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Abstract

After Qualcomm’s proposal of the IS-95 standard, code-division multiple access
(CDMA) gained popularity as an alternative multiple-access scheme in cellular and per-
sonal communication systems (PCS). Besides the advantage of allowing asynchronous
operation of the users, CDMA direct-sequence spread spectrum (DS-SS) offers resistance
to frequency selective fading and graceful degradation of the performance as the number
of users increases.

Orthogonality of the signals in time-division multiple access and frequency-division
multiple access is inherent from the nature of the multiple access scheme. In a CDMA
system, orthogonality of the signals is not guaranteed in general. Consequently, the
performance of conventional correlation receivers suffers.

Sub-optimum receivers which use knowledge of the interfering signals have been
investigated by other researchers. These receivers attempt to cancel the multi-user in-
terference by despreading the interfering users. Hence, these receivers require knowledge
about all the spreading codes, amplitude levels, and signal timing, and are, in general,
computationally intensive.

In this thesis, a technique is presented for which a high degree of interference re-
jection can be obtained without the necessity of despreading each user. It is shown
that exploiting spectral correlation can help mitigate the effects of the multiple-access
interference. If code-on-pulse DS-SS modulation is used, a cyclic form of the Wiener
filter provides substantial improvements in performance in terms of bit error rate and
user capacity. Furthermore, it is shown, that a special error-criterion should be used to
adapt the weights of the filter.

The computational complexity of the receiver is equivalent to that of conventional

equalizers.



Preface

The research presented in this thesis was originally motivated by investigating how a radial
basis function (RBF) network [1] could be used to help reject interference in a multiple
access system. The multiple access interference in a CDMA system is often non-Gaussian.
Under this condition, a non-linear optimal filter can provide better performance than a
linear filter. Also, to keep the design simple and computationally efficient, a single user
detector was proposed.

The basic idea was to apply an RBF neural network at the output of a tapped delay line
with a length of the bit-duration 7;. The outputs of the shift-registers composing the delay
line form the input space of the RBF receiver. By using bit-repetitive spreading codes,
demodulation and despreading a desired user is viewed by the RBF neural network as a
pattern recognition problem. This can be understood as follows: In the noiseless case, a
bit multiplied by the spreading code corresponds to a certain pattern. For BPSK signaling,
each user produces two patterns, one pattern corresponding to a ‘one,’ and another pattern
corresponding to a ‘zero.” If the outputs of the tapped delay line hold an entire bit and
are presented to the neural network at the bit rate, the neural network views the process
of demodulation as a pattern recognition problem of a pattern in an N;-dimensional space,
where N; is the number of taps. By sending a training sequence first, the RBF network
learns the decision rule.

Figure 1 depicts the principal structure of the RBF receiver. Each RBF is connected to
all samples within the delay line. For the neural network, the outputs of the delay line form
the input vector x. At the bit rate, the RBFs ®;(||x — ¢j[[),1 < j < Ny, are calculated.
Then, the function values are scaled by some factors w;,1 < 7 < N3, and summed to form
the network output. Also, a threshold value © = wg is added. The network output is one
dimensional, since the network has only to decide whether a ‘one’ or a ‘zero’ is transmitted.

A hard-limiting function
1 y 20,

1
-1, y <0, M

fur(y) = {
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Figure 1: The radial basis function receiver.

decides that a ‘one’ is transmitted when the output of the RBF neural network is positive
and a ‘zero’ is transmitted when the network output is negative.

A coefficient update algorithm compares the network output with a desired output and
updates the weights to minimize the error in a least-squares sense. In training mode, the
comparison takes place between the network output and the known training symbols. After
training is completed, the coefficient update is switched to decision-directed mode and the
output of the neural network is compared to the output of the hard-limiter.

For multiple users, the number of possible patterns, n, grows exponentially with the

number of users, K, and it can be shown that
n = 22K-1, (2)

Simulations show that despite the exponential growth of possible patterns, the RBF
neural network is able to establish a decision boundary which allows significant performance
gains over conventional correlation receivers.

However, it turned out that this decision boundary is converging towards a linear de-
cision boundary. Thus, the non-linear RBFs can be taken out from the design and a less

computational intensive linear receiver can be proposed.
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Chapter 1
Introduction

In the past, spread-spectrum techniques were reserved for military applications. Spread-
spectrum signals are resistant to jamming and their relatively low power spectral density
reduces the probability of interception. In recent years, spread-spectrum techniques have
gained importance for commercial applications. Though demodulation of spread-spectrum
signals appears to be more difficult than demodulation for conventional modulation schemes,
its selective addressing capability and ability for code-division multiple access as well as

interference rejection make spread-spectrum modulation useful for the cellular industry.

1.1 Comparison Between TDMA, FDMA, and CDMA

In a multiple user system like a cellular telephone system, it is necessary to employ a
multiple access scheme to guarantee separation among the users. The traditional multiple
access schemes are time-division multiple access (TDMA) and frequency-division multiple
access (FDMA). In FDMA systems, each user is assigned a different frequency band, hence,
it is relatively easy to separate each user from a group of users. However, since the available
channels are, in general, narrowband channels, FDMA systems suffer heavily from frequency
selective fading. Also, FDMA suffers from capacity loss due to channel spacing which is
necessary to guarantee channel separation for Doppler-shifts in the transmitted signals and
oscillator imprecisions. In a TDMA system, each user is assigned a different time slot in
which the user may transmit a package of data. All users share the same channel but
use it at different times. Since the bit rate during package transmission is higher than for
continuous transmission, the channel bandwidth is considerably higher than for a single

channel for FDMA. Although TDMA seems to overcome many of the reasons for capacity



degradation in FDMA systems, time-displacement, intersymbol-interference (ISI) and co-
channel interference degrade the capacity of a TDMA system.

Hybrid systems, like time-slotted frequency hopped multiple-access, employing varia-
tions of the FDMA and TDMA schemes, generally suffer from the same degradation as the
pure FDMA or TDMA schemes.

- Another multiple-access scheme is code-division multiple access (CDMA). In a CDMA
system all users share the same channel at the same time. A user is distinguished from
other users by using a different waveform. In a direct-sequence spread spectrum (DS-SS)
system, the waveform generation is obtained by multiplying a narrowband signal by a
sequence of symbols typically from the alphabet {—1,1}. By correlating with the sequence
assigned to an individual user, the user can be separated from a received signal composed
of superposition of all signals.

In theory, for the additive white Gaussian noise (AWGN) channel, FDMA, TDMA and
CDMA are equivalent with respect to bandwidth efficiency or user capacity {2]. In the
mobile radio environment, however, CDMA has been shown to offer some advantages over
FDMA and TDMA, since it can compensate for the effects of frequency-selective fading and
time-delay spreads [2].

Besides the performance gained by using CDMA in a mobile channel, employing a

CDMA scheme provides several more advantages:

o The performance of a CDMA system degrades gracefully with increasing number of

users.
¢ Asynchronous operation is possible.
¢ Bandwidth expansion due to Doppler-shifts is less significant compared to FDMA.

¢ The capacity loss due to multipath delays in the mobile channel is less than in TDMA

systems.
On the other hand, CDMA also possesses some disadvantages:

¢ CDMA receivers and transmitters are more complex than those needed for TDMA or
FDMA.

o Orthogonality between the users, which is an integral part of FDMA and TDMA
schemes, is not generally owned by CDMA.

Due to recent advances in computational capabilities and digital signal processing, basic

CDMA transmitters and receivers are now realizable at low costs. However, computational



complexity remains still an important factor especially when more sophisticated computa-
tionally intensive receivers are proposed, and since power consumption increases with the
amount of computations. Especially at the mobile station, power consumption is a critical
factor.

Non-orthogonal signaling results in multiple-access interference (MAI) limiting the ca-
pacity of the multiple-user system. A way to reduce the impact of MAI in a CDMA system
is to control the power of each user. In the Qualcomm IS-95 proposal [3] long signature
sequences with low cross-correlation properties are used to reduce CDMA interference. The
receiver treats every user no differently than white Gaussian noise, thus every user con-
tributes a fraction to the noise level. To minimize the impact of CDMA interference, power
control is used to maintain consistent power levels among the users. Using Qualcomm’s
modulation scheme, the signals have almost no spectral correlation. However, if the spread-
ing codes meet certain requirements, then spectral correlation in the signal of interest (SOI)
and the interference can be exploited to help increase the performance of the receiver. This
is discussed in Chapter 3. It is shown that substantial improvement can be gained by using

bit repetitive signature sequences.

1.2 CDMA and Direct-Sequence Spread Spectrum

Obtaining a DS-SS signal can be viewed as multiplying a narrowband modulated signal
sN(t) by a high-speed spreading sequence. The narrowband signal is spread over a larger
bandwidth, and its power spectral density (PSD) is lowered by the processing gain. Though
all different types of narrowband modulation schemes can be applied to DS-SS modulation,
more simple modulation schemes like binary phase shift keying (BPSK) or quadrature phase
shift keying (QPSK) are most commonly used.

