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(ABSTRACT)

In this paper, we consider the kinetic equation for a dense square-well fluid and
the geometric factor Y = 1, provide the related kinetic theory, and prove a global
existence theorem in L' for the kinetic equation under rather general initial value

condition. An analogue of the classical H-theorem is verified.
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§1 . Introduction

The main purpose of statistical mechanics is to predict and to explain the proper-
ties of macroscopic matter from the properties of its microscopic constitutents. This
subject can be divided into two parts: equilibrium and nonequilibrium. Historically,
nonequilibrium statistical mechanics has taken two directions: kinetic theory of gases
and theory of Brownian motion. For more than a century the Boltzmann equation has
been a mainstay of kinetic theory in nonequilibrium statistical mechanics, because of
its proper description of rarefied gases.

Despite its preeminent role in the history of statistical mechanics, the Boltzmann
equation is known to be valid only in the dilute gas regime, indeed yielding transport
coefficients of an ideal fluid. In an attempt to generalized the Boltzmann equation
to higher densities, Enskog, in 1921, first proposed a kinetic equation for the single-
particle distribution function by introducing a Boltzman-like collision process with
hard core interaction, describing purely the elastic collision of hard spheres. The
theory is known as the so-called standard Enskog theory (SET).

Essentially Enskog’s derivation is based upon the following two assumptions:

(i) Oaly elastic collisions, with conservation of momentum and energy, are taken
into account for pairs of particles which are the centers of two colliding spheres a
distance a apart, equal to the hard-sphere diameter;

(i)  The collision frequency is modeled by a factor Y, taken as a function of the gas
density at the contact point of the two colliding spheres. Y represents the so-called
pair correlation function corresponding to the system in uniform equilibrium.

These two modifications lead to the Enskog equation, which has the same struc-
ture as the Boltzmann equation for the single-particle distribution function, f(7,7,t),

with an external force F' , in the form



of
ot

E=E*-E". (1.1a)

+'U Vf+F fof E(faf)7

The right-hand side collision term F may be written as the difference of gain and

loss terms, E* and E~, given by

E*(7,7,t) = a® / YZ(n(7+ %a&’,t))@(&" V(7,7 ,1) f(F + ad, &, 1) (3 - V)dwdd,

R3x 8%
E~(F / YE(n aa )0(G - V) [(7,7,1)f(F — a&,B,t)(5 - V)dida,
Rixs: (1.1b)

where 7 is the position of the particle, ' and W’ are the post-collisional velocities,
and U and W are the pre-collisional velocities. The integration over the solid angle
dd is restricted to a unitary semi-sphere S2 = {¢ € R® | || = 1,5 - vV > 0},
where V =¥ — . The function Y is the equilibrium value of the pair distribution
function, evaluated as a function of the local density at the contact point 7+ %a&'

of two spheres. The function 6(z) is the step unit function

6(c) = { L =20, (1.2)

0, z<0.

As known [10], the pre-collisional velocities are related to the post-collisional velocities

by

& =@+ (- V)3 (1.3)

Unlike the Boltzmann theory, which describes the behavior of a dilute gas, stan-
dard Enskog theory (SET) deals with dense gases, more correctly modeling moder-
ately dense gases. However, SET does not yield correct hydrodynamics. In order
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to correct this deficiency and to account for more realistic potentials, several mod-
ified, revised and extended versions have been proposed over the past thirty years

[14],[6],[21],[19],[23],[221,[5],[39],[7],[9],[25],[35],[28],[26].

Kinetic equations for dense classical fluids can be obtained by closure of the
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierachy equations. One method
for obtaining such closure is based on the maximization of entropy subject to con-
straints on microscopic phase functions [23],[36]. For a fluid of hard-sphere particles,
this method yields the revised Enskog theory (RET), an irreversible kinetic equation
derivable, for example, on the basis of diagrammatic methods[6].

Let us describe briefly the derivation of RET. Consider a system of N classical
identical interacting particles of mass m confined to a box of volume . It can be
described by the Hamiltonian

N N
Hy = Z{;—;+U"°x(ﬁ)}+z¢m (1.4)

i=1 i<y
where ¢;; = ¢;;(|; —7;|) indicates that the particles interact through central forces,
(7, p;) denotes the position and momentum of the i-th particle, and U®® enforces
that particles are confined to the box. For convenience we set m = 1 so that p'= v,
and set w; = (7, ). Define the N-particle distribution function (density function)
pN(z1,...,zN,t) in such a way that pn(z1,...,ZN,t)dzy...dzN is the probability of
finding the system in the state: particle : within an element dz; around z;,¢z = 1, ..., N,

at time t. The distribution function py(zy, ..., zn,t) satisfies the N-particle Liouville

equation:

0

apN(xla'“axN,t) = {HNv PN(CUI, «ery TNy t)}) (15)
where {-,-} denotes the poisson brackets, i.e.

N
OHy Opy OHy Opn
Hy, = — e — = == | - 1.
tH, o} Z(a o5 op o (16)



Liouville’s equation describes the time evolution of pn(z1, ..., N, ), which relates
the theory to macroscopic phenomena. Let St(") denote the solution operator of the
n-particle mechanical system, i.e., if the system at time ¢ = 0 is represented by the
state {1, ..., z,}, then it will be represented by the state {7, ...,z.} = Sz, T

at time ¢. Define S("g by
St(n)g(acl, ooy Tk, T) = g(St(n){:vl, ooy T}y Tngly ooy Ttk )- (1.7)

Then one may express the solution of the initial value problem for Liouville’s equation

in terms of the solution operator, in the form
p~N($1,-.-,$N,t) = S(—]:])pN(mla'“,xN70) (18)

However, since S(_I:T) cannot be calculated for very large N, and since py(zy,-.., N, 0)
is unknown in general, the solution (Eq.(1.8)) is not practical. Forturnately these

difficulties can be circumvented by introducing the s-particle density functions [27]

FN(zq,...,z,t) = Qs/pN(:vl,...,mN,t)da:s+1...dmN; (1.9)

s=0,1,2,... .

It follows that F'N is symmetric in (zy,...,z,), F§' =1, and

1
> FN d:cl...de:/pN dry...dzy = 1; (1.10)

s=1,2,....

’

Taking the thermodynamic limit N — oo and || — oo in such a way that N/|Q| =n
is finite (where () is the volume containing the N particles and n is the number of
particles per unit volume), one can obtain [27], from (1.5), the infinite system of
hierachy equations called the BBGKY hierarchy:

a s s - a a s+1
EFS(Q: 7t) - {H37F6(x ,t)} + n/dxs+1 ;8_7—.;¢is+1 : a_ﬁ;_FS+] (.’E * 7t)> (111)
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where H, = L Bo 4+ X i, dij = #(If% — 75]), and Fi(a,t) is defined by

1<i<3<s

Fy(z*,t) = ]\gim FN(zy,...,2,,1),

2=

s=1,2,... .

A formal solution of (1.11) in powers of n can be obtained [27]:

1 s
Fy(z*,t+ 1) /d:cs+1 da:s+kz (- 'TEJ:“ F+s(:1:k+s,t),( )
1.12

s =1, 2, ceey
where the operator T is defined by
TOF, 1 (z°%*,t) = Fupn(SW2®, SWzypq, ., SWa ) 1), (1.13)

and S(_JT) =exp T{Hj,-}.

It should be noted that the BBGKY hierarchy connects the evolution of a s-

particle distribution function F; to the distribution function F;,; of s 4+ 1 particles.

