
SOFTWARE AGENTS FOR DLNET CONTENT REVIEW: STUDY AND
EXPERIMENTATION

SEEMA MITRA

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
In

Computer Science and Applications

Dr. Saifur Rahman, Co-Chairman
Dr. Csaba Egyhazy, Co-Chairman

Dr. William Frakes, Committee Member

September 8, 2006
Falls Church, Virginia

Keywords: Software Agents, Digital Libraries, Content Review, Performance
Comparison

© Copyright 2006, Seema Mitra

SOFTWARE AGENTS FOR DLNET CONTENT REVIEW: STUDY AND

EXPERIMENTATION

SEEMA MITRA

ABSTRACT

This research is an effort to test our hypothesis that a software agent based
architecture will provide a better response time and will be more maintainable and
reusable than the present J2EE based architecture of DLNET (Digital Library
Network for Engineering and Technology). We have taken a portion of the complete
DLNET application for our study, namely the Content Review Process, as our test
bed. In this work, we have explored the use of software agents in the current setup of
DLNET for the first time, specifically for the Content Review part of the application
and tried to evaluate the performance of the resulting application. Our work is a novel
approach of doing content review using software agent architecture. The proposed
system is an automated process that will asynchronously look for suitable reviewers
based on content (the input) and create logs for the administrator to view and analyze.
In the first part of the thesis we develop a new system that is parallel to the existing
DLNET Content Review Process. In the second part, we compare the newly
developed Content Review Process with the baseline (old Content review Process) by
designing comparison tests and measuring instruments. This part of the thesis
includes the selection of dependent variables, design of various measurement
instruments, execution of the quasi-experiments and analysis of the empirical results
of comparisons tests. The quasi-experiments are done to measure the response time,
maintainability, scalability, correctness, reliability and reusability of the two systems.
The results show that the proposed software agent based system gives better response
time (an improvement ranging from 57% to 82%) and is more maintainable (an
improvement ranging from 16% to 67%) and more reusable (an improvement ranging
from 1% to 26%). The improvement in the response time may be attributed to the fact
that the agent based systems are inherently multithreaded while the existing content
review system is a serial application. Both the systems, however, give comparable
results for other dependent variables.

iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. Csaba Egyhazy, my research advisor, who has been
most supportive and has guided me throughout my study giving me direction whenever I
got lost. I would also like to thank Dr. Saifur Rahman for giving me permission to use all
the resources I needed at ARI (Advanced Research Institute, Arlington, Virginia) and for
all his advice, guidance and considerations. I also want to thank Dr. William Frakes who
has been very helpful, providing all the support and resources and very valuable
suggestions and feedback on my work. His guidance paved the way for the second part of
my work in designing the performance comparison plan. I want to thank you all for your
patience and support.
I would also like to thank Mr. Yonael Teklu for his prompt help and support whenever I
asked for it and would also like to mention and thank Latricia Nell for her immediate
response whenever I needed her support.
I am very grateful to my friends Gaurav Aggarwal, Vaishali Sharma, Sarala Sriram and
Pankaj Aggarwal for helping me out with the project. They helped me with the
maintainability and reusability tests for the two applications.
Finally I would like to thank my husband, Sandeep, my sons, Siddharth and Sarthak, my
sister, Reena and my Mom for letting me work on my thesis and being so patient with
me, for being such a great help and being so encouraging always.

iv

Table of Contents

1. Introduction... 1
1.1 Overview... 1
1.2 Motivation and Problem Statement .. 3
1.3 Approach... 3
1.4 Thesis Contribution... 4

2. Background... 5
2.1 Overview... 5
2.2 UMDL (University of Michigan Digital Library) Agent Model 5
2.3 ZunoDL (Zuno Digital Library) Agent Model ... 6
2.4 Next Generation Digital Library Project... 8
2.5 Cougaar Agent Model... 8
2.6 JADE Agent Model... 9
2.7 Performance Comparison Methodology ... 11

3. Selecting an Agent Architecture ... 13
3.1 Introduction... 13
3.2 Desired features of the selected architecture .. 13
3.3 Selecting an Agent Model... 13

4. Modifying the DLNET Content Review Process ... 16
4.1 Introduction... 16
4.2 Existing Content Review Process ... 16
4.3 Proposed Content Review Process.. 18
4.4 Expected Gains/ Performance enhancements ... 18

5. The proposed Architecture.. 19
5.1 Introduction... 19
5.2 Process Flow ... 20
5.3 Running Jade Agents .. 22

6. Performance Comparison.. 24
6.1 Experimental Design and Analysis (Methodology).. 24
6.2 Experimental Variables... 24
6.3 Subject Assignment .. 25
6.4 Dependent Variables... 26

6.4.1 Response Time (a measure of latency) – .. 26
6.4.2 Maintainability –... 26
6.4.3 Scalability – .. 27
6.4.4 Correctness –... 27
6.4.5 Reliability/ Failure Rate –... 27
6.4.6 Reusability – ... 27

6.5 Test Plan.. 28
6.5.1 Measurement Instruments:.. 28
6.5.2 Test data:... 28
6.5.3 Test Procedure: ... 29

6.6 Test results .. 29
6.6.1 Response Time.. 29
6.6.2 Maintainability.. 29

v

6.6.3 Scalability ... 31
6.6.4 Correctness.. 31
6.6.5 Reliability.. 31
6.6.6 Reusability .. 32

7. Performance Comparison Results... 34
7.1 Response Time –... 34
7.2 Maintainability –... 35
7.3 Scalability – .. 37
7.4 Correctness –... 37
7.5 Reliability.. 37
7.6 Reusability .. 38
7.7 Discussion of results ... 39

8. Conclusions and Future Work .. 41
8.1 Conclusions... 41
8.2 Open Issues ... 42
8.3 Future work... 42

8.3.1 Content/ Reviewer Harvesting.. 42
8.3.2 Increase Membership .. 43
8.3.3 Optimize Reviewer Selection ... 43

References... 44
Appendix A - Definitions/ Terms used... 48

DLNET ... 48
Software Agent ... 48
Learning Resource .. 48
Independent/ Dependent Variables ... 48
JADE... 49
Reliability.. 49
Error .. 49
Failure ... 49
Peer to Peer ... 49

Appendix B - Manual of the new application module implementing Content Review
Process .. 50

Introduction... 50
Additions/ Modifications .. 50

Appendix C– Sample Logs Created.. 53
Log created by the agent based application lists the reviewers selected 53
Logs created by agent based application to log the response time of the application .. 53
Logs created by the existing application to log the reviewers selected and the time
taken by the application .. 54

Appendix D– Sample Code of the Agents created ... 55
Vitae.. 59

vi

List of Figures

Figure 1: The UMDL Service Market Society [4].. 6
Figure 2: ZunoDL System Framework [6] ... 7
Figure 3: Cougaar Architecture [32]... 9
Figure 4: The Jade Main Container [15]... 10
Figure 5: Learning Object Tool Flowchart showing the Content Review Process Flow . 17
Figure 6: Process Flow of DLNET Content Review in the Agent Based Application..... 21
Figure 7: Screenshot showing agent communication ... 23
Figure 8: Bar Graph showing a comparison of response times .. 35
Figure 9: Bar Graph showing a comparison of maintainability.. 36
Figure 10: Bar Graph showing Reusability Results.. 38

vii

List of Tables

Table 1: Summary of the comparison of various architectures we considered 15
Table 2: Response Time Results... 29
Table 3: Raw Maintainability Results... 30
Table 4: Summary of Maintainability Results .. 30
Table 5: Scalability Results .. 31
Table 6: Correctness Results... 31
Table 7: Reliability tests ... 31
Table 8: Raw Reusability Results ... 32
Table 9: Summary of Reusability Results .. 33

1

CHAPTER 1

1. Introduction

In this chapter, we describe the overview and motivation for this thesis. We also
highlight the approach of the study and the contributions we have made.

1.1 Overview

Most of today’s applications are driven by their successful integration with the
internet. With the advent of World Wide Web, the digital libraries have become very
popular. Digital Library Network for Engineering and Technology (DLNET) has
been developed as part of National Science Digital Library (NSDL) initiative of
National Science Foundation. The digital library is in place and is being used by users
worldwide, and now we want to direct our efforts towards improving it in terms of
ease of use, applicability to a diverse base of users, and optimizing the performance.
Digital libraries are a growing concept especially in today’s academic world.
Research efforts are abound to better the services, integrate the different digital
libraries and optimize their performance. Nabil Adam and Yelena Yesha in [26]
provide a complete summary of the conceptual comparison of digital libraries with
electronic commerce and highlight the various research issues in the areas. Digital
libraries are geared towards networking of digital resources and thus making them
available for the users irrespective of the location of the users or the resource. Once
the digital libraries become popular and resources become available, the next phase of
challenges is to make them more efficient. Robert L. Grossman [27] talks about the
data retrieval challenges in digital libraries. For now, most of the digital library use is
limited to getting information from a single resource at a time. Next, we’ll want to
retrieve information from a cluster of related resources as opposed to single resource
search that we do now. This work is a step towards exploring the use of software
agents in making DLNET more usable and efficient. A lot of research is being done
to optimize the digital libraries; e.g., Martin in [38] proposes a three layer architecture
for digital libraries and highlights the importance of virtual libraries.

From the user’s perspective, the most important services a digital library can offer are
the following:-
 A good (relevant) collection of resources.
 A convenient and effective way to search for the relevant resource.

In addition, the other services for effective usage of a digital library are:-
 Capability to store a variety of resources.

2

 Connecting with other digital libraries to offer the users with a vast collection of
resources which is not possible for one digital library to cater to.

 Since the application of a digital library will keep growing, it will most likely be
hosted as a distributed application in the future.

Keeping these features of digital libraries in sight, we are experimenting with the
introduction of software agents in DLNET. Sanchez, Leggett and Schnase [28] have
proposed architecture for digital libraries based on software agents and the work has
been a successful integration of the two concepts (digital libraries and software
agents). Driven by the literary efforts mentioned above, our motivation for using
software agents for DLNET is driven by the following possible gains.
 Software Agents can provide advanced document processing capabilities to

analyze the text in the documents.
 The growing amount of information will require advanced infrastructure and

means for organizing and accessing information. This can be done through
dedicated information agents.

 Information seeking agents can be employed to seek information from the World
Wide Web.

