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ABSTRACT
In this paper we document our approach to overcoming service dis-
covery and con�guration of Apache Hadoop and Spark frameworks
with dynamic resource allocations in a batch oriented Advanced
Research Computing (ARC) High Performance Computing (HPC)
environment. ARC e�orts have produced a wide variety of HPC
architectures. A common HPC architectural pa�ern is multi-node
compute clusters with low-latency, high-performance interconnect
fabrics and shared central storage. �is pa�ern enables processing
of workloads with high data co-dependency, frequently solved with
message passing interface (MPI) programming models, and then
executed as batch jobs. Unfortunately, many HPC programming
paradigms are not well suited to big data workloads which are o�en
easily separable. Our approach lowers barriers of entry to HPC
environments by enabling end users to utilize Apache Hadoop and
Spark frameworks that support big data oriented programming
paradigms appropriate for separable workloads in batch oriented
HPC environments.
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1 INTRODUCTION
Developing applications that use existing HPC environments for big
data tasks presents several challenges. �e programming paradigms
for big data frameworks and HPC environments are incongruent
and do not precisely overlap. Application level development frame-
works for traditional HPC applications are focused on problems
with high data co-dependency that can require higher levels of pro-
grammer e�ort[2]. Additionally, there are impedance mismatches
between HPC architectures and big data tooling drawn from the
Hadoop ecosystem[8]. �ese mismatches in design paradigms and
architectures can be empirically revealed. For example, Spark scal-
ing on HPC systems is examined in [4] which indicates a scalability
limit of O(102) cores. Regardless, we seek to evaluate the use of
HPC clusters with tooling that o�ers programming models that
be�er align with separable workloads.

In this paper we develop and evaluate deployment models of the
Apache Hadoop and Spark frameworks on existing batch oriented
HPC clusters. We created a framework to automate the creation
of deployment variations and monitor the execution of evaluation
iterations that accommodates dynamic resource allocations. We
selected the Apache Hadoop and Spark frameworks because they
provide programming paradigms that are aligned with the analyti-
cal requirements of big data oriented problems where the workload
is generally separable (or even arbitrarily separable).

�e contributions of our work are:
(1) A framework that enables end-user, on demand provision-

ing of Apache Hadoop and Spark as programming frame-
works in a HPC batch environment.

(2) An evaluation of Apache Hadoop and Spark against stan-
dard benchmarks when deployed in an HPC batch envi-
ronment as a job.
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We present an overview of Virginia Tech’s (VT) Advance Re-
search Computing (ARC) cluster operations in section 2. Next, we
describe our implementation in section 3. In section 4, we evaluate
the performance of Apache Hadoop and Spark overlaid on dynami-
cally allocated compute resources by adjusting the deployment to
handle service location and service discovery as well as resource
and topology discovery. �en in section 6 we discuss two related
works. Finally, we provide conclusions and propose future work in
section 7.

2 BACKGROUND
Centrally managed HPC clusters at Virginia Tech typically run
batch jobs in Portable Batch System (PBS) executed by aMoab work-
load manager with resources allocation controlled by a TORQUE
resource manager1. �e managed HPC clusters come with a variety
of so�ware modules (e.g. compilers, MPI stacks, and high level
so�ware) that are user selectable via the Lmod[14] environment
modules system2. Users submit batch jobs from login nodes com-
mand line environment, typically by logging into the login node
via a secure shell client.

2.1 Batch Job Submission
A user submits a batch script (in PBS format) which speci�es, at
minimum, the number of nodes and cores required, the expected
wall-clock time the job will run, and a job name. Each cluster o�ers
separate job queues that target speci�c compute-node types. Also,
each queue speci�es job admission criteria. A�er a job is accepted
to a queue, Moab advances the job through the job queue until it
reaches the top. �en TORQUE allocates the requested resources
(at VT using a MINRESOURCE policy). �e batch script executes
on a head node (AKA ”Mother-Superior” node). �e batch script
can start processes on the head node or via remote access to the
worker nodes (AKA ”Sister” nodes).

As an example, a batch job with three compute-nodes allocated
is shown in Figure 1 and Figure 2 . Figure 1 shows the Hadoop Na-
meNode (NN) and YARN ResourceManager (RM) service daemons
running on the head node. Each of the service daemons is executed
in a Java Virtual Machine (JVM). Each JVM is contained by a Unix
process. Figure 2 shows the Hadoop DataNode (DN) and YARN
NodeManager (NM) running on each of the worker compute-nodes
allocated to the job. Like the daemons on the mother-superior, the
Hadoop/YARN daemons are executed by JVMs contained within
Unix processes.

