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Integrating genomic and infrared spectral 
data improves the prediction of milk protein 
composition in dairy cattle
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Alessio Cecchinato2   and Gota Morota1,4*   

Abstract 

Background:  Over the past decade, Fourier transform infrared (FTIR) spectroscopy has been used to predict novel 
milk protein phenotypes. Genomic data might help predict these phenotypes when integrated with milk FTIR spectra. 
The objective of this study was to investigate prediction accuracy for milk protein phenotypes when heterogeneous 
on-farm, genomic, and pedigree data were integrated with the spectra. To this end, we used the records of 966 Italian 
Brown Swiss cows with milk FTIR spectra, on-farm information, medium-density genetic markers, and pedigree data. 
True and total whey protein, and five casein, and two whey protein traits were analyzed. Multiple kernel learning con-
structed from spectral and genomic (pedigree) relationship matrices and multilayer BayesB assigning separate priors 
for FTIR and markers were benchmarked against a baseline partial least squares (PLS) regression. Seven combinations 
of covariates were considered, and their predictive abilities were evaluated by repeated random sub-sampling and 
herd cross-validations (CV).

Results:  Addition of the on-farm effects such as herd, days in milk, and parity to spectral data improved predictions 
as compared to those obtained using the spectra alone. Integrating genomics and/or the top three markers with 
a large effect further enhanced the predictions. Pedigree data also improved prediction, but to a lesser extent than 
genomic data. Multiple kernel learning and multilayer BayesB increased predictive performance, whereas PLS did not. 
Overall, multilayer BayesB provided better predictions than multiple kernel learning, and lower prediction perfor-
mance was observed in herd CV compared to repeated random sub-sampling CV.

Conclusions:  Integration of genomic information with milk FTIR spectral can enhance milk protein trait predictions 
by 25% and 7% on average for repeated random sub-sampling and herd CV, respectively. Multiple kernel learning and 
multilayer BayesB outperformed PLS when used to integrate heterogeneous data for phenotypic predictions.
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mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Large-scale phenotyping is critical for efficient farm 
management and successful breeding programs [1]. 
Fourier transform infrared (FTIR) spectroscopy is a 
low-cost, non-destructive, and rapid technology that 
scans milk samples with an infrared light to detect spe-
cific chemical bonds [2]. FTIR spectroscopy has been 
routinely used to predict the chemical composition of 
milk in most herd recording programs [3, 4]. Recent 
studies have used milk FTIR spectral information to 
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develop equations for predicting complex traits that 
are difficult and expensive to measure because of high 
phenotyping costs. These include milk fatty acids [5], 
energy intake [6], methane emissions [7], and metabolic 
profiles [8]. Milk FTIR spectral bands have also been 
used to predict cow health and pregnancy [9–12]. Milk 
protein composition, especially the casein component, 
is associated with cheese making, an important trait 
for the dairy industry [13–15], and thus recent studies 
have attempted to leverage milk FTIR spectra for large-
scale phenotyping for genetic selection [16]. Milk FTIR 
spectra can also be used for genetic improvement when 
there are strong additive genetic correlations between 
target traits and FTIR predictions [17, 18].

Recent technological advancements in phenotyping 
such as precision agriculture or high-throughput phe-
notyping create an opportunity to integrate multiple 
sources of information into a single statistical frame-
work [1]. These sources may capture various signals 
affecting phenotypes and thus could be combined to 
improve prediction performance. Enhanced predic-
tion performance of dairy cow fertility was reported 
for a model integrating milk spectra and on-farm data 
including herd, days in milk (DIM), and parity [10, 
11]. The inclusion of genotype information slightly 
increased prediction accuracy further [11]. Wang 
and Bovenhuis [19] stated that combining milk FTIR 
spectra and polymorphisms located in known genes 
enhances the prediction accuracy of milk fat compo-
sition. Therefore, integrating milk FTIR spectra with 
genomic data may constitute an alternative strategy for 
improving prediction accuracy.

Partial least squares (PLS) regression is frequently 
used in spectral analysis [20]. However, it does not per-
mit different weights or priors to be directly assigned to 
each source of information in a straightforward man-
ner, particularly when spectral and genomic data are 
integrated. Here, we hypothesized that a model han-
dling heterogeneous data sources, including on-farm 
variables, milk FTIR spectra, genomic data, and pedi-
gree information, can enhance prediction, especially 
when genomic or pedigree data capture phenotypic 
variation that milk spectra do not explain. The objec-
tive of this study was to assess the prediction of milk 
protein composition by integrating milk FTIR spectra, 
on-farm data, and genomic or pedigree information 
with cross-validation (CV). The second objective was 
to compare the predictive performance of two alterna-
tive statistical models. We evaluated multiple kernel 
learning coupled with spectral and genomic (pedigree) 
relationship matrices constructed from the spectral and 
genomic (pedigree) profiles of individuals, respectively. 