 Asynchronous communication possible with software agents can handle the
events like submission of resources and reviews without intervention of the
administrator.

 Software agents can offer personalized services to a user (of the digital library) by
maintaining a user profile and making intelligent decisions based on the same.

 Software agents can be used to optimize the selection of the reviewers for a
resource submitted based on reviewer data and relevance to the resource
submitted.

We believe that the use of software agents in DLNET provides the right foundation
on which to build all the services we mentioned and so many others that are possible
too.
In this thesis, we propose to setup an architecture based on software agents that is
adaptable, extensible, efficient and flexible.
Regular libraries lead to digital libraries, and the agent based digital libraries seem
like a natural extension. In using agent technology, our goal is to make DLNET a
digital library system that provides value added services to the users and provides a
uniform interface for heterogeneous information sources. This project is the first step
towards that goal.

This investigation has two major goals –
1. First, to design and implement a software agent based content review process for

DLNET - DLNET already has a process for the selection of reviewers based on
the content submitted and the reviewers available. The current process involves
manual intervention of the administrator to start the selection. We are developing
a system consisting of software agents that will do the same automatically. Since
we want to study the performance of both the systems, we want to run them in
parallel and compare their performance test results.

3

2. Having developed the software agent based system, design quasi-experiments to
compare the performance of the two systems, namely the existing java based with
human-in-the-loop system and the software agent based system, and draw
conclusions. This part of the work compares the performance of the two
approaches to assess whether the proposed architecture would handle the expected
workload better. The traditional approach for this type of comparison is to
develop the new software system and collect performance measures on both the
existing system and the new system in development environment as given by Ann
Blandford, Suzette Keith, Iain Connell and Helen Edwards in [25] where they
give a comparison of four different techniques for comparing the usability of
digital libraries.

1.2 Motivation and Problem Statement

DLNET is envisaged as a platform for information discovery, interaction, content
building and distribution that will support pedagogy and learning in Engineering and
Technology [29]. Now, we are looking for ways to better the current setup and
optimize the various processes being followed in DLNET.
For this thesis, we are particularly focusing on the process of content submission. The
process of the DLNET resource submission is like this – There is user of type
Contributor who submits the resources and the related metadata for storage in
DLNET. Before these resources can become part of the DLNET repository, they are
peer reviewed. The reviewers for doing the peer review are selected from the DLNET
database. DLNET has users of different interests and backgrounds associated with it.
The selection of reviewers is dependent on the interests of the reviewer, the
background of the reviewer and the past relation with DLNET.
In this work we are trying to implement the selection of reviewers through the use of
software agents in an effort to experiment the use of this technology to confirm their
applicability and efficiency in such a scenario. Software agents are capable of
autonomous and asynchronous function and seem to be quite appropriate for the
problem at hand. This work is an effort to establish the same by first implementing an
agent system, and then comparing it to the current system.

1.3 Approach

This work is composed of two serial activities. First is the study and implementation
of the software agent system for Content Review of DLNET. The second part consists
of experimentation design and analysis to compare the performances of the agent-
based and the current systems. We first study the various agent architectures and
select the open source JADE architecture. We then implement the Content Review
activity of DLNET in parallel to the current application and collect a log of the
attributes like response time, failures and results of the process. We also log the
response time and other performance attributes of the current application to have a
comparison of the two.

4

This is how the rest of the report is organized – Chapter 2 is about the literature
research and review that has gone into this study and how we select one of the
architectures. It also mentions the relevant literature. Chapter 3 focuses on the
selection of the agent architecture, and briefly describes the various architectures.
Chapter 4 focuses on the DLNET Content Review Process, what is the proposed
architecture and how it adds to the current system. Chapter 5 describes in detail the
proposed architecture based on agents, the next chapter details the test plan for
performance comparison. Chapter 7 presents the results of the different tests done.
This report concludes with chapter 8 highlighting the conclusions derived from the
work, and the possible future research directions.

1.4 Thesis Contribution

A novel approach to content review for digital libraries
As part of this thesis, we study a few digital libraries (e.g., University of Michigan
Digital Library, Zuno Digital Library, and Next Generation Digital Library)
associated with academic institutions that are implemented using various technologies
including the digital libraries using software agents. In addition, we survey the
Information Retrieval/Digital Library literature, but do not come across any digital
library employing software agents for the selection of reviewers based on the content
submitted. Our work therefore is a novel approach of doing content review using
software agent architecture. The proposed system is an automated process that will
asynchronously look for suitable reviewers based on content and create logs for the
administrator to view and analyze.

Design and experimentation for performance comparison
DLNET is a complete application that manages users, resources and provides services
to the users. Selection of reviewers when content (a resource) is submitted is part of
the complete application. We implement a software agent based application to
automate and optimize the selection of reviewers in DLNET. To justify the proposed
architecture, we conduct extensive performance tests to compare the existing content
review application with the one reported herein. We adopt an experimental approach
for the performance comparison of an agent based application with the existing non
agent based application. The guidance for the performance comparison plan comes
from [24]. We design quasi-experiments, create test data and add features in both the
applications to collect data and then compare their performance based on the quality
attributes selected and the test plan designed based on requirements.

A basis for future work
This thesis lays a foundation for the future expansion of DLNET using software agent
architecture. Future research studies at Virginia Tech can augment and extend the
work done here as it establishes a ground for adding new services for the digital
library.

5

CHAPTER 2

2. Background

This chapter presents the review of the literature. It briefly describes the different
digital libraries we study and the different agent architectures we consider for our
work.

2.1 Overview
Digital libraries are a relatively new concept for information sharing. The research
efforts are directed towards networking of digital libraries, making them usable for
different formats of resources, and towards increasing the efficiency and usability.
Almost all universities and educational institutes imparting advanced education are
geared towards sharing the academic resources on the World Wide Web. There is a
simultaneous effort to link these different libraries so as to avoid duplicate resources
being stored and also to increase availability. As part of the research initiatives to
make the digital libraries more efficient and useful for the users, our work is directed
towards the study of digital libraries and software agents. We begin by studying
different software agent architectures to select the one that best suits our
requirements.

Section 2.7 gives an overview of the design of experimental setup used to compare
the two applications and their architectures, i.e. the existing content review
application running on a client-server based architecture, and the proposed software
agent based application running on an agent-based architecture.

2.2 UMDL (University of Michigan Digital Library) Agent Model

We study the software agent based architecture of UMDL (University of Michigan
Digital Library), which is a very effective, efficient, extensible, distributed system.
Managing a digital library poses a lot of problems. It’s a big repository and efficient
management of resources, users and services is required. One option is to have
manual administration like in regular libraries. On the other hand, this administration
can be incorporated in the software. With this in mind, UMDL uses software agents
that buy and sell services from each other. This model is based on market based multi
agent system [4], [5].

6

Java
Interface

Figure 1: The UMDL Service Market Society [4]

Figure 1 illustrates the UMDL architecture. There are different kinds of agents –
 User Interface Agents (UIA) – The user preferences and desired services and

managed by these agents.
 Query Planning Agents (QPA) - These agents act as middlemen between user queries

and the results form the library.
 Service Classifier Agents (SCA) – Used for registration of agents in a central

directory.
 Collection Interface Agents (CIA) – Provide access and search facility for the

collection of resources.
 Auction Manager Agent (AMA) – These agents help the buyers and sellers of

services find each other.
 Price Monitoring Agent (PMA) – These monitor the price of query planning services.

The agents first register themselves with the registry, then the agents wanting to buy
the services get a list of such sellers through AMAs, the buyer then contacts the seller
which in turn uses CIAs and QPAs to get the results.
UMDL is a layered architecture that is very flexible, scalable and extensible.

2.3 ZunoDL (Zuno Digital Library) Agent Model

Next, we study the architecture of another agent based digital library, ZunoDL (Zuno
Digital Library) in [2] and [6]. This is a collection of tools and techniques for building
digital libraries as agent based information economies. The various components of
this system are owned by different groups and they collectively form a distributed
system. ZunoDL is driven by making commercial digital libraries that can overcome
the problems of search engines by providing a framework for varied real world

QPA

QPA

PMA

UIA

AMA

Auction

Registry
CIA

SCA

Query

7

applications related to digital libraries like distance learning, electronic commerce etc.
It is also software agent based framework that lets users create custom information
economies by putting together a set of agents. This framework caters to the following
three types of users:-

 Consumers – Represented by User Interface Agents (UIA), the users who want to
access resources.

 Producers - Represented by Library Service Agents (LSA) and Catalogue Agents
(CA), these users/authors who want to share their content.

 Facilitators – Represented by Search Agents (SA), it is the ZunoDL service network
that maps consumers and producers with each other.

Figure 2: ZunoDL System Framework [6]

SA

 ZunoDL
Service

LSA

LSA

LSA

CA

CA

CA

SA

UIA

SA

UI

UIAUIAUIA

CA

Intranet

HTML

Zuno DL

SGML

LSA

8

This is a much more spread out and distributed application although the basic agent
architecture is the same as that of UMDL. This can be used to implement individual
digital libraries over any kind of network, internet or intranet. The basic difference
when compared to UMDL is that UMDL is a centralized standardized architecture
and all users (publishers or consumers) become part of one big library whereas
ZunoDL provides an opportunity for a consumer and publisher pair to create their
own private digital library over a network.

2.4 Next Generation Digital Library Project

This is another project of developing a digital library based on software agents that
we study for our work on this thesis in [10] and [12]. This project is based on a
distributed object oriented 3-layered architecture using CORBA and agents. The basic
architecture consists further of three sub-architectures –

 Messaging Architecture
 Agent Architecture
 Database Architecture

The agent architecture provides interoperability, rapid application development and
automation. We also adopt the agent architecture for DLNET for these reasons. The
basic agent infrastructure provides services like Lifecycle Management, Agent
Communication, Security, Directory and Migration.
With the increase in the volume of resources and more efficiency required in
retrieving the right content, this architecture depends on the software agents to
provide the extensibility and interoperability to communicate in heterogeneous
environments. The basic infrastructure of the next generation digital library is
provided by CORBA and J2EE and software agents are used to implement the
advanced requirements.

2.5 Cougaar Agent Model

Cougaar (Cognitive Agent Architecture) is a very efficient and effective platform for
distributed agent based systems. It is a Java Agent, hierarchical architecture designed
to support data intensive, inherently distributed and highly scalable applications [16].
Intra-agent communication happens with the use of a local blackboard that helps
reduce latency. Applications in Cougaar are designed around agent communities.
Salient features of the architecture are:-

• The computation in a Cougaar agent is done by Plugins, which are software
components that define the behavior of the agents.

