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Chapter 1

INTRODUCTION

The mathematical development of digital signal analysis has
been an area of primary concern since the digital computers develop-
ment over two decades ago. The analysis of the frequency character-
istic of a signal is of particular interest in the field known as

"time series analysis."”

Time series analysis encompasses such
areas as statistics, economics, and communications. Most of the
work in time series analysis has been carried out by statisticians.
More recently, however, many advancements in the analysis of time
series have been made in the field of signal processing based on
power spectral estimation concepts and time domain analysis.

The need for power spectral estimates arises in a variety of
contexts, including the measurement of noise spectra for the design
of optimal linear filters, the detection of narrow-band signals in
wide-band noise, and the estimation of parameters of a linear system
by using a noisy excitation.

' Current methods of spectral‘estimation can be broadly classified
into two categories. One is the classical approach which includes
the periodgram method, autocorrelation methods and its variants

Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,

1957; Jenkins and Watts, 1968; Koopmans, 1974). The second is



modernvpower spectfal deneity estimations based on parametere
modeling. This includes the maximum entropy method (Butg,'1967), one~
step linear prediction (Parzen, 1969), and epectrelbeStimatioﬁiusing
ARMA model (Tretter and Steiglitz, 1967; Gutowski, Robinson and
Treitel, 1978). In practical signal processing applications, classical
aooroachs have;been'inoorporated by many researchers and users;
This,is.because‘claseical methods are»fairly eesy to implement

and can be computed efficiently by using the fast Fourier ttansform
(Cooiey and Tukey, 1965). However, the spectral estimates obtained
-by classical methode oan provide unsatisfactory resulte When the deta
length is short.-_Fot example, variance of estiﬁates'is_large and

the resolution capability of noise embedded sinusoids is poor in such
cases. To overcome these'difficulties, the modern spectral estimation
methods were developed. These methods provide better speotral
‘performance than classical methods. For example,\one of the widely .
used modern spectral methods referred toﬂas the Maximum Entropy |
method (Burg, 1967) possesses better tesolution capability than the
classical periodgram approaches for short data'lengths. ‘The Maximum
Entropy method is c1assified as an autoregreSSive (AR) model. The AR
. model is also kﬁown as aﬁ ail—pole model which uses only a denominator
polynomial of a rational model. In recognition of thie constraiﬁt,

a more general form, tﬁe autoregressive and moviog average (ARMA)
model which has'numerator polynomials as‘well ae‘degominator poly-
nomial has beenvproposed.j A variety of procedures has been developed

for generating ARMA models.  One of these methods-is‘the_so-called?high



performance’ ARMA method which was recently developed by Cadzow (1979).
The 'high éerformance' ARMA method has provided excellent spectral
estimation performance when compared with the Maximum Entropy and

its variants. HoWever, its comﬁutational efficiency is relatively
burdensome.

Recently, attention has been directed towards developing 'fast'
spectral estimation algorithms. These include the generalized Levinson's
algorithm. As an example, it is possible to use this approach for
estimating the autoregressive coefficients of a p-th order AR model
with the number of required additions and multiplications being on
the order of p2 (i.e., O(pz)). Recently, Morf developed the doubling
algorithm which reduced the required computations to O(p log p) by
using the divide and conquer approach (Morf, 1980). More recently,
recursive methods which have an ability to compute necessary parameters
at the arrival of each new data point has been proposed (Lee and
Morf, 1980). This algorithm does not require éﬁy matrix formulation
and the computational requirements can be reduced to 0(p) to update
the AR model paraﬁeters with each new data sémple.

In this thesis, tﬁe development of fast algorithmsvfor the high
performance spectral estimation method is treated. To begin our
development, in Chapter'Z, the mathematical definition of power
spectral density function is stated and two classical méthods referred

"to as the periodgram and the autocorrelation method are discussed.
The common weakness of these classical techniques are examined. In

Chapter 3, a standard prccedure of modern spectral estimation,



namely, the rational function model is &iscussed. Modern spebtrai
linear estimators can be glassified,into‘three types of ﬁodels:

(i) AR (Autoregressive) model, (ii) MA»(Moving Averagé) ﬁodel, and
(iii) ARMA (Autoregreésive and Mb#ing Average) mbdel. If is widely
known that the ARMA model is a desired form from a parameter ?arsimony
viewpoint. Iﬁ Chapter 4, the 'high pefforﬁance' ARMA spectral estima-
tion is described. Although thisvmethod‘gives eXcelient spectral ’ |
performance,xthe computational requirements are relatively Burdensdme.
To achieve a-highervdegree of computational efficiency, fast élgorifhms
are developed in»Chapter 5 andﬂdata modification methods are intro-
duced. In‘Chapter:6; a fecursive algorithm which requires 0(p) |
computations at the arrivai of each neﬁ’data sémple - is deveioped.
Development of this algorithm ié predicated on various: projection

operator decompositions.



Chapter 2

CONVENTIONAL SPECTRAL ESTIMATIONS

2.1 Introduction

The spectral density function is mathematically defined in
Section 2.2. Conventional spectral estimation techniquesvhave been
developed»based on the Fourier transform relationship between the
power spectral demsity function and the‘autqcorrelation sequence
(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,
©1957; Jenkins and Watts, 1968; Xoopmanns, 1974). For example Blackman
and Tukey developed an autocorrelation method (Blackman and Tukey,
1958) which includes following steps:

(i) Estimate the autocorrelation sequence from the observed
dataj
(ii) Window the autocorrelation estimate;

(iii) Fourier transform of the windowed data record.

While various procedures are used in step (i) to estimate the éuto—
correlation function, the objective is usually to obtain a2 minimum
bias and minimum variance estimate of the true autocorrelation
sequence. In step (ii), windowing is used to reduce the bias and the
variance of Ehe powef spectral estimate. -However, the windowing
process decreases the resolution of the power spectral estimate.
This‘autocorrelation method demonstrates typical wéaknesses of

conventional spectral estimation approaches. Spectral estimation



performance had not been improved until the development of modern

spectral estimation techniques..

2.2 Definition of Power Spectral Density

Let us conéider a discrete time random sequence {x(n)} with

autocorrelation sequence {rx(m)},defined by
. . o
rx(m) =E [x(a +m) x@)] ‘ (2.2.1)

where E and * denote the expected value and complex conjugate operation,

respectively. We will denote the z-transform of {rx(m)} by

<

s.(2) = I r (m z L C(2.2.2)

m=—co

The associated power spectral density is then defined to be

[o+]

s =s (] , =& rm eI (2.2.3)

z=eJ,m M=

Applying the inverse z-transform to eq. (2.2.2), we have

r (m) = 51%7 § | Sx(z) e 'Elzi , (2.2;4)

where C is a simple closed contour contained within the region‘of

convergence for S%(z). If C is chosen to be the unit circle, by

Jw

making the change of variable z=e” , we derive the discrete inverse

Fourier transform relationship



™

r_(m) = 2—-}{ ) L (2.2.5)

-

The variance of the random time series {x(n)} is equal to rX(O) and
can be expressed by
E{|x(n)|%} = £ (0) = = 'S () d (2.2.6)
X 27 X e

-

It follows that the average power in the incremental frequency band

wy < w < w,+ do (Tretter, 1976) is found to be

0 0

P (0p) =5 () 32 (2.2.7)

As shown in eq. (2.2.6), the time series variance is equal to the
total power of the signal which is a scalar multiple of the area
under the curve SX(w). Observing the relation between expressions
(2.2.6) and (2.2.7), one can see that the integral over the incremental
frequency band is proportional to the total power of the signal in
that band. For these reasons the function Sx(w) is called the power
spectral density.

The frequency response of a linear shift-invariant system and
the frequency domain representation of a discrete-time signal are
essential concepts in digital signal processing. In this section we
describe another interpretation of the power spectral demsity
function using the theory of linear discrete-time systems for the
case when the input is a random time'series (Oppenheim and Schafer,
1975). Consider a stable linear shift-invariant system with unit-

sampls response hi{a). Let ={(n) be a real input sequence that is a



sample sequence of a wide-sense stationary discrete-time random
process. Then the output of the linear system is a sample function
of a random process related to the input process by the linear

transformation

x(n) = £ h(n - k) e(k) (2.2.8)
k=m0

It can be shown that if the input is stationary, then so is the output.
The input signal may be partially characterized by its mean and its
autocorrelation function rs(m), or we may also have additional
information about first or higher order probability distributions.

In characterizing the output random process {x(n)}, we desire similar
information. For many applications, it is sufficient to characterize
both the input and output in terms of simple averages, such as means,
variances, and autocorrelations. Therefore, we shall derive input-
output relationships between these quantities. Generally we consider
zero mean processes and our analysis is restricted to the examination
of the autocorrelation sequence. The autocorrelation function of the

output process is readily shown to be given by

o] o]

r@= I r(@-n I hK W + k) (2.2.9)

== =00

To characterize the response of a linear time-invariant system to a
discrete time input, we apply the z-transformation to expression

(2.2.9) to vield

5 .(2) = H(z) H(z) S_(2) (2.2.10)



where H(z) is the transfer function of the linear shift-invariant

system. In terms,bf the power spectral density, (2.2.10) becomes
s (w) = [EEI|? s _(w) | | (2.2.11)

where the impulse response {h(k)}.is taken to be a real sequence.
If the input random process is a white noise with wvariance Ue , it

follows that

2

5. = [HE | o (2.2.12)

Relationship (2.2.12) is extensively used in analysis concerned with

modern spectral estimation.

2.3 Discrete Fourier Transform Approach

Asvshown in Section 2.1, the power spectrai density and auto-
correlation functions are related by thekdiscrete Fourier transform.
Suppose that the sequence {x(n)} is a wide-sense stationary random
time series and the complete knowledge of the associated autocorrela-

tion {rX(m)} is given, the spectral density can be simply obtained by

[+

5. = I rm o ~um (2.3.1)

m=—m

In relevant signal processing applications, it is never feasible
to measure an infinite number of autocorrelation sequence elements

{r,m1,
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We will now begin to examine the problem of estimating Sx(w)
from a finite observation of the time series {x(n)}. This observation

can be represented by a set of N contiguous samples
x(0), x(1), ... , x(N-1) (2.3.2)

About two decades ago, spectral estimates had been mostly accomplished

by the periodgram and autocorrelation methods.

2.3.1 Periodgram Method

To include an additional degree of flexibility, suppose that the

observed sequence is modified to form the auxiliary signal

f(n) = w(n) x(n) 0 <n<N-1 (2.3.3)

where w(n) = 0 for n < 0 and n > N. The sequence w{n) is frequently
called a data window. The sample autocorrelaticn function for the

modified observed sequence can be written as

feel

ro(n) = %— I f£(k+n) £(Kk) (2.3.42)
- Ni £(n) * £(-n) (2.3.4b)

where * denotes the operation of convolution. Denoting the z-transform
of rf(n) and f(n) by Rf(z) and F(z), respectively, the convolution

and time reversal theorems yield the following relationship

R (2) = = F(z) F(z ) | (2.3.5)

e IO
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1]
Ca.

Evaluating this expression at z e, we have

R(e1%) = S| s, |? (2.3.6)

The function Rf(ejw) is known as the periodgram of {f(n)}. Two
decades ago, the periodgram method became popular because Rf(ejw)
could be computed efficiently by using the fast Fourier transform

(FFT see Cooley and Tukey, 1965).

'2.3.2 Autocorrelation Method

When the true autocorrelation function rX(m) is unknown, it is
desired to calculate an estimate of the autocorrelation functiom.
The associated spectral estimate can then be obtained by taking a
Fourier transform of this autocorrelation estimate (Blackman and

Tuckey, 1959). Two common estimates

~ l N-m %
r (m) = =— I =x(i) x(it+tm) (2.3.7)
X N—m i=1
* m = 0, R N-1
and
2 1 N-m *
r (m) == ¥ x(i) x(i+m) (2.3.8)
x N oi=1

m=20, ... , N=1

are typically used for estimating the autocorrelation function.

Applying the expected value operation on expression (2.3.7), we obtain

=4

r2 1
LrX(m) J

1l
fl
™

E [x(i) =(i+m)] | (2.3.9a)

(2.3.9b)

il
"
]
'
=]
-
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The autocorrelation estimate fx(m) is seen to be an unbiased estimate.
On the other hand, one can similarly show that %X(m) is a biased
estimate. Because ;x(m) is an unbiased estimate, it might be thought
Qx(m) is the betger estimate. For several reasons, however; gx(m)

is sometimes preferable to rx(m). First, the biased estimate does

not violate a property of a valid autocorrelation functions, ‘that is
r (0) > |z (m] (2.3.10)

while the unbiased estimate can violate this property. Second, the
biased estimate produces a nonnegative spectral estimate, while the
unbiased estimate may not (Burg, 1975). Third, the mean-square errocr
for the biased estimate is less than that for the unbiased method
(Jenkins and Watts, 1968). And finally, Parzen provides an argument
in favor of the biased estimate by claiming that éx(m) has less
variance than fx(m) (Parzen, 1974).

Various procedures may also be used to estimate the autocorrela-~
tion function. The objective of these procedures is usually to obtain
a minimum variance estimate of the true autocorrelation function.
Similarly, the estimate of the autocorrelation function is windowed
to reduce the bias and variance of the power spectral estimate, but
increases its statistical stability. Various window functions have
been used which are generally unrelated to the daté or the randem
process being analyzed. Both the finite record length of the auto-
correlation function estimate and the windowing process applied to

the autocorrelation function decreases the resolution c¢f the power
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spectral estimate. An additional disadvantage of windowing is that
unless one performs good windowing, excéssive side lobes maj bé
introduced in the power spectral estimate. Side lobes may be reduced
by employing well deéigned windows but we then lose spectral resolutionm,
particularly when the data record is short.

The autocorrelation method and its variants were developed to
achieve better spectrum estimate performance in comparison to: the
periodgram method. As indicated above, however, the autocorrelation
method has still several disadvantages. These disadvantages had not
been overcome unt;i the development of modern spectral estimation

techniques.



Chapter 3
MODERN SPECTRAL ESTTIMATION

3.1 Introduction

One of the most widely used models for spectral estimation is
the rational model. The stochastic time series {x(n)} is said to
have a rational power spectrum if its power spectral density can be

expressed in the form
s () = |5 ]* o (3.1.1)

2, f s e s ,
where ¢~ is a positive constant and the characteristic rational

function

L _ 9 (3.1.2)

is composed of the ratio of the polynomials A(ejw) and B(ejw) which
may have real coefficients and the zeros of A(ejw) are all contained
within the unit circle. The rational power spectral demsity (3.1.1)
is said to have order (p, q) and its zeroces and poles are seemn to
occur in reciprocal complex conjugate pairs.

A particuiarly convenient interpretation on how a stochastic
time series with rational spectrum may arise follows directly from
the characteristic rational function. This entails treating the
characteristic rational function (3.1.2) as being the transfer function

of a causal, time-invariant linear system. It then follows that this

14
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system will be characterized by the recursive equation

q P ‘

x(n) = £ b, ela-i) - L a, x{n-1i) (3.1.3)
. i . i
i=0 i=1

where the time series {e(n)} and {x(n)} are taken to be the excitatiom
and response signals, respectively. It has been shown in section 2.1
that when the excitation time series {e(n)} is a zero mean stationary
white noise time series with variance 02, then the power spectral
density of the response time series is given by relationship (3.1.1).
Thus a stationary random time series with rational power spectral
density can be interpreted as being the response of a stable causal,
time-~invariant linear system to a white noise excitation.

The general linear system (3.1.3) is commonly referred to as an
autoregressive-moving average (ARMA) model in the spectral estimatiom
literature. This ARMA model is said to be of prder (p, @) and it
gives rise to the rational spectrum (3.1.2) which possesses zeroes
as well as poles. The ARMA model is the most general of ratiomnal

spectrum models possible and its a, and b

% coefficients uniquely

k
characterize the spectrum.

In the spéctral estimation literature, most of activity has been
directed towards the special class of ARMA models known as auto-
regressive (AR) models. An AR model is one in which the numerator

polynomial B(ejw) is equal to the comstant b As such, the AR

o
model is also referred to as an all-pole model since its transfer

function. is specified by
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H(ejw) = —
A(e?w)

(3.1.4)
This all-pole model is the one most often used in spectral estimation.
Another subclass of rational spectrum models which has received
attention is the so-called moving average (MA) model as characterized
by A(ejw) = 1. The transfer function of a MA model is given by
B(ejw) and it is therefore also referred to as an all-zero model.
In summary, Table 3.1 shows the rational spectrum associated with

each of these models.

3.2 Moving Average Model

Many conventional methods of spectral estimation are classified
as MA models. For example, the pericdgram and correlation methods
which have been discussed in Section 2.3 can be described in terms
of a MA model. Generally, little attention has been focused on MA
models. Welch has introduced (Welch, 1967), however, a MA model
technique which is particularly applicable to the direct computation
of a power spectrum estimate that uses the FFT. In this technique,
the data record is first sectioned into K = N/M segments of M samples

each as defined by
<P @) =x@+F M- O0O<n<Ml, 1<i<K (3.2.1)

A window w(n) is next applied directly to the data segments before
computation of the periodgram. Then, the X modified periodgrams as

specified by



17

Model Spectrum
MA [B(eJ“’)]Z
ENE
AR ij 2
[Ae”™) |
Jjw
ARMA 1——B(ejw>{2
A(e” )
. p s
A = 1 a e Jho a, =1
k=0
. q i
B(e3®) = 1 p e Ik
k=0 *

Table 3.1 Rational Spectrum Models
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R M-1 . .
J(L) (w) = ;L-l T x(l)(n) w(n) e J&n] 2 i=1,2, ... , K
M MU
n=0
(3.2.2)
are computed, where
M-1
2
U= 1 r w (n) (3.2.3)
M
n=0
and the final spectrum estimate is defined as
K .
-1 1) ‘
Bx(w) =3 iil JM (w) (3.2.4)

By taking average of periodgrams of each data segment, the
desired smoothed periodgram is obtained. 1In using this segmentation,
the variance of the spectrum is reduced. The price paid for this
reduction, however, is a loss in frequency tresolution and an increased

bias of the estimate.

3.3 Autoregressive (AR) Model

In the last decade, much attention has been focused on the
analysis of AR models. Two major spectrum estimation methods for AR
models, referred as one-step linear prediction and the maximum
eﬁtropy method (MEM) appeared in the literature of mathematical
statistics (Parzen, 1969) and geosciences (Burg, 1967; Lacoss, 1971;
Ulrych, 1972). Although these two methods take different approaches,
it has been shown that they give the same spectral estimate (A van den

Bos, 1971).
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3.3.1 One-Step Linear Prediction

In the application of one-step linear prediction, one seeks to
characterize the spectral density of a time series based upon a finite

set of time observation
x(1), x(2), ... , x() (3.3.1.1)
As described in Section 3.1, the AR model is structured by

x(n) +a, x(n-1) + ... + a, x(n - p) = e(n) (3.3.1.2)

1

in which e(n) is a white noise time series with zero mean and variaﬁce
082. The objective of spectral estimation will be that of modeling
an underlying time series {x(n)} with the AR model structure (3.3.1.2)
in which the a, coefficients are estimated from the given finite set
of observations (3.3.1.1). This is readily achieved by applying
the well known method of oné-step linear prediction.

