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Chapter 1 

INTRODUCTION 

The mathematical development of digital signal analysis has 

been an area of primary concern since the digital computers develop-

ment over tWo decades ago. The analysis of the frequency character-

istic of a signal is of particular interest in the field known as 

"time series analysis." Time series analysis encompasses such 

areas as statistics, economics, and communications. Most of the 

work in time series analysis has been carried out by statisticians. 

More recently, however, many advancements in the analysis of time 

series have beenmade in the field of signal processing based on 

power spectral estimation concepts and time domain analysis. 

The need for power spectral estimates arises in a variety of 

contexts, including the measurement of noise spectra for the design 

of optimal linear filters, the detection of narrow-band signals in 

wide..-band noise, and the estimation of parameters of a linear system 

by using a noisy excitation. 

Current methods of spectral estimation can be broadly classified 

into two categories. One is the classical approach which includes 

the periodgram method, autocorrelation methods and its variants 

(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt, 

1957; Jenkins a.."'ld Watts, 1968; Koopmans, 1974). The second is 

1 
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modern power spectral density estimations .based on parameters 

modeling. · This includes the maximum entropy method (Burg,· 196 7), one-

step linear prediction (Parzen, 1969), and spectral estimation using 

ARMA model (Tretter and Steiglitz, 196 7; Gutowski, Robinson and 

Treitel, 1978). In practical signal processing applicatiOns, classical 

approachs have been incorporated by many researchers and users. 

This is because classical methods are fairly easy to implement 

and can be computed efficiently by using the fast Fourier transform 

(Cooley and Tukey, 1965). However, the spectral estimates obtained 

by classical methods can provide unsatisfactory results when the data 

length is short •. For example, variance of estimates is large and 

the resolution capability of noise embedded sinusoids is poor in such 

cases. To overcome these difficulties, the modern spectral estimation 

methods were developed. These methods provide better spectral 

performance than classical methods. For example, one of the widely, 

used modern spectral methods referred to as the Maximum Entropy 

method (Burg,.· 196 7} possesses b.etter resolution capability than the 

classical periodgram approaches for short data lengt:hs. The Maximum 

Entropy method :l,s classified as an autoregressive (AR) model. The AR 

model is also known as an all-pole model which uses only a denominator 

polynomial of a rational model. J'.n recognition of this constraint, 

a more general fcirm, .the autoregressive and moving average (ARMA) 

model which has numerator polynomials as well as deri~minator poly'."" 

nomial has be.en proposed. A Vc;lliety of procedures has been developed 

for generating ARMA models. One cif these methods. is the. so-called thigh 
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performance' AR..~ method which was recently developed by Cadzow (1979). 

The 'high performance' ARMA :nethod has provided excellent spectral 

estimation performance when compared with the Maximum Entropy and 

its variants. However, its computational efficiency is relatively 

burdensome. 

Recently, attention has been directed towards developing 'fast' 

spectral estimation algorithms. These include the generalized Levinson 1 s 

algorithm. As an example, it is possible to use this approach for 

estimating the autoregressive coefficients of a p-th order AR model 

with the number of required additions and multiplications being on 

the order of p2 (i.e., O(p 2)). Recently, Morf developed the doubling 

algorithm which reduced the required computations to O(p log p) by 

using the divide and conquer approach (Morf, 1980). More recently, 

recursive methods which have an ability to compute necessary parameters 

at the arrival of each new data point has been proposed (Lee and 

Morf, 19~0). This algorithm does not require any matrix formulation 

and the computational requirements can be reduced to O(p) to update 

the AR model parameters with each new data sample. 

In this thesis, the development of fast algorithms for the high 

performance spectral estimation method is treated~ To begin our 

development, in Chapter 2, the mathematical definition of power 

spectral density function is stated and two classical methods referred 

to as the periodgram and the autocorrelation method are discussed. 

The common weakness of these classical techniques are examined. In 

Chapter 3, a standard procedure of modern spectral estimation, 
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namely, the rational function model is discussE;?d. Modern spectral 

linear estimators can be classified into three types of models: 

(i) AR (Autoregressive) model, (ii) MA (:Moving Average) model, and 

(iii) ARMA (Autoregressive and Moving Average) model. It is widely 

known that the ARMA model is a desired form from a parameter pars:irniony 

viewpoint. In Chapter 4, the 'high performance' ARMA spectral estima-

tion is described~ Although this method. gives excellent spectral 

performance, the computational requirements are relatively burdensome. 

To achieve: a higher degree of computational.efficiency, fast algorithms 

' are developed in Chapter 5 and data modification methods are intro,.. 
. : . . 

duced. In Chapter .6, a recursive algorithm which·requires O(p) 

computations at .the arrival of .each new data sample is developed. 

Development of this algorithm. is predicated on various projection 

operator decompositions. 

·, 
' 

J 



, Chapter 2 

CONVENTIONAL SPECTRAJ_. ESTIMATIONS 

2.1 Introduction 

The spectral density function is mathematically defined in 

Section 2.2. Conventional spectral estimation techniques have been 

developed based on the Fourier transform relationship between the 

power spectral density function and the autocorrelation sequence 

(Bartlett, 1953; Blaclanan and Tukey, 1958; Grenander and Rosenblatt, 

1957; Jenkins and Watts, 1968; Koopmanns, 1974). For example Blackman 

and Tukey developed an autocorrelation method (Blackman and Tukey, 

1958) which includes following steps: 

(i) Estimate the autocorrelation sequence from the observed 

data; 

(ii) Window the autocorrelation estimate; 

(iii) Fourier transform of the windowed data record. 

While various procedures are used in step (i) to estimate the auto,.. 

correlation function, the objective is usually to obtain a minimum 

bias and minimum variance estimate of the true autocorrelation 

sequence. In step (ii), windowing is used to reduce the bias and the 

variance of the power spectral estimate. However, the windowing 

process decreases the resolution of the power spectral estimate. 

This autocorrelation method demonstrates typical weaknesses of 

conventional spectral estimation approaches. Spectral.estimation 

5 
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performance had not been improved until the development of modern 

spectral estimation techniques. 

2.2 Definition of Power Spectral Density 

Let us consider a discrete time random sequence {x(n)} with 

autocorrelation sequence {r (m)} defined by x 

r (m) = E [x(n + m) x * x(n)] (2 .2 .1) 

where E and * denote the expected value and complex conjugate operation, 

respectively. We will denote the z-transform of {rx(m)} by 

S (z) = x m=-oo 
r (m) x 

-m z 

The associated power spectral density is then defined to be 

S (w) x = s Cz) I . 
X JW z=e 

= t r (m) 
x 

-jwm e 

Applying the inverse z-transform to eq. (2.2.2), we have 

S (z) x 
c 

-m dz z z 

(2.2.2) 

(2.2.3) 

(2.2.4) 

where C is a simple closed contour contained within the region of 

convergence for S ( z) . If C is chosen to be t. he unit circle, by x 
making the change of variable z=ejw, we derive the discrete inverse 

Fourier transform relationship 



r (m) x 

1T 

2~ I 
-'IT 

7 

iwm S (w) e.., dw x (2.2.5) 

The variance of the random time series {x(n)} is equal tor (0) and x 

can be expressed by 

(2.2.6) 

It follows that the average power in the incremental frequency band 

w0 2-. w 2_ w0 + dw (Tretter, 1976) is found to be 

(2.2.7) 

As shown in eq. (2.2.6), the time series variance is equal to the 

total power of the signal which is a scalar multiple of the area 

under the curve Sx(w). Observing the relation between expressions 

(2.2.6) and (2.2. 7), one can see that the integral over the incremental 

frequency band is proportional to the total power of the signal in 

that band. For these reasons the function S (w) is called the power x 

spectral density. 

The frequency response of a linear shift-invariant system and 

the frequency domain representation of a discrete-time signal are 

essential concepts in digital signal processing. In this section we 

describe another interpretation of the power spectral density 

function using the theory of linear discrete-time systems for the 

case when the input is a random time series (Oppenheim and Schafer, 

1975). Consider a stable linear shift-invariant system with unit-

sa~ple response h(n). Let s(n) be a real input sequence that is a 
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sample sequence of a wide-sense stationary discrete-time random 

process. Then the output of the linear system is a sample function 

of a random process related to the inpm: process by the linear 

transformation 

co 

x(n) = I h (n - k) e:(k) (2.2.8) 
k=-oo 

It can be shown that if the input is stationary, then so is the output. 

The input signal may be partially characterized by its mean and its 

autocorrelation function r (m), or we mav also have additional s -

information about first or higher order probability distributions. 

In characterizing the output random process {x(n)}, we desire similar 

information. For many applications, it is sufficient to characterize 

both the input and output in terms of simple averages, such as means, 

variances, and autocorrelations. Therefore, we shall derive input-

output relationships between these quantities. Generally we consider 

zero mean processes and our analysis is restricted to the examination 

of the autocorrelation sequence. The autocorrelation function of the 

output process is readily shown to be given by 

r (m) = x 

co 

r (m - n) s 

co 

* I: h(k) h(n + k) 
k=-co 

(2.2.9) 

To characterize the response of a linear time-invariant system to a 

discrete time input, we apply the z-transfonnation to expression 

(2.2.9) to yield 

(2.2.10) 
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where H(z) is the transfer function of the linear shift-invariant 

system. In terms of the power spectral density, (2.2.10) becomes 

S (w) = !H(ejw) 1 2 S (w) x s (2.2.11) 

where the impulse response {h(k)} is taken to be a real sequence. 

If the input random process is a white noise with variance cr 2 , it s 

follows that 

. 2 2 
S {w) = !H(eJ 00) I a x s (2. 2 .12) 

Relationship (2.2.12) is extensively used in analysis concerned with 

modern spectral estimation. 

2.3 Discrete Fourier Transform Approach 

As shown in Section 2.1, the power spectral density and auto-

correlation functions are related by the discrete Fourier transform. 

Suppose that the sequence {x(n)} is a wide-sense stationary random 

time series and the complete knowledge of the associated autocorrela-

tion {r (m)} is given, the spectral density can be simply obtained by x 

S (w) = x m=-oo 
r (m) x 

-jwm e (2.3.1) 

In relevant signal processing applications, it is never feasible 

to measure an infinite number of autocorrelation sequence elements 

{r (m)}. x 
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We will now begin to examine the problem of estimating S (w) x 
from a finite observation of the time series {x(n)}. This observation 

can be represented by a set of N contiguous samples 

x(O), x(l), • • . , x(N-1) (2.3.2) 

About two decades ago, spectral estimates had been mostly accomplished 

by the periodgram and autocorrelation methods. 

2.3.1 Periodgram Method 

To include an additional degree of flexibility, suppose that the 

observed sequence is modified to form the auxiliary signal 

f(n) w(n) x(n) 0 < n < N-1 (2.3.3) 

where w(n) = O for n < O and n > N. The sequence w(n) is frequently 

called a data window. The sample autocorrelation function for the 

modified observed sequence can be written as 

(2.3.4a) 

1 = N f (n) * f ( -n) (2.3.4b) 

where * denotes the operation of convolution. Denoting the z-transf orm 

of rf(n) and f(n) by Rf(z) and F(z), respectively, the convolution 

and time reversal theorems yield the following relationship 

(2.3.5) 
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-iw Evaluating this expression at z = eJ , we have 

1 = -N (2.3.6) 

The function Rf(ejw) is known as the periodgram of {f(n)}. Two 

decades ago, the periodgram method became popular because Rf(ejw) 

could be computed efficiently by using the fast Fourier transform 

(FFT see Cooley and Tukey, 1965) . 

2.3.2 Autocorrelation Method 

When the true autocorrelation function r (m) is unknown, it is x 

desired to calculate an estimate of the autocorrelation function. 

The associated spectral estimate can then be obtained by taking a 

Fourier transform of this autocorrelation estimate (Blackman and 

Tuckey, 1959). Two connnon estimates 

N-m r (m) = __l__ l: x(i) . xti+rn) 
x N-m i=l 

(2.3.7) 
m = O, • . . , N-1 

and 

,. l N-m * r (m) = - l: x(i) x(i+m) 
x N . l i= 

(2.3.8) 
m = 0, • • . , N-1 

are typically used for estimating the autocorrelation function. 

Applying the expected value operation on expression (2. 3. 7), we obtain 

r" , 1 E Lr (m)J =-x N-Iil 

= r (m) x 

N-m 
I: 

i=l 
* E [x(i) x(i+m)] (2.3.9a) 

(2.3.9b) 
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The autocorrelation estimate r (m) is seen to be an unbiased estimate. x 
A 

On the other hand, one can similarly show that r (m) is a biased x 
A 

estimate. Because r (m) is an unbiased estimate, it might be thought x 
A 

; (m) is the better estimate. x For several reasons, however, r (m) x 
A 

is sometimes preferable tor (m). First, the biased estimate does x 

not violate a property of a valid autocorrelation functions, that is 

r ( 0) > Ir (m) I (2. 3 .10) x - x 

while the unbiased estimate can violate this property. Second, the 

biased estimate produces a nonnegative spectral estimate, while the 

unbiased estimate may not (Burg, 1975). Third, the mean-square error 

for the biased estimate is less than that for the unbiased method 

(Jenkins and Watts, 1968). And finally, Parzen provides an argument 
A 

in favor of the biased estimate by claiming that r (m) has less x 

variance than~ (m) (Parzen, 1974). x 

Various procedures may also be used to estimate the autocorrela-

tion function. The objective of these procedures is usually to obtain 

a minimum variance estimate of the true autocorrelation function. 

Similarly, the estimate of the autocorrelation function is windowed 

to reduce the bias and variance of the power spectral estimate, but 

increases its statistical stability. Various window functions have 

been used which are generally unrelated to the data or the random 

process being analyzed. Both the finite record length of the auto-

correlation function estimate and the windowing process applied to 

the autocorrelation function decreases the resolution cf the power 
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spectral estimate. An additional disadvantage of windowing is that 

unless one performs good windowing, excessive side lobes may be 

introduced in the power spectral estimate. Side lobes may be reduced 

by employing well designed windows but we then lose spectral resolution, 

particularly when the data record is short. 

The autocorrelation method and its variants were developed to 

achieve better spectrum estimate performance in comparison to the 

periodgram method. As indicated above, however, the autocorrelation 

method has still several disadvantages. These disadvantages had not 

been overcome until the development of modern spectral estimation 

techniques. 



Chapter 3 

MODERN SPECTRAL ESTIMATION 

3.1 Introduction 

One of the most widely used models for spectral estimation is 

the rational model. The stochastic time series {x(n)} is said to 

have a rational power spectrum if its power spectral density can be 

expressed in the form 

(3 .1.1) 

where cr2 is a positive constant and the characteristic rational 

function 

-jw -jqw 
= b 0 + b1 e + ... + bq e 

-jw -jpw 1 + a1 e + . . . + ap e 
(3 .1. 2) 

is composed of the ratio of th~ polynomials A(ejw) and B(ejw) which 

may have real coefficients and the zeros of A(ejw) are all contained 

within the unit circle. The rational power spectral density (3.1.1) 

is said to have order (p, q) and its zeroes and poles are seen to 

occur in reciprocal complex conjugate pairs. 

A particularly convenient interpretation on how a stochastic 

time series with rational spectrum may arise follows directly from 

the characteristic rational function. This entails treating the 

characteristic rational function (3.1.2) as being the transfer function 

of a causal, time-invariant linear system. It then follows that this 

14 
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system will be characterized by the recursive equation 

q p 
x(n) = E bi e(n-i) - E a. x(n-i) 

i=O i=l i 

(3.1.3) 

where the time series {e(n)} and {x(n)} are taken to be the excitation 

and response signals, respectively. It has been shown in section 2.1 

that when the excitation time series {e(n)} is a zero mean stationary 
2 white noise time series with variance cr , then the power spectral 

density of the response time series is given by relationship (3.1.1). 

Thus a stationary random time series With rational power spectral 

density can be interpreted as being the response of a stable causal, 

time-invariant linear system to a white noise excitation. 

The general linear system (3.1.3) is commonly referred to as an 

autoregressive-moving average (ARMA) model in the spectral estimation 

literature. This ARMA model is said to be of order (p, q) and it 

gives rise to the rational spectrum (3.1.2) which possesses zeroes 

as well as poles. The ARMA model is the most general of rational 

spectrum models possible and its ~ and bk coefficients uniquely 

characterize the spectrum. 

In the spectral estimation literature, most of activity has been 

directed towards the special class of ARMA models known as auto-

regressive (AR) models. An AR model is one in which the numerator 

polynomial B(ejw) is equal to the constant b 0• As such, the AR 

model is also referred to as an all-pole model since its transfer 

function is specified by 
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(3.1.4) 

This all-pole model is the one most often used in spectral estimation. 

Another subclass of rational spectrum models which has received 

attention is the so-called moving average (MA) model as characterized 

by A(ejw) = 1. The transfer function of a r~~ model is given by 

B(ejw) and it is therefore also referred to as an all-zero model. 

In sunrrnary, Table 3.1 shows the rational spectrum associated with 

each of these models. 

3.2 Moving Average Model 

Many conventional methods of spectral estimation are classified 

as MA models. For example, the periodgram and correlation methods 

which have been discussed in Section 2.3 can be described in terms 

of a MA model. Generally, little attention has been focused on Jvi".A 

models. Welch has introduced (Welch, 196 7) , however, a MA model 

technique which is particularly applicable to the direct computation 

of a power spectrum estimate that uses the FFT. In this technique, 

the data record is first sectioned into K = N/M segments of M samples 

each as defined by 

(i) 
x (n) = x(n + li~ - M) 0 _:::_ n _:::_ M-1, 1 < i < K (3.2.1) 

A window w(n) is next applied directly to the data segments before 

computation of the periodgram. Then, the K modified periodgrams as 

specified by 
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I Model SEectrum 

MA I B(ejw) 12 

AR 
lb0 IL 

I A(ejw) 12 

ARMA I B(e~w) 12 
A(eJW) 

p -jkw 
= I ~ e , a0 = 1 

k=O 

q "k I b, e -J w 
k=O K 

Table 3.1 Rational Spectrum Models 
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J~i) (w) = ~ IM~l x(i) (n) w(n) e-jwn I 2 
n=O 

are computed, where 

l U=-
M 

M-1 2 E w (n) 
n=O 

and the final spectrum estimate is defined as 

K 
B (w) x 

1 = -
K 
E 

i=l 
J (i) (w) 

M 

i = 1, 2, •.• , K 

(3.2.2) 

(3.2.3) 

(3 .2 .4) 

By taking average of periodgrams of each data segment, the 

desired smoothed periodgram is obtained. In using this segmentation, 

the variance of the spectrum is reduced. The price paid for this 

reduction, however, is a loss in frequency resolution and an increased 

bias of the estimate. 

3.3 Autoregressive (AR) Model 

In the last decade, much attention has been focused on the 

analysis of AR models. Two major spectrum estimation methods for AR 

models, referred as one-step linear prediction and the maximum 

entropy method (MEM) appeared in the literature of mathematical 

statistics (Parzen, 1969) and geosciences (Burg, 1967; Lacoss, 1971; 

Ulrych, 1972). Although these two methods take different approaches, 

it has been shown that they give the same spectral estimate (A van den 

Bos, 1971). 
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3.3.l One-Step Linear Prediction 

In the application of one-step linear prediction, one seeks to 

characterize the spectral density of a time series based upon a finite 

set of time observation 

x(l), x(2), . • . , x(N) (3.3.1.1) 

As described in Section 3.1, the AR model is structured by 

x(n) + a1 x(n - 1) + ... + ap x(n - p) = s(n) (3 .3 .1. 2) 

in which s(n) is a white noise time series with zero mean and variance 

a 
E 

2 The objective of spectral estimation will be that of modeling 

an underlying time series {x(n)} with the AR model structure (3.3.1.2) 

in which the ~ coefficients are estimated from the given finite set 

of observations (3.3.1.1). This is readily achieved by applying 

the well known method of one-step linear prediction. 