In order to solve Fj, we set s =1 in (1.12), and obtain

Fl(l'l,t + 7') - Tfl,r)Fl(.Tl,t)
:n/dzg[Tii.)F2($1,$2, ) T( )F2(£E1,.'132,t)]

1
n2/dz2dx3[ T¢ )F( 3t) — Tg)Fg(ﬁ,t) + -2-T£IT)F3($3,t)] +...
(1.14)

Replace z; by Sy, = (Fi + 70;,05), (¢ = 1,2,...) in (1.14), while dz; remains
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unchanged. Then (1.14) becomes
Fl(Sil)lL'l,t + T) - Fl(.'lﬁl,t)
/dw [F3 (S {S(l)xl,S(l)xz} t) — Fa(z1, z2,1)]
2
+ %_ / dzydzs[Fy(SO{SMar, SMay, SMas}, 1)

- 2F2(S(2t)au{5‘£1)x1’ S.,(.l).'liz},.’l,';;,t) + F3((L‘1, T2, .'E;j,t)] + ...
(1.15)

The left-hand side (LHS) of (1.15) can be rewritten (see [23],[28]) as
Fy(SMzy,t+ 7) — Fy(z1,t) = Fy(Fy 4 701, 01, ¢+ 7) — Fi(71, 0, 1)
T d . . R
=/(; dSEFl(Tl +S’U1,'01,t+5)
T Pl . . ..
= / ds [8_ + v; ‘Vﬁ] Fy(7) + svy, 01,1 + )
0
0 & 1)
=% + ;- Vi dsFl(S T1,t +s)
[ +U1 7'1] Fl(xlat) (116)

where Fy(z;,t) =1 [ dsFl(Sgl)a;l,t + s).
By introducing the notation F2(S(_2){S$”:c1,Sﬁl)xz},t) = Fy(z,),t), we can

rewrite the binary collision term on the right-hand side (RHS) of (1.15) as

n/dwz[Fz(x'l,x'z,t) — Fy(z1,z2,1)], (1.17)

where (z7,1}) = SPesWg, 5W 2.} is related to (z1,z2) through the interparticle
potential. Similar forms can be obtained for the ternary and high-order terms on the
RHS of (1.15). However we can choose n or 7 [23] such that these terms will
be very small, and Fi(z1,t) ~ Fy(z1,t). Consequently, combining (1.15), (1.16) and

(1.17), and neglecting small corrections, we obtain
0
[at + U - V,—:l] Fi(zy,t) = n/d:cg[F2(z'l,x'2,t) — Fy(zq, 2, t)). (1.18)
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Nevertheless the exact BBGKY hierarchy is not closed. By defining the correla-

tion function
F2(.’L‘1, o, t)

Y (zq,22,t) = Fi(en, OF(22,0)’ (1.19)
Eq.(1.18) can be closed.
Applying (1.19) to (1.18) gives
T [2 + v; 'Vﬁ] Fi(z4,1)
ot
—n / daalY (2}, ¥ t) 1 (& £) Py (£ 1) — Y (1, 22, ) Fa(1, £) Py (2, £)]. .

This method yields the RET. In particular, if Y(z1, 22, 1) is set to Y = 1 (correlations
among particles are neglected in this approximate ensemble), (1.20) takes the form

of the Boltzmann equation [23],[28].

There are two major approaches to extending the Enskog theory which have so
far yielded existence results.

On adding a smooth tail to the hard-core potential one obtains kinetic equations
that treat the hard core collision in an irreversible way, but approximate the tail

dynamics by a reversible mean-field type term (see [36],[26]). This approach was first

studied by Luis de Sobrino for the nonequilibrium problem of a van der Waals gas

[35].

In contrast, another approach is to add to the hard core a tail consisting of
piecewise-constant steps. Special cases of this kind are the square-well or square
shoulder potentials. This direction has been studied by a number of researchers (see

[21],[14],[22],[39],[7],[25],[20],[28]).

It should be pointed out that for the latter approach, the kinetic equations have
multiple Enskog-like collision terms, as will be shown here in this paper. In this
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paper, we will take this second approach, considering the related kinetic equation for
a dense square-well fluid. For a detailed analysis of the mathematical problem for

various versions of the Enskog equation, the reader is referred to the book [8].

For the Enskog equation, the hard-core potential is taken as

#(r) = (1.21)

00, r<a,
0, r>a.

This potential can be treated as the limit of the sequence ¢;(r) = (%)j, j — oo. With

this resolution, (1.20) produces a revised Enskog equation of the form [23],[28]

8 — — —
[— + vy - Vﬁ“ Fy(71, 71, 1)

ot
= a? / / d5,dG0(G - V1) & - Var [Y(F1, 71 + ad, t)Fi(7y, 0, ) Fy(7) + o, 75, 1)
R3xS_2',
- Y('f_'.l,'l_'i - a&',t)Fl(Fl,f)'l,t)Fl(Fl - (1,6", 62,t)], (122)

where Vy; = ¥ — U, U] =t +5(F- 1_/"21) and ¥, = 0, — &( - ‘7;1) The only difference
between (1.22) and Enskog’s equation (1.1) lies in the form of dependence of Y on
density; in the original formulation Y was treated as a uniform-equilibrium function
evaluated at the density at the point of contact. As far as the linear transport prop-
erties of the one-component hard-core fluid are concerned, the revised and standard
Enskog theories are identical in prediction. However, the revised theory appears to

be superior when applied to hard-core mixtures [6].

We may consider approximating a finite range potential by a sequence of step

functions. The square-well (SW) potential

00, r<a,
#(r) =< —e, a<r< Ra, (1.23)
0, Ra <r,



is the simplest such representation of an intermolecular potential. For this potential,

the square-well kinetic equation is obtained [23],[28] from (1.20):

a - - -
[5{-{-1}1 -V;l] F](rlavlvt)

—

=d’ / d7,d30(¢ - V) & - Vi
R3xS2
[Y(Fl,'f_"l + a+3|n)Fl(Fla 'l-)’;,t)Fl(Fl + a&', U;at)
— Y(7,7 — a¥G|n) Fy(7, ¥, ) Fi(7) — ad, ¥, )]
+ R%a? / / d7,d30(6 - Vy) & - Vi
R3xS%
[Y (71,71 + Ra™G|n)Fy (7, ), t) Fy (7 + Rad, 3, t)
- Y(Flf’_:l - Ra+&|n)Fl('Fl7517t)Fl(Fl - Ra&a 627t)]
+ R2a? / / d5,d30(3 - Vyy — Vie) & - Vi
R3xS%
[Y(Fl,’l'_"i - Ra+5|n)F1(F1,17;",t)F1(F1 — Ra&', ’l_)’;”, t)

— Y(#, 7 + Ra~G|n)Fy(7, %1, t)Fi(7, + Rad, ,1)]

—

+ R / d5,dG0(VIE — & - Vi) & - Vi
R3x 5?2
[Y(a,Fl _— Ra_&’ln)Fl(Fl,ff;,t)Fl(Fl —_ Ra&', 'L_J’;, t)

— Y(Fl, T—"1 + Ra—5"|n)F1(7"'1,171,t)F1(ﬁ + Ra&', T_)’z,t)],

(1.24)
where
T — o = 3(F - Vi),
v — ¥ = %&'{5 Vo — (G- Va)? + 4e]2},
B~ = 2515 - Vo (3 V)? — 2}, (1.25)

the Enskog geometric factor Y (7, 7,|n) = Y (n(7, t, F1),n(7, t, F1)), and n(7,t, F7) =
J Fi(7,7,t)dv.



Let us present a brief review of known existence theorems on Enskog theory.
Lachowicz in [24] proved a local-in-time existence theorem, while a global-in-time
existence result was proved by Toscani and Bellomo [38] in the case of a perturbation
of the vacuum. Polewczak showed [30] that the solution obtained in [38] is actually
a classical solution if the initial datum is smooth. Cercignani [13] obtained global-
in-time L! solutions for small initial data and the Enskog geometric factor Y = 1.
Furthermore, the same author [12] obtained global-in-time L' solutions for large ini-
tial data, in the case of data depending on one space variable and Y = 1. Arkeryd [1]
extended Cercignani’s result to two space variables using a weak compactness argu-
ment, together with Y = 1, however, with the (unphysical) assumption that the range
of integration is extended to the whole space S?%; in other words, the collision kernel
i1s symmetrized. In fact, the standard Enskog equation and the revised equation,
with integration over S?, distinguish between forward and backward (time-reversed)
collisions. When DiPerna and Lions [15] provided their ingenious proof of existence
of solutions to the Boltzmann equation, the study of the initial value problem for
the Enskog equation underwent an important change. Polewczak [32] proved a global
existence theorem with large initial data in L' for the modified Enskog equation
and extended the results further in [33] for the generalized Enskog equation with un-
symmetrized collision kernel; he introduced, however, an assumption on the Enskog
geometric factor Y, which essentially amounts to having a collision term dominated
by a linear operator. Arkeryd [3] obtained global existence for Y = 1 under the
assumptions that the initial data is differentiable in 7 in an L! sense and has
sufficiently high moments. Removing the restrictions of [33] and (unphysical) sym-
metrized collision kernel, Arkeryd and Cercignani [4] proved global existence for the
Enskog equation in a periodic box with Y = 1. Recently, Liu [28] obtained global-

in-time existence in an L! sense for the Enskog equation with square-well potential,
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under the same assumption on the Enskog geometric factor Y as in [33].