�e PBS job describes the resource requirements a user expects
will result in a runtime environment with su�cient resources ca-
pable of running the user’s application. Dynamically adjustable or
con�gurable runtime environments (i.e. virtual machines, contain-
ers, and application level virtual machines like the JVM) present
deployment challenges. �e application con�guration must be ad-
justed to leverage available resources. In a static deployment model
resources are known a priori so the application con�guration is
created before the application is executed.

1TORQUE and Moab details can be found in [5] and [6] respectively. Additional,
documentation is at [7].
2VT ARC So�ware Modules - h�ps://secure.hosting.vt.edu/www.arc.vt.edu/
so�ware-modules/
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Figure 1: Mother-Superior (head node) running Hadoop Na-
meNode and YARN ResourceManager daemons.
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Figure 2: Sister (worker node) running Hadoop DataNode
and YARN NodeManager daemons.

2.2 Programming Paradigms
While HPC clusters are typically designed for workloads with high
data co-dependency, o�en programmed with MPI approaches, our
intuition is that provisioning the Spark framework will lower bar-
riers of entry for users with big data type separable workloads.
We seek to overcome an impedance mismatch between workload
and framework while leveraging existing compute resources. �e
Hadoop ecosystem contains a variety of big data oriented frame-
works and tooling. We selected the Apache Hadoop and Spark
frameworks because they are core applications that also support
purpose focused extensions for machine learning, text mining,
graph analysis, and data manipulation (i.e. ability to extract, trans-
form, and load unstructured data sources)[16].

Because we are deploying the frameworks without elevated per-
missions we must dynamically generate a PBS script and con�gu-
ration with competing goals:

• Be a good citizen
• Achieve acceptable performance

Be a good citizen - don’t abuse shared resources by over sub-
scribing from the shared HPC cluster. �at is, don’t create jobs
that request excessive resources for the expected workload or in a
manner that denies other users access to shared resources. At the
same time we desire that our jobs complete in a timely manner.

https://secure.hosting.vt.edu/www.arc.vt.edu/software-modules/
https://secure.hosting.vt.edu/www.arc.vt.edu/software-modules/
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An Apache Hadoop or Spark cluster deployment is comprised
of several interacting services that communicate and coordinate
action over network connection which are typically TCP/IP based3.
Some of the core services for Hadoop/YARN are shown in �gure 1
and �gure 2.

Two common distributed systems design issues were quickly
revealed. �e framework services must be able to locate each other,
so they can establish communication for coordination ofwork e�ort;
and resource allocations are not static. We need means to discover
services and resource topology so we can encode the con�guration
parameters for service daemons and then inject resource aware
con�guration into the allocated runtime environment.

2.3 Service Discovery and Service Location
More formally, we must solve a Service Location and Service Discov-
ery problem for a distributed system overlaid onto a set of resources.
�ere are several ways to approach service discovery and service lo-
cation: static placement during provisioning with service locations
encoded in con�guration �les (e.g. Hadoop is o�en provisioned
onto a dedicated set of compute-nodes with known network con�g-
urations); dynamic discovery with registration in a service directory
(e.g. mini-DNS); or hybrids4. �e TORQUE resource manager pro-
vides an environment variable $PBS NODES FILE that contains the
location of a �le that can be parsed into a list of host names for the
compute-nodes allocated to a speci�c job. �e parsing technique is
used in Open MPI and myHadoop[13].

2.4 Resource and Topology Discovery
Hardware topology is known to impact distributed systems perfor-
mance. Apache Hadoop and Spark can both be con�gured to lever-
age network topology to reduce communications overhead. We
must also adjust some aspects of the deployment to accommodate
resource topology and resource availability, that is we must also
address Resource and Topology Discovery. While the TORQUE/Moab
scheduling process can be con�gured to accommodate some locality
in job descriptions the con�guration at VT does not incorporate this
into scheduling decisions. Also, the TORQUE resource manager
and Moab workload manager do not handle availability of some
resources (e.g. TCP/IP port allocations) which means this must be
handled by the frameworks daemons when they begin execution
on allocated compute-nodes.

3 IMPLEMENTATION
Our implementation and design strategy was driven by the types of
workloads we envision are appropriate for the system under design.
Additionally, our design goals include: ease of use for novice HPC
users, no use of elevated privileges, and non-persistent deployment.
We intend to improve accessibility to HPC cluster resources by
enabling the use of alternative programming paradigms that lower
barriers of entry.