A p-th order one-step linear prediction, by definition, estimates 

the value of a random time series using a linear combination of 

the most recent p samples. Namely, the sample x(n) is estimated by 

means of the relationship 

i(n) 
p 

= - ~ a x(n - k) 
k=l k 

(3.3.1.3) 

The difference between this predicted value and the observed value 

x(n) over the observation interval is called the prediction error 

and is specified by 

e(n) = x(n) - i(n) p < n < N (3.3.1.4) 
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or 

p 
e(n) = x(n) + 2: ~ x(n - k) 

k=l 
p < n < N (3.3.1.5) 

Writing these error expressions in matrix form yields 

e=x+Xa (3.3.1.6) 

where a, .§_, and x are p x 1, (N - p) x 1, and (N - p) x 1 column . 

vectors, respectively, given by 

(3.3.1. 7a) 

e = [e(p + 1), e(p + 2), ..• , e(N)]T (3. 3 .1. 7b) 

[ ] T X = x(p + 1), x(p + 2), ••• , x(N) (3.3.l.7c) 

and X is an (N - p) x p matrix specified by 

T 
x(p) x(p + 1) x(N -

1) l 
x(p - 1) x(p) x(N - 2) 

x = 

x(l) x(2) x.(N - p) (3. 3 .1. 7 d) 

where the superscript T denotes the transpose operation. 

The a, coefficients are to be now selected so as to cause each 
K 

of the prediction error terms e(n) to be close to zero. This 

selection process will give rise to the so-called optimal one-step 

predictor. To achieve the required objective of setting the e(n) to 

be near zero, one typically appeals to the least squares method which 
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minimizes a squared error criterion of the form 

f(a) T = e We (3.3.1.8) 

where -W is an (N - p) x (N - p) nonnegative definite square matrix. 

The minim~zation of this quadratic functional with respect to the 

column vector a is straightforwardly carried out and results in 

(3.3.1.9) 

It can be shown that the resulting power spectral density estimate 

of the time series {x(n)} is then given by 

(3. 3 .1.10) 

0 where the '\. coefficients are obtained upon solving relationship 

(3.3.1.9). 

3.3.2 Maximum Entropy Method (MEM) 

The MEM is a result of Burg's attempt (Burg, 1967) to derive 

a procedure for increasing spectral resolution when only a small 

number of samples or estimates of autocorrelation function are avail-

able. As mentioned in Section 2.3.2, in the autocorrelation method 

one first estimates the autocorrelation function, append zeroes to in-

crease the length of the estimated autocorrelation, and then applies the 

Fourier transform. In contrast, the MEM suggests that the estimated 

autocorrelation function should be extrapolated beyond the data 
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limited range. The principle used for this extrapolation process is 

that the spectral estimate must be the most random or have the maximum 

entropy of any power spectrum which is consistent with the sample 

values of the estimated autocorrelation. 

In the analysis of ~1EM, it is assumed that we possess a partial 

autocorrelation sequence {r(O), r(+l), ••. , r(±M)} which is a subset 

of a infinite extent autocorrelation function {r(O), r(+l), •..... }. 

It is desired that we produce from this partial autocorrelation 

sequence a spectral representation 

00 

Sr(w) = 
n=-oo 

r(k) -jum e (3.3.2.1) 

which is a Fourier transf orrn of the autocorrelation function of 

infinite length. For some spectral density function Sf(w), we may 

associate a time series {f(n)} by means of inverse Fourier transform. 

'IT 

f (n) = 211T· f . Sf(w) eJWn dw for n = o, +l, (3.3.2.2) 
-If 

so that 

r(n) f(n) for n o, +l, .. ~ ' +M (3.3.2.3) 

This expression does not provide us with a unique expression for the 

spectrum S (w). To overcome this difficulty, Burg developed a new r 

spectral estimator called the maximum entropy method (Burg, 1967). 

The entropy associated with power spectrum density S (w) is defined r 

to be 



rr 

H f 
-rr 

log [s (w)] dw r 
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(3.3.2.4) 

Maximizing the entropy with respect to the unknown r(n) for In! > M 

with the constraint 

rr 

r(n) = 1 J S (w) 2rr r for lnl > M (3.3.2.5) 
-rr 

results in the maximum entropy spectral estimate. This estimate 

expresses maximum uncertainty with respect to the unknown information 

that is consistent with the known information. The problem of 

estimating S (w) becomes a calculus of variations problem. The solution r 

procedure which begins with the introduction of a Lagrange multiplier 

for each of the constraint equations is not difficult and results 

in the spectral estimate (Burg, 1967) 

~ PM 
S (w) = --------------

r ll + o e-jw + o -jMw!2 a 1 ... + 3r1 e 
(3.3.2.6) 

where optimum selection of<\ coefficients a~ (k = 1, ... , M) are 

obtained by solving the following matrix system of equations 

I-" 
r(M) 1 p 

M r(O) r(l) 

r(l) r(O) r(M-1) al 0 

= 

I 

r(O) 3r1 I 0 (3.3.2. 7) 
L 

l r(M) 
..... 

r(M-1) 
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Equation (3.3.2.7) can be solved efficiently by using Levinson's 

Algorithm which requires O(M2) computations (Levinson, 1947). 

3.4 ARMA Model 

A variety of procedures have been developed for generating ARMA 

spectral models. These include the whitening filter approach which 

is typically iterative in nature, generally slow in convergence, and, 

usually requires an excessively large number of time series' obser-

vations to be effective (Tretter and Steiglitz, 1967; Gutowski, 

Robinson and Treitel, 1978). More desirable closed form procedures 

which overcome these deficiencies have been offered. These include 

the so-called Box-Jenkins method and its variants (Box and Jenkins, 

1976; Kaveh, 1979; Kinkel, Perl, Scharf and Stubberud, 1979), and, 

more recently, Cadzow has developed a "high performance" method 

(Cadzow, 1981). In this section, three ARMA methods, namely, the 

Whitening method, Gutowski Aruif..A method and Box-Jenkins method are 

briefly discussed. 

3.4.1 Whitening Method 

If we assume that the Gaussian random series {x(n)} is given, 

the method of maximum likelihood (Haykin, 1979) can be used to estimate 

the coefficients of rational spectrum in the following way. Suppose 

the time sequence {x(n)} is passed through a transfer function 

A(ejw)/B(ejw) to give the output sequence {dn)}. The spectrum of 

{E(n)} is given by 



S (w) = e: 
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(3.4.1.1) 

If one could choose the coefficients of A(ejw) and B(ejw) so that 

S (w) = 
e: 

2 
(J ' e: the spectral density of {x(n)} would be given by 

S (w) = x 
I 2 a 2 

e: (3.4.1.2) 

In this case, {e:(n)} is a white Gaussian process. The maximum likeli-

hood parameter estimation is equivalent to finding the minimum of a 

function of several variables (Tretter and Steiglitz, 1967). This 

is called the minimum residual criterion and, intuitively, one attempts 

to "whiten" {x(n)} as much as possible. The whitening process is sugges-

tively depicted in Fig. 3.4.1.1. 

Because of the rational spectrum model's structure, the minimum 

residual criterion leads to nonlinear equations which cannot be 

solved explicitly. This suggests the using of an iterative technique 

to optimize the denominator a~d numerator coefficients. Many such 

techniques are available, ranging from steepest descent to the 

Newton-Raphson algorithm. 

3.4.2 Gutowski ARMA Method 

This section discusses the theoretical motivation for the ARMA 

modeling technique described by Gutowski (Gutowski, Robinson, 

Treitel, 1978). Consider the discrete time linear system 

shown in Fig. 3.4.2.1 with input u(k), output x(k), and 



26 

x(n) e:(n) 
. 

S (w) = x 
1
2 2 

crE 

Fig. 3.4.1.1 Spectrum Estimation by Whitening Approach 
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u(k) h(k) 

X(z) = H(z) U(z) 

= B(z) U(z) 
A(z) 

x(k) 

Fig. 3.4.2.1 Time Invariant Linear System 

r 



J 

28 

impulse response h(k). If the transfer fi..mction H(z) is assumed to be 

a rational function of z, then it may be written as 

B(z) 
H(z) = A(z) (3.4.2.1) 

where A(z) and B(z) are polynomials of zof order p and q, respectively. 

This assumption in turn implies that the output is described by 

B(z) 
X(z) = A(z) U(z) (3.4.2.2) 

where X(z) and U(z) denote z-transform of {x(k)} and {u(k)}, respectively. 

Gutowski's ARMA method assumes that u(k) is equal to the Kronecker 

delta function and it therefore follows that 

B (z) 
A(z) = X(z) (3.4.2.3) 

Gutowski's method uses Equation (3.4.2.3) in an iterative procedure 

to estimate A(z) and B(z) from the data sequence {x(k)}. Each iteration 

may be described in terms of the following three equations: 

A(z) X(z) = B(z) 

1 
C(z) = A(z) 

C(z) B(z) X(z) 

(3.4.2.4) 

(3.4.2.5) 

(3.4.2.6) 

The basic iterative technique may be seen by using equation (3;4.2.4) 

through (3.4.2.6) and assuming that one starts with a reasonably good 

estimate of B(z). At k-th iteration, the following steps are 

required. 
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(k) (k) (k) 
Step 1 Compute A(z) with X(z) input and B(z) as desired output. 

(k) (k) 
Step 2 Compute C(z) by synthetic division of the value 1 by A(k). 

(k) (k) (k) 
Step 3 Compute B(z) with C(z) as input and X(z) as desired 

output. 

(k) (k) 
After each iteration, if A(z) and B(z) are better than the previous 

iteration, then the fit will improve. At the comple.tion of m-th 

iterations, the ARMA spectral estimate is given by 

S (w) = x 
B(m) (ejw)I 2 
A (m) (ejw) 

(3.4.2. 7) 

The above procedure is repeated until convergence occurs. The 

minimum delay characteristics of Am(z) is guaranteed by the fact that 

the inverse is computed using a Toeplitz fonnulation. This is the 

strong point of this algorithm. 

3.4.3 Box-Jenkins Method 

The ARMA model with order (p, q) can be characterized by the 

following recursive relationship 

p q 
x(n) = - L: ~ x(n-k) + L: bk s (n-k) 

k=l k=O 

n = p + 1, ... + 00 ' 

(3. 4. 3 .1) 

where {e:(k)} is a white noise with variance cr 82• The autocorrelation 

function of the mixed process may be derived by multiplying each 
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* side of (3.4.3.1) by x (n-m) and taking expectations to yield 

r (m) = x. 

p q 
I ak r (m - k) + I bk r (m - k) 

k=l x k=O xe: 
(3.4.3.2) 

where r (n) and r (n) denote the autocorrelation of the sequence x xe: 

{x(k)} and cross covariance function between {x(k)} and {E(k)}, 

respectively. Since x(n-k) depends only on inputs which have occurred 

up to time n-k, it then follows that 

r (n) = 0 xe: 

. r (n) :/: 0 xe: 

We see that (3.4.3.2) implies 

p 

n > 0 

n < 0 

r (n) x = - I ak r (n - k) 
k=l x: 

for n _.::. q + 1 

and yields the following matrix system of equations 

r (q) x 

rx (q+p-1) 

r (q-p+l) x. 

r (q) x a 
p 

= 

r (q+l) x 

rx (q+p) 

(3. 4. 3. 3a) 

(3.4.3.3b) 

(3.4.3.4) 

(3.4.3.5) 

The ~ coefficients will be obtained by solving the equation (3.4.3.5). 

The numerator dynamics of the AP.MA model is characterized by ck 

coefficients (Kaveh, 1979) which can be expressed as 



c. = c 
k -k = 

p 
I: 

i=O 

p 
I: 

j=O 
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a. a. r(li-j-ki) 
J J 

k = 0, 1, ... ' q 

(3.4.3.6) 

where a 0 = 1 and a. =-a. for i = 1, ... , p. The ARMA spectrum 
l l 

representation is then found to be 

S (w) x 

q 
I: 

k=-q ~ 
-jwk e 

p . k ? I 1 + I: ~ e -JW I -
k=l 

(3. 4. 3. 7) 



Chapter 4 

HIGH PERFORMANCE ARMA MODEL 

4.1 Introduction 

It is widely recognized that an ARMA spectral model is generally 

the most effective linear rational model from a·paratneter parsimony 

viewpoint (see Section 3.1). In recognition of this fact, a variety 

of procedures have been developed for generating ARMA models 

(Stei.glitz, 1977; Box and Jenkins, 1976; Kaveh; 1979; Kinkel, Pe-rl, 

Scharf and Stubberud, 1979). Some of these methods were discussed in· 

Section 3.4. As indicated in Section 3.4, it is recognized that 

these methods share certain deficiencies. To overcome these 

deficiencies, the 'high performance' ARMA method was developed 

(Cadzow, 1979, 1980, a,b). It provides an excellent spectral estima-

tion performance when compared with other spectral estimation methods. 

In this chapter, the 'high performance' method is described and 

numbersrof numerical examples are provided. This chapter is basically 

identical to .references (Cadzow, 1979, 1980 a, b). T.he development of 

this method is based upon some fundamental concept governing ARMA 

time series which will be discussed in next section. 

4.2 Fundamental ConceEts 

The stationary random time series {xk} whose power spectrum is 

of a rational f.orm may be modeled as the. response of the causal ARMA 

32 
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system of order (p, q) 

p q 
~+ I: a. xk . = I: b. e:k . (4. 2.1) 

i=l 
. l. -l. i=O l. -l. 

where the time series {e:k} is taken to be a zero mean white noise 

e;x:citation signal. The autocorrelation description of this system 

is obtained by first multiplying each side of expression (4.2.1) by 

* the entity ~-m and then taking the expected value. This results in 

the well known Yule-Walker equations as specified by 

r (m) + x 
p 
I: 

i=l. 
a. r (m - i) = 0 

l. x for m > q (4.2.2) 

The Yule-Walker equations (4.2.2) will serve as the basis for esti-

mating the ARMA model's denominator coefficients (i.e., ~ coefficients). 

4.3 Denominator Coefficient Selection 

In this section, a novel procedure for estimating an ARMA model's 

denominator coefficients shall be presented (Cadzow, 1979, 1980 a). 

This development is begun by first evaluating the model equation 

(4.2.1) over the integer set p + 1 ~ k ~ n to obtain the time series 

relationships 

xp+l x x p-1 xl al p 

xp+2 xp+l x X2 a2 p 
+ 

= 

l x x x x a n n-1 n-2 n-p p 



= 

E: p 

E: n-1 
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s p-q+l 

E: p-q+2 

It will be compactly written in the matrix format 

x+X~=Eb 

( 4. 3 .1) 

(4.3.2) 

where ~' ~ and .Q. is (n-p)xl, pxl and (n-p)xl column vector, respectively. 

The symbols X and Edenote (n-p)xp and (n-p) x (q+l) Toeplitz type 

matrices, respectively. The entries of these vectors and matrices 

are directly obtained from expression (4.3.1). 

It is now desired to utilize relationship (4.3.1) in conjunction 

with the Yule-Walker equations (4.2.2) to effect a procedure for 

estimating the ARMA model's autoregressive coefficients. As we will 

see, this objective is attained by first introducing the following 

(n-p)xt Toeplitz type matrix 

I x x p-q-1 . . . . . x p-q-t+l p-q 

y x p-q+l x . . . . x p-q-t+2 

I 
p-q 

I 

l x x 2 . . . . . x (4.3.3) n-q-1 n-q- n-q-t 
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where the convention .is adopted of setting to zero any matrix entry 

~ for which k lies outside the observation set 1 < k < n. The 

integer t which specifies the number of columns of this matrix will 

also be found to correspond to the number of Yule-Walker equations 

that are being approximated (i.e., relationship (4.2.2) for 

q < m ..::_ q + t). It thus follows that this integer parameter must 

be selected to at least equal p (i.e., t ~ p) so as to assure a 

well defined set of equations for the p autoregressive coefficients. 

The above mentioned Yule-Walker equation approximation is 

achieved by premultiplying each side of relationship (4.3.2) by the 

complex conjugate transpose of matrix Y as denoted by Yt to yield 

(4.3.4) 

To demonstrate that this system of equations yields a logical choice 

for the Yule-Walker equation approximations, let us now take the 

expected value of each of its sides. This is found to result in 

p 
(n - m) {r (m) + ·2: a rx(m - k)} = 0 

x k=l k 
(4.3.5) 

for q < m < q + t 

Thus, the system of linear equations (4.3.4) is seen to provide an 

unbiased estimate of the underlying Yule-Walker equations. It is to 

be noted that the right hand side term has zero expected value due to 
... 

the fact that the expected value of the matrix Y 1 € is the null 

matrix. This is a direct consequence of the ARMA model's causality and 

* the whiteness of the excitation process which results in E {x e:k} ;;; 0 . n 
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for all n < k. 

With these thoughts in mind, a logical procedure for selecting the 

ARMA model's autoregressive coefficients is suggested. Namely, they 

will be selected so as to cause the left hand side of relationship 

(4.3.4) to be close to its expected value which is the zero vector 

(i.e., E {Yt Eb}= 9). If this selection procedure is adopted, an 

approximation of the Yule-Walker equations which in some sense is 

"most consistent" with the given time series observations is at hand. 

A computationally tractable measure of the closeness to which the 

left side of relationship (4.3.4) is to the zero vector is provided 

by the following quadratic functional 

f(a) = [Yt x + Yt X a]tA [Yt x + Yt X ~] (4.3.6) 

in which A is at x t positive-semidefinite.diagonal matrix whose 

diagonal elements are chosen to possibly weight differently various 

Yt t elements of the error vector x + Y X a. It is a simple matter to 

show that a minimizing autoregressive coefficient vector must satisfy 

the consistent system of p linear equations 

(4.3.7) 

in the p autoregressive coefficient unknowns. One then solves this 

system of p equations for the most data consistent set of auto-

regressive coefficient estimates. 
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4.4 Numerator Dynamics 

A variety of procedures exists for determining the numerator 

dynamics of an ARMA time series once the AR coefficients have been 

estimated. In this section, two procedures which have been found to 

be particularly effective shall be described. Each makes use of the 

governing ARMA relationship that models the underlying time series. 

4.4.1 Yule-Walker.Equation Method (Cadzow, 1979) 

In this approach to estimating the numerator dynamics, we first 

introduce the so-called causal image of a time series autocorrelation 

sequence as specified by 

+ r (n) = -~ r (0) o(n) + r (n) u(n) x x x (4. 4.1.1) 

in which o(n) and u(n) designate the unit-sample and unit-step 

sequences, respectively. Making use of the complex conjugate 

symmetrical property of stationary autocorrelation sequences, it then 

follows that the autocorrelation sequence can be uniquely recovered 

from its causal image according to the simple relationship 

r (n) x 
+ + * = r (n) + r (-n) x x (4. 4 .1. 2) 

Upon taking the discrete-Fourier transform of this relationship, 

it follows that the time series spectral density is given by 

(4. 4 .1. 3) 



where 

image 
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S+(w) denotes the discrete Fourier transform of the causal 
x 

r+(n). According to relationship (4.4.1.3), one may attain a x 
+ spectral density estimate by estimating S (w). This will be the x 

approach taken in this section. 

An estimation of the Yule-Walker equations (4.2.2) which govern 

the ARMA model time series indicates that the causal image sequence 

will generate the auxiliary {ck} sequence according to 

+ p + 
c = r (m) + E a. r (m - k) 
m X k=l K X 

(4.4.1.4) 

m = 0, 1, •.• , s for s =max (q,p) 

It is to be noted that the {ck} sequence will be identically zero out-

side the time range 0 ~ k ~ s. Upon taking the discrete Fourier 

+ transform of relationship (4.4.1.4), we have S (w) in the form x 
-jw -jsw c0 + c1 e + . . . + cs e s+ (w) = ------------------x -jw -jpw 1 + a 1 e · + . . . + ap e 

(4.4.1.5) 

If this expression is substituted into relationship (4.4.1.3), the 

required formulation of the spectral density .estimate is completed. 

4.4.2 Smoothed Periodgrain Method (Cadzow, 1980 b) 

In the smoothed periodgram method, one first generates the 

auxiliary "residual" time series elements according to the relationship 

p 
e(k) = x(k) + 

i=l 
a. x(k - i) 

1 
p + 1 < k < n (4. 4. 2 .1) 

in which the ARMA model's ~ coefficients as generated by relationship 
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(4.3.7) is utilized. Upon examination of relationship (4.2.1) and 

under the condition that the time series being characterized is an 

ARMA model of order p with the calculated ~ coefficients, it follows 

that the residual time series will have a moving average spectral 

density as given by 

Se (w) (4.4.2.2) 

This observation in conjunction with the ARMA model representation 

then provides the vehicle for estimating the underlying time series 

spectral density, that is 

S (w) x . I e ~ e-J"kwl 2 = s Cw) I '-' e 
k=O 

= 1 (4.4.2.3) 

With this in mind, the final step of the spectral estimation procedure 

requires fitting a q-th order moving average (MA) model to the 

residual time series segment (4.4.2.1) to effect an estimate of S (w). e 
st The approach to be presented for obtaining the q+l order MA 

model is an adaption of the well-known method of Welch for obtaining 

smoothed periodgrams (Welch, 1967). In essence, one first segments 

the calculated residual e~ements (4.4.2.1) into L segments each of 

length q + 1 according to 

e.(k) = w(k) e(k + 1 + p +id) 
1. 