In this paper, we show how to extend Akeryd and Cercignani’s method [4] to
the kinetic equation with square-well potential considered in [28], and remove the
restriction of [33] and [28], proving a global existence theorem in L' for the kinetic
equation. The difficulty here is to obtain controls (bounds) for the mass, energy, and
entropy of the solution. By complicated calculations we find that some terms turn
out to be cancelled, which helps us to get controls. These estimates will be shown
in Section 4 and Section 5. In order to prove the existence and uniqueness of the
solution to truncated equations, we use Arkeryd and Cercignani’s method, splitting
each function into two parts, free and collision terms, proving the sequence to be
Cauchy. After splitting, there would appear 64 terms in our case. Fortunately this
complicated situation can be simplified by introducing several lemmas. This will be
seen in Section 6. An analogue of the classical H-theorem is also verified here in

Section 3 for the kinetic equation.

The organization of the paper is as follows. In Section 2 we introduce the kinetic
equation for the square well fluid and the related Cauchy problem, as well as some
notation for convenience. Some useful properties of the kinetic equation are discussed
and the proof ideas are outlined there. In Section 3 we derive an entropy inequality
and show the H-theorem. These results turn out to concide with those of Arkeryd,
Cercignani [4] and Polewczak [33], by setting appropriate parameters to zero.

In order to prove global existence for the original kinetic equation, we start with
the truncated generalized Enskog equation and discuss its properties. Some useful
equalities, inequalities and bounds, such as mass equality, energy equality, transport
inequality, entropy inequality, gain-loss estimations, are obtained in Section 4 and

Section 5. This sets up the foundation for our theory.

11



In Section 6, we demonstrate existence and uniqueness of the solution to the
trunctated equations, based on the contraction mapping theorem and the splitting
method used by Arkeryd and Cercignani [3],[13],[4]. By applying velocity-averaging
methods [18],[15], the paper concludes with its main result that a global solution in
L' does exist for the generalized Enskog equation for a dense square-well fluid under

rather general initial value conditions.
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§2. Properties of the Kinetic Equation

We consider the generalized Enskog equation (GEE) with Square-well (SW) po-
tential:

under the initial condition
f(7 0,8 = 0) = fo(r, ), (2.1b)
with the collision operator
4
J(f: )= Cl Z[G £ ) = FL(f, ). (2.1¢)
=1

Here C(f, f) is the Enskog term,
=Gi(f, f) = FLa(f, f)

//Y[frl,v ) f(™ + ad, W', 1)

R3xS?

— f(#,8,8) (7, — aF, B, 1)]a’3 - Vdibd&, (2.2.1)
Ca(f, f) is the entering Square-Well (SW) term,
= Ga(f, f) — fLa(f)

/f/ Yk (7, % 8)1 (74, 0%, 1) £ (7, 0%, 1)

R3xR3x 5%
- k— (7:’1 9 T—"27 &')f(T_"la /Ua t)f(F% U_;, t)]
(Ra)?*é - V dwdadr, (2.2.2)

Cs(f, f) is the exiting SW term,
Cs(f, f) = Gs(f, ) — fLs(f)

/// Y [k (7, 7% 6) £ (7, 57,/ (7, 57, 1)

R3xR3x53%
- k+(F1,f2, —’)f( ) (72,11) t)]
(Ra)?¢ - V(G - \/_ 4e)didG dry, (2.2.3)

C4(f, f) is the bounded state term,

C4(f7f):G4(f’f)_fL4(f)
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J[] vieGimase

R3xR3xS_2'_

- k+(F1,F2;5)f(F1a

L T8, 1) f (7, WP 1)

)f(72’ w, )]

0(V4e — & - V)(Ra)?G - V dwdddr,, (2.2.4)
with V = & — & and 2 = {GeR?®| |7 =1,&-V >0},
1, z>0
0 — ? — bl
(2) { 0, z<0.

The parameter a is the hard core diameter, Ra — a is the width of Square-Well, and
¢ is the depth of the square-well. G;(f, f) is the i-th gain term, and fL;(f, f) is the

i-th loss term (i = 1, ..., 4). ky(71,75;0) =

§(7, — 71 — Rad) and k_(7),7;6) =

6(7y — 71 + Rad’). We assume that the geometric factor Y is a constant.

Among the velocities, there are some relat

ions summarized here:

(U 4w =0+ w
Tt + Wt = v 4
T+ @ = T+,
78 + 3B = ¥ +
N (2 4 (2 2 (2.3)
(v')* + (@')* = 0° + ™
(TF)2 + (0F)? = 0% + W? + 2¢;
(T7)2 + (67)? = 0% + &% — 2¢;
L (6B)2+(u78)2:6'2+u“;2
and -
(T =0-FF V),
@ =%+ 3 - V);
Tt =5 13{3-V —1/(3-V)? + 4¢},
Gt =B+ 15{G -V —1/(G- V)2 +4e);
{ . - (2.4)
T =5-13{¢-V —1/(3-V)? - 4¢},
G =@+ 13{G -V —1/(6- V) —4de);
7B =53 V),
@B =@+ 37 V).

(2.3) is obvious by conservation of momentum
from (2.3).

14
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Here we list some propositions for later use.

Proposition 2.1:

(V') =, (@) = ;

(TF)” =7, (W)™ =

(57)F =19, (@7)" =

(#%)F =7, (@P)P = . (2.5)

Proof: It is easy to obtain (2.5) by using the relation (2.4). Let us prove, for
example, the first two expressions. Due to (2.4), one has

Vi=d —a' =V —25(-V).

Taking the scalar product on both sides with & yields

G-V=-¢V,
@Y =v" —&@G- V')
=5-3(@- V)=V

We can also prove the other expressions in (2.5) in a similar way.

The following proposition is obvious by the definition of k4 (7, 7%; &)
and k_(7),75; &).

Proposition 2.2:

k+(F17F27 —'5") = k—(FlaF% 3)7
k—(Fl’F% _5:) = k+(_’1’7?2’6)7 (2 6)
ki (72,7 3 .

(
fo = f(75,9,1), (2.7)



and M=R*x R®x R* x S2,
dy = di d5dbda,
M;=R*X R®*x R* x R* x 52,
dyy = df,di,dodada.

