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Linear Parameter Uncertainty Quantification using Surrogate
Gaussian Processes

Romcholo Yulo Macatula

Abstract

We consider uncertainty quantification using surrogate Gaussian processes. We take a previ-
ous sampling algorithm and provide a closed form expression of the resulting posterior distribu-
tion. We extend the method to weighted least squares and a Bayesian approach both with closed
form expressions of the resulting posterior distributions. We test methods on 1D deconvolution
and 2D tomography. Our new methods improve on the previous algorithm, however fall short
in some aspects to a typical Bayesian inference method.



Linear Parameter Uncertainty Quantification using Surrogate
Gaussian Processes

Romcholo Yulo Macatula

General Audience Abstract

Parameter uncertainty quantification seeks to determine both estimates and uncertainty
regarding estimates of model parameters. Example of model parameters can include physical
properties such as density, growth rates, or even deblurred images. Previous work has shown
that replacing data with a surrogate model that approximates the underlying model can provide
promising estimates with low uncertainty. We extend the previous methods in the specific field
of linear models. Theoretical results are tested on simulated computed tomography problems.
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1 Parameter Estimation and Uncertainty Quantification

Dynamical systems are physical models where a state or set of states evolve over time. Examples of
dynamical systems can include fluid flows, population dynamics, or motion of a physical body [I].
The forward problem is to use initial state information and model parameters to make estimates of
future state measurements. Considering population dynamics for instance, the state measurements
can be the population of animal species at particular times, while model parameters can include
the interaction rates between species or birth and death rates for particular species.

In comparison, parameter estimation can be seen as an inverse problem. Given measurements
of the system, we wish to find model parameters that characterize the system. Some inverse
problems result from a system of differential equations, or result from an integral equation. Here,
we deal primarily with linear inverse problems, which often arise when discretizing the underlying
differential or integral equations. Physical examples of linear inverse problems include imaging [2],
elastodynamics [3], and computed tomography [4].

According to Sullivan, uncertainty quantification (UQ) is the combination of statistical methods
to measure uncertainty and “real-world” physics that model underlying dynamics [5]. An example
of UQ can be as simple as single parameters estimates supplemented with confidence intervals. A
typical technique is Bayesian inference, where the user provides, protentially empirically, a prior
distribution on the parameters of interest, and the likelihood is influenced by model dynamics.

The idea of surrogate modeling is to approximate some underlying model with another, less
computationally intensive model. While not limited to optimization, often these models are used
to speed up methods where function evaluations are costly [6l [7, [§]. One particular example of
surrogate modeling is kriging, or by another name, gaussian processes [9]. Some applications
include structural reliability analysis [10] and hydrosciences [11].

Chung and Gramacy et al. proposed an algorithm that uses surrogate stochastic processes for
uncertainty quantification on parameter estimation problems [12]. Model observations are approx-
imated by some problem appropriate stochastic process, often with tuned hyperparameters. Then
random draws from this distribution are used in classical least squares invesions. The distribu-
tion of these inversions are then used to create confidence intervals on parameter estimates. The
pseudocode is provided in Algorithm

Here, we provide the closed form distribution of parameter estimates following Algorithm [2] on
linear models. We go further and improve estimates by introducing additional information of the
surrogate Gaussian process into parameter estimates, then extend results to a general Bayesian
framework. The rest of the paper is organized as follows: Section 2 provides a brief overview of
Gaussian processes, Section 3 introduces various new closed form posterior parameter distributions
with linear inverse problems, and Section 4 provides numerical tests with synthetic data.



2 (Gaussian Processes

The main idea of the algorithm for fast and informative UQ in parameter estimation is to ap-
proximate the data, d, using a surrogate stochastic process. Here, we will only consider Gaussian
processes.

2.1 Random Fields and Gaussian Processes

We begin with a definition of a stochastic process.

Definition 2.1. A stochastic process is a collection of random variables, {y(x)},cq, indexed by
x € ), where Q) is some indexing set or domain.

It is common to refer to a stochastic process as a random field or random function if the indexing
set is multidimensional, i.e. R? or some manifold. The term stochastic process is reserved when
the domain is the integers, or some interval in R.

A Gaussian process is a particular stochastic process that models spatial data through joint
multivariate normal distributions. One can think of a Gaussian process as a extension of a mul-
tivariate normal to “infinite dimensions”. A useful application of a Gaussian process is to make
predictions at new input locations given data.

Definition 2.2. A Gaussian process is a random field, {y(z)}zcq, where any finite collection of
random variables, {Y (z;) : x; € Q}1", follows a multivariate normal distribution.

A Gaussian process is characterized by a choice of mean function, p :  — R and kernel (or
covariance) function r: Q x Q — R. Let x = [x1, 29, ..., 2] |, where x; € Q fori=1,2,...m. We
define the mean vector

(%) = (1), 122, o ()] € R

and the covariance matrix

k(z1,21) kK(z1,m2) ... K(x1,Zm)
»(x,X) = ’i(xQ.a r1)  K(z2,T2) c RmXm
K(Tm, x1) coe BTy Tn)

We denote the Gaussian process as
y(x) ~ N(p(x), B(x, x)).

2.2 Kernel Functions

We define kernel and covariance functions which serve a critical role in characterizing Gaussian
processes.

Definition 2.3. A kernel function, also called a covariance function, is a map k : R* x R - R
that also satisfies,

i) For x1,X3 € R, k(x1,%2) = K(x2,Xx1) (symmetric)

ii) For x1,x3 € R, k(x1,%2) > 0 (semi-positive definite)



Moving forward, we will assume that kernel functions are additionally positive definite. Note,
we will use the use the terms “kernel function” and “covariance function” interchangeably. Kernel
functions often have additional properties depending on author conventions. We follow definitions
from [13].

Definition 2.4. Let k : R¢ x R — R be a kernel function, and let x1,xs € RY.

o We say the kernel is stationary, or homogeneous, if the kernel depends only on the lag
between two inputs, rather than the inputs themselves. Namely,

K(X1,X2) = k(X1 — X2).

o We say the kernel is isotropic if the kernel depends only on the distance between two inputs,
defined with some metric, d : R x R — R. Namely,

R(Xh XQ) = m(d(xl, Xg)).

Proposition 2.1. All isotropic kernels are also stationary.

One should also note, stationary kernels are invariant of translations of the inputs. However,
isotropic kernels are invariant of both translation and rotation of inputs. Properties of symmetric
positive definite functions carry over to kernel functions, allowing us to combine kernel functions.

Proposition 2.2. Let k1, k2, ..., ky be kernel functions. Then,
i) Kk(x1,%x2) = Zf\; Ki(X1,X2) s also a kernel function.
i) K(x1,%x2) = [1X, kr(x1,%2) is also a kernel function.

Proof. Let x1,x2 € R% Suppose for all i = 1,2,.... N, x; is a kernel. Then x;(x1,X2) > 0 and
ki(X1,X2) = Ki(X2,X1). We show that the sum of kernel functions are symmetric and semi-positive
definite.

N
K(X1,X2) = Z K(x1,%2) >0 (Semi-positive definite)
i=1
N N
K(x2,X1) = Y Ki(X2,X1) = Y _ Ki(X1,X2)
i=1 i=1
= Kk(x1,X2). (Symmetry)
The proof for products of kernels is similarly done. |

We provide a few example kernel functions.

e K(X1,X2) = T2 exp <—ﬁ llx; — Xj”g) , 7,/eR

Squared exponential kernel. This is a commonly used kernels for Gaussian processes. We see
that this is an isotropic kernel. Additionally, this kernel is infinitely differentiable, which is
critical when trying to differentiate a GP. In other contexts, this is also called a Radial Basis
Function.



o wlxix0) = 2305 (V) g, (varlela) s e R, vert

Matérn kernel. Above, T" is the Gamma function and K, is the modified Bessel function of
the second kind. This kernel is isotropic, and is [v] — 1 times differentiable. As a special case,
when v — 0o, the Matérn kernel converges to the Squared Exponential kernel. In practice, v
is chosen to specify the level of smoothness of the kernel.

o K(X1,X2) = 72 exp (—g% [Ix; _XjHQ)v 7,0 €R

Ornstein-Uhlenbeck kernel. This is seemingly similar to the squared exponential kernel; it
is also isotropic. However, by not squaring the norm, this kernel is not differentiable when
X1 = Xo. One can show that this is the Matérn kernel with a particular choice of v.