O<i<L-1 

(4.4.2.4) 
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where w(n) is a data window an.cl 11 d11 is a positive integer which 

specifies the time shift between adjacent segments. These individual 

segments are seen to overlap for a shift selection of d 2_ q. 

Furthennore, in order to include only the observed time series 

elements, the relevant parameter must be selected so that p + q + 

,(L - l)d < n. Finally, the q + 1 order periodogram of each of the 

L segments (4.4.2.4) is taken, and, theseperiodogramsare in turn 

averaged to obtain the desired smoothed q + 1 order MA estimate given 

by 

S (w) e 
1 L-1 l 
- I { 
L i=Q q+l 

q 
I w(k) e(k + 1 + p + id)e-jwk J 2 } 

k=O 

where the data window is normalized according to I w2 (k) = 1. 

(4.4.2.5) 

In using this smoothing procedure, the variance of the estimate 

S (w) is reduced. The price paid for this reduction, however, is a e 

loss in frequency resolution and an increased bias of the estimate. 

Fortunately, the basic resolution capability of this and other ARMA 

model procedures is primarily influenced by the autoregressive co-

efficient selection. If one is mainly interested in resolution 

performance, an examination of the ARMA models' pole locations then 

need be investigated. 

4.5 Numerical Examples 

In this section, the.classical problem of detecting the presence 

of sinusoids in additive noise is considered. In particular, we 

will investigate the specific case in which the time series observations 
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are generated according to 

(4.5.l) 

1 < n < N 

where w(n) is a white Gaussian time series with variance one. This 

particular problem serves as an excellent vehicle for measuring a 

spectral estimator's performance relative to: (i) detecting the 

presence of sinusoids in a strong noisy background, and (ii) resolving 

two sinusoids whose frequencies f 1 and f 2 are nearly equal. The 

individual sinusoidal signal-to-noise ratios (SNR) for the above signal 

are given by 20 log (A,,,_//2) for k = 1,2. In order to consider the 

effectiveness of the high performance ARMA spectral estimator in 

different noise environments, we shall consider two cases. These 

cases have been examined in reference (Sullivan, etc .. , 1978) where the 

performance of many modern spectral estimators are empirically compared. 

CASE I: A1 = ho, 0.4 

12, f2 = 0.426 

In this example, we have two closely spaced (in frequency) sinu-

soids for which the stronger sinusoid has a SNR of 10 dB while the 

weaker sinusoid has a SNR of 0 dB. For this relatively low SNR case, 

the ability of a spectral estimator to resolve closely spaced sinusoids 

and identify their frequencies will be tested. Upon generating 

sequence (4.5.1) with the postulated parameters for a data length of 

N = 1024, spectral estimates were obtained using a 12-th order model 
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with the high performance Afu'1A method (diagonal element of the 

matrix A is (N-m) 2), maximum entropy method, and the Box-Jenkins 

method incorporating biased autocorrelation estimates. In addition, 

a standard periodgram spectral estima~e was obtained using the same 

data. The resultant spectral estimates are displayed in Fig. 4.5.1 

where a number of observations can be made 

(i) The indirect .!.\R}'f..A spectral estimate provides excellent 

results with two sharp peaks at £1 = 0.400 and 

f 2 = 0.427, and with the spectrum near 0 dB (the noise 

level) for most other frequencies. 

(ii) The maximum entropy and Box-Jenkins methods were unable 

to resolve the two sinusoids in the prevailing low 

SNR environment. 

(iii) Although the periodgram is able to resolve the two 

sinusoids, the well-known random fluctuation behavior 

which characterizes the periodgram method is in 

evidence. 

This example nicely demonstrates the potential capability of the high 

performance ARMA spectral estimation method relative to existing 

procedures. 

In many practical problems, one does not have available exceedingly 

long data lengths upon which to make a spectral estimate. To demon-

strate the ability of the high performance Afil'fA. spectral estimator to 

perform in such situations, the first 64 samples of the data sequence 

in the above example were used to generate a spectral estimate. The 
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resultant 15-th order high perfonnance. Afil1.;\ spectral estimate obtained 

is shown in Fig. 4.5.2 where the ability to resolve the two closely 

spaced sinusoids is again evident. The sinusoid rs frequency estimate 
A A 

f 1 = 0.399 and f 2 = 0.423 are also of good quality in this low SNR 

environment. 

CASE II: A1 = /2, fl = 0.32812 

We are now examining the ability of the ARMA spectral estimator 

to detect sinusoids in a low SNR environment. For a selection of 

N = 64, w(n) = (N - n) 2 and p = 5, the resultant ARMA spectral 

estimation is displayed in Fig. 4.5.3(a). Clearly, one is able to 

detect the·presence of the two sinusoids, and, the frequency estimate 

f = 0.3202 and f 2 = 0.5012 are of good quality considering the 

prevailing SNR environment. A 15-th order maximum entropy spectral 

estimator was then found to generate the spectral estimate displayed 

in Fig. 4.5.3(b). Although the two sinusoids were properly detected, 

a number of false peaks are in evidence. 

Next, we treat the time series recently considered by Bruzzone 

and Kaveh (1980). Specifically, their ARMA time series is characterized 

by 

( 4. 5. 2a) 

1 2 where the time series xk and xk are autoregressive process generated 

by 
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1 0.4 1 0.93 l l 
~ ~-1 - "~-2 E: .. 

LZ 
(4.5.2b) 

2 -0.5 2 0.93 2 + 2 
~ = ~-1 - ~-2 "' ~k (4.5.2c) 

1 2 in which the sk, sk and i::k are uncorrelated Gaussian random variables 

with zero mean and variance 1. The spectral density of the above 

time series (4.5.2a) is given by 

I -jw e-j2w,-2 S (w) = 1 - 0.4 e + 0.93 x 

(4.5.2d) 

Using this time series (4.5.2a), twenty different independent sampled 

sequences each of length 64 were generated. These twenty observation 

sets were used to test various spectral estimation methods. In 

Fig. 4.5.4, twenty superimposed plots of the ARMA model spectral 

estimates of order (4.4) as obtained by using the Box-Jenkins method, the 

high performance method with t = 4, 8 and 20 are shown. For comparison 

purposes, the ideal spectrum is also plotted. Comparing the two top 

most plots, the high perfonnance method with the minimal value of t = 4 

was found to yield a marginally better spectral estimate than the 

Box-Jenkins method. In the lower two plots, one can observe that the 

high performance spectral estimates improve significantly as t is 

increased. Next, twenty different samples sequence of length 200 were 

generated according to time series (4.5.2a). With this longer data 

length, it was anticipated that an improvement in spectral estimation 

performance would result. As shown in Fig. 4.5.5, a marked improvement 
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Box-Jenkins Method 

t = 4 

.t = 8 

t 12 

Exact 

Fig. 4.5.4 ARMA Spectral Estimates of Order (4,4), 
Data Length of 64, and, A. = 0.95. 
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Box-Jenkins Method 

t = 4 

t = 8 

t 12 

Exact 

Fig. 4.5.5 ARMA Spectral Estimates of Order (4,4), 
Data Length of 200, and, A = 0.95. 
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is evident, where the ARMA model spectral estimates of order (4.4) 

are shown for the Box~Jenkins method and the high performance method 

for selections of t = 4, 8, and 20. 

It is also possible to use the high performance ARMA method for 

synthesizing digital filters. To illustrate the approach that is 

taken, let us consider the specific case of designing a low-pass 

filter of normalized cutoff frequency f . One may readily show that c 

the impulse response of an idealized version of this low pass filter 

is given by, sin ('rrf n) /1m. With this in mind, one then applies the c 

herein developed Aill'l~ procedure to the specific sequence 

x(n) = sin [nf (n - 0.5 N)]/r.(n - 0.5 N) c (4.5.3) 

The resultant Aill'JA model obtained in this manner will have attenuation 

characteristics of the desired low-pass filter. To illustrate this, 

a 15-th order ARMA spectral estimate of this sequence was made for 

fc = 0.2, N = 128 and w(n) = (N-n). The resultant filter's magnitude 

characteristics are displayed in Fig. 4.5.6 where the low-pass 

characteristics are in evidence. 

4. 6 Sunm1ary 

The "high performance" ARMA model spectral estimation has been 

described. This estimation approach provided an excellent spectral 

estimation performance when compared with such contemporary procedures 

as the maximum entropy and Box-Jenkins Methods. The above mentioned 
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"high performance" AR1'1A spectrum. estL-nation will be developed 

further in Chapter 5 to achieve computational efficiency. 



Chapter 5 

COMPUTATIONALLY EFFICIENT ARMA SPECTP& ESTIMATION 

5.1 Introduction 

Recently, much attention has been focused on developing spectral 

estimation algorithms. Unfortunately, direct application of the linear 

prediction method as described in Section 3.3.1 results in an 

excessive computational requirement, since it is necessary to solve 

a pxp matrix system of equations which generally requires O(p 3) 

computations. For this reason, a number of computationally fast 

algorithms have been developed to overcome this difficulty. These 

include the Levinson's algorithm (Levinson, 1947). The Levinson 

algorithm is found to be dependent on the Toeplitz structure of 

the matrix characterizing the system of equations. With this very 

restrictive constraint in mind, Kailath, etc. developed the concept 

of the displacement rank so as to yield efficient solutions for non 

Toeplitz system of equations. The displacement rank measures how 

11 close11 to Toeplitz a given square matrix is (Kailath, etc., 1979) .. 

If a given matrix T is Toeplitz, then its structure is characterized 

by the following property 

T '::: [t. . ] == [ t '+m .+m] 
l,J 1.1 .. ' J 

(5.1.1) 

where t .. denotes the (i,j)-th element of the pxp Toeplitz matrix 
J.,] 

T and :n is a scalar integer (1 .::_ i+m, j+m _:_ p). That is, the elements 
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of the matrix T are identical along the diagonal and subdiagonal 

directions. In recognition of this key property of a Toeplitz 

structure, the displacement rank of the pxp matrix A is defined by 

a(A) = minfo (A), a (A)} + 
(5.l.2a) 

where 

a. (A) = rank {A - S A ST} 
+ (5.l.2b) 

a. (A) = rank {A - ST A S} 

in which ct+ (A) and a. (A) are called the positive and negative 

displacement ranks of matrix A, respectively, and S denotes the pxp 

down shift matrix defined by 

s = 

0 ·o 1 ~ 

• • O ,.• 
• • 

1 0 (5.1.3) 

It can be straightforwardly shown that the displacement rank of a 

Toeplitz matrix T is 2, that is 

a.(T) = a+ (T) = a (T) 2 (5.1.4) 

If a given matrix A has a displacement rank a, then it has been 

shown that the inversion of A may be accomplished with the number of 

required computations being O(a.p2) (Friedlander, etc., 1979). 

Based on these concepts, a number of computationally efficient 

algorithms for AR spectral models have been developed (Friedlander, 

etc., 1978, 1979; Morf, etc., 1977; Morf and Lee, 1978; Lee and Morf, 

1980; Morf and Kailath, 1975; Mullis and Roberts, 1976; Morf, 1980; 
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Bitmead and Anderson, 1979). Some of these methods are classified 

by Morf, etc. (Morf, etc. , 19 77) • 

In this chapter, fast algorithms which are applicable to the 

"high performance" ARMA method (see Chapter 4) are developed. To 

achieve the fast algorithm solution capability, it will be necessary 

to restrict the number of Yule-Walker. approximation to be p (i.e., 

t = p). Unfortunately, the restriction t = p will generally result 

in an associated decrease in spectral estimation performance. Thus, 

in obtaining a computationally fast algorithmic solution procedure 

for the ak coefficients, an accompanying sacrifice in spectral 

estimation performance is the price being paid. One must therefore 

carefully consider the tradeoff for any given application. Fortunately, 

the degradation in performance is not great for many relevant 

applications in which the data length n adequately exceeds the Afil'IA 

model order parameters p and q. 

The achievement of fast algorithms requires data modifications 

which will be discussed in Section 5.2. In Sections 5.3 and 5.4, 

algorithms which requires O(p2) and O(p log p) multiplications, 

respectively are discussed. An algorithm which requires O(p) 

computations is developed in Chapter 6. r-: 

5.2 Data Modification 

In this section, we will discuss three types of data modifications 

referred to as the pre-modification, post-modification and pre- and 
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post-modification methods (Cadzow and Ogino, 1981). These are modi-

fic~tions of the 'high performance 1 A..Ri.V.A spectral estimation methods 

as discussed in Section 4.3 in which t is restricted to be p. It will 

be recalled that in this unmodified case one must solve the matrix 

system of equations (4.3.4). Without loss of generality, this 

matrix system of equations may be represented as 

(5. 2 .1) 

where Y and X are (n - p) x p Toeplitz matrices, while x and a are 

(n - p) x 1 and p x 1 column vectors, respectively defined by 

rxp-q' 
T x p-q+l' . . . . . ' x n-q-1 

y = 

x x2 ' . . . . . . ' x (5.2.la) 1-q -q n-q-p 

T rx x p+l . . . . . . x 11 p n-

x = . 
I ~l Xz .. . ., . ~ xn~p l (5.2.lb) 
l J 

[xp+l' 
'T' 

x = x +"' . . . x J- (5. 2. le) p £.. n 

[al, 
T (5.2.ld) a = . ' a J p 

where the entries of the matrices X, Y and column vector x can be 

determined from expression (4.3.4). The entries of the column vector 
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a in expression (5.2.ld) denote the denominator AR coefficients. to be 

found. It can be shown that the displacement rank of the matrix 

YtX is 4. As suggested in Section 5.1, it is possible to find an 

algorithmic solution.procedure which requires 0(4p2) computations. 

In fact, in SectiOn 5.3, a generalized Levinson's algorithm will be 

developed. 

It is possible to realize significant computational savings in 

the 'high performance' ARMA spectral estimation procedure. This 

improvement will entail a slight modification in the vector x and 

matrices X and Y. Although the suggested modifications will typically 

result in biased estimates of the Yule-Walker equations, it is shown 

that when the data length n adequately exceeds the order parameter 

p and q then these estimates are virtually unbiased (Cadzow and Ogino, 

1981). 

With the above high performance spectral estimation method 

representation serving as a basis, we shall now consider the afore-

mentioned modifications required to achieve computationally efficient 

algorithmic solution procedures •. 

5.2.1 Pre""."modification Method 

In expressions (5.2.la) and (5.2.lb), the addition of lower 

triangular matrices to the top of matrices X and Y yields the Toeplitz 

matrices 
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x • • • • x 1-q p-q • . .. . . • 

yl = 

0 • 
x . . . .. . 1-q 

• • • • • x • • • • • 
p 

• 

0 . . . . . 

xn-q-11 

in-q-pj 

x n-1 

• 

x n-p 

T 

(5. 2 .1. la) 

T 

(5 .2. l.lb) 

with Y1 and x1 each being (n - 1) x p matrices. While maintaining 

the structure of expression (4.3.1), the vector x will be modified 

to 

(5.2.1.lc) 

Substitution of expressions Y1 , x1 and x1 in place of Y, X and .3!.' 

respectively, yields 

(S.2.2) 

.1. 

It can be shown that the displacement rank of the matrix Y~ x1 is 3 

(Cadzow and Ogino, 1981). It is possible to find a generalized 

Levinson algorithm which requires 0(3p2) computations to invert Yf x1 • 

More importantly, because of this specific structure, an algorithm 

which requires O(p) computations has been developed and will be 

discussed in Chapter 6. 
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5.2.2 Post-modification Method 

Following a similar procedure as employed in Section 5.2.1, 

the addition of an upper triangular matrix to the main body of the 

matrices specified by (5.2.1.a) and (5.2.lb) yields the Toeplitz 

matrices 

y2 = 

Xz = 

x • .. • .. • • p...,.q 

' 

xl -q 

x . 
p 

" 
xl . 

. .. 

• 

• 

' .. . 

. . • . 

• • • a 

. 

• 

x n-q-1 

x n-q-p 

x n-1 
• 

• 
x .. 
n-p 

• 

• . 

T 

0 
• 
• • x 

n-q-:J 
(5 .2 .L3a) 

0 T 

• . • x n-1 (5. 2 .1. 3b) 

where x2 and Y2 are each (n - 1) x p Toeplitz matrices. In a similar 

manner, the col;mn vector x2 is defined by 

Xz = [ Xp+l' • • • • • ' Xn' 0 • • • 0JT 
Pzeros 

... 

(5.2.L3c) 

The displacement rank of the matrix Yz x2 is found to be (Cadzow 

and Ogino, 1981) 

(5.2.1.4) 
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thereby offering a generalized Levinson solution procedure requiring 

a computational complexity of 0(3p2) for solving the system of 

equations 

Y; x2 a = Y; x (5.2.1.5) 

A more computationally efficient algorithm associated with the post-

modification will be developed herein. ·It is shown that the number 

of computations is reduced to O(p log p) if p = q where p and q are 

the order of denominator and numerator coefficients of the ARMA model, 

respectively. 

5.2.3 Pre- and Post-Modification Method 

The combination of the previously discussed two modification 

methods yields the pre-· and post-modification method. The matrices 

and vector are modified in the following manner 

x • . • x • . .. x 1-q p-q n-1-q 
• •· 

Y3 = • • • • • • • 

0 • • • 
x • • • x • 1-q. n-p-q 

I xl • 
• • x • • ... x p n-1 

X3 = •. • • • 
• • .. •· lO • • • • 

xl • a • x • . n-p 

• 

• 

• 
• 

• ... 

0 
x n-1-q 

T 

0 
• 
• x n-1 

T 

(5. 2. 3. la) 

(5.2.3.lb) 
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X3 = [x2 . . . xp+l . • . x 
n 

0 . o] .... .. 
Pzeros 

where Y3 and x3 denote (n + p - 1) x p matrices and x3 is a 

(n + p - 1) x 1 column vector respectively. 

(5.2.3.lc) 

It can be shown that the matrix Y~ x3 is a Toeplitz matrix. A 

conventional approach for solving the Toeplitz system of equations 

(5.2.4) 

was developed by Levinson (Levinson, 1947), which requires O(p2) 

computations. More recently much effort has been conducted in 

developing more efficient AR algorithms whose computational require-

ment is O(p log p). Gustavson, etc., presented their algorithms 

which were based on the use of Pad~ approximates and the rational 

Hermite approximation (Gustavson and Yun, 1979). Morf 

developed the so-called doubling algorithm which requires 

O(p log p) (Morf, 1980). Bitmead and Anderson also independently 

found a doubling algorithm (Bitmead and Anderson, 1979). In Section 

5.4, an application of the doubling algorithm to the ARMA model is 

developed. 

5.3 Generalized Levinson's Approach for the ARMA Model: 
The Unmodified Method 

In this section, an algorithm which can be applied to the direct 

approach (i.e., no modification) will be developed. Without loss of 

generality, the m x m matrix Rn will be defined by 1,m 
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where Xn denotes (n - m + 1) x m matrix defined by l,m 

xm+l 

(5.3.la) 

(5. 3. lb) 

with the subscript m designating the number of columns of matrix 
n x1 , 1 is the smallest and n the largest index of the observation ,m 

data to form the matrix x~ . J.,m 

obtained by 

yn 
rym 

= I l,m 

ym+l 

' 
Y1 

I.. -

In a similar manner, matrix Yn is l,m 

T 

(5.3.lc) 

where the entries of the matrix Yn are given by l,m 

y. = x. 
l 1.-q for i = 1, . • . , n (5.3.ld) 

This particular representation has been chosen so that in the develop·-

ment of the generalized Levinson's algorithm for an Afilvf..A model, 

notational complexity can be eased. It then follows that the matrix 

expressed by (5.3.la) has the following shift invariance structures 

n which characterizes the near Toeplitz structure of the matrix R, , J..,m 

that is 
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Rn n-1 = R l,m l,m 
n n 'T' + V (....,. ) _,_ 

\.::i.. 
"'-TI! -m (5.3.2a) 

(5.3.2b) 

(5.3.2c) 

= 

(5.3.2d) 

n n n m where .l'm• ~' ~ and ~ are m x 1 column vectors defined by 

n [ \7 = y ' • • -<-m n . ' (5.3.2e) 

n 
[x ' xn-m+l]T x . . . ' -m n 

(5.3.2£) 

m ry T 
~ = yl] L m' . . . ' (5. 3. 2g) 

m 
[xm, xl]T x = . . . ' -m (5.3.2h) 

h ·1 ( n \T d ' n )T d h ~ d l f h w i_e zm+11 an \~l enote t. e Iirst an ast rows o t e 

matrix Rn respectively, and the m x m matrices Rn is defined by 1,m+l 2,m 

(5. 3, 3) 
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From a structural viewpoint, relationship (5.3.2a) is called time 

update, since the matrix Rn1 is explicitly defined as a sum of two ,m 
n-1 matrices:R1 which includes all of the past observations up to ,m 

previous time index n-1 and ~(x:)T which includes the most recent data. 

n-1 . n In expression (5.3.2c), Rl,m is seen to be a submatrix of Rl,m+l" It 

then follows that relationship (5.3.Zc) is called order and time 

update. 