The spreading sequence typically consists of symbols from a finite set. These symbols
can be either real or complex values. For QPSK spread-spectrum, two different spreading
sequences for the inphase and quadrature component of the narrowband signal are usually
employed, and they are commonly chosen to be orthogonal to obtain maximum signal
separation.

The generation of a BPSK DS-SS and its characteristics are discussed in the following

section.



1.2.1 BPSK DS-SS Modulation and Waveform Description

BPSK modulation is accomplished by modulating the phase of a sinusoidal signal with the

incoming data bit stream,
sq(t) = A cos|wot + O4(t) + ¢], (3)

where ©4(t) is either 0 or 7 depending on the data bits, wp denotes the carrier frequency,

A, is the carrier magnitude, and ¢ is an arbitrary phase factor. It is well known, that
cos(m + z) = —cos(z). (4)
Hence, Equation 3 can be rewritten as
34(t) = A.d(t) cos(wot + ). (5)

Thus, BPSK modulation can be achieved by multiplying a carrier with the data bit stream
d(t), where the data bits are symbols taken from the set {—1,1}. The bandwidth of a BPSK
signal depends on the data bit rate R;. Its absolute bandwidth is infinite, whereas the 3-dB
bandwidth of a BPSK signal is approximately 0.88R;. Its null-to-null bandwidth is 2R,.

A DS-SS system multiplies the modulated signal with a code sequence, ¢(t), which is
much faster than the bit rate. Therefore, the spread signal is

sd(t) = Acc(t)d(t) cos(wol + ). (6)

c(t) is the spreading sequence with values typically taken from the alphabet {—1,1}.! The
discrete symbols of the signature sequence are referred to as chips. Its duration T is called
the chip period. If T} denotes the data bit period, then the signal spectrum is spread by a
factor of T} /T, called the processing gain. The amplitude spectrum of a BPSK signal with
carrier frequency f. = 1049 kHz and bit rate R, = 16.384 kbit/s is depicted in Figure 2.
Multiplying the BPSK signal with a processing gain of 32 (15 dB) reduces the amplitude
of the BPSK signal and spreads it out over a bandwidth 32 times larger. The DS-SS signal
is shown in Figure 3. Its null-to-null bandwidth is 1049 kHz. Figure 4 depicts a simplified
block diagram of the DS-SS modulator.

1.2.2 Spreading Codes

Any chip sequence can be used for spreading a signal. For demodulating a DS-SS signal,

the only constraint is that the spreading sequence is known at the receiver. However, not

! This constraint only holds for real spreading sequences. A complex spreading sequence might take
values from the alphabet {—1,1,—j,7}.
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Figure 4: DS-SS modulator.

all sequences have the same spectral properties. In a CDMA system where other users
occupy the same spectrum, low cross-correlations between different spreading sequences are
desired. Finally, to be more resistant to multipath delays and to ease synchronization, a low
autocorrelation for each code is desired. In some systems, the spreading sequences repeat

with a certain period N. The spreading code ¢(t) can be described by

=3 ent(g-m), ©

m=-00

where ¢, is taken from the alphabet {—1,1},2 and ¢(t) is the rectangular function

1, ~l<t<l
q(t) = 2o ew (8)
0, otherwise.

The autocorrelation R..(7) of a code is then defined as

T
1%&%:%L<ﬂkﬁ+ﬂa, 9)

and the cross-correlation between two sequences ¢(t) and ¢(t) is given by

T
&Aﬂ=%LcmMu¢ua (10)

Many different kinds of codes have been investigated by researchers. The most commonly

known are Gold codes and m-sequences [4].

2See also Footnote 1.



Chapter 2

Current Techniques for CDMA
Demodulation and Interference

Rejection

2.1 Conventional Receiver

Referring to Section 1.2, a DS-SS signal results from multiplying a narrowband message
signal with a spreading sequence with rates higher than the bit rate of the narrowband
signal. The resultant signal occupies a higher bandwidth, but its PSD is lower than the
original narrowband signal.

A formula expression for a BPSK DS-SS signal is given in Equation 6:
84(t) = Acc(t)d(t) cos(wot + ), (11)

where ¢(t) and d(t) come from the binary alphabet {—1,1}. If the spreading sequence is
known at the receiver, a detected signal, r(t), of the form s4(t) + n(t), where n(t) is some
noise or interference introduced by the communication channel, can be despread.

Before processing the received signal, in almost every receiver, the signal is shifted to
a more convenient frequency, most commonly to baseband. First, the received signal is
bandpass filtered to reject noise outside the signal bandwidth. Second, the signal is shifted
to baseband by multiplying the signal by a frequency generated from a local oscillator
and lowpass filtering. In discrete-time systems, a common technique is decimation. An
analytic signal, i.e., a signal for which the Fourier transform only contains positive frequency
components, can be obtained using the Hilbert transform [5]. The results presented in this

thesis assume a baseband representation.
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2.1.1 Despreading by Correlation

Assuming that the receiver is synchronous with the received signal, despreading can be
achieved by multiplying the received signal r(t) with the conjugate complex code ¢(t). In-
tegrating the output of the multiplier and sampling the output at the bit rate yields an
estimate d(t) of the data bits d(t). Figure 5 depicts the principal of the DS-SS demodu-
lator described above. Note that the multiply and integrate functions are equivalent to a
correlation operation.

Another implementation of a correlator is the matched filter. A matched filter is a linear
filter that maximizes the SNR at its output. It can be shown that when only white Gaussian
noise is added to the signal, the matched filter’s frequency response H( f) is the conjugated
Fourier transform of the known signal s(¢) times a constant factor [6]. In a digital system,
the matched filter is implemented as a linear transversal filter. Figure 6 shows the equivalent

demodulator as in Figure 5 using a matched filter.

2.1.2 Performance of the Matched Filter

The matched filter can also be used to demodulate a DS-SS signal in a CDMA environ-
ment. This is because CDMA interference is approximately white and Gaussian. A close
approximation of the performance of the matched filter for CDMA is given by Holtzman
[7]. Assuming each user has uniform distributed phases, same amplitude levels, uniform

distributed delays within one chip, and uses random codes, Holtzman found an expression



which gives an approximation of the probability of bit-error, P., depending on the number

of users, K, the processing gain N, the energy per bit, E}, and the noise power spectral

density N_20_:
2 |(K-1_ No\°°
P .~ - _——
3Q [( 3N + 2Eb) ]

1 (K ~1)(N/3)+ V30
+6Q ( N2

No —-0.5
+ 2]

NO —-0.5:
+ 2Eb)

1 K —1)(N/3)- /3
+5Q (( )(le) z ; (12)
with 23 1 K-2 1 K-2
”2:(K—1)[N23ﬁ+N(%+T)“%’T]’ (13)

and Q(-) given by
1 © W
Q(:z:) = E/z_ e 2 du. (14)

The probability of error for the matched filter receiver according to Equation 12 is depicted
in Figure 7 for N = 7,31,63. It can be seen that for a number of users greater than 30
percent of the processing gain N, the bit-error rate (BER) becomes intolerable.

Results similar to these derived by Holtzman can be found in [8]. This reference gives
lower and upper bounds on the probability of bit error based on the same assumptions as
in [7].

2.2 The Optimum Receiver

By treating interference introduced by multiple-access users as Gaussian noise, the matched
filter does not exploit any knowledge of the other users. This short coming can be over-
come by multi-user detection. Multi-user detection can be viewed as a bank of single-user
detectors where a decision for a certain user is made using the outputs of all single-user
detectors.

Assuming all users to be synchronous, finding an optimum symbol decision reduces to
maximizing a quadratic function. For the asynchronous case the optimum receiver has been
shown to have the form of a Viterbi forward dynamic programming algorithm [9] employed
at the outputs of a bank of single user detectors.

Figure 8 illustrates the diagram of the optimum receiver. The received signal, r(t), is

passed through a bank of matched filters. The delays, 1;, compensate for asynchronous

9
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users. A Viterbi forward dynamic programming algorithm is applied at the outputs of the
matched filters to make the optimum decision [10].
The complexity of the optimum receiver for both cases, the synchronous as well as the
;asynchronous case, has been shown by Verdi to increase nondeterministic polynomial-time
hard (NP-hard) with the number of users, whereas its time-complexity increases linearly
with the number of symbols sent by each user [11].

Due to the nondeterministic polynomial-time increase in complexity, the optimum re-
ceiver, as proposed by Verdi, can easily reach an infeasible number of computations. This
is the case even for a relatively low number of users. If the number of users in a cellular
system exceeds eight, the computational complexity exceeds practical limits. This is the

case for almost all CDMA applications for cellular systems and PCS.

