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Transmission of evanescent wave modes through a slab of negative-refractive-index material
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There has been a long-standing argument about Pendry’s suggestion that a plane harmonic evanescent (surface)
wave along the interface between free space and a slab of ε = −1 , μ = −1 double-negative (DNG) medium
will emerge on the far side with recovery of phase and amplitude. While this is possible, it is subject to parameter
restrictions. This work generalizes previous work and now gives analytical criteria for when to expect such
a recovery in a Smith-Kroll DNG medium. Basically this requires, among other things, a relatively narrow
bandwidth and relatively small transverse-mode component. There also is a very strong dependence on the ratio
of slabwidth to plasma wavelength.
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I. INTRODUCTION

It is well known that the slab reflection and transmission
coefficients of a monochromatic electromagnetic wave mode
determined by wavenumber K = (Kx , 0,

√
k2 − K2

x ), where
k2 = ω2με/c2 (ω is the angular frequency, c is the velocity of
light in vacuo, and μ,ε are the dimensionless electromagnetic
parameters relative to free space, with με = n2 and n being
the refractive index), are

R(ω) = r(1 − e2iϕ)

1 − r2e2iϕ
, T (ω) = (1 − r2)eiϕ

1 − r2e2iϕ
,

(1)

r = μK0z − K1z

μK0z + K1z

.

Here the subindices 0,1 indicate free space and the double-

negative (DNG) medium, respectively, ϕ =
√

k2 − K2
1xd,

where d is the slabwidth. In terms of a dimensionless
wavenumber q = K1x/k0 the Fresnel coefficient becomes

r = μ
√

1 − q2 −
√

n2 − q2

μ
√

1 − q2 +
√

n2 − q2
. (2)

For evanescence, replace
√

n2 − q2,
√

1 − q2 by√
q2 − n2,

√
q2 − 1, respectively, in (2), and replace iϕ by

−ψ = −
√

K2
1x − k2d = −kd

√
q2 − n2 in (1). Veselago [1]

and colleagues [1,2] suggested curious properties for media
with a negative refractive index, and specifically with relative
parameters ε < 0, μ < 0. More details can be found in
Pendry [3]. Pendry and Smith [4] pointed out that r → ∞
when ε = −1,μ = −1 at a single frequency ωm, as can be seen
easily from (2), as a result of which one finds zero reflection
and T (ωm) = e−iϕ(ωm) (which indicates backwards evolution
of phase), or T (ωm) = e−ψ(ωm) in the evanescent case (which
indicates an increase of amplitude with slabwidth d).

This result has been criticized, or subjected to restrictive
circumstances, by various researchers. Preceding work [5,6]
by this author indicated, for a specific type of negative-
refractive-index medium, that the recovery may occur only
for signals with very small bandwidth. This work, in turn,
was recently faulted [7] for not including a factor e−iωt in the
needed integration over small bandwidth so that it would hold
only for ωmt � 1. One purpose of this work is to redo the

calculation with this factor and show more generally that the
Pendry-suggested eψ factor will usually not manifest itself in
a DNG medium. The obtained analytical results are confirmed
by numerical evaluation of the relevant integrals. Another
purpose is to try to find criteria for such a manifestation.

II. ANALYSIS

Let the band-limited input signal be A(t) with Fourier
transform Ã(ω). The electric field of the mode in question
is given by the inverse transform

E(x,d+,q,t) = 1

2π

∫ ∞

−∞
dωT (ω)Ã(ω)E(q,ω) ei(k0qx−ωt), (3)

where E(q,ω) is a strength factor only weakly dependent
upon ω. For the purpose of this work, it suffices to study
this integral in the immediate environment of ω = ωm. Thus
we need consider only the factor Ã(ω)T (ω)e−iωt , and we may
replace E(q,ω) ≈ 1 without significant error within the signal
bandwidth 2�ω.

The relative electromagnetic parameters for a (theoretically
lossless) Smith-Kroll [8] (SK) medium are

ε(�)=1 − 1

�(� + i�c)
, μ(�)=1 − F�2

0

�2 − �2
0 + i��c

,

(4)

where all � refer to frequencies with respect to the plasma
frequency ωp, and �c = νc/ωp is a (vanishingly small)
normalized collision frequency, which in effect will be taken
to be infinitesimal. It is necessary that

1 = (F + 2)�2
0 (5)

in order for both μ and ε to be −1 at one and the same frequency
�m (this is not the case in Ref. [8]). It then follows to order
O(�2

c) that

�m ≈ 1/
√

2 − i�c/2. (6)

If we define τm = (dμ/dω)ωm
and τe = (dε/dω)ωm

and note
from energy considerations that for narrow bandwidth signals,

026606-11539-3755/2011/83(2)/026606(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.026606
borrego
Typewritten Text
Copyright by the American Physical Society. de Wolf, David A., Feb 28, 2011. “Transmission of evanescent wave modes through a slab of negative-refractive-index material,” PHYSICAL REVIEW E 83(2) Part 2: 026606. DOI: 10.1103/PhysRevE.83.026606.