By direct calculations and appropriate variable changes, (¥,W) — (¢',4') or
(U, W) — (W, V), we have that, for the Enskog term,

/ B(7, O (f, f)didi

R3xR3

/ / Y (97, 7) + (7 + a6, ) — p(7, ) — (7 + a6, @)}

(0 ,0) (7 + a8, Bl (2.9)
which can be found in [33]. For the entering SW term, we get

//¢ 7 Ol f, f)dFs d

R3xR3

- %/'.'/Y{W)(Fl’g—) + (7, W) kg (71, 73 3)0(G - V — Vde)
M

— [$(71, 9) + (7o, D)k- (71,725 6) } 1 fo R Bdpa. (2.10)

Here variable changes (¥,w) — (v%,w") and (¥, W) — (W, ¥) are used. Also we used

the following equalities (refer to [28],[20], see also (2.4) and (2.5)):

In a similar way, we can treat the exiting SW term and bounded state term if we
make the variable changes: (¥,%) — (v, w"), (¢, %) — (75, w?) and (7, %) — (&, 9).
Notice that [28]

o

(3-V)dodw = (¢ - V7)do~dé~ and (&-V)dvdd = (3 - VP)dePdw®.  (2.11)
and that ( (2.4) and (2.5) )

G-V =4/(G-V)?2—4e, 3-VB=—(3-V),
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) =4, @)=,
)" =7, (@)=

Utilizing these equalities, we have

/ / (7, D) Cs(f, f)di do

R3xR3

_i (. T P, W 1,725 G
_2—/M /Y{[¢( 1, )‘f‘@b( 25 )]k—( 15 2"7)

—

— [%(71, 0) + P(r%, W) ky (71,75, 5)0(F - V — \/4_5)}
f1f2RzBd/"'1;

// P(71, 0)Cy(f, f)drdv

R3xR3

1 L. L o
=3 / - / Y{[(7, 7%) + (7o, 07 ks (74, 7%; &)

= [$(71, V) + (7, )] by (71, 725 7))
0(V4e — & - V) f, foR? Bdpu,.
Collecting these gives

/ / (71, D)J(f, f)didd

R3xR3

(2.12)

(2.13)

1
- 5/.../Y{¢(F1,v*) + (71 + a3, &) — (71, V) — (71 + ad, @)}
M

F(7, 8, 8)f (7, + a8, &, t) Bdy

s / o [ VAT + 0, 5k (52,7 90 -V — VD)

[‘/’ (1, V) + (7, W)k (71, 75 )}f1f2R Bdy,
/ /Y{[l/) (F1,0F) + (72, @) k- (71,723 &)

["/)(7?]7 _’) + "[)(F% d)]k+(rla re;0 ) (U : V - \/—)}f1f2R2Bd/L1

/ / VA (s, 7B) + (7, )b (71, 7 )

17



— [(7, ) + (7, ) ks (71, 7 7)}0(Vie — G - V) 1 fR* By
/ /Y{¢ (71, 0) + (71 + o, &) — (1, 0) — (71 + ad, W)}
flf(rl + ad,w,t)Bdu
dg [ [ YU + 95 80V - V)
5 1, ro,w )|kib(o £
M,

+ [1h(71, TF) + (72, BH)] k-

+ [ (71, 7%) + (7, Tk 0(Vie = 7 V)
\/‘E— g - V)flsz Bdﬂ]

— —/ /Y{[tb 71, 0) + ¥ (7, W) (ks + k- )} f1 f2R* Bdp,. (2.14)

By setting ¢ = 1 in (2.14), we can easily see
Proposition 2.3:

J(f, )71, 7, )i d = 0. (2.15)

R3xR3

Proposition 2.4:

// 72 J(f, £)(7, T, t)drdv

R3xR3

_ /.../Ye[k_ — k8(3 - V — Vo) f1 foR*Bdp, (2.16)

Using (2.14) with ¥ = ¢? and also (2.3) yields

/ F2J(f, f)(F, U, t)dr dv

R3xR3

:%/-~-/Y{(z7’)2+(tb’ — 5 - )

f(71 + ad, @, t) Bdp
/ / VALY + ()

18



+[(57)7 + ()14 8(3 - V — Vde)
[(5%)? + (&°)*k46(Vie — & - V)} 1 fo B Bdpu

-;-/ /Y{[v + &?|(ky + k_)} f1f2R* Bdpy

-+

-3 / - / Y {2k — 2k, 0(G - V — VIE)} i fo R Bdpiy
= [ [Vl ~ k0@ T - VI S B

The proof is completed.
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§3 . Entropy inequality and H-theorem

Let us begin with the equation

{ (0+7-Ve)f = J(f, [),

Define

Thus one has
or

or

FFTE) =  fof—3t,7) + / J(f, f)(F — &t + ¥s, 7, s)ds.

0

(3.1)

(3.2)

(3.5)

Due to Proposition 2.3 and variable changes between 7; and 71 + Ut, one gets that

% / / f(log f)didv

R3xR3

:%//(f log f)*dids = //(1 + log f#)%f#df‘ld{f

R3xR3 R3xR3
- / / (1+log f#)J(f, [y drsdi
R3xR3
- / / (log fH)J(f, fy*diyds
R3xR3
= [[teg a0 500075
R3xR3

20



Using (2.14) with ¢ = log f gives

/ / (log )J(f, f)dridv

R3xR3
1
=3 f [ Yitog F(53,7,1) + log S+ 6, ,1) = log S(71,7,)

log f(r1 + ad,w,t)} f1f(71 + ad, W, t)Bdp
/ /Y{[log f(7, v t)+log f(r2, ot )] k-
llog (7 3™,) +log f(7a 3,806 - ¥ — V)

+ [log f(7,75,t) + log f(r2,w )k 0(Vie — - V)}
flf2R Bdlh

+%/-~/Y{[log fi +log fol(ks + E_)}f1 foR? Bdp,

_ 71 + ad,w,1) . oo
= ——/ / {lo ) YR t)] ff(F + ad,d,t)Bdy
fifa
“/ / Yik- [l"g +,t)f(F2,w’+,t)]
ff
HROE -V = Vie) V"gf( = 0) [ (o t)]
fifo
+ kO Ve - )[l"gf(n, o AR B 3

After recombination of terms in Proposition 2.3 and appropriate variable changes,
(2.15) can be written as:

= / J(f, f)didv

R3xR3

_ / .. / Y(f (7o, 7, 8)f(1 — 06,10, £) — fi f(71 + a&, 1, )] Bdu

/ [ VAl G 0

+ k_0(a -V —Vae) f(7y, T, 1) f (7, 5, 1)
+k_0(VAe — & - V) f(7%1, 55, 1) f (72, 07, 1)]
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— [ky + k-] f1f2} R? Bdp
- / .. / Y[R, @, 0) f(F1 + 06,5, 8) — fof (71 + o, @, 1)) Bdy
/ /&nqﬂm ) f (7o B, 8) — fufo]

+k+ (& V = Vae)[f (71,5, 1) f (72,67, t) — fufa]
+k+0(\/_e —a-V)[f(a,aB,t)f(* 55,t) — fifa]}
R’Bdy,

/ / [ 1,0, 1 (r1+a&'u')",t)_l]
fif (71 + ad, W, t)

f(71 + ad,w,t)Bdu
Fla vt t)f(FZ, _’+ t) }
/ /Y{k g 1 it

Lt — v LT TD )

fife
s T
+ k+0(\/E—(—f V) [f(rlav ,t)f(r2,w 7t) _ 1:| flf?}RzBdﬂL
f1f2 (3.8)
Define the function |
lz)=logz+——1 for z>0. (3.9)
T

It is easy to see that the function #(z) is non-negative, and that 4(z) is decreasing for

0 < z < 1 and increasing for z > 1.
Adding the right hand side of (3.8) to the right hand side of (3.7) yields

/ / (log f)J(f, f)didv

R3xR3
f(F1 + ad, v, 1)
= —= Y/
/ / ( f(r, 0,8 f(7 + ad, &' t))

f(m + ad,w,t)Bdu

‘"/ / Y{”( *+,f>1f:zm,w+,t>)

L fifa )
+ k(5 -V — Vel (f(Fl,ﬁ‘,t)f(Fmﬁ"t)

22




- fife 2
+ ki 0(VEe - - V) (f(Fl,ﬁB,t)f(Fz,lﬁB,t)>}f St B

< 0. (3.10)

Furthermore, with the inequality g(log g — log k) > g — h for g,h > 0 ( i.e.
—glog £ < h—g),(3.7) produces '

R / { (log 1)J(f, f)dFsd

1 - — — = =g 7 10
< _2_/.../y[f(rl,v,t)f(r1 + ad, @, t) — f1f(7, + o&,@,1)|Bu
M

+2/M /Y{k—[f( 10T, 1) f(7, BT, 8) — ffo]

+ k(3 -V — V) f(7,57,1) f(7, 57, 8) — fufo]
+ kp0(Vie — G - V)[f (7,78, 1) f (7, 55, 1) — fLf2]} R*Bdpu,. (3.11)

