doppler 

value, while Figure 3.21 shows a detailed view of Figure 3.20 locating the true target 

location.  
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Figure 3.20.  Cross sectional view of the output of the Translation module for Array 2 at 45 degrees from 

the origin. The highlighted box shows the area where the detailed view in Figure 3.21 came from.  

Figure P2 
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Figure 3.21.  Detailed view of the cross section output from the Translation Module for Array 2 at 45 

degrees from the origin. The true target location has been marked at 2230 samples.  

 

After geometric correction, there are 91 resulting range-Doppler maps for each 

multi-sensor array, one for each angle from 0 degrees to 90 degrees with respect to the 

origin. An angle of 0 degrees coincides with the positive x-axis, and an angle of 90 

degrees coincides with the positive y-axis. These range-Doppler maps are stacked 

together to form a 3-dimensional matrix called the Array Model with axis of Doppler, 

range, and angle. It is difficult to adequately represent all of this information in a 2-

dimensional space in this thesis; however some visual analysis can still be performed. 
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The figure below shows the maximum value for each range-Doppler map at each angle 

for array 2. 
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Figure 3.22.  Maximum values for each angle from the origin of Array Model 2. The true location at X=46 

is highlighted in the figure. 

 

As 3.22 shows, the true target angle cannot be definitively determined because 

the amplitude of the target location is smaller than other peaks in the array model. 

Typically in simulation, none of the peaks in this view will represent the true target 

location, as the amplitude of the true target signal is less than the false target echoes.  
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3.6 Fusion of Data 

 

3.6.1 Fusion 

At this point in the simulator code, a modified range-Doppler probability density 

map is obtained for each angle step for each microphone array. These maps are stacked 

together to form one 3-dimensional matrix for each microphone array in an array model. 

These array models represent the angle from the origin, versus distance from the origin, 

versus Doppler shift.  

The array models are combined in an element by element multiplication process, 

resulting in a single 3-dimensional matrix referred to as the world model by the 

simulator. When the array models for each of the arrays are fused, some of the target 

peak amplitudes are reduced if the peak is not present in all 3 of the array models. This is 

because the peak values are multiplied by the baseline 0.5 value previously set in the 

Translation module. Similarly, the targets peaks that are present in the same location in 

all 3 of the world matrices are amplified as they are multiplied together. Figure 3.23 

below shows the maximum value for each range-Doppler map at each angle for the world 

model.  
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Figure 3.23. Maximum value for each angle from the origin of the World Model after a single iteration. 

The true target location at X = 46 is shown in the figure. 

 

  The true target location is (100m, 100m) and so is located at 45 degrees from the 

positive x-axis with respect to the origin. The first stack of the World matrix contains the 

targets located at 0 degrees from the origin, while the second stack contains values 

located at 1 degree from the origin, etc. Therefore the true target location at 45 degrees 

should be present in the 46th matrix of the World matrix. As can be seen in Figure 3.23, a 

peak value is present at the 46th maximum value.  
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The true target distance from the origin is calculated below using the simulation 

geometry and equation 2.6: 

100m  2 141.4m  

d
fs
c
141.4m

5000Hz
343m s

 2061samples  

A plot of the peak locations at 45 degrees from the origin can be seen in Figure 

3.24. The true target peak can be seen at 2061 samples, indicating that the true target is 

present in the World matrix.  
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Figure 3.24. World Model at 45 degrees from the origin after one iteration. The true target distance at 2061 

samples is shown in the figure.  
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Though a peak is present at the true target location determining a singular 

definitive target location would not be possible, as many other potential target locations 

are also still present in the World matrix. This problem is solved using an iterative 

process. Experimental data is continually collected and processed into the World model. 

The iterative process of data collection continually nullifies false positive values while 

amplifying any common peaks among iterations. Figure 3.25 shows the maximum values 

at each angle from the origin of the world model after various amounts of iteration.  
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Figure 3.25. Output from the Fusion module after various iterations From top to bottom and left to right, 

the number of iteration of each figure are 1, 5, 10, 15, 20, and 25. A single, definitive target can only be 

seen in the final figure after 25 iterations.  
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It can clearly be seen from Figure 3.25 that a single peak remains in the world 

model at an angle of 45 degrees from the positive x-axis. Figure 3.26 below shows the 

range-Doppler map at that 45 degree angle from the positive x-axis. 
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Figure 3.26. World Model at 45 degrees from the origin after 25 iterations. The target is determined to be 

2069 samples from the origin, which is 8 samples, or less than 1 meter away from the true target location. 
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The target locations can clearly be seen at a location of 2069 samples, which 

equates to 142 meters from the origin. This is within 1 meter from the true target location 

of 141 meters.  
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Chapter 4:  

Summary and Conclusions 

This chapter will review the topics already discussed, as well as offer some final 

conclusions for this thesis. The focus of this research was to develop a simulation 

environment for studying networked, multi-sensor microphone arrays using a lossless 

fusion algorithm model. The simulator serves as a useful tool for comparing different 

acoustic post-processing algorithms in a controlled, but flexible environment. A thorough 

overview of the simulator code development was presented, along with an example 

fusion method and the simulation results.  

