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(ABSTRACT) 

A general numerical simulation of closely coupled lifting surfaces in steady and 

unsteady ground effects was developed. This model was coupled with the equations 

of motion to simulate aerodynamic-dynamic interaction. The resulting model was 

then coupled with a feedback-control law to form a general nonlinear unsteady 

numerical simulation of control of an aircraft in and out of ground effect. 

The aerodynamic model is based on the general unsteady vortex-lattice method 

and the method of images. It is not restricted by planform, angle of attack, sink rate, 

dihedral angle, twist, camber, etc. as long as stall or vortex bursting does not occur. 

In addition, it has the versatility to model steady and unsteady aerodynamic 

interference. The present model can be used to simulate any prescribed flare and to 

model the effects of cross and/or head winds near the ground. 

The present results show the influences of various parameters on the 

aerodynamic coefficients for both steady and unsteady flows. Generally, the ground 

increases the aerodynamic coefficients; the greater the sink rates, the stronger the 

effects. Increasing the aspect ratio increases both the steady and unsteady ground 

effects. An exception is a large aspect-ratio wing with large camber. The present 

results are generally in close agreement with limited exact solutions and 

experimental data. 



In the aerodynamic-dynamic simulation, the equations of motion were solved by 

Hammlng's predictor-corrector method. The aircraft, air stream, and control surfaces 

were treated as a single dynamic system. The entire set of governing equations was 

solved simultaneously and interactively. The aerodynamic-dynamic model was used 

to study a configuration that resembles a Cessna 182 airplane. The ground lowers 

the effectiveness of the tail in controlling pitch, increases the lift and drag, and makes 

the hinge-moment less negative. Proportional and rate control laws were used in a 

feedback system to control pitch. One set of gains was used in and out of ground 

effect. For the same control input, the pitch angle responds faster and overshoots 

more near the ground than it does far from the ground. The present results 

demonstrate the feasibility of using the current simulation to model more complicated 

motions and the Importance of including the unsteady ground effects when analyzing 

the performance of an airplane during a landing maneuver. 
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1.1 General 

Chapter I 

Introduction 

During take-off and landing, the aerodynamic characteristics of an airplane are 

influenced by the proximity of the ground. This phenomenon is called ground effect. 

Because landing and take-off are critical phases in a flight, extensive research, both 

theoretical and experimental, has been devoted to understanding and predicting 

ground effect. The ultimate goal is to develop a model that can simulate control of 

an aircraft in ground effect. The first part of the research described here deals with 

the development of a general numerical simulation of configurations of lifting 

surfaces in steady and unsteady ground effects. The second part deals with the 

development of a general numerical simulation of a feedback-control system for 

wings in ground effect. 
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1.2 Literature Review 

1.2.1 Steady Ground Effect 

Apparently, the first basic theory was developed by Wieselsberger (1922). 

Wieselsberger modeled the ground effect by placing the image of the real wing below 

the ground plane and thereby making the ground a plane of symmetry. Then he used 

the lifting-line theory of Prandtl and the basic concepts of the induced drag of 

multiplane configurations to calculate a correction. The correction was used to 

modify the classical Induced drag and induced angle of attack of wings out of ground 

effect. Wieselsberger assumed an elliptical lift distribution over the wing span. The 

trailing vortices were placed parallel to the flight path. Wieselsberger considered 

only the effect of the trailing vortices of the image wing in calculating the downwash 

on the real wing. He ignored the effect of the bound vortices of the image wing in 

reducing the longitudinal velocity at the real wing and in changing the circulation 

around the real wing. As a result, the theory is limited to thin wings of large aspect 

ratios at small angles of attack, with small sweep-back angles and at relatively high 

distances above the ground. The predicted trend of decreasing induced drag at 

constant lift of wings is in general agreement with experimental and flight tests 

conducted by Reid (1927), Tonnies (1932), Wetmore and Turner (1940), Fink and 

Lastinger (1961), and Carter (1961). 

Rosenhead (1931) solved the problem of a flat plate of infinite span between 

parallel walls using a conformal transformation. He showed that the effect of walls 

is to increase the lift and that the solution of the problem of a flat plate in the 
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neighborhood of a single wall can be obtained from the general result by a suitable 

limiting process. The procedure, however, seems to be complicated. Tomotika et 

al. (1933) found the exact solution for a two-dimensional flat plate in the presence of 

a single wall by a conformal transformation similar to the one employed by 

Rosenhead. They found that, as the distance above the ground decreases, the lift first 

decreases and then increases in comparison to the lift in an unlimited medium. 

Pistolesi (1935) made an interesting survey of the early theoretical and experimental 

work on ground effect. 

Further research was done by Tani et al. (1937a, 1937b) after recognizing the 

weakness of Wieselsberger's theory. As Wieselsberger had done, they placed an 

image of the real wing below the ground plane, used lifting-line theory with an 

elliptical lift distribution over the span, and assumed the trailing vortices were 

parallel to the flight path. They considered the effect of the bound vortices of the 

image wing in reducing the longitudinal velocity at the real wing and in changing the 

circulation around the real wing as well as the effect of the image trailing vortices in 

reducing the downwash on the real wing. They also considered the effect of 

thickness. These factors were incorporated into two simple equations. The influence 

of the ground effect on the induced angle of attack and induced drag at constant lift 

is given by these equations. It is clear that the theory of Tani et al. is an extension 

of the theory of Wieselsberger; however, the theory is still limited to wings of large 

aspect ratios with small sweep-back angles at small angles of attack. 

Havelock (1938) obtained the exact solution for an elliptical cylinder between two 

parallel walls by using a conformal-mapping technique. A flat plate was treated as 

the limiting case. The flat plate in the neighborhood of a single wall was derived from 

the general solution by a limiting process. His solution for the lift of the flat plate in 
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the neighborhood of a single wall matches the solution of Tomotika et al. far from the 

ground. 

Green (1940) solved for the lift and pitching moment for a circular-arc airfoil In the 

presence of a plane wall by using a conformal transformation. He concluded that the 

lift and moment coefficients are probably always decreased by the presence of the 

wall for all values of the angle of attack. Further, Green(1946) Investigated the 

manner in which the ground effect influences the lift and pitching moment of 

two-dimensional airfoils by using a conformal-mapping technique. He concluded that 

for small angles of attack the effects of camber are to decrease the lift as the ground 

is approached. Moreover, the effects of thickness are first to decrease and then to 

increase the lift as the ground is approached. That is the thickness and camber work 

mainly in opposite directions so that the flat plate might be expected to give a 

reasonable approximation to actual cases. 

Tomotika et al. (1951a) investigated the ground effect on the lift of Joukowski-type 

airfoil, by using a conformal-mapping technique. They found that the lift usually was 

increased by the presence of the ground, but the rate of increase becomes smaller 

as the thickness of the airfoil increases. Further, Tomotika et al. (1951b) studied the 

lift and pitching moment of a two-dimensional circular-arc airfoil in stream bounded 

by a plane wall by employing a conformal-mapping technique. They concluded that, 

when the camber and angle of attack are sufficiently small, the lift and pitching 

moment coefficients first decrease and then increase as the ground is approached, 

which is in contradiction to Green (1940, 1946). For greater values of the camber, 

they found that the lift and pitching moments decrease for all values of angle of 

attack. Clearly, the effect due to the thickness acts in the same direction as the effect 

due to camber, which is in contradiction to Green (1946). 
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Licher (1956) recognized the shortcomings of the theory of Tani et al. for wings 

of moderate aspect ratio with large sweep-back angles, with flaps, and at small 

distances above the ground. He developed a method of representing the wing by a 

number of horseshoe vortices distributed over the wing. He placed all the horseshoe 

vortices on the mean horizontal projection of the wing rather than on the actual 

inclined or camber line. As a result, the method is limited to small angles of attack. 

The method underestimated the induced drag when compared to the induced drag 

of an elliptical wing out of ground effect. As a result, the method cannot be used to 

compute the drag accurately. In addition, the method cannot be used to predict the 

pitching moment. The predicted ground effect increases the lift for rectangular wings 

at moderate angles of attack. 

Buell and Tinling (1957) conducted wind-tunnel tests for two models of wings 

having low aspect ratio and pointed tips. They found that the ground increases the 

slope of the lift curve and decreases the induced drag. Moreover, the pitching 

moments for both models become more negative (i.e., pitch-down moment 

increases). The theory of Tani et al. underpredicted the ground effect for both 

models. 

Kohlman and Glett (1958) developed a numerical method that imitates a wing 

with flaps and its image by a series of bound and trailing vortices. The bound 

vortices were distributed trigonometrically over the span. They thought of the wing 

as composed of two type of sections; one that did not contain the flap and another 

that contained the flap. They placed each bound vortex at the quarter-chord position 

on the wing section that did not contain the flap. On the wing section that contained 

the flap, they placed each bound vortex at the half-chord position. Then, they placed 

the first bound vortex outboard of the flap at the three-eighth-chord position. Then, 
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they placed the second bound vortex outboard of the flap at the quarter-chord 

position and so on. The trailing vortices consisted of three parts: 

1. Those started from the bound vortex and ended at the leading-edge of the flap. 

2. Those started from the leading-edge of the flap and ended at the trailing-edge of 

the flap. 

3. Those started at the trailing-edge of the flap and extended to infinity parallel to 

the ground. 

Then they computed the velocity induced by the image vortices at two chordwise 

locations for each of the real bound vortices. The first point was at the position of the 

bound vortex and the second point was at one half chord behind the first point. At the 

first point they computed the longitudinal velocity and at the second point they 

computed the vertical velocity due to the influence of the ground. They used the 

effects of these factors to modify the spanwise loading coefficient of a wing out of 

ground effect. The ground effects in general are first favorable and then unfavorable 

as the wing approaches the ground. Moreover, with increasing flap deflection, the 

effects become less favorable. 

Thomas (1960) employed a method based on the extended lifting-line theory to 

investigate the ground effect on swept and delta wings. He concluded that the ground 

effects cause an increase in the slope of the lift, the maximum lift and the flap 

effectiveness, a decrease in the induced drag, and a small rearward movement of the 

aerodynamic center (i.e., increase in the pitch-down moment). However, the 

agreement between the theoretical and experimental results at small heights was 

poor. Thomas thought that this discrepancy resulted from distributing the vorticity 
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along a line, not over the complete surface, and from assuming the wing to be 

parallel to the ground. 

Bagley (1961) developed a method for calculating the pressure distribution on 

two-dimensional airfoils of arbitrary section at moderate heights. It Is an extension 

of Tani's method (1932). The thickness and lifting problems were represented by 

distributions of sources and vortices, respectively. The ground effects were 

reproduced by considering the influence of the images of these singularities and an 

additional vortex distribution. These singularities were placed on two lines parallel 

to the ground plane rather than on the actual camber line and its image. As a result, 

the method is restricted to small angles of attack. 

Choliasmeons (1962) replaced a wing with an elliptical lift distribution by an 

equivalent-lift horseshoe-vortex system having the same value of circulation about its 

trailing vortices as that presented on the wing mid-span. The trailing vortices were 

assumed to be a straight horizontal lines and they were separated by : times the 

wing span. The bound vortex was placed at the one quarter of the chord position 

over the new span. The effects of the image vortices were computed at the three 

quarter-chord position at mid-span. Choliasmeons conducted wind-tunnel tests on a 

straight thick rectangular wing equipped with a slat, flap, and boundary-layer control. 

The agreement between theoretical and experimental results was poor. The ground 

effect in general is favorable for a wing with low circulation and it Is unfavorable for 

a wing with high circulation. 

Saunders (1963, 1965) employed a lifting-surface theory with the method of 

images to study the ground effect on wings of finite span. The technique is limited 

to small angles of attack. Saunders compared computed lift-slope coefficients to the 

data of Carter (1961) and Fink and Lastinger (1961). The agreement was good for the 

case of a rectangular wing of aspect ratio two. It was poor for rectangular wings of 
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aspect ratios 1 and 4, although the trends are the same. There is an increase in the 

lift-slope coefficients and a rearward movement of the center of pressure (i.e., a more 

nose-down pitching moment) as the ground was approached. 

Rolls and Koenig (1966) conducted flight tests on an aircraft with a 

low-aspect-ratio wing at various fixed heights above the ground. They found a 

definite increase In lift and in the nose-down pitching moment. 

Abercrombie (1967) used an extended lifting-line theory with techniques similar 

to the method of Choliasmenos. The rolled-up vortices were assumed to lie parallel 

to each other and to the ground. The trailing vortices were assumed to extend from 

the trailing-edge of the wing, not from the lifting line. An elliptical lift distribution was 

assumed near the ground. The bound vortex was placed at the quarter-chord 

position along the span. The effects of the images vortices were computed at the 

three-quarter-chord position of the mid-span. Abercrombie compared his theoretical 

results to the wind-tunnel tests of Choliasmeons(1962) and Fink and Lastinger(1961). 

The agreement was fair. The ground effect increases the lift for wings with small 

circulation and decreases the lift for wings with large circulation. 

Fox (1969a, 1969b) employed a method based on a combination of the 

vortex-lattice method and the leading-edge-suction analogy to determine the 

influence of the ground on delta wings. The technique is not capable of predicting the 

load distribution over the wing; consequently it cannot predict the pitching moment. 

The trailing vortices were assumed to be parallel to the plane of the wing and hence 

for positive angles of attack intercepted the ground plane and passed into the image 

region. Similarly, The trailing vortices of the image intercepted the ground plane and 

passed into the real region. These will create some errors particularly if downwash 

on a rear tail is computed. As a result, the technique cannot be used to investigate 

interference among multiple closely coupled lifting surfaces. The technique used to 
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form the Image depends on the assumption that the wing Is planar; hence the Image 

system would be incorrect if the wing were nonplanar. Fox cited some experimental 

data that are not available any more. The agreement between the computed and 

experimental results was fair, in general, for wings with unit aspect ratios and poor 

for wings with aspect ratios greater than two; but the trends were the same. The 

model predicts an increase in the lift coefficients and a decrease in the induced drag 

as the ground is approached. 

Baker et al. (1970) conducted flight tests on several aircraft with low-aspect-ratio 

wings at constant angles of attack. The ground effects caused significant changes in 

the lift, drag, and pitching-moment coefficients when the tested aircraft approached 

the ground. 

Maskew (1971) used an extension of the vortex-lattice method that includes a 

vortex wake to model the ground effect on a swept flapped wing with aspect-ratio 4. 

He replaced the wing and its wake by a distribution of quadrilateral vortex rings. The 

method of images was used to represent the ground effect. Maskew assumed, 

initially, that the wake is straight and parallel to the ground and solved for the vortex 

strength over the wing. Then, he relaxed the trailing vortices using this solution, 

starting at the tip and working inboard. A second solution for the vortex strength was 

found after all the wake was relaxed. The procedure was continued until the wake 

converged. Maskew claims that there was little change in the wake shape and in the 

aerodynamic loads after two iterations. He concluded that a wing (and in particular 

a swept wing) with a large camber at constant incidence can actually lose lift near the 

ground and that the ground effect reduces the induced drag. Maskew obtained a 

forward movement of the center of pressure (i.e., pitch-up moment) for wings with 

large cambers in the ground effect. 
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Gratzer and Mahal (1972) discussed and compared theoretical and experimental 

results. A vortex-lattice method was used to compute the influence of the ground on 

a finite wing. The method Ignored some of the complexities of the flow such as the 

roll-up of the wake. The wing and its image were replaced by a system of horseshoe 

vortex singularities. They used this model to compute aerodynamic coefficients of a 

flapped wing. The flap deflection was 50 degrees. They compared their computed 

lift coefficient with wind-tunnel data for STOL models. The agreement was good. The 

ground effect Is unfavorable as the wing approaches the ground. The downwash 

angle is reduced at the tail position as the ground is approached. 

Kobayakawa and Maeda (1978) investigated the gust response of thin flat wings 

passing through a vertical-gust pattern near the ground using lifting-surface theory for 

theoretical computation and a wind tunnel for testing. The theoretical computation 

was based on a sinusoidal gust. They neglected the effect of the shear flow and the 

oscillation of the wing. In addition, they assumed the wing was parallel with the 

ground and they replaced the downwash on the wing by the gust velocity. They 

compared the computed results to the wind-tunnel data. The agreement was fair. 

Plotkin and Kennel (1981) used the higher-order thin-wing theory of Van Dyke to 

obtain effect of thickness on a two-dimensional airfoil near the ground. The effect of 

thickness decreases the lift force as the airfoil approaches the ground which is in 

contradiction to both Green and Tomotika et al. 

Katz and Levin (1984) conducted wind-tunnel tests on a thin delta wing using the 

ground board method. They observed that the lift increases and the pitching moment 

becomes more negative as the ground is approached. 

Tan and Plotkin (1986) developed an approximate solution of the problem of a thin 

wing in ground effect using lifting-line theory. The solution is valid for large 

aspect-ratio wings at large distances above the ground. The ground effect increases 
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the lift-slope coefficients and decreases the lift coefficients versus thickness as the 

ground is approached. 