A p-th order one-step linear prediction, by definition, estimates
the value of a random time series using a linear combination of
the most recent p samples. Namely, the sample x(n) is estimated by
means of the relationship |

. p : '
x(n) =-2I a x(n-k) (3.3.1.3)
k=1 K '

The difference between this predicted wvalue and the observed value
x(n) over the observation interval is called the prediction error

and is specified by

e(n) = x(n) - x(n) p<n<N (3.3.1.4)
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or

p
~e(n) =x(n) + I a, x(n - k) p<n<N (3.3.1.5)
l .

Writing these error expressions in matrix form yields
e=x+Xa ‘ (3.3.1.6)

where a, e, and x are px 1, (N ~-p) x 1, and (N - p) x 1 column

vectors, respectively, given by

a= [al, .. ,‘ap]T (3.3.1.7a)
e = [e(p+ 1), e(p+2), ... , e(N)]T (3.3.1.7b)
X=[xp+1), x(p+2), ..., x]* (3.3.1.7¢)
and X is an (N - p) x p matrix specified by
- : - T
x(p) x(p+ 1) . .. x(N --1)
x(p - 1) x(p) e . x(N - 2)
X = . . .
| x(1) x(2) . e (N - p)_ ' (3.3.1.74)

where the superscript T denotes the transpose operation.

The a coefficients are to be now selected‘so as to cause each
of the prediction error terms e(n) to be close to zero. This
selection process will give rise to the so-called optimal one-step
predictor. To achieve the required objective of setting the e(n) to

be near zero, ome typically appeals to the least squares method which
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minimizes a squared error criterion of the form

f£(a) = e We | (3.3.1.8)

where W is an (N - p) x (N - p) nonnegative definite square matrix.
The minimization of this quadratic functional with respect to the

column vector a is straightforwardly carried out and results in
X" Wxa’=xX Wx (3.3.1.9)

It can be shown that the resulting power spectral density estimate

of the time series {x(n)} is then given by

2
o
€

Sx(w) = (3.3.1.10)

‘il4—a; e ¥ + a; e 2% ¢+ L+ a; e—pjwlz

o s s . . . .
where the a coefficients are obtained upon solving relationship

(3.3.1.9).

3.3.2 Maximum Entropz;Method (MEM)

The MEM is a result of Burg's attempt (Burg, 1967) to derive
a procedure for increasing spectral resolution when only a small
number. of samples or estimates of autocorrelation function are avail-
able.  As mentioned in Section 2.3.2, in the autocorrelation method
one first estimates the autocorrelation function, append zeroes to in-

crease the length of the estimated autocorrelation, and then applies the

Fourier transform. In contrast, the MEM suggests that the estimated

autocorrelation functicn should be extrapolated beyond the data
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limited range. The principle used for this extrapolation process is
that the spectral estimate must be the most random or have the maximum
entropy of any power spectrum which is consistent with the sample
values of the estimated autocorrelationm.

In the analysis of MEM, it is assumed that we possess a partial
autocorrelation sequence {r(0), r(jﬁ),‘... » t(#M) } which is a subset
of a infinite extent autocorrelation function {r(0), r(+1l), ......}.
It is desired thatvwe produce from this partial autocorrelation

sequence a spectral representation

<]

Sr(w) = 3 r(k) e-j

5= e OO

wn (3.3.2.1)
which is a Fourier transform of the autocorrelation function of
infinite length. TFor some spectral density function Sf(w), we may

associate a time series {f(n)} by means of inverse Fourier transform

T
f(n) = é%'[ Sf(w) 3" dw for n = 0, +1, ... (3.3.2.2)
-1
so that
r(n) = £(n) forn =0, +1, ... , ¥ (3.3.2.3)

This expression does not provide us with a unique expression for the
spectrum Sr(w). To overcome this difficulty, Burg developed a new
spectral estimator called the maximum entropy method (Burg, 1967).
The entropy associated with power spectrum density Sr(w) is defined

to be
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™

H= J log [S_(w)] du (3.3.2.4)
-7
Maximizing the entropy with respect to the unknown r(n) for Inl >M

with the comstraint

i

r(n) =§1;T-f 5. &1 du for [n] > (3.3.2.5)
-1

results in the maximum entropy spectral estimate. This estimate
expresses maximum uncertainty with respect to the unknown information
that is consistent with the known information. The problem of
estimating Sr(w) becomes a calculus of variations problem. The solution
procedure which begins with the introduction of a Lagrange multiplier
for each of the constraint equations is not difficult and results

in the spectral estimate (Burg, 1967)

P

- M
S (w) = - - (3.3.2.6)
t ll + ai e 3%+ L+ a; e JMwlz

where optimum selection of coefficients a° (k =1, ... , M) are
2 k

obtained by solving the following matrix system of equations

|-l
jav]

'_r(O) (1) s e .M i

r(1l) r(0) . e . T(M-1) a

(M) r(M-1) e r{0) ay 0 (3.3.2.7)
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Equation (3.3.2.7) can be solved efficiently by using Levinson's

Algorithm which requires O(Mz) computations (Levinson, 1947).

3.4 ARMA Model

A variety of procedures have been aeveloped for generating ARMA
spectral models. These include the whitening filter approach which
is typically iterative in nature, generally slow in convergence, and,
usually requires an excessively large number of time series’' obser-
vations to be effective (Tretter and Steiglitz, 1967; Gutowski,
Robinson and Treitel,  1978). More desirable closed form procedures
which évercome these deficiencies have been offered. These include
the so-called Box-Jenkins method and its vafiants (Box and Jenkins,
1976; Kaveh, 1979; Kinkel, Perl, Scharf and Stubberud, 1979), and,
more recently, Cadzoﬁ has developed a '"high performance' method
(Cadzow, 1981). In this section, three ARMA methods, namely, the
Whitening method, Gutowski ARMA method and Box-Jenkins method are

briefly discussed.

3.4.1 Whitening Method

If we assume that the Gaussian random series {x(n)} is given,
the method of maximum likelihood (Haykin, 1979) can be used to estimate
the coefficients of rational spectrum in the following way. Suppose
the time sequence {x(n)} is passed through a transfer functibn
A(ejw)/B(ejm) to give the output sequence {e(n)}. The spectrum of

il

{e(n)} is given by
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S_(w) - (3.4.1.1)

If one could choose the coefficients of A(er) and B(ejw)'so that

Se(w)'= 032’ the spectral density of {x(n)} would be given by

’jw
Blew ) 12,2 (3.4.1.2)

S =1 ae 1

In this case, {e(n)} is a white Gaussian process.’ The maximum likeli-
hood parameter estimation is equivalent to finding the minimum of a
function of several variables (Tretter and Steiglitz, 1967). This
is called the minimum residual criterion and, intuitively, one attempts
to "whiten" {X(n)}'as mu¢h as possible. The whitening process is sugges-
tively depicted in Fig. 3.4.1.1.

Because of the rational spectrum model's structure, the minimum
residual criterion leads to nonlinear'equations which cannot be
solved explicitly. This suggests the using of an iterative technique
to optimize the denominator and numerator cdefficients. Many such
techniques are available, ranging from steepest descent to the

Newton-Raphson algorithm.

3.4.2 Gutowski ARMA Method

This section discusses the theoretical motivation for the ARMA
modeling technique described by Gutowski (Gutowski, Robinson,
Treitel, 1978). Consider the discrete time linear system

shown in Fig. 3.4.2.1 with input u(k), output x(k), and
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x(n) A(ejw) e(n)

Y

Fig. 3.4.1.1 Spectrum Estimation by Whitening Approach
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u(k) h(k)
X(z) = H(z) U(=)
_ B(2)
T A(z) Uz)

x(k)

Fig. 3.4.2.1 Time Invariant Linear System



28

impulse response h(k). If the transfer function H(z) is assumed to be

a rational function of z, then it may be written as

=

(z) (3.4.2.1)

82 = 3

>

where A(z) and B(z) are polynomials of z of order p and q, respectively.

This assumption in turn dimplies that the output is described by

lws)

(2) ez (3.4.2.2)

X(z) = NG

where X(z) and U(z) denote z-transform of {x(k)} and {u(k)}, respectively.
Gutowski's ARMA method assumes that u(k) is equal to the Kronecker

delta function and it therefore follows that

(o8]

(z)
A(z

= X(z) ‘ (3.4.2.3)

Gutowski's method uses Equation (3.4.2.3) in an iterative procedure
to estimate A(z) and B(z) from the data sequence {x(k)}. Each iteration

may be described in terms of the following three equatioms:

A(z) X(z) = B(z) (3.4.2.4)
c(z) = A§;> (3.4.2.5)
C(z) B(z) = X(z) (3.4.2.6)

The basic iterative technique may be seen by using equation (3.4.2.4)
through (3.4.2.6) and assuming that one starts with a reasonably good
estimate of B(z). At k-th iteration, the following steps are

required.
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(k) (k) (k)
Step 1  Compute A(z) with X(z) input and B(z) as desired output.

w (x)
Step 2  Compute C(z) by synthetic division of the value 1 by A(k).

) ® (%) .,
Step 3  Compute B(z) with C(z) as input and X(z) as desired

output.

(k) (k)

After each iteration, if A(z) and B(z) are better than the previous
iteration, then the fit will improve. At the completion of m-th
iterations, the ARMA spectral estimate is given by

B(m)(éjw) 9

- (3.4.2.7)
A(m)( el

SXQ») = |

The above procedure is repeated until convergence occurs. The
minimum delay characteristics of A"(z) is guaranteed by the fact that
the inverse is computed using a Toeplitz formulation. This is the

strong point of this algorithm.

3.4.3 Box-Jenkins Method

The ARMA model with order (p, q) can be characterized by the

following recursive relationship

P q
x) =-2 x(n-k) + I b, e(n-k) (3.4.3.1)
k=1 & k=0 *

n=p+1, ... ,+

., ' , , . . ., 2 .
where {e(k)} is a white noise with variance g,”. The autocorrelation

function of the mixed process may be derived by multiplying each
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side of (3.4.3.1) by X*(n—m) and taking expectations to yield

q
r. (m) = a, T (m-%k)+ I b

r (m- k) (3.4.3.2)
k=1 k=0 xe

k
where r. (n) and rxe(n) denote the autocorrelation of the sequence
{x(k)} and cross covariance function between {x(k)} and {e(k)},
respectively. Since x(n-k) depends only on inputs which have occurred

up to time n-k, it then follows that

rxs(n) =0 n>0 (3.4.3.3a)
.rXE(n) #0 n<0 (3.4.3.3b)
We see that (3.4.3.2) implies
P .
r, (n) = -1 a T (n - k) forn>q+ 1 (3.4.3.4)
k=1
and yields the following matrix system of equations
= - P - ol -
T (q) e . . rxl(q—p+1) a; rx.(q+l)
rX_(q+p—1)_. . . T () ap rX:(q+p) (3.4.3.5)
. . I - <

The a coefficients will be obtained by solving the equation (3.4.3.5).

The numerator dynamics of the ARMA model is characterized by e

coefficients (Kaveh, 1979) which can be expressed as
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P P
LI SRR R r(fi-3k]) (3.4.3.6)
k=0,1, ... , @g
where oy = 1 and a, = -a; for i=1, ... , p. The ARMA spectrum

representation is then found to be

-juwk

Sx(w) = (3.4.3.7)



Chapter 4

HIGH PERFORMANCE ARMA MODEL

4.1 Introduction

It is widely recognized that an ARMA spectral model is generally
the most effective linear rational model from a parameter paréimony
viewpoint (see Section 3.1). 1In recognition of this fact, a variety
of procedures have been developgd’for generating ARMA models
(Steiglitz, 1977; Box and Jenkins,f1976; Kaveh, 1979; Kinkel, ?erl,

'~ Scharf and Stubberud, 1979). Some of these methcds were discussed in
Section 3.4. As indicated in Section 3.4, it is recognizedvthat

these methods share certaiﬁ deficiencies. To oveféome these
deficiencies, the 'high‘performance' ARMA me;hod'was develcped
(Cadzow, 1979, 1980, a,b). It provides an excellentrspectral estiﬁa-
tion perfofﬁance when compared with other spectral estimation methods.
In this chapter, the 'high performance' method is described and
numbersrof ﬁumefigal examples are provided. This Chépter is basically
identical to references (Cadzow, 1979, 1980 a, b). The developmentrof
this method‘is baééd upon some fundamentél concept governing ARMA

time series which will be discussed in next sectiom.

4.2 Fundamental Concepts

The stationary random time series {Xk} whose power spectrum is

of a rational form may be modeled as the response of the causal ARMA
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system of order (p, q)
o q
x, + T a, x = I

. . b, g, .
i=1 i k-1 1=0 i "k-i

(4.2.1)
where the time series {ek} is taken to be a zero mean white noise
excitation signal.v The autocorrelation description of this system

is obtained By first multiplying each side of expreésion (4.2.1) By
the entity Xi—m and then taking the expected value. Thisvresults in
the well known Yule-Walker equations as specified by

p
rX(m) + '21 a; rx(m -1i) =0 form > q (4.2.2)
l=

The Yule-Walker equations (4.2.2) will serve as the basis for esti-

mating the ARMA model's denominator coefficients (i.e., 2, coefficients).

4.3 Denominator Coefficient Selection

In this sectiom, a novel procedure for estimating an ARMA model's
denominator coefficients shall be presented (Cadzow, 1979, 1980 a).
This development is begun by first evaluating the model equation

(4.2.1) over the integer set p + 1 < k < n to obtain the time series

relationships
od - - . -
xp+1 xp xp-l . - %y r a;
Xp+2 Xp+l XP X, a,
+
%n n-1 *a-2 ‘ Xn-p ap
b a—d ] -l b -ﬁ
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€p+l ep e Ep—q+l bO
€ € e e e b
p+2 ptl p-q+2 1
€ € e € b (4.3.1)
-1 -
L1'1 n nq_ B q-
It will be compactly written in the matrix format
x+Xa=&b (4.3.2)

where X, a and b is (n-p)xl, pxl and (n-p)xl column vector, respectively.
The symbols X and & denote (n-p)xp and (n-p) x (q+l) Toeplitz type
matrices, respectively. The entries of these vectors and matrices

are directly obtained from expression (4.3.1).

It is now desired to utilize relationship (4.3.1) in conjunction
with the Yule-Walker equations (4.2.2) to effect a procedure for
estimating the ARMA model's autoregressive coefficients. As we will
see, this objective is attained by first introducing the following

(n-p)xt Toeplitz type matrix

X « e s e . X
P-q p-q-1 - Tpmq-ttl

v = Xp—q+l ?Xp_q e e e e e Xp-ﬁ—t+2

*a-q-t (4.3.3)
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vwhere the conventlon is adopted of setting to zero any matrix entry

X for which k 11es out51de the observation set 1 <bk < n. The

integer t which specifies the number of columns of this maerix will

also be found to correspond to the number of Yule—Walker equatlons

that are being approx1mated (i.e., relatlonshlp (4. 2 2) for

qg<m<gq+ t). It thus follows that this integer parameter must

be selected to at least equal p (i;e.; t z_p) so as to assure a

well defined set of equations for the p autoregressive coefficients..
The above mentioned Yule-Walker equation approximation is

achieved by preﬁultiplying each side of relationéhip (4.3.2) by the

complex conjugate transpose of matrix Y as denoted By Y+‘to yield
YV x+Y xa=Y €a (4.3.6)

To demonstrate that this system of equations ylelds a logical choice
for the Yule-Walker equatlon approx1mat10ns, let us now take the

expected value of each of 1:5‘31des. This is found to result in

(n - m) {rX(m) + il ay rX(m -k} =0 »(4.3.5)

fer“»q <m<gq+t

Thus, the system of linear eduations (473.4) is seen to provide an
unbiased estimate of the underlying Yule-Walker equatioms. It is to

~ be noted that the right hand side term has zero expected value due to
the fact that ﬁhe exﬁected value of the matrix Y%G is the null
matrix. This is a directeeonSequence of the ARMA model;s causality and

the whiteness of the excitation process which results in E»{Xntﬁg =0
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~ for all n < k.

With these thoughts in miﬁd, a logical procedure for selecting:the
ARMA model'svautofegréssive'coefficients is suggested. VNamely, they
Will be éeleéted sé as to cause the left hand side of relationship
(4.3.4) to be close to its expected value which is the zero vector
(i.e., E {Y+§- bl = _9_) If this selection procedure is adopted, an
approximation of the Yule-Walker equations which in some sense is
"most consistent" with the given time séries observations is at hand.

A computationally tractable,méasure of‘the cléseness to which the
left side of relationship (4.3.4) is to the zero vector is provided

by the following quadratic functional

t t

f(a) = [Y"“g_; Y' X gﬁ [y’ x+Y Xal (4.3.6)

in which A is a t x t positive-semidefinite diagonal matrix whose
diagonal elements are chosen to possibly weight differently various

f X a. It is a simple matter to

elements of the error vector ' x+Y
show that a minimizing autoregressive coefficient vector must satisfy
the consistent system of p linear equations
. » .
X YAY Ra=-k vYAY x | (4.3.7)
in the p autoregressive coefficient unknowns. One then solves this

system of p equations for the most data consistent set of auto-

regressive coefficient estimates.
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4.4 Numerator Dynamics

A variety of procedures exists for determining the numerator
dynamics of an ARMA time series once the AR coefficients have been
estimated. 1In this section, two procedures which have been found to
be particularly effective shall be described. Eacﬁ makes use of the

governing ARMA relationship that models the underlying time series.

4.4.1 Yule-Walker Equation Method (Cadzow, 1979)

In this approach to estimating the numerator dynamics, we first
introduce the so-called causal image of a time series autocorrelation

sequence as specified by
r+(n) = -3 r (0) §(n) + r_(n) u(n) ’ (4.4.1.1)
X 2 X X P I

in which 8§(n) and u(n) designate the unit-sample and unit-step
sequeﬁces, respectively. Making use of the complex conjugate
symmetrical property of stationary autocorrelation sequences, it then
follows that the autocorrelation sequence can be uniquely recovered

from its causal image according to the simple relationship
+ + *
rx(n) = rX(n) + r_ (-n) (4.4.1.2)

Upon taking the discrete-Fourier transform of this relatiomship,

it follows that the time series spectral density is given by

s () = S-@) + [S@I*

+
2 R, [SX(w)] (4.4.1.3)
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where S (w) denotes the discrete Fourier transform of the causal

+ 3+

image rX(n). According to relationship (4.4.1.35, one may attain a

spectral density estimate by estimating S;(w). This will be the
approach taken in this section.

An estimation of the Yule-Walker equations (4.2.2) which govern
the ARMA model time series indicates that the causal image sequence

will generate the auxiliary {ck} sequence according to

+ P +
c = rX(m) + kEl a T, (m - k) (4.4.1.4)

m=20, 1, ... , s for s = max (q,p)

It is to be noted that the {ck} sequence will be identically zero out-
side the time range 0 < k < s. Upon taking the discrete Fourier

transform of relatiomnship (4.4.1.4), we have S:(w) in the form

_jw
+ ) + cl e + . . .+ cs
Sx(w) = ; (4.4.1.5)

1+ a e_Jw + .. .+ a e-JPm
1 P

~jsw
o3

If this expression is substituted into relationship (4.4.1.3), the

required formulation of the spectral density .estimate is completed.