1,if X1 = X9

° I{,(Xl,XQ) = 0'2(51']" o€ Ra 5’-7 = {0 otherwise
, TWI

This is the Gaussian noise kernel, or nugget, often used when assuming data contains additive
white noise.

Samples of Gaussian processes using these kernel functions are given in Figure Note that
while all samples are continuous, they exhibit different levels of smoothness with different kernel
functions. In particular, the squared exponential kernel’s smoothness can be attributed to the
differentiability of the kernel functions. More details can be found in [14].

Squared Exponeml.al'Kernel 5 Matern Kernel, »» = 1/2
v
1 |0't"".‘ L 8a .)‘vv" pe s
'/' ‘\' 1 Soa s N e
.-

LA SO o - n‘l '“-’ .ﬁx.--.- .

ke PPN o« - 0 .f .

e g -(
-1 ./ 14 s
- 2

Drnstein Uhlenbeck
"\ o--\.,.1
-

i' .
!”vl ‘{"* '\/\ o ‘m {‘,‘_:.

Figure 1: Various samples from Gaussian processes with different kernel functions. Points are
shown to emphasize that samples are a collection of function values.

One should notice that many of the given kernel functions above have additional parameters
involved. These are called hyperparameters. For example, the squared exponential kernel has two,

1
K(x1,Xo|T,l) = 72 exp <—2£2 [x1 — X2H§> .

Often, one can interpret the effect of each hyperparameters. For instance, 7 is the amplitude of the
kernel function, and thus of the uncertainty throughout the domain. Additionally ¢ is the length
scale, which determines how fast the covariance decreases as two inputs are farther apart. The
squared exponential kernel with various amplitudes and length scales are provided in Figure
Example 1: Consider the states of a 1D function, y(x), to be a random variable. The collection
of function values {y(z)|z € R} may be uncountable. However, if you consider any finite collection
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Figure 2: We note that the higher the value of the amplitude, 7, the greater the magnitude of
samples. For the length scale, a higher ¢ value forces the samples to be closer together over longer
stretches. The less ¢ is, the more the samples are allowed to “wiggle”.

of function values, for instance, function values y(z;) at particular points x = [x1, T2, ..., 2] |, then
they follow a m dimensional multivariate normal distribution with some mean p(x) and covariance
¥(x,x).

y(z1)
: NNm(IJ’(X)72(X7X))
Next we select a mean function p(z) and a kernel function x(x,z). Suppose we select a zero mean
function and a squared exponential kernel,

2
A —"L‘z
H(t) = 0, /{(.’El’x2) = exp <H12||2> ,

then we can now construct the mean vector and covariance matrix. We can then take random sam-
ples from this multivariate normal distribution and plot the function values at the input locations
x. Samples of 20 linearly spaced points on the interval [0, 27| are given in Figure

2.3 Calculating Optimal Hyperparameters

The hyperparameters of the kernel function control particular properties of the Gaussian process.
For some given set of data, we have the freedom to choose any set of values for the hyperparameters.
However, one can find optimal parameters based on the data at hand, using maximum likelihood
estimation.

Suppose we are given data, d = [dy,ds, ..., d,] ", at input locations x = [z, Z2, ..., 2] . Sup-
pose our mean function has hyperparameters 6, and our covariance functions has hyperparameters
0. Denote the vector of all hyperparameters, in the mean and covariance function, as @ = [0, 0] .
Recall that our data is modeled through a Gaussian process, thus the distribution of d is given by

d ~ N (u(x|61), k(x,x|62)) .

Since x is fixed, we write the mean and covariance as a function of hyperparameters 61 and 69

respectively,
p(x|01) = u(6;) e R™, X(x,x|02) = X(0) € R™*™.
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Figure 3: Various samples from our example Gaussian process. Here we display the individual
points to emphasize that samples are a discrete set of points.

The log-likelihood of observing our data given hyperparameters 0 is
1 1 _ m
((6) = — logdet(S(62)) — - (d — u(61)) '5(62) 7 (d — (1)) — 7 log 2.

We calculate the hyperparameters by maximizing the likelihood with respect to the hyperparam-
eters 6. Standard optimization methods can be used to optimize the log-likelihood. Efficient
optimization schemes require the gradient of the objective function.

We denote %(02) as a matrix in R™*" where each element is the partial derivative with respect
to 0; of the kernel function evaluated at 63,

_%(XMXDHQ) %(Xl,xn702)_
) : '
[8791(02)} ik - : %(Xi7xk792) : € R

The jth element of the gradient for the log-likelihood, or the partial derivative with respect to
6, of an arbitrary kernel function is given by the following

537 1(6) = 5~ u(61) T 20:) 5 (0) (- o) — gor (201 5

= o (20 o) a - u<01>>T2<02>—1§jj> .

In the appendix, we list the partial derivatives of particular kernel functions for use in opti-
mization schemes.

2.4 Predictive Distribution

Suppose we are given observations, d = [dy, ..., dm]T € R™ at inputs x = [z1, ..,xm]T € R™. Our
goal is to make predictions of the data at new inputs in our domain, X = [X7, ..., Xp/] € RM . First,
choose a mean and kernel function and select hyperparameters to the kernel function.



Let g € RM be the output values at points X. Following notation from Section 2.2, let
¥, = B(x,x) € R™™, Tex = 2(x,X) € R™M,

Yx =X(X,X) e RM*M 3y = 3(X,x) € RMX™,

If we model our system as a Gaussian process, then the joint distribution is given by

d 0 Yx  Exx
(o] [ =) !
[g] <[OM Yxx XX (1)
We seek the conditional distribution of (g|X, d,x). We use a commonly known theorem in statistics
about joint multivariate normal distributions.

Theorem 2.1 (Conditional Distribution of Joint MVNSs). Suppose y follows a multivariate
normal distribution with the partitioning,

B 2N IV B 21 2 212}) € RP €R™
B P Rep—

Then the conditional distribution of y1 conditional on yo is also multivariate normal with the
distribution,

(y1ly2) ~ N(p1 — 212255 (y2 — p2), B11 — 212805 So1).
Proof. See Appendix for the proof. [ |

Applying Theorem 2.1, the conditional distribution of the new data g at inputs X, given our
data d is
(g‘Xv d, X) ~ N(Esz;lda 2]X - 2DXXED;IEDX)(>' (2)

To visualize predictions, we can plot our predictions, g, at time points, X. Additionally at each
input, X;, for ¢ = 1, ..., M, we can calculate a pointwise confidence interval using the covariance
matrix.

Non-Zero Mean Functions

Recall that we do not need to assume a zero mean function for a Gaussian process. If we have prior
information on the data, then we can encode that information into the mean function. Suppose
you wish to have assume deterministic mean function p(z). Using the same theorem as above, we
find that the conditional variance does not change, however the conditional mean changes to the
following,

E(g|X.d,x) = p(X) + Zxx 5 (d — p(x)). 3)



3 Linear Model Uncertainty Quantification
We start with the general notation. We consider a general parameter estimation problem,

4 = argmin [[s(y(t,u)) —d[l; sty =f(t,y,u) (4)

where f represents the underlying dynamical model, y the model output at points ¢, and u the
parameters of interest in our model. The function s(-) represents the projection of model output
to the same space of our observations, d. Sometimes, one is only able to measure or observe a
portion of states or model outputs at a limited set of points. We also assume that observations are
corrupted with unknown additive measurement noise.

Suppose that our underlying dynamical model is linear with respect to our parameters, u, and
the projections of the model output to data is simply the identity map. If we let A represent the
forward model that maps the input parameters to model output, then we have a classical linear
inverse, or least squares, problem

0 = argmin ||[Au — d|f3. (5)

For our later numerical experiments, we consider the particular problem of function deconvolution
in one dimension and computed tomography.

Supposing A has full column rank, solutions to Equation provide single point estimates, 1.
The field of uncertainty quantification (UQ) is concerned not only with point estimates, but in also
determining uncertainty within our estimates. Bayesian inference techniques are common methods
for UQ. Let p(u|d) be the posterior density, p(d|u) the likelihood density, p(u) the prior density,
and p(d) is the marginal density. Then Bayes Theorem states,

p(dfu) - p(u)
p(d)

While the likelihood depends on the underlying statistical model, the choice of prior is determined
by prior knowledge of the user. This prior knowledge could include initial guesses of the distribution
of u or assumptions on the possible range of parameters. In this way, the prior distribution acts as
a regularization of our solutions. Details for a basic Bayesian approach are left in a later section.

