OPTIMIZATION OF THE DESIGN OF AN EXTENDED

SURFACE WITH FINNED PINS

by B. C. Vatsaraj

Thesis submitted to the Graduate Faculty

of the

Virginia Polytechnic Institute

in candidacy for the degree of

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

November 1964

Blacksburg, Virginia

TABLE OF CONTENTS

Chapter		Page
· I.	INTRODUCTION	7
II.	REVIEW OF LITERATURE	8
III.	THEORETICAL INVESTIGATIONS	12 12
	Pin	16
	from a Finned Pin	17
	Plain Pin. Design of Pins Design of Finned Pins.	36 37 40
	Finned Pins	45 45 45 52
IV.	EXPERIMENTAL INVESTIGATIONS.	54 54 578 558 3
v.	DISCUSSION Experimental Accuracy. Determination of Average h and Difference Between the Temperature at the Root of the Pin and the Average Bulk	64 64
	Temperature	65
	Comparison of Heat Transfer Rate of Finned Pin, Pin and Plate	66
	Comparison of Volume of Finned Pin and Plain Pin	74
VI.	SUMMARY AND CONCLUSIONS	76

.

.

Table of Contents (Cont.)

Chapter		Page
VII.	RECOMMENDATIONS. , , , , ,	77
VIII.	BIBLIOGRAPHY	78
IX.	ACKNOWLEDGMENT	80
77 12 9	VITA	81
XI.	APPENDICES	82

LIST OF FIGURES

Page

Fig.	1	Heat transfer characteristics of a plain pin	14
Fig.	2a	A pin with two fins	18
Pig.	2	Heat transfer characteristics of a finned pin $(L = \frac{1}{2}")$	28
Fig.	3	" $(L = 1")$.	29
Fig.	4	11 11 11 11 11 11 11 11	30
Fig.	5	$n n n n n n (L = 2^n)$.	31
Fig.	б	$n n n n n (L = 3^n)$.	35
Fig.	7	11 12	33
Fig.	8	H H H H H H H (L - 5H).	34
Fig.	9	$11 11 11 11 11 11 11 (L = 6^{10}) .$	35
Fig.	10	An arrangement of pins in a row	39
Fig.	11	Assembly of plain pins with insulation .	41
Fig.	12	Assembly of finned pins with insulation.	41
Fig.	13	Dimensions of three types of finned pins	43
Fig.	14	An arrangement of finned pins in a row .	43
Fig.	15	Electric Heater Used for Heating the Front Plates	55
Fig.	16	Finished Assembly of Finned Pin	56
Fig.	17	An arrangement and numbering of the thermocouples	56
Fig.	18	Assembly of primary surface with six thermocouples on either side	60
Fig.	19	Sketch of Heater Circuit	61

List of Figures (cont.)

Page

F1s.	20	Experimental set up for the heat transfer measurements of finned pins, pins and plates
Fig.	21	Experimental measurements of heat transfer rate for a finned pin 67
Tig.	22	Experimental measurements of heat transfer rate for a pin
Fig.	23	Experimental measurements of heat transfer rate for a place
Fig.	24	Comparison of experimental measurements of heat transfer rate for a plate, pin and finned pin
Fig.	25	Effectiveness of finned pin and pin over a plate
Fig.	26	Effectiveness of a finned pin over pin

LIST OF TABLES

Page

Table 1Various Designs of Plain Pin40Table 2Various Designs of Finned Pin44

Appendix A

Appendix B

I. INTRODUCTION

In order to increase the rate of heat transfer from a primary surface, extended surfaces in the form of fins of different shapes and sizes have been widely used.

In recent years pins have been used instead of fins to increase the rate of heat transfer. Hsieh (1), working on the original idea of Professor Hsub has proved that the rate of heat transfer through a pin can be further increased by the addition of annular fins on the pin.

The objective of this thesis is to optimize the design of an extended flat surface with finned pins and determine the improvement in the rate of heat transfer.

The general procedure to be followed is as follows:

- (1) Theoretical analysis of the heat transfer characteristics of various designs of pins and finned pins.
- (2) Optimization of the design for a given primary surface using plain pins and finned pins.
- (3) Experimental measurements of heat transfer rate for finned pin, plain pin and primary surface.
- (4) Comparison of rate of heat transfer between an extended surface with finned pins and plain pins.

II. REVIEW OF LITERATURE

Extended surfaces are commonly found in the form of fins attached to the surface of a machine part for the express purpose of increasing the rate of heat transfer between the surface and an ambient fluid. It is on this principle that fins find numerous applications in electrical apparatus, heat exchangers, radiators, and so on. Fins are made in various profiles and shapes. For any particular application, the problem is to select a fin which will give maximum rate of cooling, minimum material, minimum resistance to air flow, adequate strength and ease of manufacture. Schneider (2) and Jacob (3) have discussed heat transfer rate, efficiency and temperature distribution of various types of circumferential fins and spines.

McManus and Starner (4) determined the average heat transfer coefficients for the rectangular fin arrays. They plotted curves for temperature vs. average heat transfer coefficients. These coefficients were determined for various fin positions. Schryber (5) provided heat transfer coefficient data on a serrated type of finned surface and also showed the ease of fabrication and the flexibility of sizes.

Kays (6) adopted small diameter circular pins in contrast to fins on the heat transfer surface and proved that heat exchangers with pinned and finned surfaces are

competitive, so far as volume and weight are concerned. Norris and Spofford (7) presented test results for a group of small discontinuous fins and pins and proved that the heat transfer coefficient can be almost twice as high as that for continuous fins.

Avrami and Little (8) studied the temperature gradients in two dimensions with thick fins of rectangular profile, and also established the critical Nusset number below which straight rectangular fins are more effective. Carrier and Anderson (9) presented solutions in terms of infinite series for circular fins of rectangular and hyperbolic profile.

Gray, Mathew and McRobert (10) derived the equations for heat transfer through circular disc fins which were later modified by Murray (11) for special cases. Transawa (12) gives calculation of heat transfer rate in simple shapes fins including cases in which thicker and shorter fins are exposed to flowing liquid. Charts for evaluating mathematical expressions are given, from which heat dissipation from the fins can be calculated.

Schmidt (13) introduced the apparent coefficient of heat transfer as a function of the dimensions and the mean coefficient of heat transfer in order to facilitate the calculation of heat transmission from or to finned surfaces. Keller and Sommers (14) plotted curves for

the efficiency of an annular fin of constant thickness.

Tate and Cartinhour (15) described four types of heat exchangers with disc-on-tube as the extended surface. Kays and London (16) presented basic heat transfer and flow friction design data for thirteen plate-fin type and finned flat-tube type surfaces. The various surfaces were compared on the basis of heat transfer coefficient and flow friction horsepower. Kays (17) has also worked on six compact high-performance heat transfer surfaces.

Kayan and Gates (18) dealt most comprehensively with the analysis of finned structures found in many engineering application.

Dusinberre (19) and (20) showed a trial and error procedure for getting local surface coefficient, and gave an approximate form of fin efficiency for four different types of fins.

The various types of heat transfer surfaces used in most heat exchangers have been illustrated by Hsu (21). He has also given in detail, the mathematics involved in the design of heat exchangers.

Following the original idea of Professor Hsu, Hseih (1) has added a new type of extended surface which is known as a finned pin. It was found that the heat transfer rate can be increased by 61 per cent by a single finned pin compared to a plain pin of the same diameter.

He derived a mathematical expression for a pin with two fins, which could be modified for any number of fins. In the following chapters, the modified mathematical equations have been used extensively.

Reiher (22) proved that the staggered arrangement gave substantially higher coefficients of heat transfer than an in-line arrangement. McAdams (23) described the work done by numerous investigators on staggered tubes and stated that the heat transfer coefficient is somewhat higher for the staggered arrangement than for an in-line arrangement. The increase in heat transfer coefficient for the rows in the rear of the bank over those in the front row is due to increased turbulence.

III. THEORETICAL INVESTIGATIONS

(1) HEAT TRANSFER CHARACTERISTICS OF A PIN

The variables that affect the rate of steady state heat transfer between a plain pin and the ambient fluid are:

- 1. Diameter of pin
- 2. Difference in temperature between pin and ambient air
- 3. Length of pin
- 4. Thermal conductivity of the pin material

For unsteady state heat transfer two more variables, the density and the specific heat of the material, will also have to be considered.

In analyzing these variables, if we keep the thermal conductivity of the pin material, the convective film coefficient and the temperature difference between root of the pin and ambient air constant, we are left with only two principal variables, viz. diameter and the length of the pin. Therefore, the curves can be plotted with the diameter of the pin against heat flux for various lengths of the pin.

An equation for the heat transfer rate through a pin projecting from a primary surface is given by Kreith (24) as follows:

$$Q = hAm\Theta_{o} \frac{\sinh mL + h\cosh mL}{\cosh mL + h \sinh mL}$$
(3-1)

$$q = \frac{Q}{A} = \log_{o} \frac{\sinh mL + h \cosh mL}{\cosh mL + h \sinh mL}$$
(3-2)

.

where,

Q = Rate of heat flow from pin to fluid (Btu/hr)
q = Rate of heat flow per unit root area or heat
flux at the root of the pin (Btu/ft²hr)
P = Perimeter of the pin (ft)
h = Average convective heat transfer coefficient
(Btu/hr ft² F)
k = Thermal conductivity of the pin (Btu/hr ft F)
A = Cross sectional area of the pin (ft²)
to = Temperature at the root of the pin (F)
ta = Ambient temperature of air (F)
$$\theta_0$$
 = Temperature excess at the root of the pin
= to - ta
m = $\sqrt{-\frac{hP}{EA}}$
L = Length of the pin
H = $\frac{h}{mE}$

The convective heat transfer coefficient for natural convection is given by McAdams (23) as:

h = .27
$$(\Delta T)^{\frac{1}{4}}$$

for $10^{3} < G_{R} < 10^{9}$ (3-3)

Fig. 1 Heat transfer characteristics of plain pin for

where,

 $G_{B} = Grashof number$

 ΔT = Difference in temperature between the pin and ambient air (F)

d = Diameter of the pin (ft)

By means of a computer (IBM 1620), a family of curves of q vs. d are plotted as shown in the fig. 1 with T = 124.2 F and k = 30 Btu/hr ft F. The data for fig. 1 are shown in Table A-1, in the Appendix A.

From these curves it can be seen that:

- 1. With decrease in diameter of the pin, the heat transfer rate increases. The increase is notable between the range 0 < d < .08 and then the slope of the curve gradually decreases for d > .08. The increase in heat transfer is due to the improvement in h with decrease in the value of the denominator in equation (3-3).
- 2. For a given diameter, the heat transfer rate increases with increase in length. On the other hand there is a limit to which we can increase the heat transfer rate with increase in length.

In view of the above discussion it can be seen that for a given heat transfer rate, the design of a pin can be optimized by determining the ideal combination of length and diameter of the pin.

15

er ek

(2) HEAT TRANSFER CHARACTERISTICS OF A FINNED PIN

In the analysis of a finned pin, more variables are involved.

Q = f(d, D, b, s, L, n) (3-4)

where,

Q = Heat flux (Btu/ft²hr) d = Diameter of pin (ft) D = Outside diameter of fin (ft) b = Thickness of fin (ft) L = Length of pin (ft) n = Number of fins (ft) s = Spacing of fins (ft)

It would be rather complicated to vary one of the above variables and hold the rest of them constant. For a given value of d and D, if b is doubled, the volume of the material will be doubled without appreciable increase in the surface area. On the other hand, two fins with thickness b will have two times the surface area compared to one fin with 2b thickness. Therefore, instead of one thick fin, a greater number of thinner fins will be preferable. So we may choose a minimum thickness for the fin and assume that it be constant. Secondly, from the previous analysis of a plain pin, we know that smaller diameter is better for increasing the heat transfer rate, but a pin cannot be too small to be practical. So a 17

suitable diameter is selected for the pins. Thirdly, fins will be equally spaced over the entire length of the pin. So two variables s and n will merge into a single variable. Finally, the variables involved are D, L and n.