In chapter 2, background information in acoustic microphone arrays was 

presented. This review provided a basic understanding of acoustic wavefield properties 

and propagation.  The methods for measuring an objects distance and velocity were 

discussed with an explanation of active and passive sonar systems. The chapter also 

included a discussion of beamforming and matched filtering, focusing on the specific the 

algorithms used in the simulator. Chapter 2 concluded with an overview of current 

applications and future applications for networked multi-sensor arrays. 
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Chapter 3 consisted of an in depth explanation of the simulation code 

development including graphical results for each for each module. After an overview of 

the simulator architecture, a discussion of the code parameters was presented. These 

parameters are user defined and their effects on the target detection results were 

discussed. Each subsequent section of Chapter 3 discussed the specific modules of the 

simulator in detail. Graphical results of each modules output were presented, and results 

of the fusion algorithm after various numbers of iterations were also shown. These results 

demonstrate a successful detection and estimation of the target using the fusion 

algorithm.  

The algorithms presented in this thesis provide a method to accurately simulate 

active multi-sensor array testing. This thesis demonstrated the effectiveness of these 

algorithms for detection and estimation across a broad range of acoustic environments 

and situations. Flexibility and user customization were maintained, ensuring the 

simulator is a valuable tool for a variety of applications. While further development is 

needed for handling some more complex acoustic simulations, such as 3-dimensional 

environments and dynamic targets, a base simulator model for acoustic multi-sensor 

array testing was achieved.  

The Data Generation section of the simulator is able to accurately produce 

simulated signals received by the microphone arrays based on the input parameters. The 
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noise added to the signal is currently additive, Gaussian, white noise, but further 

development could provide additional noise types to be simulated. The propagation loss 

calculation is currently a simplified algorithm based solely on the objects distance from 

the receiver. This idealized sound propagation loss is used to avoid over complicating the 

number of user defined parameters required for the Data Generation section.  

The Signal Processing section analyses a 180 degree spectrum, in single degree 

increments, for each multi-sensor array in the simulation. A simple, narrowband, delay 

and sum beamformer is used in for the Beamformer module because the signal types 

transmitted fit this profile. A different beamformer type could be explored, and would be 

required if broadband signal types were to be tested. The range-Doppler maps from the 

Matched Filter module have proven to be accurate for all simulated cases tested.  

 The processing performed by the Target Processing section of the simulator, has 

also been reliably accurate in testing. The false positives that are generated in the False 

Target Generator module are currently only added to a single Doppler shift value 

because all targets are assumed to be static. Future versions of this simulator code, if 

analyzing dynamic targets, could add false targets to the entire range-Doppler map. The 

Impulse Replacement algorithm accurately detects peak values from the range-Doppler 

map and replaces them with impulses. Currently, careful consideration must be used 

when choosing the algorithm parameters to ensure that the signal of interest does not fall 
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below the threshold. Code could be developed to determine the required parameters for 

Impulse Replacement to avoid problems with erroneous parameter choices. The Gaussian 

Convolution algorithm could also be developed further. An algorithm to determine the 

proper variance of the Gaussian curve based upon the received signal could result in more 

accurate simulations, because the precision of the target location would be determined 

from actual data characteristics. One limitation to the Translation module is that if 

detected targets are calculated to be near each other after translation, the Gaussian curves 

could overlap each other in the world map. Currently the most recent target translated 

will overwrite existing data from previously found targets if overlap occurs. This could 

result in less accurate results, and future development could merge the two Gaussian 

curves together more intelligently.  

The fusion methods presented are capable of detecting and estimating the correct 

target of interest from all the collected data after an adequate number of iterations. The 

current number of iterations required is dependent on the simulated situation. Currently, 

the number of iterations is considered adequate when a visual examination of the results 

shows the correct target location as the only peak. Code could be written to determine 

when adequate iterations have been achieved by comparing the current world model with 

previous world models to detect changes at each iteration. The true target is assumed 

found when the location of the target remains constant from one iteration to the next over 
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several iterations. Due to the current fusion method, the amplitudes of the peaks in the 

world model increase with each iteration as the maps are multiplied together. To improve 

accuracy, an improved fusion algorithm could be developed to maintain peak amplitude 

through iterations. 

The world model design is a convenient way to package all known data about the 

simulation environment after processing. However, it is difficult to represent this data 

visually to the user due to the number of axis in the matrix. An additional program could 

be used to analyze the final world model and present all the data in a visual method that 

would facilitate easy studying of the results.  

The simulator program presented in this thesis satisfies the research objectives 

discussed. The flexible, controllable simulation environment produces accurate acoustic 

representations that can be used in place of, or in support of real world testing. The 

simulator will be an extremely valuable tool to future researchers in networked multi-

sensor acoustic arrays.  
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Chapter 5:  

Future Work  

 The motivation for the work demonstrated in this thesis was to demonstrate a 

lossless fusion algorithm using a simulated environment. A acoustic simulator was 

developed that controlled comparisons to be performed in a flexible environment. The 

simulator was also intended to serve as a basis for future research in acoustic signal 

processing. This chapter will discuss future areas of development that can be explored to 

further the simulator code functionality. Further development of the simulator code will 

improve the robustness for complex simulated situations, as well as broaden the range of 

specific algorithms that can be tested.  

 Future work on the simulator would include developing the ability to process 

dynamic targets, as the current version of the simulator code will only work for static 

situations. The Matched Filter module estimates the Doppler shift of the target in the 

creation of the range-Doppler maps, however the target is assumed static and no Doppler 

translation calculations are performed. Because of this, all example simulations presented 

in this thesis have a Doppler shift value of zero. The ability to process dynamic targets 

would greatly broaden the functionality of the simulator, though several changes would 

have to be addressed. The Translation module would need to be able to determine the 
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velocity of the target relative to the origin based on the Doppler shift values in order to 

perform the necessary translation. Also, the dynamic characteristics of the target would 

need to be defined by the user as additional parameters. An advanced fusion algorithm 

would also be required that could handle the drifting of the target location with each 

simulation iteration.  