4.4,2 Smoothed Periodgram Method (Cadzow, 1580 b)

In the smoothed periodgram method, one first generates the

auxiliary "residual" time series elements according to the relationship

e{k) = x(k) +

[ e el

a, x(k - i) p+1<k<n (4.4.2.1)
i=1

in which the ARMA model's a coefficients as generated by relationship
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(4.3.7) is utilized. Upon examination of relationship (4.2.1) and
under the condition that the time series being characterized is an
ARMA model of order p with the calculated a, coefficients, it follows
that the residual time series will have a moving average spectral
density as given by

k

q .
s, = | £ b e T (4.4.2.2)
=0

This observation in conjunction with the ARMA model representation
then provides the vehicle for estimating the underlying time series

spectral density, that is

. 5 .
s (@) =8 (w) / lkf a e , a, =1 (4.4.2.3)

0

With this in mind, the final step of the spectral estimation procedure
requires fitting a g-th order moving average (MA) model to the
residual time séries segment (4.4.2.1) to effect an estimate of Se(w).

The approach to be presented for obtaining the q+lSt order MA
model is an adaption of the well-known method of Welch for obtaining
smoothed periodgrams (Welch, 1967). In essence, one first segments
the calculated residual elements (4.4.2.1) into L segments each of

length g + 1 according to
ei(k) = w(k) etk + 1+ p + id) (4.4.2.4)

0<k=<gq

0 <i<L~-1
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where w(n) is a data window and "d" is a positive integer which
specifies the time shift between adjacent segments. These individual
segments are seen to overlap for a shift selection of d < q.
Furthermore, in order to include only the observed time series
elements, the relevant parameter must be selected so that p + q +

AL - 1)d < n. TFinally, the q + 1 order periodogram of each of the

L segments (4.4.2.4) is taken, and, these periodograms are in turn
averaged to obtain the desired smoothed q + 1 order MA estimate given
by

1 L-1 1 q
— —_— 1 7
I 12 {q+l T wk) ek + 1+ p + id)e

i=0 =0

5_() = Siuk 124 (4.4.2.5)

where the daté window is normalized according to I wz(k) = 1.

In using this smoothing procedure, the variance of the estimate
ée(w) is reduced. The price paid for this reduction, however, is a
loss in frequency resolution and an increased bias of the estimate.
Fortunately, the basic resolution capability of this and other ARMA
model procedures is primarily influenced by the autoregressive co-
efficient selection. If one is mainly interested in resolution
performance, an examination of the ARMA models' pole locations then

need be investigated.

4,5 Numerical Examples

In this section, the classical problem of detecting the presence
of sinusoids in additive noise is considered. In particular, we

will investigate the specific case in which the time series observations
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are generated according to

x(n) = A, cos (ﬂfln) + A2 cos (ﬂfzn) + w(n) (4.5.1)

1

1 <n<NWN

where w(n) is a white Gaussian time series with variance one. This
particular proElem serves as an excellent vehicle for measuring a
spectral estimator's performance relative to: (i) detecting the
presence of sinusoids in a strong noisy background, and (ii) resolving
two sinusoids whose frequencies fl and f2 are nearly equal. The
individual sinusoidal signal-to-noise ratios (SNR) for the above signal
are given by 20 log (Ak//§§ for k = 1,2. 1In order to consider the
effectiveness of the high performance ARMA spectral estimator in
different noise eﬁvironments, we shall consider two cases. These

cases have been examined in referenée (Sullivan, etc., 1978) where the

performance of many modern spectral estimators are empirically compared.

CASE I: A, = /20, £, = 0.4
A, = Y2, £, = 0.426

In this example, we have two closely spaced (in frequency) sinu-
soids for which the stronger sinusoid has a SNR of 10 dB while the
weaker sinusoid has a SNR of O dB. Tor this relatiVely low SNR case,
the ability of a spectral estimator to resolve closely spaced sinusoids
and identify their frequencies will be tested. Upon generating
sequence (4.5.1) with the postulated parameters for a data length of

N = 1024, gpectral estimates were obtained using a 12-th order model
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with the high performance ARMA method (diagonal element of the
matrix A is (N—m)z), maximum entropy methed, and the Box-Jenkins
méthod incorporating biased autocorrelation estimates. In additiom,
a standard periodgram spectral estimate was obtained using the same
data. The resultant spectral estimates are displayed in Fig. 4.5.1
where a number of observations can be made
(i) The indirect ARMA spectral estimate provides excellent
results with two sharp peaks at %l = 0.400 and
%2 = 0.427, and with the spectrum near 0 dB (the noise
level) for most other frequencies.
(i1) The maximum entropy and Box-Jenkins methods were unable
to resolve the two sinusoids in the prevailing low
SNR environment.

(iii) Although the periodgram is able to resclve the two
sinusoids, the well-known random fluctuation behavior
which characterizes the periodgram method is in
evidence.

This example nicely demonstrates the potential capability of the high
performance ARMA spectral estimation method relative to existing
procedures.

In many practical pfoblems, one does not have available exceedingly
long data lengths upon which to make a spectral estimate. To demon-
strate the ability of the high performance ARMA spectral estimator to
perform in such situations, the first 64 samples of the data sequence

in the above example were used to generate a spectral estimate. The
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resultant 15-th order high performance ARMA spectral estimate obtained
is shown in Fig. 4.5.2 where the ability to resolve the two closely
spaced sinusoids is again evident. The sinusoid’s frequency estimate
%l = 0.399 and £, = 0.423 are also of good quality in this low SNR

environment.

CASE II: A 0.32812

1

]
N
Hh

1]

A2'=/2", £, = 0.5

We are now examining the ability of the ARMA spectral estimator
to detect sinusoids in a low SNR environment. For a selection of
N =64, wn) = (N - n)2 and p % 5, the resultant ARMA spectral
estimation is displayed in Fig. 4.5.3(a). Clearly, one is able to
detect the presence of the two sinusoids, and, the frequency estimate

A

£ = 0.3202 and f2 = 0.5012 are of good quality considering the

o)

prevailing SNR environment. A 15-th order maximum entropy spectral
estimator was then found to generate the spectral estimate displayed
in Fig. 4.5.3(b). Although the two sinusoids were properly detected,
a number of false peaks are in evidence.

Next, we treat the time series recently considered by Bruzzone

and Kaveh (1980). Specifically, their ARMA time series is characterized
by

1 2
b = -+ £ . °2
x % + X - 0.5 K (4.5.22)

are autoregressive process generatad

X . . 1 2
where the time serias xk and Xk

by
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1
= - 2 = = .5.2
X 0.4 X1 06.93 %o 1 (4.5.2b)
2 2 2 22 ‘
xk = -0.5 X1 " 0.93 X o -+ €y (4.5.2¢)
in which the ¢ . and o2 are uncorrelated Gaussian random variables

Kk “k
with zero mean and variance 1. The spectral density of the above

time series (4.5.2a) is given by

2

5 (@) = |1-0.4e7% +0.03 g 2w 2

+ 1+ 0.5 739 4 0,93 73272

+ 0.25 (4.5.2d)

Using this time series (4.5.2a), twenty different indepen&ent sampled
sequences each of length 64 were generated. These twenty observation
sets were used to test various spectral estimation methods. In

Fig. 4.5.4, twenty superimposed plots of the ARMA model spectral
estimates of order (4.4) as obtained by using the Box-Jenkins method, the
high performance method wiéh t = 4, 8 and 20 are shown. For comparison
purposes, the ideal spectrum is also plotted. Comparing the two top
most plots, the high performance method with the minimal value of t=4
was found to yield a marginally better spectral estimate than the
Box-Jenkins method. In the lower two plots, one can observe that the
high performance spectral estimates improve significantly as t is
increased. Next, twenty different samples sequence of length 200 were
generatad éccording to time series (4.5.2a). With this longer data
length, it was anticipated that an improvement in spectral estimation

performance would result. As shown in Fig. 4.5.3, a marked improvement
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is evident, where the ARMA model spectral estimates of order (4.4)
are shown for the Box-Jenkins method and the high performance method
for selections of t = 4, 8, and 20.

It is also possible to use the high performance ARMA method for
synthesizing digital filters. To illustrate the approach that is
taken, let us consider the specific case of designing a low-pass
filter of normalized cutoff frequency fc’ One may readily show that
the impulse response of an idealized version of this low pass filter
is given by.sin (ﬂfcn)/ﬂn. With this in mind, one then applies the

herein developed ARMA procedure to the specific sequence

z(n) = sin [ﬁfc(n -0.5M]/r(n -0.58) 1l<n<N (4.5.3)

The resultant ARMA model obtained in this manner will have attsnuation
characteristics of the desired low-pass filter. To illustrate this,

a 15-th order ARMA spectral estimate of this sequence was made for

fc = 0.2, N = 128 and w(n) = (N-n). The resultant filter's magnitude

characteristics are displayed in Fig. 4.5.6 where the low-pass

characteristics are in evidence.

4.6  Summary

The "high performance’ ARMA model spectral estimation has been
described. This estimation approach provided an excellent spectral
estimation performance when compared with such contemporary procedures

as the maximum entropy and Box-Jenkins Methods. The above mentioned
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"high performance' ARMA spectrum estimation will be developed

further in Chapter 5 to achieve computational efficiency.



Chapter 5

COMPUTATIONALLY EFFICIENT ARMA SPECTRAL ESTIMATION

5.1 Introduction

Recently, much attention has been focused on developing spectral
estimation algorithms. Unfortunately, direct application of the linear
prediction method as described in Section 3.3.1 results in an
excessive computational requirement, since it is necessary to solve
a pxp matrix system of equations which generally requires O(p3)
computations. For this reason, a number of computationally fast
algorithms have been developed to overcome this difficulty. These
include the Levinson's algorithm (Levinson, 1947). The Levinson
algorithm is found to be dependent on the Toeplitz structure of
the matrix characterizing the system of equations. With this very
restrictive constraint in mind, Kailath, etc. developed the concept
of the displacement rank so as to yield efficient solutions for nomn
Toeplitz system of equations. The displacement rank measures how
"close” to Toeplitz a given square matrix is (Kailath, etc., 1979).
If a given matrix T is Toeplitz, then its structure is characterized

by the following property

‘: [+ 7 = 1
T = f_x.i,j_J [ti-%-m, 3"]“111] (5.1.1)
where t, ., denotes the {i,j)~th element cf the pxp Toepiitz matrix

1.3

T and m is a scalar integer (1 < i+m, j+m < p). That is, the elements

U
~J
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of the matrix T are identical along the diagonal and subdiagonal
directions. 1In recognition of this key property of a Toeplitz

structure, the displacement rank of the pxp matrix A is defined by

ad) = min{cz+ (&), a_ (&)} (5.1.2a)
where
oL (A) = rank {A - S A ST}
(5.1.2b)
o (A) = rank {a - sT A s}

in which a, (A) and o_ (A) are called the positive and negative
displacement ranks of matrix A, respectively, and S denotes the pxp

down shift matrix defined by

e
1° .
<::> ‘f 0 (5.1.3)

It can be straightforwardly shown that the displacement rank of a

Toeplitz matrix T is 2, that is
a(T) = o, (T) = o (Ty = 2 (5.1.4)

If a given matiix A has a displacement rank o, then it has been
shown that the inversion of A may be accomplished with the number of
required computations being O(apz) (Friedlander, etc., 1979).

Based on these concepts, a number of computationally efficient
algorithms for AR spectral models have been developed (Friedlander,
etc., 1978, 1979; Morf, etc., 1977; Morf and Lee, 1978; Lee and Morf,

1980; Morf and Kailath, 1975; Mullis and Roberts, 1976; Morf, 1980;
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Bitmead and Anderson, 1979). Some of these methods are classified
by Morf, etc. (Morf, etc., 1977). |

In this chapter, fast élgorithms Whicﬁ are applicable to the
"high performance" ARMA method (see Chapter 4) are developed. To
achieve the fast algorithm soldfion capability, it will be nécessary
to restrict the number pf Yuie—Walker‘ approximation to be p (i.e.,
t =p). Unfortunafely, the restriction t = p will generally result
in an associated decrease in spectral estiﬁatibn performance. Thus,
in obtaining a computationaliy fast algorithmic solution procedure
for the ak coefficients, an accompanying sacrifice in spectral
estimation performance is the price being paid. One must therefore
carefully consider the tradeoff for any given applicatibn. Fortunately,
the degradatioh in performance is not great for many relevant
applicationé in which the data length n adequately exceeds the ARMA
mbdel order parametets p and q. |

The achievement of fast algorithms requires data modifications
which will be discussed in Section 5.2. In Sections 5.3 and 5.4,
algorithms which requires O(pz) and 0(p log p) multiplications,
respectively are discussed. An algorithm which requires O(p)

3]

computations is developed in Chapter 6.

5.2 Data Modification

In this section, we will discuss three types of data modifications

referred to as the pre-modification, post-modification and pre- and
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post-modification methods (Cadzow and Ogino, 1981). These are modi-
fications of the 'high performance’ ARMA spectral estimation methods
as discussed in Section 4.3 in which t is restricted to be p. It will
be recalled that in this unmodified case one must solve the matrix
system of equations (4.3.4). Without loss of generality, this

matrix system of equations may be represented as

t +
Y Xa=Y x (5.2.1)

where Y and X are (n - p) x p Toeplitz matrices, while x and a are

(n-p) x1and px 1 column vectors, respectively defined by

B 9T

Xp-q’ Xp-q+l’ e e e e ey xn—q-l
v = . . .

Xl"‘q XZ"Q g 4 s e s sy Xn__q_._p (5 2. la)

™ d

‘ol - T

Xp Xp+l e e e e Kn—l
x =" .

Xl XZ > LI o s » XD_P (S.Zalb)
X = [x X . X ]T (5.2.1c)
—_— p+l’ P_,_z’ b . 5 n . .

T PR

as= [al, C e e ap] (5.2.14)

where the entries of the matrices X, ¥ and column vector X cam be

determined from expression (4.3.4). The entries of the column vector
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a in expression (5.2.1d) denote the denominator AR coefficients to be
found. It can be shown that the displacement rank of the matrix
YfX is 4. As suggested in Section 5.1, it is possible to find an
algorithmic solution procedure which requires 0(4p2) computations.
In fact, in Section 5.3, a generalized Levinson's algorithm will be
developed. | |

It is possiblevto realize significant computational savings in
the 'high perfofmance' ARMA spectral estimation‘procedure. This
improvement will entail a slight modificatibn in ﬁhe vector X and
matrices X and Y. Although the suggested modifications will typically
result in biased estiﬁates of the Yule-Walker equations, it is shown
that when the data length n adequately exceeds the order parameter
p and q then these estimates are virtually uﬁbiased (Cadzow and Ogino,
1981).

With the above high pefformance spectral estimation method
représentatibn serving as a basis, we shall now consider the afore-

mentioned modifications required to achieve computationally efficient

algorithmic solution procedures.

5.2.1 Pre-modification Method

In expressions (5.2.1a) and (5.2.1b), the addition of lower
triangular matrices to the top of matrices X and Y yields the Toeplitz

matrices
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I = T, g .
Q 3 . X 5.2.1.1a
g * * * ¢+ “n-g-p ( )
T
2 s 3 a @ a h
rxl . ‘{p . Xn-l
. » .
- ' . * .
o
. »
X * o 2 e X 5.2¢l.lb
L . ) ( )

with Yl and Xl each being (n - 1) x p matrices. While maintaining

the structure of expression (4.3.1), the vector x will be modified

to
X, = (X o » « X .. . X ]T (5.2.1.1c)
-1 2 p+1 n

Substitution of expressions Yl, X1 andlgl in place of Y, X and x,

respectively, yields

T . _ T
Yl Klvg = Yl (5.2.2)

I

1

It can be shown that the displacement rank of the matrix Y; Xl is 3
(Cadzow and Ogino, 1981). It is possible to find a generalized
Levinson algorithm which requires O(3p2) computations to invert'Yle.
More importantly, because of this specific structure, an algorithm
which requires O(p) computations has been developed and will be

discussed in Chapter 6,
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5.2.2 Post-modification Method
Following a similar procedure as employed in Section 5.2.1,v
the addifion of an upper triangular matrix to the main body of the

matrices specified by (5.2.1.2) and (5.2.1b) yields the Toeplitz

matrices :
- - T
e 5 s 2 » X N . . : - ¥
p-q n-q-1
Yz = » * ! O
*
» d *
Xl_q a PO . Xn—q—p s o & o X‘n"'q—l (5 2.1, 33)

r * 32 2 e 3 & 3 .
Xz =/°* ' ’ )
-Xl e 2 a2 & e 3 @ Xn—p 8 s a & 3 Xn—]_‘ v (3.2.1-3b)

where X2 and Y2 are each (n - 1) x p Toeplitz matrices. In a similar

manner, the column vector X is defined by

T .
z;_z —[Xp'l‘l, 5+ e e a o Xn, O . o . O i (5-2-1;3(:)

=

pzeros

The displacement rank of the matrix Y; X, 1is found to be (Cadzow

and Ogine, 1981)

tooy toy o | -
a, (Xz XZ) =a_ (Y2 XZ) =3 (5.2.1.4)
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thereby offering a gemeralized Levinson solution procedure requifing
~a computational complexity of”0(3p2) for solving the system of ’

equations
+ _ ot |
Y, %,a=Y, x | | (5.2.1.5)

A more computatioﬁally efficient algorithm associated ﬁith the post-
modification will Be developed herein. It is shown ihat the number
of cdmputatiogs is redueed to Q(p log p) if p = q where p and q are
the order of denomiﬁatdr aﬁd numerator coefficients‘of the ARMA model,

respectively.

5.2.3 Pre- and Post-Mecdification Method
The combination of the previously discussed two modification
methods yields the pre- and post-modification method. The matrices

and vector are modified in the following manner

1-q jale} n-1-q O
¥ 'S
= »
Y, . - : . .
O s : -
Xl—q. a H 'y xn_p_q s & a Xn-l—q

(5.2.3.1a)

; : o"‘o ) ‘ e ‘ 'e
<::> X e s s X s+ s s X (5.2.3.1b)
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. e ... 0] (5.2.3.1c)

Xq = [Xz PR Xp+l Coee X 2_ : 0.

where Y3 and X3 denotev(ﬁ + p - 1) x p matrices and X is a
(n+p-1) x 1 column vector respectively.
It can be shown that the matrix Yg X3 is a Toéplitz matrix. A

conventional approach for solving the Toeplitz system of equations

T _ : :
Yy X3 2a=Y5x, (5.2f4)

was developed by Lévinson (Levinson, 1947), which requires O(pz)
computations..'More.récently much effort has been conducted in
developing more efficient AR algorithms ﬁhose‘computational require-
ment is O0(p log p). Gustavson, etc., presented their algorithms
which were based on'the;ﬁse of Pade approximates and the rational
Hermite approximation (Gustavson and Yun, 1979). Morf

developed the so-called doubling algorithm which requires

0(p log p) (Morf, 1980). Bitmead and Anderson also indepgndently
found a doubling algorithm (Bitmead and Anderson, 1979). 1In Section
5.4, an applicatioﬁ of the‘doubling élgorighm to the ARMA model is

developed.

5.3 Generalized Leviﬁson's Approach for the ARMA Model:
The Unmodified Method ' '

In this section, an algorithm which can»be applied to. the direct

approach (i.e., no modification) will be developed. Without loss of

n

generality, the mx m matrix_R1 o will be defined by
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n _ron T om
Rl’m = [zl’m X m (5.3.1a)

where X? o denotes (n - m + 1) x m matrix defined by
3

- T
x S i
n
Xl,m = . . .
i % x, e e e e . Xn-m+l‘ (5.3.1b)

with the subscript m designating the number of columns of matrix

n » 2 1 3
X1 o’ 1 is the smallest and n the largest index of the observation
, .