(3) MATHEMATICAL EQUATIONS FOR HEAT TRANSFER FROM A FINNED PIN

The mathematical equations for the two disced finned pins were derived in detail by Hsich (1). In the following discussion a summary of the derivation of these equations is given.

The derivation of the equations was based on the principal assumption that the temperature of the ambient air, thermal conductivity of the material and convective heat transfer coefficient are constant. It was also assumed that the heat transfer is by convection only. Nomenclature:

- h = Average convective heat transfer coefficient (Btu/hr ft² F)
- k = Thermal conductivity of finned pin (Btu/hr ft F)
 d = Diameter of pin (ft)
- D = Outside diameter of fin (ft)
- L = length of pin
- s = Spacing or pitch of fin (ft)

n = Number of fins

t = Thickness of fin (ft)

 t_0 = Temperature at the root of the pin (F) t_a = Ambient temperature of air (F) θ_0 = Temperature excess at the root of the fin $= t_0 - t_a$ (F) r_1 = Radius of pin (ft) = $\frac{d}{2}$ r_2 = Outside radius of fin (ft) = $\frac{D}{2}$ $q_1, q_2, q_3 \dots q_n$ = Rate of heat transfer at the root of the pin with 1, 2, 3 n fins spaced equidistant from each other.

Fig. 2a A pin with two fins

The finned pin is divided into pins and fins, and are numbered as shown in Figure 2a.

Heat flux from the pin 7 is given by equation (3-1) as:

 $Q_{7-0} = 1cAm \partial_{7-0} \frac{\tanh mc + H_1}{1 + H_1 \tanh mc}$ (3-5)

=
$$kAm \theta_{7-0} B_1$$

where,

$$Q_{7-0} = \text{Heat flux from pin 7}$$

$$\Theta_{7-0} = t_{7-0} - t_{a}$$

$$t_{7-0} = \text{Root temperature of pin 7}$$

$$m = \sqrt{\frac{4h}{kd}}$$

$$H_{1} = \frac{h}{mk}$$

$$B_{1} = \frac{tanh mc + H_{1}}{1 + H_{1} tanh mc}$$

Heat flux from fin 6 is given by Schneider (2) as:

$$Q_{5-0} = 2\pi k N tr_1 \Theta_{6-0} \frac{K_1 (Nr_1) I_1 (Nr_2) - I_1 (Nr_1) K_1 (Nr_2)}{K_0 (Nr_1) I_1 (Nr_2) + I_0 (Nr_1) K_1 (Nr_2)}$$

= $B_2 \Theta_{6-0}$ (3-6)

Ō

where,

$$Q_{6-0}$$
 = Heat flux from fin 6
 Θ_{6-0} = $t_{6-0} - t_a$
 t_{6-0} = Average root temperature of fin 6.
 $N = \sqrt{\frac{2h}{kt}}$

$$\begin{split} & K_0 = \text{Zero order Modified Bessel Function, 2nd Kind} \\ & K_1 = \text{First order Modified Bessel Function, 2nd Kind} \\ & I_0 = \text{Zero order Modified Bessel Function, 1st Kind} \\ & I_1 = \text{First order Modified Bessel Function, 1st Kind} \\ & B_2 = 2 \pi \text{ kNtr}_1 \quad \frac{K_1(\text{Nr}_1)I_1(\text{Nr}_2) - I_1(\text{Nr}_1)K_1(\text{Nr}_2)}{K_0(\text{Nr}_1)I_1(\text{Nr}_2) + I_0(\text{Nr}_1)K_1(\text{Nr}_2)} \end{split}$$

For determining the heat flux in pin 5 let us assume that pin 5 is surrounded by a fictitious fluic having a heat transfer coefficient equal to h_1 , then

$$Q_{6-0} = h_1 S \Theta_{6-0}$$

= $h_1(\pi dt) \Theta_{6-0}$ (3-7)

Equating equations (3-6) and (3-7), and rearranging

$$h_1 = \frac{B_2}{\pi dt}$$

Now pin 5 can be considered as an individual pin with the following boundary conditions.

$$Q_{5-t} = Q_{7-0}$$
 and $\Theta_{5-t} = \Theta_{7-0}$ at $x = t$
 $\Theta = \Theta_{5-0}$ at $x = 0$

where,

 Q_{5-t} = Heat flux from the end of pin 5

From the heat balance of the differential element of pin 5, we arrive at the following equation

$$\frac{d^2\theta}{dx^2} - m_1^2 \theta = 0 \qquad \qquad m_1 = \int \frac{4h_1}{kd} \qquad (3-8)$$

The solution of this equation after putting the boundary condition for pin 5 is:

$$\frac{\theta}{\theta_{5-0}} = \frac{\cosh m_j(t-x) + H_2 \sinh m_j(t-x)}{\cosh m_j t + H_2 \sinh m_j t}$$
(3-9)

where,

 $H_2 = \frac{m}{m_1} B_1$

For pin 5 at x = t, $\theta = \theta_{5-t} = \theta_{7-0}$

Therefore, equation (3-9) becomes: $\frac{\Theta_{5-0}}{\Theta_{7-0}} = \frac{\Theta_{5-0}}{\cosh m_1 t + M_2 \sinh m_1 t}$ (3-10)

where,

$$B_3 = \frac{1}{\cosh m_1 t + H_2 \sinh m_1 t}$$

By differentiating equation (3-9) and putting x=0 we get,

$$\frac{d\Theta}{dx} = -m_1 \Theta_{5-0} \frac{\sinh m_1 t + H_2 \cosh m_1 t}{\cosh m_1 t + H_2 \sinh m_1 t}$$

$$Q_{5-0} = -kA \frac{d\Theta}{dx} = 0$$

$$= kAm_1\Theta_{5-0} \frac{\tanh m_1 t + H_2}{1 + H_2 \tanh m_1 t}$$

$$= kAm_1\Theta_{5-0} B_4 \qquad (3-11)$$

where,

$$B_{4} = \frac{\tanh m_{1}t + H_{2}}{1 + M_{2} \tanh m_{1}t}$$

for pin 4

let Q_{4-b} = Heat flux from the end of the pin 4 at x = b e_{4-b} = Temperature difference at the end of pin 4

at x = d

then

$$Q_{4-b} = Q_{5-0}$$

$$= Q_{4-b} = Q_{5-0}$$

$$Q_{4-b} = -kA \frac{dt}{dx} |_{x=b} = -kA \frac{d\theta}{dx} |_{x=b}$$
(3-12)

Equating equations (3-11) and (3-12) and rearranging

$$\frac{d\theta_{4-b}}{dx} = -m_{1}B_{4}\theta_{5-0}$$
(3-13)

Necall that the heat balance equation for a differential element of a pin is

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$
 (3-14)

The boundary conditions for pin 4 are:

at x = 0, $\theta = \theta_{\downarrow = 0}$

at x = 5 0 = 04 5

With the help of equation (3-11) and the boundary conditions for pin 4 the solution of equation (3-13) is:

$$\frac{\Theta}{\Theta_{4-0}} = \frac{\cosh m(b-x) + H_3 \sinh m(b-x)}{\cosh mb + H_3 \sinh mb}$$
(3-15)
where $H_3 = \frac{\Theta_4}{m} \frac{B_4}{B_4}$
 $Q_{4-0} = kA \frac{d\Theta}{dx} \Big|_{x = 0}$

where

$$Q_{4-0}$$
 = Heat flux through pin 4 at x = 0
= Q_1

 $\frac{d\Theta}{dx}\Big|_{x=0}$ is obtained by differentiating equation (3-15) and putting x=0

therefore,

 $Q_1 = Q_{4-0} = kAm\Theta_{4-0} \frac{\tanh mb + H_3}{1 + H_3 \tanh mb}$ (3-16)

Next, pin 2 comes into consideration. Since the conditions of pin 2 are similar to pin 5 we can obtain the solution for the determination of heat transfer rate on the same pattern.

$$\frac{\Theta}{\Theta_{2-0}} = \frac{\cosh m_1(t-x) + H_4 \sinh m_1(t-x)}{\cosh m_1 t + H_4 \sinh m_1 t}$$
(3-17)

where $H_1 = \frac{m}{m} B_c$

$$B_6 = \frac{m_1 - 6}{1 + M_2 \tanh mb}$$

The heat flux of pin 2 is analogous to equation (3-11) $Q_{2-0} = kAm_1B_3\Theta_{2-0}$ (3-18)

where

$$B_{8} = \frac{\tanh m_{1}t + H_{4}}{1 + H_{4} \tanh m_{1}t}$$

The heat flux of pin 1 analogous to equation (3-16) is $Q_2 = Q_{1-C} = kAm\Theta_{1-O} \frac{tanh ma + H_5}{1 + H_5 tanh ma}$ = $kAm\Theta_{1-O}B_{1O}$ (3-19) Where $Q_2 = Q_{1-O} =$ Heat flux through the root of pin 1 $B_{1O} = \frac{tanh ma + H_5}{1 + H_5 tanh ma}$

$$H_5 = \frac{m_1}{m} P_S$$

The equations can be similarly modified for any number of fins by the similar process. Following are the modified equations giving heat flux for a pin with a maximum of ten fins equally spaced.

$$s = \frac{L - nt}{n+1}$$

Now,

ma = mb = mc = ms T = tanh ms $T_{1} = tanh m_{1}t$ $H_{6} = B_{10} \frac{m}{m_{1}}$ $B_{12} = \frac{T_{1} + H_{6}}{1 + T_{1}H_{6}}$ $H_{7} = B_{12} \frac{m_{1}}{m}$ $B_{14} = \frac{T + H_{7}}{1 + TH_{7}}$ (3-23)

Therefore,

 $Q_3 = kAm\Theta_0 B_{14} \qquad (3-24)$

Let,

 $H_{8} = B_{14} \frac{m}{m_{1}}$ $B_{16} = \frac{T_{1} + H_{8}}{1 + T_{1}H_{8}}$ $H_{9} = \frac{m_{1}}{m}$ $B_{18} = \frac{T + H_{9}}{1 + TH_{9}}$ (3-26) (3-27) (3-28)

Therefore,

 $Q_{4} = kAm \theta_{o} B_{18}$ (3-29)

Let,

$$H_{10} = B_{18} - \frac{m}{m_1}$$
 (3-30)

$$B_{20} = \frac{T_1 + H_{10}}{1 + T_1 H_{10}}$$
(3-31)

$$H_{11} = B_{20} \frac{m_1}{m}$$
(3-32)
$$B_{20} = T + H_{11}$$
(3-33)

$$\frac{1}{1 + TH_{11}}$$
Therefore, (3-55)

$$Q_5 = kAm\Theta_0B_{22} \tag{3-34}$$

Let,

$$H_{12} = B_{22} - \frac{m}{m_1}$$
 (3-35)

$$B_{24} = \frac{T_1 + H_{12}}{1 + T_1 H_{12}}$$
(3-36)

$$H_{13} = B_{24} - \frac{m_1}{m}$$
 (3-37)

$$B_{26} = \frac{T + H_{13}}{1 + T H_{13}}$$
(3-38)

Therefore,

$$Q_6 = kAm\Theta_0B_{26}$$
 (3-39)

Let,

$$H_{14} = B_{26} - \frac{m}{m_1}$$
 (3-40)

$$B_{28} = \frac{T_1 + H_1 \mu}{1 + T_1 H_1 \mu}$$
 (3-41)

$$H_{15} = B_{28} \frac{m_1}{m}$$
 (3-42)

$$B_{30} = \frac{T + H_{15}}{1 + TH_{15}}$$
(3-43)

Therefore,

$$Q_7 = kAm\Theta_0 B_{30} \qquad (3-44)$$

Let,

$$H_{16} = B_{30} \frac{m}{m_1}$$
 (3-45)

$$B_{32} = \frac{T_1 + H_{16}}{1 + T_1 H_{16}}$$
(3-46)

$$H_{17} = B_{32} - \frac{M_1}{M}$$
 (3-47)

$$B_{34} = \frac{T + H_{17}}{1 + TH_{17}}$$
(3-48)

Therefore,

$$Q_8 = kAm \partial_0 B_{34} \qquad (3-49)$$

Let,

$$H_{18} = B_{34} - \frac{m}{m_1}$$
 (3-50)

$$B_{36} = \frac{T_1 + H_{18}}{1 + T_1 H_{18}}$$
(3-51)

$$H_{19} = B_{36} \frac{m_1}{m}$$
 (3-52)

$$B_{38} = \frac{1 + M_{19}}{1 + TH_{19}}$$
(3-53)

Therefore,

$$Q_9 = kAm\theta_0B_{38}$$
 (3-54)

Let,

$$H_{20} = B_{38} - \frac{m}{m_1}$$
 (3-55)

$$B_{40} = \frac{T_1 + H_{20}}{1 + T_1 H_{20}}$$
(3-56)

H ^{SJ}	Ħ	$B_{40} \frac{m_1}{m}$	(3-57)
B42	2	$\frac{T + H_{21}}{1 + TH_{21}}$	(3-58)
		Ariets allen	

Therefore,

 $Q_{10} = kAm \Theta_0 B_{42}$

(3-59)

The equations presented in this thesis are specially adaptable for the computer programming. A sample calculation on page 45 will serve to illustrate the use of the equations given above.