To increase the realism of the simulator, white, Gaussian noise and a simplified 

propagation loss model are used to modify the generated signal. Other noise profiles 

could be added to the system using a more complex algorithm to simulate more specific 

noise environments when needed. A variable noise could even be applied to the signal 

that would change over the course of the simulation. Additionally the propagation loss 

model could be expanded to reflect different sound decay characteristics for more 

specific simulation testing. For example, simulated testing of acoustics near thermoclines 

could be performed using more specific sound propagation characteristics. 

 Currently the simulator environment is limited to 2 dimensions. Extending the 

capabilities of the software package to handle 3-dimensional environments would greatly 

increase the usability of the program. A 3-dimensional acoustic simulator would provide 

a wealth of research opportunities in acoustic multi-sensor array testing. However, 

adding a third dimension to the testing environment would significantly increase the 

complexity of the algorithms used. The Array Models and World Models would require 
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an addition dimension to hold the data, and the geometric calculations performed in the 

simulator would increase in complexity. A more complex sound propagation behavior 

would be required to realistically simulate sound in a 3-dimensional space. Additionally, 

the simulator processing time would increase significantly per iteration, as the amount of 

data to be processed would greatly increase.  

 To increase the flexibility of the simulator, some of the current system constants 

could be changed to user-definable parameters, offering more control over the simulation 

environment. This would require additional algorithm development would be required to 

handle the extra parameters. Currently the simulator assumes an in-air testing 

environment in ideal conditions. Allowing the user to specify alternate propagation 

mediums under various conditions would tailor the simulator to more specific acoustic 

research. The simulator could be adapter to handle other wavefield types, such as 

vibrational or electromagnetic, allowing hybrid wavefield simulations to be tested. These 

additional user-defined parameters directly increase the usefulness and robustness of the 

simulator program.  
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Appendix A: 

 Source Code 

A.1 VAL_simulator_main.m 
tic 
 
for iter = 1:1 
 
warning off 
 
clear aDataZ aDataZn arrayDataS arrayDataT bformT bformTtest doppEnd  
clear doppPeak doppSize doppStart newout newoutF newoutT newoutTtest  
clear newouttest 
 
clear nnoise peaks rangeEnd rangePeak rangeSize rangeStart sig t temp  
clear tempsize world1 world2 world3 
 
load falseTargLocs.mat 
 
%workspace (0,0) at the bottom left corner 
 
j = 0 
numArrays = 3; 
 
%tVars and sVars elements are x and y coords 
tVars = [100,100]; 
sVars = [80,20]; 
 
%arrayVars elements = num of elements, x coord, y coord, orientation 
arrayVars(1,:) = [32,10,10,45/180*pi,0,51.3/180*pi]; 
arrayVars(2,:) = [32,50,150,270/180*pi,-45/180*pi,18.4/180*pi]; 
arrayVars(3,:) = [32,180,80,180/180*pi,14/180*pi,-45/180*pi]; 
elemSpace = 0.025; 
c = 343; 
 
%G is the Gaussian curve that replaces the peak in newout 
xg = 0:.1:40; yg = 0:.1:40; xgo = 20; ygo = 20; 
for c1 = 1:length(xg) 
    for c2 = 1:length(yg) 
        G(c1,c2) = exp(-((((xg(c1)-xgo).^2)/(2*200))+(((yg(c2)-ygo).^2)/(2*200)))); 
    end 
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end 
 
fs = 5000; 
cLength = 0.25; 
t = 0:1/fs:cLength; 
cMin = 1000; 
cMax = 2000; 
sig = 100*chirp(t,cMin,cLength,cMax); 
%sig = 100*rand(1,100); 
%sig = 100*sin(2*pi*t*1500); 
noiseBool = 1; %use 1 for noise, use 0 for no noise 
snr = 2; %noise variable 
cali_tau = zeros(1,arrayVars(1,1)); %calibration constants 
cali_amps = ones(1,arrayVars(1,1)); %calibration constants 
 
for j = 1:numArrays 
    j 
    %determine angle from array to target and from array to source 
    [at(j)] = angle_from_array(arrayVars(j,2:3),arrayVars(j,4),tVars(1:2)); 
    [as(j)] = angle_from_array(arrayVars(j,2:3),arrayVars(j,4),sVars(1:2)); 
 
    %determine distance from array to target and from array to source 
    dSourceTarg = sqrt((tVars(2) - sVars(2))^2 + (tVars(1) - sVars(1))^2); 
    dt(j) = sqrt((tVars(2) - arrayVars(j,3))^2 + (tVars(1) - arrayVars(j,2))^2) +     
dSourceTarg; 
    ds(j) = sqrt((sVars(2) - arrayVars(j,3))^2 + (sVars(1) - arrayVars(j,2))^2); 
  
    %distance in terms of samples 
    dts(j) = dt(j)/343*fs; 
    dss(j) = ds(j)/343*fs; 
  
    %generate mic array data from source and target and simulate decay 
    arrayDataT{:,:,j} = Data_Ang_Gen(sig,fs,at(j),5,arrayVars(j,1),elemSpace,c); 
    arrayDataT{:,:,j} = arrayDataT{:,:,j}./(dt(j)); 
    arrayDataS{:,:,j} = Data_Ang_Gen(sig,fs,as(j),5,arrayVars(j,1),elemSpace,c); 
    arrayDataS{:,:,j} = arrayDataS{:,:,j}./(ds(j)); 
    sizeDataT = size(arrayDataT{:,:,j}); 
    sizeDataS = size(arrayDataS{:,:,j}); 
   