Notice that only the first term on the right hand side of (3.11) survives (only the
Enskog term), and all the other terms vanish. This can be seen by the following:

/ / kL 0(G -V — Vae) f(71, 5, 8) f (72, @, t) R Bdy,
M,
= [+ [ kesab B
M,
[+ [ g5 05, 5% 0 R B
M,
= /--~/k_0(&'- V — V4e) f, foR? Bduy;
M,
/-.-/ho(\/zﬁ—&- V) f(71, 58, 1) f (7, WP, 1) R* Bduy
M
= /---/k_o(\/zi_~&'-V)flszzdel.
M,

Thus we have

/ .. ./y{k,[f(a,w,t)f(@, @, 1) — fifa]
M,
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+ k0(F -V — VA f(7, 57, 8) f (7o B, ) — fi fo]
+ kp0(Vie — G - V)[f(71,57,8) f(7o, 5P, 1) — o fo]} R* By
= 0. (3.12)

o0 = [1G 500, @60 = [§ 565040 (3.13)

and use the fact

and

We obtain that

/ / (log f)J(f, f)drds

R3xR3

=~ 2/ /Y[f 7'1,’0 t T1+aa,w,,t)—flf(F1+a&,lU,t)]Bdﬂ

_ 5/.../y[flf(F1 — aé,,t) — fif(F1 + ad, @, )| Bdp

=% M//// Y fi f(7 — a, B, ) Bdy

R3xR3xR3x{S3uS?}

:% / / / / Y fif(7 — ad, i, t)aX(& - V)dp
R3xR3x R3x 52 _
_ %m? / j {(ﬂ/ ) (R/ G _aa,w,t)dw)
R3xS2
(R/f ) (R/ Bf (71 — o, @ t)dw)} Gdr,dé
= ova [ [, 007 — ad,0)  pl7, 077 — a3, 1)] - 5473 d
1{3XS2

24



]' 2o - — — 2/ - — 1= 71—
= §Ya2/ [7(71 + ad,t)p(T1,t) — p(F1,8)3(71 — ad,t)] - Gdr1do
R3xS?

—Ya2 // p(Fl, t)[;(Fl + (16", t) — .;(Fl — a&', t)] . 8dF1d&

R3xS2

_va / / o7, )] (7 + 0B, 1) - 31 d

R3x$?

a2 / o7, 1) (/ F (7 + ad 1) - &‘d&’) dr,
R3 2

=va [0 | [ i i | d

R3 a(71)

= —YaZ/ p(71,1) / agp (72) diy | diy

a("'l)

= ——Ya — // (71, t)p(7s, t)dridisy,

R3 XBg

where B,(ry) = {r2 | |r1 — 72| <a}.
Thus far we have shown that

/ f (log f)J(f, f)dids

R3xR3

<5 [ [YIRSG: = a6,5.0) = fus(G + o, 5, 0) B
M

//// Y fif(Fy — ad,w, ) Bdp

R"stxR3xS2
= ——Ya — // (71, t)p(72, t)dradr .
R3xBa

(3.14)

(3.15)

Note that if we set the appropriate parameters to zero, for example, ¢ = 0, we
remove the terms related to Square-Well potential, and our original equation (3.1)
(or (2.1) ) becomes the Enskog Equation. Under this limit the results shown here

concide with both those of Arkeryd and Cercignani [4] and Polewczak [33].

From the above we have
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Theorem 3.1 (H-Theorem): Let us define the H-function

1= [[( 1og pyavids

R3xR3

! L NI
+§Ya2 // p(?'l,t)p(r2,t)dr2dr1

R3xB,

= [[ (s tog pyaiids

R3xR3

_ _// / (7 — ad, i, 8) — f(7s + o, @, )] f1 Bdu.

Then
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§4 . Truncated equation

We consider the original equations (2.1a)-(2.1c):

(at'f"avfi’)f:‘](f’f)’
{ f(Faf;,t:O) :fO(F,U)a
J(f, F) = X Cilf, £).

Make the substitutions:

Y s YWEXE  in gain terms,
Y 5 YWEXE 4y inloss terms.

with a perturbation parameter > 0, where
1, 0<z<1
W(z) = X(z) = { between, 1<z <2
0, x> 2,

W (z) and X (z) are smooth monotonic functions, and

N L 72 + w?
Wn(v,w)=W( = ),
Xn(r177'2)=X( 1n2 2)7

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

For convenience, let ki denote ky(7,73;0), W, denote W,(¥,w) and X, denote

Xn(T1,72)-

The truncated equation is

{ (Oc+7-Vi)f = Jul(f, )
f(Fa aat = O) = fO(F’ {)')7

where
Jn(fvf) = Zcin(faf)v
=1
with

Cln(f’f) = Gln(f,f) - len(f)
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- / (YW, 8) X (7) [ (71, 7, ) (7 — 0, 1)

R3x 5%

— (YW (9, &) X7 (7)) + 0l (71, 9,8) (71 + o, 5, 1)} BdGd,

Conlf+ £) = Ganlfs ) = fLan(f)
// (kYW (5, 8) Xa (72, 72) (72, 5 8) (7o B, )

xR3x 5%

— k_[YW,(¥,0) X, (71, 72) + 7] f1f2} R BdGdwdr,,

C3n(faf) G3n(faf) fLBn( )
_ / / (kY W (5, 8) X, (7, 7) f (7, T £) f (7oy 5, £)

R3xR3xS%
— k [YW, (0, @) Xo (71, 72) + 0 f1./230(5 - V- \/E)
R?Bd3dwdr,,

C'4'n, f, G4'n(f7 f) fL4’ﬂ(f)
// (kY Wo(5, @) Xo (71, ) f (71, 57, 1) f (7, 5, )

R3xR3xS2

— bt [Y W, (3, 9) Xo (7, 7) + 0] f1f2}0(Vie — & - V)
R? BdGdwdr,.

Analogous to Section 2, we have similar formulas for the truncated terms:
/ [ DY WX 152,701 a8, 0) Bl

_ _2_/.../[¢(F1,v)+1/)(F1+a&’,tb")]
M

x YW, X! f1f(71 + &, @, t) Bdy;

/.../¢(r1,”)YW+X ko f(7, 0, 8) (7, @, t) R2Bdp
M,
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_ l/.../w(f;,m 4 (R, @)Y W Xk 0(F - V — VAE) fo fo R Bdpi;
2 (4.9.2)

/ /¢ R DY W= X,k 0(F - V — VE) f(7, 5, 1) (7, 6™, ) R Bduy

/ / (7, 5 + (7o, B Y W Xk f1 f2R* Bdpn; (4.9.3)

/ / B (7 DY W Xk 0(VEE — & - V) (%, 75, 8) f(7, 5, ¢) R Bdua

/ / (71, 3) + (7o, &P)Y Wy Xy ks (VA — & - V) f1 f2R? Bdpy.

(4.9.4)
Using the a,bove formulas, we obtain that
[ 66005, pirs,aa
R3xR?

/ / [, 9) + $(7 + 0, ) = (72, 9) = (7 + ad, )
YW , W) X, (7,71 + ad) fLf(F1 + ad, W, t)Bdp

- E’I]/ /[¢ 7'1, +",b 7'1 + ad w)]fl (7’1 +a0-77“67t)Bdﬂ’
4 5/---/{ [9(7s, 57) + (7o, @)1 0(F - V — V)

["/’ Fl) _') + ¢(F2, _')]k }YW X f1f2R2Bdﬂ1

/ /{W 1, 0F) + (P, W) k-

[d)(ﬁ,* ) + (7, @)] k4 0(3 - V — Vae)} YW, X, f1 f2R2Bdyy
/ f {974, 7) + P70, ) — $(74, 3) — (s, )}

k+0( — VAe)Y W, X, f1 /2 R* Bdpy
g0 [+ / {97, 3) + (7o, D)} (ks + k) LR Bdps
M,
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/ /1/)(7'1, )+ (7 4+ af, @) — B(7, §) — B(F1 + o, D))

YW, X} (7 +ad, 3, 0) B

— g1 [ [0+ 9+ a3, NS+ 0,5, B

s / - J (5,5 + (i 5

+[¢(F 57) + (7%, B)k4 0(3 - V — Vie)
+ (7, 57) + (7%, 37k 0(Vie = 7 - V)

— [4(F1, ¥) + ¥ (72, &) (ks + k-)}
YW (’l}’ ’lB) (Fl,Fz)flngzBd/Jq

- _/ / (71, 8) + (7, )] (k4 + k-) f1 fo R? Bdps.