Traditional HPC clusters are architected around shared storage
like the open source Lustre File System 5 or IBM’s General Parallel
3Portions of the Apache Hadoop stack, including Spark, were modi�ed to use Remote
Direct Memory Access (RDMA) instead of TCP/IP by [15] and [10].
4As and example, the Apache Ambari project at h�ps://ambari.apache.org/ supports
dynamic provisioning of clusters onto a static set of compute-nodes.
5Lustre - h�p://lustre.org/about

File System (GPFS)6 with high performance interconnect fabric
such as, In�niBand or Intel Omni-Path Architecture (OPA).

At the other extreme, Hadoop and Spark are designed for ’shared
nothing architecture’. Workloads are generally: uniform - com-
posed of identically sized segments; modular - segmented a pri-
ori according to some extrinsic knowledge about the data; arbi-
trary - workload can be segmented arbitrarily. �is leads to some
impedance mismatches between the Hadoop frameworks and HPC
compute architecture. Additionally, Hadoop uses the Apache Yet
Another Resource Negotiator (YARN) to manage resources across
the running framework cluster. �is means our approach will incur
overhead costs of an additional resource management framework
within the context of the PBS job runtime environment.

3.1 So�ware and Data requirements
We implemented our framework to support Apache Hadoop version
2.7.3 (which includes YARN), and Spark version 2.1.0. Virginia
Tech’s ARC HPC clusters use Adaptive Computing’s TORQUE
resource manager version 4.2 and Moab workload manager version
7.2 for resource management and scheduling. We generated data
for our analysis with Hadoop Bench and Spark Bench drawn from
the HiBench big data benchmark suite[9].

3.2 Design Strategy
Enabling additional programming models and dynamic deploy-
ment o�ers the opportunity to improve resource utilization of HPC
clusters. Dynamic deployment sizes support scaling the resource
requirement to the expected workload. Centrally administered
environments, like VT’s ARC HPC clusters, are designed around
many tradeo�s. One of the tradeo�s we considered in our design is
user desire for �exibility (di�erent versions of so�ware and tools)
vs. IT controls for multi-tenancy concerns (e.g. data security and
network isolation). Our approach to this tradeo� is to deploy our
framework in a manner that does not require elevated privileges
and is not persistent in the runtime environment. �at is, we do
not permanently install so�ware but instead deploy the so�ware
as needed and con�gure it to the runtime environment resulting
from the resources allocated to the batch job.

VT ARC clusters are a shared resource where multiple jobs can
be scheduled on each compute-node. Because of this we should con-
sider the impact of multi-tenant contention for resources. Addition-
ally, the clusters are con�gured with limits for speci�c resources.
�e resource limits are enforced before a job is admi�ed into a
queue. Furthermore, because the environment is con�gured with a
MINRESOURCE policy we must create job descriptions that mini-
mize resource utilization so they are likely to be scheduled to run
in an acceptable time frame. Our design addressed the following
limiting factors:

• no elevated privileges
• �xed batch scheduling policies
• limited locality awareness
• no internet access from compute-nodes

To dynamically instantiate either Spark or Hadoop in a cluster
mode on ARC, we have wri�en a framework along the lines of the
6GPFS is now named IBM Spectrum Scale. See: h�p://www-03.ibm.com/systems/
storage/spectrum/scale/

https://ambari.apache.org/
http://lustre.org/about
http://www-03.ibm.com/systems/storage/spectrum/scale/
http://www-03.ibm.com/systems/storage/spectrum/scale/
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myHadoop framework[12, 13]. Both Hadoop and Spark require
Java to be installed or the Java module to be loaded. �e basic PBS
job work�ow, similar to that used in myHadoop, is:

(1) Discover compute-nodes allocated
(2) Con�gure the Mother-Superior node as head and the Sister

nodes as workers.
(3) Format Hadoop NameNode (NN)
(4) Start Hadoop services: NameNode on Mother Superior,

DataNode on Sisters
(5) Start YARN services: ResourceManager on Mother Supe-

rior, NodeManager on Sisters
(6) Stage-in Data
(7) Load the required modules for the application (e.g. Java

environment, Python with numpy, etc.)
(8) Run User Application (in our case HiBench7)
(9) Stage-out Results
(10) Terminate a�er shu�ing down Hadoop and YARN services
Unlike myHadoop, we are only considering deployment with

storage local to each of the compute-node. �e Hadoop File Sys-
tem (HDFS) will be distributed across Sister (worker) nodes. �is
means the Hadoop DataNode daemons are using local storage on
each of the Sister (worker) nodes. Modi�cations to the HDFS are
non-persistent, that is, they will not be available a�er the PBS job
completes because we will no longer have access to the compute-
nodes local storage. Likewise the YARN NodeManager daemons
execute tasks on Sister (worker) nodes as shown in �gure 1 and
�gure 2 in section 2. Tasks scheduled to execute will be termi-
nated at the end of the PBS job resulting in loss of any incomplete
computation.