Er-El and Welhs (1986) conducted wind-tunnel tests on delta wings. The overall 

result is an increase of the normal force and nose-down pitching moment. 

1.2.2 Unsteady Ground Effect 

As mentioned earlier Wieselsberger was the first to replace the ground with the 

image of the wing. Since then, almost all theoretical investigators have employed 

image techniques to simulate the ground effect with the wing height fixed in time (a 

situation which may be called steady ground effect) and the wake position assigned. 

This model has two shortcomings. First the wake position cannot be assigned 

because the wake deforms and rolls up into the force-free position, which must be 

calculated as part of the solution, and second the flow is not steady because during 

take off and landing the height changes with time. Indeed, for some military 

applications the height changes rapidly. Recently, Chen and Schweikhard (1985) 

solved for the unsteady ground effect in the case of a two-dimensional flat plate, 

assuming the wake to be straight along the flight path. They found that the increases 

in lift due to the unsteady ground effect are greater than those due to the steady 

ground effect for intermediate heights above the ground. They speculated that a 

similar trend of lift variations is to be obtained in the case of a finite wing in unsteady 

ground effect. 

Steven (1985) studied the ground effect on a power-lift-STOL aircraft during 

landing phases. He presented a technique to separate the influence of the ground 

effect from the influence of other effects, namely, the pilot inputs control and 
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atmospheric effects on airplane dynamics during a landing approach. Steven 

assumed that at a height greater than the airplane wing span, the airplane was out 

of the ground effect. The proximity of the ground increases the lift (which In turn 

reduces the sink rate) even while landing at high lift coefficient, reduces the induced 

drag, and makes more nose down pitching moment. 

Chang(1985) and Chang and Muirhead (1985,1987) tested several thin flat delta 

wings in both steady and unsteady ground effects. The proximity of the ground 

increases the aerodynamic coefficients; but in contrast to Chen and Schweikhard, 

these effects are weakened by the unsteadiness. 

Katz (1986) used a vortex-lattice me~hod that included a freely-deforming wake 

to investigate the performance of a lifting surface close to the ground as found on 

racing cars. Katz found that the increases in aerodynamic loads due to the unsteady 

ground effect are about 100 percent greater than those of the steady ground effect. 

1.2.3 Feedback Control 

The ultimate goal for both military and commercial aviation is all weather 

operation (Blakelock, 1965). This, of course, includes the possibility of landing an 

aircraft without visual reference to the runway. The previous work on the feedback 

control of an aircraft during a landing maneuver is based on the quasisteady flow and 

linearity assumptions and does not include the ground effect (Blakelock, 1965; Etkin, 

1982; McRuer et al., 1973). Recently, Mracek (1988) developed a general, nonlinear 

and unsteady numerical simulation of a feedback-control system for wings out of 

ground effect. The model was based on coupling a vortex-panel method with the 

equations of motion and the resulting model was then coupled with a 
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feedback-control law. Mracek used his model to control the wing-rock phenomenon. 

Vinh et al. (1988) developed a technique to model a feedback control for trim at 

transonic speed. To the best of our knowledge, there has been no contribution in the 

unsteady and nonlinear feedback control of an aircraft near the ground. Therefore, 

the need for research in this field Is obvious. 

1.3 Motivation For Present Work 

Steven (1985) reported that ground effects have a strong influence on aircraft 

landing performance; therefore the influence of the ground must be taken into 

account when calculating aircraft performance and stability and control 

characteristics. But exact solutions are difficult to obtain for two-dimensional airfoils 

with arbitrary camber (or flaps) and most-likely impossible to obtain for 

three-dimensional wings (Licher, 1956). Moreover, experimental work on models is 

very difficult and expensive in ground effect (Tuck,1978). Futhermore, the influence 

of the ground on a small model may not be generalized to large airplanes (Kemp et 

al., 1966). Consequently, it is very desirable to develop theoretical models and 

numerical simulations to predict the effect of the ground on an airplane. The 

accuracy of the numerical models can be checked by comparing the results they 

predict to the limited available exact solutions or/and experimental results. 

Because landing and take-off can be simulated properly only by including the 

unsteady ground effect, as mentioned earlier, because there is a lack of theories for 

the unsteady ground effect, which is not yet fully understood, and because, 

apparently, there is no analysis which includes the unsteady ground effect and 
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nonlinear feedback control of an aircraft near the ground, we have undertaken the 

task of developing a general unsteady numerical simulation that accurately predicts 

and explains this phenomenon. In addition, the model should have the built-in 

versatility needed to simulate steady and unsteady aerodynamic interference among 

multiple closely coupled lifting surfaces. It should not be restricted by pianform, 

angle of attack, sink rate, dihedral angle, twist, etc. as long as stall does not occur. 

1.4 Objectives 

The objectives of this research are to investigate the influence of the ground on 

an airplane during take-off and landing maneuvers, and to develop a numerical 

simulation of a feedback-control system that can be used to maneuver an airplane 

near the ground. Specifically, the objectives of research are sixfold: 

1. Most, if not all, of the lift is generated by the wing of an airplane. As a result, a 

simple model of an airplane is its wing. A single lifting surface will be studied in 

both steady and unsteady ground effects for several planforms, dihedral angles, 

sweep-back angles, etc. 

2. The pitch of an airplane is controlled by its horizontal tail and/or canard. As a 

result, the interference between two lifting surfaces will be investigated in ground 

effect. 
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3. An airplane during take-off and landing maneuvers Is sometimes faced with cross 

wind. For this reason, the effect of cross wind on a single lifting surface near the 

ground will be investigated. 

4. The flight path of an airplane during a landing approach Is not always straight. 

Accordingly, both forward and vertical velocities are changing, so that the effect 

of the flight path on the aerodynamic characteristics of a single lifting surface will 

be studied. 

5. During a landing approach, the control surfaces of an airplane are rotated so that 

the airplane may follow a specified flight path. This is usually accomplished by 

the use of feedback control. Consequently, a general, nonlinear and unsteady 

numerical simulation of a feedback-control system will be developed that can be 

used as a building block for achieving the goal of controlling an aircraft during 

landing maneuvers. 

6. Finally, all the developments in 1 to 5 above will be incorporated into a single 

general numerical method for both steady and unsteady ground effects. 

The aerodynamic model used in this study is an extension of the general 

unsteady subsonic vortex-lattice method of Konstadinopoulos et al. (1985). The 

method is fully described in chapter two. In chapter three, examples of aerodynamic 

simulation are given. Dynamics and control are described in chapter four. Finally, 

conclusions and recommendations are presented in chapter five. 
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Chapter II 

Description of the Numerical Model of the Flowfield 

2.1 General 

The ground effects are simulated by the method of images. The images of the 

real wing and its wake are placed below the ground plane, as shown in figure 1. The 

concept of the present development is one of a wing moving through air instead of 

air blowing over a wing. The problem is posed in terms of two reference frames: one 

is fixed to the ground, the Ground-Fixed (G-F) frame, and the other is fixed to the 

wing, the Body-Fixed (B-F) frame, as shown in figure 2. A full discussion of the two 

systems is given in section 2.2 before introducing the general unsteady vortex-lattice 

method. In section 2.3, the general unsteady vortex-lattice method is introduced. 

Computation of the aerodynamic loads is described in section 2.4. In section 2.5, the 

computation procedure is described. 
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Figure 2. Th• two coordinate syatema: Ground-Fixed (G-F) Frame and Body-Fixed (B-F) Frame. 

2.2 Coordinate systems 

We follow the standard practice for orienting the axes; see for example Etkin 

(1982) and Schliching and Truckenbrodt (1979). The axes of the G-F frame are 

denoted by X,Y,Z and those of the 8-F frame are denoted by x,y,z. Both coordinate 

systems are right-handed. The x- and y-axes lie on the plane of the planform, while 

the z-axis is normal to the wing and points downward. The x-axis points forward 

along the chord of the wing. The X- and Y-axes lie on the plane of the ground, while 

the 2-axis is normal to the ground and points downward. The X-axis points forward. 

The unit vectors of the 8-F and G-F systems are denoted by (i J ,k) and (/ ,J,K), 

respectively. The two frames are related through the 3-2-1 set of rotations for Euler 

angles. 
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Figure 3. Wing orientation: taken from Etkin (1982). z 

In order to derive the relationship between the two frames, we assume that the 

x-, y-, and z-axes are initially parallel with the X-, Y-, and 2-axes, respectively. The 

B-F frame is in the position Ax1y1z1, as shown in figure 3 (taken from Etkin, 1982). Then 

we follow the 8-F frame as it assumes different orientations in space, as shown in 

figure 3, resulted from a sequence of orientations about the axes in the following 

order: 

1. First, a yaw-like rotation iJ,(t) about the 2 1-axis. 

2. Then, a pitch-like rotation 8(t) about the Yz -axis. 

3. Then, a roll-like rotation </>(t) about the x, -axis. 

Description of the Numerical Model of the Flowfleld 19 



The transformation from the unit vectors of the G-F frame {/ ,J ,K) to those of the B-F 

frame (i J ,k) (see appendix A) Is given by the following: 

.... .... 
I I 

.... .... 
k K 

which can be written simply, 

.... .... 
i I 
.... .... 
j =[R] J (2.2-1) 
.... .... 
k K 

where [R 1(4>)], [R 2(8)], and [R 3(t/,)] are rotation matrices. For example, [R 3(t/,)] 

represents the rotation of a system of axes originally coincident with axes X,Y,Z by 

an angle 1/1 about an axis that is parallel to Z (see appendix A for more detail). [R] 

represents the triple product of the rotation matrices and it is simply 

cOctJ, c8stj, - s8 

[R] = sq>s8ctJ, - cq>stj, sq>s8st/, + c,pct/, sq>c8 

cq>s8ct/, + s,pst/, cq>s8stJ, - s<J,ctJ, c<J,c8 

and in which c and s denote the cosine and sine functions, respectively. [R] is an 

orthonormal transformation between the two coordinate systems; as a result, the 

inverse transformation giving the unit vectors of the G-F frame in terms of those of the 

8-F frame is simply 
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.... .... 
I ; 
.... 

= [R]T 
.... 

J J (2.2 - 2) 
.... .... 
K I<. 

where [RJr is the transpose of [R]. 

Because the origins of the two frames do not coincide, equations 2.2-1 and 2.2-2 

must be modified in order to give the transformation from the ground axes to the body 

axes. This is done by introducing the position vector of the origin of the 8-F frame 

as follows: 

[:] = [R] (2.2 - 3) 

where XA, YA, and ZA are coordinates of the origin of the 8-F frame in terms of those 

of the G-F frame. Equation 2.2-3 transforms the coordinates of a point in the ground 

axes (X,Y,Z) to the body axes (x,y,z). Inverting equation 2.2-3 yields 

; = [RJ' [:] + :: 
(2.2- 4) 

Equation 2.2-4 transforms the coordinates of a point in the body axes (x,y,z) to the 

ground axes (X,Y,Z). 

Next, the velocity at any point in space, say point P in figure 2, will be derived. 

The position vector of point P can be written simply, 
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- - -R =RA+ r (2.2- 5) 

- -where R is the position vector of point P in terms of the G-F frame, RA is the position 

vector of the origin of the 8-F frame origin in terms of the G-F frame, and r is the 

position vector of point P in terms of the 8-F frame. 

The velocity of point P, in terms of the G-F frame, is found by taking the 

substantial derivative of equation 2.2-5; that is 

..... ..... ..... .... ... 
V = VA + w x r + v (2.2- 6) 

- -where V is the velocity vector of point P in terms of the G-F frame, VA is the velocity 

vector of the 8-F frame origin in terms of the G-F frame, OJ Is the angular velocity of 

the 8-F frame, and v is the velocity vector of point P relative to the 8-F frame. 

Equation 2.2-6 is arranged to give the velocity relative to the moving frame; that 

is 

- ..... -v = V - VA - w x r (2.2- 7) 

Equation 2.2-7 will be useful later for convecting the wake and computing the 

pressure jump across the wing. 

The angular velocity vector of the moving frame, OJ, is derived in terms of the 

derivatives of the Euler angles; that is 

..... 
W = W xi + W yi + W zK 

= ~~ + oL + 4>; 

where w., w1 and wz are the three components of the angular velocity, OJ, in the 

positive directions of the x-, y- and z-axes, respectively while ~. 8 and¢ are the 
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ordinary derivatives of t/,, 8 and <I> with respect to time, respectively, and I<,, j 1 and /1 

are unit vectors along z,, Yr and x, axes, respectively (see figure 3). As shown in 

appendix A, one finds 

wy=8cos<f, + ~cos8sinef> 

Wz = - iJ sin <I> + ~ cos 8 cos <t, 

Or in matrix form 

Wy = [CJ 8 

Wz i/J 

where 

1 0 -s8 

[ CJ = 0 ctf> stf>c8 

O - stf> c<f,c8 

(2.2- 8) 

One can invert equation 2.2-8, as shown in appendix A, to express the derivative 

of the Euler angles in terms of the angular velocity of the moving frame, that is 

<P 

(2.2 - 9) 
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where 

1 
scps8 ccps8 -c8 c8 

[C]-1 = 0 ccp - scp 

0 
sq, c<J, 
c8 c8 

[CJ- 1 Is singular at 8 = ~ (2n + 1)n for n=0,1,2, ... which corresponds to a pitch-like 

rotation of 90", 210·, etc. In this dissertation such cases are not considered. 

The description of the coordinate systems and their relationships have been 

described in detail. Next, the general unsteady vortex-lattice method is introduced 

and the modification necessary to model unsteady ground effect is described. 

2.3 The General Unsteady Vortex-Lattice Method 

The general unsteady vortex-lattice method was described in detail by 

Konstadinopoulos (1981) and Elzebda (1986). In this dissertation, we extend the 

method to include the ground effects. Below, we briefly describe the vortex-lattice 

method. 

The flow is incompressible and Inviscid and separates only along the sharp 

edges of the wing. The ground plane is replaced by the images of the real wing and 

its wake as mentioned earlier. So, the problem of a wing flying near the ground Is 

converted into the problem of two identical wings moving together while satisfying 

the no-penetration boundary condition all the time at the plane of symmetry (the 

ground plane); that is, the plane of symmetry is a stream surface. 
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When the wing and Its image are suddenly set In motion, the fluld Is set In motion 

too. Boundary layers on the upper and lower surfaces are generated as a result of 

the no-slip boundary condition. This In turn generates vorticity in the flow. The 

vortices that form along the sharp edges are shed and convected downstream. This 

process of shedding vorticity forms the wakes of the wing and its image. 

In the numerical model, boundary layers on the upper and lower surfaces are 

merged Into a single vortex sheet along the camber surface. As a result, all vorticity 

Is confined to thin regions over the surfaces of the wing and its Image. Both the 

wings and their wakes are represented by sheets of vorticity. These sheets consist 

of two parts. The part representing the wing has its position specified. As a result, 

It is called the "bound vortex sheet" and a pressure jump may exist across It. While 

the other part representing the wake does not have its position given in advance. It 

deforms freely and assumes a force-free position during the simulation. As a result, 

it is called the "'free vortex sheer and no pressure jump can exist across it. The 

bound and free vortex sheets are joined along the sharp edges where separation 

occurs and the Kutta condition is imposed. 

The entire vortex sheet, bound and free, is replaced with discrete vortex rings. 

Each vortex ring, in general, consists of four short straight vortex segments. The 

circulation is taken to be the same for all four segments of the same loop to ensure 

spatial conservation of circulation. Each vortex segment is shared by two adjoining 

loops, except the ones along the first row, and its strength is equal to the difference 

in circulations of the two loops to which it belongs. 
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Figure 4. A typical rectangular and leading-edge elements. 

The shape of each element is chosen to be a trapezoid. The leading-edge 

separation of delta wings is simulated by adding leading-edge extensions at each 

node, as shown in figure 4. This is done by placing the extensions in the plane of the 

wing and normal to the leading edge and giving them a length equal to the span of 

an element. As a result, the leading-edge element has five sides instead of four. 

The absolute velocity induced by all discrete vortex segments is comput~d 

according to the Biot-Savart law. Thus, the Biot-Savart law is the building block of the 

present numerical method. So, it may be in order to discuss the Biot-Savart law and 

how it is implemented in the computer code before proceeding further with the 

general unsteady vortex-lattice method. 
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Figure 5. Velocity field due to • finite strength vortex filament. 