DAVID A. DE WOLF PHYSICAL REVIEW E 83, 026606 (2011)

d(ωμ)/dω > 1, d(ωε)/dω > 1, so that τm,τe > 1/ω > 0, it
can then be seen that

r ≈
2 −

(
τm + 1

2
τm+τe

q2−1

)
(
τm − 1

2
τm+τe

q2−1

)
δ�

≈ 2(
τm − 1

2
τm+τe

q2−1

)
δ�

= �t

δ�
(7)

for |δ�| ≡ |�m − �| � �t . Equations (1), (6), and (7) lead
directly, for evanescence, to

T (ω) ≈ (� − �m − �t )(� − �m + �t )e−ψm

(� − �b)(� − �a)
(8)

again in the vicinity of �m,where ψ ≈ ψm = kmd
√

q2 − n2 is
an adequate approximation within the very small bandwidth
under consideration, and

�a = �m − �te
−ψm, �b = �m + �te

−ψm. (9)

In Appendix B we show that �te
−ψm � �m for a number

of SK models. A slabwidth of d = (4/π )λp has been chosen to
illustrate the effect. At this intermediate value of d it appears
that 2�te

−ψm � 10−6 so that enhancement would hold only
for bandwidths less than 10−6ωp. With the experimental value
used in Ref. [7], ωp ∼ 1.2 × 1010 s−1, bandwidths less than
2 kHz at frequencies of the order of 1.3 GHz would be needed
to see the eψm growth factor. This critical bandwidth rapidly
diminishes as slabwidth d is increased. We find the behavior
of T (ω) for F = 1.25, �0 = 1/

√
3.25, and d/λp = 4/π as

shown in Fig. 1.
The spacing between �a and �b clearly tends to zero as

slabwidth d and/or q increases and thus will establish below
that, even though T (ωm) = eψm will diverge as d,q → ∞,
a narrow-bandwidth signal around �m resulting from (1) will
not. Another set of divergences appear to occur when � is equal
to or near the singularity frequencies �a and �b. However,
examination of (5) shows that the singularities on either side
of �m are integrable so that even relatively narrow-bandwidth
signals will not exhibit singular behavior upon transmission
through the slab. In fact, the work described below also
removes problems with these singularities.

FIG. 1. Slab transmission coefficient vs. � near �m.

FIG. 2. |E(t)| vs. bandwidth �� in s−1.

Other SK models (see Appendix B) give very similar
results. It is straightforward to reduce (8) to

T (�) = e−ψm + γ�te
−ψm

(
1

� − �a

− 1

� − �b

)

− γ 2�2
t e

−ψm

(�−�b)(�−�a)
≈ 1

2
�t

(
1

� − �a

− 1

�−�b

)
,

(10)

where terms of O(e−ψm ) are ignored and γ = 1 − e−ψm ≈ 1
is set in the last right-hand side.

Let Ã(ω) = e−iωt = e−i�ωpt for �m − �� < � < �m +
�� and let Ã(ω) be zero outside the 2�� bandwidth. We
then need to calculate from (1) and (10)

E(t) =
∫ �m+��

�m−��

d�T (�)e−i�ς , (11)

where ς ≡ ωp(t − qx/c) and where an inessential factor
ωp/2π is omitted in the calculations. This integral is further
evaluated in Appendix A, leading to Eq. (A3).

The very narrow bandwidth �2 − �1 = 2�� allows for
further simplification of (A3) by exploiting the small size of
�te

−ψm and ignoring negligible terms of order O(�te
−ψm )

compared to unity:

E(t) ≈ 2�te
−i�mςcos(�tςe−ψm )�te

−ψm
cos[(��)ς ]

��

− 2�te
−i�mς sin(�tςe−ψm )Si(��ς ), (12)

in which the second term is also negligible when �tςe−ψm � 1
and ��ς � 1. Expression (12) is the analytical result of this
work and has been verified [9] by numerical integration of
(11). It follows that E(t) = |E(t)|e−i�mς . The factor e−i�mς

is model independent in the context of (5), and the amplitude
|E(t)| is weakly dependent on model through some variation
in �t (as shown in Appendix B and Fig. 2), but is essentially
independent of the value of ς and weakly dependent upon√

q2 − 1,d, until �tςe−ψm approaches unity (which, among
other things, may require large values of ς ).

Figure 2 shows plots of |E(t)| versus bandwidth ��

[in s−1as per Eq. (12)] in which expression the second term
is negligible at the chosen parameter values (q = 2.5, d/λp =
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FIG. 3. Location of normalized frequencies.

