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Xcel	  Energy	  Service	  Areas	  

5736 MW (wind) 
(highest in continental US) 
 
Moving toward 40% 
 
Obtain up to 60% of energy 

from wind at some times 

Provides	  good	  geographical	  diversity	  for	  research	  and	  tes4ng	  



Wind	  Power	  Forecas#ng	  Necessary	  
for	  Effec#ve	  Grid	  Integra#on	  

Cedar	  Creek	  Wind	  Farm,	  Northeast	  Colorado	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Photo	  by	  Carlye	  Calvin,	  UCAR	  

Ø Day Ahead forecasting – Energy trading and planning 
Ø Short-term forecasting – Grid integration and 

stabilization 
Thus, an effective forecasting system should target both 
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Scien4fic	  Advances	  in	  Wind	  Power	  Forecas4ng	  	  
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Dynamic	  Integrated	  foreCast	  System	  
	  

DICast	  Integrator	  System	  
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Customized Power  
Conversion Curves  

Gerry	  Wiener	  

Observa#on-‐based	  power	  curves	  represent	  the	  site	  beIer	  than	  
manufacturers’	  power	  curves	  

	  



Wind Plant 2 Wind Plant 1 

§  WRF RTFDDA exhibits exceptional capability for forecasting wind ramps 
in term of their timing, rates and magnitudes.  

§  Rapid cycling (hourly) WRF RTFDDA is recommended where 0 - 6h 
ahead wind ramp prediction is critical.  

OBS 
RTFDDA 
GFS 
NAM 

WRF-Real Time 4D Data Assimilation (RTFDDA) 
Assimilates Wind Farm Data 



WRF- RTFDDA Improves  
Short Term Forecasts (0-9h) 



Wind	  Energy	  Ramp	  Event	  Nowcas#ng	  

VDRAS	  
	  
Variational	  
Doppler	  Radar	  
Analysis	  System	  

+	  
Expert	  System	  
(obs-‐based)	  
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Observation-based Ramp Forecasting 
  

Wind Farm 
18z Run 

15min Fcst (valid 18:15z) 
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10m Wind-Speed 
Observing Stations 

x 

12km 

Ramp Metrics 
calculated at  

each site using 
current wind-

speed and 
previous 15min  

wind-speed 

18:00z obs -> 18:30z fcst 
17:45z obs -> 18:15z fcst 
17:30z obs -> 18:00z fcst 
17:15z obs -> 17:45z fcst 

etc 

18:00z obs -> 18:15z fcst 
17:45z obs -> 18:00z fcst 
17:30z obs -> 17:45z fcst 
17:15z obs -> 17:30z fcst 

etc 

18:00z obs -> 18:45z fcst 
17:45z obs -> 18:30z fcst 
17:30z obs -> 18:15z fcst 
17:15z obs -> 18:00z fcst 

etc 

18:00z obs -> 19:00z fcst 
17:45z obs -> 18:45z fcst 
17:30z obs -> 18:30z fcst 
17:15z obs -> 18:15z fcst 

etc 



DICast System Blends Output from Several 
Numerical Weather Prediction Models 

 
 

Public Service of Southwestern Public Service Company  
Total Power, 03/08 Ramp 
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Probabilistic Power Prediction 
With Analog Ensemble Method 
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Probabilistic Forecasting Using Analog Approach 
Compares Well with Deterministic DICast 

Lead Time (hours) 

DICAST (RMSE = 2.34 ms-1) 
AnEn (RMSE = 2.39 ms-1) 
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Probabilistic Forecasting Using Analog Approach 
Compares Well with Deterministic DICast 
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Icing Forecasting System ExWx Provides 
Categorical Forecast of Icing 

§  Predicting wind turbine icing is critical for power 
trading on open market and short term load balancing. 

§  In order to successfully develop a robust wind turbine 
icing forecasting system, a truth dataset must be 
developed. 

§  Limited documentation of icing events and monitoring 
equipment make identifying icing after the fact difficult. 

 
§  Plus, there is a “Big Data” problem. 



Datasets For Icing Forecast 

http://www.newavionics.com/Images/9734_410x359.jpg 

PRIMARY 

SECONDARY 

Power Data 

DICast Data 

Sensor Data 

NWS Data 

METAR Data 



§  WRF icing potential 
•  Evaluates all WRF model levels < 1km 
•  Combines model level height, model 

predicted supercooled liquid water, and 
temperature at each level using fuzzy 
logic maps (configurable) 

•  Final potential at each WRF grid point is 
the maximum of the icing potential at 
each level < 1km 

§  DICast icing potential 
•  Conditional probability of icing (CPOI) 

deterministic forecast from DICast 
•  Combines five NWP model solutions 
•  Typically one site per farm, more in some 

cases 

ExWx Uses WRF-RTFDDA and DICast Blended 
NWP Output to Compute Icing Potential  
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Icing Forecasting System Provides 
Categorical Icing Forecast 

Icing potential < 0.5 inside window 
Icing potential > 0.5 inside window 
Icing potential > 0.5 outside window 
Icing potential < 0.5 outside window 

§  Note no missing data-wherever 
DICast was missing the WRF is used 
exclusively (and vice-versa) 

§  Threshold of 0.5 is configurable 
based on experience of operators  

§  Event well forecast by ExWx!!! 

ExWx icing potential forecasts for all 
ExWx runs affecting the event 
window (8 hours centered on 00Z) 

12/25/14 

12/26/14 



Wind Power Forecasts  
       Savings for Ratepayers 

Drake Bartlett, Xcel 

Also:  saved  > 267,343 tons CO2 (2014) 

  
       Forecast MAE   Percentage   Savings   
2009        2014*  Improvement                 
 

16.83%       10.10%   40%        
  

$49,000,000 
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CO-Labs - Governor’s Award 2014 for Sustainability 



Summary 

§  NCAR’s comprehensive variable power forecasting system integrates 
recent advances in forecasting at a range of time scales including 
§  Ramp forecasts 
§  Probabilistic forecasting  
§  Forecasting of extreme events  
 

§  Day-ahead forecasting system provides significant savings for ratepayers. 

§  Effectiveness of a forecasting system for efficient integration of variable 
generation depends on the quality and quantity of data. 

§  More data (amount, frequency) is better, however,… 
 First data from existing sources should be: 

•  Standardized  
•  Quality controlled 
•  Delivered in timely manner, and 
•  Archived for future use (e.g., training for machine learning algorithms). 
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