We also assessed multilayer Bayesian variable selection 
by setting separate mixture priors on the spectral and 
genetic terms. Then, we compared the prediction per-
formance of these two methods with that of PLS.

Methods
Data
In total, 966 Italian Brown Swiss cows with pheno-
types, spectra, and genotypes were used in this study. 
Milk samples were collected from 85 commercial herds 
in Trento, Italy. More details about data collection are 
given in [5]. The average cow DIM and parity were 
169.8 ± 101.8 and 2.4 ± 1.2, respectively. The aver-
age number of cows per herd was 11.4 ± 2.4. Two milk 
samples of each cow were collected and immediately 
refrigerated at 4 °C. One sample was transported to the 
milk quality laboratory at the Trento Breeders Federa-
tion (Trento, Italy) for milk composition analysis. The 
other sample was used for the milk protein analysis by 
a validated reversed-phase high-performance liquid 
chromatography (RP-HPLC) method [21].

The following traits were measured: true protein 
nitrogen (TP), total casein (TCN), total whey protein 
(TWP), κ-CN, β-CN, αS1-CN, αS2- CN casein fractions, 
and β-lactoglobulin ( β-LG) and α-lactalbumin ( α-LA) 
whey proteins. Here, TP comprises TCN and TWP, and 
is obtained by subtracting non-protein nitrogen (N) 
from total nitrogen. The fraction traits were calculated 
as % of total milk nitrogen content. The traits were then 
summed and subtracted from the total N content of 
the milk [22]. Milk FTIR spectral data included 1060 
wavenumbers in the range of 5011 to 925 (cm−1 ) for 
each cow determined with a MilkoScan FT6000 (Foss, 
Hillerød, Denmark). Two spectral acquisitions were 
obtained for each milk sample and averaged before 
analysis. Pre-treatment of milk spectra was performed 
by checking the Mahalanobis distance after conduct-
ing principal component analysis. This analysis sug-
gested four animals as potential outliers. However, the 
removal of these individuals did not influence predic-
tive performance, and hence, we used the data without 
the pre-treatment.

All the cows in this study were genotyped with an 
Illumina BovineSNP50 v.2 BeadChip (Illumina, San 
Diego, CA, USA). Missing genotypes were imputed 
using a binomial distribution based on the frequency 
of the reference allele. After removing single nucleo-
tide polymorphisms (SNPs) call rates < 0.95 and minor 
allele frequencies < 0.05 , 37,519 SNPs were retained for 
subsequent analyses. Table  1 presents the descriptive 
statistics of milk protein composition.
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Statistical modeling
Three statistical approaches were used to combine mul-
tiple sources of information to predict nine phenotypes 
related to milk protein composition.

Multiple kernel learning
Kernel methods regress the phenotype on a kernel rela-
tionship matrix that is constructed using biological pro-
files of animals [23]. The model considered for the milk 
spectral data was:

where y is the vector of phenotypic records, X is the 
design matrix for the on-farm data, b is the vector of the 
on-farm fixed effects, ZIR is the incidence matrix relat-
ing animals to phenotypic records, uIR is the vector of 
the random milk spectra values of the animals, and e is 
the vector of the residuals. The distributions of the ran-
dom effects for the milk spectra and the residuals were 
assumed to follow uIR ∼ N(0, Sσ 2

uIR
) and e ∼ N(0, Iσ 2

e ) , 
respectively, where σ 2

uIR
 is the spectral variance, σ 2

e  is 
the residual variance, S is the spectra-based relationship 
matrix, and I is an identity matrix. The spectral-based 
relationship matrix, which represents the similarity of 
milk FTIR among individuals, was computed as a func-
tion of the spectral wavenumber cross-product:

where WIR is the centered and standardized wavenumber 
matrix and mIR = 1060 is the total number of wavenum-
bers. The construction of the S matrix followed that of 
the genomic relationship matrix of VanRaden [24]. The 
only difference was the source of information to create 
the relationship matrix.

Genetic markers were integrated by extending the 
above Eq. (1) via multiple kernel learning as follows.

(1)y = Xb+ ZIRuIR + e,

(2)S =
WIRW

′
IR

mIR
,

where Zg is the incidence matrix for the additive genetic 
effects and ug is the vector of the random additive genetic 
effects. The distribution of the random additive genetic 
effects was assumed to follow ug ∼ N(0,Gσ 2

ug
) , where σ 2

ug
 

is the variance of the additive genetic effects and G is the 
first genomic relationship matrix proposed by VanRaden 
[24]. Pedigree information was considered as an alterna-
tive source of genetic information. The genomic relation-
ship matrix was then replaced with the numerator 
relationship matrix in Eq. (3) so that up ∼ N(0,Aσ 2

up
) . 

Here, A is the pedigree-based kinship relationship matrix 
and σ 2

up
 is the pedigree-based variance of the additive 

genetic effects.