A computationally efficient algorithm will be obtained by using 

various combinations of the above shift invariance structures. This 

fast algorithmic procedure for finding the solution is similar to 

Levinson's algorithm (Levinson, 1947). The overall solution is 

updated from the solution of a lower order to that of higher order 

system of equations (order update) and from the solution of previous 

time instance to that of present time (time update). To develop this 

algorithm, we apply an induction hypothesis. Suppose at order m 

and time n, we have the relationship r e: 'n 
n n n n · 1;;1,m 

R1 [a b d J = ,m -1,m -1,m -1,m 
0 

0 

0 

0 

where §:.nl m' bnl , and dn are m x 1 column vectors defined by , - ,m -1,m 

n a -1,m 
= [1, an1 (1), ,m . . .. ' n JT a1 (m-1) 

~,m 

= [b~ (n-1), bn (n-2), l..,m 1,m bn (1) 11.JT 
1,m ' 

(5.3.4a) 

(5.3.4b) 

(5.3.4c) 
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and 

= [dnl (1), dnl (2), ... ' dnl (m)]T ,m ,m ,m (5.3.4d) 

n n Specifically, ..'.!.l,m and .£.l,m are called the forward and the backward 

AR coefficient vectors, respectively. In the development of the 

computationally efficient algorithm, the auxiliary vectors dnl are - ,m 

needed to cancel the end effects due to the non-Toeplitz nature of 

matrix Rn1 . At the previous time index n-1, we have the relationship ,m 

n-1 [an-1 
Rl 1 ,m ,m 

n-1 b -1,m 0 

0 

0 

0 
r,n-1 

c:l,m y1 (5.3.4e) 

Based on the relationship (5.3.4a) and (5.3.4e), we will develop a recur-

sive solution procedure for the vectors ..'.!.~,m+l' b~,m+l and ~~,m+l as a 

function of n. Applying the shift invariance structure (5.3.2b) to 

(5.3.4a) yields the following expressions 

where E: m 

n a -1,m 

Rn dn = 2,m -1 ,m 

= e:, n 
i'.;l ~1 ,m -

(1 - fm) -Yrn 

and f are scalars defined m 

(xm)T n 
E: = a m -m -1,m 

by 

(5.3.5a) 

(5.3.5b) 

(5.3.6a) 

(5.3.6b) 
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and ~l is the m x 1 unit basis vector expressed by 

~l = (1, 0 . . . O]T (5.3.6c) 

Expressions (5.3.Sa) and (5.3.Sb) lead to the following 

relationship 

n n a = ?:; e -2,m 2,m -1 (5.3.7a) 

n where a2 - ,m 
and t;n are am x 1 column vector and a scalar respectively, 2,m 

defined by 

n a -2,m 

€ 

d~,m ]/{1 + 1 _mf 
m 

€ 
= ss,n I {l + m 

1,m 1 - f 
m 

dnl (1)} ,m 

dn (l)} l,m 

where dn1 (1) denotes the first entry of the vector dn1 (see ,m - ,m 

(5.3. 7b)I 

(5.3.7c) 

eq. (5. 3. 4d)). Expressions (5. 3. 2c) and (5. 3. 2d) lead to the relation-

ships 

n n 
Rl,m+l bl,m+l = 

r,n 
l;l,m+l ~l 

where ~- is the (m+l)xl unit bases vector defined by 
--,J.IT J_ 

~l = [O , . . . , l]T 

(5.3.Sa) 

(5.3.Sb) 

(5.3.8c) 

( s,n r,n 
In expressions 5.3.8a) and (5.3.8b), t;l,m+l and sl,m+l are scalars 

defined by 



in which Cl. 

s ,n = 
l;;l,m+l 

r,n 
l;;l,m+l 

= l;;r,n-1 
l,m 

Cl. s m m 
r,n...,l 

z;l:,m 
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and s are scalars specified 
m m 

n T 
[ a~,m ] 

Cl. = (~l) m 

(5. 3. 9a) 

(5.3.9b) 

by 

(5.3.lOa) 

(5.3.lOb) 

The m x 1 column vectors a~.m+l and b~,m+l in expressions (5.3.8a) 

and (5.3.Sb), respectively, are defined by 

• [ am 1 Cl. 

[ b~-1] n m 
~1,m+l -~,mj r,n-1 

;:;1,m -1,m 
(5. 3. lla) 

= [ b~-1] 
s 

[ n 1 n m 
.12..1,m+l --- l!:.2,ml ~s ,n 

-1,m ~2,m o I .. 
(5.3.llb) 

Expressions (5.3.lla) and (5.3.llb) are seen to be very similar to 

Levinson's algorithm (Levinson, 1947). In fact, one can show that 

these two expressions can be converted to Levinson 1 s algorithm, if the 

pre- and post-modification method is applied on the matrix Rn1 . ,m 

Next, we will verify the relationship which updates the vector 

n The m x 1 column vector E.l,m+l is found to be 
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!!1,mi-l 
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[ l y . - y 0 m+l m n - + ~~~~- a - · e:,n -1,mi-l 
d~,m. c;;l,mi-1 

where ym is a scalar given by 

It can be straightforwardly shown that 

n n mi-1 
Rl,mi-1 !!l,mi-1 = Xm.+1 

(5 • 3 .12a) 

(5.3.12b) 

(5.3.13) 

Finally, combining expressions (5.3.lla), (5.3.llb), and (5.3.13), 

the following relationship is obtained. 

R~,mi-1 [l!~,mi-1 b~,mi-1 d~,mi-1] = 
?;;e: ,n 0 

1,m+l 

0 

0 

(5.3.14) 

In the above development, the generalized Levinson's algorithm for 

ARMA model is verified based on the induction hypothesis. The number 
2 of computation of the algorithm is readily found to be 0(3p ) where 

p designates the number of denominator coefficients of the ARMA model. 

We will now detail steps of the computations required in 

this recursive algorithm. The algorithm starts with the initialization 

d 1 d d 1 Th 1 . N f h . proce ure at n = q+ an or er m = . e so ution ~+l o t e matrix 
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equation (5.3.4a) with m = p+l is obtained by recursively updating 

an from m = 1 to p + 1 (order update) and from n = q+l to N (time -m 

update). n Meanwhile, auxiliary vectors d·- is also recursively updated. 
-m 

The above algorithm can be presented as follows 

Step 1: Initialization for time update (n = q+l) 

[~i.1] = [_~i,1JT sr,l = E:' 1 = = s1,1 Yq+l xq+l 1,1 

1 1 l 1 I e '1 al,l = E.1, 1 = dl,l = Y1 sl,l ) 

Step 2: n = n+l 

Step 3: Initialization for order update 

r}1 n-1 + y = w xn+l-m -m -m n 
m = 1, ... ' M 

n n-1 + z = z y x -m -m n+l-M n+l-m m = 1, ... ' M 

where M min (p+l, n-q) m = 1, ... ' M 

(1) 

where zn(l) denotes the first element of column vector zn -m -m 

Step 4: Compute recursively from m = 1 to M where M = min 
(p, n-q-1) 
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• Update forward and backward solutions 

[~~.m] 
Cl. r 0 ] 

n m 
al,m+l = r,n-1 

z;l,m l bn-1 0 l' -1,m 

n [ b~-1] 
(3 

[ a~,n ] 

m 
E..1,m+l = ---z;e:,n 

-1,m 2,m 

Cl. (3 
z;e: 'n z;e:,n - m m = l,m+l 2,m z;r,n-1 

1,m 

r,n r,n-1 a (3 m m 
z;l,m+l = l;l,m l;e: ,n 

2,m 

Compute auxiliary vector dn1 - ,m 

n 
dl,m+l =f 0 ] + l d~,m 

n 
2-1 m+l ' 
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Step 5: If n < N go to Step 2 

Step 6: End of algorithm 

In above, N is taken to be the last index of vector ~· 

5.4 ARMA Doubling Algorithm: The Pre- and Post-Method 

As described in section 5.2, one of the data modification 

methods referred to as the pre- and post-modification method leads 

to the following set of equations 

A a = b p - -p 
(5.4.1) 

where A is a pxp Toeplitz matrix and b is a pxl column vector 
p -p 

given by 

A T (5.4.2) = Y3 x3 p 

.... 
b = y.J.. 

~3 -p 3 

where matrices Y3, x3 and column vector x3 are pre~iously defined in 

expressions (5.2.3.la), (5.2.3.lb) and (5.2.3.lc), respectively. The 

displacement rank of the matrix A is readily shown to be 2. This 
p 

being the case, it is possible to apply the doubling algorithm (Morf, 

1980; Bitmead and Anderson, 1979). 
k Without loss of generality, we now assume that p = 2 for some 

integer k. The matrix A can be partitioned into 4 matrices whose 
p 

Sl'zes are 2(k-l) x 2(k-l). ~ h 2(k-l) '"> (k-l) · · · th 1 ~ac x ~ macrix is .en a so 
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(k 2) (k-2) .· partitioned into 2 - x 2 · matrices. . This procedure is called 

the doubling ot halving procedure. In this procedure, we can express 

a 2!l x 2!l matrix A2!l in terms of !l x !l submatrices B!l' C!l, D!l and 

E!l in the following manner 

(5. 4. 4) 

and its inverse is found to be the form 

-1 [s Ti l !l 
A22 = 

u !l v Q, 

(5.4.5) 

where s!l, T !l' u!l and v!l are !l x !l square matrices given by 

(5.4.6a) 

(5.4.6b) 

(5.4.6d) 

Relationships (5~4.6a)- (5.4.6d) are straightforwardly derived from 

the Schur complements theorem (Aho, etc., 1974). ·From the above 
-1 . -1 . . '-1 

relationships, we can obtain A22 fromB!l .and ER..· The solution of 

the equation (5~4.1) requires 0(2 c(m)) computations where c(m) is 

the number of operations required to multiply a vector times a 

triangular Toepl~tz matrix. .:./ 
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The number of computation c(m) is obtained in a following manner. 

By definition (Kaila th, etc., 1979), A2t can be decomposed in the form 

2 i i 
A2t = L: LZ,Q, u29. (5.4. 7) 

i=l 

i i where L2.Q, and u2.Q, are lower and upper triangular Toeplitz matrices, 

respectively, which can be obtained recursively (Bitmead and B. 

Anderson, 1979). The matrices L~.Q, i 
and u2.Q, are expressed by 

i r L~(l,l) 0 (5. 4. Sa) L29. = 

l L!(2, 1) 
i L.Q.(2,2) 

i U~(l, 1) i (5. 4. 8b) u29. = Ut(l,2) 

0 U~(2,2) 

i i where L.Q,(1,1) and L,Q,(2,2) are t x t lower triangular Toeplitz matrices, 
; i u,Q,(1,1) and UQ:(2,2) are t x t upper triangular Toeplitz matrices, 

i 
and 19. (2,1) i and Ut (1,2) are t x t full Toeplitz matrices. Substitution 

of expressions (5.4.Sa) and (5.4.Sb) into (5.4.7) yields the 

partitions of the matrix A~ 0 in expressions (5.4.4) to be 
"-~ 

2 
L: i 

Bi= i=l Lt(l,l) 

2 
L~(l, l) ct = L: 

i=l 
[U~(l,2)]L + 

2 
[L~(2,l)]L U~(l,l) Di = )' + '-' 

i=l 

2 
L~(l,l) [u~c1,2)]u \' 

'-' 

i=l 

2 
[1!c2,1)Ju U~(l, 1) I 

i=l 

(5.4.9a) 

(5.4.9b) 

(5.4.9c) 
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(5.4.9d) 

where the following relationships are implicitly used 

(5. 4. lOa) 

(5. 4. lOb) 

in which [U~(l,2)]L and [L~(2,1)]1 denote 'l x 'l lower triangular 

matrices, and [U~(l,2)]U and [1~(2,l)]U denote 'l x 'l upper triangular 

matrices. The partitions given by equations (5.4.9a) - (5.4,9d) 

are expressed in terms of lower triangular and upper triangular 

matrices. It turns out that the use of above relationships reduces 

the computational complexity c(m) to be O(p log p) (Morf, 1980). 

The algorithm which makes use of the doubling method can be found in 

(Morf, 1980). Morf described the algorithm by introducing high 

computer language which necessitates frequent subroutine calls. On 

the other hand, the step-wise description of the halving method is 

presented in (Bitmead and Anderson, 1979). Implementation of the halv-

ing algorithm is relatively complex and a rather large value of p is 

required before the computationally complexity O(p log p) is 

approached. 

5.5 Numerical Example 

In this section, the spectral performance of the pre- and the 

post-modified methods are compared with the unmodified method. As 
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a test example, we treat the time series (4.5.2a). Using this time 

series (4.5.2a), twenty different independent sampled sequences each 

of length 64 were generated. 

The modification methods were applied to these twenty different 

sampled sequences of length 64 to obtain ARMA model spectral esti-

mates or order (4,4). The resultant spectra are shown in Fig. 5.5.1. 

It is apparent that only a small degradation in spectral estimation 

performance has been shown by the modified method. It might be 

conjectured that the implementation of the fast algorithms will not 

much degrade spectral performance in many practical examples. 

5.6 Summary 

In this chapter, computationally efficient Ac~ spectral 

estimation algorithms have been developed. These algorithms are 

predicated on the utilization of data modification methods. 

Specifically, two algorithms referred as the generalized Levinson's 

algorithm and the doubling algorithm were developed for obtaining 

AR coefficients of ARMA model. These algorithms have a computational 

complexity of O(p2) and O(p log p), respectively. 