    %pad with zeroes to simulate distance and add noise 
    aDataZ{:,:,j} = zeros(arrayVars(j,1), 1000/c*fs); 
    tempDataZ = aDataZ{:,:,j}; 
    tempDataZ(:,dts(j):(dts(j)+sizeDataT(2)-1)) = arrayDataT{:,:,j};  
    %tempDataZ(:,dss(j):(dss(j)+sizeDataS(2)-1)) = arrayDataS{:,:,j}; 
    aDataZ{:,:,j} = tempDataZ; 
    clear tempDataZ; 
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    if noiseBool == 1; 
        aDataZn{:,:,j} = awgn(aDataZ{:,:,j}, snr); 
    else 
        aDataZn{:,:,j} = aDataZ{:,:,j}; 
    end 
 
%    find target angles 
%    bAngs = [-60, 5, 60]; 
%    beamformer(:,:,j) = bform_v5(aDataZn{:,:,j}, bAngs, elemSpace, c, fs, 
(cMin+cMax)/2, (cMin+cMax)/2, arrayVars(j,1), cali_tau,cali_amps); 
 
%    peakAngs = peakfinder2D(beamformer(:,:,j), 5, 3, 0.5); 
    angStep = 1; %be sure to change angle calc if you change this 
    numAngs = 180/angStep; 
    bformTtest = bform_ang3(aDataZn{:,:,j}, 30, 
elemSpace,c,(cMin+cMax)/2,arrayVars(j,1),cali_tau,cali_amps); 
    newouttest = wave(bformTtest, sig, 0.9, 1.1, 0.01, 1, 0, 0); %only calculated to 
determine size of newoutT 
    temp = spikemaker(newouttest, 3, 20, .5, G, c, fs); 
    tempsize = size(temp); 
    newoutTtest = temp(round(tempsize(1)/2)-5:round(tempsize(1)/2)+5,:,:); 
    clear temp; 
 
    [r, rr, rrr, rrrr] = size(newoutTtest); 
 
    if j == 1 
        world1 = ones(r, rr, 91); 
        world1 = world1./5; 
    end 
 
    if j == 2 
        world2 = ones(r, rr, 91); 
        world2 = world2./5; 
    end 
 
    if j == 3 
        world3 = ones(r, rr, 91); 
        world3 = world3./5; 
    end 
 
    for ang = 1:numAngs 
        angle = -91 + (angStep*(ang)); 
 
        %beamform data at desired angles         
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        bformT = bform_ang3(aDataZn{:,:,j}, angle, 
elemSpace,c,(cMin+cMax)/2,arrayVars(j,1),cali_tau,cali_amps); 
 
        %generate range-Doppler map of beamformed data 
        newout = wave(bformT, sig, 0.9, 1.1, 0.01, 1, 0, 0); 
       
        %simulate false targets 
        newoutF = newout; 
        trueTargAmp = max(newout(11,:)); 
        [E,R] = size(newoutF); 
 
        for iii = 1:20 
            falseLoc = falseTargLocs(ceil(rand*length(falseTargLocs))); 
            falseAmp = 3*randn*trueTargAmp; 
            newoutF(11, falseLoc) = falseAmp; 
        end 
 
        %this replaces the range-Doppler map peaks with Gaussian curves 
        temp = spikemaker(newoutF, 35, 2, .1, G, c, fs); 
        %tempsize = size(temp); 
        newoutT = temp(9:13,:,:); 
        %newoutT = temp; 
        
        %geometry calculations to figure out true object location 
        [peaks] = peakfinder3D(newoutT, 30, 20, 0.1); 
        doppPeak  = peaks(:,1); 
        rangePeak = peaks(:,2); 
       
        for u = 1:length(doppPeak) 
            XY = rangePeak(u)/fs*c; 
            angA = abs((arrayVars(j,4)-as(j)*pi/180) - (arrayVars(j,4)-(angle*pi/180))); 
            W = sqrt(XY^2 + ds(j)^2 - 2*XY*ds(j)*cos(angA)); 
            angB = asin(ds(j)*sin(angA)/W); 
            angC = pi - 2*angB; 
            Ydist = W*sin(angB)/sin(angC); 
            targDist = XY - Ydist; %actual distance between array and object 
            if as(j) >= angle-angStep/2 && as(j) <= angle+angStep/2 
                targDist = XY; 
            end 
 
            newAngt = arrayVars(j,4) - (angle*pi/180); 
 
            if newAngt > 2*pi 
                newAngt = newAngt - 2*pi; 
            end 
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            if newAngt < 0 
                newAngt = newAngt + 2*pi; 
            end 
            if newAngt < pi/2 
                yCoord = arrayVars(j,3) + targDist*sin(newAngt); 
                xCoord = arrayVars(j,2) + targDist*cos(newAngt); 
            elseif newAngt < pi 
                newAngt = pi - newAngt; 
                yCoord = arrayVars(j,3) + targDist*sin(newAngt); 
                xCoord = arrayVars(j,2) - targDist*cos(newAngt); 
            elseif newAngt < 3*pi/2 
                newAngt = newAngt - pi; 
                yCoord = arrayVars(j,3) - targDist*sin(newAngt); 
                xCoord = arrayVars(j,2) - targDist*cos(newAngt); 
            else 
                newAngt = 2*pi - newAngt; 
                yCoord = arrayVars(j,3) - targDist*sin(newAngt); 
                xCoord = arrayVars(j,2) + targDist*cos(newAngt); 
            end  
 