4/π ). The decrease with increasing �� can be somewhat
understood from Fig. 1.

III. DISCUSSION

This work demonstrates what to expect at the far side of a
slab of DNG material when a surface or evanescent mode is
created at the near side. Such a mode is defined by the extended
sine parameter q = Kx/k. If the mode is created at the
frequency ωm at which the electromagnetic parameters μ and
ε are −1, then the output mode has an amplitude exponentially
proportional to slabwidth d, which would seem to represent
a recovery of absorption loss inside the slab, but actually is
an enhancement of the input mode because the enhancement
factor exp(kmd

√
q2 − 1) multiplies the input amplitude and

appears to grow to unbounded strengths, as previously noted
by various authors. The result (12) shows that such exponential
growth does not occur for even relatively small bandwidths
�ω. The minimum bandwidth at which (12) holds is �� ∼
�te

−ψm , and Table I in Appendix B demonstrates that this can
be a very small bandwidth. However, for any fixed value of
q and bandwidth, a decrease in slabwidth d will enhance the
exponential growth in evanescent amplitude. The major result
of this work is that the exponential growth (compensating
for evanescent loss) does not take place in signals with a
bandwidth that exceeds 2�te

−ψm around the frequency �m,
which determines μ = ε = −1. In Appendix B we discuss the
conditions under which this critical bandwidth is obtained for
an SK medium.

Other mechanisms that inhibit exponential growth have
been proposed [10,13].

APPENDIX A

To avoid difficulties with the integrable singularities, the
integral in (11) needs to be split into three pieces:

E(t) = I1 + I2 + I3 = 1

2
�t

[∫ �a

�1

d�T (�)e−i�ς

+
∫ �b

�a

d�T (�)e−i�ς +
∫ �2

�b

d�T (�)e−i�ς

]
,

(A1)

where �1 = �m − �� and �2 = �m + �� (see Fig. 3).

TABLE I. Parameter values for five SK models

Key parameters τe τm ψm �t �te
−ψm

F = 1 5.657 16.971 12.961 0.1350 3.171×10−7

F = 2 5.657 11.314 12.961 0.2062 4.845×10−7

F = 3 5.657 9.428 12.961 0.2503 4.324×10−7

F = 4 5.657 8.485 12.961 0.2802 6.582×10−7

F = 5 5.657 7.920 12.961 0.3018 7.090×10−7

Ω
ψ

FIG. 4. �te
−ψm vs. normalized wavenumber q = Kx/k0 for

various d/λp.

After insertion of (10) and some algebraic manipulation
one obtains

E(t) ≈ 1

2

(
e−i�aς

∫ (�2−�a )ς

(�a−�1)ς
dx

cos x

x

+ e−i�bς

∫ (�b−�1)ς

(�2−�b)ς
dx

cos x

x

)

− 1

2
(ie−i�aς {Si[(�2 − �a)ς ] + Si[(�a − �1)ς ]})

+ 1

2
(ie−i�bς {Si[(�2 − �b)ς ] + Si[(�b − �1)ς ]}),

(A2)

where Si(x) = ∫ x

0 dx ′(sin x ′/x ′). This can be rewritten to
exhibit the possibility of further possible approximations as

E(t)≈�te
−i�mςcos(�tςe−ψm )

∫ �tςe−ψm

−�tςe−ψm

d�
cos[(� + ��)ς ]

(� + ��)ς

− �te
−i�mς sin(�tςe−ψm ){Si[(�� + �te

−ψm )ς ]

+ Si[(�� − �te
−ψm )ς ]}. (A3)

APPENDIX B

Table I lists parameter values for five SK models, with
q = 2.5, d/λp = 4/π so that the slabwidth d is comparable to
the plasma wavelength λp. The parameter �te

−ψm decreases
rapidly in value with increasing q,d (see also Fig. 4), but
the main purpose here is to show the weak dependence
upon F .

In all of these, both �a and �b lie extremely close
to �m because �te

−ψm is very small in comparison.
The sensitivity of spacing �te

−ψm to parameters q,d is more
aptly illustrated in Fig. 4 for F = 2.The values of d/λp are
indicated in the legend (the dependence upon F is too weak
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to be shown on this scale). It is apparent that �te
−ψm < 10−10

for d/λp = (d/λ)(λ/λp) < 0.5 and for q > 6.6. In that case,
if λ > λp for lossless evanescence, it follows that d < λ

(which includes the near-field cases of interest in contemporary
metamaterial-lens applications) in order that d/λp < 0.5. Thus
the present analysis indicates, for near-field applications with

0.01 < d/λp < 0.5, that q < 6.6 is required for potential
exponential increase of amplitude in the emerging evanescent
wave. Further criteria can be obtained from the above analysis
for other parameter values. For example, if much smaller
values of d/λp are required, it follows that the critical value
for q must be larger.
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