. n . . n .
data to form the matrix X . In a similar manner, matrix Y. is

1,m 1,m
obtained by
i , -
ym ym+1 e e e e e yn T
n —
Yl,m-_ . . .
e e e s ‘ .3.1¢)
vy ) AN (5.3.1c)
ol -4
where the entries of the matrix Y? o are given by
3
* 3
v, = Ki—q for i=1, ... , n (5.3.1d)

This particular representation has been chosen so that in the develop-
ment of the generalized Levinson's algorithm for an ARMA model,
notational complexity can be eased. It then follows that the matrix
expressed by (5.3.1a) has the following shift invariance structures
which characterizes the near Toeplitz structure of the matrix R? ,

‘L’
that is



67

n n-1 n b nT
= ( (
Rl,m Rl,m + ¥ &§m> (5.3.23a)
. | m , mT
= R2,m + ¥ (}_:m) (5.3.2b)
n F (Wn )T !
Rymbl “|a-aaoml ]
b4
: n-1
, R1,m
> (5.3.2¢)
X
. 4
- -
o X
= R2,m :
X
n T (5.3.24)
CIED *
L ' i
where .n, xn, Z; and x" are m x 1 column vectors defined by
“m =m
o o_ . T \
o=y ooy ] (5.3.2e)
n T
== ~ ‘7
x =[x, »ox ol (5.3.2£)
T
_Ziz = [Ym, e e 2y .,Vlj (5-3.2g)
m T
x =[x, s %] (5.3.2h)

. n T n T .
while (Zm+l> and (w !l) denote the first and last rows of the
matrix Re ., respectively, and the m x m matrices RD is defined by
1,m+1 2,m
:L = r n 'lT n ( ..‘.0»\
FZ,m “Y2,mJ XZ,m 3.3.3)
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From a structural viewpoint, relationship (5.3.2a) is called time

update, since the matrix R? m
>

. n-1 . . . .
matrlces:Rl o which includes all of the past observations up to
3

. . . n, n,T . .
previous time index n-1 and zﬁ(xm) which includes the most recent data.

is explicitly defined as a sum of two

n
is seen to be a submatrix of R .
1l,m 1,m+l

In expression (5.3.2¢c), Rn-l

It
then follows that relationship (5.3.2c) is called order and time
update.

A computationally efficient algorithm will be obtained by using
various combinations of the above shift invariance structures. This
fast algorithmic procedure for finding the solution is similar to
Levinson's algorithm (Levinson, 1947). The overall solution is
updated from the solution of a lower order to that of higher order
system of equations (order update) and from the solution of previous
time instance to that of present time (time update). To develop this

algorithm, we apply an induction hypothesis. Suppose at order m

and time n, we have the relationship

" eun g
gD n BB 42 ] = Cl,m 0 m
1,m —=1.,m —1,m —1,m 0 : .
. 0 .
0 th oy | (5.3.4a)

n n n s e
where a , b » and d. are m X 1 column vectors defined by
»

l’m —lsm lm
n - n n _ 1T ,
g = e (@, ay ,@D] (5.3.4D)
n - n (o n - n -(T ,
by o= [oy =D, by (@-2), .. by (D, 1] (5.3.40)
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and

= - n n T
4y p=Ld 0, ) @ d ] (5.3.4d)

Specifically, gz o and 22 o 2re called the forward and the backward
9 3 .

AR coefficient vectors, respectively. In the development of the

. . . s n
computationally efficient algorithm, the auxiliary vectors éi o are
b

needed to cancel the end effects due to the non-Toeplitz nature of

matrix R? o’ At the previous time index n~1, we have the relationmship
3 - l -
20 v
Rn—l [an-l bn-l dn-l] - ? . .
1,m l,m —1,m —1l,m 0
0
i r,n-1 :
0 gl,m yl. (5.3.4e)

Based on the relationship (5.3.4a) and (5.3.4e), we will develop a recur-

. . : v n n n
sive solution procedure for the vectors 21,m+1’ bl,m+l and gi,m+1 as a
function of n. Applying the shift invariance structure (5.3.2b) to
(5.3.4a) yields the following expressions

n n _ g,n _ m
om 2T fns T Sty (5.3.3a)
n n _ _
R2,m-é1,m = (1 fm) Y (5.3.5b)
where €n and fm are scalars defined by
_ ¢.oT n f
€m = (gm) *él,m (5.3.6a)
‘ m\T .n
f =(x) d (5.3.6b)

m -m° —=1l,m
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and = is the m x 1 unit basis vector expressed by

e, =[no...ol" (5.3.6¢)

Expressions (5.3.5a) and (5.3.5b) lead to the following

relationship
m n. _ .n
R2,m 2,m C2,m 21 (5.3.72)

n n .
where a and Ly pare amx 1 column vector and a scalar respectively,
3

2 ,m
defined by
n o _“?m n “n n
ayn=ley 0 & Vv d) (D) (5.3.7)
m m
€,0 €, , “n n
m = f1om I+ T dl,m(l)} (5.3.7¢)

m

where d° (L) denotes the first entry of the vector d. _ (see

1, 1,m
eq. (5.3.4d)). Expressions (5.3.2c)and (5.3.2d) lead to the relation-

ships
n n - ,E,0 :
Ry mrl 31,1 - C1ombl &1 (5.3.8a)
n n RS % «
Ry okl P1omr1 = %1l Smrl (5.3.8b)
where el is the (mt+l)xl unit bases vector defined by
e . =10 17" | (5.3.8¢)
S+l s e e e .3.

£,n

In expressions (5.3.8a) and (5.3.8t), S

and §§’;+1 are scalars
bl

defined by



e B
€,m  _ €0 _ _m _m .
C1,m+l CZ,m Cr,n—l (5.3.9a)
I,m
a_ B
r,n - r,o-1 __m m
Cl,m+l ;1,m LE50 (5.3.9%)
2,m

in which e and Bm are scalars specified by

T i

a = (E;+l) ég,m (5.3.10a)
. 0
B =G>T 0 ] (5.3.10b)
m —mt+l
L
The m x 1 column vectors gg’m+l and Ez,m+l in expressions (5.3.8a)

and (5.3.8b), respectively, are defined by

n - m m 0
él,m-l-l - éz,m gr’n_l bn_l (5.3.11a)
1l,m =1,m
o L
n N
S,m1 7| n-1] T en | 22 (5.3.11b)
—D'l,m 32,11'1
-l

Expressions (5.3.11a) and (5.3.11b) are seen to be very similar to
Levinson's algorithm (Levinson, 1947). 1In fact, one can show that
these two expressions can be converted to Levinson's algorithm, if the
pre- and post-modification method is applied on the matrix Rg,m

Next, we will verify the relationship which updates the vector

o n
d . Themzx 1 umn is found to be
4y m T column vector éi,m+l s found t



! _| 0 ] + Yotl ~ Tm !
-1, m+1 n ce,n —1,m+1 (5.3.123a)
d J 1,mr+l | '
—1l,m
where Yo is a scalar given by
_, n T 0 _
Yo = () (5.3.12b)
3"
—1,m

It can be straightforwardly shown that

n n m+1

Ry, mb1 ii-3.,m+]_ = I (5.3.13)

Finally, combining expressions (5.3.11a), (5.3.11b), and (5,3.13),‘

the following relationship is obtained.

3 ch Py 0 b
Rn [an bn dn ] - 1,mtl : ym—l—l
l,ml —1,m+l —=1,m+l —1,m+l 0 ‘ :
0
. . .
0 t1,m1 1

(5.3.14)

In the above development, the generalized Levinson's algorithm for

ARMA model is verified based on the induction hypothesis. The number

of computation of the algorithm is readily found to be 0(3p2) where

p designates the number of denominator coefficients of the ARMA model.
We will now detail steps of the computations required in

this recursive algorithm. The algorithm starts with the initialization

procedure at n = g+l and order m = 1. The solution §§+1 of the matrix
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equation (5.3.4a) with m = p+l is obtained by recursively updating
E; fromm =1 to p + 1 (order update) and from n = g+l to N (time
update). Meanwhile, auxiliary vectors QE is also recursively updated.

The above algorithm can be presented as follows

Step 1: Initialization for time update {(n = gq+1)

1 = 1 T - r,l = e,1 _ -
[Wl,l] [51,1] 51,1 7 %1,1 T Vg1 ¥t
T _ .1 _ 1 _ €,1
2377 by 071,47y = y/e

Step 2: n = n+l

Step 3: Initialization for order update

Wn = Tn7n-.1 =

A + Yo Fotlem m=1, ... , M
n_ n-1 _

Zn T & T Ve Fndiem m=1 » M

where M = min (p+1l, n-q) m=1, ... , M
€, _ . T,m _ n

gl, Cl,m L (D

n,. . n
where Em(l) denotes the first element of column vector z

n _.n _ n o _ £,0
a; ;g =b; ;=1 dy =yt

Step 4: Compute recursively from m = 1 to M where M = min

(p, n-q-1)
A = m\T n s = (T on
S 2.0 m (x) é-l,m



€ . £ .
n  _ fr.n m n v n
é2,m [il,m * 1-£ -cll,m]/{l_ * 1- fm i3.",:11(1)}
€ €410 Em n ;
Com = Cim /LT E 4 D
o= 2T |2 R
m =m+1 —2,m m —m+l bn—-l
0 =1,m

* Update forward and backward solutions

- - .
an - an _ m { 0
—1,mt+l =2,m Cr,n—l n-1
' 1l,m b,
W o l' —=1,m
o | - B
bn 0 _ m an
_1,m-§-'1 n-1 ce,n —2,n
—1,m 25 0
. o . B
Ce,n - Ce:,nv_ m m
1,mtl 2,m Cr,n—l
1,m
Er,n' - r,n~1 - oLm Bm
1,m+l Cl,m €,n
* Compute auxiliary vector a2
—1l,m
_ ,.n T
Ym - (y'm'i'l)
. dn
—1,m
a8 ={- 6] Yokl ~ Yp o0
=1,m+l n ;a,n —1,mt+1
d 1, m+1
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Step 5: If n < N go to Step 2
Step 6: End of algorithm

In above, N is taken to be the last index of vector EN'

5.4 ARMA Doubling Algorithm: The Pre- and Post-Method

As described in section 5.2, one of the data modification
methods referred to as the pre- and post-modification method leads

to the following set of equations

A a=b (5.4.1)
p— 7P

where Ap is a pxp Toeplitz matrix and EP is a pxl columm vector

given by
= T iz
Ap 13 X3 (5.4.2)
b = YT
_p— 3§3

where matrices Y3, X3 and column vector Xy are previously defined in
expressions (5.2.3.1a), (5.2.3.1b) and (5.2.3.1lc), respectively. The
displacement rank of the matrix Ap is readily shown to be 2. This
being the case, it is possible to apply the doubling algorithm (Morf,

1980; Bitmead and Anderson, 1979).

2

Without loss of generality, we now assume that P = 2= for some

integer k. The matrix An can be partitioned into 4 matrices whose

(k-1) < Z(k—l). k-1) < 2(k—l)

{
sizeg are 2 Each 2* matrix is then also



76

(k=2) X ngnz) matrices. This procedure is called

partitioned into 2
the doubling or halving procedure. In this procedure, we can express

D, and

a 22 x 2% matrix A22 in terms of % x g submatrices BZ’ CZ? .
El in the following manner
™ % | 5.4.4
AZR = » (5.4.4)
Dz Ez
and its inverse is found to be the form
S . T . :
-1 _ L L : =y
A22 = v - (5.4.5) .
UR VZ
where Sz, Tz, U2 and Vz are L x % square matrices given by
-1, -1 R |
Sz = Bz, + B : Cz Vz Dz Bg (5.4.6a)

T, =-S, C, E, (5.4.6Db)

U, =-E1D S S (5.4.6¢)
. ) Dy S : | b

v, =1 + E, 1y s ¢, £t : B (5.4.6d)

2 T2 IS A A

Relationships (5.4.6a) - (5.4.6d) are straightforwardly derived from

the Schur complements theorem (Aho; etc., 1974). From the above

relationships, we can obtain A;; from B;l.and Ezi. ‘The solufion of
the equation (5.4.1) requires 0(2 c(m)) computations where c(m) is
the number of operations required to multiply a vector times a

triangular Toeplitz matrix. ' ' ’ .



The number of computation c{(m) is obtained in a following manner.

By definition (Kailath, etc., 1979), A, can be decomposed in the form

22

2 .
= 1 1
Ay, BT (5.4.7)

i i
where LZZ and U2

respectively, which can be obtained recursively (Bitmead and B.

g are lower and upper triangular Toeplitz matrices,

Anderson, 1979). The matrices L;R and U;

: p -
i i ,
LZ% = Lg(l,l) <::> (5.4.83)

e, L§(2,2)

g are expressed by

2
3 P * 3
i _ i i
U22 = Uz(l,l) Uz(l,Z) (5.4.8b)
O e
- -

where Li(l,l) and LE(Z,Z) are & x 2 lower triangular Toeplitz matrices,
Ui(l,l) and Ui(Z,Z} are 2 x 2 upper triangular Toeplitz matrices,
and‘Li(Z,l) and Ui(l,Z) are 2 x & full Toeplitz matrices. Substitution
of expressions (5.4.8a) and (5.4.8b) into (5.4.7) vields the

partitions of the matrix Azz in expressions (5.4.4) to be

2
T 4 i
B, = ;o1 Lp(L,1) U,(1,1) (5.4.92a)
'z i z i
— 4
C,= I L,(1,1) [Uﬂ(l,Z)]L + I L,(1,1) [U2\1,2)]U
i=1 A i=1
(5.4.9b)
D = i i, nl vra,n + ; rtie,nl via,n
8 T 2 (L T A A

(5.4.9¢)
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2 . o, 2  . .
E, = I Lr(2,1) U5(1,2) + I 1.(2,2) U;(2,2) (5.4.9d)
Yoyt g =1 * g |

where the following relationships are implicitly used

i, i Lol
U, (1,2) [U£(1,2)]L . [Ul(l,Z)]U (5.4.10a)

LE(Z,l) [Li(Z,l)]L + [Li(z,l)]U _ (5.4.10D)

in which [Ui(l,Z)]L and [Li(2’1>JL denote % x % lower triangular
matrices, and [Ui(l,Z)]U and [Li(Z,l)]U dénote % x & upper triangular
matrices. The partitions given by equations 25.4.9a) - (5.4.94)

are expressed in terms of lower triangular and uﬁper triangular
matrices. It turns out that the use of above relationships reduces
the computational.complekity c(m) to be 0(p log p) (Morf, 1980).

The algorithm which makes usebof the doubling method can be found in
(Mgrf; 1980). Morf described the algorithm by»introducing.high
computer language which necessitates frequent subroutine calls. Omn
the other hand, the step—wise description éf the halving method is
presented in (Bitmead and Anderson, 1979). Implementation of the halv-
ing algorithm is relatively complex andka rather large value of p is
required before the computationally complexity 0(p log p) is

approached.

5.5 Numerical Example

In this section, the spectral performance of the pre- and the

post-modified methods are compared with the unmodified method. As
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a test example, we treat the time series (4.5.2a). Using this time
series (4.5.2a), twenty different independent sampled sequences each
of length 64 were generated.

The modification methods were applied to these twenty different
sampled sequences of length 64 to obtain ARMA model spectral esti-
mates or order (4,4). The resultant spectra are shown in Fig. 5.5.1.
It is apparent that only a small degradation in spectral estimation
performance has been shown by the modified method. It might be
conjectured that the implementation of the fast algorithms will not

much degrade spectral performance in many practical examples.

5.6 Summary

In this chapter, computationally efficient ARMA spectral
estimation algorithms have been developed. These algorithms are
predicated on the utilization of data modification methods.
Specifically, two algorithms referred as the generalized Levinson's
algorithm and the doubling algorithm were developed for obtaining
AR coefficients of ARMA model. These algorithms have a computational

complexity of O(pz} and O{p log p), respectively.
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Box-Jenkins
Method

Unmodified
Method

Premodified
_ Method

Postmodified
Method

Exact

Fig. 5.5.1 ARMA Spectral Fstimates of Order (4,4),
Data Length 64, and, A = 0.95.



Chapter 5

A RECURSIVE ARMA SPECTRAL ESTIMATQR:
THE PREMODIFIED. METHOD

6.1 Introduction

A recursive ARMA spectral estimation procedure is developed in
this section. It is recursive in the sense that as a new element of
the time series is observed, the parameters of a spectral estimation
model are algorithmically updated. The recursive algorithm requires
0(p) computations to update the model's parameters for each new data
point. The development of this algorithm is predicated on utilization
of certain projection operators. In Section (6.2), a vector space is
formulated by making use of the given observation data. The method
of linear predictions will give rise to projection operators which
decompose relevant vector spaces into subspaces spanned by the
prediction error vector and the observation vectors. Linear prediction
methods used in this chapter include forward prediction, backward
prediction and delayed backward prediction. Each of these methods is
associated with its own projection operator. The decomposition of
these projection operators is discussed in Section (6.4). The order
update and time update recursions, as described iﬁ Sections (6.5) and
(6.6) play a central role in the overall recursive algorithm. Finally

in Section (6.7), a recursive algorithm is outlined.
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6.2 Vector Space Formulation

In this section, the given spectral estimation problem will be
cast into a convenient vector space setting. It will be assumed that

the following observations of the time series {x(n)}

Xy Xpy eee s Ky (6.2.1)

are given. This in turn will give rise to the associated coclumn

data vector

T
= )
X [x1, Koy +ee s XN] (6.2.2)

£

It is convenient to form an auxiliary column vector zN specified by

q s
XN S EN (6.2.3a)

fo...ox ... XN_q]T (6.2.3b)

where S denotes the NxN down shift matrix (see eq. (5.1.3)) and q is the
numerator order of the ARMA model. The vectors EN and ZN lie in the

product space

RN =RxRx ... xR (6.2.4)

We next construct the subspace which is spanned by the set of

vectors S* X v s™ e This subspace will be suggestively denoted

by

_ i i+l m
M}—iﬁti,m} = {S EN’ S LR S

(W]

EN} (6.2.5)
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where the first integer i may take on any value in the set {0, 1, ,
m}. As will be described in Section (6.3), the recursive algorithm
is derived for particular selections of indices i and m. Similarly,

for the vector Iy contained in the product space RN, the associated

subspace M zN[i ] is defined by
E

i+l

M Yrgm] (st v ST 3gs oee s STy} (6.2.6)

where the first integer i may take on any value in the set {0, 1, s

m}. Next, we let P EN[i,m] designate the projection operator on the

subspace M EN[i,m] along the subspace orihogonal to M ZN[i,m] (this

orthogonal subspace will be denoted by M-XN . ). This projection
[i,m]

operator which depends on Zy and Yy can be shown to have the form

A + -1t
P Xy(i,m] = A Eil,n] P Ali,n] 2 60)) A Wlin]
| (6.2.7)

where A §N[i,m] and A zﬁ{i,m} are the N x(m-i+l) matrices composed

of the following ordered set of columm vectors

i i+1 m » ,
[s x S Ky +e- S _}gN] (6.2.8)

| A X[1,m]

[si‘zN si"'lzN e sy (6.2.9)

A Iyl1,m]
The projection characteristics of operator (6.2.7) are depicted
in Fig. 6.2.1. It will be convenient to introduce a projection opera-
tor on the complement‘of subspace M-£N[i,ﬁ]' - This operator is defired

by



M zN[i,m]

: 1
Fig. 6.2.1 Projection Operators on M EN[i ] along M zN[i‘m]
H ’

73
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P¢ Eia] = L P &[i0] (6.2.10)
where I is the NxN identity matrix. In a similar fashion, the projection
operator on the subspace M ZN[i,m] along the subspace M é&[i,m] is
specified by

P ZN[i,m] ‘ A zN[i,m] [AfEN[i,m] A XN[i,m]]-l AfEN[i,m]

| (6.2.11a)

It is to be noted that the following projection operator identity

holds as is apparent from expressicns (6.2.7) and (6.2.1la).