2.3 Neural Network CDMA Multi-User Detection

As mentioned in Section 2.2, the optimum receiver introduced by Verdi is infeasible for most
practical applications. An attempt to reduce computational complexity is the receiver pro-
posed by Behnaam Aazhang et. al. in [12]. In this approach, a multilayer perceptron neural
network is applied to the outputs of a bank of matched filters. It is trained to approximate
the Viterbi detector. Since the Viterbi detector yields Bayesian decision statistics for the
CDMA problem, the neural network finds a suboptimum solution to multi-user detection.
However, the computational effort is considerably less than for the Viterbi optimum receiver.
The authors were able to demonstrate performance close to that of Verdd’s receiver.

The neural network receiver is shown in Figure 9.

11
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2.4 Multistage Receivers for CDMA User Detection

Another approach used for multiuser detection are multistage receivers and are introduced
in [13]. A multistage receiver demodulates the strongest users first; in a second step, after
subtracting these users out of the received signal or the decision variables, it attempts to
demodulate the remaining users. Thus, it is capable of rejecting performance degradation
especially in the presence of widely different power levels among the users.

An example for a multistage receiver employing two stages is depicted in Figure 10.
The first stage demodulates the first { users. The second stage uses the data estimates,
J[n],l <1 < [, to help detecting the remaining users. Note that multistage receivers with
more than two stages exist.

The mobile channel and non-linearities introduced by amplifiers and antennas degrade
the performance of multi-stage receivers. Since the mobile channel is subject to frequency-
selective fading due to multipath delays, an accurate estimate of a multiuser component
is almost impossible to obtain. Also, an accurate knowledge about all power levels in the
system is necessary. Subtracting out an inaccurate estimate out of the received signal, leaves

residual multiple access interference.

12



2.5 Summary

CDMA offers great potential for increasing the capacity of a multi-user system. However,
the conventional correlation receiver is subject to the “near-far” problem and does not
make use of the interference structure. As a result, the correlation receiver only supports a
number of users approximately equal to 30 percent of the processing gain at a BER of 1073.
Joint detection requires complete knowledge of the signals and its computational intensity
makes the receiver very expensive, if not impractical.

In the subsequent chapters another effective way of MAI mitigation is discussed for
which the computational effort is considerably less than for joint detection receivers, but

which shows almost identical performance.
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Chapter 3

Cyclostationarity in
Direct-Sequence Spread-Spectrum

Communications

As discussed in the previous chapter, multiuser receivers and joint detection can mitigate
the effects of the MAI. However, these receivers require a considerable amount of knowledge
about the MAI and can only operate at high computational costs.

In this thesis, it is shown that “code-on-pulse” modulation or “modulation on symbol”
[14] can alleviate the impact of the MAI by exploiting the repetitive or cyclic nature of the
signals.

Time-dependent filters perform better than time-independent filters if the signal of in-
terest or the interference exhibits the property of cyclostationarity.

Cyclostationarity has been heavily discussed by Gardner [15, 16, 17]. The principle of
cyclostationarity is discussed in Section 3.1 and 3.2. These sections are based on work done
earlier by Holley [18]. In Section 3.3, it will be shown that the optimal time-dependent
adaptive filter for despreading and demodulating a CDMA DS-SS signal is a single linear
filter.

3.1 Principles of Cyclostationarity

A process z(t) is said to be cyclostationary in the wide sense if its mean and autocorrelation

are periodic with some periodicity, To, i.e.,

Ble(t)] = E[=(t + T), (15)
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and

Rzz(ta T) = sz(t + TO, T)a (16)

where E(-) is the expectation operator, and R;,(7) represents the autocorrelation function
defined by

T\ . T
sz(t,T)—E{Z (t+-2-)$ (t—- 2)}. (17)
The superscript, *, denotes complex conjugation.

If the autocorrelation function R;;(t) is periodic, then it can be described by its Fourier

series representation,

Rew(t,7) = ) RE(r)el?™, (18)

acd

where the cyclic autocorrelation function with respect to a cycle-frequency, o, is defined as
R2.(r)=E {z (t + %) z* (t - -12:) e‘jz”“t} . (19)

It is said that the process z(t) contains second-order periodicity with frequency «a, if and
only if RS (7) exists and is not identically zero as a function of 7. The cyclic autocorrelation

coefficients are determined by
1 (%
R (7) = Tl-i—lvnoo T /_% Ry(t, T)e™ 7274, (20)

In Equation 18, the set & denotes the set of all frequencies, a,, for which RS, # 0. For
purely cyclostationary signals, the cycle-frequencies are integrally related to a fundamental

frequency,! ag, for which
1

= —. 21
- @)

Likewise, the spectral correlation density function can be defined which is analogous to

Qo

the power spectrum for stationary signals. It can be viewed as the cross correlation between
frequency components at f — a/2 and f + a/2. The spectral correlation density function,
S2.(f), is defined as

st = i 1 [ e o (o4 5) 3 (o= )}
-7

where Xw (¢, f) is the Fourier transform of a finite window of data

Xw(t, f) = / HW? z(w)e= 92T u gy, (23)
t—7

!For some processes which show periodic behavior, the statistical periodicities are non-harmonically
related. These processes are referred to as almost cyclostationary.
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It can be shown that the spectral correlation density function and the cyclic autocorrelation

function are a Fourier transform pair [17]. Hence, it is

Se(f) = / " RS (r)ei I ar. (24)

It is recognized that the spectral correlation density function, S,

tional definition of the spectral density function S;(f) for a = 0. Henceforth, S;(f) will
be referred to as the spectral density function and SZ,(f) will be referred to as the cyclic

(f), equals the conven-

spectrum.

The cyclic cross correlation of y(t) and z(t) is defined as
o _ Z-_ * _ 1 —j2rat
Ryz(r)—E{y (t+ 2):1: (t 2)6 }, (25)

and the cross cyclic spectrum is
1 (71 a a

The following sections discuss where and how DS-SS signals exhibit spectral correla-
tion, and how the spectral correlation might be exploited to better reject interference and

demodulate a desired signal.

3.2 Spectral Correlation in DS-SS Signals

The generation and description of a DS-SS signal is discussed in Section 1.2. The under-
lying statistical periodicities in a DS-SS signal have been investigated by Chen [19]. In his

Ph.D. dissertation he showed the existence of three fundamental periodicities:
1. the chip period, T..
2. the data period, Ty,¢ta.
3. the code repetition period, T,oge.

For polar BPSK signaling, the data period is the bit period, T3. The code repetition period
is the period for which the spreading codes repeat.
Furthermore, Chen derived an expression for the cyclic autocorrelation functions R (7)

for a DS-SS signal
2(t) = c()d(), (27)
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where ¢(t) is the spreading waveform and d(¢) is the data waveform. The spreading waveform

is described by

(W)= > ena(7-m), (28)

m=—00

where ¢,, are the chips taken from the alphabet {—1,1}, and ¢(t) is the rectangular function

1 -1<i<!
t) = ’ == 2 29
at) { 0, otherwise. (29)

In this derivation, it is assumed that the periodicities are harmonically related and that

the spreading code repeats with an integer multiple of the bit period, i.e.,

Tdata = STca
Tcode = NSTC, (30)

where § and N are two integer numbers. The cyclic autocorrelation function for z(t) is [19]

s n—m .x(ntm)r
R ()= Y CaCLRy; ™% (r)e "W, (31)
n,m=-—o00

where C), represents a scaled version of the Fourier coefficients of the chip sequence wave-

form,

1 NST,

Co = —— | ° c(t)e "5t
noT NST, NSTC €

NST 0o ;
_ L —j ant;
= NST /l& Z cmq (Tc m) e I NsT: dt

==-=00

_ p (&) (32)

™

where
NS-1

B, = E cme I NS . (33)

v m=

Substituting Equation 31 into E(iuation 24, the expression for the cyclic spectrum can be

obtained,
o« _ Z . g n+m
S=l) = nm__ooc nCn S (f * 2NSTC)
= i Nl G —— (34)
I NST. 2NST.)’
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Sgd(f) represents the cyclic spectral density of the baseband data signal, d(t). The fun-

damental periodicity of d(t) is the baud rate, Tynta [16, 17]. The cycle frequencies B,

m = 0,---,NS — 1, of the data signal are the harmonics of the fundamental cycle fre-
quency. Thus,

1 m

- = —, 35

A Tdata ST, ( )

for all integer values m. It can be seen from Equations 35 and 34 that S2.(f) is non-zero

only for cycle frequencies a with

l m
@=NsT. t 5T (36)
or |
_ +mN  p
- NST.  NST. (37)

where I, m, and p are integer numbers. For code-on-pulse modulation, i.e. N =1, all cycle

frequencies are harmonics of the code repetition cycle frequency.