80 

Box-Jenkins 
Method 

Unmodified 
~§!i~Me thod 

Premodified 
~~~~Method 

Postmodified 
Method 

Exact 

Fig. 5.5.1 ARMA Spectral Estimates of Order (4,4), 
Data Length 64, and, A = 0.95. 



Chapter 6 

A RECURSIVE ARMA SPECTRAL ESTIMATOR: 
THE PREMODIFIED METHOD 

6.1 Introduction 

A recursive ARMA spectral estimation procedure is developed in 

this section. It is recursive in the sense that as a new element of 

the time series is observed, the parameters of a spectral estimation 

model are algorithmically updated. The recursive algorithm req~ires 

O(p) computations to update the model's parameters for each new data 

point. The development of this algorithm is predicated on utilization 

of certain projection operators. In Section (6.2), a vector space is 

formulated by making use of the given observation data. The method 

of linear predictions will give rise to projection operators which 

decompose relevant vector spaces into subspaces spanned by the 

prediction error vector and the observation vectors. Linear prediction 

methods used in this chapter include forward prediction, backward 

prediction and delayed backward prediction. Each of these methods is 

associated with its own projection operator. The decomposition of 

these projection operators is discussed in Section (6.4). The order 

update and time update recursions, as described in Sections (6.5) and 

(6.6) play a central role in the overall recursive algorithm. Finally 

in Section (6.7), a recursive algorithm is outlined. 

81 
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6.2 Vector Space Formulation 

In this section, the given spectral estimation problem will be 

cast into a convenient vector space setting. It will be assumed that 

the following observations of the time series {x(n)} 

(6.2.1) 

are given. This in turn will give rise to the associated column 

data vector 

(6.2.2) 

It is convenient to form an auxiliary column vector ~~ specified by 

= [ 0 . • • 0 x1 . . . x T. J T -r.-q 

(6.2.3a) 

(6.2.3b) 

where S denotes the NXJ.\f down shift matrix (see eq. (5 .1. 3)) and q is the 

numerator order of the ARMA model. The vectors ~ and ~~ lie in the 

product space 

RN=R R R x x ... x (6.2.4) 

We next construct the subspace which is spanned by the set of 

vectors This subspace will be suggestively denoted 

by 

M x..TL~. ., 
----N J.. 'ffiJ 

{Si 8i+l 
= ~) ~) ••s ' Sm } 

~· (6.2.5) 
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where the first integer i may take on any value in the set {O, 1, .•. 

m}. As will be described in Section (6.3), the recursive algorithm 

is derived for particular selections of indices i and m. Similarly, 

for the vector 1N contained in the product space RN, the associated 

subspace M ~[i,m] is defined by 

M y__ - {Si ..; __ , Si+l y __ , ••• ' Sm y __ } 
""-N [ i , m] - ""-i'l. ""-N ""-N 

(6.2.6) 

where the first integer i may take on any value in the set {0, 1, ••. 

m}. Next, we let P x.. [. ] designate the projection operator on the 
--i\I 1, m 

subspace M X.-[· ] along the subspace orthogonal to M v [ ] (this 
--i\I 1 , m -"-N i , m 

1 
orthogonal subspace will be denoted by M ~[i,m]). This projection 

operator which depends on ~ and ~ can be shown to have the form 

6 r t J-1 t 
p ~[i,m] = A ~[i,m] _A ~[i,m] A ~[i,m] A f.N[i,m] 

(6.2.7) 

where AX.-[· ] and A Y.-[· ] are the N x(m-i+l) matrices composed 
-N 1,m ""-N 1,m 

of the following ordered set of column vectors 

A ~[i,m] = [Si~ si+l 
~ 

Sm J 
~ (6.2.8) 

A ~[i,m] = [Si ~ si+l 
~ Sm _;_'if] (6.2.9) 

The projection characteristics of operator (6.2.7) are depicted 

in Fig. 6.2.1. It will be convenient to introduce a projection opera-

tor on the complement of subspace M X.-[· ]• This operator is defined 
-N i,m 

by 
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pc = I - p - (6 2 10) ~[i,m] ~[i,m] ' · 

where I is the NxN identity matrix. In a similar fashion, the projection 
l 

operator on the subspace M v...[. J along the subspace M x..[. J is 
"'-ti i, m --i'J J.. ,m 

specified by 

~ [ t J-1 t 
p ~[i,m] A ~[i,m] A ~[i,m] A .Yi_~[i,m] A ~[i,m] 

(6.2.lla) 

It is to be noted that the following projection operator identity 

holds as is apparent from expressions (6.2.7) and (6.2.lla). 

P Y--c· J = Ptx.·r· J ""-'N i,m -i'l1..J..,m (6.2.llb) 

The complement of the projection operator (6.2.llb) is formally given 

by 

Pcv.._r = I P ""-'NLi,m] - J;~[i,m] (6.2.12) 

A particular estimate ~N[i,m] of the vector ~ can be specified as 

the projection of~ on the subspace M ~[i,m]' that is 

A 

~1[i,m] = p ~[i,m] ~ (6 .Z.13) 

The error vector relative to estimate x..[ J and x.. is then given by 
.N i,m -i'J 

~~[i,m] = ~ - ~[i,m] (6.2.14a) 

= Pcx..·[· ] x.. (6.2.14b) -N i,m -:\I 

which is expressed as a projection oi the vector ~1 on the complement 
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subspace of M ~[i,m]• It can be straightforwardly shown that 

x 
4T[i,m] l M ~[i,m] (6.2.15) 

x where l denotes orthogonality, that is, the error vector -4.:r[i,m] is 

orthogonal to the subspace M vu[· 1 • The vector space formulation 
"'""f~ i,mJ 

described in this section is suggestively depicted in Fig. 6.2.1. 

6.3 Linear Prediction and Projection Operator 

In this section we will define three methods of linear predictions, 

namely, forward prediction, backward prediction, and delayed backward 

prediction. These methods will play a central role in the algorithmic 

solution procedure to be developed. 

6.3.1 Forward Prediction 

The m-th order forward prediction is ref erred to as that 

specific procedure for estimating the column vector ~ and ~ by 

means of a linear combination of the set of m shifted vectors 

{ 1 2 m } { 1 S ~· S ~· ... , S ~ and S ~· 
? c-

u 4'I· ... Sm , . 1 , ~J, respective y. 

Considering the projection operator defined in Section 6.2, the 

associated estimates ~[l,m] and ~[l,m] are seen to have the form 

~[l,m] = p ~~[l,m] ~J (6.3.la) 

L.1 [ 1 1 = P Y r 1 .. ., Lr n ,m_. --i'JL ,mj c-• 
(6.3.lb) 

The difference between the estimate 2N and the given vector ~ is 
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called the forward prediction error vector and is specified by 

x 
.EN,m = ~ - ~T[l,m] (6.3.2a) 

while the forward prediction error vect0r of -4r is of the f onn 

t:.y 
~.m = -Yrl - -4-r[l,m] (6.3.2b) 

Now these error vectors are each orthogonal to the subspaces M ~[l,m] 

and M ~[l,m]' respectively. Use of complement projection operators 

defined by (6.2.10) and (6.2.12) yields 

x 
€ -=-N ,m 

c 
= p ~[l,m] -4r 

6.3.2 Backward Prediction 

The m-th order backward prediction is that procedure of 

(6.3.3a) 

(6.3.3b) 

m m estimating the column vector S ~ and S ~ by a linear combination 

of the set of m shifted vectors {s0~, s1~, ... , Sm-l_~.} and 
o_ 1 m-1 . {S ~· SJ;~· ... , S .YN}, respectively. In the same manner as with 

forward prediction, by applying the projection operator, it can be 

shown that the backward estimate is given by 

~ 

x._ - p 'C 1'-j[O,m-l] - .=.,\J[O,m-1] 
Sm 
~ (6 .3.4a) 

where the double caret notation designates backward prediction. The 

backward prediction error vector is then found to be 
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bx = pc Sm . 
-=N,m ~[O,m-1] ~ 

(6.3.4b) 

6.3.3 Delayed Backward Prediction 

The m-th order delayed backward prediction is similarly defined 

to be that procedure of estimating.the coltimn vector Smi-l~ and 

smi-\~ by a linear combination of the sets of vectors {s1~, s2~, 

• • • , S~} and {s 1~, s2~, ••• , Sm~}, respectively. It can be 

shown that the delayed backward prediction is given by 

~ = P sm-1-1 
~[l,m] · ~[l,mJ. · ~ (6.3.Sa) 

while the delayed backward prediction error is specified by 

dx = pc smi-1 
-=N,m ~[l,m] ~ (6.3.5b) 

A little thought will convince oneself that the projection operators 

P ~[l,m] can be expressed as 

p = A (At . A r 1 At . 
~[l,m] ~[l,m} 1N[1,m] ~[l,m] ~[1,m] 

ro o .... 01~t J-1 
= -~ .......... ---·---.. ( ~-1(0,in-l]A ~-1[0,m-lj 

~-l[O,m-1] 

0 0 . • • . 0 

x 
A ~-1[0,m-1] 

(6.3.6) 

... 
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T1'lis formula is straightforwardly obtained by making use of the 

structure of matrices A ~[l,m] and A 1i-T[l,m] defined by (6.2.8) and 

(6.2.9). The relationship between the backward error and the delayed 

backward error is then readily found to be 

~,m = [o ' ~-1,m J T (6. 3. 7a) 

y - [ y JT 
-9{~,m - O ' ~-1,m (6.3.7b) 

It then follows that the N-th delayed error is equal to the (N-1)-st 

backward error, that is 

.% m (N) 
' 

(6. 3. Sa) 

dy (N) = by (N-1) 
-=N,m ~-1,m 

(6.3.Sb) 

The relationship between forward, backward, and delayed backward is 

suggestively depicted in Fig. 6.3.1. 

6.4 Decomposition of Projection Operators 

The development of a computationally efficient algorithm is depen-

dent on the decomposition of the above projection operators. This 

decomposition makes use of the specific matrix structure referred to 

as shift invariancy. A matrix which has a displacement rank 3 will 

possess this shift invariancy (see Chapter 5). In this section, the 

shift invariant structure is utilized to decompose projection 

operators. The formulae obtained in this section will be used for 



N-m-1 N-m N-m+-1 N-1 N 
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Fig. 6.3.1 Forward Backward and Delayed Backward Relationship 
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the development of order update recursions in section 6.5. 

First, we will discuss the decomposition of the proj ecticm 

operator P ~[O,m]" This projection operator P ~[O,m] may be 

expressed as 

p - A [R r 1 At ~[O,m] - ~[O,m] ~[O,m] JN[o,m] (6 .4.1) 

which is obtained by substituting i = 0 in expression (6.2.7). The 

matrix R ~[O,m] is defined by 

R ~[O,m] = AtJN[o,m] A ~[O,m] (6.4.2) 

Substitution of expressions (6.2.8) and (6.2.9) into (6.4.2) yields 

t A 
JN ~[1,m] 

R ~[O,m] = 
-- -- -- ..... ---.-------- --

+ A' I R 
~[1,m] ~1 ~[1,m] 

where R x [l J is defined by substituting 1 in place of 0 in 
--i.'l" 'm 

(6.4.3a) 

expression (6.4.2). If we denote the inverse of matrix R ~[l,m] by 
-1 

R ~[l,m]' it then follows that 

0 . . . 0 o:v! A x._ R-1x._ 
1~ · ~[1,m] ~[1,m] 

R ~[O,m] . -1 
' R ~[1,m] 

= -r---------------0, 
• I I 

I 
l 

• I 

0 o: 
(6.4.4) 
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where I denotes them x midentify matrix. Upon examination of 

expression (6.4.3a} and (6.4.4), it can be readily shown that 

t . T 
~l R ~[O,m] = el (6.4.5) 

where e1 denotes the (m + 1) x 1 unit basis vector and ~l is a 

(m + 1) x 1 column vector given by* 

~l = [l, -~ A ~[l,m] R-l~[l,m]]/f~,m 

in which f 8 is a scalar defined by N,m 

f e: t x ( y )t x 
N,m = Y ~,m = ~,m ~,m 

In a similar fashion, let us define a matrix R ~[O,m] by 

R - At A 
~[O,m] - ~[O,m] ~[O,m] 

It then follows that 

Vt R. 
-111+;1.. ~[O,m] 

.T = e 
~1 

where ~l is a colunm vector expressed by 

t [l t A R-l )/ f 8 * 
~l = · ' -~ ~[l,m] ~[1,m]. N ,m 

(6.4.6) 

(6.4. 7) 

(6.4.8) 

(6.4.9) 

(6.4.9a) 

Taking the complex conjugate vect.or transpose of expression (6. 4. 9), 

yields 

*In general, ~ represents the standard unit basis vectors whose 
components are also zero except for its k-th which is one. 
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R ~[0,m] ~1 = e -1 (6.4.10) 

The inverse of the matrix R ~[O,m] is found to be 

-1 
R ~[O,m] = ...l.. fs t ' v u N ,m -1Irt-l ~l 

(6. 4 .11) 

Substitution of expression (6.4.11) into (6.4.1) then leads to the 

following relationship. 

p ~[O,m] 
s t ~ 

p x...r1 J + A x..T[O J fN ~l ~l A' v_J[O,m] -NL. ,m --f-1 ,m ,m "'' rn-r -"-:N 

After a simple algebraic manipulation, the projection operator 

P ~[O,m] is decomposed by the following relationships 

P ~[O,m] = p ~[l,m] + ,, x 
.1. s 

-i'l" ,m 

= p -%[1,m] + (I - p ~[l,m]) p ~~ ,m 

= p ~[l,m] + p ~,m (I - p ~[l,m]) 

(6.4.12) 

(6.4.13a) 

(6.4.13b) 

(6. 4 .13c) 

where it is readily shown that P sN~ is a projection operator onto the 
--r ,m 

x subspace spanned by ~ m along the sub~pace which is orthogonal to the 
' 

subspace spanned by sy and is defined by -N,m 

P x l x v t 
.ST = --· S (~T,ffi) 

c~ , m fs -N, m -11 

~N,m 

(6. 4 .14) 
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Furthermore, expression (6.4.13c) leads to the following relationship 

I - P x.._[ J = (I - P c:Nx ) (I - P X..-[l ]) 
~ O,m+l . --i: ,m ~ ,m (6.4.15) 

The projection operator decomposition as expressed in (6.4.15) will 

be used to find a backward error recursion in the next section. 

Next, we will decompose the projection operator P ~[l,m+l] which 

is necess(iry to compute the forward prediction error. The projection 

operator P ~[l,m+l] is given by 

p ~[l,m+l] = A ~[l,m+l] [R ~[l,m+l]rl At~[l,m+l] 
(6.4.16) 

which is obtained by substituting i = 1 in expression (6.2.7). The 

matrix R ~[l~m+l] is defined by 

+ 
R ~[l,m+l] = A'~[l,m+l] A ~[l,m+l] (6.4.17) 

Substitution of expressions (6.2.8) and (6.2.9) with i = 1 into 

(6.4.17) yields 

R ~[l,m] 
R ~[l,m+l] = -.. --·- - .. -... ----. _, ---------.. -.. -m+l t 

(S ~) A ~[l,m] 

(6. 4 .18) 

It then follows 
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0 

R ~[l,m+l] 
R-1 . 

~[l,m]. 

0 • • 0 

(6.4.19) 

Upon examination of (6.4.18) and (6.4.19), the following relationship 

can be derived 

t T 
~l R ~[l,m+l] = ~l (6.4.20) 

st where ~l is a unit basis vector whose m+l element is l and ~l 

is a (m + 1) x 1 column vector defined by 

[ m+l t -1 J d 
= -(s ~) A ~[l,m] R ~[l,m]' 1 I fN,m 

in which fd is a scalar defined by N,m 

(sm+l ) t dx = (dy ) t dx 
~l -"N ,m -"N ,m -=N ,m 

(6.4.21) 

(6.4.22a) 

(6.4.22b) 

Relationship (6.4.22b) is obtained from (6.3.7a) and (6.3.7b). After 

applying a similar analysis to the matrix R ~'T[l,m+l] it can be shown 

that 

t T 
_Em+l R -2;\f[l,m+l] = ~1 (6.4.23) 
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where ~l is a (m + 1) x 1 column vector expressed as 

[ m+l 
t = -(S x..) -m+l -1.'I A ~[l,m] R-1~[1,m]' l]/ f~,m* 

(6.4.24) 

Applying the vector transpose operation to both sides of expression 

(6.4.23), we have 

R ~[l,m+l] ~l = ~l .(6. 4 ~ 25) 

The inverse of the matrix R ~[l,m+l] is readily found to be 

0 

-1 
R ~[l,m+l] = 

-1 
R ~[l,m] 

0 • • • . • • . • 0 

Substitution of expression (6.4.26) into (6.4.16) then yields 

p ~[l,m+l] = p ~(l,m] + A ~(l,m+l] 

v At ,.. ~[l,m+l] 

f d . t 
N,m~l~l 

(6.4.26) 

(6.4.27) 

After a simple algebraic manipulation, equation (6.4.27) is compactly 

expressed as 

P p + P ci_x 
~[l,m+l] = ~[l,m] ~,m (6.4.28a) 

x 
= p ~[l,m] + (I - p ~[1,m]) p % ,m (6.4.28b) 
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~{ 

= p ~[l,m] + p ~,m (I - p ~[l,m]) (6.4.28c) 

where it is readily shown that P d~ is a projection operator onto the 
~,m 

x subspace spanned by cl"~ along the subspace which is orthogonal to the 
~,m 

subspace spanned by d?": 
~,m 

p d~ = 1 
~,m ,..d 

~,m 

and is defined by 

x EN,m 

Furthermore, equation (6.4.28c) can be expressed in the form 

I - p ~[1,m+l] = (I - p ~,in) (I - p ~[l,m]) 

(6.4.29) 

(6.4.30) 

Expression (6.4.30) will be used to find the forward error recursion 

in the next section. 

In a similar manner, the following relationship may be also 

obtained 

I - p ~[O,m+l] - (I - p ~.m) (I - p .Yt1[1,m]) (6.4.31) 

I - P Y .. ( J = (I - P dy ) (I - P y __ [ . ]) 
""1.\1 1,m+l ~ ,m ""1.\1 l,m (6.4.32) 

where the projection operators P e!.. and P dy are defined by -N,m -N,m 

(6.4.33) 

p cl! = _l_ dy (d~ )t 
~.m fd * ~T,m ~,m 

N,m 

(6.4.34) 

Expressions (6.4.31) and (6.4.32) will be used to find the recursion 

of forward error ENY and backward error ~ . 
-i: ,m . ----..~ ,m 
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6.5 Order Uudate Recursions 

In this section, we describe the order update recursive formulas 

which recursively compute the optimum ntl-1 st order prediction error 

from the optimum m-th order prediction error. Expressions (6.4.15), 

(6.4.30), and (6.4.31) and (6.4.32) play a central role in obtaining 

these order update recursions. 

Let us first derive the order update recursion for the forward 

prediction error vectors. Applying the projection operator (6.4.30) 

to the column vector ~ yields 

x s -=N,m+l = (I - P a2C ) 
~.m 

x 
E -=N ,m 

( 6. 5 .1) 

Substitution of expression (6.4.29) into this relationship then yields 

x 
~ m+l ' 

x = s 
~,m 

1 x 
~J,m (6.5.2) 

The order update recursion for the N-th component of the forward 

prediction error vector is found to be 

x ('T) X ( ) ~ 'm+ 1 t~ = ~ 'm N -

s 
N ,m bx (N-1) 

fr -i."\f -1 , m 
N-1,m 

where the partial-correlation coefficients are specified by 

x s 
-:.'if' m 

(Sm+l_y,)t (I - p x_[ -.) x._ 
· 1~ 1-l l,mj -=-i_'l 

(6.5.3) 

(6.5.4) 

In a similar manner, applying the projection operator (6.4.32) to the 

column vector ~\[ leads to 
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t* N,m 
bNY 1 (N-1) -r - ,m 

(6.5.5) 

(6.5.6) 

Next, we will find the order update recursion for the backward 

prediction error vector. Applying the projection operator (6.4.15) 

to the column vector Sm+l~ is found to yield 

~,mt-1 = (I - p ~,m) ~,m (6.5.7) 

Substitution of expression (6.4.14) into this relationship yields 

t 
bx (N) bx .(N 1) ~ ~x (. N) 
-=N ,m+l = -J.'l'-1,m r - - fe: .'.::N ,m 

N,m 

where the partial correlation coefficient t is specified by N,m 

~,m 
y t x t m+l 

= (~,m) ~,m·= ~ (I - p ~[l,m]) S ~ 

Similarly, applying projection operator (6.4.31) to the column 

vector Sm+l1N is found to yield 

s* 
~,m+l(N) = ~-1,m(N-l) - f~,m* ~,m(N) 

N,m 

since 

* x t y t m+l 8N ,m = (~'l',m) ~ ,m = ~ (I - p 1N[l,m]) S -Yt;r 

(6.5.8) 

(6.5.9) 

(6.5.10) 

(6. 5 .11) 
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s Next, we will derive the recursion for fN r ,m 
and ""'r -'-N ,m· Manipula-

tion of expressions (6.4.7), (6.4.28c) and (6.4.29) eventually leads 

to the form 

8N,m tN,m 
fr 
N-1,m 

(6 .5 .12) 

Expressions (6.4.22b), (6.3.4b) and (6.4.13c) yield the recursive 

formula 

s .... N,m '"N,m (6.5.13) 

Consequently, expressions (6.5.2), (6.5.5), (6.5.8), (6.5.10), 

(6.5.12) and (6.5.13) represent the order update recursions. 

6.6 Time Update Recursions 

As a new element of the time series is observed, the partial 

reflection coefficients, forward errors, and backward errors may be 

recursively computed by making use of these values obtained at the 

last time instant. This being the case, these parameters are said to 