For particular choices of likelihood and prior distributions, the posterior can be easily derived.
For more general distributions, one is only able to take samples of the posterior distribution.
Without knowledge of the support of the posterior density, it would be naive to calculate a grid of
samples of the posterior distribution. In these situations, one may use Markov Chain Monte Carlo
(MCMC) methods to sample the posterior distribution. Examples of MCMC methods include the
adaptive Metropolis algorithm given as Algorithm [I] MCMC methods are often computationally
intensive; Markov chains are serial in nature. To parallelize MCMC techniques, at best, one can
compute separate chains in parallel.

p(uld) = , or omitting the marginal, p(u|d) o« p(d|u) - p(u). (6)



Algorithm 1 Adaptive Metropolis
Require: pijie, Pprior, Pprop; d, ug
1: i =0, compute posterior ppost(uo|d)
2: while not done do
Uprop ™~ N(uia Cz)
compute posterior ppost (Uprop|d)

Ppost (Uprop|d)
Ppost (117; ‘d)

3

4

5 compute ¢ = min (1,
6: sample u ~ U([0, 1])
7 if © < c then

8

9

U;+1 = Uprop

else
10: U1 = u;
11: end if
12: update C; — Ci+1 using u;41

13: t=1+1
14: end while
Ensure: {u;}X, samples from posterior

Chung et al.[I2] proposed a new approach to Bayesian UQ by replacing the data with surrogate
data from an appropriate stochastic process such as a Gaussian process. By taking samples from the
Gaussian process, we generate sample paths of our dynamical model. Then we perform standard
parameter estimation techniques on the samples rather than the data, which can allow one to find
a distribution of parameter estimates. Even without knowledge of the support of the resulting
posterior distribution, we can perform uncertainty quantification by finding the distribution of our
parameter estimates with respect to GP samples. The algorithm from Chung et al. is outlined in
Algorithm

Algorithm 2 UQ using GPs

Require: GP kernel function «(-,-), GP mean function p(-), data d, input locations of data t,
input locations of GP approximation T, number of samples K

1: Compute hyperparameters 6 = max, £(8)

2: Compute X, 3, zT,t

3: Compute p + B43; 'd

4: Compute X + T — Epe ;' S

5. fork=1,2, ..., Kdo

6

7

8

Sample g®) ~ N(u, X)
Compute a*) « min,, Hg(k) - s(y(T|u))H§
: end for
Ensure: {u(k)}fil samples of parameter estimates

In Section we consider Algorithm 2 with linear models and provide a closed form sampling
distribution of the resulting estimator. In Section we show that using a surrogate GP actually
corresponds to solving a weighted least squares problem and provide the corresponding maximum
likelihood estimator. In Section we extend results from Section to include regularization
with a prior distribution and provide the closed form posterior distribution.



3.1 Linear Models, Ordinary Least Squares Estimator, and Bayesian MAP Es-
timator

Suppose our forward model is a linear model and the projection of the model output to data is
simply the identity map. Then our model output is given by

s(y(t[u)) = Au,

where A represents the forward model. If we assume observations also contain Gaussian additive
noise, then our statistical model is given by,

d=Au+e €~N(0,X),

where X, is the covariance matrix of the noise.
Assume A has full column rank, then the solution to the least squares problem is given by,

a=(ATA)1ATd. (7)

For a frequentist approach, the given statistical model gives us the sampling distribution of the

least squares solution as
s ~ N(u, (ATA)TTATSAATA) T (8)

For a Bayesian approach, we use Bayes rule with a likelihood given by the statistical model and a
given prior distribution. A basic prior distribution is given by

u~N(O,N), A>0

and the likelihood is given by
dju ~N(Au, X,).

Together, the posterior distribution will be normal and is given by
ud~N(ATZA+A)TATEd, (ATS.A + D)7, (9)

The Bayesian maximum a posteriori (MAP) estimate in this case is the same as the posterior mean.

3.2 Ordinary Least Squares Estimator with GP Surrogate

Suppose we have a linear parameter estimation problem, as above,

G =argmin|[Au—d|5, ueR", deR™”, AcR™"
u

Given observations, d, we generate a Gaussian process, potentially with a different model design.
Samples from the GP have the following distribution,

g|d ~ N(u’gv Eg)a g, ug € RM72g € RMXM

with pg and X4 defined in the previous section. We define a new model matrix, Ag € RM*" that
represents the forward model with the new model design of Gaussian process surrogate data. If
the design of g is the same as the original observations, then Ag = A. We replace the data with
a realization of the Gaussian process, g®). The least square problem with the surrogate data is
given by
a® = arg min [|[Agu — gHg
u

10



with solution,

a® = (AJAg)TALg®.

We also wish to quantify the uncertainty of our estimates. In our case, we seek the sampling
distribution of a(*). We note that g*) follows a multivariate normal distribution and (A;Ag)_lA;

is deterministic. We now provide a closed form of the posterior distribution of ().

Theorem 3.1 (Sampling Distribution of Least Squares Estimator). Suppose g ~ N (g, Xg), the
matriz Ag has full rank and deterministic. If

u= (A;Ag)ilAg&
then a follows the distribution,
u -~ N((AgAg)_lA;Nga
T ATALL (10
(AgAg) A 3A, (A Ag) ).

Proof. We approximate the data, d, with a Gaussian process for some prior mean and covariance
functions, u(-) and £(+,-). Then the posterior conditional distribution of g is given by

gld ~ N(Nga Eg)

We assume g is computed at design points T € RM. Then we form a new forward model matrix,
Ag € RM>7  We assume the new model matrix, Ag, corresponding to the design of the Gaussian
process. The solution to the least squares problem,

i = argmin || Au — g}
u

is given by,
A T C1AT
a=(AgA;) 'Age.
Here, (AgTAg)’lAg is a deterministic a linear transformation. Since g is normal, Q1 is also normal.

Additionally, the distribution of a linear transformation of a multivariate normal random variable
is known and is given by,

u -~ N((A;—Ag)_lAgHg,
TA VIAT TATA V-
(AgAg) "AJS AL (AgA) ™.
u

In our numerical results, we refer to these technique as LSGP (least squares with Gaussian
process surrogate).

3.3 Maximum Likelihood Estimator and Weighted Least Squares

Instead of solving the least squares problem, we look at finding the maximum likelihood estimator.
In the typical context of multiple linear regression, the least squares estimator and the maximum
likelihood estimator are equivalent. However, in the context of a Surrogate Gaussian process, we
can include information from the posterior Gaussian process covariance matrix.

Using the same notation as in the previous section, we are given a linear model and approximate
the data, d, with a Gaussian process, with some mean and covariance function, to obtain a posterior

11



conditional distribution of g. Since the model design can differ with our Gaussian process, we again
define a new model matrix Ag € RM*" that represents the forward model with the new design of
observations. Now we define the misfit between the GP and the model output, d(u),

0(u) =Agu—g.

To find parameter estimates for u, we find the maximum likelihood estimator. The distribution of
0 conditional on u is multivariate normal with,

dlu~N(Agu — pg, Xg).

The likelihood function is given by
1 _
L(ul]d) x exp <—2(Agu - ,ug)T2g1(Agu - ,ug)> .

Theorem 3.2. The maximum likelihood estimator is equivalent to solving the following weighted
least squares problem

N . 2

u = min |Agu HgHg; (11)

and is given by - e
U= (Ay3, Ag) A 3, g (12)

Proof. To find the maximum likelihood estimate, we maximize the equation for the likelihood with
respect to u.

1

a= max exp (—2(Agu - ug)Tﬁgl(Agu - ug)>

1 . :
< min i(Agu - Hg)TEgl(Agu — ) = min |Agu — Hg‘@;;l-

u

We actually find that this is equivalent to solving a weighted least squares problem with the weights
given by the posterior covariance matrix, ¥g. The solution to the weighted least squares problem,
and thus the maximum likelihood estimate, is given by

= (AgX'Ag) TALS Mg

3.4 Bayesian Inference: MAP with GP Surrogate

For a Bayesian approach, one can set a prior distribution on u and find a maximum a posteriori
(MAP) estimate.