Multilayer Bayesian variable selection
BayesB [25] was used to fit the model including only 
spectral information.

where aIRi is the ith wavenumber effect. A Gaussian prior 
with large variance was assigned to b . The prior distribu-
tion of the ith wavenumber effect

where π is the proportion of nonzero wavenumber effects 
and t(aIRi |df , S) is a scaled-t density with two hyperpa-
rameters, degrees of freedom, df, and scale, S. The resid-
ual variance was assigned a scaled-inverse χ2 density 
with degrees of freedom, dfe , and scale, Se [5].

This BayesB model was further extended to multilayer 
BayesB by adding a separate mixture prior for the SNP 
term.

where WSNPj is a vector of the centered and scaled geno-
types at the jth SNP and aSNPj is the corresponding SNP 
effect. The prior distribution of the SNP effects followed 
that of the wavenumbers:

Multiple kernel learning and multilayer BayesB were 
implemented using the BGLR R package [26]. In mul-
tilayer BayesB, wavenumber hyperparameters were 
specified using the default rule in the package following 

(3)y = Xb+ ZIRuIR + Zgug + e,

y = Xb+

mIR∑

i=1

WIRiaIRi + e,

p(aIRi |π , df, S) = π × t(aIRi |df , S)+ (1− π)× (aIRi = 0),

y = Xb+

mIR∑
i=1

WIRiaIRi +

mSNP∑
j=1

WSNPjaSNPj + e,

p(aSNPj |π , df, S) = π × t(aSNPj |df , S)

+ (1− π)× (aSNPj = 0).

Table 1  Descriptive statistics of 966 cows for milk protein related 
phenotypes

a  % total milk N

Traitsa Mean SD

True protein nitrogen 89.1 2.25

Total casein 78.0 1.23

Total whey protein 11.1 1.70

κ-casein 9.45 1.48

β-casein 32.3 2.45

αS1-casein 25.7 1.79

αS2-casein 9.20 1.14

β-lactoglobulin 8.68 1.56

α-lactalbumin 2.39 0.50
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Ferragina et al. [5]. For the SNP effects,“probin = 0.5” and 
“count = 10” were set to assign a Beta-prior for two fixed 
shape parameters and derived the proportion of nonzero 
SNP effects π for the SNP term [26]. The two shape 
parameters of the beta distribution π0 and p0 were set to 
0.5∗(1−0.5)
(10+1) = 0.023 and 0.5, respectively. A total of 50,000 

Markov Chain Monte Carlo samples after 50,000 burn-in 
with the thinning rate of 10 were used to obtain the pos-
terior means for all unknowns.

Partial least squares
Partial least squares is one of the most common meth-
ods for spectral analysis and was used in this study as a 
baseline model. Unlike unsupervised principal com-
ponent regression, PLS finds the latent variables that 
maximize the covariance between the predictors and the 
phenotypes while minimizing the error. This method was 
recently used to integrate spectral and genomic informa-
tion [11, 19]. The mixOmics R package [27] was used to 
implement PLS. The optimum number of latent variables 
was determined using the root mean squared error with a 
maximum value of 50.

Evaluation of model performance
Table 2 displays the list of prediction models examined 
in this study. Model 1 (M1) was considered the base-
line and included only spectral data. Both on-farm and 

genetic data were sequentially added to evaluate the 
gain from M1. Model 2 (M2) included herd and spectral 
effects because recent studies showed that herd infor-
mation may greatly impact prediction performance. 
Model 3 (M3) included herd, DIM, parity, and spectral 
effects. Model 4 (M4) included herd, DIM, parity, milk 
spectra, and SNP data. M1 to M4 were fit across multi-
ple kernel learning, multilayer BayesB, and PLS. Model 
5 (M5) and Model 6 (M6) were applied to multiple ker-
nel learning to make it more akin to multilayer BayesB 
by performing variable selection via association analy-
sis. M5 included herd, DIM, parity, milk spectra, and 
the top three markers identified by genome-wide asso-
ciation analysis. The inclusion of markers with a large 
effect as fixed effects might improve prediction accu-
racy [28] because kernel methods weigh SNPs equally 
in the construction of a genomic relationship matrix. 
M4 was used to select the top three SNPs from the 
training data in cross-validation, as described later. M6 
is the same as M5 except for the presence of a genomic 
relationship matrix constructed using all the mark-
ers excluding the top three SNPs. The top three SNPs 
were not considered in multilayer BayesB because this 
method performs variable selection internally. Pedigree 
information was used in Model 7 (M7) along with herd, 
DIM, parity, and spectral data assuming a practical sit-
uation where cow genotype data is not available for all 

Table 2  A list of covariates included in multiple kernel learning, multilayer BayesB, and partial least squares (PLS)

a  DIM: days in milk; FTIR: milk Fourier transform infrared spectroscopy; Top markers: top three markers with the largest effects; Genomics: genomic relationship matrix 
in kernel methods, markers in BayesB, and principal components of genomic relationship matrix in PLS; Pedigree: numerator relationship matrix in kernel methods 
and principal components of numerator relationship matrix in PLS

Model Sub-model Effecta

Herd DIM Parity FTIR Genomics Top markers Pedigree

Kernel M1 �

M2 � �

M3 � � � �

M4 � � � � �

M5 � � � � �

M6 � � � � � �

M7 � � � � �

BayesB M1 �

M2 � �

M3 � � � �

M4 � � � � �

PLS M1 �

M2 � �

M3 � � � �

M4 � � � � �

M7 � � � � �
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individuals on a dairy farm. M7 was fit using multiple 
kernel learning and PLS.