3.3 Optimal Time-Dependent Filters in DS-SS

A linear filter transforms an observed signal, z(t), into another signal, §(t),
i(t) = / h(t, u)z(u) du. (38)

Often, the observed signal, z(t) is a corrupted form of an unobservable signal, y(t). A filter
can be used to remove the corruption in z(t) such that the difference between the obtained
output signal §(t) and the desired output y(t) satisfies a certain error criterion. The most

commonly used error criterion is mean-squared error (MSE), e, which can be expressed as
|2
e =E{|y(®) - 9(1)"}. (39)
It can be shown that the optimal filter for purely stationary signals is time-independent,?
h(t,u) = h(t — u). (40)

However, if the signals exhibit any kind of cyclostationarity the optimal filter is a periodically
or almost periodically time-dependent filter [17, 20]. It is shown in Section 3.2 that a DS-SS
signal is cyclostationary. Therefore, the optimal filter is a periodically time-dependent filter,
h(t,u). If the filter is periodically time-dependent with fundamental periodicity, Tyata, it

can be expressed by its Fourier series representation (FSR),

h(t,u) = Zgﬁ(t - u)eﬂ”ﬁ“t, (41)
Bep

2This filter is known as the Wiener filter.
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Figure 11: FSR time-dependent adaptive filter.

where § is the set of cycle frequencies for which gg(7) # 0 for all 7. Substituting Equation 41
into 38 yields
9(0) = 3 ga(t) * [s(®)e™™]. (42)
Bes
From Equation 42, it can be seen that §(t) is the sum of linear time-independent filtered

versions of complex frequency shifted time-series,
zp(t) = z(t)e? 2Pt (43)

Equation 42 directly shows how to implement the time-dependent filter. Since the filter
is based on the FSR, it is referred to as the FSR time-dependent filter (FSR TDF). A
version of the FSR time-dependent adaptive filter (FSR TDAF) is illustrated in Figure 11
[21, 22, 20]. First, the input signal is multiplied by the different carriers, €727, for all cycle
frequencies, f;, for 0 < ¢ < L — 1. Each frequency-shifted replica of the signal is passed
through a different filter with frequency response h;(r,t) and summed to form the output.
An adaptation algorithm compares the output, §(t) with a desired signal, y(t), and adjusts
the filters to minimize the MSE. The design equation which determines the filter responses,

gp(¢), and minimizes the MSE is [17]

B3 (w)el™ = 3 gg(u) + [REP(w)eie)] | (44)
BeB

for all « and « of interest. If an optimum periodically time-variant filter is desired, then

the sets @ and § must contain all integer multiples of the fundamental cycle frequency. The
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Figure 12: The discrete-time FSR SE.

d[m]

minimum attainable MSE for Equation 44 is

emin = Ry(0) — Z/
ped”
The FSR TDAF can also be used to estimate the waveform of a corrupted BPSK DS-
SS signal. Versions of the FSR TDAF for interference cancellation of DS-SS have been
investigated by J. H. Reed [23] and R. D. Holley [18]. Based on a discrete Fourier transform
implementation, their algorithms estimate the uncorrupted signal §(¢).
If §(t) can be described by

(oo}

98w [Rgz(u)ej"ﬁ“] " du. (45)

() = y(8) + n(1), (46)

n(t) is white noise, then the optimal filter for demodulating §(t) is the matched filter as
described in Section 2.1.

However, since the matched filter is another linear filter, it might be included into the
filter impulse responses h;(t,7),7=0,1,---, L — 1. The output at every instant nT}, where
T, is the bit period and n is an integer number, can be used to estimate the transmitted
data bits, d[n]. The so obtained filter is referred to as the FSR sequence estimator (FSR
SE). The discrete-time version of the FSR SE is pictured in Figure 12. It is assumed that
the filters for each frequency shift are finite impulse response (FIR) filters of length I. They
are represented by their coefficient vector w;[m], with the coefficients w; ,, for0 < n <1-1.
Figure 13 shows the FIR filter of the ¢th user. The weights are updated at ¢t = mTj.

The discrete-time series, z[k], resulting from sampling the continuous signal, z(t), with
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zi[k]

Figure 13: FIR filter of the ¢th user.

sampling period T, is defined as

z[k] = z(kT,). 47
The output of the FSR SE after subsampling behind the summer is the estimated data
symbol d[m)]. The error €[m] is the difference between the estimated data symbol d[m] and
the desired data symbol, d[m)].

In the following, it is shown that the FIR filters in Figure 12 can be combined to a
single FIR filter. For this, it is assumed that the bit period, T}, is an integer multiple of
the sampling period Ty, A
Ty, = NT,. (48)
The set of cycle frequencies, @ which can be exploited by the FSR SE for the discrete-time

case is
a = {0, Qgp, 2&0, Sty (N - 1)0[0}. (49)
It was mentioned earlier that for a DS-SS BPSK signaling scheme which satisfies Equa-

tion 30, the fundamental periodicity, ag, is the bit rate Ry, i.e.,
1

=5 50
W=7 (50)
The estimated time series §[k] can be expressed by
N-1 '
G = 3 wnalm]+ (allermmeokT:)
n=0
N-1 .2
= Y waulm] * (alkle’F). (51)
n=0 .
For every sample k = mN, the convolution inside the summation is
y -1 ;
waplm]+ ([klF™) = 3w plmla[mN — pled FrmN=p)
p=0
-1 . )
= D wnplmla[mN — pleTIF. (52)



Thus, Equation 51 becomes

N-11-1
gimN) = 57 5" wny[mla[mN — ple=i Fre.

n=0 p=0
Exchanging the order of summation yields

1-1 N-1
g[mN] = Zx[mN - p] Z wn,p[m]e_j%"”.

p=0 n=0

The second summation can be recognized as the Fourier transform,

N-1 .
s2m
] = 3 wn e,

n=0
Then, Equation 54 can be rewritten as
-1
gmN] = Z Wp[m]z[mN — p].
=0

(53)

(54)

(85)

(56)

Since §[mN] = d[m] are the estimated data bits d[m], it can be concluded that a single

linear filter with tap-spacing T, harmonically related to the bit rate T} is the optimal time-
dependent filter for demodulating a BPSK DS-SS signal and it is capable of exploiting its

cyclostationarity.
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Chapter 4

Optimum Linear Single User
Detection in DS-SS

It is shown in Section 2.1 that a linear transversal filter can be used to demodulate and
despread a DS-SS. Section 3.3 shows that a linear transversal filter is the optimum time-
dependent filter for a DS-SS signal employing code on pulse modulation. This chapter

discusses possible implementations of the optimum linear single user receiver.

4.1 Preliminaries

Consider the block diagram of the FIR filter depicted in Figure 14. As described in Sec-
tion 3.3, for the demodulation process, it is sufficient to calculate the output for each
complete bit shifted into the tapped delay line. It is assumed that the length of the tapped
delay line, M, is sufficiently large to hold an entire bit,

MT, > T. (57)
i T T —dr
wi[n] | @2n]]| @a[n] war[n] -

Figure 14: Block diagram of the FIR filter.
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Let r[k] denote the discrete-time series resulting from sampling a continuous signal 7(t)
with sampling period Tk,
r[k] = r(kTs). (58)

It is convenient to define the vector for the samples which correspond to the nth bit as
T
i) = [ r[nN] r[aN 1] o rfaN-M 41, (59)

where N is defined as T
]
N = T (60)

The weight vector, w[n], contains the weights of the filter in Figure 14 and is defined as

wln] = [ o] doln] - dnln] | - (61)

This vector is used to form an estimate of the desired bit, d[r], by calculating the inner
product W [n]t[n], 7

d[n] = W [n]#{n] + &[], (62)

where €[n] is the complex estimation error. The superscript, H, denotes transpose conjugate.

For BPSK DS-SS signaling, the transmitted symbols are +1 and —1. Using the imagi-

nary axis as the decision boundary, the estimated symbol, d[n], is
_ & H )i
dn] = 1, Re{wf[n]#n]} <0, (63)
+1,  Re{wH[n]#[n]} > 0.

It is desirable to adjust the weight vector such that the likelihood of making a false

decision is minimized.

4.2 Decoupling the Real and Imaginary Filter Coeflicients

Here, the justification for decoupling the real and imaginary filter coefficients is given.
The conventional estimation error for a desired data symbol, d[n], is given in Equa-

tion 62. The estimated symbol is
d[n] = wH[n]f[n]. (64)

Figure 15 shows the constellation diagram of a BPSK signal and the error between an
estimated signal point d[n] and the desired signal point d[n].
The most commonly used error-criterion for adjusting the weight vector is the mean-

squared error,

é= E{|€[n]|2}, (65)
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Figure 15: Signal constellation diagram for a BPSK signal.

where E(-) is the expectation operator. According to Equation 63, however, the decision is
based only on the real part of the inner product w*[n]#[n]. Finding the optimum weight
vector for minimizing Equation 65 would result in minimizing the real error, €, and the
imaginary error, ¢;. However, since the decision on J[n] depends only on the real part of the
filtered signal and minimizing the imaginary part reduces the ability to minimize the real
part, the only error to be considered should be the real error, €. This error is more reflective
of the BER than the complex error. Minimizing the MSE for ¢, can be easily accomplished

by using the following matrix notation to calculate the inner product w¥i[n] = a[n]+ jb[n).