In evaluating the values of Q, computer (IBM 1620) was extensively used. For a given value of L and D, Q vs. n is plotted. A maximum of 10 fins were used in the analysis. For d = 1/2 in and L = 1/2 in., Figure 2 shows Q vs. n for D = 3/4 in to D = 1 3/4 in increasing in the steps of 1/4 in. With the same parameters as in Figure 32, sets of curves are plotted in Figure 3 to 9 with d = 1/2 in and L taking on value of 1 in, 1 1/2 in, 2 in, 3 in, 4 in, 5 in and 6 in. The data for these curves are in Appendix A. From these curves it can be seen that:

 The heat transfer rate increases with increase in outside diameter, the increase is appreciable for smaller values of D but it is not significant for large values of D.

Fig. 2 Heat transfer characteristics of a finned $pin(L=\frac{1}{2}")$

Fig. 4 Heat transfer characteristics of a finned pin(L=1)")

- 2. Reat transfer rate increases uniformly with increase in number of fins.
- 3. D and n remaining same, heat transfer decreases with increase in length.

In view of the above discussion we can say that a short pin with more number of fins and as big an outside diameter as permissible would be most ideal.

When many finned pins are assembled on a surface, the outside diameter of fins is limited by the spacing of the pins. For a given length of the pin, the boundary layer thickness and the thickness of free convection control the spacing of fins.

(4) OPTIMIZATION OF DESIGN OF FINNED PIN AND PLAIN PIN

A detailed theoretical investigation of the heat transfer characteristics of a finned pin and a plain pin led to the optimization of their design. Since it had been proven that a finned pin was the best among the extended surfaces for increasing the heat transfer rate, the next step was to optimize its design. For the purpose of comparison an8 in x 4 1/2 in. primary surface was considered most convenient because it has sufficient area and the building up of finned pins and plain pins will not be too dirficult.
Design of pins

Design of heat transfer surface with pins was based on the following assumptions.

- 1. The temperature of air around all the pins was assumed constant.
- 2. All the pins were at the same root temperature.
- 3. The heat transfer from pin to air was by convection only.

Since the surfaces of pins and finned pins are polished, the emissivity will be low. The temperature difference for which we will design is 100 F, which is not much for considering radiation. In a compact design of pins and finned pins, most of these pins will be surrounded by pins at the same temperature and this will reduce radiation. Only effective radiation will be from those pins that are exposed to free atmosphere and such pins are much less compared to the total number of pins. We can also determine equivalent radiation convective heat transfer coefficient to check whether it is considered significant.

$$h_r = \frac{T_2^4 - T_1^4}{T_2 - T_1}$$
 (McAdams) (3-60)

where,

h_r = Equivalent radiation convective heat transfer coefficient (Btu/hr ft²F)

= .0562 which is considered negligible

For the design of pins an important consideration is to determine spacing of various size pins which will be checked for heat transfer rate. The boundary layer thickness of free convection will give some idea about the spacing but as we go in the upper rows the boundary layer will be turbulent as explained on page 11. In view of the complex nature of the conditions, it was very difficult to arrive at a value of the clearance between two successive pins. Since the diameters of the pins that were to be considered were small, an average value of 3/16 in. clearance was considered a good assumption. The total number of particular diameter pin in rows and columns were found from the geometrical considerations as shown in Figure 10.

Fig. 19 An arrangement of pins in a row.

The general equation from Figure 10 can be written as:

w = (n-1)e + nd (3-61)

where,

n = -Number of pins

e = 3/16"

The number of pins and their spacing were found for each diameter of pin. Length of the pin was judged from Figure 1. Heat transfer rate was determined by the equation (3-1) with k = 220 Btu/hr ft F (for copper) and $\theta_0 = 100$ F was considered an average value of temperature for the temperature range which will be covered while testing. The entire computation was done on the computer.

Table 1 gives the number of pins on the primary surface, length, diameter and total heat transfer rate from an 8 in \times 4 1/2 in. primary surface.

Number Dia. of Q/pinTotal Q L (inches) of pins pin (in.) (Btu/hr.) (Btu/hr.) 2 383 1/8 1.4171 538 2.5 246 3/16 2.4137 595 1/4 3 165 3.6 592 4 88 3/8 6.5025 572

Table 1. Various Designs of Plain Pin

From the four designs given above, the one with 3/16 in. diameter pin gives the maximum heat transfer rate, so this was to be tested experimentally. Further details of this design are:

Centre to center distance between consecutive pins in row = 3/8 in.

Centre to center distance between two consecutive rows = 3/8 in.

Total Q for two 8 in x 4 1/2 in surface with 3/16 in pin = 2 x 246 x 2.4137 = 1190 Btu/hr.

Figure 11 shows the assembly of pins.

Design of Finned Pins:

The assumptions in the design of finned pins are the same as those made in the design of plain pins.

In case of finned pins the assembly was not so easy as pins because to put more number of finned pins we had

Fig. 11 Assembly of plain pins with insulation

Fig. 12 Assembly of finned pin with insulation

to arrange them in such a way that they overlap on each other, leaving a clearance of 1/8 in. which was considered necessary for the free movement of air between two overlapping fins. This was done by having three different size of pins whose lengths were 1/8 in. greater than the other. From the curves on Figure 2 to 9, eight fins were considered adequate. The pitch of the fins, on the basis of a clearance of 1/8 in. was found to be $3 \times 1/8 - 3/8$ in. The short pin extending from the last fin was also kept 3/8 in. Figure 13 shows the details of three different types of finned pins. Total number of particular diameter pins were determined from the geometrical considerations as shown in Figure 14.

The general equation for finned pin can be written as:

w = nd + (n-1)f + (n-1)e (3-62) where,

n = number of pins

f = 1/8"

The number of pins and their spacing were found for each given size of a finned pin. Heat transfer rate was determined from the equation (3-49). The Table 2 gives the description of various combinations of finned pins that were tried to maximize the heat transfer rate from an 8 in x 4 1/2 in. surface.

- 1/4" for pin # 2

Fig. 13 Dimensions of three types of finned pin.

Fig. 14 An arrangement of finned pins in a row.

đ	D	Pin #1		Pin # 2		Pin # 3		Total
in.	in.	No.cf pins	Q/pin	No.of pins	Q/pin	No.o? pins	Q/pin	Q (Btu/hr)
3/16	7/16	60	5.584	55	5.44	6 0	5.44	960
3/16	11/16	36	9 .3 35	36	9.634	36	9.634	1030
1/4	1/2	35	7.18	32	6.93	35	6.93	715
1/4	3/4	32	11.794	28	11.924	28	11.924	1046
3/8	5/8	32	10.222	28	9.786	28	9.786	874
3/8	7/8	21	16.588	51	16.474	21	16.474	1041

Table 2. Various Designs of Finned Pin

From the pin designs given above it is seen that the design with d = 1/4 in. and D = 3/4 in. gives the maximum heat transfer rate, but the design with d = 3/8 in and D = 7/8 in gives 5 Btu/hr less, which is small compared to 1041 Btu/hr. Since it would be much easier to make a primary surface with a lesser number of finned pins, the latter design was tested experimentally. Further details of the design are:

Center to center distance between consecutive pins in row = 3/4 in.

Center to center distance between two consecutive rows = 3/4 in.

Total Q for two 8 in x 4 1/2 in surface with d = 3/8 in and D = 7/8 in finned pin = 2 x 1041 = 2082 Btu/hr. Figure 12 shows the details of finned pin assembly.

Design of Surface Without Pins and Finned Pins:

Heat transfer from a plate was considered a basis for comparing pins and finned pins.

For low temperature and moderate size McAdams (23) gives:

$$h_{a} = .29 (\Delta T/L)^{.25}$$

where,

- h = Average convective heat transfer coefficient (Btu/hr ft²F)
- ΔT = Difference in temperature between the plate and air (F) = 100 °F L = Length of the plate (ft) = 4.5/12 h = .29 (100/ $\frac{4.5}{12}$).25 = .29 (1200/4.5).25 = 1.176 Q = h $\theta_0 A$ = 1.176 x 100 ($\frac{8 \times 4.5}{144}$) = 29.5 Btu/hr

(5) SAMPLE CALCULATION OF HEAT TRANSFER

1. Finned Pin

Given data:

- k = 220 Btu/hr ft F
- d = 3/8" = 1/32"
- b = 1/100" = 1/1200!

D = 7/8" $\Theta_{0} = 100 ^{O}F$ n = 8s = 3/8"

Now,

$$\begin{split} B_2 &= \pi \, kdbd \quad \frac{K_1 (Nr_1) I_1 (Nr_2) - I_1 (Nr_1) K_1 (Nr_2)}{K_0 (Nr_1) I_1 (Nr_2) + I_0 (Nr_1) K_1 (Nr_2)} \\ &= 3.14 (220) (4.71) (1/1200) (1/32) \\ &= \frac{12.664 (0.0914) - (0.038) 5.282}{2.685 (0.0914) + (1.0015) 5.282} = 0.0158 \\ b_1 &= \frac{B_2}{\pi db} = \frac{0.0158}{3.14 (1/32) (1/1200)} \\ &= 193.4 \\ m_1 &= \sqrt{\frac{4h_4}{Kd}} = \sqrt{\frac{4(193.4)}{220 (1/32)}} \\ &= 10.62 \\ H_2 &= \frac{M}{m_1} B_1 = \frac{1.038}{10.62} - 0.0425 \\ &= 0.0044 \\ H &= m_2 b = \frac{10.62}{1200} = 0.00885 \\ F_1 &= TanhH = 0.00885 \\ B_4 &= \frac{T1 + H_2}{1 + T_1 H_2} = \frac{0.00885 + 0.0425}{1 + (0.00885) 0.0425} \\ &= 0.0132 \\ H_3 &= \frac{m_4}{m} B_4 \\ &= \frac{10.62 (0.0132)}{1.038} = 0.1288 \\ B_6 &= \frac{T + H_3}{1 + TH_3} \\ &= \frac{0.034 + 0.1288}{1 + 0.034 (0.1288)} = 0.162 \\ \end{split}$$

$$H_{\mu} = \frac{m}{m_{\pi}} B_{6} = \frac{1.088(0.162)}{10.62}$$

$$= 0.0166$$

$$B_{8} = \frac{T_{1} + H_{\mu}}{1 + T_{1} + H_{\mu}} = \frac{0.00885 + 0.0166}{1 + 0.00885(0.0166)}$$

$$= 0.0255$$

$$H_{5} = \frac{m_{1}}{m} B_{8}$$

$$= \frac{10.62(0.0255)}{1.088} = 0.2483$$

$$B_{10} = \frac{T + H_{5}}{1 + TH_{5}} = \frac{0.034 + 0.2483}{1 + (0.034)0.2483} = 0.2799$$