We use the same notation as above, given a linear model, we compute a posterior Gaussian
process on the observations. We also generate a new model matrix Ag € RM>n that represents the
forward model with the new design of observations. Bayes rule tells us,

p(uld) o< p(dlu)p(u)

The likelihood is the same as in the previous section. We define the misfit between the GP and the
model output, d(u),
0(u) =Agu—g

12



with distribution
dlu~N(Agu — pg, Xp).

The resulting density is

p(d]u) o exp <—;(Agu - ug)TEg_l(Agu - ug)> .

We specify a Gaussian prior on u, with general mean and covariance matrix,

u -~ N(“’m 2u)7 p(u) X exp <_;(u - I’l’u)—l—zl—ll(u - Nu)) .

This prior has the effect of smoothing inversions. Then the posterior density is proportional to the
product,

p(uld) o< p(8|u)p(u)

1

X exp <—;(Agu — pg) 2 (Agu — ug)) exp <—2(u — ) B (u - uu)>

1 _ _
X exp <—2 [(Agu - ug)TZgl(Au — ) + (0= py) (- uu)}> :
Since the product involves Gaussian densities, then we can write the posterior as a Gaussian

distribution. Similar techniques to derive the posterior mean and covariance are shown, without
derivation, in [I5] [16].

Theorem 3.3 (Posterior Gaussian Distribution). The posterior distribution is given by
u|d ~ N (ppost,; X post)
with the following mean and covariance matriz,
prost = pu + (AT S A + S TTATE (g — Ap),  Bpos = (ATSIA+ 30N (13)

Proof. We write both the likelihood and the prior as proportional to another Gaussian in canonical
form with respect to u. More details on the canonical form of a Gaussian is given in Appendix D.

1 1
exp <—2(ug — Au)Txgl(,ug — Au)> X exp <—2[u;—2glug — 2,u—gr2g1Au + uTAnglAuD
1
o< exp <a1 + fr;lTu — 2uTP1u>
with m; = ATZglug, P, = ATZ;A, and a1 as a negligible constant.

1 _ 1 _ _ _
exp <—2(11 - /Lu)TEul(u - Hu)) X exp <_2[/L32u1“u - QMIEulu + uTzulu]>

1
x exp <a2 + n;u — 2uTP2u>

with 72 = 35 pu, P2 = 351, a2 as a negligible constant.
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Now the product of the Gaussians can be written as the following,

1 1
(Likelihood) x (Prior) o exp <—2(Au - ug)TEgl(Au - p,g)) exp (—2(u — ) B (u - uu)>

1 1
X exp <a1 + anu — 2uTP1u> exp <a2 + n;u — 2uTP2u>
T L
= exp ((a1 +ag)+ (M +m2) u-— U (P + P2)11>

1 1
= exp <—2[a3 +nyu— 2uTPgu]>

with 93 = 11 + 12, P3 = P1 4+ P9, and a3 = a1 + a3 as another negligible constant.
Now in canonical form, one can find the mean and variance of the resulting Gaussian density.
The covariance is given by

Ypost = P;;l
_ (AnglA + 21_11)_1'

The mean is related to canonical form by following,

P3ppost = n3
— ppost = Py '3
_ (ATZ);A Lyl I(Anglﬂg i El_llllu)
DN ATS g — ATS S Ay + ATS A p + 25 )
= (ATZA+ 3T ATS (g — Apa) + (ATS A + 20 ]
T (AnglA n 21_11>_1AT2;1(Ng ~ Ap)

u

= (ATS'A+ 3,

u

-
-

Any number of choices exist for the mean vector of the prior. Generally, the choice of the
prior covariance matrix is without restriction. However, now we require both ¥, and the matrix
ATEg A + 2! to be invertible. One can see that X, represents the regularization we impose
on u. The posterior mean can actually be broken down into different components. We update the
prior mean, p,, with a weighted least squares solutions with regularization. Instead of the weighted
least squares being performed on the original data, it is instead performed on the difference between
the posterior mean of the surrogate GP and the prior mean, pg — Apy.
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4 Applications

4.1 Deconvolution in 1D

Suppose the relationship between an input, u, and model output, y(s|u), is given by a convolution
with a given kernel, a,
o0
y(slu) = (a*u)(s) = / a(s — t)u(t) dt. (14)
—00
Deconvolution is the process of reconstructing an unknown input function, u, given a true kernel,
a and noisy measured observations, d = [dy, ..., d,] ", of model output. By using a quadrature rule
to approximate the integral, often one is led to the typical linear inverse problem,

d=Au+e, (15)

where A and u represent the quadrature rule and € represents the noise in observations. Note, in
this context, a kernel for convolution is not the same as the kernel used in a Gaussian process, as
stated in previous sections.

We follow Example 1.2 from [17] and consider a true function, or signal, u(t), defined on R with
support on [0, 1]. We assume a zero boundary condition at «(0) and u(1). Data generated from the
true signal is also normalized for numerical experiments. Suppose the model output is generated
by a convolution process,

y(s|u) = /OO a(s —t)u(t) dt, se]0,1].

—0oQ0
In our numerical tests, we use for a(-), a Gaussian kernel with support on [—1, 1],

2
a(r) = ﬁexp (—2’"?) , forre[-1,1],

0, otherwise.

Now our integral reduces to

2
y(slu) = / a(s —t)u(t) dt, se0,1].

-1
We approximate the integral through the midpoint method. Suppose we consider a uniform grid
on [0,1] with n + 1 points. Let t; = jh, j = 0,1,2,...,n with h = % With the midpoint rule, we
calculate the integrand evaluated on t; =(j— %)h, for j = 1,2,...,n. Then the integral is given by

n

2
y(slu) = / a(s —t)u(t) dt = Z a(s — t)u(ti)h + Enp, (16)

1 =
where F,, is the quadrature error due to the midpoint rule. If we use the same grid for the sampling
of observations, s; = t;, with ¢ = 1,2, ..., n, then we find the following system of equations,

y(silu) ~ B> " a(s; — thult)) = b a((i = Hhu(t;), i=1,2,..,n.
j=1 Jj=1

If we define our unknown parameters to be u = [u(t}), ..., u(t,)] ", our model matrix to be [A];; =

ha((i—j)h), and our observations to be d; = d(s;) = y(s}|u) +e¢, then the above system of equations
can be written in matrix-vector form as d = Au.
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Given observations, d = [d(s}), ..., d(s},)] ", we approximate d(s) using a Gaussian process evalu-

ated at a potentially different set of points S/, for i = 1,2, ..., M. One should consider an appropriate
kernel function to measure distance between two observations. We investigate this question in the
proceeding numerical experiments by comparing the squared exponential and Matérn kernels.

After computing a surrogate Gaussian process on the data, g € RY, we now need to consider a
new model matrix, Ag, that corresponds to the new model design, S}, for i = 1, .., M that must be
of full column rank. Recalling from the midpoint rule in , if we assume the design S/ is uniform
on the interval [0, 1], we simply compute the model matrix as

[Aglij = ha(S] — }), Ag € RM"™

Once Ag is generated, we follow the formulas from Section 3 to compute the posterior distributions
of the inverted signal.

To illustrate the effect of the choice of the GP kernel, we consider three different input signals.
For the kernel function used to blur our true signals, we use v = 0.03. The true signal, u, is then
sampled uniformly on [0,1] with n = 30 points, and normalized. To simulate observations, We
form the model matrix, A, generate the true model output Au, and add noise. The noise vector,
e, is generated from a Gaussian distribution such that [e||, = 0.05|[Au],. Then following (5), we
generate the observations, d.

For comparisons, we consider multiple methods for inversion. We compute the ordinary least
squares estimate (OLS) from (7)), an ordinary least squares estimate using a GP Surrogate (OLSGP)
from , and Maximum Likelihood Estimate using a GP surrogate (MLEGP) from . For the
Bayesian approaches, we will use a standard Bayesian MAP Estimate (Bayes) from @ and a
Bayesian MAP Estimate using a GP Surrogate (BayesGP) from . For both Bayesian methods,
we will use the similar prior distributions,

x ~ N, (0, AI).