Re{WwH#} —Im{wH }] [Re{f[n]}] _ [a["]] (66)
m{&#} Re{®#} || m{eln} |~ [ o[ |’

where a[n] and b[n] are two real numbers, and a[n] represents the real part and b[n] represents
the imaginary part of the product w##[n]. Since the imaginary part, b[n], is neither used
for the error-criterion nor for deciding on d[n], it does not need to be calculated.

It is convenient to define the 2M-by-1 real weight vector w[n],

winl = [ Re{xir[n]} ] 67
[n] ol | (67)
and the 2M-by-1 real vector, )
il = Re{i'[n]} ] 68
("] i Im{i‘[n]} ’ (68)

Thus, the decision variable, a[r], can be expressed by
a[n] = wT[n]r[n], (69)
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Figure 16: FIR filter with real weights.

where the superscript, T', denotes transposition. The desired data symbols are
d[n] = w” [n]r[n] + €[n], (70)

where ¢[n] is the real error. Minimizing the mean-squared error for Equation 70 is the desired
criterion for finding the optimum weight vector. The FIR filter using the real valued weight
vector is illustrated in Figure 16.

It should be mentioned that this consideration can be extended to QPSK signaling. For
QPSK signaling, substantial improvement over solving the complex normal equations can
be gained, if the normal equations are solved for a[n] and b[n] individually. However, in
so doing, more storage size is required, since two different weighting vectors need to be

obtained.

4.3 Optimum CDMA DS-SS Filtering

It is stated in the previous section that the weight vector of the FIR filter in Figure 16
should minimize the MSE for Equation 70.

The error €[n] is defined as

e[n) = d[n] — wTr[n]. (71)
The weights are determined by minimizing the MSE J(w) which is

J(w) = B{ (dn)*}, (72)

where E(-) defines the expectation operator. Substituting Equation 71 into yields

J(w) = E{ (d[n] — wTr[n])z}
= E{ (d[n])2 — 2d[n]wTr[n] + wTr[n]rT[n]w}. (73)
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Since the expectation operator is a linear operator, and since w is constant, J(w) can be

expressed by
J(w) = E{ (d[n])*} - 2T E (d[n]r[n]) + W7 E (x[n]rT[n])w. (74)
The first term of Equation 74 can be recognized as the variance 03 of the data d[n], i.e.,
o2 = E{ (d[n])z}. (75)

The second expectation operator equals the 2M-by-1 cross-correlation vector p between the

input vector r{n] and the desired output d[n],
p = E(d[n]r[n]), (76)
and E(r[n]rT[n]) equals the 2M-by-2M correlation matrix R, i.e.,
R = E(r[n]rT[n]). (77)
Thus, Equation 74 can be rewritten as
Jw)=0%-2wTp+wiRTw. (78)
The requirements for the vector w, which minimizes J(w) is

dJ(w,)

By defining the derivative of a scalar valued function, f(w), with respect to a 2M-by-1

vector, w, as,

3f(w

;7

W
df(w) _ dws 80
O , (30)

af(w

L Quppm
the derivatives of the terms in Equation 78 are
d

E(WTP) = P (81)
diw(wTRw) = 2Rw. (82)

The derivative of the constant term 03 equals zero. Therefore, the derivative of Equation 78,

dJ(w)

= - 2R
T 2p + 2Rw, (83)
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and substituting into Equation 79 yields the desired result
Rw, = p. (84)

This result is most commonly referred to as the normal equation [24]. By premultiplying

Equation 84 with the inverse correlation matrix R™1, the desired vector w, is obtained:

w, = R7!p. (85)

Minimum Mean-Squared Error

Assuming the optimum weight vector and the data have zero mean, the variance of the

estimated data, d[n), is

E [wlr[n]rT[n]w,]

= wlRw,. (86)

(S M

Substituting Equation 84 and 85 into Equation 86 yields

o = w,p

= p’R7'p. (87)

ST
I

Using the corollary of the principle of orthogonality [24], the minimum attainable MSE
produced by the filter in Figure 16 is

€min = ‘73 - PTR_lps (88)

where o2 is the standard deviation of the data given by Equation 75.

4.4 Optimum Single User Receiver Implementations

The implementation of the optimum single-user DS-SS detector is depicted in Figure 17. The
detector employs the decoupled real and imaginary filter weights as discussed in Section 4.3
and shown in Figure 16. By multiplying the outputs of the tapped delay line with the
corresponding weight factors w;, for 1 < ¢ < 2M, and summing the products, the inner
product wl|[n]r[n]is formed giving an estimate of the transmitted data, d[n]. The estimated
data is hard-limited to provide a decision for the symbol. The hard-limiting function,

fuL(y), can be described by

1, y2>0,

89
-1, y <0. (89)

faL(y) = {
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Figure 17: Optimum single-user DS-SS detector.

A coefficient update algorithm compares the output of the summer with the desired
response d[n] to form an error signal. The coefficient update algorithm updates the weight
vector w[n] to minimize the error-criterion. Referring to Section 4.3, the error-criterion

used here is the mean-squared error,

e= E{(WT[n]r[n] - d[n])z}

In a real communication system, the data bits, d[n], are usually unknown at the receiver.

Two approaches are generally used to estimate the error, €[n]:

1. In decision-directed mode, the estimated and hard-limited data bits d[n] are taken

as the desired response. This assumes a high likelihood of correct decisions by the

hard-limiter.

2. If the decisions are not highly likely to be correct, e.g., during the initialization period,
where the weight vector w(n] has not yet converged to its optimal value, a training
sequence, di[n], must be used to train the filter until the estimates are of high quality
and the decision-directed mode becomes feasible. The training sequence consists of a

set of consecutive bits, known at the transmitter and receiver.
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Note the similarities between the receiver unit shown in Figure 16 and an ordinary frac-
tionally spaced linear decision feedback equalizer.

However, the differences lie in the application and the system setup. The equalizer
attempts to compensate for the effects of the channel, whereas this receiver tries to equalize,
reject interference, and demodulate in “one shot” exploiting the periodicities of the SOI and
the signal not of interest (SNOI).

4.4.1 Recursive Least-Squares Implementation

The algorithm discussed in this paragraph recursively solves the normal equations for each
new observed data sample d[n], hence the name recursive least-squares (RLS) algorithm.
The following gives a brief description of the weighted RLS algorithm. For a detailed
discussion, the reader is referred to reference [25].

Equation 85 gives an expression for calculating the weighting vector, w. In a real system,
however, the correlation matrix, R, and the cross-correlation vector, p, are calculated from
a finite number of observations, n. Also, if the statistics of the observed signal are slowly
time-varying, it is helpful to introduce the weighted deterministic correlation matrix, ®$[n],
with .

®[n] = Ekn'iu[n]uT[n] (91)
i=1
where 0 < A < 1 is a constant also referred to as the forgetting factor. Likewise, the

deterministic cross-correlation vector, ®[n], is defined as
hid .
©[n] = > A" *ulid[i]. (92)
=1

The forgetting factor insures an exponential decaying weighting of the observations. Equa-

tion 91 and 92 have a recursive form,
®[n] = A®[n — 1] 4 u[n]ul[n], (93)

O[n] = AO[n — 1] + u[n]d[n]. (94)

By making use of the matrix inversion lemma, an inversion of the deterministic correlation
matrix at each iteration can be avoided.

The matrix inversion lemma states that
A~'=B - BC(D + CcfBC)"!CFB, (95)

for
A=B!4+CD7ICH, (96)
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Table 1: The RLS algorithm

Initialization of the algorithm

A= constant, 0<A<1

w[0]=0

®~1l[n] =7n-1, 7is a very large constant
For each instant n of time nT}; compute

d[n] = wT[n — 1]r[n]

afn] = d[n] — d[n]

zT[n] = rT[n]®~[n — 1]

Q = T [nJe[n]

Vs

Z[n] =V - & n - 1]r[n]

-1[n] = 1 (2~[n - 1] - &[n]27[n)

w[n] = w[n — 1] + a[n]Z[n]

where A and B are two positive definite, M-by-M matrices, C is an M-by-N matrix, and
D is another positive definite, N-by-N matrix. By setting

A = &[n],

Bl = A®[n-1],
C = rin],
D = 1,

the equations for the RLS algorithm are obtained.
Table 1 summarizes the RLS algorithm. It begins with selecting the forgetting factor
A. This factor determines the influence of previous observations on the correlation matrix,
®[n], as described by Equation 91. For A = 1 each observation is weighted evenly. By
setting A = 1, the algorithm gives an exact solution to the normal equations. However, in
a time-varying channel it is desirable to let the weighting vector, w[n], track the varying
channel. Hence, it is desirable to weight last observations more heavily. A good trade-
off between error minimization and tracking performance for most scenarios is found for
choosing A such that
MM < 0.01, (97)
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where 2M is the length of the vectors w(n] and r[n]. With this setup, the impact of the
vector r[n] on the correlation matrix after 4M iterations is less than one percent.