9

• A Blackboard is an agent-local memory store that supports publish/subscribe
semantics. The components or Plugins can add/remove/subscribe objects from the
blackboard.

• Inter Agent communication in Cougaar takes place with the allocation of tasks.
• Intra Agent communication takes place with the subscriptions/ publications to the

local blackboard.

Figure 3: Cougaar Architecture [32]

Cougaar is most suited for hierarchical planning problems and does not offer any
advantage for a problem like ours. Cougaar is not an easy architecture to follow, and
writing applications is far from trivial. Since the project reported herein is the first
step in the use of agent technology for DLNET at Virginia Tech, and we anticipate
many other research students to contribute to it in the future, we want to select a
platform that is well documented and easy to use.

2.6 JADE Agent Model

Plugins

Blackboard
(PLAN)

Agent

Publis
h

Subscribe

Message Queue

10

We then considered and studied the open system FIPA (Foundation for Intelligent
Physical Agents - http://fipa.org/) compliant, java based JADE (Java Agent
DEvelopment Framework) architecture in [14] and [15]. This architecture is very well
documented, is efficient and it takes very little time for a user to get it up and running.

JADE based applications have a main container (the runtime environment) and an
infrastructure with agents for communication (ACC), directory service (DF), and
naming and management services (AMS – Agent Management System)

Figure 4: The Jade Main Container [15]

Figure 4 shows a jade container with the infrastructure provided agents and the
application specific agents. The following agents are provided by the JADE
infrastructure and are used by our application.

1. The Agent Management System is an agent that is part of the main container and it
provides the naming service to the agents that get added in the application. It is
required that every agent has a unique name in a platform. To register a new
agent, we define the type of the agent and give a unique name to it.

2. The Directory Facilitator provides a service to help locate other agents. For this
service the agents need to have a type associated with them. When searching for a
type of agent, we define the type of agent we want to locate and the Directory

11

Facilitator gives the name of the agent if some suitable agent is registered in the
platform.

2.7 Performance Comparison Methodology

Our efforts are guided by the fact that the software architectures of today are moving
towards component based systems and in that light, our effort to specifically measure
the performance parameters of a component based architecture and a non component
based architecture are useful. We review some literature including [7], [8], [13], [31]
on how to go about doing a performance measurements of software architectures.
Although we find that there is relatively very little published work comparing the
performance of software agents vs. traditional software systems, we study the
following literature to help develop our comparison plan:-

 Michelle Casagni and Margaret Lyell in [7] compare two components based
architectures and do a good comparison from the high level basic framework, the
application specific comparison and the design attributes. As in our work, this
study compares non-agent architecture with agent based architecture. This is
probably the only work we see that develops a comparison structure and does a
detailed comparison. But it differs from what we do in that we compare a FIPA
compliant architecture with a non component based one.

 Filippos I.Vokolos and Elaine J. Weyuker in [8] give guidelines about how to go
about doing a performance testing of a software system. Although it deals with
the telecommunications industry, it nonetheless provides direction about how to
plan the performance testing for our case, and how to create test data; keeping in
mind that it should be representative of the actual load to be experienced in the
live scenario. Guided by this paper we create test data for average workload
conditions and heavy workload conditions. This reading covers a lot of
performance parameters and guides us in considering the different aspects of
performance of a system like resource usage, throughput, queue lengths etc. We
have selected the ones relevant to our case.

 This reading by Giovanni Denaro, Andrea Polini, Wolfgang Emmerich in [13]
gives an insight into planning the performance testing of applications at software
planning and architecture definition stage. The reading is applicable for
distributed applications that use some middleware that is available off the shelf
and that can be tested before it is integrated with the application in question. We
could have used the methodology given in this reading if we were planning both
the applications (the existing baseline application and the proposed agent based
application) from scratch. Here we already have a live application and so the
conditions do not apply. We design a test plan and measurement quasi-
experiments of our own that suit our requirements better.

12

Efforts mentioned in the literature above have either involved performance
measurement of a single system or, as in the case of [7], the architectures have been
both component based. Guided by the metrics measurement covered in [24], we
develop a test plan suited to our situation. Our comparison plan, although influenced
by the readings above, is different because it compares a component based FIPA
compliant framework with a serial java application. More details of our performance
measurement plan and methodology are found in section 6.1.

13

CHAPTER 3

3. Selecting an Agent Architecture

3.1 Introduction

In this thesis we have integrated software agents with DLNET (The Digital Library of
Virginia Tech). For this, we first select the characteristics and features we should
concentrate on for our experiments for the content review process of DLNET. Then
we study agent architectures such as JADE and Cougaar. We also look at the agent
architectures of current digital libraries using agent based services and features such
as the UMDL (University of Michigan digital Library), ZuNO Digital Library.
We study all these available architectures and compare them with respect to our
requirements to finally decide on using the agent infrastructure of JADE as the
chosen middleware for our study.

3.2 Desired features of the selected architecture

We start with listing the features we want the new architecture to have

1. Interoperability – Ease of connection with other open archive digital libraries.
2. Extensibility – Ability for step by step extension to the system.
3. Ease of deployment.
4. Available documentation/ support on understanding and setup of the architecture.
5. Relevance to our problem domain.
6. Easy Maintenance

We study the existing application and how content review is handled, following it up
with discussion with DLNET team members to arrive at important features we want
to work on.

3.3 Selecting an Agent Model

Software agent architecture is based on peer-to-peer computing as opposed to the
popular client server paradigm. The advantage of using peer-to-peer communication
is that all the modes of the application can communicate with each other. The facility
of looking for an appropriate peer to communicate with is separately managed. In
client server model, the client has to know the exact details of the server it wants to
communicate with and the communication details have to be finalized in design time

14

itself. Software agent model is flexible in the sense that once an agent specifies a
requirement, any other agent fulfilling the requirement can respond and the two
agents can communicate. These service provider agents can even be created at run
time. There are applications where client server models will not suffice and so agent
based solutions are more appropriate. These reasons and benefits of peer to peer
technology based software agents made us select our architecture.

We selected JADE as the agent architecture to build the relevant agents for the
content review process of DLNET because,

 it had all the agent features that we needed (and more)
 communication between student "agents" running on various workstations on

the network was trivial to do
 it was efficient and robust enough to tolerate some common programming

errors
 it followed FIPA standards
 the user group is very active and implementers typically respond to problems

within 24 hours

In selecting the JADE agent architecture for our application, we compare it to Cougaar,
UMDL (University of Michigan Digital Library) architecture, Zuno digital library and
Next Generation digital library architectures.

One of the important characteristics we look into the architecture is ease to understand
and deploy. JADE and Cougaar are equally easy to deploy but to understand JADE and
get started with it is much faster than Cougaar.
UMDL and ZunoDL were quite easily expandable but the initial deployment was
relatively heavy and needed a lot more resources than JADE.
UMDL and ZunoDL are basically developed to be used by multiple computers across
geographical locations. The storage of resources also happens at multiple locations,
whereas our system is already in place and is housed at a single place. The conceptual
model is different as we are catering to users spread out in geographical location but the
storage and the application code is hosted at one place. There is, therefore a different
requirement for DLNET and the architecture of these two digital libraries is inappropriate
for our cause.
In the model being used by DLNET, the library is to be linked with other digital libraries
under NSDL. To enable this was an important requirement for our project. The
architectures of UMDL and ZunoDL are self contained and although they are
expandable, they can’t be linked easily with other digital libraries as they follow a
different conceptual model. So we look for other alternatives.
JADE as a software agent platform is very popular and is used in many research studies
in many well known European universities. The users of JADE maintain a very lively
mailing list and respond to queries very fast. So this architecture is very easy to
understand and we find it to be very maintainable.

15

In addition to providing a runtime environment and a library of classes, JADE also
provides graphical tools for monitoring the activity of all the registered agents.

Following table summarizes the comparison of various architectures

FEATURE

UMDL ZUNODL NEXT

GENERATION

DIGITAL

LIBRARY

COUGAAR JADE

Interoperability Good Good Good Good Good
Extensibility Good Good Good Good Good
Ease of
deployment

Not Easy Not easy Not easy Good Good

Available
documentation

Fair Fair Fair Not good Good

Relevance to
our problem
domain

Not much Not much Not much Good Good

Easy
maintenance

Not
Applicable

Not
Applicable

Not Applicable Fair Good

Table 1: Summary of the comparison of various architectures we considered

16

CHAPTER 4

4. Modifying the DLNET Content Review Process

4.1 Introduction

DLNET is a stable application and is being used by users worldwide. The application
is a component based J2EE application. In this thesis, we investigate ways to improve
the content review portion by suggesting and implementing an alternative architecture
that employs software agents.

4.2 Existing Content Review Process

DLNET has three different types of users:-

1. Contributors – Users who submit Learning Resources
2. Reviewers – Users who review the submitted resources before the resource gets

added to the repository.
3. Users – Users who use the library for browsing or searching.

The content review process starts with a contributor submitting a learning resource. A
learning resource could be a document, image, presentation etc. The contributor needs
to add some information about the resource like the category and the type of resource.
This metadata for the resource is clubbed with the resource by a DLNET utility. A
check is performed to make sure that all the necessary information is given by the
user at the time of submission. Also the integrity of the package is checked to make
sure all the referenced objects are included in the package. Once all the checks are
done, the resource and the metadata (in an XML file) are stored in a temporary
repository.

17

Figure 5: Learning Object Tool Flowchart showing the Content Review Process Flow

[Final Report at http://www.dlnet.vt.edu]

The existing Content Review Process at DLNET is a java application which uses
various classes of the DLNET infrastructure. Currently what happens at DLNET is
the following - the resources get submitted, the administrator keeps a check and when
the temporary repository has some resources that need to be peer reviewed, the
administrator starts the utility that finds the suitable reviewers for the content
submitted. This is done based on the Meta data submitted along with the Learning
Resource.

18

4.3 Proposed Content Review Process

The proposed Content Review System is a JADE application that is always running
that is, the agents are always in an active state. One of the agents is responsible for
regularly checking if any new content is submitted to the DLNET repository. When
some content is found, the content review process starts by sending of messages
between agents. When a suitable reviewer is found, logs are generated and the
reviewers can be informed accordingly. The details of the system are given in chapter
5.