In order to con�gure a standalone Spark cluster on a distributed
�le system like GPFS, the PBS job work�ow is as follows:

(1) Discover compute-nodes allocated
(2) Copy the Spark so�ware to a shared folder which is visible

from all nodes. In case there is no distributed �le system,
either set up HDFS or manually copy Spark to each of the
Sister nodes.

(3) Select one of the nodes as master( in our case the Mother-
Superior); run the start master.sh script; and export an
environment variable containing the Uniform Resource
Locator (URL) for the Spark cluster master.

(4) Con�gure the Sister nodes as workers by starting the
start slaves.sh script.

(5) In order to get maximum performance, the Spark parame-
ters can be varied. Currently, we rely on the Spark sched-
uler to distribute jobs e�ciently. However, as part of future
work we intend to build a resource request manager which
pro�les the jobs run by the user and computes the resources
required e�ciently.

(6) �e telemetry results for the job performance(CPU con-
sumption, disk utilization, job queuing delay ) is collected
using programs included with the TORQUE/Moab installa-
tion.

Our framework implementation targeted four of Virginia Tech’s
six centrally managed ARC HPC clusters: BlueRidge, Cascades,

7HiBench[9]

DragonsTooth, NewRiver. Details of the cluster con�gurations are
available from VT’s ARC online documentation8. In summary:
BlueRidge is a Cray CS-300 with 408 Intel Xeon E5-2670 (Sandy
Bridge) compute-nodes designed for large-scale compute intensive
jobs; Cascades is oriented toward data intensive problems with 196
Intel Xeon E5-2683v4 (Broadwell) compute-nodes; DragonsTooth
has 48 Intel Xeon E5-2680v3 (Haswell) compute-nodes and is in-
tended to support long-running single node jobs; �nally, NewRiver
has 134 Intel E5-2680v3 nodes is also oriented toward data inten-
sive problems. Each of the clusters also has specialized nodes that
o�er advanced features. For example Cascades has two compute-
nodes with additional memory (3 TB) and four compute-nodes with
NVIDIA K80 GPUs. We did not leverage any of the special features
of speci�c compute-nodes.

4 EVALUATION
For our evaluation we conducted multiple iterations where we mea-
sured and characterized performance of a variety of con�guration
models to demonstrate feasibility of our approach. While we vali-
dated our framework functionality on the four clusters previously
mentioned we did not examine the performance in detail on all
four. Evaluation was carried out on two clusters maintained by
VT’s ARC, namely Cascades and NewRiver, whose characteristics
are highlighted in table 1 and table 2 respectively. As mentioned in
3, jobs are initiated on compute-nodes by user submi�ed Portable
Batch System (PBS) scripts.

Table 1: VT ARC cluster Cascades

Compute Engine No of Nodes Type of CPU Cores Memory

General 190 2 x E5-2683v4 2.1GHz(Broadwell) 32 128GB

GPU 8 2 x E5-2683v4 2.1GHz(Broadwell) 32 512 GB

Very Large Memory 2 4 x E7-8867v4 2.4GHz(Broadwell) 72 3 TB

Table 2: VT ARC cluster New River

Compute Engine No of Nodes Type of CPU Cores Memory

General 100 2 x E5-2680v3 2.5GHz(Haswell) 24 128GB

Big Data 16 2 x E5-2680v3 2.5GHz(Haswell) 24 512 GB

GPU 8 2 x E5-2680v3 2.5GHz(Haswell) 24 512 GB

Interactive 8 2 x E5-2680v3 2.5GHz(Haswell) 24 256 GB

Very Large Memory 2 4 x E7-4890v2 2.8GHz(Ivy Bridge) 60 3 TB

A dynamic Spark and Hadoop cluster is instantiated and the
scheduling is carried out in both the standalone mode and with
YARN. We ran two benchmarks- namely Spark Bench and Hadoop
Bench to test the Spark and Hadoop con�gurations. Leveraging
the telemetry framework that VT ARC provides as part of the
TORQUE/Moab installation, we collected telemetry data which
includes: the queuing delay, time to completion, CPU utilization
and memory consumption. Further, the analysis is done by vary-
ing the HPC resources again using the framework that VT ARC
provides. We investigate the e�ects of horizontal scaling versus
vertical scaling by comparing the resource utilization in either case.
8VT ARC Compute - h�ps://secure.hosting.vt.edu/www.arc.vt.edu/computing/

https://secure.hosting.vt.edu/www.arc.vt.edu/computing/
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Horizontal scaling (scale out) implies adding more number of nodes
in the cluster to run the jobs while vertical scaling (scale up) implies
requesting more cores on the same node to run the jobs.