Cross‑validation
Two CV scenarios repeated ten times were employed to 
assess model predictive performance for nine milk pro-
tein component traits. The phenotypes in the testing set 
were predicted by fitting multiple kernel learning, multi-
layer BayesB, and PLS in order to investigate the relative 
contributions of different sources of information accord-
ing to Table  2. Predictive performance was evaluated 
using the prediction coefficient of determination ( R2 ), 
which was calculated as the square of the correlation 
between the observed and predicted values in the test-
ing set. The regression coefficient was also calculated by 
regressing the observed phenotypes of the individuals in 
the testing set on predicted values.

Repeated random sub‑sampling cross‑validation
We partitioned the data into training and testing sets 
of 716 and 250 cows, respectively. This CV was used 
because of a relatively small sample size. The predic-
tive values of the testing set individuals ŷtst were pre-
dicted using estimated spectra, on-farm data, or/
and genetic effects in the following manner. The 
conditional expectation of E(ŷtst|ŷtrn) was com-
puted in kernel methods as Stst,trnS

−1
trn,trnûIRtrn in 

M1, Xtstb̂trn + Stst,trnS
−1

trn,trnûIRtrn in M2 and M3, 
Xtstb̂trn + Stst,trnS

−1
trn,trnûIRtrn +Gtst,trnG

−1
trn,trnûgtrn in 

M4, Xtstb̂trn + Stst,trnS
−1

trn,trnûIRtrn +WSNP3b̂SNP3 in M5, 
Xtstb̂trn + Stst,trnS

−1|trn,trnûIRtrn +Gtst,trnG
−1

trn,trnûgtrn
+WSNP3b̂SNP3 in M6, and Xtstb̂trn + Stst,trnS

−1
trn,trnûIRtrn

+Atst,trnA
−1

trn,trnûptrn in M7. Here, Xtst and b̂trn are the 
design matrix for on-farm data in the testing individu-
als and the corresponding effects estimated from the 
training set, respectively. And, Stst,trn , Gtst,trn and Atst,trn 
are relationship matrices between the testing and train-
ing individuals according to their spectra, genomic, 
and pedigree profiles, respectively. Similarly, S−1

trn,trn , 
G−1

trn,trn and A−1
trn,trn are the inverse of relationship 

matrices between the individuals in the training set 
according to their spectra, genomic, and pedigree pro-
files, respectively. The vectors of ûIRtrn , ûgtrn , and ûptrn 
are predicted spectral, additive genomic, and additive 
genetic values, respectively. The marker matrix WSNP3 
includes the top three markers based on the absolute val-
ues of their marker effects and b̂SNP3 is the vector of cor-
responding marker effects. In BayesB, ŷtst was obtained 
as WIRtst âIRtrn in M1, Xtstb̂trn +WIRtst âIRtrn in M2 and 
M3, Xtstb̂trn +WIRtst âIRtrn +WSNPtst âSNPtrn in M4. Here, 
WIRtst and Wsnptst are the incidence matrices of the 
testing set individuals for wavenumbers and markers, 

respectively, and âIRtrn and âsnptrn are the vectors of wave-
number and marker effects, respectively, obtained from 
the training set. In PLS, the principal components of G 
and A were extracted when fitting M4 and M7. The first 
115 and 152 principal components of G and A were used, 
which explained over 80% of the variation. In PLS, the 
prediction was performed as Qtstq̂trn , where Qtst is the 
principal component matrix extracted from the spectra, 
on-farm, or/and genetic covariates of the individuals in 
the testing set and q̂trn is the vector of corresponding 
principal component effects estimated from the training 
set. The optimal number of principal components was 
determined in the training set and the same number of 
principal components was extracted in the testing set.

Herd cross‑validation
 The repeated random sub-sampling CV may result in 
over-prediction due to the dependency between herd 
and spectra variability [5, 7]. For this reason, herd CV, 
which is a random-sampling method based on herds, was 
explored to exclude the possibility of over-prediction. We 
randomly assigned 65 and 20 herds as training and test-
ing sets, respectively. The number of individuals in the 
testing set in each run ranged from 223 to 251. In herd 
CV, the herd effect was not included in the aforemen-
tioned seven models. Thus, M2 with herd and spectral 
effects was not considered.