For simplicity, to determine \, we perform a direct search in the interval [1075,10%] that minimizes
the relative error between the posterior MAP estimate and the true solution. In the following
sections, we investigate the inversions performed on various underlying functions, a C* function,
a step function, and a function that is the mixture of both.

C* Input Function

First we consider a C'*° input function,

s 4
sin*(27t), for 0 <t <1,
fl(t):{ ()

0, otherwise.

To compute a Gaussian process on the noisy blurred observations, we consider a smooth kernel,
the squared exponential kernel with a term for a nugget. Hyperparameters are computed using
maximum likelihood. The true signal, blurred observations, and posterior GP are shown in Figure
4

We perform various inversions in Figure 5| to compute posterior distributions of our true signals.
We note that the least squares solutions performs relatively poorly. The other three methods have
very competitive estimates for the true signal. We provide relative error tables in Table (1| For this
example, we see that both MLEGP and the posterior mean of BayesGP outperform least squares
and a Bayesian MAP estimate.
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True Signal and Convolution Observations Posterior GP on Blurred Observations
35 0.35

*
03

025
0.2

0.15

#  Observations

——— True Signal Bayes GP Post Var
# _Noisy Observations Bayes GP Post Mean

Figure 4: The true input signal is shown on the left plot. The blurred observations along with a
posterior Gaussian process using a squared exponential kernel with a nugget.

In UQ, we also consider the variance in our estimates. We show the posterior means and
variances of both Bayesian methods in Figure While the posterior means of both approaches
are relatively similar, we can see that the Bayesian approach with a GP surrogate provides much
lower variance in our solutions.

The previous results used a kernel that was appropriate for our observations. To illustrate the
importance of the choice of kernel function, we now look at inversions using a poor choice of kernel
function. In this case, we consider a Matérn kernel with v = 2 without a nugget term. We note
that v determines the differentiability of the kernel function; with v = 2, the kernel is 1 times
differentiable in the mean square sense.

In Figure[6] we compare the two kernels. Without a nugget, there is less variance in our posterior
GP. We would expect our GP to have no variance at isolated observations. With this posterior
GP, we see our inversions are less smooth. We observe this in both the MLEGP and the posterior
mean of BayesGP.

Upon further investigation, the cause of the rough inversions can be attributed to the lack
of a nugget. Gramacy et al. argue for the inclusion of a nugget term in nearly all cases of
mathematical modeling with GPs [I8]. It is no surprise then, that failing to include the nugget
when our observations are known to have noise results in poor inversions. In Figure [7, we do a
similar comparison, this time, instead, we include the nugget term with the Matérn 2 kernel. Here
we see comparable inversions.

Step Input Function

Next we consider a step function with two separated steps,

1, for0.2<t<04,
fo(t) =<1, for0.6<t<0.8,

0, otherwise.

Similarly as before, we compute a posterior GP on our blurred observations. This time, we use
a Matérn Kernel with v = 2 and a nugget. We compute various inversions in Figure [§] We note
that our inversions are not smooth. In fact, at the jumps, we observe oscillations reminiscent of
Gibbs’s Phenomenon. We can also observe a relationship between MLEGP and BayesGP mentioned
earlier: BayesGP can be seen as MLEGP with added regularization from a prior distribution.
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Various True Signal Inversions Inversion Error Plot Bayes vs. BayesGP Uncertainty
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Figure 5: The true signal of the C'**° function and four different inversions. Both Bayesian techniques
plot the posterior mean. As expected, the standard least squares solution performs relatively
poor. On the right, we compare the variances between the purely Bayesian and Bayesian with GP
surrogate and note the much smaller variance.

Relative errors are provided in Table Additionally, while we see the posterior means of Bayes
and BayesGP overlap, one observes that the variance of BayesGP outperforms the typical Bayesian
approach.

We investigated with the Matérn Kernel first since we hypothesized that the blurred observations
of step function may be better approximated from the Matérn than the squared exponential, which
enforces smoothness. We compare results between the Matérn kernel and the squared exponential
kernel in Figure [0 When comparing just MLEGP, we still observe oscillations around the jumps.
However, the magnitude of oscillations are slightly smaller. After some regularization in BayesGP,
we can see that the Squared Exponential relatively comparable. When we look into the relative error
of the posterior means, however, BayesGP with the squared exponential loses out to the Matérn
Kernel. With the Squared Exponential, the relative error of the posterior mean of BayesGP is
1.793 x 101, just a little over the relative error of the Matérn Kernel of 1.397 x 1071,

Composite Function

Finally, we consider a function with both C'°°° and step segments, and try to observe the effect of
trying to invert the signal with the different kernel functions. The true signal is given by,

1, for 0.1 <t < 0.25,

0.5, for 0.3 <t < 0.4,
f3(t) = . 4

sin*(2nt), for 0.5 <t <1,

0, otherwise.

We consider the use of just the Squared Exponential kernel with a nugget. We compute a
posterior GP on the blurred observations, again using maximum likelihood to determine optimal
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Matern Kernel Comparisons

Posterior GP; Matern Kernel MLEGP Comparisons BayesGP Comparisons
05 05 05

0.2

Sq. Exp. with Nugget
Exp. with Nugget
[0 Post. Variance Matern wio Nugget

True Function

MLEGP Sq. Exp. with Nugge!
MLEGP Matern wio Nugget ——— Post. Mean Matern wio Nugge!

Figure 6: Comparison between the squared exponential kernel with nugget and a v = 2 Matérn
kernel without a nugget on the C*° function inversions. Note the less smooth MLEGP and BayesGP
inversions. This is actually due to the lack of the nugget rather than the use of the Matérn kernel.

C® Function | Step Function | Composite Function
Least Squares 4.056 x 10~ | 3.860 x 107! 3.846 x 1071
Least Squares GP 6.014 x 1072 | 2.789 x 10! 3.198 x 1071
MLE GP 4.481 x 1072 | 2.921 x 107! 2.277 x 1071
Bayes GP 3.941 x 1072 | 1.397 x 107! 1.975 x 107!
Bayes 8.858 x 1072 | 1.405 x 107! 1.594 x 107!
Bayes Median Variance 4.529 x 10~1 | 1.040 x 10° 8.116 x 10~ !
Bayes GP Median Variance | 9.095 x 10~% | 5.179 x 10~* 5.614 x 10~*

Table 1: Relative error rates and median variance of the three functions with different inversions.
The squared exponential kernel with nugget were used for both the C'°°° and composite function.
A Matérn kernel with nugget was used for the step function.

hyperparameters.

We look at various inversions in Figure[I0]and a relative error table is given in Table[I] Inversions
provide encouraging results, and the posterior distribution with BayesGP provides smaller variance
in our inversion of the true signal, shown in Figure Similarly as before, we also test inversions
with the Matérn kernel with v = 2 and a nugget. The comparisons are given in Figure

The squared exponential kernel outperforms the Matérn kernel in the MLEGP inversion, with
relative errors of 2.277 x 10! and 3.124 x 10~! respectively. However, the opposite is true for the
BayesGP inversion, with relative errors of 1.975x 107! and 1.596 x 10~!. While the presence of both
a step function and a C'°° function encourages us to use a kernel function that can approximate
both properties, we cannot definitively conclude that a particular kernel is suited for particular
functions. The squared exponential kernel shows promising results for most of the deconvolution
examples.
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Matern Kernel Comparisons

Posterior GP; Matern Kernel 05 MLEGP Comparisons BayesGP Comparisons
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Figure 7: Inversions with the Matérn and squared exponential, both with nuggets, are comparable.

4.2 Linear Tomography

One example for a linear inverse problem is tomography, which is a technique to reconstruct an
object by measuring intensities of waves (x-rays, acoustic waves, etc.) sent through the object. The
amount by which the object can absorb waves throughout its body is described by an attenuation
coeflicient function. We collect data of the intensities of the waves before and after entering the
object. The change in intensity due to the attenuation can then be computed through Beer’s
Law, where observations are line integrals through the object. Particular details on the physical
model can be found in [4]. Given intensity measurements and the physical model, our goal is to
reconstruct the attenuation coefficient throughout the object. In this example, we will be working
with tomography in 2D. We begin with some notation, following similar definitions from [I7, [4].
Our domain of interest is the unit box, Q = [0, 1] x [0,1] C R2. Even if our object is not simply a
box, we can embed the object into ). Defined on the unit box is a function u : Q — R which maps
each location in §2 to an attenuation coefficient in R. We assume, any location outside the object
provides an attenuation coefficient of 0. We next discretize {2 into an n; X ng grid of pixels. Each
pixel is a rectangular subset of the domain 2. The center of the ij-th pixel, F;;, is given by

(iyyj) =(—1/2,5—1/2), i=1,2,...,m, j=1,2,..,no.