%xCoord and yCoord are x and y coordinates of the object with respect to origin 
 
            if yCoord >= 0 && xCoord >= 0 
                targDFO = sqrt(yCoord^2 + xCoord^2); %object distance from origin 
                targAFO = atan(yCoord/xCoord)*180/pi; %object angle from origin 
 
                doppSize = 4; 
                rangeSize = 200; 
                doppEnd = doppPeak(u)+doppSize; 
                doppStart = doppPeak(u)-doppSize; 
                rangeEnd = rangePeak(u)+rangeSize; 
                rangeStart = rangePeak(u)-rangeSize; 
                rangeSize = [rangeSize,rangeSize]; 
                [d_map,r_map] = size(newoutT); 
 
                if doppEnd > d_map 
                    doppEnd = d_map; 
                end 
 
                if doppStart < 1 
                    doppStart = 1; 
                end 
 
                if rangeEnd > r_map 
                    rangeEnd = r_map; 
                    rangeSize(2) = r_map - rangePeak(u); 
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                elseif rangeStart < 1 
                    rangeStart = 1; 
 
                    rangeSize(1) = rangePeak(u) - 1; 
                end 
 
                if round(targDFO*fs/c) - rangeSize(1) <= 0 
                    rangeSize(1) = round(targDFO*fs/c) - 1; 
                    rangeStart = rangePeak(u) - (round(targDFO*fs/c)-1); 
                end 
 
                if round(targDFO*fs/c) + rangeSize(2) > r_map 
                    rangeSize(2) = r_map - round(targDFO*fs/c); 
                    rangeEnd = rangePeak(u) + (r_map - round(targDFO*fs/c)); 
                end 
 
                if j == 1 
                    if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord >   tVars(2)-7 
&& yCoord < tVars(2)+7 
                        world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1;  
                    elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord > 
sVars(2)-7 && yCoord < sVars(2)+7 
                        world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1; 
                    else 
                        world1(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd); 
                    end 
                end 
 
                if j == 2 
                    if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord > tVars(2)-7 
&& yCoord < tVars(2)+7 
                        world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1; 
                    elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord > 
sVars(2)-7 && yCoord < sVars(2)+7 
                        world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1; 
                    else 
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                        world2(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd); 
                    end 
                end 
 
                if j == 3 
                    if xCoord > tVars(1)-7 && xCoord < tVars(1)+7 && yCoord > tVars(2)-7 
&& yCoord < tVars(2)+7 
                        world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1; 
                    elseif xCoord > sVars(1)-7 && xCoord < sVars(1)+7 && yCoord > 
sVars(2)-7 && yCoord < sVars(2)+7 
                        world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd)*1; 
                    else 
                        world3(doppStart:doppEnd, round(targDFO*fs/c)-
rangeSize(1):round(targDFO*fs/c)+rangeSize(2), round(targAFO)+1) = 
newoutT(doppStart:doppEnd, rangeStart:rangeEnd); 
                    end 
                end 
            end 
        end       
    
%     if angle == 0 & j == 1 
%         figure, imagesc(newoutT) 
%         test1 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi, 
angB*180/pi, angC*180/pi, W, targDFO, targAFO]; 
%     elseif angle == -45 & j == 2 
%         figure, imagesc(newoutT) 
%         test2 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi, 
angB*180/pi, angC*180/pi, W, targDFO, targAFO]; 
%     elseif angle == 15 & j == 3 
%         figure, imagesc(newoutT) 
%         test3 = [XY, Ydist, targDist, newAngt, xCoord, yCoord, angA*180/pi, 
angB*180/pi, angC*180/pi, W, targDFO, targAFO]; 
%     end 
    end 
end 
 
if (length(world1) > 14977) 
    world1 = world1(:,1:14977,:); 
end 
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if (length(world2) > 14977) 
    world2 = world2(:,1:14977,:); 
end 
if (length(world3) > 14977) 
    world3 = world3(:,1:14977,:); 
end 
 
multString = sprintf('WORLD%d = world1.*world2.*world3;',iter); 
eval(multString); 
varString = sprintf('WORLD%d', iter); 
saveString = sprintf('WORLDTESTFILE%d.mat', iter); 
save(saveString, varString); 
clearVar = sprintf('clear WORLD%d', iter); 
eval(clearVar); 
end 
 
toc 
 
%WORLDTEST = WORLD.^10; 
%WORLD3 = WORLD; 
%save('world3.mat','WORLD3'); 
 
 
 
 
A.2 angle_from_array.m 
 
function [thetadeg] = angle_from_array(arraypoint,arrayangle,targetpoint) 
 
a = [targetpoint(1)-arraypoint(1),targetpoint(2)-arraypoint(2),0]; 
b = [cos(arrayangle),sin(arrayangle),0]; 
 
theta = mod(atan2(a(1)*b(2)-b(1)*a(2),a(1)*b(1)+a(2)*b(2)),pi*2); 
thetadeg = theta*180/pi; 
 
if thetadeg > 180  
    thetadeg = thetadeg - 360; 
else 
    thetadeg; 
end 
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A.3 Data_Ang_Gen.m 
 
function [data] = Data_Ang_Gen(y1,fs,ang,op,n_elem,elem_d,c) 
 
%y1 = ping signal 
%fs = sampling freq 
%ang = angle to target (zero is straight ahead, right pos) 
%op = how many times do you want to upsample (suggested sample freq of 50k, 
%   upsample of 4) 
%n_elem = number of elements in array 
%elem_d = spacing between elements (in meters) 
%c = speed of sound (m/s) 
%will have to calculate the angle for each array to target. Will also have 
%to zero-pad the output data for each array to simulate range. Will run 
%program for each array. 
 