Results
Repeated random sub‑sampling cross‑validation
Figure  1 shows R2 values obtained by multiple kernel 
learning using repeated random sub-sampling CV. The 
model including spectra only (M1) produced the low-
est R2 ranging from 0.14 to 0.82. When on-farm predic-
tors were added to the models (herd in M2; herd, DIM, 
and parity in M3), R2 increased, except for β-CN, rang-
ing from 0.20 to 0.92. The small difference observed 
in R2 between M2 and M3 indicates that DIM and par-
ity made only small contributions compared to the herd 
effect. Joint modeling of spectra, on-farm information, 
and genomic data (M4) further improved R2 compared 
with M1 to M3 ranging from 0.31 to 0.91. In particu-
lar, prediction of β- CN was markedly improved. R2 was 
increased by fitting the top three markers as fixed effects 
(M5 and M6) for κ- CN and β-CN. However, prediction 
performance for the other traits did not clearly improve. 
Furthermore, R2 values from pedigree (M7) were higher 
than those for M1 to M3 but lower than or similar to 
that for M4. Therefore, considering genomic or pedigree 
information may improve the ability of a model to pre-
dict most milk protein traits. The regression coefficients 
obtained by using multiple kernel learning are listed in 
Table  3. M1 slightly underestimated predictions, with 
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slope values ranging from 0.99 to 1.12. In contrast, M2 
to M7 showed a tendency for over-prediction, with slope 
values ranging from 0.74 to 1.01. When genomic or pedi-
gree data were added (M4 to M7), the extent of bias was 
smaller compared to those of M2 and M3.

Figure 2 shows R2 values from multilayer BayesB. The 
model with spectra only (M1) yielded the lowest predic-
tion for all traits. Note that R2 was improved when on-
farm data were added to M1 (M2 to M3). Inclusion of 
the SNP data (M4) via multilayer BayesB produced the 
highest R2 . Large improvements in R2 were observed 
for κ- CN , β-CN, and αS1-CN. For all traits, multilayer 
BayesB yielded higher R2 than multiple kernel learning. 
All regression coefficients were less than 1 except for 
αS1- CN and α- LA in M1 (Table  3). Moreover, bias was 
reduced by including genomic information.

Figure  3 presents R2 values for the five alternative 
covariate sets (M1 to M4 and M7) fitted with PLS. In this 

case, R2 did not improve by adding on-farm, genomic, or 
pedigree information to spectra. In fact, genetic infor-
mation even lowered R2 for certain traits. All regression 
coefficients were less than 1 (Table 3). The difference in 
prediction performance among multiple kernel learning, 
multilayer BayesB, and PLS was small for M1. However, 
multiple kernel learning and multilayer BayesB outper-
formed PLS when either on-farm data or genetic data 
were considered (M2 to M7). Note that, in most cases, 
multilayer BayesB performed better than multiple kernel 
learning.

Herd cross‑validation
Herd CV was designed to avoid the over-prediction 
caused by the known relationship between herd and 
spectral variability. We considered the same covariate 
sets as those used in the repeated random sub-sampling 

Fig. 1  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: β-
casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from multiple kernel learning using repeated random 
sub-sampling cross-validation. S : spectral relationship matrix; G : genomic relationship matrix; A : numerator relationship matrix; DIM: days in milk; 
Top3SNP: top three markers with the largest effects.
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CV except for the herd effect. Figures 4, 5, and 6 present 
R2 values produced by multiple kernel learning, multi-
layer BayesB, and PLS, respectively. As expected, herd 
CV showed lower R2 than the repeated random sub-sam-
pling CV. In multiple kernel learning, the model includ-
ing on-farm DIM and parity data (M3) did not provide 
better predictions than the model including spectra only 
(M1) (Fig.  4). Jointly fitting genomic and spectral rela-
tionship matrices (M4) did not increase R2 . Neverthe-
less, R2 markedly increased for κ- CN and β- CN when the 
top three markers were included in the models (M5 and 
M6). In contrast, the addition of SNP data to the spectral 
data improved R2 for multilayer BayesB (M4) (Fig. 5). The 
genomic data did not increase R2 for PLS (Fig. 6). In mul-
tiple kernel learning, the pedigree data slightly improved 
R2 compared to that obtained using the spectra only. 
However, no increase in R2 was observed for PLS. The 
herd CV regression coefficients are presented in Table 4. 
There was upward bias in all models but the kernel meth-
ods and BayesB showed less bias than PLS. Whereas add-
ing on-farm and genomic information (M3 and M4) in 
multiple kernel learning showed greater bias than M1 for 
many of the fraction traits, the extent of bias was smaller 
in multilayer BayesB. 