In total we have n1 X ng = N pixels. We assume on each pixel, F;;, the attenuation coefficient is
constant, denoted by the value wu;;,

V(l‘,y) GPl]) u(:r,y) = Uy -

Observations are described as line integrals through the domain 2. So first, we describe a parame-
terization of all lines through €. Any line in R? can be described by the equation, azx + by = ¢ for

20



Various True Signal Inversions Inversion Error Plot Bayes vs. BayesGP Uncertainty
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Figure 8: Various inversions of the step function using a GP with a Matérn kernel with a nugget.
Here we see overall both Bayesian methods outperform least squares, LSGP, and MLEGP. As
before, the variance of Bayes GP is far below the variance of the Bayes method.

some a, b, c € R. Following [I7], define

Cc

VETR

w, = [cosp,sinp] ", z=

Then we can similarly parameterize any line as

ly = {(x,y) eR?:w) [zﬂ = z}

or, by defining pr = [~sinp,cosp] T,
Ly, = {zwp—i—spr 15 € R}.

Let I, -(s) be the intensity of a beam along the line £, , and u(¢, »(s)) be the value of the attenuation
coefficient along the line £, .. Let sp and senq represent the beginning and end of the line as it
crosses through our domain €2. Through Beer’s Law, the change in intensity can be described as

dlp.-(s) = —u(lp,2(5))1pz(s)ds.

Solving the differential equation provides us the relationship,

~log <m> _ / u(l,.(s)) ds.

Model output is specified by the angle of the beam, p, and distance from the center of 2, z, and is
the negative log of the change in intensity,

y(p,2) = —log (MW) _ / # ds — / Ml (s)) ds. (17)

IP»Z(SO) 0 0
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Matern Kernel Comparisons

Posterior GP; Matern Kernel MLEGP Comparisons BayesGP Comparisons
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Figure 9: Comparison between squared exponential and Matérn kernels, both with nuggets, on
inversions of a blurred step function. There does not seem to be any discernible differences between
kernels for this particular problem.

Thus, model outputs are values of the Radon transformation [4] of the attenuation function, u(z,y).
We next define the full discretized problem. Suppose we have a collection of model outputs corre-
sponding to a collection of lines,

oz k=12, K, r=1,2,.,R}, yir =y(pr 2r)

In total we have KR = M model outputs. Let AZZJ; represent the length of line £,, . through pixel
P; ;. Then the linearization of the line integral is given by

n
Ykr — Z Aﬁgru,]
ij=1
Define the matrices, U € R™*"2 with ij-th element u;;, and D € REXK with kr-th element dy,.
Define the vectors, u = vec(U) € RY and d = vec(D) € RM. We assume that observations are
model outputs corrupted with additive Gaussian noise, €, with zero mean and variance matrix, ¥..

Then we can write

d=Au+e €e~N(0,3). (18)

where A contains Aﬁz in the corresponding locations.

Observations can be seen as a surface over a 2D domain, as in Equation , corrupted with
noise. We use a squared exponential kernel with a nugget for our Gaussian processes, however other
options can be considered. We identify optimal hyperparameters, é, via Maximum Likelihood. We
calculate the posterior GP conditional on the observations, b, and optimal hyperparameters, 8

(g|b, é) ~ N(pg, Zg).

Here, pg and Xg are the posterior mean and covariance matrix as defined in Equation ([2).
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Various True Signal Inversions Inversion Error Plot 2 Bayes vs. BayesGP Uncertainty
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Figure 10: Inversions of a mixed input signal, using a squared exponential kernel with a nugget
for the posterior GP. Again, the variance of the BayesGP method outperforms the variance of the
purely Bayesian method.

For our numerical experiments, we use a Shepp-Logan phantom of size N =n x n = 64 x 64.
We add independent Gaussian noise with variance o2 = 0.001. For our observations we shoot 91
rays into the phantom at 90 angles evenly spaced on the interval [0°,180°]. Together, we have
M = 91 x 90 observations.

Chung et al. noted the effectiveness of a surrogate Gaussian process for missing or censored
observations [12]. For tomography examples, we will consider two situations of missing data. First,
we will remove a random proportion of observations, then remove contiguous blocks of observations.

For this first example, we remove 40% of the observations. Our new model matrix is simply
the original without the rows that correspond to the removed observations. We then compute a
posterior GP on our observations. The domain of our GP is the cross product of our angles, and
the perpendicular distance of a ray to the origin, [0°,180°] x [-§, §]. We use a squared exponential
kernel, and find optimal hyperparameters using maximum likelihood. We compute the posterior GP
on the original design of the observations. That is, at our given observations as the observations
that are missing. A simple method to find the model matrix, Ag, is to use the original model
matrix. The full sinogram, sinogram with missing observations, posterior GP, and the relative
error heat map are given in Figure

The various inversions are shown in Figure [13| and their relative errors in Figure We note
that the MLE GP solution performs better than the LS GP solution, followed by the Bayes GP
solution. However, the Bayes MAP estimate has the lowest relative error. We also note that the
covariance of the BayesGP solution is orders of magnitude lower than the variance in the Bayes
MAP estimate as seen in Figure The exact values are provided in Table [2]

In our next example, rather than removing random observations, we remove contiguous blocks.
Here, we remove the rays associated with the angles

0 = {20°,21°,22°,40°,41°,42°,60°,61°,62°,80°,81°,82°}.
This accounts for only 13% of the observations. We construct Ag in a similar manner to the example

above. The various sinograms, and the posterior GP approximation are provided in Figure The
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Figure 11: Comparison between squared exponential and Matérn kernels, both with nuggets, on
inversions of a blurred composite function. In this case, the squared exponential kernel outperforms
the Matérn kernel with MLEGP, but is slightly worse with the BayesGP kernel when considering
relative errors.

various inversions are shown in Figure along with the error heat maps in Figure and the
variance heat maps in Figure We observe similar patterns to the previous example. The LS
GP, MLE GP, and Bayes GP show increasing performance, but the Bayes MAP estimate still
have the lowest relative error. Again, we note that the variance in our estimates are orders of
magnitude lower in the Bayes GP solution. Interestingly, while we removed less observations as a
proportion of all observations, the LS GP solution performed worse in missing contiguous blocks
compares to missing random observations. This is intuitive since missing contiguous blocks provide
less information about that area of the object, when compared to a single missing observation
surrounded by other observations.

Next we investigate how the methods perform over a range of percentages of missing observa-

Random Removal | Block Removal

Least Squares 2.78¢ x10? 1.31 x10°
LS GP 9.35 x10~! 1.46 x10°

MLE GP 7.27 x10~! 7.17 x107!

Bayes GP 5.87 x10~! 5.77 x10~!