If no prior knowledge about the weighting vector w[n] is given, it is initially set to zero.
Also, the correlation matrix is set to the identity matrix multiplied by a small factor. Thus,
the initialization of the inverse correlation matrix is accomplished by setting #[0] equal to
the 2M-by-2M identity matrix, I, times a large constant, 7.

After initialization, based on the previous weighting vector w[n — 1], the estimated data

symbol d[n] is calculated at each iteration,
d[n] = wT[n — 1]r[n). (98)
The difference between J[n] and the desired data symbol, d[n], is the a priori error,
afn] = d[n] - d[n]. (99)

The so called gain vector, zT[n], is used to update the inverse correlation matrix. It is
calculated by
27 [n] = T [n]® " n - 1]. (100)

The normalized gain vector is obtained by
Zn] =V -@® n - 1r[n], (101)

where the normalization parameters  and V are given by

Q = 2" [n]r[n], (102)
and .
V= L (103)

Updating the inverse correlation matrix from the previous inverse correlation matrix takes
place by subtracting a matrix formed by the product of z[n] and the normalized gain vector,
z[n],

&1[n] = % (871 — 1] - 2[n)2[n]) . (104)

Finally, the new weight vector is obtained by
w(n] = w[n — 1] + a[n]z[n]. (105)

This algorithm has been proven by Haykin [25] to be stable. The algorithm typically
converges in 4M iterations to the optimum weight vector. This is considerably faster than

the convergence rate of other algorithms.
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One of the greatest disadvantages of the RLS algorithm is its relatively high computa-
tional complexity. Also, enough memory for the storage of the 2M-by-2M inverse correla-
tion matrix ®~1[n] is needed. However, the RLS algorithm typically converges one order of
magnitude faster than the least mean-squares (LMS). In non-stationary environments like
in the mobile channel, fast convergence becomes crucial and added complexity of the use of
the RLS algorithm over the LMS algorithm can be justified [26].

4.4.2 Operation of the RLS Algorithm Using Decision-Feedback

The RLS algorithm requires a desired data symbol, d[n], to build the error term. This
desired data symbol is supplied by either the training sequence or the hard-limiter. The
RLS algorithm weights the updates regardless of the likelihood that a false decision on the
symbol d~[n] is made. Using too many false decisions results in “catastrophic failure,” i.e.,
the algorithm looses its tracking ability and fails to converge. A technique to overcome these
problems is a modification in the algorithm investigated by R. D. Holley and J. H. Reed
[18]. The modification takes place by introducing an update weighting function, ¥[n], in
Equation 105

w(n] = w[n — 1] + ¥[n]a[n]z[n], (106)

where ¥[n] is typically in the range 0 < ¥[n] < 1. Applying such a function, the weight
vector w([n] in Equation 105 is now updated depending on the likelihood of a right deci-
sion. As a criterion, the difference between d[n] and the data d[n] after symbol decision is
used. Figure 18 depicts two candidate weighting functions, f,,(z) and f.(z), for the BPSK
signaling case. The weighting function f,(z) notches out the interval from —0.5 < z < 0.5;
the function f.(z) uses two Gaussian shaped exponentials to define the weighting for up-
dating the vector w[n]. Other functions are possible. In general, it can be said that the
probability for a catastrophic failure shrinks, with a more restrictive window. However, the
more restrictive the window is, the slower the algorithm converges. The optimum weighting

function depends on the input signal.

4.4.3 Sampling Rate

In a real bandpass system, the bandwidth of a BPSK DS-SS is limited. In most real
world systems, only the mainlobe is transmitted. The sidelobes are usually filtered at the

transmitter to increase spectral efficiency and at the receiver to decrease the noise power.

The bandwidth 2B for the mainlobe of a BPSK DS-SS is

2B = 2R, N, (107)
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Figure 18: Two candidate functions for ¥(z).

where Ry = 1/T) denotes the bit rate and N is the processing gain. Therefore, the sampling
rate, f,, should be set to 2B for complex samples. Thus, the tap spacing, Ts = 1/f,,

becomes
T, =
= = (108)

where 1/T. = N Ry is the chip rate. Also, higher sampling frequencies can be used. However,
to exploit spectral correlation the sampling frequency must be an integer multiple of the
bit rate, i.e.,

fs = 1Ry, (109)

where [ is an integer.

4.4.4 Final Optimum Single User Receiver Implementations

Implementations of the optimum single user detector may vary. A possible solution which
could be used for implementation at the base or at the mobile station is shown in Figure 19.
A high-frequency pre-amplifier amplifies the received signal from the antenna. The pre-
amplifier block includes bandpass filters to reject noise outside the information spectrum.

A down converter applied to the output of the pre-amplifier followed by an analog-to-digital
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Figure 19: Final implementations of the optimum single user detector.

(A/D) converter down-shifts the signal, digitizes and samples it. After passing the discrete
signal through another bandpass filter (BPF), the signal is shifted by a final down-converter
to baseband. The signal is stored in a tapped delay line. The real and imaginary parts
are then linearly combined as described in the introduction of Section 4.4. The dashed box
(see also Figure 17) includes an implementation of the RLS algorithm and the hard-limiting
function.

A control unit connected to the output of the receiver performs all the control necessary
to ensure optimum signal demodulation. The control unit is responsible for switching
between training sequence and decision-directed adaptation. A block responmsible for bit
synchronization can be included here.

The control unit may also incorporate a correlator which correlates the input with the
known spreading code multiplied by the estimated symbols as a means of verifying the
symbol estimates. Correlating over several symbols has the advantage of rejecting more

noise than correlating over a single symbol interval.

1. For initial signal detection, the receiver correlates the incoming signal with a “wake
up” sequence. The sum of the squared inphase and quadrature outputs of the corre-
lator is used to decide whether a transmitter is trying to reach the receiver. Since the
correlator correlates over a length of several bits, a high peak value can be observed

at its output. After sending the initial sequence, the transmitter sends a training
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sequence to facilitate convergence of the RLS algorithm.

2. During training, the complex correlator correlates the input with the spreading code
multiplied by the corresponding training symbols. The sum of the squared inphase
and quadrature components of the correlator’s output is used for bit synchronization.
The phase between the inphase and quadrature components is used for carrier phase

locking.

3. In demodulation mode, the correlator correlates the received signal with a sequence
generated by the spreading code and the last symbols estimated by the receiver to

verify proper operation of the unit and to maintain bit and carrier synchronization.

In addition to the above mentioned implementation, the control unit can also incorpo-
rate error-correction coding. A system clock connected to each block allows synchronous
operation among the receiver components. Finally, the estimated data is available at the

output of the buffer.

4.5 Multipath Propagation and Fading

In a real system, the effects of the channel need to be considered. In a mobile system, the
channel is characterized by frequency-selective and time-selective fading. A transmitted
signal is distorted by multipath propagation and Doppler-shifts. Multipath propagation
results from reflections from buildings and natural obstacles. The velocity of a vehicle in-
troduces a frequency-shift. It depends on the angle of arrival of the received waveform.
Since multipath components might arrive from different directions, each multipath compo-
nent experiences a different frequency shift. This section discusses how the receiver can
compensate for multipath propagation and fading.

Multipath propagation can be mitigated by the receiver in the same way that an equal-
izer mitigates multipath. The filter needs to be sufficiently long to compensate for the
multipath. However, it should be mentioned that increasing the size of the tapped delay
line decreases the convergence rate of the RLS algorithm and increases its computational
costs. Multipath components can be exploited by the algorithm as long as they are fading
slow enough to be tracked. Otherwise, these components must be viewed as interference.

The fading nature of the mobile channel introduces severe problems for the detection
and interference rejection of the desired signals. In many of these cases, the receiver has
to rely on tracking capabilities of the coefficient update algorithm. For fast time-varying
channels, the ability to find the optimum weighting vector must be traded for tracking

capabilities.
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A more detailed analysis of the impact of fading on the performance is a future research

topic.
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Chapter 5

Performance of the Recelver

In Chapters 3 and 4 it is shown that if the spreading codes repeat at the bit rate and
an adaptation algorithm is used constantly to adapt the weights of a vector used for de-
spreading and demodulation, substantial performance gains over conventional receivers can
be expected when MAI is present. Adaptation of the weight vector is executed at the bit
rate and real arithmetic is preferred. To demonstrate the superior performance, various

scenarios are simulated. These scenarios are discussed in this chapter.