(1) Mass Equality:
Setting 1 = 1 in (4.10) gives

/ Julf, f)didi
R3xR3

== [ [ 7S+ a5, 5, 0)Bau
M

- U/Ml /(k+ + k-) f1f2R* Bdp,

and the mass equality:

/ f(t)drds = / foditydi

R3xR3 R3xR3

—nof{/]-u--/flf(f'l + 8,15, 5) B

+ /Ml /(k+ + k_)f1f2R*Bdu, }ds.

If we assume that the solution f is nonnegative, then we have that:
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0/ ds{ / - / 1S (7o + a5, ) Bdy

+/"'/(k+ +k_)fif2 R? Bdm }
M
]. —- 7=
S —/ fodrld'U.
nR3xR3

(2) Energy equality:
Using (4.10) with ¢ = v? together with (2.3) yields

/ P0,(f, f)dirdo

R3xR3

/ [i@r+ @2 - -

YW X} fif(7 + ad, @, t)Bdu

/ A1+ e

+ (77 ) + (57)" k4 0(3 - V ~ Ve)
+[(75) + (P) ks (Ve — 7 - V)
— [0 + @*)(ky + k) }Y W, X, f1 foR? Bdu,

/ /(v + &%) fi f(71 + a&, @, t) Bdp
—-én/--'/v + @) (ky + k_) f1 fo R? Bdpy
M;

— _;_/.../{[25]k_ + [~2e]k,0(F - V — Ve)}

YW, X f1f2R2Bd#1

__2.77/ /v + @) f1f(71 + aF, B, t)Bdu

—577/ /U + @) (ks + k) f1f2R? Bdy,.
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Thus we have the energy equality:

P (t)dF, do

R3xR3

= / 1.)'2f0d7?1 d'l}'

R3xR3

+ 6//---/{k_ — k4 0(G -V — Vae) ) YW, X, f1 f2R*Bduy ds

__,]/{/ /v + &%) f1.f (71 + o, @, t) Bdy

/ / 2)(ky + k_) i SR Bdps }ds. (4.14)

Thus if we assume that f is non-negative, we see that the second term on the right
hand side is less than (¢/n) [ fo, so for the last term of (4.14) we have that:

217/{/ /v + &) fif (71 + ad, @, t) Bdu

/ / 0% + @%)(ky + k_) f1f2R?Bdp }ds

< / 62f0dF1d6+— / fodydi. (4.15)
n

R3XxR3 R3xR3

(3) Transport inequalities:
If we take some variable changes between 7} and 7 + ¥, we see that

d

= [ (Fu =5 f(t)drdv

d
Tt

= [Grapnanas
_ / (7 — )20 (f, f)dids.

(7)) f#(t)drydv
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Due to (4.10), setting o = (¥ — 9t)? gives

//(F— o) T (f, f)drdv

R3xR3
:%/ﬂ”/ﬂa_wgtua+a3_mﬂ%4a-ﬁﬂtwa+aa—ﬁV}
YW, X fif(71 + ad,w,t)Bdu
/ ./HF FH)? 4 (7, — @)k
1— U t)2 -+ (Fz — 'd)’ t) ]k+0(
i — 0P 4 (7% — 0Pk 0 (x/_
k_

— (71 = 9t)* + (7 — @t)] (k4 + k_)}
YWanf1f2R2Bd,u1

1 — -~ - ey - — - =
— 37 / o /[(r1 — 5t)? + (7 + ad — ©t)*] f1f (71 + oG, @, t)Bdu

<19

~ 57 / / Py — B0+ (7 — B2 (ke + k) fy fo B2 Bdp. (4.16)

By basic calculations and (2.3), one has
(Fy — 7t)? + (71 + aG — W't)? — (71 — 0t)° — (71 + ad — wt)?
= (7)? = 27 - Ut + (V) + (71 + ad)? — 2t(7Fy + ad) - &' + 3(0)?
— [(F)* = 27, - Ot + 252 4 (7, + aF)? — 2t(F, + a&) - @ + t2?]
= =2try - [V + &' — 0 — @] — 2tao - (W — W)

F L) + (@) - — ]

(71 = #¥8)* + (7 — 0¥8)* = (7 — ) — (7 — 1)
= —2t[fy - (77 — 0) + 7 - (FF —F)] + [T + (FF)* — 7 — ]
= —2t[ry - (7 — ) + 7 - (FF — )] +17[2€];

(7 — 7))+ (7 — 6 t) — (7 — §t)% — (7 — wit)?
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= 2[F, - (T = 0) + 7% - (W — @)+ £2[(F7)* + (@) — &° — 7]
= =27 - (V7 —0) + 72 - (@ — @)] + t*[—2e];

(7 — 75t)? 4 (7 — 0P1)? — (71 — 0t)? — (72 — Bt)?
= [, - (V8 — ¥) + 7% - (@8 — @)] + 2[(#5)? + (5B)? — & — 07
= —2t[r - (UB — V) + 7% - (w — w)].

The 2nd term on the right hand side of (4.16) is
1
== [ [{[(Fy = T + (7o — @) — (7L — 1) — (72 — 0t) ]k
/]
+[(Fy = T 1) + (7 —07)? — (7, — 0t)? — (7 — wt) ]k, 0(F - V — Vi)
+ (71 — 7Bt + (7, — @Bt)? — (7 — 0t)? — (7 — Bt) |k, 0(Vae — G- V)}
YW, X, f1f2R?Bdu
/ /{ —2t[F - (Tt — B) + 7 - (B — B)]k- + 2%k

- 2t[r1 (T = D)+ (B — D)k 0(F -V — Vie) — 26t%k,.0(¢ - V — V4e)
— 2t[f% - (7% = 5) + 7% - (57 — &)]k 0(Vie — 7 - V)}
YW, X, fi faR?bdpy

/ /{[rl 7= 7) + 7 (5 — D)

+ [7'1 (T = D)+ - (B — B)]|ky (G - V — Vie)
+ 7 (78 = 0) + 7 - (08 — D)k (Ve — & - V)}
YWanf1f2R2Bdﬂ'1

+ t% / / (k- — k4 0(5 - V — V4&) YW, X, f1 f2R? Bdp,.

M,

To deal with this kind of problem, we have the following lemma:

/.../{[;1.({#_5)+F2-(w'+—w‘)]k_
M

+ A (T D)+ 7 (0 — )|k 0( - V — Vi)

Lemma 4.1:
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+[7 - (98 — D)+ 7 - (08 — @)k (Ve — G- V)}
YW, X, f1foR*Bdu
> 0.