In figure 5, a vortex segment extending from 1 to 2 is shown. The velocity field 

induced by this vortex segment at point P is given by the Biot-Savart law (see 

Karamcheti, 1980): 

..... er 
V = 41th ( cos 81 - cos 82 ) (2.3-1) 

where V is the absolute velocity with respect to the G-F frame, e Is a unit vector 

normal to the plane of points 1, 2 and P, r is the circulation around the vortex 

segment, h is the distance between point P and the segment, and 81 and 82 are the 

angles between the vortex segment and the lines connecting the end of the vortex 

-segment to P, respectively. The divergence of V is zero. 
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Equation 2.3-1 will be put in a new form that is suitable for programming 

purposes. From figure 5, it is clear that 

Q X '1 = e I ii I 1 '11 Sin 61 

=aliilh, 

ii. '1 = I ii I 1 '11 cos 61 

and 

n.,; = I ii 11;; 1 cos 62 

(2.3- 2) 

(2.3- 3) 

(2.3- 4) 

where n is the vector from point 1 to point 2, , 1 is the vector from point 1 to point P 

and , 2 is the vector from point 2 to point P. From equation 2.3-2, we obtain 

(2.3- 5) 

Substituting equations 2.3-3, 2.3-4 and 2.3-5 into equation 2.3-1, one obtains the 

following equation: 

(2.3- 6) 

But I e 1 = 1, hence from equation 2.3-5 

(2.3- 7) 

Equation 2.3-6 becomes after substituting equation 2.3-7 
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- qoxr,) [- ( '1 '2 )] 
V = 41t IQ X r, 12 Q • I,, I - p; I (2.3- 8) 

V is evaluated according to equation 2.3-8 by the computer thousands of times for a 

typical run. One can reduce the execution time by reducing the number of 

operations. Looking back at the equation, one can notice the constant 41r. An obvious 

way for reducing the execution time, is to delay the division by 41r operation until the 

solution is completed. To incorporate this concept, we solve for ~ instead of r. 
The resulting equation is 

- r'(O x r,) [- ( ;, ,; )] 
V= loxr,12 Q. lr,I - 1'21 (2.3- 9) 

where r' = ~ . In order to make the subroutine that solves equation 2.3-9 as general 

as possible, r' is set equal to one. Then, the results returned from the subroutine 

can be multiplied by the value of r'. For r' = 1 equation 2.3-9 becomes 

- (Q X ',) [- ( ', '2 )] 
V= loxr,12 Q. lr,I - 1'21 (2.3-10) 

In the computer code, the coordinates of the points 1, 2 and Pare supplied as 

input parameters to a subroutine that uses equation 2.3-10 to compute the velocity 

field induced by a vortex segment having circulation of 41r and returns the three 

components of the velocity. From equation 2.3-1, it is clear that as point P 

approaches the vortex segment between its ends, the magnitude of the induced 

velocity approaches infinity. This singularity is avoided by introducing a cut-off length 
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-below which the subroutine gives zero for all three components of V. The cut-off 

length is specified in terms of the length of the vortex segment (for more detail about 

the effect of the cut-off length, see Konstadinopoulos 1981, Konstadinopoulos 1984 

and/or Elzebda 1986). The complete algorithm is: 

1. The coordinates of the points 1, 2 and P are supplied to the subroutine as 

(x1 ,y1 ,z1), (x2,y2,z2) and (xp,yp,zp), respectively. 

-
2. The vector Q is computed as follow: 

..J,,. - - -

Q = (x2- x1)/ + (y2 - y1)J + (z2 - z1)K 

3. The vectors r, and r2 are computed as follow: 

'1 = (xp - x1)/ + (yp - y1)J + (zp - z1)K 

and 

'2 = (xp - x2)/ + (yp - y2)J + (zp - z2)K 

4. The dot products Q • r, and Q • r1 are evaluated. 

5. The cross product Q x r, is evaluated. 

6. The magnitude of Q x r, is evaluated. 

7. The following condition is checked: 

IQ x '1 j 2 ~ ( cutoff )2 ? 
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8. If the above condition is not satisfied then V = 0 and the subroutine returns to the 

main program. 

9. If the above condition Is satisfied then the magnitudes of r1 and r1 are evaluated 
-and V is set equal to 

and the subroutine returns to the main program . 

• 

------------r----

L_ ------------
p 

P 11 an arbitrary paint In 1pace 

Figure I. A vortex aegment and lt1 Image to the left of the x-z plane. 
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When the flow Is symmetric, one can reduce the computation time. In this 

research, we use only one half of the lifting surface (except when the cross wind is 

considered). The effect of the other half (of the lifting surfaces) Is Included by 

modifying equation 2.3-10. In figure 6, a vortex segment and its image to the left of 

the x-z plane are shown. Points 1' and 2' are the images of points 1 and 2 with 

respect to the x-z plane, respectively. Consequently, their x- and z-coordinates are 

the same as those of the points 1 and 2; their y-coordinates are opposite In sign. The 

circulation around vortex segment 2'1' is the same as that around vortex segment 12. 

Equation 2.3-10 becomes 

... 
V= 

(2.3-11) 

+ 

- -where Q' is the vector from point 2' to point 1', r' 1 is the vector from point 1' to point 
-P and r' 2 is the vector from point 2' to point P. 
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Figure 7. A vortex segment and lt1 Image below the ground plane. 

In this research, The ground effect is simulated by the image technique; namely 

the images of the real wing and its wake are placed below the ground plane and 

thereby make the ground a plane of symmetry. Accordingly, the ground effect is 

included by modifying equation 2.3-10 (or equation 2.3-11 for symmetrical flight). In 

figure 7, a vortex segment and its image below the ground plane are shown. Points 

1" and 2" are the images of points 1 and 2 with respect the ground plane, 

respectively. Hence, the X- and Y-coordinates of the Image of the vortex segment are 

equal to those of the real one; the Z coordinate is opposite in sign. The circulations 

are reversed. Equation 2.3-10 becomes: 
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(2.3-12) 

- -where Q" is the vector from point 1" to point 2", r"1 is the vector from point 1" to point 
-P and r"1 Is the vector from point 2" to point P. 
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Figure 8. A vortex segment and Its three Images for the symmetric case. 

p 

In figure 8, a vortex segment and its three images are shown for symmetric flow. 

Points 1'"' and 2"" are the images of points 1' and 2' with respect the ground plane, 

respectively. Similarly, Equation 2.3-11 is modified in order to capture the ground 

effect for a symmetrical flight. The resulting equation is 
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- (0 X '1) [- ( r, f, ) J V= lnxr,l2 n. lr,I - 1,;1 
- - [ ( ~ ,;:, )] + 

(!l' X r'2) -, r 2 
In' x ;212 n · l;,21 

(2.3 - 13) 
(1.l'x ;:,) [ -. ( ;:, -r"2 )] IO" x ;:1 I 2 n • I ,;1 I li\l 
- - [ u~··( - - )] (!l"" X r""2) r"" 2 r"" 1 

IQ*" X ?"2l2 1,;\I l?"1 I 

- -where !l"" is the vector from point 2"" to point 1"", r"", is the vector from point 1"" to 
-point P and r""2 is the vector from point 2"" to point P. The implementaton of equation 

2.3-13 in the computer code is shown in appendix B. 

Now we continue the discussion of the general vortex-lattice method. The vortex 

sheets are replaced with a lattice of discrete vortex lines. The total velocity field 

induced by those vortex lines must satisfy the continuity equation, and the following 

conditions: 

-1. Vo1rturbanc• -+ O at infinity 

2. The vertical velocity component is zero on the ground plane. 

3. The no-penetration condition is satisfied on the lifting surfaces. 

4. The pressure is continuous in the wake. 

5. There is spatial conservation of circulation. 
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6. The unsteady Kutta condition Is satisfied along the lines where the free and 

bound sheets are joined. 

Because the induced velocity Is computed according to the Blot-Savart law, 

equation 2.3-10, the continuity equation and the first condition are satisfied. Because 

the method of Images is used the ground is a plane of symmetry and hence the 

second condition is satisfied too. The third condition is written simply, 

(2.3 - 14) 

- -where V is the absolute velocity of a fluid particle, VL.S is the absolute velocity of the 

point on the wing in contact with the fluid particle, n is the unit vector that Is normal 

to the wing, and Su is the lifting (wing) surface. Equation 2.3-14 is discussed in detail 

later. The fourth condition is satisfied by convecting the wake at the local particle 

velocity, as required by the Kelvin-Helmholtz theorem (Konstadinopoulos, 1981). The 

fifth condition is satisfied by taking the circulation to be the same for all the discrete 

vortex segments of the same loop. The sixth condition is satisfied by shedding all the 

vorticity formed along the sharp edges where the steady Kutta condition is imposed; 

more details will be given later. 

Before proceeding further in the discussion, we write all variables in 

dimensionless form by introducing the following characteristic variables: 

u 

L 

L 
u 

is a speed characterizing the motion of the wing. The dimensionless 

speed is always one. 

is the physical length of the chordwise increment of the bound lattice. 

The dimensionless chordwise increment is always one regardless of 

the number of the chordwise elements used. 

is the characteristic time. The computational time step is taken to be 
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unity. This ylelds lengths In the wake that are about the same as those 

on the wing. 

The dimensionless variables are introduced as follows: 

where <I> Is the velocity potential with respect to the G-F frame, P is the pressure, p 

is the air density; the rest of the variables were defined before. The asterisks denote 

the physical quantities. 

We now return to equation 2.3-14. The lifting surface Is discretized into a finite 

number of elements. The no-penetration boundary condition is imposed at one point 

in each finite element. These are called control points. The control point is the 

centroid of the four corners of the element. Equation 2.3-14 becomes 

N 

LA1P1 = (VLSI - Vw;) • n, on SLs for i = 1,2, ... ,N 
J=O 

(2.3-15) 

in which A;i represents the normal component of the velocity induced at the control 

point of the i-th element by the vortex ring, having a unit circulation, around element 

j and its image. A,, is called the influence matrix. In general, the A,, are functions of 

-space and/or time. G1 is the circulation of the vortex ring at element j. Vw1 is the 

velocity induced by the wake and its image whose position and circulation 

distribution are known. n1 Is the unit normal vector at the control point of the i-th 

-element. VLS1 Is the absolute velocity of the wing at the control point of the i-th 

-element. In general, the VLS1 are functions of space and/or time. They are computed 

according to equation 2.2-7 by setting v = 0, so that: 
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... ~ ~ ... 
VLSI= VA + w x r1 (2.3 - 16) 

where ri is the position vector of the control point of the i-th element relative to the 

8-F frame. 

In order to solve equation 2.3-15, an initial condition must be prescribed. The 

initial condition describes the wake, giving the position and vorticity distribution. One 

special case of interest is when the wing is put into motion impulsively. At this 
-

instant, no wake yet exists; hence, Vw; is zero, and equation 2.3-15 reduces to the 

following: 

N 

LA;pJ =VLSI• n, on SLs for i = 1,2. ... ,N 
J=O 

(2.3- 17) 

Equation 2.3-17 is solved for the unknown circulations, G1, by Gauss elimination. The 

system of equations 2.3-17 can be solved by iterative schemes as well; those are, for 

example, Jacobi and Gauss-Seidel iterative methods. When the matrix of influence 

coefficients, A;1, is constant the matrix is inverted once; but when A,1, is variable, 

Gauss elimination is used at each time step. At the beginning of the first time step, 

t = 1, all the circulations in the bound and free portions of the vortex lattice are zero, 

as shown in figure 9a. Figure 9 was taken from Elzebda (1986). At the end of the first 

time step, t= 1, the circulations in the bound portion have changed, as shown in 

figure 9b, and a vortex line is formed along the sharp edges. This is the starting 

vortex dictated by the requirement of spatial conservation of circulation. At the 

beginning of the second time step, t = 2, in order to safo::fy the unsteady Kutta 

condition, all the vorticity formed along the sharp edges where Kutta condition is 

imposed in the steady state is convected downstream at the local particle velocity. 

Description of the Numerical Model of the Flowfleld 39 



flr,: , ... 
Yortc~ 

0. 

o. 

: 
~ ... 

l 
! 

o. 8! G~ 
-c.c.:o •0.0)10 

(o) 

·0.0))t 

(b} 

&1• O.OZ8Z8l7Z69 

Cz• 0.028Z8l7Z69 

G3• 0.0356739174 

, •• 0.0390180502 

G5• 0.0390180502 

'i;· 0.0356)39174 

G7• O.Olla835404 

Gs• 0.0l80137Z53 

Gg• 0.0399843350 

'10· 0.039980350 

Gu• 0.03801l7Z53 

, 12• o.0138835~ 

Figure 9. Circulation around the closed loops and Individual vortex segments of delta wing: (a) 
just before the start of the motion, (b) after one time step, (c) after two time steps and 
(d) after three time steps taken from Elzebda (1986). 
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Figure 9. Continued. 

Description of the Numerical Model of the Flowfleld 

114• 0.0357916l11 a,4• o.029fflm 
'16" 0.051'°'°'8 '26" 0.035613917 

'20" 0.052953838 630• 0.03998035 

G21, 0.052808820 631• 0.038013725 

, 22• o.054lk304 632• 0.03J883~ 

41 



This local partlcle velocity is computed according equation to 2.2-7. Equation 2.2-7 Is 

rewritten again for convenience: 

(2.3 - 18) 

-where V is the absolute velocity computed by the Blot-Savart law, equation 2.3-10. 

Equation 2.3-18 is used to compute the local particle velocity at each node of the 

wake in the moving reference frame. Despite the fact that all quantities in equation 

2.3-18 are functions of time, the quantities which are computed at the previous time 

step, (t = 1), are used. The justification is that computing the quantities at the present 

time step, (t = 2), requires iterations, which in turn, as stated by Konstadinopoulos 

(1981) "increases the computation time without any significant Improvement In the 

accuracy of the method". The starting vortex is convected downstream. Its 

circulation at the new position is the same as the circulation around the starting 

vortex at t = 1 in order to guarantee the temporal conservation of circulation. In order 

to guarantee the spatial conservation of circulation, the starting vortices at the old 

and new positions are joined at the nodal points with connectors, as shown in figure 

9c. The new position of the node i is computed by the following equation: 

R/.2) = R/.1) + Yi{1)&t (2.3-19) 

The wake is created as a result of shedding the starting vortices. The bound 

circulations are calculated at the second time step, (t = 2), using equation 2.3-15 and 

including the effects of the wake and its image. A second starting vortex forms along 

the sharp edges as shown in figure 9c. The second starting vortex is then shed and 

convected downstream to its new position as required by the unsteady Kutta 

condition. Simultaneously, the first starting vortex is convected to its new position. 
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The wake is growing. The bound circulations are computed at the end of the third 

time step, t = 3. A third starting vortex forms along the sharp edges as shown in 

figure 9d. The procedure for finding the solution of equation 2.3-15 can be repeated 

for any desired number of steps. In figure 10, an actual computed wake of a delta 

wing near the ground is shown. 

Figura 10. An actual computed wake of a delta wing near the ground: top view for steady flow. 

2.4 Computation of the Aerodynamic Loads 

The aerodynamic forces and moments are computed after the pressure jump 

distribution across the bound lattice is found. The pressure jump across each 

element is computed at the control point of the element by using the unsteady 

Bernoulli's equation. The unsteady Bernoulli's equation in terms of dimensionless 

variables is written as follows: 
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a<I> 1 ... ... 
at + 2 V • V + P = H(t) (2.4 - 1) 

where H(t) Is a function of dimensionless time and the rest of the variables were 

defined earlier. 

At infinity, <I> Is constant and the velocity ls zero; therefore, equation 2.4-1 

becomes as follows: 

P 00 = H(t) = a constant (2.4- 2) 

The pressure coefficient, Cp, is obtained by combining equations 2.4-1 and 2.4-2; 

it takes the following form 

(2.4- 3) 
= - 2 a<I> V • V 

at 

where a<I>~, t) is the partial derivative with respect to time of th~ potential function 
- a<I>(R, t) 

for a fixed value of R. There are some advantages when ot is in terms of 

a4>~, t) , which is the potential function that is expressed in terms of the relative 

position vector rand time, t. Konstadinopoulos (1981) derived the following relation: 

... 
a<I>(R. t) a¢(,. t) ... ..... at = at - V • ( VA + w X r ) (2.4- 4) 

After substituting equation 2.4-4 into equation 2.4-3, one finds that the pressure 

coefficient takes the following form: 
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(2.4- 5) 

The pressure jump Is the difference between the pressure coefficients on the upper 

and lower surfaces. That is 

in which the subscripts u and I denote the upper and lower surfaces, respectively. 

The pressure jump is given by the following relation: 

(2.4- 6) 

The evaluation of each term in the right hand side of equation 2.4-6 Is discussed 

next. 

1. The quantity (<l>u - </>,) is the difference at any instant between velocity potentials 

on the upper and lower surfaces at the same control point. This term is evaluated 

by integrating the velocity along a path that starts just above the control point, 

goes upstream all the way around the leading edge, then comes back 

downstream to just below the control point. Konstadinopoulos (1981) derived the 

following simple result: 

Th o(</>u - </>,), BG, · · t d b th f 11 • f' 't d'ff e term at = at is approx1ma e y e o owing in, e I erence 

expression: 
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o(<i>u - q,1) 1 G,{t + 6t) - G,{t) ------------at = 6t (2.4- 7) 

Equation 2.4-7 is evaluated by storing the values of G, for two successive time 

steps. 