Bayes MAP Estimate 3.05 x10~! 2.59 x107 T

Bayes GP Median Variance | 3.25 x1072 4.90 x10~2
Bayes Median Variance | 1.89 x10° 1.46 x10°

Table 2: The relative errors of the tomography inversions with the various methods. We see that
MLEGP and BayesGP both improve on the relative error of LSGP. However, the best method
is still the pure Bayesian method. On the other hand, the variance of the BayesGP method is
magnitudes lower than the variance of the pure Bayesian method.
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Figure 12: The original sinogram, the sinogram without the removed observations and the posterior
GP are shown above. Note that the GP has now made predictions of what the missing data should
be. The error heat map shows relative error of the posterior mean of the GP and the observations.
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Figure 13: Reconstructions using the various methods. The true image is given in the bottom
corner.

tions. We remove a range of proportions of random observations, from 0% to 50%. In our particular
example, if we remove more than 50% of our observations we will have less observations than pixels,
and our model matrices will no longer be of full column rank for the least squares method. Our
Gaussian process is similar to above. We make predictions at the current observations as well as
our missing observations. The relative error versus the proportion of missing observations are given
in Figure We see similar results from before, in order of accuracy, we have LSGP, MLEGP,
BayesGP, and the pure Bayesian method. An interesting result comes from the curve of BayesGP.
Removing 50% of the observations provides the same accuracy of removing only 2% of the ob-
servations. It would seem to suggest that BayesGP is robust to missing data for this particular
problem.
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Figure 14: Error maps of the given reconstructions. We note that for the BayesGP method, the
majority of the error occurs around the interface of high attenuation. The error of the pure Bayesian
method is also spread out throughout the image as compared to the BayesGP method.
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Figure 15: Heat maps of the variance for Bayes and BayesGP. While the pure Bayesian method
has a lower relative error, the variance of BayesGP is magnitudes lower compared to the Bayesian
method.
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Figure 16: The original sinogram, the sinogram without the removed observations, the posterior
GP, and the relative error heat map are shown above. The total relative error of the posterior GP
to the original observations is 1.32 x 1071.
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Figure 17: Various reconstructions for the block removal of observations. We see similar patterns
for the inversions as compared to the random removals. In order of performance, we have least
squares, LSGP, MLEGP, BayesGP, and the pure Bayesian method.
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Figure 18: Error heat maps for various reconstructions for the block removal of observations. We
observe similar patterns as before. The error of the pure Bayesian method is spread out throughout
the image, while the error of BayesGP is concentrated at the interfaces between different attenuation

coefficients.
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Figure 19: Heat maps of the variance for Bayes and BayesGP. While the pure Bayesian method
has a lower relative error, the variance of BayesGP is magnitudes lower compared to the Bayesian

method.
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5 Conclusion and Future Work

We have developed the techniques for uncertainty quantification using surrogate Gaussian processes,
Algorithm as introduced in [12], applied to linear inverse problems. We introduced a closed form
distribution of the resulting samples of Algorithm [2] Additionally, we suggest incorporating the
covariance of the posterior Gaussian process in a weighted least squares approach. Finally we
extend the weighted least squares approach to a Bayesian framework by the inclusion of a prior
distribution.

Relative Error for Varying Missing Observations
T T T T T

LSGP
MLEGP

BayesGP
05} 1 Bayes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Percentage of Missing Observations

Relative Error

Figure 20: The relative error versus the proportion of missing data. Errors from least squares are
omitted due to their magnitude relative to the other methods. While we see similar patterns between
the methods as before, we note that BayesGP level out and stop deteriorating after removing 2%
of the observations.

We tested methods on two numerical problems: a relatively small 1D deconvolution problem,
and a larger tomography problem. In both cases, we acknowledge that one must construct a problem
dependent model matrix for the posterior Gaussian process. For the deconvolution problem, we
demonstrate the impact of different choices of kernel functions on final uncertainty quantification
distributions and confirm the distribution of samples of Algorithm 2] For the tomography problem,
we investigate the effect of missing data in our inversions.

We show relative error improvements between the three surrogate approaches for both problems.
We observe that between the three surrogate Gaussian process methods, BayesGP performs the
best, followed by MLEGP and LSGP with respect to the relative error of the mean of their respective
distribution to the true solution. In both problems, we observe vastly decreased variance in our
BayesGP inversion compared to the variance from our Bayesian inference method. In all tests
for tomography, our Bayesian inference method still outperforms the surrogate Gaussian process
methods in relative error to the true solution.

Numerical tests for tomography used a typical squared exponential kernel with hyperparameters
optimized via maximum likelihood. This choice of kernel may not be the ideal kernel for the problem
of tomography. In particular, the squared exponential kernel does not take advantage of the special
sinusoidal structure of the sinogram. Future work includes investigating different choices of kernel
functions.

For the sake of comparing the BayesGP and Bayesian inference methods, we used a very basic
prior distribution, Gaussian with zero mean and diagonal covariance. Particularly for tomography,
there may be a more appropriate prior distributions to consider. Previous work involving Gaussian
processes and tomography used the Gaussian random field as the prior distribution, rather than
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the likelihood [I5]. In that case, it may be more appropriate for the prior to use a Gaussian Markov
random field [I7], or another stochastic process, as the attenuation function can change drastically
at the interface of different densities.

For extremely large inverse problems, methods described here require costly matrix multipli-
cations and storage of covariance matrices. Gaussian processes using globally supported kernel
functions will require O(M?) pair-wise kernel evaluations between the design points. One method
to introduce sparsity in our covariance matrices is to use kernels with only local support. Unfor-
tunately, this still does not guarantee that the inversions are sparse as well. Literature on large
scale Gaussian processes include the use of an ensemble of local Gaussian processes to approxi-
mate an overall Gaussian process [19]. Techniques incorporating techniques in large scale Gaussian
processes to the inverse problem are yet to be investigated. If the direct computation of the distri-
butions are infeasible, one can still sample the posterior distributions by applying small alterations
to Algorithm |2 to sample the uncertainty quantification distributions of and .

Along the lines of large inverse problems, there is also room to explore use of surrogate stochastic
processes here as a method in model reduction. We explored sparse data in our tomography
examples by varying the amount of available data. However, in the when forming the posterior
Gaussian process, and the new model matrix, Ag, on has the freedom to specify a new model
design of surrogate observations. One can consider optimal experimental design problems using
surrogate stochastic processes. Additionally, one can explore how the effect of varying the number
of surrogate observations in the posterior Gaussian process distribution with inversions. Perhaps
with an ideal experimental design, one can reduce the number of observations required before
performing inversions.

In conclusion, the novel method for uncertainty quantification introduced by Chung and Gra-
macy et al. approaches the inverse problem in new ways that warrant further investigation. We
lay some foundations and extend their method for linear inverse problems through closed form
distributions and the inclusion of information from the Gaussian process in the inversion process.
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Appendices

Appendix A: Classical Multiple Linear Regression

Suppose you have data D = {(v;,%;)}i=1,... N, where y; € R and x; € RY. Suppose the data was
generated through some function, f : RV — R,

yi = f(xq), 1=1,2,...,N.

Now suppose you wish to approximate f through some linear combination of chosen basis functions
{¢i(x)}M,, where ¢; : RY — R. Then our approximation to f is given by

B) = Z Bipi(x)
i=1

Since f is parametrized by 3, we wish to find a particular B that minimizes the error between the
true function f and the approximation f with respect to some norm. The problem of least squares
is to minimize the squared distance between the true model f(x) and our approximation f (x,0)
at observed data points. Thus, we seek

= arg min Z

BERM =y

A.1 Derivation through Linear Algebra

Define the vectors and matrices,
Y1 $1(x1) ... om(x1) B
y=|:|eRY, &= : : eRVM 3= | :
YN $1(xN) oo du(xN) Bum
Then the function to minimize can be written as a vector norm,

N

S i - fx.8)% = lly - @3

i=1
To optimize, we take the derivative with respect to 3,
d
a8 ly — ®8|3 = [(y )" (v - <I>B)]
=3 [BT¢T¢’5 —287® Ty + yTy]
=20"®3 28 "y.

Setting the derivative to zero, we derive the Standard Equations,

d 2 !
7ﬁ Hy— ‘1’13”2 =0
— 28'PB 28"y =0
— B=(®d"®)'®y
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A.2 Derivation through Maximum Likelihood Estimation

Suppose observations contain independent, identically distributed additive white noise. Then,
yi=f(xi) +e, e = N(0,07)

or equivalently,
y=®8+¢ e~N(0,0°1,).