Proof: Because of (2.4), we have the following:

1 -~ —
§ (@ @) =215V — (6 VP +4e} < 0
g (0 —d) = 5(5 V -/ T4} > 0
G @)= &V > 0

After integration with respect to 73, one has that
/---/{[Fl-(ﬁ"*—ﬁ)+r"2-(tb'+—u';')]k_
M,

+[f - (5 =)+ 7 - (0 — D))k 0(F - V — Vae)
+[F - (T8 —0) 47 - (08 — )k 0(Vae — G- V)}
YW, X, f1f2R* Bdy,

:/.../{[Fl.(m_17)+(F1—Ra&‘)-(175+—13)]

+[f - (7 = 0) + (7 + Rad) - (6~ — B))0(G - V — Vie)
+ [, - (¥ — ©) + (7, + Rad) - (@P — 0))0(VAe — G- V)}
YWanflfQRzBdﬂl

=/~--/{—Ra&'-(u’)'+—u';’)
M

+ Ra& - (6~ — 0)0( - V — Vie)
+ Rad - (WP — 9)0(Vie — G- V)}

YWanflngzBd,u
> 0.
Therefore
//(F1 — {)’t)an(f, f)drdv
R3xR3

1
1y / .. / (71— 50)? + (7 + a6 — GO fof (71 + ad, @, ) Bdy
M
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- %’7/"'/[(7?1 — Ut)? + (Fp — wt)*)(ky + k_) f1 fa R? B
M,

—t/---M/{[Fl-(W—ﬁ)+F2-(LB+—«J)')]k_

R (T = B) + - (B — 0)] k. 0(5 -
+ 7 (38 = B) + 7% - (0F — B)]ky0(VAe — 3 V)
YWanf1f2R2Bdﬂ1

+ % / .. / (b — k003 -V — VI YW Xo fufuR*Bdu.  (4.17)

M,

Notice that the first four terms of (4.17) on the right hand side are negative, based
on the previous discussion. For the last term, one has

<i
I
5

25/- . /[k_ — k4 0(3 -V — Vae) YW, X, f1 f2R* By
M,

< T?v< / fodi,ds.
TIR3XR3

Thus we have the following transport inequalities:

sup // (7y — vt)* f(t)dr dv
te[0,T]

R3xR3
< [[@rndnds v [[ nnas (4.18)
R3xR3 nRsst

sup // (7)) f#(t)drdv
te[O,T]

// (71)? fodFrdv + T?Y %/ fodr1d7; (4.19)

R3xR3 R3xR®

t
g//.../(aff#f#(a+a3,a;,t)3duds
0 M
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//.‘/ N(ky + k) f¥ f¥ R?Bdu,ds
z( / / (7)2 fodyd7 + T2Y§ / / fodf‘lch?). (4.20)

R3xR3 R3xR3

These results are essential. They will be used to control the entropy.

(4) Entropy inequality for the truncated equation:

d

G [reyies soaras = 5 [ 1% tog r#

= [ariog gt = [rieg 934, pirias

- / (1+ log f#)J,(f, f)dF,d¥

= [[ ns.nydnds+ [[ g £ 95, arids, (4.21)

R3xR3 R3xR3
According to (4.11), one has

/ I(f, Ddds < 0. (4.22)

Also it is easy to see from (4.10) that

// log [ Ju(f, f)dridv

R3xR3

: S, 7, 0)f (7 + a8, 1) o
AN, 222 ) YW, X 1)Bd
'/ /(Og fif(71 + ad, 0, t) WX [1f(F1 + ad, 0, 1) Bdu

_ %f, / llog (fif (7, + a&, %, )| fof (7i + a&, &, ¢) Bdu

l 0 f(ﬁ>6+7t)f(F27 vt t)]
v/ /{[’g Nk k-

+ l:logf(r?l)g_ ;)‘];(7‘2, v t)] k+0(5: ‘7 _ \/E)
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~ ~B —» =B o
+ l:logf("'h'v ,t)f('l’g,’w ’t) k+0(\/‘E—- & - V)}
fifa
fleYWanR2de1

- %W/"'/[loy(f1f2)](k+ + k—)flszzBdll'l
M

= A(f) +Ar(S), (4.23)

where

() =~ / <+ [Tlog (1S5 -+ a3, 5, 0)I11 (7 + a8, 1) B

! / / ltog (f1f2)](ks + k) fufo R Bdp, (4.24)

f(7 1,0, t) f(7 + ad, T, t) - .
M) = / [ (1o TG0 )y, x5+ 08, 0B

/ /{[ Fl, - .tflf2f‘2’ —‘+,t):| k-
¥ [zog

f(f’?la"_j );‘1‘;‘Er2,w 7t)] k+0(5’"7——-\/4E)
[ BN gy
fLfaY W, X, R? Bdy,. (4.25)

Let h*(f) = maz{h(f),0}, h(f) = maz{—h(f),0}. Then h(f)=h*(f)—h=(f).
Thus h(f) < h*(f) and for any function F, log F = log® F —log~ F < log" F.
Also notice that z - log £ <y — z if y, 2 > 0. We have the following:

< RY(S)
< - / /(z +f’"1’ )7 + ad, &, t)) YW, X f (7 + ad, 3, ) Bdy

r1+aawt)

o,

+
+[log+ 1,0 ;))}rz,w t)} £, 0(F -V — Viz)
+[log+f”’” jcfﬂ’@B t)] 0(Vie —&-V))

38



FL2Y WX R? Bdp,
%/ /[f 7'1, t)f T+ CLO‘ /,t) - flf(Fl + a&', ’lj)',t)]YWnX,;:-Bd[L

e / o [T OG0 — Atk

¥ [f(n, ) f(Foy 7, 8) — fifo) k4 0(G - V — Vie)
+ [f (7, T8, ) f(7, @5, 8) — fi ol 0(VAE — G- V)}
YW, X, R’ Bdu,

<= / /[flf(rl — ad,w,t) — fif(t1 + a&, @, t)]Y Bdp

=2
/ [ 00650 - fisilk-

+ (7,5, ) f(Foy @, ) — fifalks8(F - V — Vie)
+ [f(71, 98, 8) f (7 BB, ) — f1fol k1 0(Ve — G- V)}
Y R*Bdu,

+ %//(1 — WX fif (7 + ad, @, )Y By
M

+%/---/(1—an,,){k_+k+0(c?-‘7—x/E)

+ k. 0(VAe — & - V)} A foY R2Bdp
= Ag + A3.

Here A, represents the first two integrals on the right hand side of the last expression,
and Aj stands for the last two integrals, i.e.:

Ao= g [ [1i0G: = 08,80 — 113 + 0, ,0)Y B

M
+ %/ - / {[f (7, 7%, ) f (R, BF, 1) — fu ol k-

+ [f(f"l, v, 1) f(72, W, t) — f1fa]k 0(5 - V- Vie)
+ [f(Fla 6B7t)f(F27lBB7t) - f1f2]k+0(\/[§ - 6: ° V)}
Y R?Bdu, (4.26)
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A, = _;_f/(l — WX fif (71 + ad, &, )Y Bdu
M
1

vy / .. / (1= W X)) (k= + ki) fo foY R? Bdpn. (4.27)

M;

Therefore

/ logfJ.(f, f)drdv < A+ A+ As. (4.28)

R3xR3

Next, to control these three terms, we must find upper bounds for them. It is easy
to get the bound for A; because of (4.12):

i t
[ss <3 [ [+ [ s + a6, 5008
0 0 M

+ [ n / (ks + k_)f1 [, R? Bapiy }ds

< % / / fodindis " (T, o) (4.29)

R3xR3

Applying (3.12) and (3.14) to A; yields
1 L, - . -
Ay = 5//[f1f(r1 —ad,w,t) — f1f(f1 + ad, W, t)]Y Bdp
M

g [ JUGT 05 5,0 - Sk
M;

+ [f (7, 5, 8) f(72, @7, 1) — o folk10(5 - V — Vie)
+ [f (71, 58, 8) f (72, B8, 1) — f1f2]ky0(VAe — & - V)}Y R*Bdy,

1
:é_/.../[flf(f-‘l_a&’,w’,t)—flf(ﬂ+a&',lb',t)]YBd,u+0
M

_ .;_ / / / Fuf (7 — 0,15, 1)Y Bdy

R3xR3xR3xS?

1 d

= _§YG2EZ / p(71,t)p(r2, t)dr1drs,

(Polewczak [33])
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(Arkeryd & Cercignani [4])

where  B,(7)) = {reR® | |r — 71| <a}.
This implies that

t
/ Agds < %Yaz( / / fodada> "2l Cy(T fo). (4.30)
0

R3xR?

In order to get the bound for A;, we use inequality —y log y < y¥ + e~(W+1) f
y, > 0.