$$H_{6} = \frac{m}{m_{4}} B_{10}$$

$$= \frac{1.088(0.2799)}{10.62} = 0.0287$$

$$B_{12} = \frac{T_{1} + H_{6}}{1 - T_{1} + H_{6}}$$

$$= \frac{0.00885 + 0.0287}{1 + 0.00885(0.0287)} = 0.0375$$

$$H_{7} = \frac{m_{4}}{m} B_{12}$$

$$= \frac{10.62(0.0375)}{1.088} = 0.3661$$

$$B_{14} = \frac{T + H_{7}}{1 + TH_{7}}$$

$$= \frac{0.034 + 0.3661}{1 + 0.034(0.3661)} = 0.3952$$

$$H_8 = \frac{m}{m_1} B_{14}$$

= $\frac{1.088(0.3952)}{10.62} = 0.0405$

$$B_{16} = \frac{T_1 + H_8}{1 + T_1 H_8}$$

 $= \frac{0.00885 + 0.0405}{1 + 0.00885(0.0405)} = 0.0493$

$$H_9 = \frac{m_1}{m} B_{16}$$

= 10.62(0.0493) = 0.4813
1.088

$$B_{18} = \frac{T + H_9}{1 + TH_9}$$

= $\frac{0.034 + 0.4813}{1 + 0.034 (0.4813)} = 0.507$

$$H_{10} = \frac{m}{m_1} B_{18}$$

$$\frac{1.088(0.507)}{10.62} = 0.052$$

$$B_{20} = \frac{T_1 + H_{10}}{1 + T_1 H_{10}}$$

= $\frac{0.00885 + 0.052}{1 + 0.00885 (0.052)} = 0.0608$

$$H_{11} = \frac{m_1}{m} B_{20}$$

$$= \frac{10.62 (0.0608)}{1.088} = 0.5931$$

$$B_{22} = \frac{T + H_{11}}{1 + TH_{11}}$$

$$= \frac{0.034 + 0.5931}{1 + (0.034) 0.5931} = 0.6147$$

$$H_{12} = \frac{H_{11}}{H_{11}} B_{22}$$

$$= \frac{1.038 (0.6147)}{10.62} = 0.063$$

$$B_{24} = \frac{T_{1} + H_{12}}{1 + T_{11}H_{12}}$$

$$= \frac{0.00835 + 0.063}{1 + 0.00885 (0.063)} = 0.0718$$

$$H_{13} = \frac{H_{4}}{H_{1}} B_{24}$$

$$= \frac{10.62 (0.0718)}{1.098} = 0.7006$$

$$B_{26} = \frac{T + H_{13}}{1 + TH_{13}}$$

$$= \frac{0.034 + 0.7006}{1 + 0.034 (0.7006)} = 0.7175$$

$$H_{14} = \frac{H_{1}}{H_{1}} B_{26}$$

$$= \frac{1.033 (0.7175)}{10.62} = 0.0735$$

$$B_{28} = \frac{T_{4} + H_{14}}{2 + T_{14}H_{14}}$$

$$= \frac{0.00835 + 0.0735}{1 + 0.00835 (0.0735)} = 0.0323$$

$$H_{15} = \frac{m_1}{m} B_{28}$$

= 10.62 (0.0823) = 0.8033
1.088

$$B_{30} = \frac{T + H_{15}}{1 + TH_{15}}$$

 $= \frac{0.034 + 0.8033}{1 + 0.034 (0.8033)} = 0.815$

$$H_{16} = \frac{m}{m_1} B_{30}$$

$$= \frac{1.088 (0.815)}{10.62} = 0.0835$$

$${}^{\rm B}_{32} = \frac{{}^{\rm T}_1 + {}^{\rm H}_{16}}{1 - {}^{\rm T}_1 {}^{\rm H}_{16}}$$

= $\frac{0.00885 + 0.0835}{1 + 0.00885 (0.0835)} = 0.0923$

$$H_{17} = \frac{m_1}{m} B_{32}$$

= $\frac{10.62 (0.0923)}{1.088} = 0.9006$

$$B_{34} = \frac{T + h_{17}}{1 + T H_{17}}$$

$$\frac{0.034 + 0.9005}{1 + 0.034} = 0.9059$$

 $Q = kAm\Theta_0B_{34}$ = 220 ($\frac{T}{4}$) ($\frac{1}{32}$)² (100) (0.9069) = 16.588 Btu/hr

2. Plain Pin

Given data: $\Delta T = 56.2 F$ k = 220 Btu/hr ft F L = 2.5 in. d = 3/16" h = .27 $\left(\frac{\Delta T}{d}\right)^{.25}$ = .27 $\left(\frac{56.2}{3/192}\right)^{.25}$ = 2.091 m = $\sqrt{\frac{4}{kd}}$ = $\sqrt{\frac{4(2.093)}{220(3/192)}}$ = 2.091 = 1.56 g = mL = 1.56 (5/24) = 0.325 T = tanh 0.325 = 0.314 H = $\frac{h}{mK}$ = $\frac{2.091}{1.56(220)}$ = .0061

A = 0.785d2

$$Q = 1cAm\Theta_0 \frac{T+H}{1+TH}$$

= $220(0.785)(3/192)^2(1.56)(124.2) \frac{0.314+0.0061}{1+0.314(0.0061)}$

= 1.1808 Btu/hr

IV. EXPERIMENTAL INVESTIGATIONS

(1) OBJECTIVE OF INVESTIGATION

From the theoretical considerations of the preceding paragraphs it is evident that the rate of heat transfer is greater for the finned pin than for a pin. The objective of the investigation is to verify the principle experimentally.

(2) CONSTRUCTION OF APPARATUS

Heater

A separate heater was made for finned pins, pins and plates. The heaters were designed to give a uniform heating of the primary surface. Nichrome wire was wrapped around an asbestos sheet as shown in Figure 15.

Plates, Pins and Finned Pins

The construction of plates and pinned surfaces was quite simple, but the finned pin surface was difficult to make. Some of the important considerations in the construction of the finned pin surfaces were:

- The fins should fit tightly on the pin and the assembly of finned pins must be dipped in solder to ensure a metal to metal contact at the junction of a pin and a fin.
- 2. A higher percentage of tin in the solder will give a good finish to the finned pin surface.

Fig. 15 Electric heater used for heating the front plates

Fig. 16 Finished assembly of finned pin

Fig. 17 An arrangement and numbering of the thermocouples. (Figures in parentheses indicate thermocouples on the other side of the plate.)

A minimum of 60 per cent tin and 40 per cent lead was considered permissible.

Figure 16 shows the finished assembly of a finned pin.

The thermocouples were located as shown in Figure 17 for all the three arrangements to get a good average root or plate temperature. Since the temperature of the thermocouples was to go as high as 400 F, they were brazed on pins and plates.

(3) LIST OF MATERIAL

The following materials were used in the experiment: Copper Materials:

16, 3/16 in dia. x 12 ft long rods for plain pins 4, 3/8 in dia. x 12 ft long for making pins for finned pins

.01 in x 12 ft x 14 ft coil was used to make fins 20 in x 20 in x 1/4 in plate was used for front plates and side plates of heater box.

Insulation:

Porcelin insulator beads

- 1/8 in thick asbestos sheet for winding the heater wire
- 2 1/2 in thick insulation for sides of the heater box.

Thermocouple Wire:

Matched 30 gauge copper-constantan wire with

plastic insulation was used.

Solder:

Solder containing 60 per cent tin and 40 per cent lead was used.

Heater:

Nichrome wire with $.652 \, \Omega/ft$ resistance was used

(4) LIST OF APPARATUS

The following apparatus was used in this investigation: Ammeters:

Weston type, Range 0-5 amps. 25-500 c/s, manufactured by Daystrom, Inc., Weston Instrument Division, Newark, New Jersey.

Weston type, 0-3 amp., 25-500 c/s, manufactured by Daystrom, Inc.

Potentiometer:

Number 2745, Range 0-75 mV, portable type, manufactured by Minneapolis-Honeywell Reg. Co., Rubicon Instruments, Philadelphia 32, Pennsylvania.

Voltmeter:

Model 912, Weston type, Range 0-300 V.

Variac:

Type W20MT3, one side common to line and load, line

120 V, 50-60 c/s, load 0-140 V, 20 amps. Manufactured by General Radio Company, Concord, Mass.

(5) EXPERIMENTAL OPERATION

Three different heat transfer surfaces, viz. plate, pins and finned pins, as shown in Figure 18, Figure 11 and Figure 12 respectively, were to be tested. The experimental procedure adopted for each one of them was the same. Since these surfaces were to be tested for free convection, the testing was done in a small, closed room so that there would not be any air currents. To enhance free convection, the assembly was hung by a thin wire. Figure 19 shows the heater circuit and Figure 20 shows a complete set-up of the experiment.

The heater supplied heat at a uniform rate. From time to time the thermocouple readings were checked and when the readings remained constant for at least fifteen minutes, it was considered that the steady state was reached. Then the readings were noted as tabulated in the Appendix B.

Fig. 18 Assembly of primary surface with six thermocouples on either side

Fig. 20 Experimental set up for the heat transfer measurements of finned pin, pin and plate

DATA AND RESULTS

Notations:

- W = Rate of electric energy supply to the heater in Watts
- Q = Rate of electric energy supply to the heater in Btu/hr.
- v1, v2,...v12 Potentiometer reading of the thermocouples 1, 2,...12. (Millivolts)
- v_m = Mean potentiometer reading of all the twelve thermocouples
- to = -Temperature at root of the pin or plate as the case may be (\mathbb{P})
- t_a = Ambient temperature of air (F)
- θ_0 . Temperature excess at the root of the pin or plate = to - ta
- V = Voltage across the heater (Volts)
- I = Current passing through the heater wire (Amps.)

Four sets of data were taken for various θ_{α} for the finned pin, pin and plate. The data for all the three arrangements are given in a tabular form in the Appendix B. Table B-1, B-2, B-3 and B-4 represent the experimental measurements of the heat transfer rates for various Θ_0 for finned pins. Table B-5, B-6, B-7 and B-8 represent the experimental measurements of heat transfer rate for various θ_0 for pins. Table B-9, B-10, B-11 and B-12 represent the experimental measurements of heat transfer rate for various to for plate.

V. DISCUSSION

EXPERIMENTAL ACCURACY

The data obtained from three different arrangements showed variation in temperature at the root of the pin, from one row to the next. The temperature of the upper bank of pins was slightly higher than those in the lower banks. This difference in temperature went on increasing as θ_0 was increased. The temperature variation between top and bottom bank of pins was 40 F. when the average root temperature was maximum at 364 F. The nature of variation was the same, both in the case of pin and finned pin. As the hot air from the lower banks of pins moved upwards it became hotter and hotter and was hottest when it moved past the top row, which resulted in the large variation in temperature. An average root temperature of all the twelve thermocouples was considered acceptable.

The room temperature varied from 70 to 85 F during the entire testing of plate, pins and finned pins. Since we were only concerned with the temperature excess at the root of the pin, Θ_0 , the variation did not introduce any error.

Determination of Average h and Difference Between the Temperature at the Root of the Pin and the Average Bulk Temperature.

The temperature at the immediate vicinity of a pin or a finned pin is higher than the room temperature because of the compact arrangement. In order to determine this temperature for given Q and θ_0 , let us first analyze the equations for a pin and a finned pin. The equations show that both the variables ΔT and h affect the heat transfer rate. So a trial and error method can be used to determine the value of ΔT at the condition that an experimental value of Q is equal to the calculated value of Q. From the value of ΔT , an average value of h can be calculated from the equation (3-3). The trial and error for computing ΔT was done on the computer using equations for pin and finned pin for $\theta_0 = 100$ F and for corresponding values of Q for pin and finned pin obtained from Figure 24. The results are as follows:

(1) For Pins

Given data: Θ_{C} = 100 F

Average value of h = 2.091 Btu/ft²hrF

4 T = 56.2 F

(11) For Finned Pins

Given data: $\theta_0 = 100 \text{ F}$

Average value of $h \neq 1.648$ Btu/rt²hrF

△ . 43.04 ₽

The results show that h was higher in case of pin than finned pin. One of the reasons would be that there was more resistance to air flow for finned pin than pins. <u>Comparison of Heat Transfer Rate of Finned Pin, Pin and</u> Plate.