The likelihood function is given by

(Bly) o exp (— L y—ep)T(y - ‘M)>

202

The choice of ,é that maximized the likelihood function is given by

A~

B = argmax {(Bly)
,BE]RIW

= o (5ot - 28) (v - 29

& argmin(y — 88)" (y — ®0)
ﬁeRl\J

— B=(®'®) '®'y

A.3 Generalized Least Squares (and Weighted Least Squares)

Instead of independent identically distributed additive error, we suppose the distribution of € is
more general,

e ~N(0,%,).
Then the distribution of y is given by
y ~ N(‘I),B, 26)
with likelihood )
U(Bly) o< exp <—2(y —®8)' = (y - iﬁ)) :

The choice of 3 that maximizes the likelihood is equivalent to the following optimization problems,

A~

B = argmax ((Bly)

,BG]R]W
& argmin(y — ®8) = (y — 3)
,BGRM
2
o
— y - @85 .
We can find the derivative of the objective function, with respect to 3,
Ay - @)= Ay - ®g)| = a4 BTe s ep 28T e T ly +y B Y]
dﬂ € d/@ € € €

=202 198 - 20 2 ly.
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Setting the derivative equal to zero and solving for 3,

d |
— |(y—-®8)'= Yy —®8)| =

8 (y—®8) X (y-28)| =0
— 2027108 202 ly =0

— g=(@'x'®) ' ly
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Appendix B: Tikhonov Regularization

We continue with notation from the previous section. Now we adjust the objective function by
penalizing solutions to the optimization problem having large norm. For some A\ > 0, we have the
following optimization problem,

B = argmin [y — ®3|3 + \|8]3.
BeERM

The derivative of the objective function, with respect to 3,

d
a5 LIy = @815 + A B]5] =227 @6 28Ty + 225

Setting the derivative equal to zero and solving for 3,
B=(®"®+ ) '@y

Note, literature on regularization of least squares with general filters, often use ® to represent the
filter factors.

B.1 Tikhonov Regularization as Bayesian Regression

Bayes rule tells us,

p(Bly) < p(y|B)p(B)
Specify a particular prior distribution of 3 by

B~ N(0,0°Ty), a>0
with density
1
p(B) o exp <—M5T5> .
The distribution of y conditional on 3 is given by
Y[B ~ /\/‘(@ﬂ, O'QIn)
with likelihood .
p19) o e

202

(y—®8)7(y - @B)> .

By Bayes Rule, the posterior density is then proportional to the following,

L - 20) (v - 20) ) exp (515675

202

p(Bly) o< exp (—

X exp (—%;(y —®8) (y — ®8) — %;BTIB)>
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The maximum a posteriori (MAP) estimate is the mode of the posterior distribution. In other
words, the MAP estimate is the choice of 3 which maximizes the posterior density.

A~

B = arg max p(Bly)
ﬁeR]W

—oxp (<502 - 80 (v - #0) - 512675))

1 1
N in—(y—®3) (y—® — g7
aggeﬁ;n 5,2y —®B) (y —®B) + 558 P)

=(y-28) (y - ®8)+ 88 (With A = 2)
= [ly — ®8[5 + A1I8]3 -

The above optimization is equivalent to Tikhonov regularization.
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Appendix C: MVN Conditional Distribution

Theorem C.1. Suppose y follows a multivariate normal distribution. If we partition y by
N DAY UV (R 12 B X 212}) € RP e R™
y |:y2:| (I*L |:/J’2:| 9 |:221 222 y Y1 ) y2

Then the conditional distribution of y1 conditional on yo is also multivariate normal with the
following mean and variance matriz

yily2 ~ N(p1 — 210255 (y2 — p2), B11 — Z12255 So1)
We state a few lemmas without proof.

Lemma C.1.1. A linear combination of Multivariate Normal (MVN) random variables is also
Multivariate Normal.

Lemma C.1.2. If two MVN random variables have zero covariance, then they are independent.
Lemma C.1.3. Suppose y1 and yo are independent MVN random variables. The joint distribution
is then given as the product of the individual distributions,

p(y1,y2) = p(y1)p(y2)-

Proof. (Statistical Methods) First we define a new random variable, z = y; + Cyy where C € RP*™
is deterministic. By Lemma[C.1.1] we know z is Multivariate Normal. We will enforce the condition
that z and y, are independent. By Lemma it is sufficient to enforce Cov(z,y2) = 0.

Cov(z,y1) = Cov(yz2 + Cy1,y1)
= Cov(y2,y1) + CCov(y1,y1)
=3 +C2y, = 0
— C = —22121_11
By rearrangement, y; = z — Cys. Since the RHS is a linear combination of Multivariate Normal

variables, we know y7 is also Multivariate Normal. Then it is sufficient to calculate the mean and
variance of y; to characterize the distribution.

Elya|y1] = E[z — Cy:1y1]
= Elz|y1] — CE[y1]y1]
=Elz] - Cyy
=p2+Cp1 — Cyy
= p2 — C(y1 — )
= po + T X7 (y1 — p1)
Var(yz|y1) = Var(z — Cyiy1)
= Var(zly1) — CVar(yi|y1)C'
= Var(z) = Cov(z, z)
= Cov(z,y2 + Cy1)
= Cov(z,y2) + Cov(z,y1)C" = Cov(z,ys)
= Cov(y2,y2) + CCov(y1,y2)
=39 — X1 X' 1o
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We note that the conditional covariance matrix is the Schur Complement of 317 of 3. To see
this connection, we give another proof of the conditional distribution.

Proof. With properties of probability distributions, we can write the joint density as a product of
the conditional and marginal densities.

p(y1,¥2) = p(y1ly2)p(y2)

The full joint density is given by

T -1
LIy H1] > [211 212] ( [}ﬁ} {M] >
, xexp | —= — —
Py1,y2) P ( 2 ([YJ [Mz o1 XYoo y2 2
Consider the inverse of the block covariance matrix. Assuming Zil exists, then the Schur comple-

ment of Xy of X, is given by
S=39 2T
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Appendix D: Properties of Gaussian Distributions

Definition D.1 (Canonical Form of Gaussian Density). Let x ~ N (w, X. The density is given by

pox) = cexp (—yx— ) = x - )

where ¢ is a normalizing constant.
The density in canonical form is given by

p(x) = exp <a +n'x—

1
xTPx>
2

where a is a normalizing constant, and 1 and P are related to p and 3 by
P=X"' Pu=n

Theorem D.1 (Linear Combination of Gaussian RVs). Suppose y ~ N (u,X), and A and B are
deterministic. Then the linear transformation follows the distribution,

A +By ~N(A +Bu,BXB")

Proof. From a previous lemma, we know that A + By must be multivariate normal. Thus it is
sufficient to calculate the expected value and variance.
E[A + By| = E[A] + E[By]
= A + BE[y]
=A+Bpu
Var(A + By) = Cov(A + By, A + By)
= Cov(A,A) + Cov(A,By) + Cov(By, A) + Cov(By, By)
= Cov(By, By)
= BCov(y, y)BT
=BXB'

Bromiley [20] provides a memo for general properties of products of Gaussian PDF's.

Theorem D.2 (Product of Gaussian PDFs of the same dimension). Suppose x1 ~ Np(p1,31)
and xo ~ Nyp(p2, X2) are two Multivariate Gaussian Random Variables of the same dimension.

The product of the corresponding densities is also proportional to the density of Gaussian Random
Variable x3, that is,

p1(X)p2(x) o exp (-;(X —p3) "2 (x — HS)) ,

where the mean and covariance matrix of X3 are given by

Sp= (23007 pe =TT+ % e
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Proof. We follow [20]. The PDF of x; is given by

_ 1 1 Ty —1
pi(x) = Wexp (‘2(X —p1) By (x— H1)> .
In canonical notation, the pdf is expressed in a different way. Define the variables,
_ _ 1 _
Py :2117 m =211M1, a1 =—§(n10g2ﬂ—10g\P1\+771TP1 1771)-

Then the pdf of x; in canonical notation is

1
p1(x) = exp(ag + n?x — §XTP1X)

Similarly for xa,
T, 1.7
p2(x) = exp(ag + 1y x — §X P2x)

Now we calculate the product,

1
p1(x)pa(x) = exp((ay + az) + (M1 +n2) "x — §XT(P1 + P2)x)
1
= exp(a + o — a3) exp(asz + 13 x — §XTP3X)

where
P3=P1+P2, m3=m+mn

and

1 —
a3 = _§(nlog27r —log [P3| + m3 P3 ')

Now we note, p;(x)p2(x) is proportional to another Gaussian in canonical form. We find the
covariance matrix,
=P
=P+ Py
=y st
= 3= (I + 207!

and the mean vector,

ns =33 ps
= p3 = X3Mm3
= X3(m +n2)

=35(E7 p + 25 o)
=S+ 20N E i+ 25 e)

Corollary D.2.1. An alternative form of the mean vector and covariance matrixz of xs is given by

By =51(E1 +20) 'S, p3 =01+ ) T + Z1(B1 + o) e
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