5.1 Simulation Model

Devices employing DS-SS signaling schemes are proposed for the mobile channel. Reasons
for employing a DS-SS signaling scheme are given in Section 1.1. For testing the performance
of a certain system design using simulations, the effects of the channel need to be considered
[27, 28]. The mobile channel is one of the most problematic channels. It can be characterized
by its time-varying and frequency-selective fading nature. In addition, a transmitted signal
can be time-displaced and/or Doppler-shifted. Doppler-shifts result from the velocity of
the mobile or objects in the channel. The velocity, v, the wavelength of the signals, A, and
the angle of arrival determine the amount by which the signal is shifted in frequency. In
particular, the Doppler frequency, fp, is given by

fp= -Z—cos*y, (110)

where 7 denotes the angle of arrival as pictured in Figure 20. If multipath propagation is
encountered, each path might inherit its own Doppler frequency depending on its angle of
arrival. Also, depending on its origin, each multipath component may have different fading

statistics [29]. Modeling a realistic mobile channel is very expensive and requires a great
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Figure 20: Angle of arrival.

amount of computational costs. For modeling a mobile channel, the reader is referred to
the literature, e.g., [30, 31].

In this thesis, however, the channel model is simplified to ease the simulations. The main
simplification of the channel modeling lies in assuming that the channel characteristics are
varying slowly enough such that the channel can be assumed static for a short block of
data. The impact of the time-varying nature of the channel on the deviation in between a
bit sequence depends on the bit rate. This impact might be mitigated (to a certain extent)
by choosing a higher bit rate.

Another major simplification in the simulation models is that only one frequency shift
per user, i.e., the angle v in Equation 110 is the same constant for all multipath components
attributed to a user. However, frequency-shifts model the tolerances among the oscillators
for all users.

Making these assumptions, the simulation model used for all simulations in this thesis
can be represented by the diagram illustrated in Figure 21. For each user ¢, the data bits
are multiplied by the spreading sequence. The parameter 7; is a random delay of which the
1th user is transmitting its symbols. Since it is assumed that the conversion to baseband
has already taken place at the receiver, each product is further multiplied by a complex
carrier A;e/“*t% with w; = 27 f;, where f; represents the sum of the deviations caused
by the transmitter oscillator imperfections and Doppler effects, and A? is the transmitted
power of the ith user. The constant ¢; denotes an initial phase-offset for each user. Each
user’s signal is convolved with a different channel response h;(t). The receiver sees the sum
of all distorted signals plus noise, n(t).

Even though the model of the mobile channel is simplified, the simulation model in

Figure 21 gives insight into the behavior of the proposed receiver compared to conventional
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Figure 21: System model.

techniques.

5.2 Performance of the Receiver in the AWGN Channel

This section is devoted to evaluating the performance of the receiver in the presence of ad-
ditive white Gaussian noise (AWGN) and multiple access interference. The AWGN channel
is the simplest channel involving no multipath components. It is assumed that the signals
for each user propagate undistorted through the channels, h;(t). Only white Gaussian noise

is added to the signals. Hence, the impulse response h;(t) is
hi(t) = 5(1), (111)

where §(t) is the unit impulse response or Dirac delta function. The noise variable n(t) can
be described by
| n(t) = ne(t) + (), (112)

where n,(t) and n;(t) are two independent zero-mean Gaussian random variables with
uniform power spectral density.

In simulating the AWGN channel for multiple users, despread SNRs of 10, 15, 20,
and 25 dB are considered.! Since many applications for CDMA DS/SS are cellular voice
transmission systems, the bit rate R is set to 16.384 kbit/s. This bit rate is reasonable, since

modern vocoders operate at bit rates of 9600 bit/s and below [32]. A set of spreading codes

!The despread SNR is the SNR which is seen at the receiver after despreading and low-pass filtering a
DS-SS signal.
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Table 2: Simulation Parameters

Processing gain ............. : 31

Sampling factor.............: 2
Bitrate.....................: 16.384 kHz
Chiprate................... : 507.904 kHz
Sampling rate...............: 1015.808 kHz
Frequency standard deviation: 500 Hz
Power standard deviation....: 1 dB

with low cross- and autocorrelation properties are used for the simulations. As discussed
in Section 4.4.3, the sampling rate is set to an integer multiple of the bit rate but no
lower than twice the processing gain. For these simulations, the sampling rate is set to the
minimum value of twice the bit rate times the processing gain, i.e. f; = 1,015.808 kHz.
Since perfect power control cannot be achieved in real-world systems, the simulation model
allows different power levels between the users. In this model, it is assumed that the
deviation of the power levels of the users is normal distributed on a dB scale. In the
most common set-up, the standard deviation of the power levels is set to 1 dB. Another
parameter is the frequency offsets, f;, introduced by carrier tolerances and Doppler-shifts
as described in Section 5.1. For modeling these offsets, it is assumed that the received
frequencies deviate from a desired frequency with a normal distribution. Since the signal is
processed at baseband, f; is a zero-mean Gaussian variable. Its standard deviation is set to
500 Hz. Table 2 summarizes the parameters for the simulations described in this section.

In Figure 22 a typical simulation scenario is depicted for K = 25 users. It shows the
initial phases, ¢;, for all users. The phases are random and uniformly distributed over the
interval [0,27). Also shown are the different amplitude levels, A;, and the different relative
frequencies.

The term “sample offset” needs some further explanation; the simulation model is a
discrete-time model, so the time-delays, 7;, seen by the receiver take on discrete values. In
particular, each discrete delay is an integer multiple of the sampling period 1/ f,. Hence, each
user’s signal is shifted by an integer number of samples. Since all bits are randomly produced
and are statistically independent and since the bit period corresponds to 64 samples, without
loss of generality, these shifts can be limited from 0 to 63 samples. The figure shows the
deviation of the sample offsets of all users from the mean value.

In all simulations, the updating of the weighting vector, w(n], is performed using the
RLS algorithm as described in Section 4.4.

As discussed in Section 4.4.2, in some cases a weighting function, ¥(z), which weights
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Figure 22: Scenario for 25 users.

the correction of the vector w[n — 1] depending on the likelihood of the correctness of the

update is applied. Two cases are investigated:

1. In the first case, the likelihood of correct decision is not taken into account. Therefore,

¥(z) = 1 for all symbols.

2. In the second case, a weighting function is employed. For BPSK signaling, symbols
from the set {—1,1} are used. If the absolute value of d[n] is less than 0.5, then
the algorithm does not update the weighting vector. In all other cases, the updating

proceeds without any modifications, i.e., ¥(z) = 1.

5.2.1 Simulations Using No Weighting Function

Figures 23 through 26 show the performance of the optimum single user detector for signal-
to-white-noise ratios? (SWNRs) of 10, 15, 20, and 25 dB, respectively. In these simulations,
the first case of the weighting vector update function is applied. The figures also show the
theoretical BER performance curve for the matched filter as given by Holtzman [7].3 In the

2Here, the SWNR is the ratio of the energy of one single user to the channel noise energy after despreading.
3See also Section 2.1.2.
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Figure 23: Performance of the receiver for 10 dB SWNR.
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Figure 24: Performance of the receiver for 15 dB SWNR.
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Figure 25: Performance of the receiver for 20 dB SWNR.
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Figure 26: Performance of the receiver for 25 dB SWNR.
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simulations, the first 300 bits are used for training. After training is complete, the receiver
is switched to decision-directed mode. From Figure 23, it can be seen that the performance
of the receiver is only slightly better than of the matched filter receiver with fixed weights.
The low SWNR increases the weight convergence time. The SNR for the desired signal is
too low for good BER performance. Still, the BER is roughly 50 percent lower than the
BER of the correlation receiver.

As the SWNR increases, tremendous improvements over the conventional receiver can
be obtained. This can be seen from Figures 24, 25 and 26. For all three cases, the system
supports 30 users at a BER of 10~3. Note that this is almost ideal FDMA capacity. Fur-
thermore, it can be seen that the BER for a lower number of users is lower for 20 and 25 dB
SWNR than for the case of 15 dB SWNR. The performance of the correlation receiver
remains almost the same, since it primarily suffers from the impact of the MAI. As the
number of users exceeds the processing gain, the performance of the optimum single-user
detector approximates the performance of the correlation receiver. For K = 50 users, the
receiver’s performance is worse. This behavior follows from the set-up of the coefficient
update algorithm. In this case, too many false decisions keep the weight vector from con-
verging to a meaningful solution. Hence, it experiences the case of a catastrophic failure.

For a high number of users the BER approaches 50 percent.

5.2.2 Simulations Employing a Weighting Function

In the second case, a weighting function ¥(z) is employed for the simulations. In particular,
U(z) is set to

¥e)={ 0 1E<0S (113)
1 |z| > 0.5

Employing such a function, the catastrophic failure rate is reduced. The only bits used for
adaptation are those with a high likelihood of correctness.

Figures 27 through 30 show the performance of the optimum single user detector for
SWNRs of 10, 15, 20, and 25 dB, respectively. Like Figures 23 through 26, the figures also
show the theoretical BER performance curve for the matched filter as given by Holtzman.
Likewise, the first 300 bits are used for training. After training, the receiver is switched to
decision-directed mode.

It can be seen that the receiver with the weighting function shows the same character-
istics as for the case presented in Section 5.2.1. Referring to Figure 27, for a low SWNR,
the receiver shows only a slight increase of performance over the conventional receiver. The

energy of the SOI is not sufficient to provide good decisions.
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Figure 27: Performance of the receiver for 10 dB SWNR.