P li,m] T P+§N[i,m] (6.2.11b)

The complement of the projection operator (6.2.11b) is formally given

by

c _ .
P szi,m] =1-P XN[i,m] (6,2.12)

A particular estimate %N[i n] of the vector xg can be specified as
= ?

t?e projection of Xy on the subspace M EN[i,m]’ that is

%N[i,m] = ® XN[i,n] X (6.2.13)

The error vector relative to estimate %N[i n] and Xy is then given by
s i

X _ ~
S(i,m] T X T %n[1i,n] (6.2.14a)

c . 3
P EN[i,m] éN (6.2.14b)

which 1s expressed as a projection of the vector X on the complement
Lt
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subspace of M EN[i ~E It can be straightforwardly shown that
, :

X
Sni,m] L M &li,m] (6.2.15)

, , X .
where ] denotes orthogonality, that is, the error vector EN[i ] is
-9

orthogonal to the subspace M The vector space formulation

ZN[i,m]'

described in this section is suggestively depicted in Fig. 6.2.1.

6.3 Linear Prediction and Projection Operator

In this section we will define three methods of linear predictions,
namely, forward prediction, backward prediction, and delayed backward
prediction. These methods will play a central role in the algorithmic

solution procedure to be developed.

6.3.1 TForward Prediction

The m-th order forward prediction is referred to as that
spec1f1cvprocedure for estimating the column vector g and Iy by
means of a linear combination of the set of m shifted vectors

1 2 m 1 2 m -
{s e S Kys +ee s S EN} and {S A S P AT S sz,respectlvely.

Considering the projection operator defined in Section 6.2, the

associated estimates EN[l,m] and zﬁ[l,m] are seen to have the form

'}%\I[l,m] =P =[1,m] X (6.3.1a)

A

zN[l,m} =7

Iyl1,a] £ (6.3.1b)

The difference between the estimate gN and the given vector L is
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called the forward prediction error vector and is specified by

% ~
= - .3.2
Svom T A T H(1,a] (6.3.2a)
while the forward prediction error vecter of Ty is of the form
eJ =y -y (6.3.2b)
—N,m N zN[l,m]
Now these error vectors are each orthogonal to the subspaces M‘XN[l,m}

and M'EN[l ~E respectively. Use of complement projection operators

defined by (6.2.10) and (6.2.12) yields

x c

Nom P X1,n] X (6.3.3a)
v _ pC

=,m - P 1] I (6.3.3Db)

6.3.2 Backward Prediction

The m—-th order backward prediction is that procedure of

. . m . . .
estimating the colummn vector S X and S by a linear combination

m

s

of the set of m shifted Vectors'{SogN, Sl§N, e Sm-lxw} and
=

m-1

{SO' iﬁ}’ respectively. In the same manner as with

1
BT S b AT S
forward prediction, by applying the projection operator, it can be

shown that the backward estimate is given by

2 . o
l0,m-1] 7 F Hfo,m-1] © Xy (6.3-42)

where the double caret notation designates backward prediction. The

backward predictiocn error vector is then found to be
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b, =3¢ S - | (6.3.4b)
2,m - Afo,m-1] T Ay | -3

6.3.3 Delayed Backward Prediction

The m~th order delayed backward prediction is similarly defined
to be that procedure of estimating the column vector Sm+¥§N and
Sm+l by a linear combination of the sets of vectors‘{Sl S2 |
‘ZN y - | %], ﬁ]’
< 1 2 m .
vee 5 S §N} and {S pA S AT S ZN}’ respectively. It can be

shown that the delayed backward prediction is given by

A _ w1 ' v
%[1’m] =P —%I[l‘,ml S "}%I | : (6.3.5&)

while the delayed backward prediction error is specified by

Son = P E1,n] SDMEN | (6.3.5b)

A little‘thought will convince omeself that the projection operators

P'§N[l,m} can be expressed as

P xyry o] = A S0na]ld Bra] A BLald A O(1m]

-1

00....07F.
A Ty-1[0,m-1]* Zn-1[0,m-1]

e W w e e awan s w

A Xy 1[0,m-1]

4

. et om w me > >

(6.3.6)

A Yy 1[0,m-1]

— b
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This formula is straightforwardly obtained by making use of the

structure of matrices A EN[l n] and A ZN[ ] defined by (6.2.8) and
’ B\

1,m

(6.2.9). The relationship between the backward error and the delayed

backward error is then readily found to be

X _ X T

QN,m = [0, PN—l,HIJ (6.3.7a)
y o y T

Gm =05 By g 0] (6.3.7b)

It then follows that the N-th delayed error is equal to the (N-1)-st

backward error, that is

X _ X _ - \
A M = by g o (D) (6.3.8a)
y -7 _

& @ =by 6D (6.3.8b)

The relationship between forward, backward, and delayed backward is

suggestively depicted in Fig. 6.3.1.

6.4 Decomposition of Projection Operators

The development of a computationally efficient algorithm is depen-
dent on the decompesition of the above projection operators. This
decomposition makes use of the specific matrix structure referred to
as shift invariancy. A matrix which has a displacement rank 3 will
possess this shift invariancy (see Chapter 5). In this section, the
shift invariant structure is utilized to decompose projection

operators. The formulae obtained in this section will be used for



N-m-1 N-m N-m+l
1 i L

~e

1 1
3o
X y X y
QN,m gN,m EN,m EN,m
){////:i—‘“~\\\\\\> /// J \\\%
L}

\
/

>~J’~
5
)
A

samples

Fig. 6.3.1 TForward Backward and Delayed Backward Relationship

06
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the development of order update recursions in section 6.5.
First, we will discuss the decomposition of the projection
operator P EN[O,m]' This projection operator P EN[O,m] may be

expressed as

P 54[0,u] = * B[o,u] [} Z’q\;[o,m]rl A+1N[O,m] | (6.4.1)

which is obtained by substituting i = 0 in expression (6.2.7). The

matrix R -}%\I[O n] is defined by
b

R Xlo,m] = A-{-XN[O,m] A Xlo,m] - (6.4.2)

Substitution of expressions (6.2.8) and (6.2.9) into (6.4.2) yields

-

1
" .
XN'}EN 1
(P 20 an o v 80 o -'
i
1

R %4[0,m] = (6.4.3a)

A%uﬂN,R%um
- -

where R x ] is defined by substituting 1 in place of 0 in

A1,
expression (6.4.2). If we denote the inverse of matrix R 201,n] by

-1 .
R EN[l,m]’ it then follows that

f)..»..'.o O'XN ‘}SN[]. ] EN[lm]‘

---------—--a-—--

R X[o,n] C el = | o

(6.4.4)
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where I denotes the m x m identify matrix. Upon examination of

expression (6.4.3a) and (6.4.4), it can be readily shown that

+ _ T '
Sos ® X[o,m] 7 &1 (6.4.5)
where e, denotes the (m + 1) x 1 unit basis vector and u_ ., is a
(m + 1) x 1 column vector given by*
T b -1 - €
Sl T (1, Iy A'EN[I,m] R EN[l,m]]/fN,m (6.4.6)
in which f; o is a scalar defined by
e  _ _t x _ .3 +ox
fN,m =X EN;m N (EN,m) EN,m (6.4.7)

In a similar fashion, let us define a matrix R ZNEO n] by
] s

R z-N[O,m] = AT%[O’m] A 'ZN[G,m] ' ' (6.4.8)

It then follows that

+ _ T : . '

Ymi1 B Iyfo,m] T8 o (6.4.9)
where 2m+l is a colu@n vector expressed by

oo o+ -1 e .

et T L By A By 0] B A (1,0]) fym (6.4.92)

 Taking the complex conjugate vector transpose of expression (6.4.9),

yields

*In general, e, represents the standard unit basis vectors whose
components are also zero except for its k-th which is one.
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R Xlo,m] Ym1 T &1 (6.4.10)

The inverse of the matrix R'EN[O,m] is found to be

0 . . .. .0

+ £5

R—;EN[O m] = v u+
0 N,m —m+l —m+l

Lo (6.4.11)
. R EN[l,m]

10 .
Substitution of expression (6.4.11) into (6.4.1) then leads to the

following relatiomnship.

- s € + +
P Xlo,m] = F Al1,m] T A XHlo,m] TNym Yt Sme1 * Info,m]

(6.4.12)
After a simple algebraic manipulation, the projection operator
P is decomposed by the following relationships
EN[O,m} po y 7ing p
X
P _}%\Iio,m] =P %El,m] + P ‘E'N,m (6.4.133)
= - D X iz
P -}-%I[l,m] + (I I i%[l,m]) P EN,m (0.4.13b)
= X - D
P —}%I[l,m] + P EN,m (I I ﬁ\][l,m]) ) (6.4.13(‘.)
where it is readily shown that P g§ o is a projection operator onto the
2
subspace spanned by gﬁ o along the subspace which is orthogonal to the
NV
subspace spanned by el  and is defined by
—N,m
p e =1 X (T (6.4.14)
—NN,m —N,m —N,m
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Furthermore, expression (6.4.13c¢c) leads to the following relationship

= .4
T-Pxrom1] ™ TP &, T~ P X1 n] (6.4.15)

The projection operator decomposition as expressed in (6.4.15) will
be used to find a backward error recursion in the next section.
Next, we will decompose the projection operator P thl,m+l] which

-is necessary to compute the forward prediction error. The projection

operator P EN[l,m+l] is given by

P Xe[1,m+1] = A By[1,me] R %[1,m+1]]-l A#zN[l,m-i-.l]
| (6.4.16)

which ‘is obtained by substituting i = 1 in expression (6.2.7). The

matrix R EN[l,m+l] is defined by

R 5[1m] T A A1 A B(Lem] _ (6.4.17)

Substitution of expressions (6.2.8) and (6.2.9) with i = 1 into

(6.4.17) yields

R X[1,m]

RN, o] T | e e e e e :

: mHl + !
3 Axpam 6% S
' {

o

-
(6.4.18)

It then follows
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) 0 1o
. .
. I .
R R—l L t”
AN[1,m+1] A [1,n]. vy
0+« « 0 (S Y‘N) A)_{N[l’m]R %[1’111]:0
L. - B .
(6.4.19)
Upon examination of (6.4.18) and (6.4.19), the following relationship
can be derived
+ _ T
Smrl R Ey[1,m1] T Sl (6.4.20)
. . . st .
where e 1 is a unit basis vector whose mtl element is 1 and S+
is a (m+ 1) x 1 column vector defined by
o mkl | F -1 d
S+l (- XN) 4 §N[l,m] R EN[l,m]’ 11/ fN,m
_ (6.4.21)
in which f; o is a scalar defined by
s
d _ , ml fx _ vy (P x
fN,m = (s XN) éN,m - (QN,m> -gN,m : (6.4.222)
= (p7 Tox = f%
Cy-1,m B-1,m = fy-1,m (6.4.22b)

Relationship (6.4.22b) is obtained from (6.3.7a) and (6.3.7b). After
applying a similar analysis to the matrix R zﬁ[l 1] it can be shown
L 'y -

that

T _ T
Il R Iy1,m1] T Smhr (6.4.23)
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where t 1 is'a (m+ 1) x 1 column vector expressed as

e ml - -1 d
1 = 6T R Ay 1R Hyrial Y Nat
(6.4.24)

Applying the vector transpose operation to both sides of expression

(6.4.23), we have

R agl1,me] Soe1 T Sm1 (6425)
The inverse of the matrix R-EN[l,m+l],is readily found to be
- O-
R—l%flsmﬂ] i} R_l’—‘N[l,mj N f; ,m Sml §;+1
LP . . . . é_
(6.4.26)

Substitution of expression (6.4.26) into (6.4.16) then yields

L

| " ‘ ’ d ’ T
P Rl1,m1] T F E[1,m] T A A[1,m1] v,m Sme1 Sl

wat |
%A ‘XNEl,IIH'l] ; ‘ (6.4.27)

After a simple algebraic manipulation, equation (6.4.27) is compactly

expressed as

X : '
P E,mh] TP A[1,e] TP dnm | (6.4.28a)

’ X P
=P ﬁ\l[l,m] + (I - P EN[l,m]) P %.’m \6.4.28]3)
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X )
=Pl VPG TP X[y, (6-4.289)

where it is readily shown that P §§ o is a projection operator onto the
3
X . ,
subspace spanned by QN n along the subspace which is orthogonal to the
>

subspace spanned by ég o and is defined by
bl

X _ 1 x AN
P gN,m B fd éN,m (éN,m) (6.4.29)
N,m
Furthermore, equation (6.4.28c) can be expressed in the form
- - X -
I-P EN[].,I[H‘].] = (I P %’m) (I P —1}{\][1,111]) (6.4.30)

Expression (6.4.30) will be used to find the forward error recursion
in the next sectiom.
In a similar manner, the following relationship may be also

obtained

- - - y - P
- = - y o (6 4
I-7P zN[l,m+l] (1 -P éN,m> (T -?P zN[l,m]> (6.4.32)
. . N y .
where the projection operators P EN,m and P g—N,m are defined by
y oo 1 vy x (T
e T e LS S (6-4-33)
N,m
p &y = —21 4 £ 5T
* éN,m -d % QN,m <QN,m) (6.4.34)
JLN,m

Expressions (6.4.31) and (6.4.32) will be used to find the recursion

of forward error ey and backward error by
—N,m —N,m
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6.5 Order Update Recursicns

In this section, we describe the order update recursive formulas
which recursively compute the optimum m+lSt order prediction error
from the optimum m-th order prediction error. Expressions (6.4.15),
(6.4.30), and (6.4.31) and (6.4.32) play a central role in obtaining
these order update recursions.

Let us first derive the order update recursion for the forward

prediction error vectors. Applying the projection operator (6.4.30)

to the column vector b vields

X _ B b'< X
EN,m+l = P éN,m) EN,m (6.5.1)

Substitution of expression (6.4.29) into this relationship then yields

X - X _ v T x (
Nyl T SN,m d LiN,m (QN,m> &,m (6.5.2)
N,m

The order update recursion for the N-th component of the forward

prediction error vector is found to be

S

X ATy = X - N.m X _
SN, = &y M —L—fr byop, D (6.5.3)
N-1,m

where the partial-correlation coefficients are specified by

n
]
~
2y
~
_‘l
m
]

X m+1 + -
N,m —N,m" —N,m (s IN) (I-7 §N[l,m]) =N (6.5.4)

In a similar manner, applying the projection operator (6.4.32) to the

column vector Ty leads to



@ =g (D - EN by (N-1) , (6.5.5)
, fN

where
L et G e ST Py D n 650

Next, we will find the order update recursion for the backward
prediction error vector. Applying the projection operator (6.4.15)

to the colum vector Sm+¥§N is found to yield

X - - X X
CONR R R (6:5.7)

Substitution of expression (6.4.14) into this relationship yields
- tN m X
= - - ———
b.\I (N) V 1, m(N 1) o m(N) | (6.5.8)

€ s
fN m

where the partial correlation coefficient tN o is specified by
b

_ y +x _ _t w1
tN,m = (-S—N,m) éN,m = Yy (I -P 3‘1\1[1,m]) S . (6.5.9)

Similariy, applying projection operator (6.4.31) to the columm

vector Sm+;zN is found to yield

%
S

y =nY 1y - N.m ¥y

by, 1@ = by, D < *E_N,m(N) (6.5.10)
N,m

since

* p:4 +

- y _ T m+1
Nom - (°\1 ) gN,m - (I -P XN[l,m]) 5 Ty (6.5.11)



. r .
Next, we will derive the recursion for £2 and £ . Manipula-
N,m N,m

tion of expressions (6.4.7), (6.4.28¢c) and (6.4.29) eventually leads

to the form

t.
€ _ < _ Wm Nom
bmkl = Tyym E (6.5.12)
N-1,m

Expressions (6.4.22b), (6.3.4b) and (6.4.13c) yield the recursive

formula

4+

S.
¢T = ¢F _ _N,m N,m

,M
N,ml  N-1,m £ (6.5.13)
N

Py}

Consequently, expressions (6.5.2), (6.5.5), (6.5.8), (6.5.10),

(6.5.12) and (6.5.13) represent the order update recursions.

6.6 Time Update Recursions

As a new element of the time series is observed, the partial
reflection coefficients, forward errors, and backward errors may be
recursively computed by making use of these values obtained at the
last time instant. This being the case, these parameters are said to
be "time updated" for each new data point.

The matrix A [i,m] ™8Y be expressed in the recursive form
b

* 5 1[4,m]
= A %[i,m] - ?N A —}%T[i,m] (6.6.1)

where PV is the N x N projection matrix given by
4



|t
(@]
et

PN = ey &4 (6.6.2)

in which & is an N x 1 unit base wvector. The matrix R EN[i,m] may

also be expressed as

S E-ifi,m] TR Hli,m] T A%ZN[i,m] Py A Xy q) (6:6-3

It then follows that the matrix R—¥§N—l[i n] is recursively updated
3

by (see Appendix C)

-1 -1 1 1
R %afim] T8 Bl TToy, o F Eli,n]

R
i,m,N

e
SN

+ -1 ,
A Iyli,m] By A B[i,m] B X[i,m] (6.6.4)

where Yi n.N is a scalar defined by
b 2
_ Tt -1
Yim,N T AZN{i,m] R 7z, 4 X[i,n] S (6.6.5)

Premultiplying expression (6.6.4) by (I - PW) A [1,n] and then
L ?
postmultiplyingkthat result by Afzﬁ[i n] (I - PN) leads to the
Nl i, ,

recursive relationship

- -

P E-1{1,m] : =(I-2) 7 X[1i,m] T -2

‘.O * e » ) ° . O

1
—————————————— — - - - R
t T Y o x [z PN] L T I %Li,mjtl ‘N]

9 3

(6.6.6)
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' N
Since the vectors I and zy are elements of vector space R, the

time update recursion is given by
Ta-e )z -y (T-p )
Iy Eli,m]) & 7 -1 E-1[i,m])’ Z-1

+ .
| = Iy V(I - P §N[i,m]> Zy (6.6.7)

where V(I - P -, ) designates the time difference of the projection
zE'NLl m] '
5

operator defined by F, -
0

ACTR EN[i,m]) = PN - P EN[i,m] tF EN-—l[i,m] :

0. . .« .« .0

o —

(6.6.8)

Substitution of expression (6.6.6) into this expression yields

VI - Pxery ] B P Xlim] T -2 Pyl -?N)

T, @ =P P Xyl o] B ® A[i,m] 7B
(6.6.9)

Expression (6.6.9) is straightforwardly carried out by a simple

algebraic manipulation and yields (see Appendix C)

BN
va@-re §N[i,m]) T 1 -y

i,m,N

G- s By 7P X[,

(6.6.10)
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Expression (6.6.10) is used to find the time update recursion formula.