4.4 Expected Gains/ Performance enhancements

A more extensible and maintainable application is expected as a result of these quasi-
experiments.
We have added the following features to the existing application:-
 The content review process is now fully automated.
 The logs are prepared about daily results. It will help in finding out the areas

where DLNET does not have enough reviewers and in future, the application can
be extended to find out more reviewers in those areas.

 The application architecture is very easy to understand, it is easy to add new
functionality to the system.

 An algorithm for a part of the application is easy to replace with a better
alternative.

Digital Libraries rely on content submitted by the users registered as contributors.
With the popularity of digital libraries, the content submitted will keep on increasing
and so will the frequency of submission. We therefore need to make our system
scalable and extensible to handle that kind of load. As the number of resource
submissions increase with the popularity of digital libraries, a scalable, extensible
system is desirable.

19

CHAPTER 5

5. The proposed Architecture

5.1 Introduction

High module cohesion and low module coupling is the rationale for most structured
design methods. Good internal structure leads to good external quality. This is the
basis of the design of the proposed system for DLNET content review process using
the JADE architecture and software agents.

The JADE architecture provides basic services for running the software agent
platform. It is a java application and we can easily integrate it with our existing
application.

Each running instance of JADE runtime environment is called a Container as it can
contain several agents i.e. provide support for many agents. The first container to start
must be the main container. If the application has any more containers, the additional
containers have to register them with the main container. The main container holds
two special agents that get started with the main container. They provide essential
services for the operation of the application. [Refer Figure 11]

These built in agents that provide Directory services and Agent Management services
are:-

AMS – Agent Management System – This agent provides the naming service by
ensuring that each agent has a unique name.

DF – Directory Facilitator – This is to locate an agent and the agents are identified
by the services they provide. In other words if an agent wants to use the services of an
agent of type doctor, the DF will help locate a doctor type of agent.

After studying the current system as it works, we design the application by
modularizing the components of the system and design the following agents. These
agents run on the JADE platform and use the library of classes that JADE provides to
together offer the complete application.

AgentStarter – This is the agent that starts the content review process. This agent
starts the execution every day. The frequency of the computing can be set by a
parameter in the Agent code. This agent sends a message to the AgentContent to start
looking for a content to be reviewed.
We add the configuration parameters as constants in this agent code so that these
parameters can be changed as and when required.

20

AgentContent – This agent after getting a message form AgentStarter accesses the
database and looks for appropriate status of content that needs to be peer reviewed. If
the agent finds any such content, it sends an appropriate message to AgentReviewer.
This agent sends as many messages to AgentReviewer as the number of resources
found.

AgentReviewer – This agent gets the message and starts to find the reviewers
appropriate for the content based on the rules defined similar to the rules in the
existing application. On finding the reviewers, this agent sends message to
AgentEmail and updates the database accordingly.

AgentUser – If Agent Reviewer cannot find any reviewers in the normal database of
reviewers, this agent gets a message and looks for inactive users in the reserve
database of reviewers and gets the appropriate users.

AgentMonitor – We have this agent to log the response time of the process. This
agent gets messages with the start and end of the process and logs them in a text file.
The difference of those times gives the response time for that run of the application.

AgentEmail – This agent is responsible for sending appropriate messages to the
selected reviewers.

AgentErrorLog – This agent gets messages whenever there is some error in the
processing and logs the errors in a text file.

The code implementing the AgentStarter is given in Appendix D.

5.2 Process Flow

The following figure shows the interactions between different agents and the
database. This flow shows only the application specific agents.

21

Figure 6: Process Flow of DLNET Content Review in the Agent Based Application

Agent
Starte
r

Agent
Error
Log

Start Daily
Review
Process

Agent
Conten
t

Looks for new
content to be
reviewed

Agent
Reviewer

Message to find
reviewers for the
content to be
reviewed

Sending
appropriate email
messages to
reviewers

Agen
t
Emai
l

Agent
User

If no Available reviewers
found, sends message to
check if any guest users
are available

Guest User with the
same interests
available

Checks for any
available
Reviewers

Data
Base

Data
Base

Data
Base

Error

Error

Error

Error

Error

Agen
t
Moni
tor

Data
Base

Logs
response
time

22

5.3 Running Jade Agents

JADE Application Startup

The software agent application for DLNET content review using JADE architecture is in
place and is integrated with the DLNET application. It is a separate application that needs
to be started individually.
Once we compile the application including the JADE agents and the code integrating it to
the DLNET application, we have to start the JADE platform and run the application
specific agents.
To start the JADE platform, the following command needs to execute after setting the
classpath appropriately to include all the class files:-

java jade.Boot Starter:AgentStarter Content:AgentContent Reviewer:AgentReviewer
User:AgentUser Email:AgentEmail Monitor:AgentMonitor Error:AgentError

This command will start a JADE main container; will initialize the infrastructure agents
(the Directory Facilitator and the Agent Management System) and the specific agents we
give in the command.

This keeps the container alive till the container is killed specifically. Our application is
designed in a way that the Starter agent will keep on initiating the content review process
as per the set frequency. The frequency of this review process can be set by changing the
constants in the AgentStarter class file. The other parameters can also be changed in the
same file, the parameters like location of XML files, the error messages to be reported
etc. This is like having a configuration file where all the dynamic information is kept and
can easily be managed.

The screenshot below shows the messages being exchanged between various agents of
the application. This kind of visual aid helps understand the operation and also helps in
debugging the application.

23

Figure 7: Screenshot showing agent communication

24

CHAPTER 6

6. Performance Comparison

For the current and the following chapters, we have used the following terms:-

Application – suggests the complete DLNET application. A part of this J2EE based
application; the Content Review Process is under study in this work.

Existing application – The part of DLNET that does the content review. It is the
application currently being used by DLNET.

Agent Based Application – The application being proposed in this work. It uses
software agents for DLNET Content Review and is based on JADE software agent
infrastructure.

This part of my thesis focuses on experimental design including the choice of
experimental variables, experimental models and the instruments used to measure the
dependent variables.

6.1 Experimental Design and Analysis (Methodology)

Experiments are designed to test or prove if a causal relationship exists between the
chosen independent and dependent variables. In this work, we are trying to prove that
the software framework used for content review in DLNET affects the performance
of the system. This is an experiment to prove the effectiveness of a new software
design method. With the background of our readings of [7], [8], [13] and [31], we
have based our methodology mainly on the reading [24] for design.

These quasi-experiments are designed to test our hypothesis that the software agent
based Content Review Process has better response time, is more maintainable and
reusable and so has better performance than the J2EE based existing system.

6.2 Experimental Variables

Independent Variable for these quasi-experiments is the type of system with the levels
“old system” and “new system”. The “old system” refers to the existing application
and the “new system” refers to the Agent based application. We are trying to
highlight that the type of system chosen affects the performance of the system. We
have chosen to measure the performance by the dependent variables response time,
maintainability, scalability, correctness, reliability and reusability. Through our quasi-
experiments and results thereof, we prove that the performance of content review

25

process is better with the agent based architecture. Extrapolating the hypothesis to
apply to the whole application, we propose the new framework for DLNET i.e. a
software agent based infrastructure.

6.3 Subject Assignment

For the assignment of the subjects to one of the two types of systems, we have used
the matching technique of self twinning type. In matching technique for subject
assignment, each subject in one group is twinned with a similar subject in another
group. The category of matching technique that we have used here is called the self
twinning or within subject or related/matched groups. In within subject assignment,
each subject is twinned with themselves. This, in effect, involves repeated measures
on the subject for different levels of independent variable.

While designing the experiments and test data (the input or the subjects), we have
made groups of varying number of resources and then subjected those groups to both
the applications. This is done to nullify the effect of the type of resources on the
results. Since both the applications are getting the same resources, the results will
highlight the differences due to the architecture alone.

The condition for using this kind of assignment is that the subjects should not get
altered when subjected to one experiment. In our case, the subject is the test data for
the two applications. We are using the same test data for the two applications and also
rolling back the test database to pretest condition after execution of each test to create
exactly same conditions for the two runs.

For our experiments, we have the existing application that is live and the agent based
application has been set up to run in parallel. For the duration of our experiments, we
disassociate the existing application with the live database and let it run with our test
data and test database, which is a copy of the live database. We have created the test
input data to simulate different conditions of finding the content reviewer. For each of
our tests we first let one of the applications run the test input and update the database.
The logs are created and interpreted. Then the test database is rolled back to its pretest
state and the second application is executed with the same test data (the input). This is
done to simulate random assignment or we can say to have the same effect as random
assignment since it was not possible to let the two systems running in parallel get
randomly assigned subjects. The basic purpose of random assignment is to have
internal validity in the design by ensuring that our treatment groups are similar to
each other prior to the treatment. We are ensuring this by having the same set of data
being input to the two applications.

In our experiments, we have taken large sample sizes so that the effect of chance is
reduced and they are large enough to cover all the variations.

26

We observed the sample size the application was exposed to for a month and also had
discussions with the administrator of the application about the average number of
resources the system could expect at a time. Through these observations and
discussions, we concluded that the maximum number of resources expected could go
up to 50 at one particular time. We added another 25% and tested the applications for
up to 62 resources at a time.

6.4 Dependent Variables

The attributes or the dependent variables we have measured to compare the
performance of the two systems are:-

6.4.1 Response Time (a measure of latency) –

The time taken by the application to complete the review process is being measured
as the response time. We have logged the response times from both the applications
for a variety of load conditions ranging from 5 resources to 62 resources covering the
average load conditions to heavy load conditions.

In this work, for our experiments we have chosen a small part of the complete
DLNET application to prove that software agents based infrastructure provides better
performance than the existing J2EE based application. Since the scope of our thesis is
content review process of DLNET, we have compared the response time for the two
architectures for the content review process only. For content review, the response
time is not a critical performance measure as it does not involve any user interaction.
This means that the user is not expecting the response from the content review
process of DLNET instantaneously. But when we extrapolate our results to cover the
whole application, the response time becomes a very important performance criterion.
DLNET involves searching the database for the relevant information for the user. The
operations involve a lot of user interaction and for that kind of communication,
response time becomes important.