Using Spark Bench, we ran three benchmarks- kmeans, pagerank
and logistic regression while in Hadoop Bench, we ran the entire
gamut of benchmarks provided. �e benchmarks were selected to
evaluate the overhead of inter-node communication in compute
intensive jobs and I/O intensive jobs.

�e telemetry data is collected using a script which collects the
CPU consumption, memory consumption,queuing delay as the job
executes and the avg consumption parameters once the job �nishes
running. �e Pseudo-code for the telemetry script is as follows-

jobload $job_id
result="start"
while [ $job_id is running ]
do

sleep t seconds
result=`jobload $job_id`
jobload $job_id >> $job_id.txt

done
checkjob -v $job_id >> $job_id.txt

5 EXPERIMENT RESULTS
In case of Spark Bench, the tests were run on 100 million data
points while in case of Hadoop Bench, we used the huge data pro�le
provided by the Hibench framework. Figure 3 shows the Hadoop
Bench results for di�erent jobs when the number of resources are
horizontally scaled out and �gure 4 shows the Hadoop Bench results
for di�erent jobs when the same node is scaled up vertically in terms
of number of nodes. Figure 5 shows the Spark Bench results in case
of horizontal scaling and �gure 6 shows the Spark Bench results
in case of vertical scaling. From the results, over-commi�ing of
resources is evident which explains the �at lines in terms of the
time to completion for the jobs.
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Figure 3: Hadoop Horizontal Scaling
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Figure 4: Hadoop Vertical Scaling
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Figure 5: Spark Horizontal Scaling

6 RELATEDWORK
Two related works are myHadoop and pbs-spark-submit. �emy-
Hadoop framework provisions a Hadoop cluster in the resources
allocated to a PBS batch job [12, 13]. As previously discussed in
section 3.2 we did not implement a persistent data option but might
do so in future work. Baer,et. al. integrated Apache Spark into a
TORQUEPBS batch system as a Python script (pbs-spark-submit)[3].
Additionally, they ran multiple example programs includes with
the Spark distribution as micro-benchmark tasks including: Spark
Pi, Spark SQL, Spark PageRank, and Spark Wordcount. Similar to
our work they did not modify Spark to account for multi-tenancy
concerns. Unlike our approach they did not a�empt to manage re-
sources (i.e. TCP/IP ports) that are not controlled by TORQUE/Moab.
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Figure 6: Spark Vertical Scaling

Additionally, their work was focused on Spark and did not include
other components like Apache Hadoop and YARN.

7 CONCLUSIONS
MPI focused HPC clusters do not o�er a full range of capabilities
that enable distributed systems in varied tiered and layered de-
ployment models. �e overhead of dynamically commissioning
frameworks, deploying applications, and staging data does not pre-
clude their use for some workloads. With that said there are several
limitations in our work that should be considered. While we have
demonstrated feasibility of deploying Apache Hadoop and Spark
in a YARN con�guration we did not comprehensively evaluate the
overhead associated with the deployment, nor did we evaluate the
impact of user contention when the framework is deployed on to
compute-nodes that are shared (i.e. they are running processes from
multiple users jobs). Furthermore, our scaling results are based on
a small number of job runs for generative workloads.

�ere is much room for future work now that we have estab-
lished the ability for end-users, like ourselves, to provision Apache
Hadoop and Spark as programming frameworks in a HPC batch
environment. Some areas to examine include examining overhead
incurred, more extensive benchmark evaluation, and more impor-
tantly beginning to run realistic, real-world workloads. For example,
we intend to use the framework we have created to conduct net-
work security data analytics. We will also consider analysis of
streaming data and scheduling of heterogeneous node types (lever-
aging special features like GPUs, Xeon Phi many integrated core
co-processors, and high performance node local storage) like [11].
In addition, an evaluation of energy e�ciency based on scheduling
various workloads can also be carried out similar to [1].
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