The partial correlation coefficient s§ o is recursively calculated by

by g @D &g @0

—N-1,m m
s = g + 2 2 (6.6.11)
N,m N-1,m 1 - Yl,m,N
In a similar manner, the partial correlation coefficients tN o is
b
recursively calculated by
I ox X -
EN,m (N) EN—l,m(N D
tNom = tNelm T T (6.6.12)
’ ’ Yl,m,N
The time update recursion for forward error is found to be
Vs X
e e, Eat® Sa®
fN m fN—l o + 1= (6.6.13)
3 b Yl,m,N
The backward error is also given by
Y o4 x ()
T r l)-N,m ) EN,m ’ '
fN — fN—l o 1= (6.6.14)
? > Yo,m—l,N

A recursive formula for auxiliary parameter Yl o can be obtained by
b L]

N
using relationship (6.4.28c) to yield

z - y % (N-
] .. L Bgn @D B 0D 6.6.15)
1,m+1,N 1,m,N £r U
. N-1,m
Finally, Yo N can be computed by using the following relationship
b 9
X Y o
Y =y + 2,0 Syt (6.6.16)
o,m+1,N 1,m,N € T

N,m
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which is directly obtained from expression (6.4.13c).
Thus we can use equation (6.6.11) and (6.6.12) to update the
~partial correlation coefficients. Equations (6.6.13) and (6.6.14) can

be used to time update the forward and backward covariance errors

€ r ‘g
fN,m and fN,m' The auxiliary parameters Yl,m,N and vy

recursively computed by expression (6.6.15) and (6.6.16), respectively.

are
o,m,N

6.7 An Algorithm for Recursive ARMA Spectral Estimation

In this section, we summarize the recursive ARMA spectral estima-
tion algorithm developed in the previous sections. For programming
. . . - p:S
convenience, the following notations shall be used: en(m), ez(m),,

ba(m, bJm), (@), £ (m), s (W, t @,y (W andy, (m) in

~-T

X y X y €
placg of EN,m(N)’ EN,m(N), EN,m(N)’ EN,m(N)’ fN,m’ fy.m Sy oNm

Y and Yl N’ respectively. At each new data point, the paré—
b b . :

o,m,N
meters are recursively time updated (see section 6.6) and order updated
from m=0 to m=p-1 (see section 6.5). The recursive ARMA spectral

estimation algorithm can be presented as follows.

Step 1 Initial Condition (Time Update n=1)

X >= y = x = y =
el(O) 81(0) bl(O) bl(O) 0

= ff = * = =" i = -
fl(O) = fl(O) = X775 si(O) ti(O) 0 for i O,v... , p-1

Step 2 Initial Condition (Order Update, m=0)

€e5(0) = b2(0) =x_, €(0) =b(0) = y_
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Yi,n—l(_l) - Yi,nc-l) RRE n(o) =0 1= ‘0’1‘;

b

€ . er _ T | ok
£,00) = £,(0 = £, +y, x

Step 3 Order Update Recursions :
m=0,1, ... , M for M = min (p-1, n-1))

(i) TForward Error

X x Sn(m) X
e (@) = e (m) - — a1 @
n—l(m) |
t::(m) .' |
D = e - e b ()
v fnfl(m)
(ii) Backward Error
X b4 tn(m) X, \
b () = b (m) - = om e (m)
n .
y y ™y
bn(rm-l-l) = bn-—l(m) - fi(m)* €7 (m)

(iidi) fz(m), f;(m) and Y-l’n(m)

s, (m). tn (m)

f;(nﬁ-l) = £5(m) - ———2— ifnc<op
: fn—l(m)
s_(m) t_(m)

£ (mkl) = £5 _(m) - = z if n < p
o n-1 fe(m)

n

b5 (@ b7 (m)
Yy a @) =y ) + Bl
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Em el m *

’ N,m

Step 4 Time Update Recursions (m =0, 1, ... , M)

(i) Partial Correlation Coefficients

b @ " X

sn(m) = Sn—l(m) + 1 - Yl n(m)
e (m) * b> _ (m)

= ja n-1

tn(m) - tn—l(m).+ 1 - Yl n(m)

b

(11) £ (m) and £ (m)

Jm T Xm)
n .
o) ifn>0p

£ €
£ (m) f (m) +
n n-1 1- Yl,n

b7 (m) " b (m)
1- Yo,n(m)

T r .
fn(m) fn_l(m) + ifn>p

Step 5 Let n = nt+l, if n # N go to Step 2
Step 6 End of Algorithm

In above N is taken as a time index of a pair of the last

observations Xy and AT
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6.8 Numerical Examples

To test the recursive ARMA spectral estimation algorithm, the time
series expressed by (4.5.2a), (4.5.2b) and (4.5.2¢) were generated.
A program listing of the fast algorithm used in obtaining the
denominator coefficients of the ARMA model is illustrated in Appendix
D.2. As a first example, 64 data samples were generated according to
expressions (4.5.2a), (4.5.2b) and (4.5.2c). These data samples are
plotted in Fig. 6.8.1(a). The fast algorithm was then applied to
this 64 observations to obtain an ARMA spectral estimate with model
order (4,4). The forward error sequence 52,4(n) (n=1, ... , 64)
is plotted in Fig. 6.8.1(b). Comparing Figures 6.8.1(a) and 6.8.1(b),
the forward error seQuence is observed to be more random (uncorrelated)
than the given data samples indicating a desired whiteniﬁg effect.
The résultant spectral estiﬁate is shown in Fig. 6.8.1(c). The
resolution of the two peaks is evident, however, the estimated level
of the first péak is lower than that of second peak. Next, 500 data
samples of the same time series expressed were generated. These
samplés are plotted in Fig. 6.8.2(a). The forward error sequence
Ez,é(n) (n=1, ...‘, 500) obtained by the fast algorithm is plotted
in Fig. 6.8.2(b). It is observed that the forward error sequence con-
verges in a relatively rapid manner. In Fig. 6.8.2(ec), the resultant
spectral estimate of model order (4,4) is illustrated. The resolution
of the two peaks is again evident. In addition, the height of
the two peaks are equal'as desired. As these examples illustrate,

the fast algorithm maintains a high quality of spectral performance.
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6.9 Summary

A recursive algorithm has been proved and stated for efficiently
updating partial reflection coefficients of an ARMA spectral estimation
model. The coﬁputétional requirement for the order update recursions
and time update recursions are 12(M + 1) and 10(M + 1), respectively,
where M is taken to be the minimum ofveither p-1 or n-1. Numerical
examplés show that implementation of premodification will result in
only a small degradation of specﬁral performance. If g=0, the ARMA
model is converted to the AR model. A recursive AR algorithm can be
also developed based on a less general vector space épproach discussed

in this chapter (see Lee and Morf, 1980).



Chapter 7

CONCLUSION

The development of computationally fast algorithms for high
performance ARMA spectral estimation was prasented. The required
computation for the unmodified method was reduced to 0(4p2) by using
a generalized Levinson's approach. Methods of data modifications were
applied to reduce the computational complexity. Modifications,
referred to as post-modification with p = q and pre- and post-modifi-
cation, achieved a computational complexity of 0(p log p). A fast
recursive algorithm with a computational complexity of 0(p) was
developed based on the pre-modification method.

The spectral performance of these methods was compared for
various numerical examples. Spectral degradation had been expected,
becaﬁse of the .restriction t = p and the underlying data modification,
however, these numerical examples illustrated only a small degradation
in spectral performance; Moreover, the spectral estimation performance
of these new methods has been found to be typically far superior to
such contemporary approaches as the Box-Jenkins and maximum entropy
methods.

Finally, considering the above two aspects, namely, fast computa-
tional implementations and high performance spectral estimations,

these new methods promise to be primary spectral estimatiom tocols.
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Appendix A

RECURSIVE AR SPECTRAL ESTIMATION

A.1 Introduction

In many relevant signal processing applications, one seeks to
characterize the spectral density of a time series baéed upon a finite
set of time series observations. Without loss of gemerality, this
sample observation set is taken to be the contiguous set of N real

valued measurements as given by
x(1), x(2), ... , =(M) (A.1.1)

One of the most widely used spectral estimation models is obtained by

postulating the following autoregressive (AR) structure
x(n) + alx(n—l) + ... + amx(n—m) = ¢(n) ' (A.1.2)

in which e(n) is a white noise time series with zero mean and variance
062. Our object will be that of medeling an underlying time series
{x(n)} with the AR model structure (A.1.2) in which the a, coefficients
are estimated from the given finite set of observations (A.1.1). This
is readily achieved by applying the well known one-step predictor.

An m-th order ome-step predictor, by definition, estimates the
value of a random time series using a linear combination of the most

recent m samples. Namely, the sample x{(n) is estimated by means of

the relationship



)
]
N

m
x(n) = - I ay x(n~-k) (A.1.3)
k=1

" The difference between this predicted value and the observed value
x{(n) over the observation interval is called the prediction error

and is specified by

e(n) = x(n) - x(n) m<n <N (A.1.4)
or
m
e{(n) = x(n) + = a x{(n-k) m<n <N (A.1.5)
k=1

Writing these error expressions in matrix form yields

e = x + Xa

where a, e, and x are m x 1, (N-m) x 1, and (N-m) x 1 column vectors,

respectively, given by

a= {él, vee s am]T | (A.1.7a)
e = [le(m+l), e(m2)y ... , e(N)]T (A.1.7b)
x = [x(otl), x@+2), ... , =M 1* (A.1.7¢)

and X is an (N-m) xm matrix specified by

x(m) (o) .. . x(N-1) | T
X ={ x(m-1) x{m) e x(N-2)
x{1) z(2) . .. x(N-m) (A.1.7d)




where the superscript T denotes the transpose operatiom.
The a, coefficients are to be now selected so as to cause each
of the predictor error terms e(n) to be close to zero. This selection
process will give rise to the so-called optimal one~step predictor.
To achieve the required objective cf setting the e(n) to be near zero,

one typically appeals to the least squares method which minimizes a

squared error criterion of the form

f(a) = g? W (A.1.8)

where W is an (N-m) x (N-m) nonnegative definite square matrix. The
minimization of this quadratic functional with respect to the column

vector a is straightforwardly carried out and results in

x* wxa® = X° Wx (A.1.9)

It can be shown that the resulting power spectral density

estimate of the time series {x(n)} is then given by (Haykin, 1979)

2
o
£
Il + ai e Y + ag e_zjw + ...+ a° e—m3w|2

SX(m) = (A.1.10)

where the aﬁ coefficients are obtained upon solving relationship
(A.1.9). Generally the solution of relationship (A;l.9) requires on
the order of m3(i.e.0(m3)) number of ﬁultiplications and additicms

if that relationship is directly used. This computational requirement
can be excessive in many real time applications. It has been recently
shown by Lee and Morf (1980) that this computational requirement can

be reduced to C(m) by slightly reformulating the matrix X and column
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vector X. In many interesting cases, fortunately, the solution to
this modified system of equations will be close to that of the desired
solution as represented by expression (A.1.9). In this Appendix the
method which is identical to the LMS algorithm of Lee and Morf (1980)
is presented with more emphasis on insightful development.

This general modification methodology shall herein be referred
tec as data modification. Applying the specific data modification
method referred to as prewindowing, the matrix X is reformulated as the

N x m matrix given by

- - T
0 x(1) x(2) . . . x(m ... o x(N=1)
0 0 x(1) .. . x(@w=1) ... xN-=2)
X = . 0 .
] 0 0 0...0 x(1) « « . x(N-m) (A.1.11)

while the N x 1 column vector x is specified by

= [x(1), =(2), ..., =] (A.1.12)

|4

If these new entrants are substituted into relationship (A.1.9), an
efficient solution procedure for g? is possible. The structure of this
reformulated matrix X and the column vector x enables us to obtain a
recursive least square spectral estimation algorithm which has an
excellent convergence behavior and a fast parameter tracking
capability relative to the former structure. The development of

this algorithm is predicated on the utilization of projection operator

theory (Luenberger, 1969). In the sections which follow the necessary
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projection operator theory to be used in the algorithm is described.

A.2 Vector Space Formulation

In this section, the given spectral estimation problem will be
cast into a convenient vector space setting. It will be assumed that

the following observations of the time series {x(n)} as specified by
x(1), x(2), ... , x(N) (A.2.1)

are given. This in turn will give rise to the asscciated column data

vector

x =[x, x@, ..., xm] (A.2.2)
The vector b lies in the product space

HN =Rx Rx ... xR =R (A.2.3)

This wvector space can be made into an inner product space by
defining the following inner product between any two elements X0
Iy ¢ My

N

< X Iy > = §§ Iy = z x(n) y(n) (A.2.4)
- n=1

The corresponding induced norm of 2y is then given by

, ¥ &
H>_1NH=[<%,%>]2=L2 x%ﬂ (4.2.5)

n=1 -~
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We next define the shift matrix S which is represented by the N x N

matrix

O 10 (A.2.6)

Applying the shift matrix m times to the column vector pist is seen to

yield

I T
s, = [0, ..., 0, x(D), oo, x@-m-1), k(-] (AL2.7)
e
m zeroes
: \ . .
We next construct the subspace MEN[i,m] which is spanned by the set of
vectors SI§N, see s smgN. This subspace will be suggestively denoted

by

7

Mters o] = {sigN, si+¥§N, o STd (A.2.8)

where the first integer index i may take on any value in the set
{o, 1, ... m}. Next, we let P . designate the projection
> > 3 ’ %[1,1’2‘1] =) k l]
operator is
P onto the subspace M§N[i,m] along the subspace MgN{qu]. This

projection operator can be shown toc have the form

T -1 ;
53(1,m] éXEN[i,m][%zN i ng[i,m]J %44 ] (A.2.9)

where XEN[i,m] is the N x (m~i+l) matrix composed of the following

ordered set of column vectors

5 i i+1 m
= x ]
&§N[i,m] s X 8 EFp e s SR (4.2.10)
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Similarly, the projection operator on the crthogonal complement of

subspace MgN[i n] is denoted by

L
P%ti,m]= I- P}—Slii,m] (A.Z.ll)

where I is the N x N identity matrix. It then follows that

PXyl1,m] I = Iy if yo o€ Mrer, o9 (A.2.12)

1
k . . . '
PEN[i,m] Ty 1 8 % 1 <k <m, if Iy € dN (A.2.13)

Expression (A.2.12) and (A.2.13) specify those properties of the
projection operators which will be utilized when developing a recur-

sive least square algorithm in the next section.

A.3 TLinear Prediction and Projection Operator

In this section, we will define three methods of linear
prediction, namely, forward prediction, backward prediction, and
delayed backward prediction. These projection operators will play a

central role in the algorithmic solution procedure to be developed.

A.3.1 TForward Prediction

The m~th order forward prediction method is referred to as that
specific procedure for estimating the columm vector X0 by means of a
i
1 2
linear combination of the set of m shifted wvectors {S EN’ S‘EN, cea s

S EN}' Tt then follows that the m~th order forward prediction

estimate of EN is of the form
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m

- - k
g—N[l,m] = kil akS z{_N (A.3.l)

while the associated forward error vector is specified by

Svom - &7 Ai[1,m] | (A.3.2a)
n K
=x_ + I asS (A.3.2b)
S

Upon examination of the structure of the shifted‘vector SggN(k =1,
, m), expression (A.3.2b) leads to the aforementioned prewindowing
formula where X and x are given by (A.1.11) and (A.1.12), respectively.
The problem at hand is to then find the scalar comnstants al, 95

> & which minimize the squared forward prediction error

f(a) = IIEN = éN[l,mﬂl 2 (A.3.3)

According to the projection theorem (Luenberger, 1969), f(a) is
minimized when the error vector is orthogonal to each of the one-
dimensional subspaces spanned by S¥§N(i =1, ... , m). Thus, we have

the orthogonality relationship expressed by

A 4 . .
(EN - EN[l,m]) ls p. fori=1, 2, ... , m (A.3.4)
which takes the inner product format
< Xy T éN[l "E SlgN > =0 fori=1, 2, ... , m (A.3.5)

Substitution of expression (A.3.1) into (A.3.5) yields the set of

linear algebraic equations
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m »
% ~<sng, Sl§N > a = -<x. SE > (A.3.6)
k=1 :
for i=1, 2, ... , m

for the optimum set of a, prediction coefficients. These equations

k

are called the normal equations and can be put into the matrix form

T T
XzN[l,m] X~}-{1\I[l,1'n:| as= -XEN[l,m]EN (A.3.7a)

where

XEN[l,m] [S;gN, SZEN, vee SmgN] (A.3.7b)

_ T
a= [al, g5 +es s am] (A.3.7¢)

Solving equation (A.3.7a) for a and substituting this solution into

expression (A;3.l) then yields the optimum prediction vector
-1

T T
E(1,m] T 01,0l | FHl1,0] 1,0l (1,0 (A.3.8)

Upon examination of the projection operator (A.2.9) and this expression,

éN[l p] 18 seen to be compactly specified by
9

%N[l,m] = PX[1,m] X (A.3.9)

Thus, we see that zN[l,m] is obtained by projecting b onto the sub-
space MEN[I - and the m~th order forward prediction error vector is
b
. o . 1 -
obtained by projecting Xy on?o the orthogonal complement of MEN[l,m]

in the HN’ that is
Ll
N,m - PE[1,n] X (A.3.10)
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The corresponding minimum mean squared error is then defined to be

A.3.2 Backward Prediction

The m-th order backward prediction method is that procedure of
estimating the m-th shifted column vector SmgN by a linear combination
of the set of shifted vectors {SQEN’ SlgN, e Sm_lgN}. This back-
ward estimate is then of the form

m-1 Kk

om-1] = —kio b, S Xy (A.3.12)

and the backward error vector is defined by

- ot _ > '
bym T 5 & T Xfo,m-1] (A.3.13)

In the same manner as with forward prediction, by applying the
projection theorem it can be shown that the backward estimate is

given by

%N[O,m—l] = PXyl0,m-1] SgEN (A.3.14)

The backward prediction error vector is then found to be
L
= m
beom = P[0,m-17 5 X | (A.3.15)

and the corresponding minimum mean squared error is obtained by

_.T m
b = §1’m S S (A.3.16)

4
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A.3.3 Delayed Backward ?rediction

The m-th order delayed backward prediction method is similarly
defined to be that procedure of estimating the column vector Sm+l§N
by a linear combination of the set of vectors {SlgN, SZEN, eee

SWgN}. It can be shown that the delayed backward estimate is given by

éN[l,m] = PXy01,m] Sm+l§N | o | (A.3.17)

and the delayed backward error is obtained by

l .
mtl

- Y - (A.3.18)

The corresponding minimum mean squared error is measured by

d T T m+1

SRR T

(A.3.19)

A little thought will convince oneself that the projection

operation PEN[l,m] can be expressed as
-1
T lor

PRl1,m] = Bn1,m] | X[1,n] XEN[l,m]i'X§N[1,m]
4

9_9_;_;_;_9'} T 71109 . - -0 *
T Xy f0,me1]| | N-100,m-1] F-100,m-1] X&-1[0,m-1]
(A.3.20)

The relationship between the backward prediction error and the delayed

backward prédiction error is then readilyvfound to be
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: T
dg,m = L0F By g o] (A.3.21)

It then follows that Nth delayed prediction error is equal to the

(N—l)St backward prediction error

QN’m(N) = bN—l,m N-1) | (A.3.22)
The relationship of forward, backward, and delayed backward is

suggestively depicted in Figure A.1l.