66 .

The curves drawn in Figures 21, 22 and 23 show the heat transfer rate vs. Θ_0 for finned pin, pin and plate respectively. These curves indicate that the experimental results were within +4 per cent of the average curve. Figure 24 shows the grouping of the curves drawn in Figures 21, 22 and 23 for the purpose of comparing their heat transfer rate for various Θ_0 . Curves in Figure 24 show that the heat transfer rate is highest for finned pins, little less for plain pins and much more less for a plate. The heat transfer rate increases rapidly for lower values of Θ_0 but it almost follows a straight line for the higher values of Θ_0 .

Effectiveness

The effectiveness for various arrangements is calculated for Θ_0 from Figure 24. The procedure for the calculation of the per cent increase in the effectiveness is as follows:

Fig. 21 Experimental measurements of heat transfer rate for finned pins

Fig. 22 Experimental measurements of heat transfer rate for pins

Fig. 23 Experimental measurements of heat transfer rate for a plate

Fig. 24 Comparison of experimental measurements of heat transfer rate for plate, pins and finned pins

per cent increase in effectiveness

of finned pin over plate = $\frac{Q_{\text{finned pin}} - Q_{\text{plate}}}{Q_{\text{plate}}} \times 100$

per cent increase in effectiveness of pins over plate = $\frac{Q_{pin} - Q_{plate}}{Q_{plate}} \times 100$

per cent increase in effectiveness of finned pin over pins = $\frac{Q_{\text{finned pin}} - Q_{\text{pin}}}{Q_{\text{pin}}} \times 100$

Curves in Figure 25 show the per cent increase in the effectiveness of finned pins and pins over a plate. These curves indicate that the effectiveness is highest for finned pins and little less for pins. The other point of interest is that both for finned pin and plain pin the percent increase in the effectiveness increases sharply as 0_0 increases but that the increase is small, it reaches a maximum value and takes a downward trend. The downward trend may be due to the decrease in the heat transfer rate due to increased air resistance which becomes more significant on higher temperature range for finned pins and pinned surfaces.

Figure 26 shows the per cent increase in the effectiveness of finned pin over pin. The curve shows that as 9_0 starts increasing the per cent increase in effectiveness increases but the rate of increase is very much less as 9_0 goes high. It almost becomes steady at 36 per cent when 9_0 is 300 F.

Fig. 26 Effectiveness of finned pins over pins

.

Volume of Pins $V_{\text{pin}} = (\text{No. of pins})(\text{Volume of one pin})$ $= 492 (2.5) \left(\frac{7}{4}\right) \left(\frac{3}{16}\right)^2$ = 34 cu in.Volume of plates = (No. of plates (Volume of plate)) $= 2(3) \left(\frac{9}{2}\right) \left(\frac{1}{4}\right)$ = 16 cu in.

Total Volume of Pins = 34 + 18 = 52 cu in.

Volume of Finned Fins

Volume of fins = (No. of fins) (Volume of one fin)
=
$$1008 \left[.01(\frac{\pi}{4}) \left\{ (\frac{\pi}{3})^2 - (\frac{3}{3})^2 \right\} \right]$$

= $10.08 \left(\frac{\pi}{4}\right) (\frac{1}{54}) (49 - 9)$
= 4.94 cu in.

Volume of pins

= No. pins (x-sectional area of pin)(total length of

three pins)

=
$$42\left(\frac{\pi}{4}\right)\left(\frac{3}{8}\right)^2$$
 (3.125 + 3.25 + 3.375)
= 45.2 cu in.

Total volume of finned pins

= Volume of fins + Volume of pins + Volume of places = 4,94 + 45.2 + 18

= 68.14 cu in.

Per cent increase in volume of finned pin over pin

$$= \frac{68.14 - 52}{52} \times 100$$

= 31%

ł

,

۰,

VI. SUMMARY AND CONCLUSIONS

Objective of the thesis was achieved. It was proved experimentally that finned pin extended surface was superios over a plain pin, which was considered efficient means to transfer heat from a primary surface.

The true temperature difference between the root of the pin and ambient air is much lower than θ_0 . The reason for this difference is that as the cold air moves up it is gradually heated which reduces the difference in temperature.

The increase in effectiveness of finned pin over plain pin is almost constant on medium to higher temperature range. The maximum per cent increase in effectiveness of finned pin over plain pin is 36 per cent.

VII. RECOMMENDATIONS

- Various designs of pin and finned pin may be tested experimentally to see if there is any further improvement in heat transfer rate.
- 2. Different sizes of primary surface may be tested.
- 3. Forced convection may be employed.

VIII. BIBLIOGRAPHY

- 1. Hsieh, J. C. Heat Transfer From a Finned-Pin to the Ambient Air, Thesis in Mechanical Engineering, Virginia Polytechnic Institute (1963)
- 2. Schneider, P. S. Conduction Heat Transfer, Second Printing, Addison-Wesley Publishing Company, Inc. (1957)
- 3. Jacob, M. Heat Transfer, Vol. I, First Printing, John Wiley & Sons, Inc. (1949)
- 4. Starner, K. E. and McManus, H. N. Jr. An Experimental Investigation of Free-Convection Heat Transfer From Rectangular Fin-Arrays, Journal of Heat Transfer, Vol. 85, series C, No. 3 (1963)
- Schryber, E. A. Heat Transfer Coefficient and Other Data on Individual Serrated Finned Surface, Trans. ASME Vol. 67, No. 8 (1945)
- 6. Kays, W. M. Pin-Fin Heat Exchanger Surfaces, Trans. ASME Vol. 77, No. 4 (1955)
- 7. Norris, R. H. and Spofford, W. A. High Performance Fins for Heat Transfer, Trans. ASME Vol. 64, No. 5 (1942)
- 8. Avrami, M. and Little, J. B. Difusion of Heat Through Ractangular Bar and Cooling and Insulating Effect of Fins, Journal of Applied Physics, Vol. 13, No. 4 (1942)
- 9. Carrier, W. H. and Anderson, S. W. The Resistance to Heat Flow Through Finned Tubing, Heating Piping and Air Conditioning, Vol. 10 (1944)
- 10. Gray, A., Mathews, G. B. and McRobert, T. M. A Treatise on Bessel Functions and Their Application to Physics, Machmillan and Company, Ltd., London (1931)
- Murray, W. M. Heat Dissipation Through an Annular Disc or Fin of Uniform Thickness, Trans. ASME, Vol. 60, No. 6 (1938)
- 12. Tanasawa, Y. Charts for Finding Effectiveness of Fins, Society of Mechanical Engineers, Japan, Trans. Vol. 6 (May 1940)

- 13. Schmidt, T. E. Heat Transfer Calculation for Extended Surfaces, Vol. 57, No. 4 (1949)
- 14. Keller, H. H. and Sommers, E. V. Heat Transfer From an Annular Fin of Constant Thickness, Journal of Heat Transfer, Vol. 81, Series C, No. 2 (1959)
- 15. Tate, G. E. and Cartinhour, J. Disc Extended Surfaces for High Neat Absorption Rates, Trans. ASME Vol. 67, No. 8 (1945)
- 16. Kays, A. M. and London, A. L. Heat Transfer and Flow-Friction Characteristics of Some Compact Heat Exchanger Surfaces.
- 17. Kays, W. M. The Basic Heat Transfer and Flow Friction Characteristics of Six Compact High Performance Heat Transfer Surfaces, Journal of Engineering for Power, Trans. ASME, Series A, No. 1 (1960)
- 18. Kayan, C. F. and Gates, R. G. Temperature Distribution in Fins and Other Projections, Including Those of Building Structures by Several Procedures, Trans. ASME, Vol. 80, No. 7 (1958)
- Dusinberre, G. M. Effective and Local Surface Coefficients in Fin Systems, Trans. ASME, Vol. 80, No. 6 (1958)
- 20. Dusinberre, G. M. Fin Efficiency, Mechanical Engineering, Vol. 78, No. 6 (1956)
- 21. Hsu, S. T. Engineering Heat Transfer, D. Van Nostrand Co Inc., Princeton, New Jersey (1963)
- 22. Reiher, H. Mitt. Forsch., 269, 1-85 (1925)
- 23. McAdams, W. H. Heat Transmission, Third Edition, McGraw-Hill Book Co., Inc. (1954)
- 24. Kreith, F. Principles of Heat Transfer, Fifth Edition, International Textbook Company (1962)

IX. ACKNOWLEDGMENTS

I wish to express my sincere thanks and appreciation to Dr. S. T. Hsu, my major professor and the chairman of the committee for suggesting this study and numerous advices and guidance throughout the research and to whom I owe the interest in this subject.

The author is indebted to Dr. H. L. Wood, a member of the committee for his help, encouragement and sincere advice during his stay at Virginia Polytechnic Institute.

Sincere thanks are extended to Dr. R. A. Comparin for being a member of the author's committee, and to

for her excellent typing.

Finally, I wish to express gratitude to my mother and father whose patience and understanding have made my education possible.

The vita has been removed from the scanned document

APPENDICES

XI APPENDICES

APPENDIX A

CALCULATED DATA ON HEAT TRANSFER CHARACTERISTICS OF PIN AND FINNED PIN

Serial		g, Heat flux in Btu/ft ^c hr.									Length of
No.	dæ*02	de.04	ds.06	da.08	de.l	de.12	de.14	d 16	d18	d=.2	pin (in.)
1	4,794	2173	1388	1021	811	676	58 3	514	462	421	1
2	8,460	3932	2491	1805	1411	1157	981	853	755	678	2
3	10,992	5411	3479	2530	1975	1614	1363	1178	1038	9 2 8	3
4	12,552	6574	4325	3177	2491	2040	1722	1488	1309	1168	4
5	13,446	7443	5023	3738	2953	2428	2055	1777	1564	1395	5
6	13,937	8067	5582	4214	3358	2 776	2358	2045	1802	1609	6
7	14,201	8503	6 01 7	4608	3706	3084	2631	55 8ð	2021	1808	7

Table A-1 Data on Heat Transfer Characteristics of a pin

Table A-2: Data on Heat Transfer Characteristics of

Finned Pin, L = 2"

And the second se			,							
No. of	g	g, heat flux in Btu/ft ² hr.								
Fins	$D_{=} \frac{3}{4}$	Da l"	Dsl≟"	D∎1½"	$Del = \frac{3}{4}$					
1	1,837	2,635	3,580	4,564	5,484					
2	2,436	4,022	5,886	7,814	9,605					
3	3,033	5 ,3 95	8,154	10,988	13,602					
4	3,628	6,754	10,384	14,088	17,483					
5	4,219	8,100	12,577	17,117	21,253					
6	4,808	9,432	14,735	20,079	24,918					
7	5, 3 95	10,752	16,859	22,975	28,483					
8	5,979	12,058	18,948	25,809	31,954					
9	6,561	13,351	21,006	28,583	35,334					
10	7,140	14,633	23,031	31,299	38,629					

Table A-3: Data on Heat Transfer Characteristics of Finned Pin L = 1"

No. of	q, heat flux in Btu/ft ² hr.							
Fins	$D_{=} \frac{3''}{4}$	D= 1"	D=1 ¹ / ₄ "	D⇒1½"	$D_{n}1-\frac{3}{4}^{n}$			
1	2,778	3,547	4,447	5,375	6,235			
2	3,358	4,875	6,631	8,417	10,049			
3	3,933	6,179	8,746	11,326	13,655			
4	4,504	7,457	10,796	14,110	17,070			
5	5,070	8,712	12,783	16,780	20,313			
6	5,631	9,943	14,712	19,344	23,400			
7	6,188	11,151	16,585	21,809	26,344			
8	6,739	12,337	18,405	24,183	29,159			
9	7,287	13,503	20,175	26,472	31,854			
10	7,830	14,647	21,898	28,682	34,440			
	1							