6.4.2 Maintainability –

The average time taken to add a new feature or business logic to the content review
process is taken as a measure of maintenance. We have tested the maintainability of
both the applications by adding the same feature/ business rule in both the
applications and recording the average time it would take for a developer to do so.
We have tested it with the help of two software engineers with similar background so
as to have an average of the measurements and to try eliminating any bias.

27

6.4.3 Scalability –

This attribute will test the stability of the system in case of increased load. We have
created test data of 62 resources which is more than the expected number of resources
DLNET will normally receive at a time. It is important to test the system under heavy
load conditions.

With time, the number of resources, reviewers and users that DLNET will handle will
increase manifold. To be ready for such growth, it is important that the application is
scalable.

6.4.4 Correctness –

The correctness of the results is compared. The reviewers selected by both the
applications are compared with manually selected reviewers to arrive at a comparison
of the number of errors reported by the two applications.

To propose any change in the infrastructure of the application and for any kind of
comparison of any two applications, before considering any performance
enhancements, it has to be made sure that the correctness or the validity of the
applications is maintained.

6.4.5 Reliability/ Failure Rate –

The applications are left running for a long time continuously and failures are
recorded to measure the reliability of the applications. Since it is not possible to
generate test data for all kinds of real time situations, we let the two applications run
parallel uninterrupted and observed them for a week. These results can then be
extrapolated to suggest acceptable reliability estimates.

6.4.6 Reusability –

Any application has to be adaptable to cater to changing requirements and/or
additional requirements. The new technologies are being designed to increase
software reuse and the ease of reuse. It was therefore important for us to compare the
two applications’ reusability. The existing application is J2EE based and consists of
objects and components. Objects and components are encapsulation of functionalities.
They are designed so that they can be reused easily. The main problem when reusing
objects in a typical J2EE environment is the integration with other objects of the
application in case the object needs to be changed for reuse. Using an agent based
architecture helps as agents are more independent of other agents/ objects of the

28

application. To add a new action/ feature in an agent for reusing it involves change in
the agent only.

6.5 Test Plan

For having a performance comparison of the two architectures, we have the existing
application that is live and we set up the new application to run in parallel to it.

There were a very limited set of tools available for testing the performance of
distributed applications as we have concluded based on our readings in [7], [8], [13]
and [31], so we devised our own test plan and testing instruments for the
measurement of the quality attributes. These quality attributes or dependent variables
are an indication of the performance of the applications. After careful study of the
application and the content review process, we manually created different groups of
test data to simulate typical situations that we wanted to test.

6.5.1 Measurement Instruments:

In the new agent based application, we have developed a monitor agent that makes
the log of the response time for the review process every time the application is run. It
employs the checkpoint method by recording the time of various events in the
process. To this we have also added functionality to generate the log of the resources
selected. The log of resources is used in correctness measurement.

For the existing application, we added a piece of code that will also generate similar
logs of the response time and the results of the application. This piece of code has
been designed carefully to use similar method of recording response time to eliminate
any bias in measurements. This enabled us to have a comparison of the two
applications.

6.5.2 Test data:

To have the comparison of the applications in an effective manner, we have generated
test data to represent the average load conditions and heavy load conditions. By
observing the average load conditions of DLNET, on an average it will receive about
5 resources at a time and the heaviest load could be about 50 resources, so we have
selected load conditions ranging from 5 resources to 62 resources.

We have generated a test data of about 100 resources and the results in the form of
logs created by both the applications are tabulated to get a comparison of the two
applications.

29

6.5.3 Test Procedure:

After careful study of the sample size and the specifics of the applications, we arrive
at four different sets of data to measure the response time, correctness and scalability
of the applications for. We disassociate the existing application with the live database.
We replicate the database as test database for these experiments. Then we link the
existing application with the test database and input the test data and manually start
the content review process. Logs are generated for the measurement of response time.
Next, we start the agent based application that is linked to another copy of the test
database. Again, logs are generated for the response time of the proposed application.
This completes one of the four quasi-experiments for measurement of response time.
The procedure is repeated for the other sets of data.
For the measurement of correctness, the same procedure is followed and the database
updates are carefully studied to check if the applications are correct.
The quasi-experiments for correctness also give a measure of the scalability for
varying load conditions, so same procedure is followed to test scalability.

6.6 Test results

6.6.1 Response Time

Number of Resources Response Time of the
existing application (msec)

Response Time of the agent
based application (msec)

5 3672 1281
62 29063 12422
10 14313 2500
28 22140 7047

Table 2: Response Time Results

6.6.2 Maintainability

To compare the maintainability of the applications, we had three different people add
to the applications and then compared the average time taken by them. To have an
unbiased comparison, we selected two other persons who had similar experience and
understanding of java (the basis of the existing application) and JADE (the agent
architecture of the new application).
We added a few features and made some modifications to the two applications.

For these quasi-experiments, we had two other software engineers understand the two
applications and make changes to them. We then took the average time taken by them
to add to/ modify the two systems.

30

The following are the results of the maintenance quasi-experiments. For the first three
activities, we have considered only two readings as the third person was already
familiar with the applications when we started these experiments.

Test condition/ feature added Time taken to change/
review the existing
application

Time taken to change/
review the agent based
application

Seema Gaurav Vaishali Seema Gaurav Vaishali
Understand the working of
the application

19.5
hours

20.7
hours

25
hours

26
hours

Understand how to start the
application

6.3
hours

5.9
hours

4.5
hours

3.9
hours

Changing the configuration
parameters

8 hours 9 hours 2.5
hours

3.1
hours

Adding the creation of log
reports

11
hours

13.3
hours

12.9
hours

3.5
hours

4.3
hours

5.4
hours

Identifying a piece of code
and replacing with a more
efficient one

10
hours

11
hours

9.6
hours

8 hours 8.7
hours

8.3
hours

Table 3: Raw Maintainability Results

The results shown below are the average of the above readings.

Test Condition/ Feature
added

Time taken to change/
review the existing
application

Time taken to change/
review the Agent based
application

Understand the working of
the application

20.1 hours 25.5 hours

Understand how to start the
application

6.1 hours 4.2 hours

Adding the feature to change
the configuration parameters

8.5 hours 2.8 hours

Adding the creation of log
reports

12.4 hours 4.4 hours

Identifying a piece of code
and replacing with a more
efficient one

10.2 hours 8.5 hours

Table 4: Summary of Maintainability Results

31

6.6.3 Scalability

We added about 100 resources in one time and then ran both the applications to see if
they can both handle the load.

Number of resources
added

The existing application
could handle the load

The agent based
application could handle
the load

5 Resources Yes Yes
10 Resources Yes Yes
28 Resources Yes Yes
62 Resources Yes Yes

Table 5: Scalability Results

6.6.4 Correctness

For the test data of over 100 resources that we added, we manually selected the
reviewers to check if the reviewers selected by the applications were correct.

Number of resources
added

Correctness % for the
existing application

Correctness % for the
agent based application

5 Resources 100 100
62 Resources 100 100
10 Resources 100 100
28 Resources 100 100

Table 6: Correctness Results

6.6.5 Reliability

The two applications were left running for week uninterrupted.

Time for which
applications were left
running

Number of failures for the
existing application

Number of failures for the
agent based application

1 hour 0 0
1 day 0 0
1 week 0 0

Table 7: Reliability tests

32

6.6.6 Reusability

To measure the reusability of the applications, we had two persons reuse a part of the
applications and then compared the average time taken by them. Here again, as in
maintenance tests, we selected the other person who had similar experience and
understanding of java (the basis of the existing application) and JADE (the agent
architecture of the new application) as the author.

The following are the results of the reusability quasi-experiments. The identified
pieces of code were reused in the applications for additional function. The
applications were then tested thoroughly.

Details of Code piece
reused

Average Time taken to
reuse and test the existing
application (Hours)

Average Time taken to
reuse and test the Agent
based application (Hours)

Seema Sarala Pankaj Seema Sarala Pankaj

Code to find suitable
reviewers reused as code
that finds suitable users and
suggests users as reviewers

5.5 7.0 6.3 5.0 6.0 3.9

Code that looks for the
presence of any content to
be reviewed is reused as
code that looks for any
inactive reviewers in the
database.

5.5 7.5 3.7 4.5 4.3 5.0

Code that logs the names of
the selected reviewers is
reused as code to log the title
and description of the
resource.

5.2 4.9 5.1 4.7 4.9 2.6

Code that validates the
resource by checking its
metadata is reused as code to
check the metadata of the
user who submitted the
resource.

5.4 6.2 4.7 4.6 6.0 5.5

Table 8: Raw Reusability Results

33

Details of Code piece
reused

Average Time taken to
reuse and test the existing
application (Hours)

Average Time taken to
reuse and test the Agent
based application (Hours)

Code to find suitable
reviewers reused as code
that finds suitable users and
suggests users as reviewers

6.26 4.96

Code that looks for the
presence of any content to
be reviewed is reused as
code that looks for any
inactive reviewers in the
database.

5.56 4.6

Code that logs the names of
the selected reviewers is
reused as code to log the
title and description of the
resource.

5.06 4.6

Code that validates the
resource by checking its
metadata is reused as code
to check the metadata of the
user who submitted the
resource.

5.43 5.36

Table 9: Summary of Reusability Results

34

CHAPTER 7

7. Performance Comparison Results

Based on the data measured by the testing tools designed as described in the previous
chapter, this chapter discusses the results and compares the performance of the two
applications.

7.1 Response Time –

Goal: To measure the response times of the two applications with varying load so as to
compare them.

Question: Is the Software agent based application faster than the existing application and
is this performance constant with varying loads?

Metric method: We designed measuring instruments to create a log of the response
times of both the applications. For the existing application, we added a code sample to
create the log of the response times each time we conduct the test and for the agent based
application, we added another agent to create similar logs.
To eliminate the possibility of bias, we first considered having one code module for both
the applications. The two applications have very different architectures and connecting
them both to the same module was not possible, so we designed two different modules.
We designed them to make sure that we record the time in similar fashion in the two
applications. We have designed the instruments to record the response time for both the
applications in a similar method. We record the system time before the first line of code
in the review process and record the time after the last line of the process. The difference
in the two times gives the response time of the applications.

Conclusion: The results show considerable improvements in the response time for the
process with the proposed application using Jade infrastructure and software agents as
compared to the existing application. The huge improvement in response time can be
partly explained by the fact the agent based systems are inherently multithreaded while
the existing content review process is a single threaded serial application. We conducted
tests for varying load conditions and the results were found to be in the favor of the agent
based application. Following is the plot of the results showing a comparison.