y11 = resample(y1,op,1);  
ang1=abs(ang); 
tau1 = (elem_d*sind(ang1)/c)*(0:(n_elem-1)); 
samp1 = abs(round(tau1*(fs*op)))+1; 
 
data = zeros(n_elem,length(y11)/op+1); 
if ang>0 
    n=1; 
    for ui = 1:1:n_elem 
        ddata = y11(samp1(ui):end); 
        ddata = resample(ddata,1,op); 
        data(n,1:length(ddata)) = ddata; 
        n=n+1; 
    end 
elseif ang<0 
    m=n_elem; 
    for ui = 1:1:n_elem 
        ddata = y11(samp1(ui):end); 
        ddata = resample(ddata,1,op); 
        data(m,1:length(ddata)) = ddata; 
        m=m-1; 
    end 
elseif ang==0 
    for ui = 1:1:n_elem 
        data(ui,1:length(y1)) = y1.'; 
    end 
end 
 
data = data(:,1:end-max(samp1)); 
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if rem(length(data),2)~=0 
    data = data(:,1:end-1); 
end 
 
 
 
 
 
A.4 bform_b5.m 
 
 
function [conv1] = 
bform_v5(X,angs,elem_d,c,fs,fc_old,fc_new,n_elem,cali_tau,cali_amps) 
 
%X: data 
%angs: [min angle, step angle, max angle] 
%elem_d: distance between elements 
%c: speed of sound 
%fs: sampling frequency 
%fc_new, fc_old: frequency desired, use same for both 
%n_elem: number of elements on the array 
%cali_tau, cali_amps: calibration constants 
% nfft = 2.^(ceil(log(length(X))./log(2))); 
 
nfft = length(X); 
nifft = length(X);  
bottom=(fs/2)/(nfft/2); 
p_MID=fc_new/bottom; p_index=[p_MID*.95,p_MID*1.05]; 
ang_start=angs(1); ang_space=angs(2); ang_end=angs(3);  
X2 = zeros(size(X)); 
 
for ui=1:n_elem 
    X2(ui,:)=cali_amps(ui).*X(ui,:); 
end 
 
Xfft=fft(X2.',nfft); Xfft1=Xfft(1:nfft/2,:); 
count=1; conv1=zeros(1,length(ang_start:ang_space:ang_end)); 
 
for jj=ang_start:ang_space:ang_end 
    W=zeros(1,n_elem); 
    %step through elements in steering vector calc 
 
    for iji = 1:n_elem   
        %calc the time delay and phase shift for the elements 
        tau = ((iji-1)*elem_d./c).*sin(jj*pi/180); 
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        W(iji) = exp(-(j)*2*pi*(fc_old)*(tau+cali_tau(iji))); 
%         W(iji) = exp((j)*2*pi*(fc_old)*(tau+cali_tau(iji))); 
    end 
  
    beam=ifft(W*Xfft1.',nifft); 
    beam = real(beam)/(n_elem); 
    [P1] = pwelch(beam,[],[],nfft,fs); 
    conv1(count)=sum(P1(round(p_index(1)):round(p_index(2)),1)); 
    count=count+1; 
end 
 
 
 
 
 
A.5 bform_ang3.m 
 
%% Beamform at Specific Angle 
% Inputs: 
%   X : matrix of collected data 
%   ang : angle to be beamformed at 
%   elem_space : spacing between elements 
%   c : speed of sound 
%   fc : center frequency to be beamformed at 
%   n_elem : number of elements 
%   cali_tau : phase calibration constants for fc 
%   cali_amps : amplitude calibration constants for fc 
 
function [beamed] = bform_ang3(X,ang,elem_space,c,fc,n_elem,cali_tau,cali_amps) 
 
% nfft = 2.^(ceil(log(length(X))./log(2))); 
nfft = length(X); 
nifft = length(X); 
X2 = zeros(size(X)); 
 
for ui=1:n_elem 
    X2(ui,:)=cali_amps(ui).*X(ui,:); 
end 
 
Xfft=fft(X2.',nfft); Xfft=Xfft(1:nfft/2,:); 
W=zeros(1,n_elem); 
 
%step through elements in steering vector calc 
for iji = 1:n_elem   
    %calc the time delay and phase shift for the elements 



 

 88

    tau = ((iji-1)*elem_space./c).*sin(ang*pi/180); 
    W(iji) = exp(-(j)*2*pi*(fc)*(tau+cali_tau(iji))); 
end 
 
% beamed=ifft(W*Xfft.',2*nifft); 
% beamed = real(beamed(1:nifft))/(n_elem); 
beamed=ifft(W*Xfft.',nifft); 
beamed = real(beamed)/(n_elem); 
beamed = beamed./max(beamed).*max(max(X)); 
 
 
 
 
A.6 peakfinder2D.m 
 
%will find a set number of peaks in a plot 
 
function [peaks] = peakfinder2D(dataplot, numPeaks, dist, thresh) 
%dataplot: data 
%numPeaks: number of peaks you wish to find 
%dist: minimum distance between peaks 
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5 
%   to find all peaks above 50% of max peak 
 
    maxval = max(dataplot); 
    n = 1; 
    Xm = find(dataplot >= maxval*n); 
    scoord(1) = Xm; 
    m = 1; 
 
    while (m <= numPeaks & n > thresh) 
        n = n - 0.01; 
        Xm = find(dataplot >= maxval*n); 
 
        for k = 1:length(Xm) 
            a = length(scoord); 
            count = 0; 
 
            for r = 1:a 
                if ((abs(Xm(k) - scoord(r)) < dist)); 
                    count = 1; 
                end 
            end 
 
            if count == 0 
                scoord(a + 1) = Xm(k); 
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                m = m + 1; 
            end 
        end 
    end 
 
    peaks = scoord; 
 