2. The quantity CVu + V,), is the sum of the upper and lower surface velocities at the 

control point I. Both velocities can be written in terms of two new quantities: the 

mean (average) velocity and the velocity jump at the control point i; that is 

(2.4- 8) 

and 

(2.4- 9) 

-where Vm is the mean velocity induced at the control point on an element, say I, 

by all the vortex rings of the wing and its wake and their images and 6V is the 

jump In the tangential velocity. 

By adding equation 2.4-8 to equation 2.4-9, the following equation is obtained 

(2.4-10) 

3. The quantity (Vu - V,), is the difference between velocities on the upper and lower 

surfaces at control point i. By subtracting equation 2.4-9 from equation 2.4-8, one 

can obtain the following: 

- - -Vu - V1=6V (2.4-11) 
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Figure 11. Two-dimensional dlecrete point vortices. 
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The velocity jump, AV, at the control point of an element i is computed from 

circulations of the straight vortex segments of element i. The circulation, r, is 

defined by 

(2.4-12) 

in which V is the fluid velocity and dr is a line element along a closed path C. In 

figure 11, two-dimensional discrete point vortices are shown. Vu and V, are assumed 

to be constants. The circulation, r, for a two-dimensional flow is calculated using 

equation 2.4-12 around the path C as shown in figure 11. The closed path C starts just 
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below point I and goes parallel to x-axis all the way around point i + 1 and then comes 

back parallel to the x-axis all the way around point I. The result is 

(2.4 - 13) 

= (Vu - V1)/ 

= (L\V)I 

where I is the distance separating the two vortices. From equation 2.4-13 the velocity 

jump, i:\V, is 

r L\V=- 1 
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Figure 12. A rectangular and leading-edge elements of a delta wing for preaure calculatlona. 

Equation 2.4-14 is generalized for the three-dimensional wing. In figure 12, a 

rectangular and leading-edge elements of a delta wing which are surrounded by 

discrete vortex cores are shown. Each circulation belongs to two neighboring 

elements. Hence, one half of each circulation is taken for each element except those 

along the first row. The average circulations, for the case of a rectangular element, 
r, + r, r2 + r4 

are given by: 2 and 2 in the y and x directions, respectively. For a 

finite wing equation 2.4-14 is replaced by: 

(2.4- 15) 

(2.4-16) 
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(2.4 - 17) 

where ,. ls the length separating r, and r,; I,, Is the length separating r 1 and r •. 
Equations 2.4-15 to 2.4-17 are combined to obtained a general result that Is valid 

for a trapezoidal element; that is 

(2.4 - 18) 

- - - -where /1, /1, /1 and /4 are the relative position vectors along the sides of the 

trapezoidal element and coincide with r,, r 1, r, and r •. respectively, F takes the 

value one, except for the first row where it takes the value two, and A is the area of 

the element. 

The area of the element, A, is computed next. First we define two vectors 

- -
81 = /2 X /1 B2 = /4 X /3 (2.4 - 19) 

The area is given by 

(2.4- 20) 

The normal vector, n, is 

n=[ (2.4 - 21) 
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In the case of an element along the leading-edge of delta wing, as shown In 

figure 12, equation 2.4-18 is not valid. The applicable equation for the leading edge 

of the delta wing will be derived. The velocity jump at the control point is given by 

(2.4- 22) 

-where Is, I, and /4 are the relative position vectors along the ~ides of the element in 

figure 12 with rs, r, and r 4, respectively, F takes the value one, except for the first 

row where it takes the value two, and A is the area of the element. 
-The area of the element, A is computed next. First we define a vector B 

-B = 12 X /1 (2.4- 23) 

The area is given by 

A=! Isl (2.4- 24) 

The normal vector is 

-- B n=w (2.4-25) 

- -It should be noted that in equation 2.4-22 the terms r,1, and r zlz are omitted. 

Konstadinopoulos (1981) said .. omitting these terms may appear arbitrary, but it is 

necessary for equation 2.4-22 to reduce to the proper form for steady flow"'. He then 

added, "'Experimental evidence shows that, in steady flow, all vorticity leaves the 

wing (approximately) in a direction normal to the leading edge... He pointed out that 

r 4 is zero in steady flow and that r 4 takes care of the starting vortex in unsteady flow. 
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Now, the evaluation of each term in the right-hand side of equation 2.4-6 has been 

presented in detail. Substituting equations 2.4-7, 2.4-10 and 2.4-11 into equation 2.4-6 

gives the following expression for the pressure jump: 

2/lV•(Vm - VA - wxr) (2.4-26) 

Equation 2.4-26 is used to compute the pressure jump across each element of the 

lifting surface. Actual computed pressure jumps, For example, will be shown next. 

In figure 13, a grid used to calculate the steady pressure jumps, flCp, across a square 

planar lifting surface is shown. In figure 14, the actual computed flCP at each control 

point for different heights of the trailing edge above the ground is shown. Each set 

of connected symbols corresponds to a spanwise row of control points. We note that 

in row 6, the row near the trailing edge, flCP is very small for all cases, as the Kutta 

condition requires. 

+ + + + + + 

+ + + + + + 

+ + + + + + 

+ + + + + + 

+ + + + + + 

+ + + + + + --------

-- Vortex lines 
+ Control point, where the no-penetration 

condition 11 1otl1fled 

··---·· The leodlng and trolllng edgu 

Figure 13. A grid uaed to compute preaaure Jumps across a rectangular wing of unit aspect ratio. 
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Figure 14. Preuure Jumps acrou a rectangular wing of unit aspect ratio for ltHdy flow: (a) 
AC, for H/C = oo (far from the ground), (b) AC,, for H/C = 0.66, (c) 
AC,. for H/C = 0.41 and (d) AC, for H/C = 0.16 at oc = 10• where H la the height of the 
trailing edge above the grouna. 
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The elemental normal force, (Fn),, Is found by multiplying the pressure jump, 

equation 2.4-26, by the elemental area, A,, equation 2.4-20 or equation 2.4-24, that is 

(2.4- 27) 

The normal-force coefficient, Cn, Is found from the following equation: 

(2.4- 28) 

The elemental pitching moment, (PM),, is found by multiplying (Fn), with distance 

from the leading edge to the control point of each element, rx,; that is 

(PM),= - (Fn>!..'x), (2.4-29) 

The pitching-moment coefficient, CM, is found from the following equation: 

(2.4-30) 

The rolling and yawing moments are computed in a similar way. 
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2.5 Computation Procedure 

2.5.1 Unsteady Ground Effect 

The steady-state results are obtained by giving the wing an impulsive start and 

having It move forward at a constant velocity parallel to the ground plane. In the case 

of unsteady ground effects, the wing was initially located far from the ground, so that 

the flow reached a steady state while the wing descended along the flight path before 

it experiences the ground effect. For the computations, the sink rates were varied 

by varying the flight-path angle y. In figure 15, a wing and its image near the ground 

are shown. The definition of the flight-path and pitch angles and how they are related 

to the angle of attack , <X, are shown. The flight-path angle is related to the velocity 

of the wing by the following: 

V -1 Az 
y =tan --

VAx 
(2.5 - 1) 

in which VAz is the global velocity of the wing in the positive Z direction (downward) 

and VAx is the global velocity of the wing in the positive X direction. The magnitude 

of the wing velocity, I VA I, was chosen to be unity (see page 21), and hence 

VAx =cosy and VAz = sin y. We refer to y as the sink rate. 
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Figure 15. A aide view of a wing and lta Image near the ground. 

2.5.2 Velocity of Wind 

T 
H 

H 

,,,l 

The apparent free-stream velocity is defined by the following: 

-

z 

(2.5- 2) 

in which Vw1nd is the velocity of the wind. The velocity of the wind is parallel to the 

X-Y plane and makes an angle 11 with the X-axis. A wing in a cross wind is obtained 

by letting either 7f = 90° or 11 = - 90°, and a wing in head or tail wind is obtained by 

letting 7f = 0° or 71 = 180°, respectively. The strength of the wind is specified as a 

percentage of the wing speed. 
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2.5.3 Flight Path 

Three flight paths were used for studying the effect of the flight path on the 

aerodynamic characteristics of a wing. These flight paths are a sine wave, a parabola 

and a circular arc. The three flight paths will be derived next. 

.. , 
' ' ' ' ' \ 

' \ 
I 

I 

' 

, 
I 

,, 
~ 

----r Ho,r, .. 

1 
X ----- Ground Pion• _,,_ _ _,_ ___ _ 

z 

Figure 11. A slnuaoldal flight path. 

We start with the sine wave. In figure 16, a flight path is shown that Is part of a 

sine wave. The equation describing this curve is given by the following: 

. 1r(X - X0) 
Z = 20 - (20 - Zmin) sm X _ X 

max O 
(2.5-3) 
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In which 20, Zmin• X0 and X..,.. are shown In figure 16. Taking the derivative of equation 

2.5-3 with respect to X, one finds that 

dl n(Zo - Zm1n) n(X - Xo) 
-=tany=- cos----
dX Xmax - Xo Xmax - Xo 

(2.5- 4) 

Substituting X = X0 and 'Yo= 'Yo Into equation 2.5-4, leads to the following 

n tan y ----"'-- = -
Xmax - Xo lo - Zmln 

(2.5-5) 

Substituting equation 2.5-5 into equation 2.5-4 leads to the following 

(X - X0) tan Yo 
tan y = tan Yo cos Z _ X 

0 min 
(2.5-6) 

Equation 2.5-6 describes the flight-path angle, y, as a function of X for a sinusoidal 

flight path. 
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Figure 17. A parabollc flight path. 

In figure 17, a flight path is shown that is part of a parabola. The equation 

describing this curve is given by the following: 

[ X + X ] 2 
Z = Zmln - K X - max2 0 

in which K is a constant. 

X = X0 and Z = Z0; that is, 

4(Zo-Zm1n) 
K = - -------2 

(Xmax - Xo) 

(2.5- 7) 

K is found from equation 2.5-7 by substituting 

(2.5- 8) 
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Taking The derivative of equation 2.5-7 with respect to X, one finds 

Xmax + Xo 
tan y = - 2K[X - 2 ] (2.5- 9) 

K is found from equation 2.5-9 by substituting X = X0, that Is 

tan Yo K=------
Xmax - Xo 

(2.5-10) 

Equating equation 2.5-8 to equation 2.5-10, on finds the following: 

2(Zo -Zm1n) 
X =X ---'---max o tan Yo (2.5- 11) 

Substituting equations 2.5-10 and 2.5-11 into equation 2.5-9, one obtains the following 

[ (X - X0) tan Yo ] 
tan y = tan Yo 2(Zo -Zmin) + 1 (2.5-12) 

Equation 2.5-12 describes the flight-path angle, y, as a function of X for a parabolic 

flight path. 
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Figure 18. A circular-arc flight path. z 

In figure 18, a flight path is shown that is part of a circle. The equation describing 

this curve is given by the following: 

(X + X) 
[Z - (Zo - A)]2 + [X - max2 ° J2 = [Zo - Zm1n - A]2 (2.5 - 13) 

in which A is a positive number (see figure 18). A is given by 

(2.5-14) 

in which R is the radius of the circle. Because Z0 - Zmin < 0, equation 2.5-14 becomes 

A = R + (Zo - Zm1n) (2.5-15) 
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The radius, R, Is given by 

4 
R = cos Yo (2.5-16) 

From equations 2.5-15 and 2.5-16, 4 is found as 

(Z0 - Zmin) cos Yo 
4 = - ------1 - cos Yo 

(2.5- 17) 

Taking the derivative of equation 2.5-13 with respect to X, one finds the following 

tan Y = Z - Zo + 4 (2.5-18) 

X,,_: X, is found from equation 2.5-18 by substituting X = X0, Z = Z, and y = Ya· The 

result is the following: 

Substituting equation 2.5-19 into equation 2.5-18 yields the following: 

X - X0 + 4 tan Yo 
tan Y = . Z - Zo + 4 

(2.5-19) 

(2.5- 20) 

Equations 2.5-17 and 2.5-20 describe the flight-path angle, y, as functions of X and Z 

for a circular flight path. 

Initially, the flight path is chosen to be straight, so that the flow would reach a 

steady state before the wing experiences the curvature effect. 
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3.1 General 

Chapter Ill 

Numerical Examples 

A general unsteady aerodynamic model was described in chapter II. The 

capability of the model to predict aerodynamic forces and moments is shown in this 

chapter. This is done by studying wings in steady and unsteady ground effects. 

Some of the computed results were puplished by Nuhait and Mook (1988). 

As a means of establishing the credibility of the numerical model, we first use it 

to compute the steady ground effects for a series of circular-arc airfoils. These 

results are compared with an exact solution found by Tomotika et al. (1951b). The 

comparison is done in section 3.2. In section 3.3, the effect of the ground on the 

wakes of three wings is shown. A comparison of the computed and experimental 

results in steady flow for an F-104A wing is presented in section 3.4. Computed 

results are shown for flat rectangular wings in section 3.5 and for rectangular wings 
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with dihedral angles in section 3.6. Numerical results for swept wings are presented 

In section 3.7. Numerical results for delta wings in steady and unsteady flows and 

some comparisons with experimental results are given in section 3.8. In addition, the 

effects of sink rate and aspect ratio are shown. The effects of cross and/or head 

winds and of flight-path shapes are presented in sections 3.9 and 3.10, respectively. 

Concluding remarks are given In section 3.11. 
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3.2 Two-Dimensional Airfoils 

The vortex-lattice technique Is used to investigate the steady ground effect on 

two-dimensional circular-arc airfoils with various cambers. The results are compared 

with an exact solution found by Tomotika et al. (1951b). The exact and computed lift 

and pitching-moment (about the trailing edge) Increments are plotted as functions of 

height above the ground. The angle of attack is always five degrees. The results for 

the flat plate (zero camber) are shown in figure 19. The agreement is excellent. The 

results of the circular-arc airfoil with 0.022, 0.053 and 0.097 cambers are shown in 

figures 20, 21 and 22, respectively. For camber, the agreement Is excellent too. It is 

clear, as shown in figure 19, that the ground effect first slightly lowers the lift and 

moment and then increases them as the flat plate approaches the ground. From 

figures 19 to 22, it is clear that the effect of the ground on the lift and moment of an 

airfoil is greatly modified by its camber. Thus, the ground effect first lowers the lift 

and moment and then raises them as the airfoil approaches the ground. As the 

camber becomes larger, this trend grows stronger, and for the last case there is 

essentially only a loss in lift and moment. 

The vortex-lattice method is not restricted to two-dimensional steady flows, as 

the analysis of Tomotika et al. is. Below, we show the effect of finite aspect ratio for 

wings in steady and unsteady ground effect. 
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Figure 19. A two-dimensional flat plate wing In a steady ground effect: (a) lift and (b) 
pitching-moment (about the trailing edge) coefficients as functions of height of the 
trailing edge above the ground at cz = 5°. 

JI 
__ [aocl S<,iut.on. Tomotiko 01 01 (1951b) 

0 ,. • Humeri<~. Or•s•nt Wifthod 
0 .... (o) 
X IS 

.! u .3 
I u II 

u-'1 
II I 
.., 

u 
~ 

I 

·S 

• 
H/C 

0 
0 .... 
X 

:I :I u 
I u 
::I 

U II 
::I u 
~ 

air------------ .... 

II 

•• 
I 

• 
I 

--C•oct Solul,on. lomotiao 01 01 (1Sl51b) 
Nvmerieol, Prtu"I Method 

(b) 

' • • 
H/C 

Figure 20. A two-dimensional circular-arc airfoil (camber = 0.022) In a steady ground effect: (a) 
lift and (b) pitching-moment (about the trailing edge) coefficients as functions of height 
of the trailing edge above the ground at cz = 5°. 
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Figura 22. A two-dlmenslonal circular-arc alrfoll (camb•r = 0.097) In a steady ground effect: (a) 
lift and (b) pitching-moment (about the trailing edge) coefficients as functions of height 
of the trailing edge above the ground at«= s•. 
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3.3 Wake Plots 

All the results, even those for the steady states, are computed by a general 

unsteady algorithm. At each time step, a vortex is formed along the sharp edges 

where the Kutta condition is imposed in a steady flow. These vortices are shed and 

convected at the local fluid velocity to form the wake. Thus, the distribution of the 

vorticity in, and the shape of, the wake are predicted as part of the solution. In figure 

23, computed wakes are shown. In part (a) the top views of a low aspect ratio tapered 

wing (AR = 1.9) are shown in and out of ground effect. The corresponding side views 

are shown In part (b). The angle of attack Is 10° and the flow is steady. Similar 

results are shown In figure 24 for a moderate aspect ratio tapered wing (AR == 3.8). 