Discussion
Predictive ability across dairy farms
Repeated random sub-sampling or k-fold CV has often 
been used to evaluate a calibration equation in spectral 
analysis. However, the R2 derived from this type of CV 

may be over-optimistic as the records from the same 
herds could be included in both training and testing data 
[7, 11]. For instance, Wang and Bovenhuis [7] found that 
the R2 for CH4 emission was small when it was obtained 
from milk FTIR spectra using a CV scheme based on 
herds. In contrast, a moderate R2 was observed for k-fold 
CV. In addition, Luke et  al. [8] showed that prediction 
for serum metabolic concentrations was lower with herd 
CV than with k-fold CV. In our study, the R2 from herd 
CV was lower than that obtained using repeated random 
sub-sampling CV. In routine evaluations, the use of herd 
CV must be carefully considered before developing a 
calibration model because repeated random subsampling 
or k-fold CV may provide over-optimistic predictions. 
Our herd CV results suggest that the use of genomic and 
pedigree information can be beneficial whereas on-farm 
information adds relatively less value.

Integration of heterogeneous data
There is growing interest in exploiting multiple sources 
of information to perform spectral-based predictions 
of novel phenotypes [11, 19]. We analyzed the impact 
of using on-farm (herd, DIM, and parity), genomic, 
and pedigree information on forecasting milk protein 
composition. To this end, we applied multiple kernel 
learning and multilayer BayesB. Some previous studies 
investigated the predictive performance for milk protein 
composition expressed as g/L or g/dL of milk based on 
k-fold cross-validation using spectra alone. For exam-
ple, Bonfatti et  al. [13] and Rutten et  al. [16] obtained 

Table 3  Regression coefficients of predictive values for testing cows on observed phenotypes when fitting multiple kernel learning, 
multilayer BayesB, and partial least squares (PLS) using repeated random sub-sampling cross-validation

M1: milk Fourier transform infrared spectroscopy (FTIR)

M2: herd + FTIR

M3: herd + days in milk + parity + FTIR

M4: herd + days in milk + parity + FTIR + Genomics

M5: herd + days in milk + parity + FTIR + top three markers with the largest effects

M6: herd + days in milk + parity + FTIR + Genomics + top three markers with the largest effects

M7: herd + days in milk + parity + FTIR + pedigree

Traits Kernel BayesB PLS

M1 M2 M3 M4 M5 M6 M7 M1 M2 M3 M4 M1 M2 M3 M4 M7

True protein nitrogen 1.04 0.92 0.91 0.94 0.90 0.93 0.94 0.96 0.92 0.91 0.93 0.87 0.89 0.87 0.92 0.88

Total casein 1.02 1.01 1.01 1.01 1.01 1.00 1.01 0.98 0.97 0.96 0.99 0.98 0.98 0.97 0.97 0.98

Total whey protein 1.01 0.83 0.81 0.87 0.81 0.86 0.86 0.96 0.85 0.82 0.90 0.82 0.77 0.74 0.72 0.75

κ-casein 1.02 0.76 0.74 0.84 0.85 0.85 0.79 0.92 0.84 0.82 0.92 0.76 0.71 0.71 0.75 0.73

β-casein 1.12 0.78 0.78 0.92 0.93 0.94 0.86 0.97 0.84 0.82 0.96 0.83 0.83 0.86 0.85 0.84

αS1-casein 1.05 0.86 0.86 0.88 0.87 0.88 0.86 1.02 0.87 0.86 0.92 0.84 0.86 0.90 0.82 0.80

αS2-casein 1.02 0.84 0.83 0.83 0.80 0.79 0.83 0.99 0.84 0.83 0.85 0.79 0.78 0.78 0.66 0.64

β-lactoglobulin 0.99 0.84 0.83 0.88 0.83 0.88 0.87 0.99 0.85 0.85 0.90 0.76 0.75 0.78 0.77 0.73

α-lactalbumin 1.06 0.92 0.92 0.92 0.89 0.88 0.92 1.02 0.92 0.92 0.92 0.94 0.91 0.91 0.93 0.91
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low to moderate R2 values that ranged from 0.31 to 0.78 
and from 0.18 to 0.56, respectively. Bonfatti et al. [13, 29] 
reported that the R2 values for milk protein composition 
expressed as g/L were higher than those for percentage 
protein. Our prediction of unit of total N content in the 
casein fractions using milk FTIR spectra showed lower 
R2 , ranging from 0.11 to 0.50 for repeated random sub-
sampling CV and from 0.06 to 0.43 for herd CV. How-
ever, we found higher R2 values for total casein (0.79 to 
0.82 in repeated random sub-sampling CV; 0.73 to 0.76 
in herd CV) than for the other traits evaluated. Hence, 
milk FTIR spectral information might suffice to predict 
total casein.