A.4 Decomposition of Subspaces

The development of a computational efficient algorithm is
dependent on the decomposition of subspaces. Subspaces may be decom-
posed by appealing to the well known projection theorem (Luenberger,
1969). The formulae obtained in this section will be used for the
development of order update recursions in Section A.5.

Since the forward prediction error & .m lies in the subspace
3

MEN[O,m] but is orthogonal to MgN[l’m], we can express MEN[O,m] as

the direct sum of M1, m] and {EN of» that is

My nl0,m] = M[1,0] D Evm (A.4.1)

where {EN m} denotes the subspace spanned by the forward prediction
b
error vector EN,m' The projection operator on the subspace {EN,m} is
defined by
T -1 T

Pe (e

= 4.2
—NN,m EN,m —N,m EN,m EN,m (4.4.2)
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N-m-1 N-m N-m+l N-1 N
| { i samples

A

1r>
T o

Fig. A.1 TForward, backward and delayed predictions
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Relationship (A.4.1) can be readily shown to yield the following

decomposition of the projection operator

+ L
PXlo,m] = 7 Pev,w) PAw[1,n] (A.4.3)

Similarly, since the delayed backward prediction error QN o lies
b

in the subspace MEN[l 1] but is orthogonal to MgN[l n]® Ve obtain
b4 3 '

M, m] T M E1,0] © 0’ (A.4.4)

where {QN m} denotes the subspace spanned by the backward prediction
b
error vector. The projection operator on the subspace {QN m} is
5

defined by

- T -1 .T
P§N9m N §N9m (Elem g.N’m) éN,H‘l » (A'4'5)

Relationship (A.4.4) is found to yield the following decomposition of

the projection operator

. L
PEyl1,ma] = O 7 By, e P[] | (A.4.6)

A.5 Order Update Recursions

In this section, we describe the order update recursive formulae
which recursively compute the optimum m+l-st order prediction error
from the optimum m-th order prediction error. Expressions (A.4.3)
and (A.4.6) play a central role in obtaining these order update

recursions.
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Let us first derive the order update recursion for the forward
prediction error vector. Applying the projection operator (A.4.6)

to the column vector X yields

EN,m+1 = I- PgN,m) EN,m (A.5.1)

Substituting expression (A.4.5) into this relationship then yields
o T -1 T
EN,m+1 - EN,m gN,m (QN,m éN,m) £lN,m EN,m (a.5.2)
Recalling expression (A.3.22), the order update recursion for the N-th
forward prediction error is found to be

e fb )—l

S,m 1™ = S ® - A By ) Byeg oY (4.5.3)

_N
where the partial-correlation coefficients are specified by

L
= a7 _.T mt+1
AN,m+l B Qm,NEN,m - Xy PEN[l,m] S 2N (4.5.4)

Expression (A.5.1) leads to

T T |
&, SN TSmO 7 Py Syn (A.5.5a)

The recursion for the forward minimum mean square error is similarly
found to be

fEZ

- € b -1 _
Noorl - om T Al Byen,m Avml (A.5.5b)

Expressions (A.5.3) and (A.S}Sb) constitute the order update recursion

formulae for the forward predictionm.
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Next, we will find the order update recursion for the backward
prediction error vector:. Applying the projection operator (A.4.3) to

the column vector Sm+¥§N is found to yield

éN,m+l = (I - PEN,m) éN,m (A.5.6)

Substituting expression (A.4.2) into this relationship results in

(eT —l T

—Nm-l-l d\Im_EN,m —N’mENm “NméNm (A05-7)

The order update recursion for the N-th backward prediction error is

then specified by

—1

byomrr (F \Im RN (4.5.8)

by, w1 = by_1,n ™D -

Expression (A.5.6) leads to

T Py
Ayt By TSmO Py n) dym (A.5.9)

The recursion for f§ n is next found to be
>

b _ b

€ - [~d
ok = fyein T Aume By Avmer (A.5.10)

The order update recursion formulae for the backward prediction are

represented by relationships (A.5.8) and (A.5.10).

A.6 Time Update Recursions

As a new element of the time series is observed, the partial-
correlation coefficients, forward least square errors, and the backward

least square errors can be computed recursively by using the knowledge
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of these parameters from the last time instant. This being the case,
these parameters are said to be "time updated" for each new data
point. These update recursions are obtained by utilizing a method
referred to as projection operator decomposition.

For the spectral estimation problem considered here, we decompose
the projection operator PEN . into one that projects on all past

| [1,m]

observations and another that generates the correction due to a new

observation x(N). First, we define the component projection matrix

_ PN by

P = eNeg R (A.6.1)

where &g is the N x 1 unit basis vector expressed by

e, = [0, ..., 0, 11T (A.6.2)

Let us define the column vectors

x, = By g - [0, ... , 0, x@1* (A.6.3)

Lol . |

EPN = PN X = x(), ... , x(N-1), 0] (A.6.4)
1l 1

T T T T
Note that =x = Xy, -and similarly for . The
§pN XpN XPNIN EN_pN EpN sz
projection of Xy on the subspace MgN[i,m] is now decomposed by

component projection matrix P_ to obtain

N

o L
PE[4,m] B T PAv[4,m] Fy T PEe[i,n] Foy (4.6.5)
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Multiplication of (I—PN) and the matrix XEN[i,m] yields the so-

called oblique matrix

C—%[i,m] = (I - PN) Xﬁ\l[i,m] (A.6.6)

whose last row is the zero row vector. We define the oblique

projection operator to be

Blsa] T Sl [Elen] Blre] Wlem] 45D

and its associated orthogonal complement by

L
. =1 - . A.6.8
Eyfa,m] T B[1,m] (8:6-8)
Upon inspection of expression (A.6.7), we see that the application of
the oblique projection operator to the wvector X implicitly possesses
the solution of the prediction coefficients at the N-15t stage.
After simple algebraic manipulation, relationship (A.6.5) can be

expressed as

L
Pyl1,m] Xy T QEN[i,m] Xt Pi,m] S [i,0] X (A.6.9)

The orthogonal complement projection of Xy can be expressed as
1 L
PAl1m] B T & T Byli,n] & 7 PR i,n] Py Bli,m] X

(A.6.103a)

which can be further developed to the form
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1 1
PEN[1,m] By T B T Byle,n] By 7 Py Ble,a] A

1 1
+ PZ%I[i,m] PN O%[i,m] % (A.6.10b)

Considering the relationships (A.6.3), (A.6.4) and (A.6.7), we obtain

L
L PEeifie] Her | L L
] TS T | T A e] Y lan] B

(A.6.11)

Premultiplying {Sm+l §N]T on both sides of expression (A.6.11) gives

the time update recursions of the partial reflection coefficients

L 1
~ ol 4T
Ay = Amrrwer T 08 gl PEyry o7 By %[1.a] B

(A.6.12)

where i was taken to be 1. Furthermore, operation of the component

projection operator PN

1 1 1
T T
Py PR li,m] & T Ty Bli,m] B T SN PE[i,m] Ny Bwli,m] X

on both sides of expression (A.6.10a) yields

(A.6.13a)
1 ] B
= Py Wrin] it T Sy PRy[in] G| (A-6-13D)

Thus we obtain the relationship

L

- 1 A
] BT T oy, o A (e,m] B - 4.6.14

i,m
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where

T
(5,m,N ~ °N PX[i,n] %N (A.6.15)

Directly substituting (A.6.14) into (A.6.12), we see that

1 L
m1 T T
N,m+1 N-1,m+1 1 - T om0
. b 3
(A.6.16)
which simplifies to the form
b (N-D)e )
A =2 p Aobm W, (A.6.17)
N,m+1 N-1,m+1 1 - Y1 mN
> £

Similarly, the time-update for f; -

2

and fr can be obtained as
N,m

2
€ )
fom ™ et —Nr——lm (A.6.18)
’ ’ Y1,m,¥
2
b p)
f; m f§-1 m + 1 :N:m (A.6.19)
’ T 0,m-1,N
where
¥ = ey ® (A.6.20)
0,m-1,N N “Zv[o,m-1] ¥ .

Thus we can use equation (A.6.17) to update the partial reflectiom
coefficients. Equations (A.6.18) and (A.6.19) can be used to update

forward and backward prediction errors, respectively.
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A.8 Summary

A recursive algorithm has been presented for efficiently obtaining
an autoregressive (AR) spectral estimate. To achieve a significant
computational improvement, prewindowing was applied, and projection
operators were utilized in the vector space setting. Normalizations
of the order and time update algorithm yields more computational
advantage than the unnormalized method. Interested reader may refer

to (Lee and Morf, 1980) and (Friedlandar, 1980).



Appendix B

ADAPTIVE SPECTRAL ESTIMATION

B.1 Introduction

In this chapter, we will discuss two adaptive techniques,
namely, the Widrow-Hoff algorithm (Widrow and Hoff, 1960) and the
" Iterative LMS method. It is well known that the Widrow-Hoff algorithm
is a recursive technique which updates parameters with the arrival
of each new data sample. At each recufsion, parameters are algo-
rithmically selected in a least squares sense. As the number of data
samples increases, the model's parameters 'may' converge to the least
square solution which is also known as the Wiener solution (Wiener,
1949), Primary reason for utilizing the Widrow-Hoff algorithm is
computational in nature. As each new data point is obtained, only
O(p) computations are required to update the model's parameters.

The Iterative IMS method is a technique which updates the solution
for the linear system of equations which approximates the Wiener
equations (Wiener, 1949). Although the number of computations for
the Iterative LMS method to update parameters at every new data point
is O(pz), the Iterative IMS method gives the exact solution to a given
linear system of equations. To compare these two techniques, a number

of examples are presented.

142
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B.2 Widrow-Hoff Algorithm

The analysis of an adaptive filter can be developed by comnsidering
the linear configuration shown in Fig. B.2.1. An adaptive filter is
composed of é tapped delay line, adjustable weights and summers.
Delayed signals which are real Valuedvare weighted and summed to
form an output signal a(n) which designates an estimate for the
desired signal d(n). At the n-th observation, a set of delayed

signals can be formulated in a vector form
T
2 =lxa-1, xa-2, ..., x@-p)] (B.2.1)

where X is a pxl column vector. It is also convenient to denote the

adjustable weights at the n~-th iteratiom by
_ T
ho=[h, W), B (@), ..., B (] (3.2.2)

where hn is a pxl column vector. The estimate of the value of d(n)

based on the vector (B.2.1) will be taken to be the linear combination

1]

a(n) Ei x

D .
2 h (k) x(n - k) (B.2.3)
k=1 O

The error between the desired signal and the estimate at the n-th

sample is given by

ge(n) = d(n) - hT

X (B.2.4)
T
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d(n)
x(n) x(n-1) x(n-2)
—H 7zt Mozt e

Fig. B.2.1 Adaptive Linear Configuration



145

The associated mean square error is defined by
£(h) = E[e2(n)] (B.2.5)
—n
Substitution of (B.2.4) into (B.2.5) is found to yield

1 —_ - T .
f(gﬂ) = 9440 -2x; h +h R

T
Lax 20 7 34 En (B.2.6)

where ¢,.(0) is the variance of the desired signal d(n), that is,
dd
2
9440 = E[d" ] (3.2.7)

while Tax and Rx are the pxl cross correlation vector and the pxp

covariance matrix, respectively, defined by

fap = D80, (D 0, (2, ooy 6, @] (8.2.82)
and
b (@, 6 (D, ... b (p-1)
Rem| @ (O b - D)
b - D5 b (-2, ... ¢ (0 (B.2.8b)

in which ¢dx(i) is the cross-correlation sequence between the

individual input signal component and the desired signal defined by

b gie(1) = Elx(n + 1) d(n)] (B.2.8c)
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and ¢Xx(i) denotes the autocorrelation sequence of the input signal

specified by
4 (D = Elx(n + 1) x(n)] (B.2.8d)

It may be observed from expression (B.2.6) that the mean-square error
is precisely a second order function of the weightsk&land is visualized
as a parabolic function of the weight variables. The adaptive
process seeks the minimizing weight variable selection by using the
well-known method of steepest descent.

In seeking the minimum mean-square error by the method of
steepest descent, one first begins with an initial guess of the model's
weight parameters. The next estimate is then obtained from that
estimate by making a change in the weight vector in the direction
of the negative of the gradient vector. The gradient is obtained

by differentiating expression (B.2.6) to yield

Vf(gn)= -2 + 2R_h (B.2.9)

r
—dx X -

If each change in the weight vector is made proportional to the
negative of the gradient, the method of steepest descent leads to

the following recursive relationship

h

h = En + qu(Qﬂ) (B.2.10)

For a sufficiently small value of u, the mean-square error at the

(n + 1)-st step is approximately found to be

f(h ;)

b)) £ -2 w7 ] e (3.2.11a)

ofi ¢
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where |1Vf(§n)|§2 is the positive scalar defined by
1 2 _ T roe
vE@ ) [1° = [vE )] [vE(n )] ' (B.2.11b)

It may be observed from eq. (B.2.1la) that the mean-square error is
reduced with each change of the weight vector. For a proper choice
of u, it has been claimed that this algorithm will converge to an
optimum point regardless of the initial weights. (Widrow, 1971)

The method of steepest descent requires the determination of the
gradient vector. In practice, the true values of these gradients
are seldom available. To overcome this difficulty, the "LMS algorithm"
offers a practical procedure for implementing the method of steepest
descent.v This algorithm uses gradient estimates in place of true
gradient values. These estimates may be ''moisy" (i.e., contain
arrors) but the effect of the gradient-measurement errors is observed
to be small in many practical applicationms.

A method of measuring gradients of the mean square error which
does not reqﬁire squaring, averaging or differentiating is now given.
The mean square error f(gn) may be represented crudely by the
single sample £(n), the square of the n-th error value. Then the

gradient vector is approximated by
Z ey = -
Vf(hn) = Ve (n) = -2e(n) = | (B.2.12)

In order to approximate the gradient vector, the present input-signal
2 and its associated scalar error e{n) are used. Upon taking an

expected value on expression (B.2.12), expression (B.2.9) can be
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obtained.
An adaptation cycle will proceed with the arrival of each new
input vector. From egs. (B.2.10) and (B.2.12), the adaptation

procedure comprising the IMS algorithm is completely represented by

(B.2.13).
- T (B.2.13a)
e(n) = d(n) - gﬁ X,
§n+l = gn - 2ue(n) ) (B.2.13b)

Upon examination of expressions (B.2.13), we can see that the
computational requirement is O(p). In this algorithm, the selection of
B is also an important factor. If u is made too small, convergence is
slow. On the other hand, if u is selected to be too large, the adaptive
method may not converge. In terms of selecting a best u, the

interested reader may refer to (Widrow, 1971; Luenberger, 1973;

Huffman and Nolte, 1980).

B.3 TIterative IMS Method

We will now investigate the problem of how to linearly filter an
observed, wide-sense stationary, discrete-time, random time series
{x(n)}. Our primary interest is to best estimate the desired discrete-
time random time series {d(n)} in the minimum mean square sense.

The problem is illustrated in Fig. B.3.1. Our objective is to find
the transfer function H(z) that minimizes the mean square error. We

assume that the estimate of element d(n) is of the form



x(n)
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d(n)

H(z)

d(n)
- -y
@
+ A

Fig. B.3.1 Pictorial representation

of the optimum filtering

e(n)
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~ p-1 ‘
d(n) = & h(k) x(n - k) (B.3.1)
k=0

where h(k) are the filter weight elements. The estimate d(n) is then
seen to be a linear combination of the most recent p values of the

observation signal. The mean square error is found to be a function

of filter weights h(k) and is specified by
P 2
£(h) = E[{d(@) - d@) 7] (B.3.2)
where h is the pxl column vector defined by
T
h = [h(0), h(1), ... , h(p - D] (B.3.3)

Substitution of expression (B.3.1) into (B.3.2) and taking the expected
value operation yields
T T

f(h) =14(0) -2h" ry +h R b (B.3.4)

where rd(O) = E[dz(n)],gax is the pxl column vector whose k-th element
is given by E[d(n) x(n - k)] for k = 1, 2, ... , p and RX is the pxp
matrix whose elements are given by Rx(i,j) = E[x(n - 1) x(n - j)]
(see eq. B2.6).

The optimum filter weights vector is readily determined by taking
thé gradient of quadratic functional (B.3.4) with respect to h and
setting this gradient equal to the zero vector. This is found to

result in the well-known Wiener vector selection (Wienmer, 1949).

(B.3.5)



Although this approach is indeed attractive and typically results in
satisfactory performance, it suffers one serious drawback. Its
implementation requires apriori covariance knowledge which is usually
lacking in many typical applications.
In order to achieve our object without requiring any statistical
information, we introduce an estimation error criterion defined by
N

£ = 1 lam - a(x) 12 (B.3.6)
h k=p

It will be beneficial to represent this error criterion in a vector

format. Let us define the (N + 1 - p) x 1 estimation error vector

p- - g - - <y

d(p) x(p)  x(p-1) . .. =) || n

C ld(ptD) x(P+1) x() . . . =2 || n
& < . . ) )

. . . .

. . » ?

d(m) x(N) x(N-1) . . . x(N+1-p)| th(p-1)
b - b : - -

which can be compactly expressed

g =4y - X b (.3.8)

Using these expressions, the square error criterion can be represented

by

o

MCIENEHES S5 VRN CHEE 85 ) (B.3.9)

Minimization of the functional (B.3.9) is straightforwardly carried

out by setting the gradient Vh fN(E) equal to zero and yields the
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following result.

‘0 _

hy [I%T }gl,]-l XEI dy (B.3.10)

In general applications, the use of this method is not practical since
it requires on the order of p3 multiplications to invert the pxp
matrix [Xg XN]. We will next discuss a straightforward procedure which
reduce this computational complexity.

Upon examination of relationship (B.3.7) and (B.3.8), we can see
that when the new data element x(N + 1) is provided, the equation error

can be updated by

Syt T G T G B (8.3.11)
Y R
= - h (8.3.12)
T
d(+L) 1

where b is the pxl column vector specified by
T
g1 = [x(+1), =), ... , x(N-p+2)] (B.3.13)

It is clear from relationship (B.3.10) that we have to invert the

matrix

T <7 T _ T < ‘T
(1 Bgerd = % g ¥ Bge B (B.3.14)

The following recursive relationship may be used to efficiently update

the required matrix inverse
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T -1

-1 1 T
[XEHI R oy S T

(B.3.15)

where
Iyl EXNT }3\1]-1 A+l (B.3.16)

After a few simple manipulations, the following recursion is obtained

T o
d(N+1) - EN EN
o 0 +1
Bgep =By F 1+ o0 Iy+1
A1 I+l

(3.3.17)
Recursive relationships (B.3.16) and (B.3.17) constitute a more
computationally efficient method than the direct approach (B.3.10).

It can be shown that the computational complexity is of the order pz.

B.4 Numerical Examples

In this section, we shall demonstrate the performance of two
adaptive methods, namely, the Widrow-Hoff algorithm and the Iterative
IMS method. This will be accomplished by investigating the time

series whose elements are given by
x(n) = v20 sin (0.1 wn) + w(n) ' (B.4.1)

where w{(n) is a white Gaussian noise with variance one. The normarized
Weiner equation error can be defined by

R - |l
T! H‘dx (B.4.2)

X

g(n) =

4=
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where Rx is the pxp covariance ﬁaﬁrix of the sequence {x(n)} and T
is the pxl cross—correlation vector of the sequences‘{d(ﬁ)} and {x(n)}.
The above scalar value £(n) yields a normalized measure of how closely
the Wiener equations are being approximated. All graphs except

Fig. B.4.4 provide the plot of normalized Wiener equation error
referring to expression (B.4.2) versus iteration number (i.e., the
number of observation data). The desired signal d(n) is specifically
chosen to be x(n+l). This yields a problem of predicting one step
into the future. Unless specified, the covariance matrix is initial-
ized at 15-th iteration: number. .