The horizontal line below the wing in part (b) of both figures shows the position of the 

ground for the ground-effect case; it is also included in the results for the 

out-of-ground-effect case for comparison. Clearly, the effect of the ground restricts 

the downward movement of the wake and causes it spread. As a result, the wake 

effects (downwash) will be weaker and in turn the effective angle of attack Is higher; 

this is one of the factors that cause lift to increase. In figure 25 , plots of computed 

wakes in and out-of ground effects for a delta wing of aspect ratio 1.5 at 10° angle of 

attack are shown. In parts (a), (b} and (c} the top, side and front views are shown, 

respectively. Clearly, the effect of the ground restricts the downward movement of 

the wake and causes it spread. This ground effect appears to be stronger for delta 

wings than for the wings considered previously. 
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Figure 23. Actual computed wakes for a low-aspect-ratio tapered wing (AA = 1.9) In and out of 
ground effect for steady flow: part (a) top views; (i) out of ground effect and (ii) in 
ground effect Part (b) side views; (i) out of ground effect and (ii) in ground effect 
ex= 10·. 
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Figure 24. Actual computed wakes for a low,aspect-ratlo tapered wing (AA = 3.8) In and out of 
ground effect for steady flow: part (a) top views; (I) out of ground effect and (ii) in 
ground effect Part (b) side views; (i) out of ground effect and (ii) in ground effect 
Cit= 10°. 
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(i) 

(a) 

Figure 25. Actual computed wakes for a delta wing (AR = 1.5) In and out of ground effect for 
steady flow: part (a) top views; (i) out of ground effect and (ii) in ground effect. Part 
(b) side views; (i) out of ground effect and (ii) in ground effect Part (c) side views; (i) 
out of ground effect and (Ii) in ground effect. ex = 10•. 
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25 Continued Figure • 
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3.4 Tapered Wing 

1.0• 

T 
l 

Figure 2&. Dimension of the model of an F-104A wing: tested by Chang and Muirhead (1985). 

In figure 26, there is a sketch of a model of an F-104A wing taken from Chang and 

Muirhead (1985). In figure 27, plots of the aerodynamic coefficients in and out of 

ground effect are given for this model. In each plot the computed results are 

compared with the experimental data of Chang (1985). The height above the ground 

divided by the span ( : ) is equal to 0.28 for the case near the ground, where h is 

measured to a point 3.3 inches behind the apex. In parts (a} and {b), the lift 

coefficients as functions of angle of attack are shown out of and in ground effect, 

respectively. The agreement is good up to approximately 10 degrees angle of attack. 

Beyond 10 degrees, the data seem to show that stall occurs in both cases. In parts 

(c) and {d), lift coefficients are plotted as functions of the drag coefficients for out of 

and in ground effect, respectively. Both plots show good agreement with 

experimental results. In part {e), the lift coefficients are plotted as functions of 
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Figura 27. A comparison of the computed and exparlmantal result1 In steady flow for an F-104A 
wing: parts (a) and (b) lift coefficients for out of and in ground effect as functions of 
angle of attack, respectively. Parts (c) and (d) lift coefficients for out of and in ground 
effect as functions of drag coefficients, respectively. Parts (e) and (f) lift coefficients 
for out of and in ground effect as functions of pitching-moment coefficients, 
respectively. For the case near the ground, h/b - 0.28 where h is the height above 
the ground of a point 3.3 inches behind the apex. 
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pitching moment coefficients far from the ground. The trends for both curves are the 

same. The disagreement could be caused by taking the moment at different points. 

Near the ground , part (f}, there seems to be a problem with the experimental data. 
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3.5 Flat Rectangular Wings 

In figure 28, the percentage changes In the aerodynamic coefficients are given 

as functions of the height of the trailing edge above the ground for different sink rates 

for a rectangular wing. The angle of attack Is 10 degrees and the aspect ratio Is unity. 

It Is clear that the proximity of the ground Increases all the aerodynamic coefficients 

and that this effect Is stronger for higher sink rates. This trend was also noticed for 

aspect ratios 2 and 4. 

In figure 29, the percentage changes in the lift coefficient are given as functions 

of the height of the trailing edge above the ground for different sink rates for a 

rectangular wing. The angle of attack Is - 10 degrees and the aspect ratio is unity. 

It ls clear that the proximity of the ground increases all the aerodynamic coefficients 

and that this effect Is stronger for higher sink rates. 

In figure 30, the percentage changes in the aerodynamic coefficients are given 

as functions of the height of the trailing edge above the ground for different aspect 

ratios for unsteady flow (y = 20°). The angle of attack is 10 degrees. It is clear that the 

ground increases all coefficients and that these effects are stronger for larger aspect 

ratios. Also, it is clear that the wings with larger aspect ratios feel the ground at 

higher positions. The same trend was also noticed for sink rates y = 10° and y = 00 

(steady). 
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Figure 28. Computed results for a rectangular wing of unit aspect ratio In ground effect: (a) lift, 
(b) drag and (c) pitching•moment increments as functions of the height of the trailing 
edge above the ground for different sink rate (see figure 15 for the definition of 7). 
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Figure 29. Computed results for a rectangular wing of unit aspect ratio In ground effect: lift 
increment as functions of the height of the trailing edge above the ground for different 
sink rate (see figure 15 for the definition of 7). 111 = - 10°. 
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Figure 30. Computed results for a rectangular wing of unit aspect ratio In ground effect: (a) lift, 
(b) drag and (c) pitching-moment increments as functions of the height of the trailing 
edge above the ground for unsteady flow, 7 = 20° (see figure 15 for the definition of 
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3.6 Rectangular Wings with Dihedral Angles 

In figure 31, the percentage changes in the aerodynamic coefficients are given 

as functions of the height of the trailing edge at the root chord above the ground for 

different sink rates. The angle of attack Is 10 degrees, the aspect ratio ls 4, and the 

dihedral angles ls five degrees. It Is clear that the proximity of the ground Increases 

all coefficients and that this effect is stronger for larger sink rates. But as the next 

sets of results shows, the dihedral angle reduces the ground effects. In figure 32, 

similar plots for different dihedral angles for unsteady flow (y = 20°) are presented. 

The angle of attack is 10 degrees. It Is clear that the ground effect increases all 

coefficients but this trend is weaker for higher dihedral angles. The same trend was 

also noticed for sink rates y = 10° and y = 0°. 
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Figure 32. Computed results for a rectangular wing of aspect ratio 4 In ground effect for unsteady 
flow: (a) lift, (b) drag and (c) pitching•moment increments as functions of the height 
of the trailing edge above the ground for different dihedral angles. 
CII = 10° and 1 = 20°. 
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3.7 Swept Wings 

In figure 33, the percentage changes In the aerodynamic coefficients are given 

as functions of the height of the trailing edge at the root chord above the ground for 

different sink rates. The angle of attack Is 10 degrees, the aspect ratio is 4 and the 

sweep-back angle Is 45 degrees. It is clear that the proximity of the ground increases 

all coefficients, but the ground effect Is nearly the same for all sink rates, which 

means that unsteady ground effects can be predicted by a steady analysis. 

In figure 34, the percentage changes In the aerodynamic coefficients are 

presented as functions of the height of the trailing edge at the root chord above the 

ground for different sweep-back angles for steady flow, (y = 0°). The angle of attack 

Is 10 degrees and the aspect ratio is 4. Clearly, the proximity of the ground increases 

all coefficients and this effect is the same for all sweep-back angles. Similar results 

are shown in figure 35 for unsteady flow, (y = 20°). Clearly, the proximity of the ground 

increases all coefficients and this effect is weaker for larger sweep-back angles. The 

same trend was also noticed for sink rate y = 10°. 
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Figure 34. Computed results for a swept wing of aspect ratio 4 In ground effect for steady 
flow: (a) lift, (b) drag and (c) pitching-moment increments as functions of the height 
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flow: (a) lift, (b) drag and (c) pitching.moment increments as functions of the height 
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3.8 Delta Wings 

In figure 36, the computed and experimental aerodynamic coefficients are 

presented as functions of angle of attack far from the ground. The experimental 

results are taken from Bartlett and Vidal (1955), Chang (1985) and Wentz (1968). The 

wing is a flat thin delta wing for which the sweep-back angle Is 70 degrees 

(AR= 1.456). The pitching-moment coefficient was calculated about an axis that 

passes through the apex. The pitching-moment coefficient is based on the root 

chord. These results and some experimental results from Bartlett and Vidal (1955) 

are shown In part (c). In part (d), the computed and experimental pitching-moment 

coefficients about an axis through the mid-point of the root chord are shown. The 

moment coefficients are based on two thirds of the root chord, which is the mean 

aerodynamic chord. There is good agreement between the computed and 

experimental results up to approximately 25 degrees angle C'f attack, where stall or 

vortex bursting begins. In figure 37, the aerodynamic coefficients in ground effect are 

given for a delta wing of aspect ratio 1.5 in steady flow. In each plot the computed 

results are compared with the experimental data of Chang (1985). The height above 

the ground divided by the span ( ~ ) is equal to 0.28 for the case near the ground, 

where h is measured to the mid-point of the root chord. In part (a) the lift coefficients 

as functions of angle of attack are shown. The agreement is good up to 

approximately 15 degrees angle of attack. In part (b) lift coefficients are plotted as 

functions of the drag coefficients. The computed results are in agreement with the 

experimental results. In part (c) lift coefficients are plotted as functions of the 

pitching-moment coefficients about an axis that passes through the mid-point of the 
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based on the mean aerodynamic chord. The computed results show the same trend 

as the experimental results. 

In figure 38, the percentage changes In the coefficients of lift and drag are plotted 

for steady flow as functions of height above the ground for a thin flat delta wing 

(AR= 1.456) at ten degrees angle of attack. Similar results are given In figure 39 

when the wing is at 22.1 degrees angle of attack. In both cases, the computed lift and 

the experimental data of Chang (1985) are in good agreement. For drag, both sets 

of results show the same trend, but they do not agree as well as those for the lift. 

In figure 40, the percentage changes in the lift coefficient for unsteady flow are 

given as functions of the height of the mid-point of the root chord above the ground 

for a thin flat delta wing (AR= 1.456) at !X = 22.1°. The steady results are included for 

comparison. The computed lift and experimental data of Chang (1985) are in fair 

agreement. It seems that the unsteadiness lowers the ground effect; this is due to 

the different definitions of H and h. As the next set of results show, the unsteadiness 

increases the effect. 

In figure 41, the percentage changes in the aerodynamic coefficients are given 

as functions of the height of the trailing edge above the ground for different sink rates. 

The wing is a flat thin delta wing (AR= 1.456) at 22.1 degrees angle of attack. It is 

clear that the ground increases all coefficients and that this effect is stronger for 

higher sink rates. 

In figure 42, the percentage changes in the aerodynamic coefficients for a thin 

delta wing are plotted as functions of the height of the trailing edge above the ground 

for different aspect ratios for unsteady flows (y = 20°). The angle of attack is 10 

degrees. It is clear that the ground effects increase all coefficients and that these 

effects are stronger for larger aspect ratios. The same trend was noticed for sink 

rates y = 10° and y = 0°. 
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steady ground effect: lift increments at ex= 10• as functions of the height of the 
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Figure 39. A comparison of the computed and experimental results for delta wing (AR = 1.5) In 
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Figure 41. Computed results for a delta wing of aspect ratio 1.5 In ground effect: (a) lift, (b) drag 
and (c) pitching-moment increments at « = 10° as functions of the height of the trailing 
edge above the ground for different sink rate. 
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Figure 42. Computed results for delta wings In ground effed for unsteady flow: (a) lift, (b) drag 
and (c) pitching-moment increments at ex= 10° and 7 = 20° as functions of the height 
of the trailing edge above the ground for different aspect ratios. 
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3.9 Wind Effect 

In figure 43, the percentage changes in rolling moment and side force for a 

rectangular wing of unit aspect ratio at IX== 10° and t/, == 10° (roll angle) for steady flow 

are given as functions of the height of the trailing edge above the ground. The 

magnitude of the wind velocity is taken to be ten percent of the magnitude of the 

velocity of the wing. Clearly, the ground effect increases the restoring rolling 

moment and side force. 

In figures 44 and 45, the aerodynamic coefficients of rectangular wings of unit 

aspect ratio are plotted as functions of the height of the trailing edge above the 

ground for different sink rates in 10 and 20 percent head wind, respectively. The 

angle of attack is 10° and the angle of roll is 0°. Clearly, the ground increases all 

coefficients and that this effect is weaker for higher sink rates. 

In figure 46, the aerodynamic coefficients for a rectangular wing of unit aspect 

ratio at IX== 10°, t/, == 10°, 11 == 45° and 10% wind velocity are given as functions of the 

height of the trailing edge above the ground for different sink rates. Similar results 

are shown in figure 47 when 11 = 90°; that is, when the cross-wind velocity is 10%. 
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Figure 43. Computed results for a rectangular wing of aspect ratio 1 In ground effect with croa 
and head winds for steady flow: (a) side force and (b) rolling-moment increments at 
oc = 10°, 4> = 5° and 3.4% cross- and 9.4% head-wind velocities as functions of the 
height of the trailing edge above the ground. 
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Figura 44. Computed reaulta for a rectangular wing of aspect ratio 1 In ground affect with head 
wind: (a) normal force, (b) pitching-moment and (c) rolling-moment coefficients at ex= 10°, t/, = 0° and 10% head-wind velocity as functions of the height of the trailing 
edge above the ground for different sink rates. 
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Figure 48. Computed raaults for a rectangular wing of aspect ratio 1 In ground effect with croa 
and head winds: (a) normal force, (b) pitching-moment and (c) rolli~ent 
coefficients at tx = 10°, </, = 10° and 7.1 % cross- and 7.1 % head-wind velocities as 
functions of the height of the trailing edge above the ground for different sink rates. 
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Figure 47. Computed reaulta for a rectangular wing of aapect ratio 1 In ground effect with ao• 
wind: (a) normal force, (b) pitching-moment and (c) rolling-moment coefficients at 
ex= 10°, tf, = 10° and 10% cross-wind velocity as functions of the height of the trailing 
edge above the ground for different sink rates. 
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3.10 Flight-Path Effect 

In figure 48, the aerodynamic coefficients for a rectangular wing of unit aspect 

ratio at«= 10° are plotted as functions of the horizontal distance In and out of ground 

effects for unsteady flow, Yo== 25°. The flight path is a sine wave with 

20 == 23.286 and Zm,n = 4.231 (see section 2.5). The axis of rotation passes through the 

leading edge. Similar results are shown In figures 49 and 50 when the axis of rotation 

passes through the mid point of the root chord and the trailing edge, respectively. In 

figure 49, 20 and Zm1n are 24.063 and 4.998, respectively. For the case in figure 50, 

20 and Zm1" are 24.839 and 5.775, respectively. 

In figure 51, the aerodynamic coefficients for a rectangular wing of unit aspect 

ratio at«== 10° are plotted as functions of the horizontal distance in and out of ground 

effects for unsteady flow, Yo== 25°. The flight path is a parabola with 

Z0 = 23.286 and Zm1" == 4.221. The axis of rotation passes through the leading edge. 

Similar results are shown in figure 52 when the flight path is a circular arc with 

20 = 23.286 and Zm,n == 4.228. 
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Figure 48. Computed results for a rectangular wing (AR = 1) flying along a sinusoidal flight path 
In and out of ground effects: (a) normal force and (c) pitching-moment coefficients 
at 11 = 10° and Yo = 25° as functions of the horizontal ground distance. The axis of 
rotation passes through the leading edge. 
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Figure 50. Computed results for a rectangular wing (AR = 1) flying along a sinusoidal flight path 
In and out of ground effects: (a) normal force and (c) pitching-moment coefficients 
at ex= 10° and Yo= 25° as functions of the horizontal ground distance. The axis of 
rotation passes through the trailing edge. 
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Figure 51. Computed results for a rectangular wing (AR = 1) flying along a parabolic flight path 

In and out of ground effects: (a) normal force and (c) pitching-moment coefficients 
at ex= 10° and Yo= 25° as functions of the horizontal ground distance. The axis of 
rotation passes through the leading edge. 
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Figure 52. Computed results for a rectangular wing (AR = 1) flying along a circular flight path In 
and out of ground effects: (a) normal force and (c) pitching-moment coefficients at 
ex = 10° and >'o = 25° as functions of the horizontal ground distance. The axis of 
rotation passes through the leading edge. 
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3.11 Concluding Remarks 

The aerodynamic model of chapter II has been used to Investigate the steady and 

unsteady ground effects on a single lifting surface for different planforms. In addition, 

the model has been used to study the effects of cross and/or head winds and of 

flight-path shapes on a flat rectangular wing. The computed effect of the ground 

restricts the downward movement of the wake and causes it to spread. The present 

results show the influences of various parameters on the aerodynamic coefficients for 

both steady and unsteady flows. Generally, the aerodynamic coefficients increase 

with proximity to the ground, the greater the sink rates the greater the Increases. 

Increasing the aspect ratio increases both the steady and unsteady ground effects for 

both rectangular and delta planforms. An exception is a large aspect-ratio wing (here 

we consider a two-dimensional wing) with large camber. Such a wing actually 

experiences a loss of lift and pitching moment (about the trailing edge) near the 

ground. The present computed results are generally in close agreement with limited 

exact solutions and experimental data. The present results serve to demonstrate the 

potential of the present approach. 