85

Table	A-4:	Data	013	Heat	Transfer	Characteristics	of
-------	------	------	-----	------	----------	-----------------	----

Finned	Pin,	L	89	1글"
--------	------	---	----	-----

No. of Fins	g, heat flux in Btu/ft ² hr.								
	$D_{a} = \frac{3}{4}$	Ds l"	D ml ¹ ₄ "	D = 1 ^{1/2} "	Dz1_3				
<u>i</u> i	3,666	4,394	5,241	6,104	6,896				
8	4,219	5,651	7,285	8,921	10,396				
3	4,767	6,874	9,239	11,568	13,633				
Ц.	5 ,30 8	8,064	11,109	14,062	16,642				
5	5,842	9,223	12,902	16,417	19,451				
б	6,371	10,352	14,623	18,649	22,085				
7	6,893	11,452	16,277	20 ,768	24,564				
8	7,409	12,525	17,869	22,787	26,906				
9	7,919	13,571	19,403	24,714	29,126				
10	8,423	14,593	20,884	2 6,558	31,237				

Table A-5: Data on Heat Transfer Characteristics of

Finned Pin, L $_{z}$ 2"

No. of Fins	g, heat flux in Btu/ft ² hr.								
	$D_{=} \frac{3}{4}$	D≈ 1"	D=11"	Dal ¹ ¹ / ₂ "	D=1_3" 21.				
[~~]	4,486	5,167	5,952	6,746	7,468				
2	5,008	6,342	7,846	9 ,3 33	10,655				
3	5,523	7,479	9,638	11,730	13,556				
Ц.	6 ,03 0	8,578	11,337	13,959	16,213				
5	6,530	9,641	12,950	16,043	18,654				
6	7,023	10,670	14,485	17,998	20,939				
7	7,508	11,668	1.5,950	19,840	23,063				
8	7,986	12,635	17,350	21,581	25,056				
9	8,458	13,574	18,691	23,232	26,933				
10	8,922	14,486	19,978	24,803	28,710				

.

Table	А-б:	Data	on	Heat	Trans	fer	Characteristics	of
		Finne	dI	ìn,	L = 3''			

	adiangtaru (gan Talu galatar ya Cilyogan)	-	****	ng da watan kanalaran kanalaran kanalaran kanalaran kanalaran kanalaran kanalaran kanalaran kanalaran kanalara	an a				
No. of Fins	q , heat flux in Btu/ft ² hr.								
	$D_{\frac{3}{4}}$	D _m l"	D=114"	D=1늘"	D=1_3" 4				
1	5,892	6,468	7,122	7,773	8, 3 57				
2	6,342	7,468	8,710	9,913	10,962				
3	6,786	8,428	10,195	11,863	13,288				
4	7,221	9,349	11,585	13,652	15, 3 86				
5	7,648	10,232	12,891	15,302	17,298				
6	8,067	11,081	14,121	16,835	19,056				
7	8,479	11,897	15,284	18,267	20,686				
8	8,882	12,683	16 ,3 88	19,61 3	22,208				
9	9 ,2 78	13,442	17,439	20,883	23,638				
10	9,667	14,174	18,442	22,086	2 4,989				

-

· · · •

1

Table A-7: Data on Heat Transfer Characteristics of

Finned Pin, L = 4^{n}

No. of Fins	g, heat flux in Btu/ft ² hr.								
	$D_{=} \frac{3''}{4}$	Ds 1"	$D = 1 \frac{1}{4}$ "	$D_{m}l_{2}^{\frac{1}{2}"}$	$D_{al} - \frac{3}{4}$				
1	6,978	7,447	7,974	8,493	8,953				
2	7,355	8,277	9,281	10,239	11,063				
3	7,727	9,075	10,500	11,826	12,942				
4	8,09 3	9,838	11,638	13,276	14,633				
5	8,451	10,567	12,703	14,610	16,171				
б	8,802	11,266	13,703	15,848	17,587				
7	9,145	11,9 3 6	14,648	17,004	18,901				
8	9,482	12,580	15,543	18,091	20,131				
9	9,812	13,200	16,393	19,117	21,289				
10	10,135	13 ,797	17,205	20,091	22,386				

Table	A-8:	Data o	n Heat	Tra	nsfer	Characteristics	oî
		Finned	Pin,	L =	5"		

No. of Fins	q, heat flux in Btu/ft ² hr.								
	$D_{=} \frac{3''}{4}$	De l"	$D = l \frac{1}{2}$ "	D=1 ¹ / ₂ "	$D_{\bullet}1_{\underline{3}}^{"}$				
1	7,773	8,147	8,563	8,969	9,326				
2	8,084	8,828	9,6 30	10,388	11,037				
3	8,393	9,487	10,633	11,690	12,575				
21	8,698	10,119	11,572	12,885	13,967				
5	8,996	10,724	12,453	13,989	15,242				
6	9,289	11,304	13,283	15,017	16,422				
7	9,575	11,860	14,067	15,981	17,522				
8	9,856	12,3 96	14,812	16,890	18,557				
9	10,131	12,911	15,522	17,752	19,5 3 6				
10	10,400	13,408	16,201	18,573	20,467				

.

•

90

•

Table A-9: Data on Heat Transfer Characteristics of

Finned Pin, L = 6"

No. of Fins	و Q	heat fl	ux in Bt	u/ft ² hr.	
	$D = \frac{3''}{4}$	Dn 1"	$Dal^{\frac{1}{2}}$ "	Dalż"	D=1_3"
1	8,334	8,627	8,951	9,267	9,542
2	8,589	9,185	9,824	10,426	10,938
3	8,845	9,731	10,656	11,506	12,217
4	9,099	10,259	11,442	12,509	13,389
5	9,349	10,766	12,183	13,443	14,473
б	9,594	11,253	12,885	14,318	15,483
7	9,8 3 4	11,723	13,551	15,144	16,432
8	10,070	12,175	14,187	15,926	17,329
9	10,301	12,612	14,795	16,672	18,183
10	10,528	13,035	15,378	17,385	18,998

APPENDIX B

MEASURED DATA OF HEAT TRANSFER RATE THROUGH FINNED PIN, PIN AND PLATE

Table B-1 Measurement of Heat Transfer Rates for Various 90 for Finned Pin, Set I

vı	v2	v3	v ₄	v ₅	v ₆	v ₇	v ₈	v ₉	v _{lo}	v ₁₁	v12	v _m	to	ta	•0	V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(uv)	(mv)	(mv)	(mv)	(mv)	(F)	(F)	(F)	(Volt	s)(Amp.)	(Watts)	(Btu/hr)
2.818	2.785	2.485	2.555	2.54	2.6	2.818	2.785	2.77	2.675	2.47	2.85	2.727	150	72	78	50	3.25	162.5	554
3.925	3.85	3.76	3.475	3.45	3.52	3.925	3.85	3.775	3.64	3.31	3.9	3.698	189	72	117	65	4.25	276	941
5.12	5.005	4.328	4.46	4.44	4.54	5.10	5.005	4.857	4.675	4.2	5.04	4.73	230	73	157	80	,5.17	414	1412
6.94	6.775	5.82	5.99	5.95	6.105	6.94	6.775	6.48	6.27	5.525	6.8	6.364	290	76	214	100	6.23	623	2123
9.44	9.28	7.87	8.125	8.07	8.283	9.44	9.28	8.657	8.432	7.3	9.2	8.615	3 69	76	293	120	7.74	930	3170

Table B-2 Measurement of Heat Transfer Rates for Various Oo for Finned Pin, Set II

v ₁	¥2	^v 3	VЦ	v ₅	v 6	V ₇	v ₈	Vg	V10	V11	v12	v _m	to	ta	۰.	V	I	W	Q.
(mv)	(my)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(下)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
1.98	1.955	1.83	1.85	1.845	1.85	1.9	1.884	1.97	1.9	1.805	1.994	1.897	116	72	44	34.2	2.242	83	283
2.89	2.838	2.607	2.615	2.615	2.625	2.838	2.677	2.845	2.772	2.532	2.905	2.725	150	73	77	50	3.315	165.8	565
3.53	3.455	3.144	3.15	3.15	3.17	3.455	3.228	3.435	3.28	3.015	3.526	3.295	174	73	101	60	3.935	236.1	804
4.31	4.205	3.786	3.79	3.795	3.816	4.2	3.91	4.16	3.96	3.61	4.275	3.985	200	72	128	71	4.59	326	1110
5.22	5.08	4.55	4.55	4.56	4.588	5.01	4.775	4.984	4.745	4.287	5.145	4.874	235	74	161	80	5.19	415.2	1415
6.228	6.068	5.413	5.405	5.415	5.46	6.068	5.632	5.955	5.665	5.005	6.15	5.705	265	76	189	90	5.85	526.5	1795
7.35	7.129	6.33	6.324	6.324	6.385	7.11	6.58	6.937	j.602	5.785	7.19	6.67	297	76	223	100	6.55	655	2230
8.455	8.245	7.23	7.249	7.24	7.296	8.1	7.81	7.94	7.555	6.605	8.25	7.656	336	76	260	110	7.14	784	2670
9.325	9.1	7.96	7.96	7.96	8.025	8.61	8:53	8.69	8.26	8.17	9.065	8.471	364	75	289	120	7.66	920	3134

v1	v ₂	¥3	v ₄	v ₅	v ₆	v ₇	v ₈	v ₉	v10	v11	v ₁₂	v _m	to	ta	•	V	I	W	Q
(u.v)	(mv)	(1:: v)	(mv)	(mv)	(n:v)	(mv)	(mv)	(tay)	(m v)	(mv)	(u:v)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Vatts)	(Btu/hr)
2.292	2.28	2.138	2.155	2.15	2.128	2.28	2.305	2.3	2.221	2.1	2.315	2.222	130	8 0	50	35	2.43	85.1	290.4
2.91	2.88	2.65	2.67	2.66	2.655	2.87	2.911	2.886	2.76	2.58	2.915	2.779	153	80	7 3	45	3.044	136.8	467
3.55	3.52	3.20	3.22	3.215	3.2	3.52	3.565	3.51	3.345	3.09	3.55	3.374	177	80	97	55	3.495	192.3	656
4.31	4.264	3.828	3. 845	3.84	3.828	4.26	4.315	4.231	4.00	3.66	4.278	4.055	201	80	121	65.5	4.38	287	980
5.15	5.098	4.525	4.548	4.532	4.525	5.09	5.176	5.04	4.75	4.294	5.095	4.819	233	30	153	75	5.04	378.2	1290
6.115	6.037	5 .32 8	5 .3 5	5 .3 4	5.334	6.03	6.127	5.956	5.594	5.00	6 .01 8	5.686	2 65	80	185	85	5.71	486	1659
7.19	7.025	6 .13 8	6.192	6.18	6.165	7.02	7.106	6.916	6.466	5.7	C.995	6.591	2 98	81	217	95	6.3 8	607	2070
8.26	8.16	7.09	7.146	7.124	7.115	8.12	8.23	7.98	7.45	6.505	8.005	7.604	334	81	253	105	7.0	7 3 5	2510
9.54	9.431	8.173	8.23	8.203	8.192	9.41	9.5	9.152	8.57	7.43	9.3	8.761	3 74	82	292	115	7.68	884	3020

Table B-3. Measurement of Heat Transfer for Various 9 for Finned Pin, Set III

.