It can be observed from Fig. B.4.1 that the normalized Wiener
equation error of the Iterative LMS méthod converges to approximately
zero after 2300 iterations, however, the Widrow-Hoff algorithm
with u = 0.001 fails to converge. In the Widrow-Hoff algorithm,
the value of u was next selected to be .0001 and .01l in Fig. B.4.2
and Fig. B.4.3, respectively. As we can see on Fig; B.4.2, both of
the adaptive algorifhms converge reasonably close to zero. The
Iterative IMS method converges faster than the Widrow-Hoff algorithm.
Fig. B.4.3 illustrates‘an example Whiqh shows convergence behavior
of the Iterative IMS method and nonconvergende behavior of Widrow-
Hoff algorithm. The normalized square error I{hn - hO][/[IhO[[ where
ho’is the exact solution of the matrix equation (B.3.3) are displayed
in Fig. B.4.4.  The convergence behavior of the Iterative IMS and

the nonconvergence behavior c¢f the Wiener-Hoff are evident.
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Fig. B.4.5 and Figf B.4.6 display the method which employs
biased estimates for the épproximation of covariance matrix elements.
Fig. B.4.7 and Fig.bB.4,8 display the method which uses unbiased
estimates for the approximation of covariance matrix elements. Both
the biased and unbiased methods converge to zero, however, the biased
method starts with slightly large values of normalized Wiener equation
error. Fig. B.4.9 anﬁ Fig. B.4.10 show the Iterative LMS method
whose initial covariance matrix is the identity matrix. Although the
normalized Weiner eqﬁation error at the early stage of iteration |
number are relatively large, this method also converged to zero.

Fig. B.4.11 and Fig. B.4.12 display the direct method. Upon
examination of Fig. B.Q:S through Fig. B.4.12, the direct method and
the method of unbiased estimate are found to be the best, since they
started with a smaller normalized error and converged uniformly to
zero.

Comparing the Widrow—Hoffbalgorithm and the Iterative LMS method
from the convergence viewpoint, the Iterative LMS method is superior

to the Widrow-Hoff algorithm.

B.5 Summary

Two .adaptive techniques are compared. rom é computational
viewpoint, the Widrow-Hoff algorithm is less burdensome than the
Iterative IMS method. However, the comparison of Wiener equation errors
indicated that the solution from the Iterative LMS method satisfies

"Wiener equatioms better than that of the Widrow-Hoff algorithm.
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Appendix C

DERIVATION OF EXPRESSIONS (6.6.4) AND (6.6.10)

In this Appendix, relationships (6.6.4) and (6.6.10) which play

a central role for the time update mode are derived.

C.1 Derivation of (6.6.4)

Expression (6.6.3) can be simplified to the form

zz (C.1.1a)

p:q
n-1 n -n

where the (m-i+1)xl column vectors = and y, are defined by

By A X[1,n] S (c.1.1b)

.

1

¥,

gg A g 0] (C.1.1c)

It can be seen that R.n is expressed as a sum of a nonsingular matrix

1

and a rank 1 matrix. Expression (C.l.la) can be also expressed as

-1 -4 1%

R, =R, [I-2ab] R (C.1.2a)
where the (m-it+1)xl column vectors a and b are defined by
-1
a=R*x (C.1.2b)
- n -
L 1
T=y R (C.1.2¢)

o
I
5'50
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1
in which R_ 2 is a NxN matrix which satisfies the relationship

n
[ S -
an Rn/5 = Rnl. We will now make use of the following matrix inverse
relationship
-1 1 +
[1-2p] =1+ G5 ab (C.1.3)

Substituting (C.1.2b) and (C.1.2¢) into (C.1.3) yields

tq-1 _ 1 s +
[t-apl =1+ + -1 LS AN

-7, R %

1
-4

(C.1.4)

Expression (6.6.4) can be obtained by substituting (C.1.4) into

(C.1.2a) along with expressions (C.l.1b) and (C.1l.1c).

C.2 Derivation of (6.6.10)

To simplify the complexity of notations, let us define the

following compact notations

P=P §N[i,m] (C.2.1a)

q = PN (C.2.1b)
- - T T

Y Yi,m,N &y P ey (C.2.1¢)

It is readily shown that

— T—
1-vyv)a-= 2 1-v ey =0 (I-P)Q (C.2.2a)
PQ PQ = YPQ (C.2.2b)
QP QP = yQP (C.2.2¢)
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Equation (6.6.9) may be expressed as
V(I-P)=Q0-P+(I-Q P(I-0Q

(I-Q PQPR(I-0Q) (C.2.3)

Using relationships (C.2.2b) and (C.2.2c), we have

Q-2+ (T -Q PIT-Q} (1-7v

=Q - PQ + vPQ - QP + yQP - YQPQ (C.2.4)

Substitution of (C.2.4) into (C.2.3) yields

1

1oy (I -P) QI -7 (C.2.5)

V(I -P) =

Expression (6.6.10) can be obtained by direct substitution of

expressions (C.2.1a), (C.2.1b) and (C.2.1c) into (C.2.5).
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Appendix D COMPUTER PROGRAM LISTING

D.1 TFORTRAN Program Listing for a Recursive ARMA Spectral Estimation

[N @]

aaaan

a0

aaon

THIS PROGRAM COMPUTES AUTOREGRESSIVE COEFFICIENTS OF
"HIGH PERFORMANCE' ARMA MODEL (REAL DATA, p=q).

DIMENSION X(1024),EXN(30),EXNM1(30),BXN(30),BXNM1(30)
,FENM1(30) ,FRN(30) ,FRNM1(30),SN(30) ,SNM1(30),TN(30)
,GAM(30) ,GAM1(30),EYN(30) ,EYNM1(30),BYN(30)

,Y(1024) ,XA(1) ,RX(30,30) ,YX(30),YS(1024,30)
,WKAREA (30) ,CM(30) ,CM1(30),AM(30) ,AM1(30) ,BM(30)
,DM(30) , RXX (30, 30) , FEN(30) , TNM1(30) ,BB(30) , BM1(30)
,XS(1024,30) ,BYNM1(30)

-y Uy > U > O

N1: TOTAL NUMBER OF OBSERVATION DATA
IP: ORDER OF DENOMINATOR COEFFICIENT

N1=64
IP=4
NP=N1-IP
N=N1-1
IP1=IP+1
IPM1=TIP-1

GENERATE DATA TO BE MODELED

DSEED=12345
CALL KAVEH(Y,N1,DSEED)
DO 25 I=1,NP
5 X(I)=Y(I+IP)
WRITE (6,101) (¥(I),I=1,NP)
WRITE (6,101) (X(I),I=1,NP)
N1=NP
N=N1-1

INITTALIZATION FOR TIME UPDATE

EXNM1(1)=0.
EYNM1(1)=0.
BXuM1(1)=0.
BYNM1(1)=0.
FENM1(1)=0.0
FRNM1(1)=0.0
A12=0.0
A21=0.0
A22=0.0

DO 1 I=1,1IP
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SNM1(I)=0.0
1 TNM1(I)=0.0

UPDATE PARAMETERS FROM IT=1 TO IT=N1

DO 2 IT=1,N1
ITMI=IT-1
AIT=IT
WRITE(6,102) IT
102 FORMAT (/,3X,'N=",13)

INITTALIZATION FOR ORDER UPDATE

EXN(1)=X(IT)
BXN (1) =X(IT)
EYN(1)=Y(IT)
BYN(1)=Y(IT)
DO 20 I=1,IP1
SN(I)=0.0
TN(I)=0.0
GAM1(I)=0.0
20 GAM(I)=0.0

UPDATE FEN(1) AND FRN(1)
FEN (1) =FENM1 (1)+X(IT)*Y(IT)
FRN (1) =FRNML( 1)+X (IT) *Y (IT)
M=1P
IF(ITML.LT.IP) M=ITMl
M1=M+1
IF(IT.EQ.1) GO TO 109
ORDER UPDATE
DO 3 I=1,M

UPDATE GAM(I+1) AND PARTTAL CORRELATION COEFFICIENT
SN(I) AND TN(I)

GAM(I+1)=GAM(I)+BXNM1(I)#*BYNM1(I)/FRNM1(I)

SN(I)=SNM1(I)+BYNMI1(I)*EXN(I)/(1.0-GAM(I))

TN(I)=TNM1(I)+EYN{(I)*BXNM1(I)/(1.0-GAM(I))
UPDATE FORWARD ERRORS EXN(I) AND EYN(I)

EXN(I+1)=EXN(I)-(SN(I)/FRNML(I))*BXNM1(I)
EYN(I+1)=EYN(I)-(TN(I)/FRNM1(I))*BYNM1(I)

UPDATE BACKWARD ERRORS BXN(I) AND BYN(I)
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FEN(I+1)=FEN(I)-SN(I)*TN(I)/FRNML(I)
- FRN(I+1)=FRNM1(I)-SN(I)*TN(1)/FEN(I)
3 CONTINUE
109 IF(IT.EQ.1) Ml=1

PRINT OUT AT EACH NEW DATA POINT

WRITE(6,100)
100 FORMAT(/,2X, 'EXN(I)',3X, 'EYN(I)',3X, 'BXN(I)'
$ ,3%,'BYN(I)',2X, 'FEN(I)',2X, 'FRN(I)',2X, 'SN(I)"
$ ,2X,"IN(I) ', 2%, 'GAM(TI) ")
DO 5 I=1,M1
WRITE(6,101) EXN(I),EYN(I),BXN(I),BYN(I),FEN(I)
$ ,FRN(I),SN(I),TN(I),GAM(I)
101 FORMAT (2X,10F8.3)
IF(IT.EQ.N1) GO TO 5

READY FOR NEXT DATA POINT

EXNM1(I)=EXN(I)
EYNM1(I)=EYN(I)
BXNML(I)=BXN(I)
BYNM1(I)=BYN(I)
FENM1(I)=FEN(I)
FENM1(I)=FRN(I)
SNM1(I)=SN(I)
TNML(I)=TN(I)
GAM1(I)=GAM(I)

5 CONTINUE
IF(IT.EQ.1) GO TO 2
A12=A12+Y (IT) *X(IT-1)
A21=A21+Y (IT-1) *X(IT)
A22=A22+Y (IT-1)*X(IT-1)

2 CONTINUE

FIND AUTOREGRESSIVE COEFFICIENTS FROM PARTIAL
CORRELATION COEFFICIENTS

A11=FEN(1)

DET=A11%A22-A21%A12
CM(1)=(A22*Y(N1)-A12*Y(N1-1)) /DET
CM(2)=(~A21*Y (N1)+A11*Y(N1-1)) /DET
AM(1)=-A21/A22

BM(1)=-A12/A11

IF(IP.EQ.1) GO TO 23
RM=X(N1)#*BM(1)+X{N1-1)

GM=X (N1) *CM(1)+X(N1-1)*CM(2)
ETM=1.+RM*CM(2) / (1~-GM)

DO 13 IORD=1,IPM1

IORDI=IORD+1

TORD2=I0RD+2
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UPDATE AUXILIARY VECTOR DM(I)

DO 14 I=1,IO0RD

14 DM(I)=(BM(I)+RM*CM(I)/(1.-GM))/ETM

TEMP=SN(IORD+1) /FRNM1 (IORD+1)

UPDATE FORWARD VECTOR AM1(I)

15

DO 15 I=1,IO0RD
AM1 (T)=AM(I)-TEMP*DM(I)
AM1 (IORD+1)=-TEMP

UPDATE BACKWARD VECTOR BM1(I)

16

TEMP=TN (TORD+1) /FEN (IORD+1)
BM1(1)=-TEMP

DO 16 I=2,IORD1
BM1(I)=DM(I-1)-TEMP*AM(I-1)

UPDATE AUXILIARY VECTOR CM1(I)

17

18

TEMP=BYN (IORD2) /FRN (IORD2)
DO 17 I=1,IO0RD1
CM1(I)=CM(I)+TEMP*BM1(I)
CM1 (IORD1+1)=TEMP

SUM=X (N1-IORD-1)
SUM1=X(N1)*CcM1(1)

DO 18 I=1,I0RD1

SUM=SUMHFX (N1+1-T)*BM1(I)
SUM1=SUMI+X(N1-I)*CM1(I+1)
RM1=SUM

GM1=SUM1
ETM1=1.+(RM1(1.-GM1))*CM1(IORD2)

SET VECTORS FOR NEXT ITERATION

19

13
23

DO 19 I=1,I0RD1
AM(I)=AMI(T)
BM(I)=BM1(I)
CM(I)=CM1(I)
CM(IORD2)=CM1(IORD2)
RM=RM1

GM=GM1

ETM=ETM1

CONTINUE

CONTINUE

PRINT OUT AUTOREGRESSIVE COEFFICIENT
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WRITE (6,105) (AM(I),I=1,IP)

105 FORMAT(/,3X,' RECURSIVE SOLUTION = ',//,10F10.5)
RETURN
END

NOTE: Above program may be applicable to complex data by making
following changes

(i) Declare all variables to be complex value except
integer variables (i.e. IMPLICIT Statement)

(i1) In DO loop 25, take complex conjugate on the
variable Y(I+IP) (i.e. Y(I+IP)=CONJG(Y(I+IP)))
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D.2 FORTRAN Program Listing for Generalized Levinson's Approach

of ARMA Model

Generalized Levinson's approach discussed in Section 5.3 is

programmed for the premodified method.

oo

aaaa

a0

a0

THIS PROGRAM CCOMPUTES DENOMINATOR COEFFICIENTS OF
" HIGH PERFORMANCE ' ARMA SPECTRAL ESTIMATION
BY GENERALIZED LEVINSON'S APPROACH (REAL DATA, p=q).

DIMENSION X(64),FEN(30),YV(30),XV(30)

,FRN(30) , FRNM1(30) ,SN(30) ,TN(30)

,BMN(10,10) ,BBMN (10, 10)

,Y(64),RX(30,30)

,WKAREA (30) ,CM(30) , CM1(30) ,AM(30) ,AM1(30)
,DM(30) ,RXX(30,30) , BM(30) , BM1(30)

N1: NUMBER OF TOTAL OBSERVATION
N1=64
IP: ORDER OF DENOMINATOR COEFFICIENTS

IP=4
NP=N1-IP
N=N1-1
IP1=TP+1
IPM1=IP-1

GENERATE DATA TO BE MODELED

DSEED=12345
CALL KAVEH(Y,N1,DSEED)
DO 25 I=1,NP
25 X(I)=Y(I+IP)
WRITE(6,101) (Y(I),I=1,NP)
WRITE(5,101) (X(I),I=1,NP)

101 FORMAT (2X,10F8.3)

N1=NP
N=N1-1

INITIALIZATION BASED ON THE FIRST TWO DATA SAMPLES
X(1) AND Y(1)

=1,IP1
=1,IP1
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BBMN(I,J)=0.0
BMN(I,J)=0.0

40 RXX(I,J)=0.0
A11=Y (1) *X(1L)+Y(2)*X(2)
A12=Y(2)*X(1)
A21=Y(1)*X(2)
A22=Y(1)*X(1)
RXX(1,1)=A11
RXX(1,2)=A12
RXX(2,1)=A21
RXX(2,2)=A22
BMN(1,1)=-A12/A11
FRNM1(2)=RXX(2,2)+RXX(2,1)*BMN(1,1)

SOLVE FOR DENOMINATOR COEFFICIENTS (AM(I),I=1,IP)
AT EACH NEW DATA POINT FROM IT=3 TO IT=N1

DO 38 IT=3,N1
IPM1=TP-1
IF(IT.LE.IP) IPM1=IT-2

UPDATE ROW VECTORS

DO 37 I=1,IP1
YV(I1)=0.0
XV(I)=0.0
IF(I.LE.IT) YV(I)=Y(IT+1-I)
IF(I.LE.IT) XV(I)=X(IT+1-I)
37 CONTINUE
DO 39 I=1,IP1
JF=I
IF(I.EQ.1) JF=IP1
DO 39 J=1,JF
39 RXX(I,J)=RXX(I,J)+YV(I)*XV(J)
A11=RXX(1,1)
A12=RXX(1,2)
A21=RXX(2,1)
A22=RXX(2,2)
AM(1)=-A21/A22
BM(1)=-A12/A11
IF(IP.EQ.1) GO TO 23
DO 13 IORD=1,IPM1
IORD1=IORD+1
TORD2=TORD+2

COMPUTE AUXILIARY PARAMETERS FEN(IORD+1)
AND FRN(IORD+1)

SUM=RXX(1,1)
DO 27 I=1,I0RD
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27 SUM=SUMHRXX(1,I+1)*AM(I)
FEN (IORD+1)=SUM
SUM=RXX(IORD1,IORD1)

DO 28 I=1,IORD

28 SUM=SUM+RXX (TORD1,I)*BM(I)

FRN (IORD+1)=SUM

COMPUTE PARTIAL CORRELATION SN(I)

SUM=RXX(IORD2,1)

DO 29 I=1,I0RD -
29 SUM=SUM+RXX(IORD2,T+1)*AM(I)

SN (IORD+1)=SUM

DO 14 I=1,I0RD
14 DM(I)=BMN(I,IORD)

COMPUTE PARTTAL CORRELATION TN(I)

SUM=RXX (1,I0RD2)
DC 30 I=1,I0RD

30 SUM=SUM+RXX(1,I+1)*DM(I)
TN (IORD+1)=SUM

UPDATE VECTOR AM1(I) ; FORWARD SOLUTION

TEMP=SN (IORD+1) /FRNM1 (IORD+1)
DO 15 I=1,I0RD

15 AM1(I)=AM(I)-TEMP*DM(I)
AM1(IORD+1)=-TEMP

UPDATE VECTOR BMI1(I) ; BACKWARD SOLUTION

TEMP=TN (IORD+1) /FEN (IORD+1)
BM1(1)=-TEMP
DO 16 I=2,IORD1

16 BM1(I)=DM(I-1)~-TEMP*AM(I-1)
SUM=RXX (IORD2 , IORD2)

COMPUTE AUXILIARY PARAMETER FRN(IORD2)

DO 31 I=1,I0RD1
31 SUM=SUMHRXX(IORD2,I)*BM1(I)
FRN (IORD2)=SUM

SET FOR NEXT DATA POINT

DO 19 I=1,I0RD1

AM(T)=AM1(I)

BBMN (I,IORD1)=BM1(I)
19 BM(I)=BM1(I)
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13 CONTINUE
BMN (1,1)=-A12/A11
DO 43 I=1,I0RD1
DO 43 J=2,I0RD1

43 BMN(I,J)=BBMN(I,J)
DO 41 I=1,I0RD2

41 FRNM1(I)=FRN(I)

38 CONTINUE

23 CONTINUE

c PRINT OUT RESULTED DENOMINATOR COEFFICIENTS

WRITE(6,105) (AM(I),I=1,IP)
105 FORMAT (/,3X,' GENERALISED LEVINSON SOLUTION = '
,//,10F10.5)
STOP
END

NOTE: Above program may be applicable to complex data by making
changes as described in Section D.1 (See Expression (5.3.1d)).
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found to provide typically superior performance when compared to
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