be "time updated11 for each new data point. 

The matrix Ax..[. J may be expressed in the recursive form 
-i.'I i 'm 

r l A ~-l[i,m] 

t ... - - - - - .... - -
= A ~{..T [ • 1 - PN A X.. [ . ] 

-i.'11 i,m_ " 1\l i,m 
l_o o . o 

where P is the N x N projection matrix given by 
N 

( 6. 6 .1) 
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(6.6.2) 

in which~ is an N x 1 unit base vector. 

also be expressed as 

The matrix R x._[. J may 
-i.'l i 'm 

R ~-l[i,m] 
t 

= R ~[i,m] - A .lN[i,m] PN A ~[i,m] (6.6.3) 

-1 It then follows that the matrix R ~-l[i,m] is recursively updated 

by (see Appendix C) 

-1 = R-1 + 1 -1 
R ~-l[i,m] ~J[i,m] 1 - y R ~[i,m] i,m,N 

where y. N is a scalar defined by 
i, m, 

Premultiplying expression (6.6.4) by (I - PN) A ~[i,m] 
t postmultiplying that result by A .Y:N[. J (I - PN) leads • i,m 

recursive relationship 

r 
0 

p ~-l[i,m] 

(6.6.4) 

(6.6.5) 

and then 

to the 

+ -1--1-- [I - pi\J P !.-[. J PN P x._[-. -J. [I - PN] _ - y r·i -i.'l i , m L -i.'l i , m • i,m,N 

(6.6.6) 
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Since the vectors 1N and ~· are elements of vector space RN, the 

time update recursion is given by 

t t 
~ (I - p ~[i,m]) ~· - ~-1 (I - p ~--l[i,m]) ~-1 

t = 1N V(I - p ~[i,m]) ~ (6.6.7) 

where V(I - P ~[i,m]) designates the time difference of the projection 

operator defined by 
0 

V(I - P x.-[· ]) = P - P x.-[· J + ~ i,m N ~ i,m P ~-l[i,m] · 

0 • • ·.• • •. 0 

(6.6.8) 

Substitution of expression (6.6.6) into this expression yields 

(6.6.9) 

Expression (6. 6. 9) is straightforwardly carried out by a simple 

algebraic manipulation and yields (see Appendix C) 

V(I - PX.-[··. ]·) = l - l . (I - PX.-[·. ]) PN·· (I-PX.-[· ,) 
~ 1,m y. N "'""'l'l 1,m "'""'l'l i,mJ i,m, · . 

(6.6.10) 
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Expression (6.6.10) is used to find the time update recursion formula. 

The partial correlation coefficient sNx is recursively calculated by ,m 

.E!_1 *(N-1) .£...~ (N) 
s = s + -,.~ 'm -,.~ 'm 
N,m N-1,m 1 - Yl ,m,N 

(6. 6 .11) 

In a similar manner, the partial correlation coefficients t is N,m 
recursively calculated by 

t N,m 
ey *(N) ~-l,m (N-1) 

= t + -=N_·_..,_m~~~~--""~~~ 
N-1,m 1 - y l,m,N 

The time update recursion for forward error is found to be 

ey *(N) ex (N) 
= fe . + -""N,m ~.m 

N-1,m 1 - yl N ,m, 

The backward error is also given by 

by *(N) bx (N) 
= fr + -=N,m .-=N,m 

N-1,m 1 - y o,m-1,N 

(6. 6 .12) 

(6 .6 .13) 

(6.6.14) 

A recursive formula for auxiliary parameter y can be obtained by l,m,N 
using relationship(6.4.28c) to yield 

y · l,m+l,N 
.£..Nx·-1 m(N-1) by *(N-1) • -=N-1,m = y + ~~-·~~~~~_..~~~~ 

l,m,N fr 
N-1,m 

(6.6.15) 

Finally, y N can be computed by using the following relationship o,m, 

y o,m+l,N = y l,m,N 

ex (N) e:.y *{N) + -=N , m -i.'l , m 
fe 
N,m 

(6.6.16) 
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which is directly obtained from expression (6.4.13c). 

Thus we can use equation (6.6.11) and (6.6.12) to update the 

partial correlation coefficients. Equations (6.6.13) and (6.6.14) can 

be used to time update the forward and backward covariance errors 

f s d fr an N • N,m ,m The auxiliary parameters y1 N and y N are ,m, o,m, 
recursively computed by expression (6.6.15) and (6.6.16), respectively. 

6. 7 An Algorithm for Recursive ARMA Spectral Estimation 

In this section, we summarize the recursive ARMA spectral estima-

tion algorithm developed in the previous sections. For programming 

convenience, the following notations shall be used: 

bx(m), by(m), fs(m), fr(m), s (m), t (m), y (m) and r 1 (m) in n n n n n n o,n ,n 
place of SNX (N), SNY (N), b; (N), ~ (N), fNS ' fr s t -i:,m -r,m --i.~,m -..~,m ,m N,m' N,m' N,m' 

Y N and y1 N' respectively. o,m,r ,m,r At each new data point, the para-

meters are recursively time updated (see section 6.6) and order updated 

from m=O to m=p-1 (see section 6.5). The recursive ARMA spectral 

estimation algorithm can be presented as follows. 

Step 1 Initial Condition (Time Update n=l) 

Step 2 Initial Condition (Order Update, m=O) 
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y. (-l)=y. (-l)=y. (O)=O i=O,l 1,n-l 1,n 1,n 

* + y x 
n n 

Step 3 Order Update Recursions 
(m = 0, 1, ..• , M for M =min (p-1, n-1)) 

(i) Forward Error 

(ii) 

(iii) 

Ey (m+l) = Ey (m) -
n n 

t*(m) 
n bny-l(m) 

r ( ) * f 1 m n-

Backward Error 

bx(m+l) x t (m) x n 
= b 1 (m) - E (m) 

n n- fE(m) n 
n 

by (mH) = by (m) 
s*(m) 

Ey (m) n -n n-1 fE(m)* n 
n 

f: fr (m) Yl,n(m) f (m), and n n 

fE (m+l) fE(m) 
s (m) t (m) n n if n .::_ p = -n n r 
fn-l(m) 

s (m) t (m) r = .fn-l(m) -
n n ifn.::_p 

Y l,n (m+l) = Yl,n(m) + 
x 

bn-1 (m) y * bn-1 (m) 

fr l(m) n-
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Yr-. (m+l) = Y1 . (m) + 
v ,n .L,n 

fN~ ,m 

Step 4 Time Update Recursions (m = 0, 1, ..• , M) 

(i) Partial Correlation Coefficients 

sn(m) = sn_1 (m) + 1 - Yl (m) ,n 

e:y (m) * x 
bn-1 (m) 

t (m) t 1 (m) + n = 1 - yl (m) n n- ,n 

(ii) e: 
fn-1 (m) and r 

fn-1 (m) 

e:y (m) * x 
f 8 (m) E: 

e: (m) n n = fn-l(m) + 1 - yl (m) n ,n 
if n > p 

by (m) * bx(m) 
fr (m) r n n = fn-1 (m) + 1 - y 0 (m) n ,n 

if n > p 

Step 5 Let n = n+l, if n ~ N go to Step 2 

Step 6 End of Algorithm 

In above N is taken as a time index of a pair of the last 

observations~ and_yN. 
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6.8 Numerical Examples 

To test the recursive ARMA spectral estimation algorithm, the time 

series expressed by (4.5.Za), (4.5.2b) and (4.5.Zc) were generated. 

A program listing of the fast algorithm used in obtaining the 

denominator coefficients of. the ARMA model is illustrated in Appendix 

D.2. As a first example, 64 data samples were generated according to 

expressions (4.5.Za), (4.5.2b} and (4.5.2c). These data samples are 

plotted in Fig. 6.8.l(a). The fast algorithm was then applied to 

this 64 observations to obtain an ARMA spectral estimate with model 

order (4,4). The forward error sequence ex 4Cn) -n, (n = 1, ... , 64) 

is plotted in Fig. 6.8.l(b). Comparing Figures 6.8.l(a) and 6.8.l(b), 

the forward error sequence is observed to be more random (uncorrelated) 

than the given data samples indicating a desired whitening effect. 

The resultant spectral estimate is shown in Fig. 6.8.l(c). The 

resolution of the two peaks is evident, however, the estimated level 

of the first peak is lower than that of second peak. Next, 500 data 

samples of the same time series expressed were generated. These 

samples are plotted in Fig. 6.8.2(a). The forward error sequence 
x e 4Cn) (n = 1, .•• , 500) obtained by the fast algorithm is plotted -n, 

in Fig. 6.8.2(b). It is observed that the forward error sequence con-

verges in a relatively rapid manner. In Fig. 6.8.2(c), the resultant 

spectral estimate of model order (4,4) is illustrated. The resolution 

of the two peaks is again evident. In addition, the height of 

the two peaks are equal as desired. As these examples illustrate, 

the fast algorithm maintains a high quality of spectral performance. 
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6.9 Summary 

A recursive algorithm has been proved and stated for efficiently 

updating partial reflection coefficients of an ARMA spectral estimation 

model. The computational requirement for the order update recursions 

and time update recursions are 12(M + 1) and lO(M + 1), respectively, 

where M is taken to be the minimum of either p-1 or n-1. Numerical 

examples show that implementation of premodification will result in 

only a small degradation of spectral performance, If q=O, the ARMA 

model is converted to the AR model. A recursive AR algorithm can be 

also developed based on a less general vector space approach discussed 

in this chapter (see Lee and Morf, 1980). 



Chapter 7 

CONCLUSION 

The development of computationally fast algorithms for high 

performance ARMA spectral estimation was presented. The required 

computation for the unmodified method was reduced to 0(4p2) by using 

a generalized Levinson 1 s approach. Methods of data modifications were 

applied to reduce the computational complexity. Modifications, 

referred to as post-modification with p = q and pre- and post-modif i-

cation, achieved a computational complexity of O(p log p). A fast 

recursive algorithm with a computational complexity of O(p) was 

developed based on the pre-modification method. 

The spectral performance of these methods was compared for 

various numerical examples. Spectral degradation had been expected, 

because of the restriction t = p and the underlying data modification, 

however, these numerical examples illustrated only a small degradation 

in spectral performance. Moreover, the spectral estimation performance 

of these new methods has been found to be typically far superior to 

such contemporary approaches as the Box-Jenkins and maximum entropy 

methods. 

Finally, considering the above two aspects, namely, fast computa-

tional implementations and high performance spectral estimations, 

these new methods promise to be primary spectral estimation tools. 
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Appendix A 

RECURSIVE AR SPECTRAL ES'I''LY...ATION 

A.l Introduction 

In many relevant signal processing applications, one seeks to 

characterize the spectral density of a time series based upon a finite 

set of time series observations. Without loss of generality, this 

sample observation set is taken to be the contiguous set of N real 

valued measurements as given by 

x(l), x(2), ... , x(N) (A.1.1) 

One of the most widely used spectral estimation models is obtained by 

postulating the following autoregressive (AR) structure 

x(n) + a 1x(n-l) + ... + a x(n-m) 
m 

= s (n) (A.1.2) 

in which s(n) is a white noise time series with zero mean and variance 

rJ s 
2 Our object will be that of modeling an underlying time series 

{x(n)} with the AR model structure (A.1.2) in which the ak coefficients 

are estimated from the given finite set of observations (A.1.1). This 

is readily achieved by applying the well known one-step predictor. 

An m-th order one-step predictor, by definition, estimates the. 

value of a random time series using a linear combination of the most 

recent m samples. Namely, the sample x(n) is estimated by means of 

the relationship 
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~(n) = -
m 
2: ak x(n-k) 

k=l 
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(A. l. 3) 

The difference between this predicted value and the observed value 

x(n) over the observation interval is called the prediction error 

and is specified by 

or 

e(n) = x(n) - x(n) m < n < N 

m 
e(n) = x(n) + 2: ak x(n-k) 

k=l 
m < n < N 

Writing these error expressions in matrix form yields 

e = x + Xa 

(A. l. 4) 

(A.1. 5) 

where ~' ~' and x are m x 1, (N-m) x 1, and (N-m) x 1 column vectors, 

respectively, given by 

T 
' a J m 

e = [e(m+l), e(m+2), ••• , e(N) ]T 

x = [x(m+l), x(m+2), ... , x(N)]T 

and X is an (N-m) x m matrix specified by 

r I x(m) 

X = ! x(m-1) 

I x(l) 
L. 

x(m+l) 

x(m) 

x(2) 

1 T 
x(N-1) I 
x(N-2) I 

• ! 

x~-m) j 
"" 

(A. l. 7a) 

(A. l. 7b) 

(A. 1. 7c) 

(A. l. 7d) 
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where the superscript T denotes the transpose operation. 

The ak coefficients are to be now selected so as to cause each 

of the predictor error terms e(n) to be close to zero. This selection 

process will give rise to the so-called optimal one-step predictor. 

To achieve the required objective of setting the e(n) to be near zero, 

one typically appeals to the least squares method which minimizes a 

squared error criterion of the form 

f(~) (A. l. 8) 

where W is an (N-m) x (N-m) nonnegative definite square matrix. The 

minimization of this quadratic functional with respect to the column 

vector a is straightforwardly carried out and results in 

(A. l. 9) 

It can be shown that the resulting power spectral density 

estimate of the time series {x(n)} is then given by (Haykin, 1979) 

2 
(J 

E 

11 + o -jw + o -2jw o -mjwj2 a 1 e a 2 e + . . . + a e 
(A.1.10) 

0 where the ~ coefficients are obtained upon solving relationship 

(A.1.9). Generally the solution of relationship (A.1.9) requires on 

the order of m3(i.e.O(m3)) number of multiplications and additions 

if that relationship is directly used. This computational requirement 

can be excessive in many real time applications. It has been recently 

shown by Lee and Morf (1980) that this computational requirement can 
; 

be reduced to O(m) by slightly reformulating the matrix X and column 
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vector x. In many interesting cases, fortunately, the solution to 

this modified system of equations will be close to that of the desired 

solution as represented by expression (A.1.9). In this Appendix the 

method which is identical to the LMS algorithm of Lee and Morf (1980) 

is presented with more emphasis on insightful development. 

This general modification methodology shall herein be ref erred 

to as data modification. Applying the specific data modification 

method referred to as prewindowing, the matrix X is reformulated as the 

N x m matrix given by 

x = 

0 

0 

0 

x(l) 

0 

0 

x(2) 

x(l) 

0 
. . 
0 ••• 0 

x(m) 

x(m-1) 

x(l) 

while the N x 1 column vector x is specified by 

x = [x(l), x(2), • • • , x(N) JT 

x(N-1) 

x(N-2) 

x(N-m) 

T 

(A.1.11) 

(A.1.12) 

If these new entrants are substituted into relationship (A.1.9), an 

efficient solution procedure for a 0 is possible. The structure of this 

reformulated matrix X and the column vector x enables us to obtain a 

recursive least square spectral estimation algorithm which has an 

excellent convergence behavior and a fast parameter tracking 

capability relative to the former structure. The development of 

this algorithm is predicated on the utilization of projection operator 

theory (Luenberger, 1969). In the sections which follow the necessary 
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projection operator theory to be used in the algorithm is described. 

A.2 Vector Space Formulation 

In this section, the given spectral estimation problem will be 

cast into a convenient vector space setting. It will be assumed that 

the following observations of the time series {x(n)} as specified by 

x(l), x(2), ... , x(N) (A.2.1) 

are given. This in turn will give rise to the associated column data 

vector 

~ = [x (1), x(2), ... ' x(N)]T (A.2.2) 

The vector ~ lies in the product space 

~ = Rx Rx ... xR = RN (A.2.3) 

This vector space can be made into an inner product space by 

defining the following inner product between any two elements~· 

T 
< ~· ~ > = ~ ~ 

N 
Z:: x(n) y(n) 

n=l 

The corresponding induced norm of ~ is then given by 

(A. 2. 4) 

(A. 2. 5) 
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We next define the shift matrix S which is represented by the N x N 

matrix 

s 

0 . 
1 . 

0 
0 

(A.2.6) 

Applying the shift matrix m times to the column vector ~T is seen to 

yield 

Sm~ [O, ... , O, x(l), ... , x(N-m-1), x(N-m)]T (A.2.7) 

m zeroes 

We next construct the subspace Mx[~ J which is spanned by the set of 
-i\f .L ,m 

vectors i m 
s ~· ... , s ~r· This subspace will be suggestively denoted 

by 

(A.2.8) 

where the first integer index i may take on any value in the set 

{O, 1, ... , m}. Next, we let Px..[. J designate the projection 
-N i,m 

1 
operator onto the subspace }~[i,m] along the subspace }~[i,m]' This 

projection operator can be shown to have the form 

[~ T ·1 -1 
p~[i,m] ~ x~[i,m] r-qq i,m ~[i,m]J ~[i,m] (A.2. 9) 

where Xx[. J is the N x (m-i+l) matrix composed of the following 
-~ i,m 

ordered set of column vectors 

. [ i i+l m 1 
~[i,m] = S ~1' S ~· ... ' S ~~ (A.2.10) 
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Similarly, the projection operator on the orthogonal complement of 

subspace ~[i,m] is denoted by 

1 
Px._(· ,=I - Px__,.. J (A.2.11) 
i'I i, mJ --i'l Li, m 

where I is the N x N identity matrix. It then follows that 

p~[i,m] ;\J = lN 
l 

k 
Px [ . J Lr l S x._ c\f l,m L~ ~ 

if v s Mx.[. ] 
~ -=N 1,m (A.2.12) 

(A.2.13) 

Expression (A.2.12) and (A.2.13) specify those properties of the 

projection operators which will be utilized when developing a recur-

sive least square algorithm in the next section. 

A.J Linear Prediction and Projection Operator 

In this section, we will define three methods of linear 

prediction, na..""!1.ely, for.vard prediction, backward prediction, and 

delayed backward prediction. These projection operators will play a 

central role in the algorithmic solution procedure to be developed. 

A.3.1 Forward Prediction 

The m-th order forward prediction method is referred to as that 

specific procedure for estimating the column vector ~ by 

- 1 linear combination of the set of m shifted vectors {.S ~· 

means of a 
.... 

s"""~, ... ' 

Sm~}. It then follows that them-th order forward prediction 

estimate of -~N is of the form 
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~[l,m] 
m k - z aks x.._ 

k=l --N 

while the associated forward error vector 

-4T,m = ~ - ~[l,m] 

=~ 
m k 

+ z ~s ~ 
k=l 

(A.3.1) 

is specified by 

(A.3.2a) 

(A.3.2b) 

Upon examination of the structure of the shifted vector Sk~(k = 1, 

... , m), expression (A.3.2b) leads to the aforementioned prewindowing 

formula where X and.!. are given by (A.1.11) and (A.1.12), respectively. 

The problem at hand is to then find the scalar constants a1 , a2 , 

, a which minimize the squared forward prediction error m 

r c~ = 11 ~ - ~ c 1 , mJI I 2 

According to the projection theorem (Luenberger, 1969), f (~) is 

(A.3.3) 

minimized when the error vector is orthogonal to each of the one-

dimensional subspaces spanned by si~(i = 1, 

the orthogonality relationship expressed by 

A i 
(~ - ~[1,m]) l S ~ for i 

which takes the inner product format 

, m). Thus, we have 

1, 2, ... , m (A.3.4) 

< ~ - ~[l,m]' Si~ > = 0 for i = 1, 2, ... , m (A.3.5) 

Substitution of expression (A.3.1) into (A.3.5) yields the set of 

linear algebraic equations 



m k i 
L: < s ~' s ~ > ~ = 

k=l 
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i - < x.._, s x > 
-i'I ~ 

(A.3.6) 

for i = 1, 2, ... , m 

for the optimum set of ~ prediction coefficients. These equations 

are called the normal equations and can be put into the matrix form 

where 

T 

x.~[l,m] x~[l,m] a.= 