Table B-4. Measurement of Heat Transfer for Various Θ_0 for Finned Pin, Set IV

vı	v2	¥3	v4	¥5	v ₆	V	v ₈	vg	v10	v ₁₁	v12	V	to	ŧ	•	V	I	¥.	C,
(t.v)	(mv)	(t.v)	(t.v)	(mv)	(m.v)	(mv)	(n.v)	(mv)	(mv)	(mv)	(v)	(mv)	(F)	(F)	(F)	(Volts	(Amp.)(Vatts)	(Btu/hr)
2.287	2.274	2.115	2.139	2.13 6	2.13	2.27	2.28	2.289	2.208	2.085	2.305	2.21	129	80	49	35	2.42	84.6	288.6
2.899	2.872	2.035	2.658	2.652	2.644	2.87	2.885	2.88	2.755	2.568	2.9	2.768	152	81	71	45	3.1	139.4	476
3.595	3.565	3.22	3.255	3.251	3.24	3.56	3.53	3.55	3.3 8	3.114	3.59	3.404	178	31	97	55	3.745	206	702.5
4.418	4.373	3.9	3.943	3.93 9	3.928	4.37	4.346	4.328	4.1	3.73	4.374	4.146	207	82	125	66	4.445	293	1000
5.194	5.14	4.53	4.589	4.584	4.57	5.13	5.129	5.087	4.795	4.31	5.155	4.851	234	82	152	76	5.094	382.4	1305
6.1	6.017	5.27	5 .3 4	5.333	5.31 6	6.00	6.007	5.946	5.5 ⁸ 5	4.963	6.017	5.658	264	82	182	85	5.7	485	1655
7.06	6.962	6.065	6.126	6.116	6.11	6.92	6.956	6.84	6.409	5.64	6.925	6.511	295	80	215	95	6.35	602.5	2054
8.377	8.267	7.29	7.259	7.224	7.23	8.26	8.24	8.0 6	7.56	€.59	8.185	7.714	33 8	84	254	104	7.04	732.5	2500
9.712	9.589	8 .43 5	8.386	3 .3 7	8.347	9.58	9.57	9.297	8.744	7.576	9.47	8.923	3 80	36	294	113	7.7	870	2970

Salar Contest

•

vı	v2	٧З	Vų	v5	v ₆	v ₇	v ₈	v ₉	V ₁₀	V _{ll}	v12	v _m	to	ta	.	V	I	W	Q
(mv)	(mv)	(uv)	(n.v)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(v)	(mv)	(F)	(F)	(F)	(Volts)(Amp.)(Watts)	(Btu/hr)
2.245	2.27	2.12	2.137	2.137	2.28	2.292	2.27	2.12	2.14	2.146	2,23	2.199	129	74	55	35	2.273	79.5	272
3.27	3.315	3.035	3.05	3.06	3.33	3.35	3.327	3.03	3.06	3.07	3.23	3.177	169	72	97	50	3.291	164.6	561
4.49	4.55	4.1	4.145	4.145	4.575	4.612	4.57	4.1	4.16	4.167	4.41	4.335	215	72	143	65	4.23	275	940
5.9	5.98	5.336	5.388	5.388	6.002	6.056	5.997	5.318	5.396	5.396	5.745	5.657	264	70	194	80	5.05	404	1380
7.78	7.908	6.764	7.066	7.066	7.95	8.005	7.945	6.955	7.1	7.08	7.575	7.432	328	71	257	95	6.04	575	2000
8.864	9.005	7.595	8.025	8.015	9.053	9.11	9.04	7.91	8.044	8.01	8.585	8.438	363	71	291	105	6.62	693	2370

Table B-5. Measurement of Heat Transfer for Various θ_0 for Plain Pin, Set I

Table B-6. Measurement of Heat Transfer for Various θ_0 for Plain Pin, Set II

Vl	^v 2	₹7	v4	^v 5	۳ ₆	v ₇	v ₈	v ₉	v10	V 11	v 12	V m	t	t		V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
2.035	2.06	1.955	1.955	1.955	2.07	2.075	2.06	1.945	1.967	1.985	2.03	2.001	121	76.	45	30	1.975	59.25	202
2.705	2.745	2.57	2.564	2.564	2.75	2.766	2.74	2.541	2.58	2.607	2.686	2.651	148	75	73	40	2.645	105.8	361
3.25	3.3	3.05	3.038	3.043	3.312	3.33	3.3	3.0	3.06	3.095	3.21	3.166	168	73	95	50	3.235	161.8	552
4.079	4.138	3.788	3.774	3.774	4.15	4.175	4.135	3.725	3.804	3.85	4.0	3.949	199	74	125	60	3.825	229.5	783
5.18	5.26	4.785	4.764	4.768	5.273	5.312	5.259	4.695	4.8	4.864	5.075	5.002	239	76	163	70	4.48	313.6	1070
6.22	6.323	5.71	5.692	5.692	6.345	6.382	6.32	5.59	5.74	5.815	6.078	5.992	276	76	200	80	5.13	410.4	1404
7.44	7.605	6.861	6.82	6.814	7.647	7.68	7.6	6.67	6.869	6.96	7.286	7.188	319	75	244	90	5.82	523.8	1790
8.46	8.643	7.44	7.7	7.695	8.677	8.715	8.63	7.55	7.772	7.863	8.26	8.177	352	76	276	100	6.34	634	2170
9.756	9.977	8.732	8.866	8.853	10.023	9.0	9.946	8.67	8.935	9.05	9.5	9.276	392	79	313	109	6.86	749	2555

1																			
vı	v2	۷3	v ₄	v ₅	vб	v ₇	v ₈	v 9	v10	v _{ll}	v12	v _m	to	ta	0 0	v	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
2.635	2.673	2.507	2.52	2.52	2.68	2.687	2.671	2.505	2.53	2.555	2.622	2.592	145	83	62	3 6	2.398	86	294
3.195	3.244	2.996	3.01	3.01	3.251	3.263	3.239	2.985	3.034	3.07	3.166	3.122	167	81	86	45	2.95	132.6	454
4.065	4.131	3.763	3.79	3.79	4.14	4.159	4.125	3.746	3.823	3.875	4.012	3.952	199	84	115	56	3.63	203.5	695
5.041	5.135	4.606	4.661	4.653	5.138	5.16	5.115	4.59	4.702	4.769	4.96	4.878	235	84	151	66	4.33	286	980
6.128	6.24	5.6	5.633	5.618	6.25	6.27	6.21	5.28	5.675	5.759	6.003	5.889	273	84	189	75	4.95	371.5	1270
7.125	7.265	6.475	6.537	6.52	7.285	7.31	7.237	6.414	6.583	6.686	6.984	6.868	308	84	224	85	5.542	472	1610
8.215	8.381	7.438	7.505	7.483	8.416	8.442	8.355	7.337	7.568	7.684	8.044	7.906	344	83	261	95	6.19	588	2010
9.798	10.006	8.832	8.916	8.869	10.055	10.07	9.96	8.708	8.979	9.122	9.567	9.407	396	84	312	104.2	6.84	712	2435 -
	11 505	10 161	10.292	10.24	11.656	11.656	11.528	10.05	10.37	10.532	11.062	10.875	445	84	361	115	7.52	864	2950
11.355	11.595	TOPTOT				······································		and the second	Contraction of the second										
11.355	11.595		Table	B-8.	Measure	ment of	Heat T	ransfer	for Va	erious 0	o for F	'lain Pi	n, Se	t IV	<u>a</u>	W			
11:355 V1	v ₂	 	Table	B-8.	Measure	ment of	Heat T	ransfer v ₉	for Va	v 11	o for H	'lain Pi	n, Se	t IV	0 0	<u>v</u>		W	Q
11.355 V1 (mv)	v ₂ (mv)	v ₃ (mv)	Table	B-8. V5 (mv)	Measure V ₆ (mv)	went of v ₇ (mv)	Heat T V8 (mv)	ransfer V9 (nv)	for Va V 10 (mv)	v 11 (nv)	o for F 12 (mv)	'lain Pi V _m (mv)	n, Se t (F)	t IV t (F)	⊖ 0 (F)(V Volts)	I (Amp.)	W (Watts)	Q (Btu/hr)
11:355 V1 (mv) 2.48	v ₂ (mv) 2.507	v ₃ (mv) 2.355	Table V4 (mv) 2.365	B-8. v ₅ (mv) 2.365	Measure ^v 6 (mv) 2.514	v ₇ (mv) 2.52	Heat T V8 (mv) 2.505	ransfer V9 (mv) 2.346	for Va v ₁₀ (v) 2.38	v 11 (mv) 2.402	o for F V ₁₂ (mv) 2.463	Plain Pi V _m (mv) 2.434	n, Se t _o (F) 139	t IV t (F) 80	€ (₽)(59	V Volts) 35	I (Amp.) 2.33	W (Watts) 81.5	Q (Btu/hr) 279
v1 (mv) 2.48 3.131	v ₂ (mv) 2.507 3.177	v ₃ (mv) 2.355 2.935	Table v ₄ (mv) 2.365 2.953	B-8. v ₅ (mv) 2.365 2.953	Measure v ₆ (mv) 2.514 3.182	v ₇ (mv) 2.52 3.196	Heat T V8 (mv) 2.505 3.171	ransfer v ₉ (mv) 2.346 2.925	for Va v 10 (mv) 2.38 2.977	v 11 (mv) 2.402 3.01	o for F V ₁₂ (mv) 2.463 3.102	Plain Pi V _m (mv) 2.434 3.059	n, Se t _o (F) 139 164	t IV t (F) 80 82	⁹ ₀ () (59 82	V Volts) 35 44.5	I (Amp.) 2.33 2.9	W (Watts) 81.5 129	Q (Btu/hr) 279 441
v ₁ (mv) 2.48 3.131 4.019	v ₂ (mv) 2.507 3.177 4.085	v ₃ (mv) 2.355 2.935 3.735	Table v ₄ (mv) 2.365 2.953 3.755	B-8. v ₅ (mv) 2.365 2.953 3.755	Measure v ₆ (mv) 2.514 3.182 4.092	ement of v ₇ (mv) 2.52 3.196 4.11	Heat T V8 (mv) 2.505 3.171 4.075	ransfer v ₉ (mv) 2.346 2.925 3.712	for Va v ₁₀ (mv) 2.38 2.977 3.785	v 11 (nv) 2.402 3.01 3.832	o for F v ₁₂ (mv) 2.463 3.102 3.966	Plain Pi v _m (mv) 2.434 3.059 3.91	n, Se t (F) 139 164 198	t IV t (F) 80 82 82	€ (F)(59 82 116	V Volts) 35 44.5 55	I (Amp.) 2.33 2.9 3.603	W (Watts) 81.5 129 198	Q (Btu/hr) 279 441 678
11.355 V1 (mv) 2.48 3.131 4.019 4.927	v ₂ (mv) 2.507 3.177 4.085 5.014	v ₃ (mv) 2.355 2.935 3.735 4.6	Table V4 (mV) 2.365 2.953 3.755 4.545	B-8. v ₅ (mv) 2.365 2.953 3.755 4.517	Measure v ₆ (mv) 2.514 3.182 4.092 5.002	ement of v ₇ (mv) 2.52 3.196 4.11 5.03	Heat T v ₈ (mv) 2.505 3.171 4.075 4.981	ransfer v ₉ (mv) 2.346 2.925 3.712 4.478	for Va v ₁₀ (mv) 2.38 2.977 3.785 4.59	v 11 (mv) 2.402 3.01 3.832 4.65	o for F v ₁₂ (mv) 2.463 3.102 3.966 4.83	Plain Pi Vm (mv) 2.434 3.059 3.91 4.764	n, Se t _o (F) 139 164 198 231	t IV t _a (F) 80 82 82 82	∂ (F)(59 82 116 149	V Volts) 35 44.5 55 66	I (Amp.) 2.33 2.9 3.603 4.275	W (Watts) 81.5 129 198 282	Q (Btu/hr) 279 441 678 965
11:355 v1 (mv) 2.48 3.131 4.019 4.927 5.917	v ₂ (mv) 2.507 3.177 4.085 5.014 6.03	v ₃ (mv) 2.355 2.935 3.735 4.6 5.384	Table v ₄ (mv) 2.365 2.953 3.755 4.545 5.44	B-8. v ₅ (mv) 2.365 2.953 3.755 4.517 5.426	Measure v ₆ (mv) 2.514 3.182 4.092 5.002 6.039	ement of v ₇ (mv) 2.52 3.196 4.11 5.03 6.064	Heat T v ₈ (mv) 2.505 3.171 4.075 4.981 6.006	ransfer v ₉ (mv) 2.346 2.925 3.712 4.478 5.347	for Va v10 (mv) 2.38 2.977 3.785 4.59 5.485	v 11 (mv) 2.402 3.01 3.832 4.65 5.566	o for F v ₁₂ (mv) 2.463 3.102 3.966 4.83 5.802	Plain Pi V (mv) 2.434 3.059 3.91 4.764 5.709	n, Se t _o (F) 139 164 198 231 266	t IV t _a (F) 80 82 82 82 82 82	Description of the second state of the seco	V Volts) 35 44.5 55 66 75	I (Amp.) 2.33 2.9 3.603 4.275 4.885	W (Watts) 81.5 129 198 282 366	Q (Btu/hr) 279 441 678 965 1250
11.355 v ₁ (mv) 2.48 3.131 4.019 4.927 5.917 7.02	v ₂ (mv) 2.507 3.177 4.085 5.014 6.03 7.155	v ₃ (mv) 2.355 2.935 3.735 4.6 5.384 6.347	Table v4 (mv) 2.365 2.953 3.755 4.545 5.44 6.415	B-8. v ₅ (mv) 2.365 2.953 3.755 4.517 5.426 6.386	Measure v ₆ (mv) 2.514 3.182 4.092 5.002 6.039 7.161	ement of v ₇ (mv) 2.52 3.196 4.11 5.03 6.064 7.19	Heat T V8 (mv) 2.505 3.171 4.075 4.981 6.006 7.12	ransfer v9 (mv) 2.346 2.925 3.712 4.478 5.347 6.304	for Va v ₁₀ (mv) 2.38 2.977 3.785 4.59 5.485 6.47	v 11 (nv) 2.402 3.01 3.832 4.65 5.566 6.567	o for F v ₁₂ (mv) 2.463 3.102 3.966 4.83 5.802 6.859	Plain Pi v (mv) 2.434 3.059 3.91 4.764 5.709 6.75	n, Se to (F) 139 164 198 231 266 304	t IV t a (F) 80 82 82 82 82 82 82 82 82	€ (F)(59 82 116 149 184 222	V Volts) 35 44.5 55 66 75 84.8	I (Amp.) 2.33 2.9 3.603 4.275 4.885 5.49	W (Watts) 81.5 129 198 282 366 465	Q (Btu/hr) 279 441 678 965 1250 1588
11.355 v ₁ (mv) 2.48 3.131 4.019 4.927 5.917 7.02 8.35	v ₂ (mv) 2.507 3.177 4.085 5.014 6.03 7.155 8.52	v ₃ (mv) 2.355 2.935 3.735 4.6 5.384 6.347 7.505	Table V4 (mV) 2.365 2.953 3.755 4.545 5.44 6.415 7.6	B-8. v5 (mv) 2.365 2.953 3.755 4.517 5.426 6.386 7.569	Measure v ₆ (mv) 2.514 3.182 4.092 5.002 6.039 7.161 8.54	ement of v ₇ (mv) 2.52 3.196 4.11 5.03 6.064 7.19 8.567	Heat T V8 (mv) 2.505 3.171 4.075 4.981 6.006 7.12 8.478	ransfer v ₉ (mv) 2.346 2.925 3.712 4.478 5.347 6.304 7.441	for Va v ₁₀ (mv) 2.38 2.977 3.785 4.59 5.485 6.47 7.673	v11 (mv) 2.402 3.01 3.832 4.65 5.566 6.567 7.795	o for F v ₁₂ (mv) 2.463 3.102 3.966 4.83 5.802 6.859 8.16	Plain Pi V (mv) 2.434 3.059 3.91 4.764 5.709 6.75 8.017	n, Se to (F) 139 164 198 231 266 304 348	t IV t a (F) 80 82 82 82 82 82 82 82 82	 ∂ (F) (59 82 116 149 184 222 266 	V Volts) 35 44.5 55 66 75 84.8 96	I (Amp.) 2.33 2.9 3.603 4.275 4.885 5.49 6.24	W (Watts) 81.5 129 198 282 366 465 600	Q (Btu/hr) 279 441 678 965 1250 1588 2050