On-farm information plus milk FTIR spectra pro-
duced higher R2 than that of the model with milk FTIR 
spectra alone in repeated random sub-sampling CV. In 
contrast, the results for herd CV showed only minor 

improvements relative to the milk FTIR spectra model. 
Therefore, the inclusion of these explanatory predictors 
may only be effective when they are applied to the same 
herds. We found no prior literature integrating milk 
FTIR spectra with on-farm data to predict milk protein 
components. Recent studies assessed the contribution 
of on-farm information to predict reproductive traits 
[10, 11]. In repeated random sub-sampling CV, adding 
the herd effect enhanced the prediction more effectively 
than adding DIM or parity. This finding was consist-
ent with that of a previous study [10]. Indeed, Toledo-
Alvarado et al. [10] reported that joint DIM, parity, and 
milk FTIR spectra modeling did not improve the pre-
diction of pregnancy status as compared to the model 
with milk FTIR spectra alone. The inclusion of herd and 
year only slightly improved predictions. Here, the herd 
effect was the most influential of all the on-farm pre-
dictors. The herd effect may account for differences in 

Fig. 2  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: 
β-casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from multilayer BayesB using repeated random 
sub-sampling cross-validation. FTIR: milk Fourier transform infrared spectroscopy; DIM: days in milk.
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feeding systems and management between dairy herds. 
Nevertheless, as practical applications often require 
predictions across dairy farms [12], herd CV was also 
used to evaluate a more realistic scenario in routine 
evaluations. In this case, on-farm information such as 
herd, DIM, and parity may be excluded from the pre-
diction model.

The inclusion of whole-genome and/or top mark-
ers with large effects provided greater predictions for 
both the kernel methods and BayesB, especially for 
κ- CN and β-CN. Genotype data increased R2 possibly 
because of the high heritability of these traits. Pegolo 
et  al. [22] reported genomic heritability estimates of 
0.83 and 0.68 for κ- CN and β-CN, respectively. These 
estimates were higher than those for other milk com-
position traits, ranging from 0.13 to 0.66. Our kernel 
methods showed that R2 was higher for some traits 
when the top three markers were incorporated. Hence, 

these quantitative trait loci have a strong influence. 
Pegolo et  al. [22] identified significant SNPs on chro-
mosomes 6 and 11 for milk protein fractions. Within 
the two CV, we found the same markers as in Pegolo 
et  al. [22] for κ- CN and β- CN using multiple kernel 
learning, while multilayer BayesB further identified 
common markers associated with TWP, α-LA, αS1-
CN, and αS2-CN. The observed improvement in predic-
tive performance of BayesB for all traits may have been 
the result of effectively distinguishing SNPs or spectra 
with large effects from those with small effects. Recent 
studies reported that including genomic information 
influences prediction  positively. Wang and Bovenhuis 
[19] obtained comparatively better predictions for 
milk fat component traits when they combined milk 
FTIR data and three polymorphisms of the diacylglyc-
erol acyltransferase 1 (DGAT1) K232A, stearoyl-CoA 
desaturase 1 (SCD1) A293V, and fatty acid synthase 

Fig. 3  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: β-
casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from partial least squares using repeated random 
sub-sampling cross-validation. FTIR: milk Fourier transform infrared spectroscopy; G : Principal components of genomic relationship matrix; A : 
Principal components of numerator relationship matrix; DIM: days in milk.
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(FASN) genes. Ho et  al. [11] showed that the addition 
of genomic signals such as principal components cal-
culated from a genomic relationship matrix and fertil-
ity genomic estimated breeding values to spectral data 
enhances the prediction of conception at first insemi-
nation. Therefore, integrating genotype information or 
including markers with large effects with milk FTIR 
spectra might improve the prediction of certain traits.

There may be a limited number of females with gen-
otype information, as most of them are genotyped for 
genomic selection purposes only. For this reason, we 
investigated the combination of pedigree data with 
milk FTIR spectral information via a numerator rela-
tionship matrix. This approach yielded R2 similar to or 
lower than those obtained from the genomic relation-
ship matrix. Nevertheless, for some traits such as TWP, 
κ-CN, and αS1-CN, the predictive performance includ-
ing pedigree information was slightly better (higher R2 ) 

than that obtained using milk FTIR or on-farm data 
alone. Therefore, leveraging pedigree information is a 
feasible alternative when genotype information is not 
available.

Comparison of multiple kernel learning and multilayer 
BayesB to PLS
We compared kernel methods, BayesB, and PLS in 
terms of their effectiveness in including heterogeneous 
information for the phenotypic prediction of different 
milk protein component traits. The model with milk 
FTIR spectra alone served as the reference baseline. 
For both CV scenarios, the kernel methods and BayesB 
had similar predictive performance compared to PLS 
using only spectral information for non-fraction traits. 
However, BayesB delivered relatively better results for 
many of the fraction traits. Compared to multiple ker-
nel learning and PLS, multilayer BayesB also showed 