48



BER

Number of Users

Figure 28: Performance of the receiver for 15 dB SWNR.
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Figure 29: Performance of the receiver for 20 dB SWNR.
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Figure 30: Performance of the receiver for 25 dB SWNR.
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As the SWNR becomes higher, the performance over the conventional receiver increases.
This is seen in Figures 28, 29 and 30. However, major differences can be noticed by com-
paring Figures 23 to 26 to Figures 27 to 30. The receiver employing the weighting function
described by Equation 113 performs worse for the range of ten to thirty users. For the
number of users exceeding the processing gain (or ideal FDMA capacity), the receiver us-
ing the weighting function performs better. In fact, even for K = 60 users, the receiver
still performs better than the conventional receiver. This is expected, since the weighting
function ¥(z) inhibits the RLS algorithm from updating on false decisions. However, for
ten to thirty users the likelihood of making a wrong decision is low enough so continuously
updating the weight vector helps to increase the performance as shown in Figures 23 to 26.

The choice of the weighting function depends on the demands placed on the system.
Also, the characteristics of the receiver depend on the nature of the channel and on the

noise function, n(t).

5.3 Real Versus Complex Arithmetic

Justification for using real arithmetic over complex arithmetic is given in Section 4.2. This
section is devoted to demonstrating the benefits of real arithmetic over complex arithmetic
for the optimum linear single user detector.

In this set of simulations, a BPSK DS-SS signal applying the same simulation model as
in Section 5.2 is employed. Its system parameters are given in Table 2.

Figure 31 shows the constellation diagram for a BPSK DS-SS signal for one particular
user after despreading. The total number of users is K = 30 and the SWNR is 15 dB. In
this case, the weighting vector, w, is found by solving the normal equations for a complex
d[n], hence, it minimizes the MSE measured with respect to both the real and imaginary
part of the error. The figure shows two clusters of the noisy estimates, cf[n], centered at
—14 350 and +1+ 70. Although the MSE is minimized, the separation of the clusters is not
sufficient to allow a clear classification for some d[n] which lie close to the imaginary axis.
In fact, for 2300 bits, there are more than twenty errors.

As discussed in Section 4.2, it is more meaningful to minimize the MSE for the real part
only. Figure 32 illustrates the constellation diagram for the same signal and user using the
real part only in the error-criterion. Since no constraints is imposed on the imaginary part
of the estimates, J[n], the clusters are much more spread out along the imaginary axis than
for the case of Figure 31. However, the clusters are better centered along the real axis and
a clear classification of the estimates d[n] is possible. In fact, using this technique, no false

decisions are made.
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Figure 31: BPSK constellation diagram after despreading using complex arithmetic.
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Figure 32: BPSK constellation diagram after despreading using real arithmetic.
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Table 3: Simulation Parameters

Processing gain ............. 31

Sampling factor.............: 2
Bitrate.....................: 262.144 kHz
Chiprate........cooevvnen. : 8.126464 MHz
Sampling rate............... ¢ 16.252928 MHz
Frequency standard deviation: 500 Hz

Power standard deviation....: 1 dB

Figure 33a illustrates the histogram for the real part of the signal shown in Figure 31.
Figure 33b shows the histogram for the real part of the signal shown in Figure 32 for which
the data is much better centered around the desired signal points.

Obviously, minimizing the error in the real component is preferable to minimizing the

complex error to obtain a lower BER.

5.4 Characteristics of the Receiver in a Multipath Environ-

ment

In this section, results obtained from simulations of the optimum single user detector for
multipath channels are presented. The bit rate is increased to emphasize the multipath
effects. The bit rate is increased by a factor of 16, i.e., a bit rate of 262.144 kbit/s is
assumed. Thus, the bit duration is 3.81 us. Table 3 gives an overview of the parameters
used in these simulations.

For the multipath propagation a one-sided exponential delay power profile, p,(7), is

assumed [33, 34]. In these simulations, the delay power profile is set to

(114)

e /b, 0<7<2 us,
p-(7) = .
0, otherwise,

where b = 1 ps. Figure 34 shows a graphical representation of p,(7).

The model assumes five paths, in which the path delays, 7;,, 1 < p < 5 are uniformly
distributed within the ranges listed in Table 4. One sample delay corresponds to a delay
interval of 61.52 ns. It is assumed that the amplitudes in each path are Rayleigh distributed.
The phase for each path is uniformly distributed. Figure 35 depicts the channel impulse
responses for the first 10 users.

For these simulations a SWNR of 25 dB is assumed. The length of the tapped delay
line is adjusted to match the length of the observed symbols. In particular, the length is set
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Figure 34: Delay power profile.

Table 4: Distribution of the sample delays

path min max

P samples
1 1 1
2 5 7
3 10 12
4 15 17
5 20 25
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Figure 35: Channel impulse responses for the first 10 users.
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Figure 36: Performance of the optimum single user detector for multipath channels.

to hold 90 complex or 180 real samples. This equals a duration of approximately 5.54 us
and is 1.72 ps more than the bit period. A total of 300 bits are used for training. Also, the
rectangular weighting function ¥(z) given by Equation 113 is applied.

The results of the simulations are presented in Figure 36. It can be seen that, even
though the received signal is heavily distorted by the multipath, the receiver is still able to
produce good results. Comparing the performance of the multipath channel simulations to
the AWGN channel for the same SWNR (Figure 30), it can be concluded that the receiver
performance is only slightly worse for the multipath channel. Simulating the performance
of the receiver in all different environments should be included in future performance eval-

uations (see also Section 6.2).
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Figure 37: Magnitude spectrum of a single user.

5.5 Narrowband Interference Cancellation

The receiver is also capable of rejecting narrowband interference by adaptively configuring
a notched filter.

This principle is demonstrated by simulations. Figure 37 illustrates the magnitude spec-
trum of a single CDMA user having the same parameters as tabulated in Table 2 corrupted
by white Gaussian noise. In Figure 38 the same signal, corrupted by five narrowband inter-
ferers having a 20 dB higher signal power than the SOI, is shown. Simulations showed that
the receiver is able to demodulate the SOI without making errors while a matched filter

produces 50 percent BER.4

*In this simulation, only 20,000 bits are used. The BER is expected to be less than 5 x 107*.
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Figure 38: Magnitude spectrum of a single user and five narrowband interferers.
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Chapter 6

Conclusions and Future Work

In this thesis, a different approach to demodulating a CDMA DS-SS signal is demonstrated.
It is shown that if code-on-pulse modulation is used to spread a signal, then the repetitive
nature of the signal and the interference can be used to find a filter which has a lower
BER than the conventional correlation receiver. In this case, the linear filter which is
optimized for demodulating the signal is the optimum time-dependent adaptive filter for
exploiting the cyclostationarity in the signal of interest and the multiple access interference.
Chapter 5 shows tremendous improvements for the performance of a code-on-pulse CDMA
receiver over the conventional correlation receiver. These gains are achieved without any
knowledge of the interference. Solely, the spectral correlation in the signal of interest and
the interference is exploited.

Furthermore, it is shown that, to allow maximum performance of a receiver in a BPSK
DS-SS CDMA system, the normal equations are best solved to minimize the MSE along
the real axis. Since the imaginary part is not considered for symbol decision, this allows for
an additional degree of freedom to minimize the error in the real part. The error along the
real axis is more reflective of the BER than the error for both the real and imaginary parts.

The computational complexity of the proposed receiver is approximately that of the

conventional equalizer.

6.1 Potential Drawbacks

Throughout the simulations presented in Chapter 5, a static channel model is assumed.
Since the environment constantly changes, the coefficient update algorithm must change
the weight vector continuously in order to keep the weight vector at its optimum value.

The ability to rapidly adapt to a dynamic channel has yet to be proven. In Sections 4.5
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and 5.4, it is shown that the receiver is still able to produce good results, even if the signals
experience multipath distortion.

The exponentially weighted RLS algorithm presented in Section 4.4.1 is best suited
for handling the time-varying environment. However, its biggest shortcoming is the need
for an inverse correlation matrix. Computations increase with the square of the length of
the tapped delay line. In a mobile system, where battery life and costs are the principal

constraints on the design of the mobile receiver, this implementation might not be suitable.

6.2 Future Research

The system presented is a desirable alternative to CDMA systems employing long pseudo-
random codes to spread their signals. The receiver structure allows low cost implementation
and requires no a priori knowledge about multiple-access interferers. Substantial perfor-
mance gains are obtained in the simulations shown in Chapter 5. To allow an evaluation
of the performance in realistic channels, future research should include simulations for var-
ious types of channels using more exact channel modeling. Furthermore, it is desirable to
develop formulas to give a theoretic approximation of the new receiver’s BER performance.

It is shown in Section 4.2 that it is desirable to decouple the normal equation for the
real and imaginary part. Comparisons between the receivers applying this technique and

receivers which minimize the conventional MSE should be investigated in the future.
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