 
 
 
 
A.7 wave.m 
 
 
function [newout]=wave(sig, omw, smin, smax, ds, linr, shift, normal); 
 
%WAVE Wavelet Transform 
% WAVE(sig, omw, smin, smax, ds, linr, shift, normal) computes wavelet  
% transform with with the following parameters: 
%  
%  sig input signal 
%  omw mother wavelet 
%  smin minimum scale 
%  smax maximum scale 
%  ds scale increment 
%  linr 1 for linear scale increments, 0 for logarithmic 
%  shift 1 omw centered at time zero, 0 first sample anchored at time zero   
%  normal 1 for normalized, 0 for raw 
% 
% cfb 4 jun 1996 
 
tic 
 
global scaleindex 
global delayindex 
scaleindex=0; 
 
if nargin == 1, omw=sig;, shift =1, linr=1, smin=.8, smax=1.2, ds=.01, normal=1, end 
if nargin == 2, shift =1, linr=1, smin=.85, smax=1.15, ds=.01, normal=1, end 
if nargin == 5, linr=1, shift=1, normal=1, end 
 
lomw=length(omw); 
 
omask = ones(1,lomw); 
sigenergy=(abs(sig.^2)); 
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omwenergy=sqrt(omw*omw'); 
 
lsig=length(sig); 
numscales=round((smax-smin)/ds); 
scalemult=(smax/smin)^(1/(numscales-1)); 
 
pwr=0; 
pwrflag=1; 
tlen=lomw/smin+lsig+1; 
while pwrflag==1 
pwr=pwr+1; 
if 2^pwr >= tlen, pwrflag=0;,end; 
end 
fftlen=2^pwr; 
pwrflag=1; 
 
delayindex=[1:1:fftlen]; 
if linr==1,scaleindex=smin:ds:smax;,end 
 
q=0; 
 
if linr==1 
 for scale = smin:ds:smax 
  scale; 
  q=q+1; 
  %subsampling--time domain compression if scale > 1 
  %time domain dilation if scale < 1 
   mw=zeros(1,round(lomw/scale)); 
   lmw = length(mw); 
 
   for k = 1:floor(lomw/scale) 
    mw(k)=sqrt(scale)*omw(round(scale*k)); 
   end 
   
   mask=ones(1,length(mw)); 
    
   newsigenergy=[sigenergy zeros(1,fftlen-length(sigenergy))]; 
   newsig=[sig zeros(1,fftlen-length(sig))]; 
   newmw =[mw zeros(1,fftlen-length(mw))]; 
   newmask = [mask zeros(1,fftlen-length(mask))]; 
 
   if shift==1   
    newmw = [newmw((round((length(mw)/2))+1):length(newmw)), 
newmw(1:round((length(mw)/2)))]; 
    newmask = [newmask((round((length(mw)/2))+1):length(newmask)), 
newmask(1:round((length(mw)/2)))]; 
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% newmw=cbrot(newmw,round((length(mw)/2))); 
% newmask=cbrot(newmask,round((length(mw)/2))); 
   end 
 
   out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen))); 
   norm=ifft(fft(newsigenergy,fftlen).*conj(fft(newmask,fftlen))); 
   clear newsig newmw 
 
%  if ftshift==1   
%  wavtran(q,:)=fftshift(out(1:lsig)); 
%  normtran(q,:)=fftshift(norm(1:lsig)); 
%  else 
   wavtran(q,:)=out(1:lsig); 
   normtran(q,:)=norm(1:lsig); 
% end 
 end 
 
else  
 for q=1:numscales 
  scale = smin*(scalemult)^(q-1); 
  scaleindex(q)=scale; 
  %subsampling--time domain compression if scale > 1 
  %time domain dilation if scale < 1 
   mw=zeros(1,round(lomw/scale)); 
   lmw = length(mw); 
 
   for k = 1:floor(lomw/scale) 
     mw(k)=sqrt(scale)*omw(round(scale*k)); 
   end 
  
% 
%   newsig=[sig zeros(1,fftlen-length(sig))]; 
%   newmw =[mw zeros(1,fftlen-length(mw))]; 
% 
 
   mask=ones(1,length(mw)); 
    
   newsigenergy=[sigenergy zeros(1,fftlen-length(sigenergy))]; 
   newsig=[sig zeros(1,fftlen-length(sig))]; 
   newmw =[mw zeros(1,fftlen-length(mw))]; 
   newmask = [mask zeros(1,fftlen-length(mask))]; 
   
%   if (rem(length(sig),2))==0 
% newmw = cbrot(newmw,length(mw)/2); 
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%        newmw = [newmw((length(mw)/2+1):length(newmw)), 
newmw(1:length(mw)/2)]; 
 
%   else 
% newmw = cbrot(newmw,fix(length(mw)/2)); 
 
  if shift==1 
    newmw = [newmw((round((length(mw)/2))+1):length(newmw)), 
newmw(1:round((length(mw)/2)))]; 
    newmask = [newmask((round((length(mw)/2))+1):length(newmask)), 
newmask(1:round((length(mw)/2)))]; 
  end 
%   end 
 
%  out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen))); 
   out=ifft(fft(newsig,fftlen).*conj(fft(newmw,fftlen))); 
   norm=ifft(fft(newsigenergy,fftlen).*conj(fft(newmask,fftlen))); 
 