35

5
5

10

10

28

28

62

62

0

5000

10000

15000

20000

25000

30000

Number of
Resources

10 62

Response Time Comparison

Response Time of the
existing application
(msec)

Response Time of the
agent based
application (msec)

Figure 8: Bar Graph showing a comparison of response times

7.2 Maintainability –

Goal: To design instruments to measure the maintainability of the two applications.

Question: Is the Software agent based application easier to add to / modify than the
existing application?

Metric method: To measure the maintainability of the applications, we identified five
areas that were put to test. We had two engineers with similar backgrounds who helped
us in these experiments. We started with observing the time it takes someone having prior
knowledge of java to understand the working of the two applications. Then we noted the
time it takes to start the application, then the time it takes to manage the applications like
changing certain administrative parameters. We then measured the time it took the same
engineers to add a functionality to the two applications. The fifth measure of
maintainability was the time it took to optimize a part of the code by changing it and
testing the change.

To attempt to eliminate the possibility of bias in these instruments, we carefully selected
the people to help us out in this part of the work having similar backgrounds. They were
both equally conversant with java but agent based technology was new to both of them

36

Basic working

Basic working

start
start

change
parameters

change
parameters

add logs

add logs

optimize
optimize

0

5

10

15

20

25

30

Functionality
added

start add logs

Maintainance Time Comparison

Time taken to
change the
existing
application
(hours)

Time taken to
change the
agent based
application
(hours)

Figure 9: Bar Graph showing a comparison of maintainability

Conclusion: The agent architecture provides a more maintainable architecture as we can
see from the results of our tests. The agent based application has modular architecture
with agents encapsulating an abstraction. This makes this architecture easy to understand
and maintain. As was found out in our measurements, it is much easier for a developer to
change the functionality in the agent based application as compared to the existing setup.

The Agent based architecture provides an in built mechanism to graphically view the
interactions of various agents in real time. This feature makes it easy to debug these
applications. There is no such mechanism in the existing application and in case of any
logical errors; the application would mean walking through the code.

The ease of deployment of the two applications can also be compared. The FIPA
compliant software agent based application offers standard instructions for loading of the
agent container which is very well documented and easy to follow. To get the application
agents running, a new user will have to follow instructions given in the manual in
appendix B. On the other hand, the existing application is part of the complete DLNET
application and therefore needs application specific instructions which can be hard to
comprehend.

37

7.3 Scalability –

Goal: To design instruments to measure the scalability of the two applications.

Question: Is the Software agent based application intrinsically better to handle large
loads.

Metric method: To measure the scalability of the applications, we exposed the
applications to varying loads. With observation and discussion to the administrator of the
application, it was concluded that the maximum load could be about 50 resources at a
time. We tested the applications with number of resources ranging form 5 to 62.

Conclusion: Both the applications were found to be equally scalable for the tests
conducted.

7.4 Correctness –

Goal: To design instruments to measure the correctness of the two applications.

Question: Of the two applications being studied, does any one give more correct results
than the other?

Metric method: The two applications are being tested for different load conditions and
we have added modules in both the applications to generate logs of the resources being
selected, which is the output of the applications. The modules that were added to log the
response time of the two applications were enhanced to log the output (the selected
resources) as well.

We maintained the same system status for both the applications for each run of the test
and the same resources were being input to the two applications. The effort to restore the
system status for both the applications was done to eliminate any possibility of bias in the
measurement instruments.
The two applications are supposed to optimally select the best resources for content
review based on the current status or the data of the application. For each test, we
carefully studied the system status and the input to find what the correct output should be.

Conclusion: Both the applications were found to be correct in all the tests conducted for
differing load conditions. So there is no clear advantage of one type of architecture as far
as correctness is concerned.

7.5 Reliability

Goal: To test and compare the reliability of the two applications.

38

Question: Is there any difference in the two applications when comparing their
reliability?

Metric method: To measure the reliability of the applications, we let the two
applications run in parallel. The applications were observed for any failures when left
running for a week uninterrupted.

Conclusion: Both the applications were found to be very reliable in the tests conducted.
So there is no clear advantage of one type of architecture as far as reliability is concerned.

7.6 Reusability

Goal: To design instruments to measure the reusability of the two applications.

Question: Does the Software agent based application provide easier reuse of code?

Metric method: To measure the reusability of the applications, we identified two pieces
of code in both the applications that could be reused and noted down the time it took to
reuse the pieces of code elsewhere in the application.
The time also included the time it took to test the application after integrating the new
pieces of code.

0
1
2
3
4
5
6
7

Average time
taken to reuse

(hours)

1 2 3 4

Different reuse scenarios

Reusability Test Results

Exiting Application

Agent based
application

Figure 10: Bar Graph showing Reusability Results

39

Conclusion: The agent architecture provides a more reusable architecture as we can see
from the results of our tests. Reusability is related to maintainability and the results
indicate that the modular structure of agent based system makes it more reusable in
addition to making it more maintainable.

7.7 Discussion of results

Looking at the different test results, we see that both applications score equally well
on scalability and correctness, although the software agent based application was
found to be much faster. The response time was found to be much better for all the
load conditions in the proposed system. The reason for this mainly lies in the fact that
agent based system are multithreaded where the existing application is more a serial
application. This reflects an inherently faster architecture; we believe it’ll be a very
useful parameter as DLNET becomes more popular and with the increase in the
frequency and the number of resources submitted.

The maintainability results indicate that although the initial understanding of the
agent based application took more time than the understanding of the existing
application, the subsequent changes to agent based application are much faster than
the existing application. We believe that in the current era when the applications are
so dynamic in nature, it is useful to have an application that can adapt to changes fast.

The agent based system was found to be much more maintainable as it has its
elements modularized as agents and it is easier to understand the interactions and the
functionality encapsulated in each software agent.

The JADE infrastructure of the software agent based application provides a graphical
user interface to monitor the interactions between the various agents and that can be
helpful in understanding and monitoring the system. The existing java based
application provides no such feature. The proposed application is therefore more
usable. The ease of changing the configuration parameters in the agent based
application is also a very helpful feature for the user/ administrator.

Being modular and autonomous in design, the agents based application is more
reusable than the existing application as is discussed in section 6.4. The
interdependence of code in the existing application makes it difficult to test it once a
change has been made to reuse a part of the code.

Having discussed these performance test results, we would also like to mention that
these tests were done on a specific part of the DLNET application (the content review
portion) and with simulated test data. Although we have tried to design our tests to be
generic so as to reflect the true performance of the application, the actual results when
comparing the whole application or another part of the application might be different.

We would also like to mention that we had tried to make the new application replicate
the original application but some parts of the existing application were found to be

40

non functional at the time of the tests, like the email module that should send email
messages to the reviewers was not working. We created the logs of the text messages
that would have been sent as email messages instead.

41

CHAPTER 8

8. Conclusions and Future Work

8.1 Conclusions

The contributions outlined in chapter 1 are met by the design of the agent based
application for the content review for DLNET and by the quasi-experiments to
compare the performance of the same with the existing Content Review Process
application. This thesis gave exploratory evidence that the concept that software agent
based architecture will make the current content review portion of the DLNET
application more efficient, maintainable and reusable. There are various variables
which were measured to compare the two applications’ performance, and this
comparison is the main contribution of this thesis. We measured the response time,
maintainability, scalability, correctness, reliability and reusability of the two
applications to quantify the performance of the two technologies, namely J2EE versus
Agent Technology. While response time, correctness and reliability indicate the
effectiveness of the applications at this time, maintainability, scalability and
reusability on the other hand, reflect the ease of further updates, enhancements and
modifications.

From our study we can conclude that agent architectures can be used in digital library
applications such as DLNET where a great need for interoperability, rapid application
development and automation exists. This study started with these benefits in mind
and we were able to give sufficient evidence that further work in this direction will be
very useful. We therefore recommend future research work in the areas listed in
section 8.2. Other possibilities such as streamlining of the authentication and
licensing procedures, security of the application and improvement in search facilities
can also be explored.

The proposed application
 has fully automated the content review process of DLNET.
 has provided easy way to change configuration parameters.
 improved the response time of the application by 57% to 82%.
 improved the maintenance time of the application by 16% to 67%.
 improved the reusability by 1% to 26%.

These results can be further generalized beyond the current study and sample, by
following these procedures for other modules of DLNET.

42

As a result of these quasi-experiments and the study, we concluded that the proposed
content review process using software agents is a good strategy for the redesign of
DLNET.

8.2 Open Issues

We would like to highlight that in this thesis work, we had planned to have the two
applications run exactly the same but some modules of the existing application were
found to be not working like the classes that are used to send email messages to
reviewers once the reviewers have been selected. We had to conduct our experiments
by generating logs of such messages. It would have been better if we could really
send the messages and really put the applications to use.
We have proved by our experiments that the proposed application will be faster
(better response time) and easier to maintain but some work needs to be done to make
this application live and really useful. What we have done is simulation of the real life
load conditions. Actual utility by putting the application to real life situations remains
to be worked upon.

8.3 Future work

We have implemented an agent based content review process for DLNET in this
work but this is just the beginning. It can be considered as a start of a series of
enhancements to the existing system not only limited to content review but the whole
DLNET application.
We propose DLNET to have a design like the architecture of Next Generation Digital
Library where we have the J2EE infrastructure to provide the basic services of the
library and the use of software agents to administer the advanced facilities and
features.
Following is a list of additions that can be investigated to be implemented with
software agents to improve the current system:-

8.3.1 Content/ Reviewer Harvesting

The agents can be used to look for the resources available on the internet. There are a
lot of fields in our taxonomy where we lack the resources in our library. The
application can be enhanced to look for content in such areas.
We can extend our application to have agents that can contact the academia for
students and professors informing about our library. They can then choose to become
members and contribute to the growth of DLNET.

43

8.3.2 Increase Membership

Agents can be used to advertise the Digital Library to university students and
academia professionals to encourage them to use the library. The use of the library
will only give us insight into what is required to make it all the more user friendly.

8.3.3 Optimize Reviewer Selection

The reviewer selection in the current setup can be further optimized by first getting
more information about the users when they register as reviewers and then this data
can be used when our process is selecting the reviewers.