Table B-7. Measurement	; of	Heat Transfer	for	Various	00	for	Plain	Pin,	Set	II]
------------------------	------	---------------	-----	---------	----	-----	-------	------	-----	----	---

V ₁	v2	^v 3	v ₄	v ₅	v ₆	¥7	v ₈	v ₉	Vlo	v ₁₁	v12	V m	t	ta	0	V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
2.069	2.091	2.084	2.09	2.056	2.02	2.037	2.03	2.105	2.045	2.1	2.024	2.063	123	80	43	10.2	1.592	16.21	55.48
3.269	3.3	3.0	3.295	3.224	3.14	3.19	3.175	3.34	3.198	3.325	3.146	3.216	170	81	89	15.4	2.42	37.2	127
4.06	4.11	4.095	4.096	4.022	3.886	3.954	3.925	4.159	3.97	4.141	3.884	4.025	202	81	121	18	2.892	52	177.6
4.994	5.025	5.026	5.024	4.912	4.745	4.82	4.79	5.095	4.834	5.07	4.73	4.922	237	81	156	22	3.395	74.8	255.5
6.72	6.825	6.798	6.831	6.625	6.365	6.505	6.442	6.905	6.538	6.88	6.37	6.65	300	82	218	27.2	4.16	113.4	387.5
8.098	8.219	8.189	8.2	7.965	7.638	7.82	7.72	8.319	7.865	8.285	7.645	7.997	348	81	267	32.6	4.74	154.6	529
9.545	9.722	9.651	9.665	9.44	8.98	9.205	8.114	9.81	9.268	9.76	8.97	9.344	394	81	313	36	5.29	190	650
11.141	11.282	11.19	11.224	10.939	10.411	10.696	10.56	10.461	10.735	11.345	10.388	10.864	445	81	364	40	5.95	238	814

Table B-9. Measurement of Heat Transfer for Various θ_0 for Plate, Set I

Table B-10. Measurement of Heat Transfer for Various θ_0 for Plate, Set II

_v ₁	v2	^v 3	v ₄	^v 5	v ₆	v ₇	v ₈	v ₉	v10	Vll	v ₁₂	v _m	to	ta	e_	V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(v)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
2.515	2.53	2.529	2.529	2.49	2.43	2.455	2.447	2.555	2.465	2.54	2.425	2.493	141	81	60	11.8	1.866	22	75.2
3.1	3.135	3.135	3.134	3.07	2.996	3.036	3.033	3.175	3.044	3.16	3.0	3.085	165	81	84	15.0	2.375	35.6	121.9
4.14	4.171	4.166	4.17	4.081	3.948	4.012	3.978	4.215	4.022	4.2	3.94	4.087	205	81	124	18.4	2.875	52.9	181
5.14	5.19	5.169	5.184	5.037	4.878	4.966	4.914	5.245	4.997	5.225	4.872	5.068	242	81	161	21.6	3.339	72.1	246.5
6.395	6.492	6.484	6.474	6.311	6.057	6.191	6.116	6.557	6.241	6.535	6.05	6.325	288	80	208	26.3	4.036	106	361.8
7.68	7.76	7.71	7.729	7.545	7.205	7.37	7.296	7.828	7.406	7.789	7.2	7.543	332	80	252	29.8	4.5	134	458
8.861	9.005	8.945	8.945	8.737	8.376	8.55	8.465	9.9	8.609	9.07	8.336	8.817	376	80	296	34	5.078	172.6	590
10.18	10.35	10.278	10.294	10.012	9.579	9.805	9.66	10.45	9.88	10.405	9.55	10.04	417	82	335	38	5.66	215	734

vı	v2	^v 3	v ₄	v ₅	v ₆	¥7	vg	V 9.	VlO	v _{ll}	^v 12	vm	to	ŧ	.	V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts))(Amp.)	(Watts)	(Btu/hr)
1.96	1.977	1.977	1.985	1.95	1.913	1.927	1.92	1.992	1.94	1.99	1.915	1.954	119	79	40	10	1.505	15.05	51.4
2.947	2.985	2.975	2.98	2.924	2.85	2.88	2.868	3.015	2.895	3.0	2.845	2.93	159	80	79	14	2.19	30.66	104.7
3.972	4.029	4.02	4.02	4.025	3.94	3.814	3.87	4.075	3.892	4.054	3.805	3.96	200	79	121	18	2.815	50.7	173
5.07	5.126	5.11	5.125	5.0	4.83	4.906	4.832	5.184	4.935	5.165	4.807	5.008	240	78	162	22	3.365	74	252.8
6.168	6.25	6.225	6.225	6.065	5.859	5.957	5.909	6.311	5.997	6.29	5.835	6.091	280	78	202	25.8	3.94	101.6	346.8
7.24	7.367	7.329	7.349	7.16	6.868	7.023	6.932	7.46	7.06	7.432	6.871	7.174	319	78	241	29.4	4.465	131.3	448
8.87	8.976	8.926	8.953	8.713	8.328	8.517	8.45	9.075	8.584	9.035	8.31	8.728	373	81	292	34	5.09	173	590.5
10.547	10.71	10.64	10.685	10.36	9.924	10.15	10.03	10.82	10.224	10.778	9.875	10.395	429	82	347	38.5	5.86	225.9	771

Table B-11 Measurement of Heat Transfer for Various Θ_0 for Plate, Set III

Table B-12 Measurement of Heat Transfer for Various Θ_0 for Plate, Set IV

v ₁	^v 2	v ₃	v ₄	¥5	v _б	V ₇	v ₈	V ₉	v10	Vll	V ₁₂	v _m	to	ta	θ ₀	V	I	W	Q
(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(mv)	(v)	(mv)	(mv)	(mv)	(F)	(F)	(F)(Volts)	(Amp.)	(Watts)	(Btu/hr)
2.076	2.085	2.084	2.084	2.05	2.01	2.026	2.02	2.1 '	2.036	2.094	2.008	2.056	123	76	47	10	1.466	14.66	50.03
2.902	2.945	2.933	2.93	2.881	2.796	2.831	2.815	2.965	2.847	2.95	2.795	2.883	157	76	81	14.2	2.12	30.1	102.7
3.8	3.836	3.8 3 5	3.83	3.737	3.635	3.68	3.661	3.871	3.693	3.855	3.616	3.754	192	78	114	18	2.76	49.6	169.6
5.02	5.085	5.067	5.08	4.944	4.769	4.856	4.762	5.136	4.89	5.108	4.77	4.957	238	78	160	22	3.33	73.25	250
6.165	6.26	6.211	6.228	6.07	5.848	5.955	5.89	6.319	6.0	6.29	5.83	6.089	280	78	202	25.8	3.895	100.5	343
7.565	7.678	7.642	7.649	7.455	7.159	7.304	7.234	7.771	7.349	7.73	7.116	7.471	329	77	252	31	4.58	142	485
8.805	8.957	8.895	8.91	8.69	8.312	8.483	8.4	9.041	8.529	9.009	8.284	8.693	372	78	294	34	5.03	171.2	584
10.16	10.311	10.277	10.27	10.005	9.563	9.77	9.67	10.415	9.842	10.366	9.52	10.014	416	79	337	38	5.6	213	726.5

ABSTRACT

Numerous types of extended surfaces have been used in the past but those with finned pins have proved to be unique in increasing the rate of heat transfer. Hsieh working on the original idea of professor Hsu proved that heat transfer rate can be further increased by putting annular fins on a pin.

In this thesis the design of finned pin was optimized to give maximum heat transfer rate from a given primary surface, and an experimental investigation was conducted to verify the results.

1. Theoretical Investigation consists of:

- (1) Reproduction of mathematical equations for pin and finned pin.
- (2) Study of heat transfer characteristics of pin and finned pin.
- (3) Optimization of the design of pin and finned pin.
- (4) Sample calculations of heat flow rate for pin and finned pin.

2. Experimental investigation consists of:

- (1) Construction of finned pin, pin and primary surfaces.
- (2) Set-up of experimental equipment.

- (3) Comparison of heat flow rate for finned pin, pin and plate.
- 3. Conclusions: The conclusions were based on the comparison of finned pln and pln. The heat transfer rate from 8" x $4\frac{1}{2}$ " surface was increased by employing finned pin. The maximum increase was 36%.