In the next chapter, we couple the aerodynamic model of chapter II with tt,e 

equations of motion of an aircraft and the resulting model is then coupled with a 

feedback-control law. The resulting model will be used to control an aircraft flying in 

level flight near the ground. 
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4.1 General 

Chapter IV 

Dynamics and Control 

In chapter II, the aerodynamic model was described In detail. In chapter Ill, the 

model was shown to be capable of predicting the aerodynamic forces and moments 

accurately in and out of ground effect. In this chapter, we couple the equations of 

motion to the aerodynamic model. Then, we couple a feedback-control system to the 

resulting model. 

The coordinate system for a second lifting surface is introduced in section 4.2. 

The aerodynamic model of chapter II is coupled with the equations of motion of an 

aircraft in section 4.3. The resulting model is coupled with a feedback-control system 

in section 4.4. 
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4.2 Coordinate System 

The pitch of an airplane is controled by its horizontal tail and/or canard. We 

numerically simulate this effect by introducing another lifting surface that has one 

degree of freedom relative to the body-fixed axes x,y,z. We attach a right-handed 

coordinate system to the control surface, as shown in figure 53. 

, 
z 

G-F ,...a,11e 

z 

Figure 53. Coordinate systems of the wing and control surface. 
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The control-surface axes and their unit vectors are denoted by x', y', z' and i',j', I<', 

respectively. The x'- and y'-axes lie In the plane of the planform of the control 

surface, while the z'-axis is normal to the control surface and points downward. The 

x'-axis points forward. The transformation from the unit vectors of the 8-F frame 

i',j', I<' to those of the B-F frame i,J, I< is given by the following: 

.... .... 
i' cc5 0 -sc5 ; 
.... .... 
j' = 0 1 0 j (4.2 - 1) 
.... .... 
k' sc5 0 cc5 I< 

where c5 is the angle which x' makes with the x-axis, and c and s denote cosine and 

sine functions, respectively. The following equation 

x' cc5 0 - sc5 x - XAA' 

y' = 0 1 

z' sc5 O 

0 

cc5 

y - YAA' (4.2- 2) 

transforms the coordinates of a point in the body axes x,y,z to the body axes 

x', y', z', where xAA'• YAA' and zAA. are the coordinates of the origin of the 8-F x', y', z' 

frame in terms of those of the B-F x,y,z frame. The xAA'• YAA· and zAA. are the 
-components of RAA. (see figure 53). 

In the computer code, the position of the control surface with respect to the main 

wing is arbitrary. The control surface can be placed either behind or In front of the 

main wing. Moreover, the control surface can be placed either above or below the 

main wing. The axis of rotation of either the main wing or the control surface can be 

anywhere. Moreover, both pitching and hinge moments can be taken about any axis 

(not necessary the axis of rotation). 
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The control surface was discretized Into a finite number of elements. The mutual 

aerodynamic interference between the main wing and the control surface is predicted 

by the aerodynamic model of chapter II in and out of ground effects. Namely, we 

solve equation 2.3-15 In which N refers to the sum of elements of the main wing and 

the control surface. In the case of wing and tail configurations, the wake of the wing 

must feel the control surface as a solid surface. Similarly, in the case of wing/canard 

configurations, the canard wake must feel the wing as a solid surface. 

In figure 54, actual computed wakes for a wing and tail configuration In and out 

of ground effect are shown. The tail was located above the wing chord line. In part 

(a), the side and top views of the wake are shown for the case far from the ground. 

In part (b), the side and top views of the wake are shown for the case near the 

ground. The horizontal line below the wing for the case near the ground shows the 

position of the ground; it is also included in the results for the case far from the 

ground for comparison. Clearly, the wake of the wing envelopes the tail. Moreover, 

the effect of the ground restricts the downward movement of the wake and causes it 

to spread. 
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Figure 54. Actual computed wakes for a wing and tall configuration: part (a) out of ground effect 
and part (b) in ground effect for steady flows. 
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4.3 Dynamics 

4.3.1 Equations of Motion 

The motion of an aircraft can be divided into two independent groups. One is 

called longitudinal motion and the other is called lateral. Here, we limit our 

presentation to the longitudinal motion. That is, the aircraft can move forward, 

downward, upward and pitch about an axis passing through the center of mass. 

The equations of motion of an aircraft (see, for example, Etkin, 1982) are given 

by the following: 

(T- D) cos a+ L sin a - mg sin 8 = m(u + Ow) (4.3 - 1) 

(T- 0) sin a - L cos a+ mg cos 8 = m(w - Ou) (4.3 - 2) 

(4.3- 3) 

where T is the thrust force and it is assumed to be parallel to the flight path, D is the 

drag force, L is the lift force, M is the pitching moment about the center of gravity, 

m is the mass of the aircraft, g is the acceleration of gravity, I" is the mass moment 

of inertia of the aircraft, a is the angle of attack, 8 is the pitch angle, and u and ware 

the x- and z-components of velocity in B-F frame, respectively. 

It is convenient to work with the equations of motion in dimensionless form. The 

equations of motion in dimensionless form become 

Ii= - Ow+ C1[(Ct- C0) cos a+ CL sin a] - C2 sin 8 (4.3- 4) 
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(4.3 - 5) 

(4.3 - 6) 

PAw1n, g PAw1n,C,wing 
where C1 = 2m L, C1 = U2 L and C, = 21YY U In which Am, is the plan area 

of the wing, L is the characteristic length, p is the air density and C, . is the root .,,,, 
chord of the wing. the dot denotes the derivative with respect to nondimensional 

time. The thrust, lift, drag and pitching-moment coefficients are defined as follows: 

T L D 
2 • CL = 2 • Co = 2 

pU Awing pU Awing pU Awing 
2 2 2 

The initial conditions are given by the following: 

u(t = 0) = u0 = U cos a0, w(t = 0) = w0 = U sin a0, 

8(t= 0) = 80 and 8(t= 0) = 0 
(4.3 - 7) 

The variables u, wand 8 can be found by solving the equations 4.3-2 to 4.3-4 with the 

above initial conditions. The new angle of attack, a, may be computed from the 

following equation: 

-1 W a=tan -u 

The flight-path angle, y, may be computed from the following: 

y=a-8 

The position of the aircraft may be found from the following: 
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~ f ~+1 
XA = XA + VA dt i+1 I ,C 

~ 

and (4.3 - 10) 

Where XA and ZA are the X- and 2-components of the position vector of the center of 

mass in terms of the G-F frame, respectively. VAx and VAz are the X- and 

2-components of the velocity vector of the center of mass in !erms of the G-F frame, 

respectively. The subscripts i and i + 1 refer to the present and one time step in the 

future, respectively. 

4.3.2 Method of Solution 

It was mentioned earlier that the time step employed in the aerodynamic model 

was chosen to be unity; consequently the Runge-Kutta method will be excluded when 

solving the equations of motion. As a result, we turn to predictor-corrector methods, 

which are highly accurate and employ integral time steps. One of the most popular 

predictor-corrector methods is Hamming's method. It is a fourth-order-accurate 

method. Carnahan et al. (1969), for example, derived this method and have written 

a computer code for solving second-order differential equations. In this dissertation, 

Hamming's method is used as found in Carnahan et al. with the exception that an 

iteration scheme is incorporated into the method. 

Hamming's method solves a system of first-order differential equations. As a 

result, the equations of motion are rewritten as a system of first-order differential 

equations. A general system of differential equations has the following form: 

for j = 1,2, ... , n (4.4 - 1) 
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with the Initial conditions 

for j = 1,2, ... ,n (4.4 - 2) 

where y1, fi and a.1 are the j-components of column vectors with n components each. 

Hamming's method requires the solutions, y1, and the right-hand sides, fi, to be known 

at three previous time steps plus at the present time. As a result, different methods 

are used to generate the solution for the first three time steps. Then, Hamming's 

scheme is used to complete the computation process. So, it may be in order to 

discuss the starting procedure before presenting Hamming's method (which may be 

called the general method). 

For the first time step, we employ Euler and modified Euler methods as 

predictor-corrector scheme (see Palm Ill, 1983). The complete algorithm is: 

1. The iteration number, k, is set equal to 0. 

2. The right-hand sides of equation 4.4-1, fi, are evaluated at the present time 

(t = 0). 

3. The predicted solutions, Yj, of equations 4.4-1 are computed using the Euler 

method: 

yj = Y1,1 + '1.1~t for j = 1,2, ... , n (4.4-3) 

where Y;,1 = Yi0) = r,.1, ( 1 = 'i{O, y1(0), y2(0), ... , Yn(O)) and the supscript p denotes the 

predicted solution. 

4. The table of y and f is updated; namely 
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Y1,2 = Y1,1 and '1.2 = '1.1 (4.4- 4) 

5. The solutions of equations 4.4-1 are set equal to the predicted solutions; namely 

/( p 
Y1,1 = Y1 (4.4 - 5) 

6. These solutions are supplied to the aerodynamic model and used to compute the 

aerodynamic forces and moments. These may be considered the predicted loads 

at the new time. 

7. The right-hand sides of equations 4.4-1 are re-evaluated at the new time (t = .1t) 

with the new aerodynamic loads from step 6. 

8. The iteration number, k, is set equal to k + 1 

9. The modified Euler method is then used to compute the corrected solutions, *y1,1; 

namely 

/( [ ] ~t Y1,1 = Y1,2 + '1,1 + '1,2 2 for j = 1,2, ... ,n (4.4- 6) 

10. The absolute value of the difference between the solutions at the present and 

previous iterations, *e1, is estimated as follows: 

for j = 1,2, ... ,n (4.4 - 7) 
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11. *e, Is checked to see if all its components are less or equal to some small 

user-supplied error criterion. If the condition is not satisfied the computation 

process is repeated starting at step 6 until the solutions converge. The above 

procedure is summarized by the flow chart in figure 55. 

12. After the solutions converge, the time is set equal to 6.t and the computer code 

switches to another method for finding the solutions at the second time step. 

For the second time step, we use the Adams-Bashforth two-step predictor and 

the Adams-Moulton two-step corrector schemes (see Burden et al., 1981). The 

complete algorithm is: 

1. The iteration number, k, is set equal to 0. 

2. The right-hand sides of equation 4.4-1 are evaluated at the present time (t = 6.t). 

3. The predicted solutions, Y'j, of equations 4.4-1 are computed using the 

Adams-Bashforth two-step predictor method: 

p [ ] 6.t YJ = Y1,1 + 3'1,1 + '1.2 2 for j = 1,2, ... , n (4.4- 8) 

where 

Yj,1 = YJ{6.t), '1.1 = fj.M, Y1(6.t), Y2(M), ... , yn(6.t)) and '1.2 = '1{0, Y1(0), Y2(0), ... , Yn(O)) 

4. The table of y and f is updated; namely 

YJ,3 = YJ,2• Y1,2 = YJ,1• '1.3 = '1.2 and '1.2 = '1.1 (4.4- 9) 
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Start 
Set k = 0 

I 
Evaluate the RHS at t = 0 

I 
Predict the Solutions 
Using Equation 4.4-3 

I 
Update y and f table 
Using equation 4.4-4 

I 
Compute the Aerodynamic - Forces and Moments 

I 
Re-evaluate the RHS at t == flt 

I 
Correct the Solutions 
Using Equation 4.4-6 

I 
Set k == k + 1 

I 
Did the Solutions converge? 

No 
I "Y,.1 - 1c-1y,., I S: Tolerance? 

t Yes 
Set Time Equal to llt 

I 
Return 

Figure 55. Flow Chart for the First-Predictor-Corrector Method 

5. The solutions of equations 4.4-1 are set equal to the predicted solutions; namely 

" p Y1,1 = Yi (4.4 - 10) 
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6. These solutions are supplied to the aerodynamic model and used to compute the 

aerodynamic forces and moments. These may be considered the predicted loads 

at the new time. 

7. The right-hand sides of equations 4.4-1 are re-evaluated at the new time 

(t = 24'.\t) with the new aerodynamic loads from step 6. 

8. The iteration number, k, is set equal to k + 1 

9. The Adams-Moulton two-step corrector method is used to compute the corrected 

solutions, •y1,,; namely 

k [ ] M Y1,1 = Y1.2 + 5'1,1 + 8'1,2 - '1.3 12 for j = 1,2, ... ,n (4.4-11) 

10. The absolute value of the difference between the solutions at the present and 

previous iterations, •e1, is estimated as follows: 

k I k k-1 I el= Y1,1 - Y1,1 for j = 1,2, ... ,n (4.4-12) 

11. •e1 is checked to determine if all its components are less or equal to the error 

tolerance. If the condition is not satisfied the computation process is repeated 

starting at step 6 until the solutions converge. The above procedure can be 

summarized by a flow chart that is similar to the one in figure 55. 

12. After the solutions converge, the time is set equal to Mt and the computer code 

switches to another method for finding the solutions at the third time step. 
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For the third time step, we use the Adams-Bashforth three-step predictor and the 

Adams-Moulton three-step corrector schemes (see Burden et al., 1981). The 

complete algorithm is: 

1. The iteration number, k, is set equal to 0. 

2. The right-hand sides of equation 4.4-1 are evaluated at the present time 

(t = 26t). 

3. The predicted solutions, Y'/, of equations 4.4-1 are computed by using the 

Adams-Bashforth three-step predictor method: 

Y) = Yi,1 + [23'1,1 - 16'1,2 + 5'J,3 ] f~ for j = 1,2, ... , n (4.4- 13) 

where 

'1.2 = '1{6t, Y1(6t), Y2(6t), ... , Yn(M)) and 'J,3 = '1(0, Y1(0), Y2(0), ... , Yn(O)) 

4. The table of y and f is updated; namely 

(4.4-14) 

5. The solutions are set equal to the predicted solutions; namely 

k p 
YJ,1 = YJ (4.4-15) 

Dynamic• and Control 119 



6. These solutions are supplied to the aerodynamic model and used to compute the 

aerodynamic forces and moments. 

7. The right-hand sides of equations 4.4-1 are re-evaluated at the new time 

(t= 3M). 

8. The iteration number, k, Is set equal to k + 1 

9. The Adams-Moulton three-step corrector method Is used to compute the 

corrected solutions, "Y1.,; namely 

1e [ ] 6t YJ, 1 = Y1,2 + 9'1, 1 + 19'1,2 - 5'1,3 + '1,4 24 for j = 1,2, ... ,n (4.4-16) 

10. The absolute value of the difference between the solutions at the present and 

previous iterations, "e1, is estimated as follows: 

1e I 1e 1e-1 I el= Y1,1 - Y1,1 for j= 1,1, ... ,n (4.4 - 17) 

11. "e1 is checked to determine if all its components are less or equal to the error 

tolerance. If the condition is not satisfied the computation process is repeated 

starting at step 6 until the solutions converge. The above algorithm can be 

summarized by a flow chart that is similar to the one in figure 55. 

12. After the solutions converge, the time is set equal to 36t and the computer code 

switches to the general method for finding the solutions at the fourth and all later 

time steps. 
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For the fourth time step and beyond, we use Hammlng's predictor-corrector 

method (see Caranhan et al., 1969). The complete algorithm is: 

1. The Iteration number, k, is set equal to 0. 

2. The right-hand sides of equation 4.4-1 are evaluated at the present time (t;), 

3. The predicted solutions, y7, of equations 4.4-1 are computed using Hammlng's 

predictor: 

p 4~t [ ] Y; = YJ,4 + - 3- 21;,1 - '1.2 + 21;,3 for j = 1,2, ... , n (4.4- 18) 

where 

YJ,4 = Ytf, - 3~t), '1.1 = fj._t;, Y1(t,), Yit;), ... , Yn(t;)), 

'1.2 = 'i{t; - ~t. Yit, - M), Yit, - ~t), ... , yn(t1 - ~t)) 

and 

'1,3 = fJ,.t1 - Mt, y1(t1 - Mt), Yit, - Mt), ... , yn(t1 - Mt)) 

4. The table of y and f is updated; namely 

YJ,4 = YJ,3• YJ,3 = YJ,2• Y1.2 = YJ,1• '1,3 = '1.2 and '1.2 = '1.1 (4.4 - 19) 

5. The predicted solutions, Yf, are modified by using the truncation-error estimates, 

teJ.1, from the previous step (see equation 4.4-24 below) 
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• p 112 Y; = Y; + - 9- te1,1 for J = 1,2, ... ,n (4.4 - 20) 

where * refers to the modified solutions (all the components of te1,1 are set equal 

to zero the first time the general method is used). 

6. The solutions of equations 4.4-1 are set equal to the modified solutions; namely 

k • 
Y;,1 = Y; (4.4- 21) 

7. These solutions are supplied to the aerodynamic model and used to compute the 

aerodynamic forces and moments. 

8. The right-hand sides of equations 4.4-1 are re-evaluated at the new time 

(t = t, + M). 