Fig. 4  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: β-
casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from multiple kernel learning using herd cross-validation. 
S : spectral relationship matrix; G : genomic relationship matrix; A : numerator relationship matrix; DIM: days in milk; Top3SNP: top three markers with 
the largest effects.
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better predictions when either on-farm data or both 
on-farm data and genomic information plus milk FTIR 
spectra were used. Ferragina et  al. [5] reported supe-
rior predictive performance for BayesB compared with 
Bayesian ridge regression, BayesA, and PLS when milk 
FTIR spectral information was used. Bonfatti et al. [29] 
reported that R2 for milk protein fractions (g/L of milk) 
such as TWP, β-CN, and αS1- CN derived from BayesB 
and BayesC, using spectral data alone, showed slightly 
better prediction than that of PLS. However, the differ-
ences were small. Our results generally corroborated 
their findings and further demonstrated that multi-
layer BayesB can be a useful tool to integrate hetero-
geneous data. This discovery is consistent with recent 
studies in which multilayer Bayesian regression mod-
els were applied to integrate genomics, transcriptom-
ics, or methylation data [30, 31]. As described earlier, 
BayesB is a variable selection method that distinguishes 

predictors with large effects from those with small 
effects. Numerous FTIR spectrum regions may have 
marginal effects on a target trait [5]. Thus, BayesB can 
effectively identify the wavenumber ranges with large 
effects on the traits of interest.

To the best of our knowledge, this is the first study to 
apply multiple kernel learning for phenotypic predic-
tion based on the construction of a spectral relationship 
matrix among individuals according to their milk FTIR 
spectral profiles. The advantage of kernel methods is that 
they can accommodate multiple sources of information 
provided that the kernels can be constructed from each 
information set [23]. An important example is a genomic 
relationship matrix embedding the genomic profiles of 
individuals. However, the construction of kernels does 
not preclude using non-genomic sources. For instance, 
Hu et  al. [32] developed a relationship matrix among 

Fig. 5  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: β-
casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from multilayer BayesB using herd cross-validation. FTIR: 
milk Fourier transform infrared spectroscopy; DIM: days in milk.
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Arabidopsis thaliana lines based on their methylation 
profiles to conduct methylation-based phenotypic pre-
diction. Krause et al. [33] used a hyperspectral reflectance 
relationship matrix from hyperspectral bands in wheat 
to predict grain yield. Li et  al. [34] applied a transcrip-
tomic-based relationship matrix among Drosophila mel-
anogaster lines using tiling arrays to predict nine traits 
including startle responses. In our study, kernel meth-
ods were extended to accommodate milk FTIR spectral 
data. Overall, kernel methods showed a lower predictive 
performance than that of BayesB. This might be attrib-
uted to the fact that kernel methods assume a common 
wavenumber variance whereas BayesB performs variable 
selection. Therefore, using a weighted spectral relation-
ship matrix by putting a prior weight to each individual 
wavenumber (if available) may enhance prediction. How-
ever, kernel methods offer a straightforward avenue to 

integrate additive genetic effects based on pedigree (i.e., 
numerator relationship matrix).

When genomic or pedigree information was added, 
the prediction R2 values for PLS decreased for numer-
ous traits. It is likely that this occurred because the 
standard PLS widely used in spectra analysis does 
not clearly differentiate between contributions from 
genomics/pedigree and milk FTIR spectra. We also 
explored predictive performance using the pre-treat-
ment data because using derivative milk spectra or 
removing noisy spectra regions may improve predic-
tion performance [3]. In fact, the use of informative 
spectra led to an increase in R2 values for all the traits 
compared to the use of non-treated spectra, however, 
prediction performance did not improve greatly when 
genomic or pedigree data were included. As stated ear-
lier, multiple kernel learning and multilayer BayesB can 
better accommodate multiple heterogeneous data than 

Fig. 6  Prediction R-squared for milk protein traits (TP: true protein nitrogen; TCN: total casein; TWP: total whey protein; κ-CN: κ-casein; β-CN: β-
casein; αS1-CN: αS1-casein; αS2-CN: αS2-casein; β-LG: β-lactoglobulin; α-LA: α-lactalbumin) from partial least squares using herd cross-validation. 
FTIR: milk Fourier transform infrared spectroscopy; G : Principal components of genomic relationship matrix; A : Principal components of numerator 
relationship matrix; DIM: days in milk.
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PLS for a prediction purpose. The PLS method maxi-
mizes variance conditional on the response variable 
regardless of the source of predictors. Further studies 
are warranted to improve the predictive ability of PLS 
in the context of data integration.

Conclusions
This study investigated the effectiveness of kernel 
methods, BayesB, and PLS at integrating heterogeneous 
data including milk FTIR spectral, on-farm, genomic, 
and pedigree data for predicting milk protein traits. 
Multiple kernel learning and multilayer BayesB can 
potentially improve milk protein trait prediction per-
formance by correctly assigning different weights or 
priors for genetic (genomic or pedigree) and milk FTIR 
spectral components. In particular, multilayer BayesB 
was identified as the best predictive model. The present 
study provides alternative statistical methods for spec-
tra-based predictions.
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