T 

-~[1,m]~ 

[ 1 2 m J 
~[l,m] = S ~' S ~' ••• , S ~ 

(A.3. 7a) 

(A.3.7b) 

(A.3.7c) 

Solving equation (A.3.7a) for..§:. and substituting this solution into 

expression (A.3.1) then yields the optimum prediction vector 

~[l,m] = ~[l,m] [ ~[l,m] ~[l,mJ~[l,m~ (A.3.8) 

Upon examination of the projection operator (A.2.9) and this expression, 

~[l,m] is seen to be compactly specified by 

~[l,m] = P~[l,m] ~ (A.3.9) 

Thus, we see that ~[l,m] is obtained by projecting ~ onto the sub-

space ~[l,m] and the m-th order forward prediction error vector is 

obtained by projecting ~ onto the orthogonal complement of ~[l,m] 

in the ~~' that is 

l 

~\T ,m = p~[l,m] ~ (A.3.10) 
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The corresponding minimum mean squared error is then defined to be 

f E T = E S N,m -=tl,m -"-N,m 
T 
~,m~ 

A.3.2 Backward Prediction 

The m-th order backward prediction method is that procedure of 

estimating the m-th shifted column vector Sm~ by a linear combination 

f h f h .f d {SO s1 , Sm-lx._1. Th;s back-o t e set o site vectors ~· ~· ... -N; ~ 

ward estimate is then of the fonn 

~[ O,m-1] 
m-1 k 

= - L: bkS 3-
k=O -i.'I 

(A.3.12) 

and the backward error vector is defined by 

b 
--i.\f ,m 

m A 

= s x._ - x__[ J 
-N --i.'I 0 ,m-1 (A. 3.13) 

In the same manner as with forward prediction, by applying the 

projection theorem it can be shown that the backward estimate is 

given by 

m 
~[O,m-1] = p~[O,m-1] S ~ (A. 3 .14) 

The backward prediction error vector is then found to be 

l 
b = P Sm 
--i.~,m ~[O,m-1] ~ (A.3.15) 

and the corresponding minimum mean squared error is obtained by 

(A.3.16) 
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A.3.3 Delayed Backward Prediction 

The m-th order delayed backward prediction method is similarly 

d f ·. d , b h d f · · h 1 sm+1 e 1ne to e t at proce ure o estimating t e co umn vector ·. ~ 
1 2 by a linear combination of the set of vectors {S ~, S ~, ••• , 

m S ~}. It can be shown that the delayed backward estimate is given by 

A = p . sm+l 
~[l,m] · ~[l,m] ~ (A.3.17) 

· and the delayed backward error is obtained by 

l 
a - p· sm+1 
~,m - ~[l,m] 34r (A.3.18) 

The corresponding minimum mean squared error is measured by 

d = T = T 8mi-l 
£N,m ~,m ~,m• EN,m ~ (A.3.19) 

A little thought. will convince oneself that the projection 

operation P~[l,m] can be expressed as 
-1 

T T 
p~[l,m] = ~[l,m] ~[l,m] ~[l,m] ~[l,m] 

0 0 • . • 0 _______ _. __ _ 
= 

~-1[0 ,m-1] 

-1 

~-1[0,m-1] ~-1[0,m-1~ 
0 0 ••• 0 T _ __ ..,. _______ _ 

~-l[O,m-1] 

(A.3.20) 

The relationship between the backward prediction"error and the delayed 

backward prediction error is then readily found to be 

I 
/ 
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(A.3.21) 

th It then follows that N delayed prediction error is equal to the 

(N-l) st b k d d" · ac war pre iction error 

E,_\f 'm (N) = %-1 m (N-1) 
' 

(A.3.22) 

The relationship of forward, backward, and delayed backward is 

suggestively depicted in Figure A.l. 

A.4 Decomposition of Subspaces 

The development of a computational efficient algorithm is 

dependent on the decomposition of subspaces. Subspaces may be decom-

posed by appealing to the well known projection theorem (Luenberger, 

1969). The formulae obtained in this section will be used for the 

development of order update recursions in Section A.5. 

Since the forward prediction error _s.T lies in the subspace 
---.~ 'm 

~[O,m] but is orthogonal to ~[l,m]' we can express ~[O,m] as 

the direct sum of ~[l,m] and {~,m}, that is 

Mx_ - Mx_ © s -=N,m[O,m] - -~[l,m] --i.\f,m (A.4.1) 

where {sN } denotes the subspace spanned by the forward prediction 
--r ,m 

error vector _s.T n,m The projection operator on the subspace {_s.1 } is 
1~ ,m 

defined by 

P_sT n,m 
T -1 = s (s s ) 

J.\f , m J.\f , m --i."\f , m (A.4.2) 



N-m-1 N-m N-m+l 

b -N,m 

b -N-1,m 
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N-1 N 

i 

Fig. A.1 Forward, backward and delayed predictions 

samples 
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Relationship (A.4.1) can be readily shown to yield the following 

decomposition of the projection operator 

l l 

p~[O,m] = (I - P~.m) p~[l,m] (A.4.3) 

Similarly, since the delayed backward prediction error d lies 
~,m 

in the subspace ~[l,m+l] but is orthogonal to ~[l,m]' we obtain 

~[l,m+l] = M~[l,m]@ {~,m} (A.4.4) 

where {d } denotes the subspace spanned by the backward prediction 
-'1:\1 'm 

error vector. The projection operator on the subspace {d } is 
~,m 

defined by 

(A.4.5) 

Relationship (A.4.4) is found to yield the following decomposition of 

the projection operator 

1 1 
p~[l,m+l] = (I - PdN,m) Px._[ J -i.\J l,m 

A.5 Order Update Recursions 

(A.4.6) 

In this section, we describe the order update recursive formulae 

which recursively compute the optimum m+l-st order prediction error 

from the optimu...~ m-th order prediction error. Expressions (A.4.3) 

and (A.4.6) play a central role in obtaining these order update 

recursions. 
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Let us first derive the order update recursion for the forward 

prediction error vector. Applying the projection operator (A. 4. 6) 

to the column vector ~ yields 

~T ,m+·l ..; (I - Pi;i . ) € 
-..~ -9'.'I , m ~ , m (A.5 .1) 

Substituting expression (A.4.5) into this relationship then yields 

T -1 T 
€ = € - d (ci-_ . d ) d- € 
~,m+l ~,m ~,m ~,m ~,m ~,m ~,m 

(A.5.2) 

Recalling expressian (A.3.22); the order update recursion for the R-th 

forward prediction error is found to be 

. . b . -1 
~ ,m+l (N) = ~,m(N) - ~ ,m+l (fN-1,m) ~-1,m (N.-l) (A. 5. 3) 

where the partial-correlation coefficients are specified by 

l 
ti__ _ dT € _ T p 8m+l ·· 
~ ,m+l - -m,N-N,m - ~ ~[l,m] .~· (A.5.4) 

Expression (A.5.1) leads to 

T T 
~,m+l ~,m+l = ~,m (I - P~,m) ~,m (A. 5.5a) 

The recursion for the forward minimum mean square error is similarly 

found to be 

€ b -1 
= fN,m - ~,m+l (fN-1,m) ~,m+l' (A.5.5b) 

Expressions (A.5.3) and (A.5.5b) constitute the order update recursion 

formulae for the forward prediction. 
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Next, we will find the order update :recursion for the backward 

prediction error vector. Applying the projection operator (A.4.3) to 

the column vector Sm+l~ is found to yield 

b 
-i.'l ,m+l = (I - Ps ) d 

~.m -=N,m (A. 5. 6) 

Substituting expression (A.4.2) into this relationship results in 

b 
-i.\f ,m+l (A • .S.7) 

The order update recursion for the N-th backward prediction error is 

then specified by 

s -1 
E_,, m+l(N) = b,,.T_l (N-1) - /:;, m+l (fN ) ~T (N) n, -i., ,m N, l ,m -i.~,m 

Expression (A.5.6) leads to 

dT (I - Ps ) d 
~ , m 1.\f , m -'-'N" , m 

The recursion for fb is next found to be N,m 

(A.5.8) 

(A.5.9) 

(A.5.10) 

The order update recursion formulae for the backward prediction are 

represented by relationships (A.5.8) and (A.5.10). 

A.6 Time Update Recursions 

As a new element of the time series is observed, the partial-

correlation coefficients, forward least square errors, and the backward 

least square errors can be computed recursively by using the knowledge 
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of these parameters from the last time instant. This being the case, 

these parameters are said to be ''time updated" for each new data 

point. These update recursions are obtained by utilizing a method 

referred to as projection operator decomposition. 

For the spectral estimation problem considered here, we decompose 

the projection operator P~[i,m] into one that projects on all past 

observations and another that generates the correction due to a new 

observation x(N). First, we define the component projection matrix 

where 8N is the N x 1 unit basis vector expressed by 

eN = [O, . . . , 0, l]T 

Let us define the column vectors 

~p - P N ~ = [ 0 , • • • , 0 , x (N) ] T 
N 

l l 
~N = PN ~ = [x(l), .•• , x(N-1), O]T 

(A. 6 .1) 

(A. 6. 2) 

(A.6.3) 

(A.6.4) 

l l 
T Note that ~ .Yp T T T = ~ ~'1 = ~.Yp and similarly for ~ .Yp • The 
N N N N N N 

projection of ~ on the subspace ~[i,m] is now decomposed by 

component projection matrix PN to obtain 

1 
p~[i,m] ~ = p~[i,m] ~N + p~[i,m] !pN (A.6.5) 
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Multiplication of (I-PN) and the matrix ~[i,m] yields the so-

called oblique matrix 

C~[i,m] = (I - PN) ~[i,m] (A.6.6) 

whose last row is the zero row vector. We define the oblique 

projection operator to be 

~ T -1 T 
Q~[i,m] = ~[i,m] [c~[i,m] c~[i,m]] c~[i,m] (A.6. 7) 

and its associated orthogonal complement by 

l 
Qx._ = I - Qx._ -i.'l[i,m] "-1.'l[i,m] (A.6.8) 

Upon inspection of expression (A.6.7), we see that the application of 

the oblique projection operator to the vector ~ implicitly possesses 

the solution of the prediction coefficients at the N-1st stage. 

After simple algebraic manipulation, relationship (A.6.5) can be 

expressed as 

1 
p~[i,m] ~ = Q~[i,m] ~ + p~[i,m] PNQ~[i,m] ~ (A.6.9) 

The orthogonal complement projection of ~ can be expressed as 

l 1 
p~[l,m] ~ = ~ - Q~[i,m] ~ - p~[i,m] PN Q~[i,m] ~ 

(A. 6. lOa) 

which can be further developed to the form 
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l l 
p~[i,m] ~ = ~ - Q~[i,m] ~ - PN Q~[i,m] ~ 

l 1 
+ p~T[i,m] PN Q~[i,m] ~ (A. 6. lOb) 

Considering the relationships (A.6.3), (A.6.4) and (A.6.7), we obtain 

1 l 
+ p~[i,m] PNQ~[i,m] ~ 

(A.6 .11) 

Premultiplying [sm+l ~JT on both sides of expression (A.6.11) gives 

the time update recursions of the partial reflection coefficients 

l l 
6m+l,N 6m+l,N-1 + [sm+l~JT p~T[l,m] PN Q~T[l,m] ~ 

(A.6.12) 

where i was taken to be 1. Furthermore, operation of the component 

projection operator PN on both sides of expression (A.6.lOa) yields 

l 1 1 
P p = p Q T p T Q N ~[i,m] ~ N ~[i,m] ~ - eNeN ~[i,m] eNeN ~[i,m] ~ 

(A. 6.13a) 

1 t T = P Q . , 1 - e P, . N ~[i,mj ~ N ~[i,m] J-1 
eN (A. 6 .13b) 

Thus we obtain the relationship 

1 

PN Q~[i,m] ~ = 
1 

1 p~T Px..T[. J x...T - y 1'1 ---,:,. i , m -1'l i,m,N 
(A.6.14) 
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where 

Directly substituting (A.6.14) into (A.6.12), we see that 

~N,m+l = ~N-1,m+l + 

l 1 
rcm+l )T T . C' ~ p~[l,m]eN~ p~[l,m]~ 

1 - y l,m,N 

which simplifies to the form 

~ = ~ + ~-l,m(N-l)-4T,m(N) 
N ,m+l N-1,m+l 1 - Yl N . ,m, 

Similarly, the time-update for fE and fr can be obtained as 
N ,m N ,m 

2 
~T (N) fE = fE + --'-'-l~,m __ _ 

N,m N-1,m 1 - y 1,m,N 

~~ (N) fr = fr + -----'-·~,,,_,m __ _ 
N,m N~l,m 1 - y 1 O,m- ,N 

where 

y = e.: Px.. e... O,m-1,N N -j_\j [o,m-1] N 

(A.6 .15) 

(A.6.16) 

(A.6.17) 

(A.6.18) 

(A.6.19) 

(A.6.20) 

Thus we can use equation (A.6.17) to update the partial reflection 

coefficients. Equations (A.6.18) and (A.6.19) can be used to update 

forward and backward prediction errors, respectively. 
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A. 8 Summary 

A recursive algorithm has been presented for efficiently obtaining 

an autoregressive (AR) spectral estimate. To achieve a significant 

computational improvement, prewindowing was applied, and projection 

operators were utilized in the vector space setting. Normalizations 

of the order and time update algorithm yields more computational 

advantage than the unnormalized method. Interested reader may refer 

to (Lee and Morf, 1980) and (Friedlandar, 1980). 



Appendix B 

ADAPTIVE SPECTRAL ESTIMA.TION 

B.l Introduction 

In this chapter, we will discuss two adaptive techniques, 

namely, the Widrow-Hoff algorithm (Widrow and Hoff, 1960) and the 

Iterative LMS method. It is well known that the Widrow-Hoff algorithm 

is a recursive technique which updates parameters with the arrival 

of each new data sample. At each recursion, parameters are algo-

rithmically selected in a least squares sense. As the number of data 

samples increases, the model's parameters "may" converge to the least 

square solution which is also known as the Wiener solution (Wiener, 

1949). Primary reason for utilizing the Widrow-Hoff algorithm is 

computational in nature. As each new data point is obtained, only 

O(p) computations are required to update the model's parameters. 

The Iterative LMS method is a technique which updates the solution 

for the linear system of equations which approximates the Wiener 

equations (Wiener, 1949). Although the number of computations for 

the Iterative LMS method to update parameters at every new data point 

is O(p2), the Iterative LMS method gives the exact solution to a given 

linear system of equations. To compare these two techniques, a number 

of examples are presented. 
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B.2 Widrow-Hoff Algorithm 

The analysis of an adaptive filter can be developed by considering 

the linear configuration shown in Fig. B.2.1. An adaptive filter is 

composed of a tapped delay line, adjustable weights and sunnners. 

Delayed signals which are real valued are weighted and summed to 

form an output signal d(n) which designates an estimate for the 

desired signal d(n). At then-th observation, a set of delayed 

signals can be formulated in a vector form 

x 
-n 

[x(n - 1), x(n - 2), . . . , x(n - p) JT (B.2.1) 

where x is a pxl column vector. It is also convenient to denote the 
-n 

adjustable weights at the n-th iteration by 

h = [h (1), h (2), -n n n (B.2.2) 

where h is a pxl column vector. The estimate of the value of d(n) -n 

based on the vector (B.2.1) will be taken to be the linear combination 

d(n) = hT x 
--n -n 

p 
= E h (k) x(n - k) 

k=l n 
(B.2.3) 

The error between the desired signal and the estimate at the n-th 

sample is given by 

s(n) = d(n) - hT x 
--n -n 

(B.2.4) 
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d(n) 

h (2) 
n 

---~~(1-)--------~------~ 
n 

Fig. B.2.1 Adaptive Linear Configuration 
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The associated mean square error is defined by 

f(h ) --n 
2 E[s (n)] (B.2.5) 

Substitution of (B.2.4) into (B.2.5) is found to yield 

f(h ) = ¢dd(O) - 2 r~ h + hT R h -n -ax -n -n x -n 
(B.2.6) 

where ¢dd(O) is the variance of the desired signal d(n), that is, 

(B.2.7) 

while rd and R are the pxl cross correlation vector and the pxp x x 

covariance matrix, respectively, defined by 

and 

R = x 

¢xx (O)' cpxx (1)' ¢xx(p - l) 

¢ (p - 1), qi (p - 2), ... ¢ (0) xx xx xx 

in which cjidx(i) is the cross-correlation sequence between the 

(B. 2. Sa) 

(B.2.Sb) 

individual input signal component and the desired signal defined by 

¢dx(i) = E[x(n + i) d(n)] (B. 2. Sc) 
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and <P (i) denotes the autocorrelation sequence of the input signal xx 
specified by 

<P (i) = E[x(n + i) x(n)] xx (B.2.8d) 

It may be observed from expression (B.2.6) that the mean-square error 

is precisely a second order function of the weights~ and is visualized 

as a parabolic function of the weight variables. The adaptive 

process seeks the minimizing weight variable selection by using the 

well-known method of steepest descent. 

In seeking the minimum mean-square error by the method of 

steepest descent, one first begins with an initial guess of the model's 

weight parameters. The next estimate is then obtained from that 

estimate by making a change in the weight vector in the direction 

of the negative of the gradient vector. The gradient is obtained 

by differentiating expression (B.2.6) to yield 

'i/f (h ) = -2 l'.".J + 2 R h 
~ -..i.X X -n (B.2.9) 

If each change in the weight vector is made proportional to the 

negative of the gradient, the method of steepest descent leads to 

the following recursive relationship 

h +l = h + µ'i/f(h ) -n -n -n (B. 2 .10) 

For a sufficiently small value of µ, the mean-square error at the 

(n + 1)-st step is approximately found to be 

(B.2.lla) 
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where I !Vf(h )j 12 is the positive scalar defined by -n 

I lvf(h >I 12 = [vf(h )]T [Vf(h )] -n --n -n (B.2.llb) 

It may be observed from eq. (B.2.lla) that the mean-square error is 

reduced with each change of the weight vector. For a proper choice 

of µ, it has been claimed that this algorithm will converge to an 

optimum point regardless of the initial weights. (Widrow, 1971) 

The method of steepest de$cent requires the determination of the 

gradient vector. In practice, the true values of these gradients 

are seldom available. To overcome this difficulty, the "I.MS algorithm" 

offers a practical procedure for implementing the method of steepest 

descent. This algorithm uses gradient estimates in place of true 

gradient values. These estimates may be "noisy" (i.e., contain 

errors) but the effect of the gradient-measurement errors is observed 

to be small in many practical applications. 

A method of measuring gradients of the mean square error which 

does not require squaring, averaging or differentiating is now given. 

The mean square error f (h ) may be represented crudely by the -n 

single sample e:(n), the square of then-th error value. Then the 

gradient vector is approximated by 

Vf(h ) = Ve: 2(n) = -2e:(n) x -n --n 
(B.2.12) 

In order to approximate the gradient vector, the present input-signal 

x and its associated scalar error e:(n) are used. Upon taking an -n 

expected value on expression (B.2.12), expression (B.2.9) can be 
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obtained. 

An adaptation cycle will proceed with the arrival of each new 

input vector. From eqs. (B.2.10) and (B.2.12), the adaptation 

procedure comprising the LMS algorithm is completely represented by 

(B.2.13). 

s(n) = d(n) - hT x -n-n 

~+l = ~ - 211E:(n) ; 

Upon examination of expressions (B.2.13), we can see that the 

(B. 2 .13a) 

(B. 2 .13b) 

computational requirement is O(p). In this algorithm, the selection of 

11 is also an important factor. If 11 is made too small, convergence is 

slow. On the other hand, if µ is selected to be too large, the adaptive 

method may not converge. In terms of selecting a best µ, the 

interested reader may refer to (Widrow, 1971; Luenberger, 1973; 

Huffman and Nolte, 1980). 

B. 3 Iterative L.'1S Method 

We will now investigate the problem of how to linearly filter an 

observed, wide-sense stationary, discrete-time, random time series 

{x(n)}. Our primary interest is to best estimate the desired discrete-

time random time series {d(n)} in the minimum mean square sense. 