%  if ftshift==1 
%   wavtran(q,:)=fftshift(out(1:lsig)); 
%  else 
 
%   wavtran(q,:)=out(1:lsig); 
   wavtran(q,:)=out(1:lsig); 
   normtran(q,:)=norm(1:lsig); 
%  end 
 end 
end 
 
 if normal == 1 
  newout=abs(wavtran)./(sqrt(abs(normtran))*omwenergy); 
 else 
  newout=wavtran; 
 end 
 
a=toc; 
time=a/60; 
 
 
 
 
 
 
A.8 spikemaker.m  
 
function [newoutT] = spikemaker(data, numPeaks, dist, thresh, G, c, fs) 
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%data: data 
%numPeaks: number of peaks you wish to find 
%dist: minimum Y distance between peaks 
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5 
%   to find all peaks above 50% of max peak 
% 
% xg = 0:.1:10; yg = 0:.1:10; xgo = 5; ygo = 5; 
% for c1 = 1:length(xg) 
%     for c2 = 1:length(yg) 
%         G(c1,c2) = exp(-((((xg(c1)-xgo).^2)/(2*5))+(((yg(c2)-ygo).^2)/(2*5)))); 
%     end 
% end 
 
maxval = max(max(data)); 
D = size(data); 
ttt = size(G); 
spike = zeros(D(1),D(2)); 
%spike = spike./5; 
targetsize = dist/c*fs; 
n = 1; 
[Xm, Ym] = find(data >= maxval*n); 
scoord(1,:) = [Xm, Ym]; 
m = 1; 
 
%note that this will not check the number of peaks or the percentage 
%   threshold until after it has ran through the current list of peaks, 
%   meaning that the resultant peak list could be larger than m. 
 
while (m <= numPeaks & n > thresh) 
    n = n - 0.01; 
    [Xm, Ym] = find(data >= maxval*n); 
    for k = 1:length(Xm) 
        [a,b] = size(scoord); 
        count = 0; 
        for r = 1:a 
            if ((abs(Ym(k) - scoord(r,2)) < targetsize)); 
                count = 1; 
            end 
        end 
        if count == 0 
            scoord(a + 1,:) = [Xm(k), Ym(k)]; 
            m = m + 1; 
        end 
    end 
end 
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[a,b] = size(scoord); 
for g = 1:a 
%>>>>>>>>>>>>>>>WATCH ACCURACY HERE IF YOU CHANGE SIZE OF G 
    if scoord(g, 2) - ((ttt(1)-1)/2) <=0 
        spike(scoord(g, 1),scoord(g, 2)) = data(scoord(g, 1),scoord(g, 2)); 
    else 
        spike(scoord(g, 1),scoord(g, 2) - ((ttt(1)-1)/2)) = data(scoord(g, 1),scoord(g, 2)); 
    end 
    %the (ttt(1)-1)/2 part of the equation ensures the peak of the gaussian curve is in the 
correct location instead of the curve starting in the correct location 
end 
 
newoutT = conv2(G, spike); 
%newoutT = spike; 
 
 
 
 
 
A.9 peakfinder3D.m 
 
 
%will find a set number of peaks in a plot 
 
function [peaks] = peakfinder3D(dataplot, numPeaks, dist, thresh) 
 
%dataplot: data 
%numPeaks: number of peaks you wish to find 
%dist: minimum Y distance between peaks 
%thresh: minimum percentage of the max peak to look as decimal (ex: use 0.5 
%   to find all peaks above 50% of max peak 
 
maxval = max(max(dataplot)); 
n = 1; 
[Xm, Ym] = find(dataplot >= maxval*n); 
scoord(1,:) = [Xm, Ym]; 
m = 1; 
 
%note that this will not check the number of peaks or the percentage 
%   threshold until after it has ran through the current list of peaks, 
%   meaning that the resultant peak list could be larger than m.  
 
while (m <= numPeaks & n > thresh) 
    n = n - 0.01; 
    [Xm, Ym] = find(dataplot >= maxval*n); 
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    for k = 1:length(Xm) 
        [a,b] = size(scoord); 
        count = 0; 
 
        for r = 1:a 
            if ((abs(Ym(k) - scoord(r,2)) < dist)); 
                count = 1; 
            end 
        end 
 
        if count == 0 
            scoord(a + 1,:) = [Xm(k), Ym(k)]; 
            m = m + 1; 
        end 
    end 
end 
 
peaks = scoord; 
 
 
 
 
 
A.10 maxvalAngles.m 
 
function [vals] = maxvalAngles(worldData) 
 
for i = 1:91 
    vals(i) = max(max(worldData(:,:,i))); 
end 
 
%vals(15) = 10000; 
 
figure, plot(vals) 
 
 
 
 
 
 
A.11 combiner.m 
 
for i = 1:24 
    if i == 1 
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        load WORLDTESTFILE1.mat; 
        load WORLDTESTFILE2.mat; 
        bigworld = WORLD1.*WORLD2; 
        maxvals1 = maxvalAngles(WORLD1); 
        F(1) = getframe; 
        maxvals2 = maxvalAngles(bigworld); 
        F(2) = getframe; 
        clear WORLD1 WORLD2 
    else 
        openString = sprintf('load WORLDTESTFILE%d.mat',i); 
        eval(openString); 
        multString = sprintf('bigworld = bigworld.*WORLD%d;',i); 
        eval(multString); 
        maxvalString = sprintf('maxvals%d = maxvalAngles(bigworld);',i); 
        eval(maxvalString); 
        F(i) = getframe; 
        clearString = sprintf('clear WORLD%d',i); 
        eval(clearString); 
    end 

end  
 
 