44

References

1. Information Agents: A new Challenge for AI Daphne Koller and Yoav Shoham,
Stanford University –
This work provides a stimulus for using software agents, where they are most
applicable etc.

2. Web Economics: A case for Agent Based Digital Libraries Innes A. Ferguson, Jorg
Muller, Markus Pischel and Michael Woldridge.
This work presents the ZunoDL and how agents are being used to build digital
libraries.

3. Agent-Based Digital Libraries: Driving the Information Economy. David Derbyshire,
Innes A. Ferguson, Jorg P. Muller, Markus Pischel and Michael Wooldridge

4. The university of Michigan Digital Library Service Market Society Jose M.Vidal,
Tracy Mullen, Peter Weinstein, Edmund H.Durfee, University of Michigan.
The architecture of agent based digital library of University of Michigan is presented
in this paper.

5. The agent architecture of the University of Michigan Digital Library E.H. Durfee,
D.L.Kiskis, W.P.Birmingham
Another paper describing the agent based digital library at University of Michigan.

6. Paying their way: Commercial Digital Libraries for 21st century – Innes A. Ferguson
and Michael J.Wooldridge, Zuno Ltd.
Also at http://www.dlib.org/dlib/june97/zuno/06ferguson.html

7. Comparison of Two Component Frameworks: The FIPA-Compliant Multi-Agent
System and The Web-Centric J2EE Platform – Michelle Casagni, Margaret Lyell

8. Performance Testing of Software Systems – Filippos I.Vokolos, Elaine J. Weyuker

9. http://jade.cselt.it/doc/JADEProgramming-tutorial-for-beginners.pdf
A manual for beginners of Jade agent architecture.

10. Technical aspect of Next Generation Digital Library Project: Hiroshi Mukaiyama
The architecture of the Next Generation Digital Library and reasons of adoption of
the architecture are described here.

11. A Java-based Smart Object Model for use in Digital Learning Environments – Vara
Prashanth Pushpagiri
A report on the Learning Object Model of DLNET.

45

12. Next Generation Digital Library – Architecture and Implementation – Hiroshi
Mukaiyama
Another paper on the agent based digital library highlighting the benefits of using
agents.

13. Early Performance Testing of Distributed Software Applications –Giovanni Denaro,
Andrea Polini, Wolfgang Emmerich - Suggests ways to test the performance of a
distributed application from the design phase itself.

14. Jade A White Paper – F.Bellifemine, G.Caire, A.Poggi, G.Rimassa
An introductory paper on Jade agent architecture.

15. http://jade.cselt.it/
The official website of jade agent architecture from where it may be downloaded and
there are various links to numerous related resources.

16. Tools and Techniques for Performance Measurement of Large Distributed Multiagent
Systems – Aaron Helsinger, Richard Lazarus, William Wright, John Zinky

17. http://www.dlib.org/metrics/public/papers/The_Dlib_Test_Suite_and_Metrics.pdf -
Gives an idea about collecting software metrics to compare the performance
attributes.

18. Assembling and Enriching Digital Library Collections – David Brainbridge, John
Thompson and Ian H. Witten
This paper highlights the content collection and processing for Digital Libraries in
particular for Greenspan Digital Library

19. An Agent-Based Hypermedia Framework for Designing and Developing Digital
Libraries – Michail Salampasis, John Tait and Colin Hardy
This paper presents another agent based model for University of Sunderland Digital
Library

20. Automatic Document Metadata Extraction using Support Vector Machines – Hui Han
C. Lee Giles, Eren Manavoglu, Hongyuan Zha
This literature presents some ideas about automatic metadata extraction from content.

21. Research Issues for Digital Libraries - David A. Forsyth
This paper focuses on some research issues associated with digital libraries of which
particularly of our interest were metadata generation.

22. Developing a Digital Library Of Computer Science Teaching Resources - Scott
Grissom, Deborah Knox, Elana Copperman, Janet Hartman, Marja Kuittinen, David
Mutchier, Nick Pariante
This paper presents some ideas for content collection and review for digital libraries.

46

23. Agent-based Information Retrieval – http://www.cs.umbc.edu/abir/
This article enhances our understanding about agent for use in information retrieval
applications.

24. Software Metrics : A Rigorous Approach – Norman E Fenton
A book which guided the experiment design and analysis of this work.

25. Analytical Usability Evaluation for Digital Libraries: A Case Study – Ann Blandford,
Suzette Keith, Iain Connell & Helen Edwards.
This study analysis various techniques for comparing the usability of digital libraries.

26. Strategic Directions in Electronic Commerce and Digital Libraries: Tpwards a Digital
Agora – Nabil Adam and Yelena Yesha et al.
A survey paper comparing electronic commerce and the digital libraries concepts.

27. Data Mining Challenges for Digital Libraries – Robert L. Grossman
A paper highlighting the future challenges for digital libraries.

28. AGS: Introducing Agents as Services Provided by Digital Libraries – J.Alfredo
Sanchez, John J. Leggett, John L. Schnese.

29. http://www.dlnet.vt.edu

30. An approach to Performance Evaluation of Software Architectures – Simonetta
Balsamo, Paola Inverardi and Calogero Mangano

31. Capacity and Performance Analysis of Computer Systems – James N. Robinson

32. Cougaar Architecture Document – A BBN Technologies Document

33. Jade Programmers’ Guide – Fabio Bellifemine, Giovanni Caire, Tiziana Trucco,
Giovanni Rimassa

34. Jade Administrator’s Guide - Fabio Bellifemine, Giovanni Caire, Tiziana Trucco,
Giovanni Rimassa

35. Analysing Internet Software Retrieval Systems: Modelling and Performance
Comparison – Jose Merseguer, Javier Campos and Eduardo Mena

36. JADE A FIPA2000 Compliant Agent Development Environment – Fabio
Bellifemine, Agostino Poggi, Giovanni Rimassa

37. An Agent Based Approach to the Construction of Floristic Digital Libraries -
J.Alfredo Sanchez, Cristina A.Lopez, John L. Schanase.

38. A Model for Virtual Intelligent Libraries – Guadalupe Munoz Martin

47

39. http://www.isogenic.info/html/13__sample_size.html
40. http://www.son.wisc.edu/rdsu/library/Sample%20size.pdf

48

Appendix A - Definitions/ Terms used

DLNET

 The digital library network for Engineering and Technology is a project funded by
National Science Digital Library (NSDL) initiative of National Science Foundation. It is
a collaborative effort of four institutions, namely, the American Society for Engineering
Education, the Institute of Electrical and Electronics Engineers, Inc., Iowa State
University and Virginia Tech. It is a J2EE based application developed and maintained
with the support of National Science Foundation. DLNET at http://www.dlnet.vt.edu is
envisaged as a platform for information discovery, interaction, content-building and
distribution that will support pedagogy and learning in Engineering and Technology. It
was launched in September 2000 and DLNET got operational in 2003. [29]

Software Agent

A software agent is a high level abstraction that significantly simplifies the process of
building complex systems, is defined in terms of its behavior. It is characterized by being
autonomous, communicative with users and other agents and being perceptive to
surroundings.

Learning Resource

A structured electronic resource that encapsulates high quality information in order to
facilitate learning and pedagogy has a stated objective and a targeted audience [11]. Note:
The protocol is not to start a sentence with a reference

Independent/ Dependent Variables

As per [24], an experiment usually involves the application of well crafted and carefully
controlled manipulations to some subject of study, followed by a series of measurements
that have been selected or developed to characterize the effects of different manipulations
on the subject. In the language of experimentation, each manipulation that is applied to
the subject of study is called an independent variable and the outcome measure used to
characterize the effects of the independent variable in the subject is called the dependent
variable.

49

JADE

Jade is an enabling technology, a middleware for the development and run-time
execution of peer-to-peer applications which are based on the agents paradigm and which
can seamlessly work and interoperate both in wired and wireless environment [14].

Reliability

“Reliability is the probability of a device performing its purpose adequately for the period
of time intended under the operating conditions encountered.” – [Billington and Allen
(1983)] Note: Be consistent in the use of references. Recommend you use [].
“Software Reliability is defined as the probability of failure free operation of a computer
program in a specified environment for a specified time” – [Musa and Ianino (1987)]

Error

A discrepancy between a computed, observed or measured value or condition and the
true, specified, or theoretically correct value or condition.

Failure

The termination of the ability of a functional unit to perform its required function.
[ANSI/IEEE Std 729-1983]

Peer to Peer
Peer to peer computing model is the type in which all the participating nodes have equal
capabilities. Another distinguishing factor is that any node can initiate communication as
opposed to a client server model in which only the client can initiate communication with
the server.

50

Appendix B - Manual of the new application module
implementing Content Review Process

Introduction

The proposed application using software agents is based on FIPA (Foundation for
Intelligent Physical Agents) based agent architecture named JADE (Java Agent
Development Environment). The official website of jade is http://jade.cselt.it. It is a
java based infrastructure and new agents are developed in java language. The
infrastructure provides a library of classes that the agents can use, a runtime
environment for the agents and also graphical tools for administering the applications.

Additions/ Modifications

New agents can be added as per the following procedure:-
1. Identify the need for a new agent and the behaviors it needs to have.
2. Write the Agent class.
3. The agent has to be registered in the Service Directory.
4. The behaviors need to be added.
5. The communication with other agents has to be streamlined.
6. The messages to other agents can then be added in whatever sequence as per the

desired requirement.

With an example we’ll show how to add another agent to the application. In the
current application, we have a few agents and suppose we want to add another agent
to the system. Say we want to add another agent that optimizes the current selection
of reviewers. With reference to chapter 5 describing the current application, the
Reviewer and the User agents would like to communicate with this new agent.

Developing the new agent, AgentOptimizer, we want to first register the agent so that
other agents that want to communicate with it can find this new agent. This is done as
follows:-

protected void setup()
 {

ServiceDescription sd = new ServiceDescription();
 sd.setType("optimizer");
 sd.setName(getLocalName());
 register(sd);

}
void register(ServiceDescription sd)
{

51

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
dfd.addServices(sd);
try {

DFService.register(this, dfd);
}
catch (FIPAException fe) { fe.printStackTrace(); }

}

On the other side, the calling agent will first look for the agent of the type “optimizer”

// trying to look for an agent with the optimizer type of service
 DFAgentDescription dfd1 = new DFAgentDescription();
 ServiceDescription sd1 = new ServiceDescription();
 sd1.setType(" optimizer");
 dfd1.addServices(sd1);
 DFAgentDescription[] result = DFService.search(myAgent, dfd1);

AID ag_optimizer = new AID();
ag_optimizer = result[0].getName();

And then send appropriate message to initiate action.