9. The iteration number, k, is set equal to k + 1 

10. Hamming's corrector is used to compute the corrected solutions, •y,,1; namely 

kY;,1 = ~ [9Y;,2 - YJ,'-+ 3iit{9'1,1 + 19'1,2 - 5'1,3 + '1,4)] for j = 1,2, ... ,n (4.4- 22) 

11. The absolute value of the difference between the solutions at the present and 

previous iterations, "e,, is estimated as follows: 

k I k k-1 I e; = Y1,1 - Y1,1 for j = 1,2, ... ,n (4.4 - 23) 
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12. *e, Is checked to determine If all its components are less or equal to the error 

tolerance. If the condition is not satisfied the computation process is repeated 

starting at step 7 until the solutions converge. 

13. After the solutions converged, the truncation error, te1,1+1, is estimated as follows: 

9 (k P) te1,1+1 = 121 Y1, 1 - YJ for j= 1,1, ... ,n (4.4 - 24) 

14. The corrected solutions, Y7.1, are modified by using the new truncation-error 

estimates te,.,+1, (see equation 4.4-24 above) 

k k 
Y1.1 = Y1.1 - te1.1+1 for j = 1,2, ... ,n (4.4- 25) 

15. Finally, the time is set equal to t, + M. The process may be repeated for the next 

time step starting at step 1. The above algorithm is summarized by the flow chart 

in figure 56. 
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Figure 56. Flow chart for the general-predictor-corrector method 
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4.3.3 Aerodynamic-Dynamic model 

The methods of section 4.3.1 were Incorporated into the aerodynamic model of 

chapter II to form the aerodynamic-dynamic model. In this research, we limit 

consideration to only the pitch equation. The airplane is assumed to be moving at a 

constant speed In level flight and can only pitch about an axis that passes through the 

center of mass. 

4.3.4 Numerical Examples 

In this chapter, we simulate a wing and tail configuration that approximately 

resembles the Cessna 182 airplane. The physical quantities used for this simulation 

are given in Smetana (1984) and are shown in table 1. 
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Table 1. Physical quantltlea uaed for the almulatlon of Ceaana 182 airplane taken from Smetana 
(1984). 

slug 
p 0.00205ft' 

lyy 1346.00000 slug-ft 1 

Aw,,. 174.00000 ftZ 

bw1,. 35.83000 ft 

cwl,,o 4.85627 ft 

A.u 38. 71000 ftZ 

b1a11 11.54000 ft 

C1au 3.35442 ft 

Center of Gravity to Tail 14.60000 ft 
Quarter-Chord Position 

Center of Gravity to Wing 
Quarter-Chord Position 0.11000 ft 

(Horizontal) 

Center of Gravity to Wing 
Quarter-Chord Position 1.67000 ft 

(Vertical) 

The wing and tail are considered to be rectangular planar lifting surfaces. The 

whole control surface is assumed to rotate about an axis that passes through the 

quarter-chord position. Accordingly, the hinge moment Is taken about the 

quarter-chord position. The control surface was discretized into three rows in the 

chordwise direction. The nondimensional chordwise increment of the control surface 

is chosen to be one. Accordingly, the physical length of the chordwise increment of 
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the bound lattice, L, Is 1.11814 feet. From table 1 and the value of L, we find that C, 

is 0.000804. 

In figure 57, the plots of the elevator-deflection angle (trim map}, lift coefficient, 

drag coefficient and hinge-moment coefficient as functions of the pitch angle are 

shown at trim in and out of ground effect. By the term trim map, we mean the plot 

of the deflection angles of the tail, ~. as functions of the pitch angles of the main wing, 

8, for zero pitching moment about an axis that passes through the center of mass of 

the airplane. Clearly, the effect of the ground is to lower the effectiveness of the 

control surface in controlling the pitch motion. Namely, for the same pitch angle, the 

control surface has to be deflected more near the ground which may mean that an 

airplane capable of being trimmed at all altitudes far from the ground cannot be 

trimmed near the ground because of insufficient elevator control. The effect of the 

ground increases the lift and drag coefficients and makes the hinge-moment 

coefficient less negative. 

In figure 58, the plots of the pitch angle, elevator-deflection angle, 

pitching-moment coefficient, hinge-moment coefficient, lift coefficient and drag 

coefficient as functions of the dimensionless time are shown out of the ground effect. 

The airplane was in equilibrium when ~ = -2°. The corresponding 8 was 3.1°. The 

elevator-deflection angle was changed from - 2° to - 4° as a step change in order 

to change the pitch angle from 3.1° to 6.1°. 

In figure 59, the plots of the pitch angle, elevator-deflection angle, 

pitching-moment coefficient, hinge-moment coefficient, lift coefficient and drag 

coefficient as functions of the dimensionless time are shown in the ground effect. 

The airplane was in equilibrium when 6 = -2°. The corresponding 8 was 2.3°. The 

elevator-deflection angle was changed from - 2° to - 4° as a step change in order 

to change the pitch angle from 2.3° to 4.6°. Similar results are shown in figure 60 
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when the elevator-deflection angle was changed from - 2.7° to - 5.4° as a step 

change in order to change the pitch angle from 3.1° to 6.1°. Clearly, the pitch angle 

responds faster and overshoots more near the ground than it does far from the 

ground. 
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Figure 57. Aerodynamic characteristic at trim In and out of ground effect for ateady flows: (a) 
elevator-deflection angle (trim map), (b) lift coefficient, (c) drag coefficient and (d) 
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4.4 Feedback Control 

The ultimate goal of this research Is to be able to predict the control-surface 

motion that will cause an aircraft to execute a prescribed maneuver. In the preceding 

sections, the aerodynamic model of chapter II was coupled with the equations of 

motion. The resulting numerical simulation (aerodynamic-dynamic model) was used 

to compute the trim map of a configuration that approximately resembles the Cessna 

182 in and out of ground effects. In this section, we describe the addition of a 

feedback-control system to the aerodynamic-dynamic model. 

In the aerodynamic-dynamic model, the elevator deflection, ~. was specified at 

the beginning of computations and kept fixed all the time. In this section, on the other 

hand, the elevator-deflection angle will be specified as functions of the pitch angle 

and its rate. As a result, the elevator-deflection angle is changing during the course 

of computations. In the present simulation, we confine the analysis to the control of 

an aircraft during a level flight. The theory can be generalized to include the control 

of an aircraft during landing maneuvers. We assume that the aircraft is supported at 

the center of gravity and moves forward at constant speed parallel to the ground. 

As a result, the equations of motion reduce to the pitching moment equation only. 

That is 

(4.5 - 1) 

with the initial conditions 

8(0) = 80 and 8 = 0 (4.5 - 2) 
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The pitching moment coefficient, C.,, Is In general a function of 0, iJ, ~ and J. That Is 

(4.5 - 3) 

where O and b denote the pitch and elevator-deflection angles, respectively. The dot 

denotes the derivative with respect to the dimensionless time. Etkin (1982) pointed 

out that the autopilot and control system are fast-acting compared to the pitch 

response of the vehicle. As a result, we further neglect the dynamics of the elevator. 

that is no lag exist between the command and the elevator-deflection angle. The 

pitching-moment coefficient, equation 4.5-3, becomes 

(4.5 - 4) 

The aim is to be able to reach the final state rapidly and with small oscillation. We 

employ proportional and rate control laws. That is, 

(4.5 - 5) 

where 6~ = b - b,, .60 = 0 - O, and 68 = iJ - iJ, in which b, is the final elevator 

deflection, O, is the final pitch angle, and iJ, is the rate of the final pitch angle (zero in 

this dissertation). From equation 4.5-5, the elevator-deflection angle is given by 

(4.5- 6) 

The final elevator-deflection angle, b,, is computed at the beginning of the 

computations from the trim map. The computation is done by supplying the trim map 

in the form of data points to a subroutine that employs Lagrange interpolation as 

found in Carnahan et al. (1969). The final pitch angle, O,, is supplied as an input 
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argument to this subroutine. The subroutine returns the final elevator deflection, l>,, 

that corresponds to a steady state at 8,. 

In order to obtain an estimate of the magnitudes and signs of the gains 

K, and K2, we linearized equation 4.5-4 using a Taylor series. Expanding Cw about the 

final state, we find the following 

. acM(o,. iJ,, o,) ac,..<e,. iJ,, o,) . . 
CM = CM(O,, o,, l>,) + ao (8 - O,) + aiJ (8 - 8,) 

ac (8 iJ o) + M ;~ " f (l> - b,) + H.O. T 
(4.5 - 7) 

where H.O.T stands for the higher order terms. Equation 4.5-7 can be written as 

follows: 

(4.5 - 8) 

where subscript f refers to the final state. We substitute equations 4.5-8 and 4.5-5 into 

equation 4.5-1. The resulting equation, after we neglect the higher order terms, is 

simply, 

(4.5- 9) 

Equation 4.5-9 can be put in the following form: 

(4.5-10) 

where 

(4.5-11) 
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and 

(4.5-12) 

{ and wn are the damping coefficient and the frequency of oscillation, respectively. 

The stability derivatives (C11,, C11;, c11,) have to be known before K, and K1 can be 

evaluated. In order to compute the stability derivatives, we perturbed the wing about 

the final equilibrium state. That is, we let, for example, 

8 = 8, + £ with iJ = 0 and {J = o, and computed the pitching moment using the 

aerodynamic model of chapter II. C11, I, was computed as follows: 

I _ c,.Ae, + 1:, o, o,) - c,_ie,. o, o,) 
cMe ,- ce,+ t:) - e, (4.5-13) 

Similarly, C11; I, and C111 I, are computed. Table 2 shows the stability derivatives for 

various£. In table 2, 8, = 6.1·, iJ, = 0 and {J = - 4. Clearly, the effect of the perturbation 

parameter is weak. 

Tabla 2. The stability darlvativaa 

£, 0 C11, I, CMil, C11, I, 

0.1 -1.7241 -37.1824 -2.5715 
-0.1 -1.7231 -36.9628 -2.5722 
1.0 -1.7059 -40.7438 -2.5753 

-1.0 -1.7206 -38.6121 -2.5688 

The derivatives C11, I,, C11; I, and c11, I, were chosen to be -1. 72, -38.0 and -2.57, 

respectively. When these values and C, = 0.000804 are substituted into equations 

4.5-11 and 4.5-12, those equations become 
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w! = 0.000804(2.72 + 2.57K1) (4.5 - 14) 

and 

2{wn = 0.000804(38.0 + 2.57K2) (4.5 - 15) 

The gains K1 and K2 are computed from equations 4.5-14 and 4.5-15 by specifying the damping 

coefficient and the frequency of oscillation. The damping coefficient should be between 0.5 

and 0.8 in order for the control surface to respond fast. The frequency of oscillation is on the 

order of 3 rad/sec. In figure 61, the plots of the pitch angle, elevator-deflection angle, 

pitching-moment coefficient, hinge-moment coefficient. lift coefficient and drag coefficient as 

functions of the dimensionless time are shown out of the ground effect for various feedback 

gains. The elevator-deflection angle was changed from - 2° to - 4° in order to change the 

pitch angle from 3.1° to 6.1°. Clearly, of the feedback gains considered, the best are 

K, = 0.15 and K2 = 13.06. The response is fast with little overshoot. These dimensionless gains 

are used for the following plots. 

In figure 62, the plots of the pitch angle, elevator-deflection angle, pitching-moment 

coefficient, hinge-moment coefficient, lift coefficient and drag coefficient as functions of the 

dimensionless time are shown for an airplane out of the ground effect. The elevator-deflection 

angle was changed from - 2° to - 4° in order to change the pitch angle from 3.1° to 6.1°. 

Similar results are shown in figure 63 when the elevator-deflection angle was changed from 

- 2° to - 3.3° in order to change the pitch angle from 3.1° to 5°. 

In figure 64, the plots of the pitch angle, elevator-deflection angle, pitching-moment 

coefficient, hinge-moment coefficient, lift coefficient and drag coefficient as functions of the 

dimensionless time are shown in ground effect. The elevator-deflection angle was changed 

from - 2° to - 4° in order to change the pitch angle from 2.3° to 4.6°. Similar results are 

shown in figure 65 when the elevator-deflection angle was changed from - 2.7° to - 5.4° in 
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order to change the pitch angle from 3.1° to 6.1°. Clearly, the pitch angle responds fast and 

overshoots more near the ground than it does far from the ground. 
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Figure 61. Pitch change out of ground effect for various gain• of the feedback-control 
system: (a) pitch angle, (b) elevator-deflection angle, (c) pitching-moment coefficient, 
(d) hinge-moment coefficient, (e) lift coefficient and (f) drag coefficient as functions of 
the dimensionless time. 
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Figure 62. Pitch change with feedback control out of ground effect: (a) pitch angle, (b) 
elevator-deflection angle, (c) pitching-moment coefficient, (d) hinge-moment 
coefficient, (e) lift coefficient and (f) drag coefficient as functions of the dimensionless 
time. 
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Figure 63. Pitch change with feedback control out of ground effect: (a) pitch angle, (b) 
elevator-deflection angle, (c) pitching-moment coefficient, (d) hinge-moment 
coefficient, (e) lift coefficient and (f) drag coefficient as functions of the dimensionless 
time. 
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Figure 64. Pitch change with feedback control In ground effect: (a) pitch angle, (b) 
elevator-deflection angle, (c) pitching-moment coefficient, (d) hinge-moment 
coefficient, (e) lift coefficient and (f) drag coefficient as functions of the dimensionless 
time. 

Dynamics and Control 148 



.. , l,ffl 

(e) (f) 
••• 
••• . ... 

cj .. , rJ .. , .... 
.. , 
1,1 .... 

• 1• - - .. • •• - - -
t t 

Figure 64. Continued. 

Dynamics and Control 149 



.. 
(a) (b) 

• ·• 
I 

~ ~ ·• 
• 

·• • 

• ·• 
• •• NO - •• • • • NO - .. 

t t 

... ... 
(c) ··- (d) ... . ... .... e.aa. . .... .... 

J (J ..... 
••• . ... , ... ··-.. .. ..... ··-...... ..... . • •• - - - • •• - - •• 

t t 

Figura 65. Pitch change with feedback control In ground affect: (a) pitch angle, (b) 
elevator-deflection angle, (c) pitching-moment coefficient, (d) hinge-moment 
coefficient, (e) lift coefficient and (f) drag coefficient as functions of the dimensionless 
time. 
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Chapter V 

Conclusions and Recommendations 

A general nonlinear unsteady numerical simulation of control of an aircraft in and out of 

ground effect is developed. The development occurred in three stages: 

1. A general aerodynamic model of closely coupled lifting surfaces in ground effect was 

developed. 

2. The aerodynamic model was coupled with the equations of motion to simulate 

aerodynamic-dynamic interactions. 

3. The aerodynamic-dynamic model was coupled with a feedback system to predict the 

response of an aircraft to control inputs both in and out of ground effect. 

The aerodynamic model is based on the general unsteady vortex-lattice method and the 

method of images. It is not restricted by planform, angle of attack, sink rate, dihedral angle, 

twist, camber, etc. as long as stall or vortex bursting does not occur. The aerodynamic model 

provides the wakes adjoining the wing tips and trailing edges of rectangular wings and the 
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leading and trailing edges of delta wings. It has the versatility needed to model steady and 

unsteady aerodynamic Interference among multiple closely coupled lifting surfaces and fully 

accounts for the mutual Interference of trailing wakes and downstream lifting surfaces. 

Furthermore, the present model can be used to simulate any prescribed flare and to model 

the effects of cross and/or head winds near the ground. 

The aerodynamic model was used to study the steady and unsteady ground effects on 

lifting surfaces of different planforms. The ground restricts the downward movement of the 

wake and causes It spread. The present results show the influences of various parameters 

on the aerodynamic coefficients for both steady and unsteady nows. Generally, the present 

technique predicts higher aerodynamic coefficients near the ground for the unsteady cases 

than for the steady ones; the greater the sink rates, the stronger the effects. Increasing the 

aspect ratio increases both the steady and unsteady ground effects for both rectangular and 

delta planforms. An exception is a large aspect-ratio wing (here we consider a 

two-dimensional wing) with large camber. Such a wing actually experiences a loss of lift and 

pitching moment (about the trailing edge) near the ground. 

The present computed results are generally in close agreement with limited exact 

solutions and experimental data, and they serve to demonstrate the potential of the present 

approach. The present study demonstrates the importance of including unsteady ground 

effects when analyzing the performance of an airplane during a landing maneuver. 

Furthermore, it also points out the necessity, in the future, of developing wind-tunnel 

techniques for studying the unsteady ground effects. 

In the aerodynamic-dynamic simulation, the equations of motion were solved by 

Hamming's predictor-corrector method. This method requires the solutions to be known at 

four previous time steps. As a result, different predictor-corrector methods were employed 

to generate solutions at the start of the motion. Here, we are computing a final steady-state 

solution, and hence it is essential to have good accuracy at all times. In an earlier numerical 

simulation of wing rock, an arbitrary initial disturbance was introduced; hence, it was not 

necessary to compute the solution accurately at the first three or four time steps. In the 
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present simulation, the equations of motion for the aircraft and for the flowing air and the 

equations describing the control system are integrated simultaneously and interactively. The 

aircraft, its control system, and the air stream are considered a single dynamic system. At 

any instant, the aerodynamic loads are computed by considering the motions of the aircraft 

and its control surfaces at that instant by considering the recent histories of these motions. 