The problem is illustrated in Fig. B.3.1. Our objective is to find 

the transfer function H(z) that minimizes the mean square error. We 

assume that the estimate of element d(n) is of the form 



x(n) 

d(n) 
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d(n) 

H(z) 

+ 

Fig. B.3.1 Pictorial representation 
of the optimum filtering 

e(n) 
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p-1 
L: h(k) x(n - k) 

k=o 
(B. 3 .1) 

where h(k) are the filter weight elements. The estimate d(n) is then 

seen to be a linear combination of the most recent p values of the 

observation signal. The mean square error is found to be a function 

of filter weights h(k) and is specified by 

f(g) 
A 2 

= E[{d(n) - d(n)}] 

where h is the pxl column vector defined by 

T h = [h(O), h(l), ... , h(p - l)] 

(B.3.2) 

(B.3.3) 

Substitution of expression (B. 3 .1) ,into (B. 3. 2) and taking the expected 

value operation yields 

f(h) = rd(O) - 2 hT r + hT R h -=-Jx - x - (B.3.4) 

where rd(O) = E[d2 (n)],~x is the pxl column vector whose k-th element 

is given by E[d(n) x(n - k)] fork= 1, 2, ... , p and R is the pxp x 

matrix whose elements are given by R (i,j) = E[x(n - i) x(n - j)] x 

(see eq. B2.6). 

The optimum filter weights vector is readily determined by taking 

the gradient of quadratic functional (B.3.4) with respect to h and 

setting this gradient equal to the zero vector. This is found to 

result in the well-known Wiener vector selection (Wiener, 1949). 

ho R-1 = _]'.",.i 
X --uX 

(B.3.5) 
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Although this approach is indeed attractive and typically results in 

satisfactory performance, it suffers one serious drawback. Its 

implementation requires apriori covariance knowledge which is usually 

lacking in many typical applications. 

In order to achieve our object without requiring any statistical 

information, we introduce an estimation error criterion defined by 

fN(h) = r -

N 
L: 

k=p 
[d(k) - d(k)]2 (B.3.6) 

It will be beneficial to represent this error criterion in a vector 

format. Let us define the (N + 1 - p) x 1 estimation error vector 

d(p) x(p) x(p-1) x(l) r h(o) 1 
d(p+l) x(P+l) x(p) x(2) h(l) 1 

~ I . 
I 

d(N) 
J 

x(N) x(N-1) x(N+l-p) lc~-1l 
l.. 

(8.3.7) 

which can be compactly expressed 

(B.3.8) 

Using these expressions, the square error criterion can be represented 

by 

(B. 3. 9) 

Minimization of the functional (B.3.9) is straightforwardly carried 

out by setting the gradient Vh fN(b) equal to zero and yields the 
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following result. 

(B.3.10) 

In general applications, the use of this method is not practical since 

it requires on the order of p3 multiplications to invert the pxp 

matrix [~ ~]. We will next discuss a straightforward procedure which 

reduce this computational complexity. 

Upon examination of relationship (B.3.7) and (B.3.8), we can see 

that when the new data element x(N + 1) is provided, the equation error 

can be updated by 

~+l = ~+l - X~Hl h 

= 
~N l 

I -

d(N+l) I - J 
T 
~+l 

where ~+l is the pxl column vector specified by 

~+l = [x(N+l), x(N), ... , x(N-p+2)]T 

(B. 3 .11) 

(B.3.12) 

(B.3.13) 

It is clear from relationship (B.3.10) that we have to invert the 

matrix 

[ .XNT 'T J XNT ~ + ' T " " +l .!\..,,...;_,. 1 = " x._ I 1 •'--+1 • L'l r ,"', -i."l 
(B.3.14) 

The following recursive relationship may be used to efficiently update 

the required matrix inver~e 



153 

[ T J-1 
XN+1 ~+1 

[ T J-1 . 1 T 
= XN ~ - 1 + ~+1 lN+l 1N+11tl+1 

(B. 3 .15) 

where 

(B .3 .16) 

After a few simple manipulations, the following recursion is obtained 

~+l = ~ 
T o 

d(N+l) - ~+l EN 
+ T 1N+l 

1 + ~+11N+1 
(B. 3 .17) 

Recursive relationships (B.3.16) and (B.3.17) constitute a more 

computationally efficient method than the direct approach (B.3.10). 
2 It can be shown ·that the computational complexity is of the order p . 

B.4 Numerical Examples 

In this section, we shall demonstrate the performance of two 

adaptive methods, namely, the Widrow-Hoff algorithm and the Iterative 

LMS method. This will be accomplished by investigating the time 

series whose elements are given by 

x (n) = /20 sin (O. 1 1rn) + w(n) (B. 4 .1) 

where w(n) is a white Gaussian noise with variance one. The normarized 

Weiner equation error can be defined by 

~(n) = 
I !Rx~ - ~xi I 

ll~xl I 
(B.4.2) 
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where Rx is the pxp covariance matrix of the sequence {x(n)} and !.a.x 

.is the pxl cross-correlation vector of the sequences {d(n)} and {x(n)}. 

The above scalar value ~(n) yields a noLlized measure of how closely 
I 

the Wiener equations are being approximdted. All graphs except 
I 

Fig. B.4.4 provide the plot of normaliz4d Wiener equation error 

referring to expression (B.4.2) versus ~teration number (i.e., the 
I 

number of observation data). The desir~d signal d(n) is specifically 
I 

chosen to be x(n+l). This yields a protjlem of predicting one step 
I 

into the future. Unless specified, the 4ovariance matrix is initial-
1 

I 

ized at 15-th iteration number. . I 

It can be observed from Fig. B.4.llthat the normalized Wiener 
I equation error of the Iterative LMS met~od converges to approximately 

zero after 2300 iterations, however, th~ Widrow-Hoff algorithm 

with µ = 0.001 fails to converge. In t~ Widrow--Hoff algoritlun, 

the value of µ was next selected to be .0001 and .01 in Fig. B.4.2 
I 

and Fig. B.4.3, respectively. As we cat see on Fig. B.4.2, both of 

the adaptive algorithms converge reasonably close to zero. The 
I . 

Iterative LMS method converges faster than the Widrow-Hoff algorithm. 

Fig. B.4.3 illustrates an example which! shows convergence behavior 

of the Iterative LMS method and nonconvlrgence behavior of Widrow-

Hoff algorithm. The normalized square brror I ! hn .... h0 11I11h0 11 where 

ho is the exact solution of the matrix ~quation (B.3.5) are displayed 

in Fig. B.4.4. The convergence behavio~ of the Iterative LMS and 

the nonconvergence behavior of the Wien~r-Hoff are evident. 

I 
I 

i 
I 

I 

I 

i 
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Fig. B.4.5 and Fig. B.4.6 display tie method which employs 

biased estimates for the approximation of covariance matrix elements. 
. I 

Fig. B.4.7 and Fig. B.4.8 display the metthod which uses unbiased 
. I 

estimates for the approximation of covartance matrix elements. Both 

the biased and unbiased methods converge/to zero, however, the biased 

method 'starts with slightly large values/of normalized Wiener equation 

error. Fig. B.4.9 and Fig. B.4.10 show the Iterative LMS method 

whose initial covariance matrix is the ilentity matrix. Although the 

1 . d w · · · h I 1 f · · norma ize einer equation error at t e rar y stage 0 iteration 

number are relatively large, this method/ also converged to zero. 

Fig. B.4.11 and Fig. B.4.12 display the birect method. Upon 
• I 

examination of Fig. B.4.5 through Fig. BJ.4.12, the direct method and 
I 

the method of unbiased estimate are fou~d to be the best, since they 

started with a smaller normalized error /and converged uniformly to 

zero. I 
Comparing the Widrow-Hoff algorithm and the Iterative LMS method 

from the convergence Viewpoint, the IteJative LMS method is superior 

to the Widrow-Hoff algorithm. I 

I 
B.5 Summary 

Two adaptive techniques are compared. From a computational 

viewpoint, the Widrow-Hoff algorithm is less burdensome than the 

Iterative LMS method. However, the comparison of Wiener equation errors 
I 

indicated that the solution from the It¢rative LMS method satisfies 
I 

Wiener equations better than that of th~ Widrow-Hoff algorithm. 

I 
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Appendix C 

DERIVATION OF EXPRESSIONS (6.6.4) AND (6.6.10) 

In this Appendix, relationships (6.6.4) and (6.6.10) which play 

a central role for the time update mode are derived. 

C.l Derivation of (6.6.4) 

Expression (6.6.3) can be simplified to the form 

t 
R = R - -nx y n-1 n -"-11 

where the (m-i+l)xl column vectors x and v are defined by 
-n ""-TI 

x 
-n 

+ 
A' Yi_\l[i,m] ~ 

t = T A 2ri ~ ~[i,m] 

(C. l. la) 

(C.l. lb) 

(C.l.lc) 

It can be seen that R 1 is expressed as a sum of a nonsingular matrix n-
and a rank 1 matrix. Expression (C.1.la) can be also expressed as 

-1 R n-1 
-12 R 
n 

[I t]-1 -12 - a b R -- n 

where the (m-i+l)xl column vectors a and b are defined by 

-12 a= R x 
n -n 

bt + -!.s = v' R -
-"-n n 

(C .1. 2a) 

( c .1. 2b) 

(C .1. 2c) 
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-!.: R 2 is a NxN matrix which satisfies the relationship 
n 

-~ -~ -1 R R = R • We will now make use of the following matrix inverse n n n 
relationship 

(C.1.3) 

Substituting (C.l.2b) and (C.1.2c) into (C.1.3) yields 

[ t]-1 1 -~ t -~ 
I - ~ .£ = I + ---t~---1-- Rn ~ -Yu Rn 

1 - y R x 
---n n -n 

(C.1.4) 

Expression (6.6.4) can be obtained by substituting (C.1.4) into 

(C.1.2a) along with expressions (C.1.lb) and (r..l.lc). 

C.2 . Derivation of (6.6.10) 

To simplify the complexity of notations, let us define the 

following compact notations 

p = p ~[i,m] (C.2.la) 

Q = PN (C.2.lb) 

T p T y = y. N = e 
i, m, ~ ~ (C.2.lc) 

It is readily shown that 

T 
(1 - y) Q = ~ (1 - y) ·~ = Q (I - P) Q (C. 2. 2a) 

PQ PQ = yPQ (C.2.2b) 

QP QP = yQP (C.2.2c) 
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Equation (6.6.9) may be expressed as 

V(I - P) = Q - P + (I - Q) P(I - Q) 

+ l (I - Q) P Q P(I - Q) 1 - y 

Using relationships (C.2.2b) and (C.2.2c), we have 

{Q - P + (I - Q) P(I - Q)} (1 - y) 

= Q - PQ + yPQ - QP + yQP - yQPQ 

Substitution of (C.2.4) into (C.2.3) yields 

1 V(I - P) = 1 (I - P) Q(I - P) 

Expression (6.6.10) can be obtained by direct substitution of 

expressions (C.2.la), (C.2.lb) and (C.2.lc) into (C.2.5). 

(C.2.3) 

(C.2.4) 

(C.2.5) 
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Appendix D COMPUTER PROGRAM LISTING 

D.l FORTRAN Program Listing for a Recursive ARMA Spectral Estimation 

C THIS PROGRAM COMPUTES AUTOREGRESSIVE COEFFICIENTS OF 
C 'HIGH PERFORMANCE' ARMA MODEL (REAL DATA, p=q). 
c 

c 

DIMENSION X(l024) ,EXN(30) ,EXNM1(30) ,BXN(30) ,BXNM1(30) 
$ ;FENM1(30),FRN(30),FRNM1(30),SN(30),SNM1(30),TN(30) 
$ ,GAM(30),GAM1(30),EYN(30),EYNM1(30),BYN(30) 
$ ,Y(l024),XA(l),RX(30,30),YX(30),YS(l024,30) 
$ ,WKAREA(30) ,CM(30) ,CM1(30),AM(30) ,AM1(30) ,BM(30) 
$ ,DM(30),RXX(30,30),FEN(30),TNM1(30),BB(30),BM1(30) 
$ ,XS(l024,30),BYNM1(30) 

C Nl: TOTAL NUMBER OF OBSERVATION DATA 
C IP: ORDER OF DENOMINATOR COEFFICIENT 
c 

c 

Nl=64 
IP=4 
NP=Nl-IP 
N=Nl-1 
IPl=IP+l 
IPMl=IP-1 

C GENERATE DATA TO BE MODELED 
c 

c 

DSEED=12345 
CALL KAVEH(Y,Nl,DSEED) 
DO 25 I=l,NP 

25 X(I)=Y(I+IP) 
WRITE (6,101) (Y(I),I=l,NP) 
WRITE (6, 101) (X(I) ,I=l,NP) 
Nl=NP 
N=Nl-1 

C INITIALIZATION FOR TIME UPDATE 
c 

EXNMl(l)=O. 
EYNMl(l)=O. 
BXNMl(l)=O. 
BYNMl(l)=O. 
FENMl(l)=O.O 
FP.NMl (1) =O. 0 
Al2=0.0 
A21=0.0 
A22=0.0 
DO 1 I=l, IP 



c 

SNMl(I)=O.O 
1 TNMl(I)=O.O 
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C UPDATE PARAMETERS FROM IT=l TO IT=Nl 
c 

DO 2 IT=l,Nl 
ITMl=IT-1 
AIT=IT 

C WRITE(6,102) IT 
102 FORMAT (/' 3X, 'N= I' IJ) 

c 
C INITIALIZATION FOR ORDER UPDATE 
c 

c 

EXN(l)=X(IT) 
BXN(l)=X(IT) 
EYN(l)=Y(IT) 
BYN(l)=Y(IT) 
DO 20 I=l, IPl 
SN(I)=O.O 
TN(I)=O.O 
GAMl(I)=O.O 

20 GAM(I)=O.O 

C UPDATE FEN(l) AND FRN(l) 
c 

c 

FEN(l)=FENMl(l)+X(IT)*Y(IT) 
FRJ."'if(l)=FRNMl(l)+X(IT)*Y(IT) 
M=IP 
IF(ITMl.LT.IP) M=ITMl 
Ml=M+l 
IF(IT.EQ.l) GO TO 109 

C ORDER UPDATE 
c 

DO 3 I=l,M 
c 
C UPDATE GAM(I+l) AND PARTIAL CORRELATION COEFFICIENT 
C SN(I) AND TN(I) 
c 

c 

GAi.~(I+l)=GAM(I)+B:x:m1l(I)*BYNMl(I)/FRNMl(I) 
SN(I)=SNMl(I)+BYNMl(I)*EXN(I)/(1.0-GAM(I)) 
TN(I)=TNMl(I)+EYN(I)*BXNMl(I)/(1.0-GAM(I)) 

C UPDATE FORWA..."lill ERRORS EXN (I) Ai."'ifD EYN (I) 
c 

c 

EXN(I+l)=EXN(I)-(SN(I)/FRNMl(I))*BXNMl(I) 
EYN(I+l)=EYN(I)-(TN(I)/FRNMl(I))*BYNMl(I) 

C UPDATE BACKWARD ERRORS BXN(I) AND ~YN(I) 
c 



c 

174 

FEN(I+l)=FEN(I)-SN(I) *TN(I) /FR.~l(I) 
FRN(I+l)=FRNMl(I)-SN(I)*TN(l)/FEN(I) 

3 CONTINUE 
109 IF(IT.EQ.1) Ml=l 

C PRINT OUT AT EACH NEW DATA POINT 
c 

WRITE(6, 100) 
100 FORMAT(/ ,2X, 'EXN(I)' ,3X, 'EYN(I) I ,3X, 'BXN(I)' 

$ ,3X, 'BYN(I) I ,2X, 'FEN(I) I ,2X, 'FRN(I) ',2X, 'SN(I) I 

$ ,2X, 'TN(I) I ,2X, 'GAM(I) ') 
DO 5 I=l,Ml 
WRITE(6,101) EXN(I),EYN(I),BXN(I),BYN(I),FEN(I) 

$ ,FRN(I),SN(I),TN(I),GAM(I) 
101 FORMAT (2X,10F8.3) 

IF (IT.EQ.Nl) GO TO 5 
c 
C RE.ADY FOR NEXT DATA POINT 
c 

c 

EXNMl(I)=EXN(I) 
EYNMl(I)=EYN(I) 
BXNMl(I)=BXN(I) 
BYNMl(I)=BYN(I) 
FENMl(I) =FEN (I) 
F1''NM1 (I) =FRN (I) 
SNMl(I)=SN (I) 
TNMl(I) =TN(I) 
GAMl(I)=GAM(I) 

5 CONTINUE 
IF(IT.EQ.1) GO TO 2 
A12=Al2+Y(IT)*X(IT-1) 
A2l=A2l+Y(IT-l)*X(IT) 
A22=A22+Y(IT-l) *X(IT-1) 

2 CONTINUE 

C FIND AUTOREGRESSIVE COEFFICIENTS.FROM PARTIAL 
C CORRELATION COEFFICIE..~TS 

c 
All=FEN(l) 
DET=All*A22-A2l*Al2 
CM(l)=(A22*Y(Nl)-Al2*Y(Nl-1))/DET 
CM(2)=(-A2l*Y(Nl)+All*Y(Nl-l))/DET 
AM(l)=-A21/A22 
BM(l)=-A12/ All 
IF(IP.EQ.1) GO TO 23 
RM=X(Nl)*BM(l)+X(Nl-1) 
GM=X(Nl)*CM(l)+X(Nl-l)*CM(2) 
ETM=l.+RM*CM(2)/(1-GM) 
DO 13 IORD=l,IPMl 
IORDl=IORD+l 
IORD2=IORD+2 
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c 
C UPDATE AUXILIARY VECTOR DM(I) 
c 

c 

DO 14 I=l,IORD 
14 DM(I)=(BM(I)+RM*CM(I) I (1.-GM)) /ETM 

TEMP=SN (!ORD+ 1) /FRNMl (!ORD+ 1) 

C UPDATE FORWARD VECTOR AMl(I) 
c 

DO 15 I=l,IORD 
15 AMl(I)=AM(I)-TEMP*DM(I) 

AMl(IORD+l)=-TEMP 
c 
C UPDATE BACKWARD VECTOR BMl(I) 
c 

TEMP=TN(IORD+l)/FEN(IORD+l) 
BMl(l)=-TEMP 
DO 16 I=2,IORD1 

16 BMl(I)=DM(I-1)-TEMP*AM(I-l) 
c 
C UPDATE AUXILIARY VECTOR CMl(I) 
c 

c 

TEMP=BYN(IORD2)/FRN(IORD2) 
DO 17 I=l,IORDl 

17 CMl(I)=CM(I)+TEMP*BMl(I) 
CMl(IORDl+l)=TEMP 
SUM=X(Nl-IORD-1) 
SUMl=X(Nl)*CMl(l) 
DO 18 I=l,IORDl 
SUM=SUM+X(Nl+l-I)*BMl(I) 

18 SUMl=SUMl+X(Nl-I)*CMl(I+l) 
RMl=SUM 
GMl=SUMl 
ETMl=l.+(RMl(l.-GMl))*CMl(IORD2) 

C SET VECTORS FOR NEXT ITERATION 
c 

c 

DO 19 I=l,IORDl 
AM(I)=AMl(I) 
BM(I)=BMl(I) 

19 CM(I)=CMl(I) 
CM(IORD2)=CMl(IORD2) 
PJ1=RM1 
GM=GMl 
ETM=ETMl 

13 CONTINUE 
23 CONTINUE 

C PRINT OUT AUTOREGRESSIVE COEFFICIENT 
c 
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WRITE (6,105) (AM(I),I=l,IP) 
105 FORMAT(/ ,3X,' RECURSIVE SOLUTION 

RETURN 
END 

')// ,lOFl0.5) 

NOTE: Above program may be applicable to complex data by making 
following changes 

(i) Declare all variables to be complex value except 
integer variables (i.e. IMPLICIT Statement) 

(ii) In DO loop 25, take complex conjugate on the 
variable Y(I+IP) (i.e. Y(I+IP)=CONJG(Y(I+IP))) 
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D.2 FORTRAN Program Listing for Generalized Levinson's Approach 
of ARMA Model 

Generalized Levinson 1 s approach discussed in Section 5.3 is 

programmed for the premodified method. 

c 
C THIS PROGRAM COMPUTES DENOMINATOR COEFFICIENTS OF 
C ' HIGH PERFORMANCE ' ARMA SPECTRAL ESTIMATION 
C BY GENERALIZED LEVINSON 1 S APPROACH (REAL DATA, p=q). 
c 

c 

DTMENSION X(64),FEN(30),YV(30),XV(30) 
,FRN(30),FRNM1(30),SN(30),TN(30) 
,BMN(l0,10),BBMN(l0,10) 
,Y(64) ,RX(30,30) 
,WKAREA(30),CM(30),CM1(30),.~(30),AM1(30) 
,DM(30),RXX(30,30),BM(30),BM1(30) 

C Nl: NUMBER OF TOTAL OBSERVATION 
c 

N1=64 
c 
C IP: ORDER OF DENOMINATOR COEFFICIENTS 
c 

c 

IP=4 
NP=Nl-IP 
N=Nl-1 
IPl=IP+l 
IPMl=IP-1 

C GENERATE DATA TO BE MODELED 
c 

c 

DSEED=l2345 
CALL KAVEH(Y,Nl,DSEED) 
DO 25 I=l,NP 

25 X(I)=Y(I+IP) 
WRITE(6,101) (Y(I),I=l,NP) 
WRITE(6,101) (X(I),I=l,NP) 

101 FORMAT(2X,10F8.3) 
Nl=NP 
N=Nl-1 

C INITIALIZATION BASED ON THE FIRST TWO DATA SAMPLES 
C X(l) Ai.~D Y(l) 
c 

DO 40 I=l,IPl 
DO 40 J=l,IPl 



c 

BBMN(I,J)=O.O 
BMN(I,J)=O.O 

40 RXX(I,J)=O.O 
All=Y(l)*X(l)+Y(2)*X(2) 
Al2=Y(2) *X(l) 
A2l=Y(l)*X(2) 
A22=Y (1) *X(l) 
RXX(l,l)=All 
RXX(l,2)=Al2 
RY.X(2,l)=A21 
RXX(2,2)=A22 
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BMN(l,l)=-Al2/All 
FR.l\fM1(2)=RXX(2,2)+RXX(2,l)*B"MN(l,l) 

C SOLVE FOR DENOMINATOR COEFFICIENTS (AM(I),I=l,IP) 
C AT EACH NEW DATA POINT FROM IT=3 TO IT=Nl 
c 

c 

DO 38 IT=3,Nl 
IPMl=IP-1 
IF(IT.LE.IP) IPMl=IT-2 

C UPDATE ROW VECTORS 
c 

c 

DO 37 I=l,IPl 
YV(I)=O.O 
XV(I)=O.O 
IF(I.LE.IT) YV(I)=Y(IT+l-I) 
IF(I.LE.IT) XV(I)=X(IT+l-I) 

37 CONTINUE 
DO 39 I=l, IPl 
JF=I 
IF (I. EQ .1) JF=IPl 
DO 39 J=l,JF 

39 RXX(I,J)=R..XX(I,J)+YV(I)*XV(J) 
All=RXX(l, 1) 
Al2=RXX(l,2) 
A2l=R..'L"<(2, 1) 
A22=RXX(2,2) 
AM(l)=-A21/A22 
BM(l)=-Al2/All 
IF(IP.EQ.l) GO TO 23 
DO 13 IORD=l,IPMl 
IORDl=IORD+l 
IORD2=IORD+2 

C COMPUTE AUXILIARY PARAi'1ETERS FEN(IORD+l) 
C AND FRN(IORD+l) 
c 

SUM=R..'L'\(l, 1) 
DO 27 I=l,IORD 



27 SUM=SUM+RXX(l,I+l)*AM(I) 
FEN(IORD+l)=SUM 
SUM=RXX(IORDl,IORDl) 
DO 28 I=l,IORD 

28 SUM=SUM+RXX(IORDl,I)*BM(I) 
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FRN(IORD+l)=SUM 
c 
C COMPUTE PARTIAL CORRELATION SN(I) 
c 

c 

SUM=RXX(IORD2, 1) 
DO 29 I=l,IORD 

29 SUM=SUM+RXX(IORD2,I+l)*AM(I) 
SN(IORD+l)=SUM 
DO 14 I=l,IORD 

14 DM(I)=BMN(I,IORD) 

C COMPUTE PARTIAL CORRELATION TN(I) 
c 

c 

SUM=RXX(l,IORD2) 
DO 30 I=l,IORD 

30 SUM=SUM+RXX(l,I+l)*DM(I) 
TN(IORD+l)=SUM 

C UPDATE VECTOR AMl(I) ; FORWARD SOLUTION 
c 

c 

TEMP= SN (IORD+l} /FRNMl (IORD+ 1) 
DO 15 I=l,IORD 

15 AMl(I)=AM(I)-TEMP*DM(I) 
AMl(IORD+l)=-TEMP 

C UPDATE VECTOR BMl(I) ; BACKWARD SOLUTION 
c 

c 

TEMP=TN(IORD+l)/FEN(IORD+l) 
BMl(l)=-TEMP 
DO 16 I=2,IORD1 

16 BMl(I) =DM(I-l)-TEMP*.AM(I-1) 
SUM=RXX(IORD2,IORD2) 

C COMPUTE AUXILIARY PARAMETER FRN(IORD2) 
c 

c 

DO 31 I=l,IORDl 
31 SUM=SUM+RXX(IORD2,I)*BMl(I) 

FRN(IORD2)=SUM 

C SET FOR NEXT DATA POINT 
c 

DO 19 I=l,IORDl 
.AM(I)=AMl(I) 
BBMN(I,IORDl)=BMl(I) 

19 BM(I)=BMl(I) 



c 

13 CONTINUE 
BMN(l,l)=-Al2/All 
DO 43 I=l,IORDl 
DO 43 J=2,IORD1 

43 B}:1N(I,J)=BBMN(I,J) 
DO 41 I=l,IORD2 

41 FRNMl(I)=FRN(I) 
38 CONTINUE 
23 CONTINUE 
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C PRINT OUT RESULTED DENOMINATOR COEFFICIENTS 
c 

WRITE(6,105) (AM(I),I=l,IP) 
105 FORMAT(/,3X, 1 GENERALISED LEVINSON SOLUTION= 

, I I , lOF 10 • 5) 
STOP 
END 

NOTE: Above program may be applicable to complex data by making 
changes as described in Section D.1 (See Expression (5.3.ld)). 

! 
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The high performance method for obtaining an ARMA model 

spectral estimate of a wide-sense stationary time series has been 

found to provide typically superior performance when compared to 

such comtemporary approaches as the Box-Jenkins and maximum 

entropy methods. In this dissertation, fast recursive algorithmic 

implementations of the high performance method are developed. They 
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