ACLMessage snd_msg1 = new ACLMessage(ACLMessage.INFORM);
snd_msg1.setContent(“OPTIMIZE”);
snd_msg1.addReceiver(ag_optimizer);
send(snd_msg1);

Adding a behavior

New requirements or enhancements can be added to the agents as additional
behaviors. The code for the behavior of an agent goes in the action method of the
agent class file.
Since agents only respond to some messages they receive from other agents, we first
have to receive the message and then take appropriate action based on the message
we receive.

public void action()
{

// Initialize local variables
int count=0;
String msg;

// Receive the message
ACLMessage rcv_msg= receive();

if (rcv_msg!=null)

52

{
// Take appropriate action based on the message content

if (AgentStarter.STARTTIME.equals(msg))
{

// Do whatever needs to be done.
// The task details

} // end of if (AgentStarter.STARTTIME.equals(msg))

53

Appendix C– Sample Logs Created

Log created by the agent based application lists the reviewers selected

Today is Jun 29, 2004 Resources found = 16
Resource = DLNET-06-28-2002-0477 Reviewer found = danieleewww
Resource = DLNET-06-25-2004-0138 Reviewer found = seemamitra
Resource = DLNET-06-27-2004-0141 Reviewer found = sreviewer3
Resource = DLNET-06-27-2004-0142 Reviewer found = sreviewer4
Resource = DLNET-06-27-2004-0143 Reviewer found = sreviewer
Resource = DLNET-06-28-2004-0144 Reviewer found = sreviewer3
Resource = DLNET-06-28-2004-0145 Reviewer found = hanoudi
Resource = DLNET-06-28-2004-0226 Reviewer found = sreviewer
Resource = DLNET-06-28-2004-0227 Reviewer found = sreviewer2
Resource = DLNET-06-28-2004-0229 Reviewer found = sreviewer4
Resource = DLNET-06-28-2004-0228 Reviewer found = sreviewer3
Resource = DLNET-06-28-2004-0230 Reviewer not found
Resource = DLNET-06-28-2004-0230 Guest Reviewer found = Vara Prashanth
Resource = DLNET-06-27-2004-0139 Reviewer found = seemamitra
Resource = DLNET-06-27-2004-0140 Reviewer found = sreviewer2
Resource = DLNET-06-28-2004-0231 Reviewer not found
Resource = DLNET-06-28-2004-0231 Guest Reviewer found = Vara Prashanth
Resource = DLNET-06-29-2004-0146 Reviewer found = sreviewer3

Logs created by agent based application to log the response time of the
application

Today is Jul 3, 2004 Time Review Started = 1088893359406
 Time Guest Reviewer Found for one resource = 1088893360593
 Time Guest Reviewer Found for one resource = 1088893360843
 Time Guest Reviewer Found for one resource = 1088893361093
 Time Guest Reviewer Found for one resource = 1088893361328
 Time Reviewer Found for one resource = 1088893361421
 Time Reviewer Found for one resource = 1088893361609
 Time Guest Reviewer Found for one resource = 1088893361906
 Time Guest Reviewer Found for one resource = 1088893362125
 Time Guest Reviewer Found for one resource = 1088893362375
 Time Reviewer Found for one resource = 1088893362484
 Time Reviewer Found for one resource = 1088893362656
 Time Reviewer Found for one resource = 1088893362828
 Time Reviewer Found for one resource = 1088893363015

54

Logs created by the existing application to log the reviewers selected and the
time taken by the application

Today is Jun 29, 2004 Time Review Started = 1088522158343
Resource = DLNET-06-28-2002-0477
Reviewer Found = danieleewww
Resource = DLNET-06-25-2004-0138
Reviewer Found = seemamitra
Resource = DLNET-06-27-2004-0141
Reviewer Found = sreviewer3
Resource = DLNET-06-27-2004-0142
Reviewer Found = sreviewer4
Resource = DLNET-06-27-2004-0143
Reviewer Found = sreviewer
Resource = DLNET-06-28-2004-0144
Reviewer Found = sreviewer3
Resource = DLNET-06-28-2004-0145
Reviewer Found = hanoudi
Resource = DLNET-06-28-2004-0226
Reviewer Found = sreviewer
Resource = DLNET-06-28-2004-0227
Reviewer Found = sreviewer2
Resource = DLNET-06-28-2004-0229
Reviewer Found = sreviewer4
Resource = DLNET-06-28-2004-0228
Reviewer Found = Vara Prashanth
Resource = DLNET-06-28-2004-0230
Reviewer Found = Vara Prashanth
Resource = DLNET-06-27-2004-0139
Reviewer Found = seemamitra
Resource = DLNET-06-27-2004-0140
Reviewer Found = sreviewer2
Resource = DLNET-06-28-2004-0231
Reviewer Found = Vara Prashanth
Resource = DLNET-06-29-2004-0146
Reviewer Found = Vara Prashanth
Time Review Process Ended = 1088522165265

55

Appendix D– Sample Code of the Agents created

package dlnet_jade;

import jade.core.Agent;
import jade.core.AID;
import jade.core.behaviours.*;
// To add Directory Service Facility
// The DF associates service descriptions to Agent IDs (AID)
import jade.domain.DFService;
import jade.domain.FIPAAgentManagement.*;
import jade.domain.FIPAException;

//import jade.domain.AMSService;
//import jade.domain.FIPAAgentManagement.*;

import jade.lang.acl.*;

public class AgentStarter extends Agent
{

// These are all the environment variables and other constants used in the application

public final static String SEARCHREVIEWER = "SEARCHREVIEWER";
public final static String SEARCHGUESTREVIEWER =

"SEARCHGUESTREVIEWER";
public final static String REVIEWERNOTFOUND =

"REVIEWERNOTFOUND";
public final static String EMAILREVIEWER = "EMAILREVIEWER";
public final static String EMAILGUESTREVIEWER =

"EMAILGUESTREVIEWER";
public final static String STARTREVIEW = "STARTREVIEW";
public final static String EMAILMESSAGE = "You have a resource to review.";

public final static String REVIEWSTARTED = "REVIEW";
public final static String REVIEWSTART = "RVWSTART";

// public final static String REVIEWSTART = "REVIEW";

public final static String STARTTIME = "STARTTIME";
public final static String REVFOUND = "REVFOUND";
public final static String GUESTFOUND = "GUESTFOUND";
public final static String NOREVFOUND = "NOREVFOUND";

// Environment Variables

56

public final static int NUM_REV_TO_FIND = 1;
public final static int MAX_REVIEW_LOAD = 3;
public final static int MAX_RECENT_REVIEW_LOAD = 2;

// Location of documentation

public final static String DL_docBase =
"c:/dlnet/" ;
// Location of content storage

public final static String DL_LO_Record_Location = new
String(DL_docBase +

"repository/tempStorage/contentStorage/") ;
// Manifest Location
public final static String authorEmailSS = new String(DL_docBase +

"systemFiles/manifestDisplay/getAuthorEmail.xsl");
// User Profile Location
public final static String DL_UserProfile_Loc = new

String(DL_docBase +
"repository/userProfiles/") ;

 protected void setup()
 {

ServiceDescription sd = new ServiceDescription();
 sd.setType("starter");
 sd.setName(getLocalName());
 register(sd);

// Send messages to the Agent Content to start looking for content to be reviewed
// Send this message every day

addBehaviour(new MyCyclicBehaviour(this));
}

class MyCyclicBehaviour extends CyclicBehaviour
{

public MyCyclicBehaviour(Agent a)
{

super(a);
}
public void action()
{

57

AID ag_mon = new AID();

 try {

// trying to look for an agent with the content type of service
 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd1 = new ServiceDescription();
 sd1.setType("content");
 dfd.addServices(sd1);

 DFAgentDescription[] result = DFService.search(myAgent, dfd);
// System.out.println(result.length + " results");
 if (result.length>0)
 {
 // System.out.println("The searched agent is "); // + result[0].getName());

ACLMessage msg = new
ACLMessage(ACLMessage.INFORM);

msg.setContent(STARTREVIEW);
AID dest = result[0].getName();

msg.addReceiver(dest);
// Send the message to a Content Agent
System.out.println("Sending message to COntent Agent

\n");
send(msg);

}
// trying to look for an agent with the monitor type of service
 DFAgentDescription dfd1 = new DFAgentDescription();

 ServiceDescription sd2 = new ServiceDescription();
 sd2.setType("monitor");
 dfd1.addServices(sd2);

System.out.println("Looking for monitor");
 DFAgentDescription[] result1 = DFService.search(

myAgent, dfd1);

 if (result1.length>0)
 {
 System.out.println("The searched Monitor agent is ");

//+ result[0].getName());

ag_mon = result1[0].getName();
ACLMessage msg = new

ACLMessage(ACLMessage.INFORM);
msg.setContent(STARTTIME);
msg.addReceiver(ag_mon);

58

// Send the message to the monitor
Agent

System.out.println("Sending
message to Monitor Agent \n");

send(msg);

}

 }
 catch (FIPAException fe)
 {

fe.printStackTrace();
}

//block(1500000000) ;
try
{

Thread.sleep(500000);
}
catch(Exception e)
{}
// This interval can be set to whatever frequency we want
// the content search done

}

}

void register(ServiceDescription sd)
{

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
dfd.addServices(sd);

try {
DFService.register(this, dfd);

}
catch (FIPAException fe) { fe.printStackTrace(); }

}

}

59

Vitae

Seema Mitra nee Aggarwal, daughter of late Sh. Bal Chandra Agrawal and Kusum
Aggarwal, was born on September 15, 1971 in New Delhi, India. She earned her
Bachelor’s degree in Instrumentation and Control Engineering from Delhi Institute of
Technology, New Delhi in August 1992. Having worked on a variety of engineering jobs
like consultancy and software development in leading organizations viz. Engineers India
Ltd., Infosys Technologies Ltd. and NIIT Ltd. over a period of 9 years, she got back to
academics in Spring of 2003. Since Jan 2003 she has been involved in pursuance of
Masters in Computer Science at Virginia Tech. After finishing her graduate school, she
wants to get back to research oriented work in the field of Software Engineering and
Design.