The history resides in the wakes of the various lifting surfaces. The aerodynamic-dynamic 

model was used to study a wing and tail configuration that approximately resembles a Cessna 

182 airplane. It was found that the effect of the ground lowers the effectiveness of the elevator 

in controlling the pitch motion. Namely, for the same pitch angle, the control surface has to 

be deflected more near the ground than far from the ground. Consequently, It is possible that 

an airplane capable of being trimmed at an altitude far from the ground could be difficult to 

trim near the ground because of insufficient elevator control. The effect of the ground 

increases the lift and drag coefficients and makes the hinge-moment coefficient less negative. 

The pitch angle responds faster and overshoots more near the ground than it does far from 

the ground. 

We used proportional and rate laws. One set of gains was used in and out of ground 

effect. It was found that the pitch angle responds faster and overshoots more near the ground 

than it does far from the ground. The present results demonstrate the feasibility of using the 

current simulation for more complicated motions. As a result, the present simulation should 

be extended to simulate the control of an aircraft during a landing maneuver by considering 

at least three degrees of freedom. 
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Appendix A 

Orientation of the Lifting Surface 

The 3-2-1 Euler set of rotations is used to describe the orientation of the B-F axes relative 

to those of the G-F frame. The wing is imagined first to be oriented so that its axes (the B-F 

axes) are parallel to OXYZ. The wing is in the position Ax,y1z1, as shown in figure 3 (taken 

from Etkin, 1982). As a result, the unit vectors along these axes are related, to those in the 

G-F reference frame by the following: 

11 = I 

Or in matrix form, 

i1 = [/] J (A.1) 

K 
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where 

[/] = [: 

0 

1 

0 :1 
Then, a rotation i/1 about Az, carries the axes to AXzYzZr, as shown in figure A.1. The base 

vectors along the AXzY2Z2 and Ax,y,z, axes are related by the following: 

Or in matrix form, 

where 

.... 
i2 = cos i/,i1 + sin y,j1 

.... 
h = [R3(i/,)] i1 

Sy, 
Cy, 
0 :1 

in which c and s denote the cosine and sine functions, respectively. 

(A.2) 

Then, a rotation O about Ay2 brings the axes to Ax3Y,z,, as shown in figure A.1. The unit 

vectors along the AX3Y,Z3 and AXzYzZz axes are related by the following: 
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-h=h 

- -k3 = sin 8i2 + cos 8k2 

Or in matrix form, 

-h = [R2(8)] h (A.3) 

where 

Finally, a rotation cp about Ax3 brings the axes to their final position Axyz, as shown in 

figure A.1. The base vectors along the Axyz and Ax,Y,z3 axes are related by the following: 

J = cos 4>13 + sin <J>k3 

Or in matrix form, 

(A.4) 

k 
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where 

[RM)]-[: 
0 

ccj, 

- scj, 
.:1 
ccj, 

Combining equations (A.1) to (A.4) yields the following result 

which reduces to 

where 

.... .... 
i I 
.... .... 
j = [l(cj,)][R 3(cJ,)][R2(</>)][R1(</>)] J 
.... 
k 

.... .... 
i I 
.... .... 
j = [RJ J 
.... .... 
k K 

I c9ct/, 

[RJ = scJ,sOciJ, - ccj,siJ, 

ccj,s9ct/, + scj,st/, 

.... 
K 

cOst/, 

scJ,sOst/, + ccj,cif, 

ccj,sOst/, - scJ,ct/, 

(A.5) 

-sol 
scJ,cO 

ccJ,cO 

and in which c and s denote the cosine and sine functions, respectively. Equation (A.5) 

expresses the unit vectors along the B-F axes in terms of those along the G-F axes. In order 

to express the unit vectors along the G-F axes in terms of those along the B-F axes, Equation 

(A.5) is inverted to yield 
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-i 
=[Rr 1 -J j (A.6) 

-K k 

Because [R] is an orthonormal transformation, its inverse, [RJ-1, is equal to its 

transpose, [R]T. Hence, equation (A.5) becomes simply 

I 

J =[R]T j (A.7) 
-K k 

The angular velocity, i.o, is expressed in terms of the derivatives of the Euler angles as 

follows: 

w = wj + wyi + wzk .- .- . (A.8) 
= l/,k1 + Oh + <J,i3 

From equation (A.2) 

(A.9) 

And from equation (A.3) 

(A.10) 

(A.11) 

And from equation (A.4) 

(A.12) 
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- - -h = cos <J>j - sin </>k (A.13) 

- - -k3 = sin <J>j + cos cj,k (A.14) 

Now equations (A.9) to (A.14) yield 

i3=I (A.15) 

- - -h = cos cj,J - sin cj,k (A.16) 

- - -k1 = - sin Oi + cos e sin cj,J + cos O cos cj,k (A.17) 

Equations (A.15) to (A.17) are substituted into equation (A.8) to yield: 

where 

[CJ=[: 
0 

ccj, 

- Sc/> 

(A.18) 

-sol 
scj,cO 

c<f,cO 

Equation (A.18) expresses the angular velocity in terms of the Euler angles and their 

derivatives. In order to express the derivative of the Euler angles in terms of the angular 

velocity, equation (A.18) is inverted as follow 

cJ, [wxl ~ = [cr 1 wy 

Y, Wz 

(A.19) 
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where [CJ- 1 Is the Inverse of [C]. It Is derived using the Gauss-Jordan method as follow 

1 

[CI/]= O 

0 

0 

c<J, 

- s<J, 

-s8 

s<J,c8 

c<J,c8 

1 0 

0 1 

0 0 

Multiplying the second row by :: then adding it to the third row yields the following: 

1 

0 

0 

0 

c<J, 

0 

-s8 

s<J,c8 
c8 
ct+, 

1 

0 

0 

Multiplying the second row by c~ yields the following: 

1 0 -s8 1 

0 1 
s<J,c8 

0 
c<J, 

0 0 c8 0 
c<J, 

0 

1 
s<J, 
c<J, 

0 
1 

~$ 
c<J> 

0 

0-+ 

1 

0 

0 -+ 

1 

Multiplying the third row by - s<J, then adding it to the second row yields the following: 

1 0 -s8 1 0 0 

0 1 0 0 
1 - s2q, 

- s<J> -+ 

0 0 c8 0 
~$ 

1 c<J, c<J, 

Multiplying the third row by :t yields the following: 

1 0 -se 1 0 0 

0 1 0 0 c<J, - s<J, -+ 

0 0 1 0 
s<J, ct/, 
ce ce 
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Multiplying the third row by se then adding it to the first row yields the followlng: 

1 0 0 1 

0 1 0 0 

0 0 1 0 

Therefore, the Inverse of the [CJ matrix is 

1 
sq,sO 
ce 

ccr1 = 0 cq, 

0 
scJ, 
ce 
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sq,sO 
ce 
ccJ, 
sq, 
ce 

c<J,sO 
ce 

- scJ, 
c<J, 
ce 

cq,sO 
ce 

- scJ, = [1 I c- 1] 

cq, 
ce 
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Appendix B 
Velocity Induced by a Straight Vortex Segment 

The subroutine used to compute the velocity induced by a straight vortex segment is 
presented next. 

C*** 

SUBROUTINE VEL(Xl,Yl,Zl,X2,Y2,Z2,XP,YP,ZP,VX,VY,VZ,CUTOFF) 
IMPLICIT REAL*8(A.H,O-Z), INTEGER(I-N) 

C = LETS DEFINE OMEGA 
C*** 

C*** 

OMX= X2 - Xl 
OMY = Y2 - Yl 
OMZ = Z2 - Zl 

C = COMPUTE MAGNITUDE OF OMEGA TO TIIE FOURTH POWER. 
C = THEN MULTIPLY BY CUTOFF 
C*** 

C*** 

OMMAG2 = OMX*OMX + OMY*OMY + OMZ*OMZ 
OMMAG4 = OMMAG2*0MMAG2 
C = CUTOFF*OMMAG4 

C === THE CUTOFF WAS SQUARED ONCE AT THE BEGINNING OF COMPUTATION 
C = IN ORDER TO REDUCE TIIE EXCUTION TIME 
c*** 
C === DEFINE Rl 
C*** 

C*** 

RlX = XP - Xl 
RlY = YP - Yl 
RlZ = ZP - Zl 

C = DEFINE R2 
C*** 

C*** 

R2X = XP - X2 
R2Y = YP - Y2 
R2Z = ZP - Z2 
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C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

OMYRlZ = OMY*RlZ 
OMZRlY = OMZ*RlY 

OMZRlX = OMZ*RlX 
OMXRlZ = OMX*RlZ 

OMXRlY = OMX*RlY 
OMYRlX = OMY*RlX 

OMXRlX = OMX*RlX 
OMYRlY = OMY*RlY 
OMZRlZ = OMZ*RlZ 

OMXR2X = OMX*R2X 
OMYR2Y = OMY*R2Y 
OMZR2Z = OMZ*R2Z 

R1X2 = RlX*RlX 
RlY2 = RlY*RlY 
RlZ2 = RlZ*RlZ 

R2X2 = R2X*R2X 
R2Y2 = R2Y*R2Y 
R2Z2 = R2Z*R2Z 

C =DEFINE: (VECTOR F) = (VECTOR OMEGA)CROSS(VECTOR Rl) 
C*** 

C*** 

C*** 

FX = OMYRlZ - OMZRlY 
FY= OMZRlX - OMXRlZ 
FZ = OMXRlY - OMYRlX 

FX2 = FX*FX 
FY2 = FY*FY 
FZ2 = FZ*FZ 

C = COMPUTE THE SQUARE MAGNITUDE OF ( VECTOR F) 
C*** 

FMAG2 = FX2 + FY2 + FZ2 
C*** 
C = CHECK IF FMAG2 IS TOO SMALL 
C*** 

IF( FMAG2 .GE. C )THEN 
C*** 
C = COMPUTE THE MAGNITUDE OF BOTH VECTORS Rl AND R2 
C*** 

RlMAG = SQRT( RlX2 + R1Y2 + R1Z2) 
R2MAG = SQRT( R2X2 + R2Y2 + R2Z2) 

C*** 
C = DEFINE Gl= ( OMEGA VECTOR)*( VECTOR Rl )/RlMAG 
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C = AND G2= ( OMEGA VECTOR)*( VECTOR R2 )/R2MAG 
C*** 

Gl = ( OMXRlX + OMYRlY + OMZRlZ )/RlMAG 
G2 = ( OMXR2X + OMYR2Y + OMZR2Z )/R2MAG 

C*** 
C = DEFINE FACTOR 
C*** 

FAC = ( Gl - G2 )/FMAG2 
C*** 
C = COMPUTE VELOCITY 
C*** 

VX = FAC*FX 
VY= FAC*FY 
VZ = FAC*FZ 

C*** 
ELSE 

C*** 
VX = O.DO 
VY= O.DO 
VZ = O.DO 

C*** 
ENDIF 

C*** 
C THIS SECTION COMPUTES THE CONTRIBUTION FROM THE PORT SIDE FOR 
C SYMMETRIC FLOW 
C*** 

YlM =- Yl 
Y2M =- Y2 

C*** 
OMXM = - OMX 
OMYM = OMY 
OMZM = - OMZ 

C*** 
RlXM = XP - X2 
RlYM = YP - Y2M 
RlZM = ZP - Z2 

C*** 
R2XM = XP - Xl 
R2YM = YP - YlM 
R2ZM = ZP - Zl 

C*** 
YMRlZM = OMYM*RlZM 
ZMRlYM = OMZM*RlYM 

C*** 
ZMRlXM = OMZM*RlXM 
XMRlZM = OMXM*RlZM 

C*** 
XMRlYM = OMXM*RlYM 
YMRlXM = OMYM*RlXM 

C*** 
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XMRlXM = OMXM*RlXM 
YMRlYM = OMYM*RlYM 
ZMRlZM = OMZM*RlZM 

C*** 
XMR2XM = OMXM*R2XM 
YMR2YM = OMYM*R2YM 
ZMR2ZM = OMZM*R2ZM 

C*** 
R1XM2 = RlXM*RlXM 
R1YM2 = RlYM*RlYM 
R1ZM2 = RlZM*RlZM 

C*** 
R2XM2 = R2XM*R2XM 
R2ZM2 = R2ZM*R2ZM 
R2YM2 = R2YM*R2YM 

C*** 
FXM = YMRlZM - ZMRlYM 
FYM = ZMRlXM - XMRlZM 
FZM = XMRlYM - YMRlXM 
FXM2 = FXM*FXM 
FYM2 = FYM*FYM 
FZM2 = FZM*FZM 

C*** 
FMMAG2 = FXM2 + FYM2 + FZM2 

C*** 
IF( FMMAG2 .GE. C )THEN 

C*** 
RlMMAG = DSQRT( R1XM2 + R1YM2 + RlZM2 ) 
R2MMAG = DSQRT( R2XM2 + R2YM2 + R2ZM2 ) 

C*** 
GlM = ( XMRlXM + YMRlYM + ZMRlZM)/RlMMAG 

C*** 

C*** 

C*** 

C*** 

C*** 
C*** 

G2M = ( XMR2XM + YMR2YM + ZMR2ZM )/R2MMAG 

FACM = ( GlM - G2M )/FMMAG2 

VX = VX + FACM*FXM 
VY= VY+ FACM*FYM 
VZ = VZ + FACM*FZM 

ELSE 

ENDIF 

C RETURN 
C === THIS SECTION COMPUTES THE GROUND EFFECT 
C*** 

ZlM =-Zl 
Z2M =-Z2 

C*** 
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OMZM = -OMZ 
C*** 

RlZM = ZP - ZlM 
R2ZM = ZP - Z2M 

C*** 
YMRlZM = OMY*RlZM 
ZMRlY = - OMZRlY 

C*** 
ZMRlX = - OMZRlX 
XMRlZM = OMX*RlZM 

C*** 
ZMRlZM = OMZM*RlZM 
ZMR2ZM = OMZM*R2ZM 

C*** 
R1ZM2 = RlZM*RlZM 
R2ZM2 = R2ZM*R2ZM 

C*** 
FXM = YMRlZM - ZMRlY 
FYM = ZMRlX - XMRlZM 
FXM2 = FXM*FXM 
FYM2 = FYM*FYM 

C*** 
FMMAG2 = FXM2 + FYM2 + FZ2 

C*** 
IF( FMMAG2 .GE. C )THEN 

C*** 
RlMMAG = SQRT( R1X2 + R1Y2 + R1ZM2 ) 
R2MMAG = SQRT( R2X2 + R2Y2 + R2ZM2 ) 

C*** 
GlM = ( OMXRlX + OMYRlY + ZMRlZM )/RlMMAG 
G2M = ( OMXR2X + OMYR2Y + ZMR2ZM )/R2MMAG 

C*** 

C*** 

C*** 

C*** 

C*** 

FACM = ( GlM - G2M )/FMMAG2 

VX = VX - FACM*FXM 
VY= VY - FACM*FYM 
VZ = VZ - FACM*FZ 

ELSE 

ENDIF 

C THIS SECTION COMPUTES THE CONTRIBUTION FROM THE PORT SIDE FOR 
C SYMMETRIC FLOW IN GROUND EFFECT 
C*** 

OMZM = OMZ 
C*** 

RlZM = ZP - Z2M 
R2ZM = ZP - ZlM 

C*** 
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C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 

C*** 
C*** 

YMRlZM = OMYM*RlZM 
ZMRlYM =- ZMRlYM 

ZMRlXM =- ZMRlXM 
XMRlZM = OMXM*RlZM 

ZMRlZM = OMZM*RlZM 
ZMR2ZM = OMZM*R2ZM 

R1ZM2 = RlZM*RlZM 
R2ZM2 = R2ZM*R2ZM 

FXM = YMRlZM - ZMRlYM 
FYM = ZMRlXM - XMRlZM 
FXM2 = FXM*FXM 
FYM2 = FYM*FYM 

FMMAG2 = FXM2 + FYM2 + FZM2 

IF( FMMAG2 .GE. C )THEN 

RlMMAG = DSQRT( R1XM2 + R1YM2 + R1ZM2 ) 
R2MMAG = DSQRT( R2XM2 + R2YM2 + R2ZM2 ) 

GlM = ( XMRlXM + YMRlYM + ZMRlZM )/RlMMAG 
G2M = ( XMR2XM + YMR2YM + ZMR2ZM )/R2MMAG 

FACM = ( GlM - G2M )/FMMAG2 

VX = VX - FACM*FXM 
VY= VY - FACM*FYM 
VZ = VZ - FACM*FZM 

ELSE 
ENDIF 

RETURN 
END 
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