1 . I . -
=g [+ [tog 7S +03,3,0] £1 G + a5, 5, 6) B
M

_%n/.../[log Fub) (ks + k) i foR? Bdu

<7 P2 4 (@) 4 (P2 f. (7 4 ad @
<1 / / O + () + (21 (s + ad, 5, 1) By

i / [ eap(=1E + (@ + ()7 + W)Bdu)
"{/ /62+w + (1) + (72)*) (ks + k=) fr foR? B

[ / eap(—[(3) + () + (7)? + (7)) (ks + h_) BB }.

Notice that B = a?%7 - V, and |B| < a*(|7] + |@]) < @*(1 + [9])(1 + |@]). After
fundamental calculations, we obtain that

/;w--/emp(—[fﬁ + @ + (7)? + 1) Bdy

02 ( 52 I’ -2
<= /(1+|6’|)e‘"dﬁ’ - /e—r dr| - /d&’
e
| R3 J R3 3_2*,
a2 [ 72 I
= /(1 + |9)e T dz| -27%%. 27
[R3 i
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2
5/2 .2
= 47’6 ¢ L/ (1+|a|)e-*'ﬂda] , (4.32)

3

/ - / exp(—[ + T + (7)? + (7) + 1])(ky + k- ) E2Bdmr

M,
2 2
<= L/ (1+ [#)e™ d”J /// e MOV ET Nk, + k- )didiad,
e
3 R-’ixR3xS2
and
ROXROxS2
— // e—('l"’l)2 l:e_('l-"1+R113)2 + e_(Fl_Ra&.)z] dFld&
R3x 5%
// _2(71)2 —R2q2 [ —2Rad# + 2Ra&’r1] dr dO‘
R3xS2
_R2a2/ /6 2Raa'rd
R3
~Rla 2/ 2z sh( (2Raz) dz.
0
Consequently

/ .. / exp(—[T? + @2 + (71)? + (7)* + 1])(ky + k_)R*Bdy,

2 oo
2
< 4 Rae—R2a2 (1+ |1';’|)e';2d17 -/e"?xzx sh(2Raz) dz.
- / / (4.33)

Referring to (4.15) and (4.18)-(4.20) and previous discussions, one has

i
/ Alds
0
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2
< 4xdl%q%e T L/(l + |17|)e'"32d17j|

3

2 [e o]
+4r?Rae e Fo'T L/(l + |7 )e_‘ﬁdﬂil -/e'zxzx sh(2Raz) dzx
0

3

+// 62f0dada+-€-/ fodid&
n

R3xR3 R3xR3
42 ( / / (7 fodiad + TPV S / fodacw)
R3xR3 nR3XR3
"2l OU(T, o). (4.34)
Let
¢
0
Then we have the H-theorem for the truncated equations:
dH
o< 0. 4.36
dt - (4:36)

Thus ,
[riogr < [fotog fot [(4s+ Azt A0,

0
and

i

/flog+f < ffologf0+/flog‘f+0/(A1+A2+A3)ds.

On the other hand,

//f log™ fdridv = — // f log fdido

R {(F1.9)lo<f<1}
= // [(7)? + ) f + e~ O+ D45 iy

{(F1,9)lo<f<1}

43



= // [((7)? + 72) f + e~ @ +P D17, 45
R3xR?

< [ / / szodf’ldf)'] + [ / / (Fl)zfodFldU‘LTzY% // fodﬂdg} +47r:21.37)

R3xR3 R3xR3 R3xR3

Finally we have that:

/ f llog f| drydv
R3xR3
¢

g//fo log fo dada+2//fzog- de1d17+/(A1+A2+A3)ds

R3xR3 R3xR3 0
< / fo log fo drydv 42 [ // 172fodF1d5J + 2 E //(ﬁffodﬂdﬁ}
R3xR3 R3xR3 R3xR3
tor?ys / fod?dd  + 87°
TIR3xR3
+ Cl(T’ fO)
2
1 Y
+—Ya2( // fo dFldiv') +—( / fo df‘ldﬁ)
2 2n
R3xR3 R3xR3
"Cé”d__"if' C(Ta fO)a (438)

where C(T, fo) is a constant depending on 7' and fo.
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§5. Gain-loss estimations

In order to get a gain-loss estimation, let us look back to (4.23). After making
some variable changes, we have

Iu(f, )log fdrydv

R3xR3

t) — ad,w,t
/ /[ rl,v f(j a‘i’u_)")]f(f‘l,q}”,t)f(ﬂ—aﬁ,w’,t)YWnX;Bdﬂ

7'11 f( 1—aa,w’,t)

- _2-17/ /[IOg (F1/( ad,w,t))] f1f(71 + ad,w,t)Bdu

Nl R .
/ /{ [l 9 7"1, )f(f'z’u')'+’t):| f( 15 )t)f( 29 ,t)k+YWn Xn

fife - I L =
[log o t) i a® t)] f(7, T8, 8) (7, @8, ) k_0(V4e — 7 - V)Y W, X,

VR Bdi — 3 / / og(fuf)) fufalks + k_) B*Bdus

7"’1,"’ t)f71—a0 ', t) y
f(r1,0,8) f(r1 — ad', W, t)
f(rl, ,) f(r1 — ad, @', )YW, X Bdu

[ Fl’ ot t (Fz’ 5 t)] NG t)f(?“z, nas t)k+YW+X
fifa

n [logf(F’l, v ,t)f(rz,ﬁ‘,t)} F(#, 5,0 f(Foy @, )k_0(G - V — VIE)Y WX,

fifz
+ l:logf(,?]’gB7;)‘§.(F27 "B t)] f(—o —B t)f(Fz,'LBB,t)k_a(\/LE— & - V’)YWan
1J2
JR?Bdp,  + A

where A, is defined in (4.24).
Recalling the function {(z) defined by (3.9),

l(a:):log:r—i—l—l for z>1,
T
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we have

()=t (5)

—alog% = —al (%) + (b — a).

Thus (5.1) can be written as

/ Jo(f, [log fdrydv

R3xR3
/ / ( _’1777,t (Tl—a‘}'a‘s’»t))x
(71, 0,8) f(7r — a&, 0, 1)
M
f(7, 0, 8) f(7 — ad, W', ) YW, X, Bdu

/ /{l( 7_"1,"4' t (7"2, ot t)) f(f‘l,iﬁ,t)f(f‘z,’(l-)'+,t)k_*_YWTj-Xn
f1f2

+l( (1, 1) f (7, 0, )) F(, 5, ) f(Fo 6, )k_0(G - V — VA YW X,

fifz
b (f(a, 5, ;)1}(73, zﬁB,t)) F(F, T8, 8) f(Fo, @8, )k_0(Vde — G- V)Y W, X,
1J2

}R2Bd,u,1 + A]
/ /fl 71 — ad,w,t) — f(r1,v,t) f(Fy — ad, &', t)]YW, X, Bdu

i / o JAUR = ST 00 G O Y WX,
M,

[f1f2 - f(7 v at)f(F%lB_?t)]k—e(& ’ ‘7 - \/-E)YWTL—XWJ
+ [fifs — (71,95, 8) (7o, B, 1) k- Y W, X, } R* Bdpus. (5.2)

By making appropriate variable changes, we have following two equations for the last
two terms on the right hand side of (5.2):

/---/[fl f(r1 — ad,w,t) — f(r1,0,t) f(*1 — ad, &', t)]YW, X Bdu
M
- / / AL — a8, @, X; — f(7 + ad, 6, ) X YW, By (5.3)
M
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/ /{ fifa — ot 1) f (7, 0T, )]k Y WX,

+ [flfz = [, 57,0 f (7, &, )]k_0(F - V — Vi)Y W, X,
+ [fifa — f(71, 08, 0) f(7y, &P, 1)]k_0(Vie — & - V)Y W, X, } R* Bd,
= [ [ W= W)~ 0@ T~ VENW; — WlALY X, R B,
M, (5.4)
Therefore (5.2) becomes

Ju(f, flog fdiy d
R3xR?

= A1+ h(f)
/ / f(7, 0,0 f(Fy — ad, @', t)
= —— 2 X
(rl,vt (r1 — ad,w,t)
M
f(7, 0,0 f(7 — ad, o', )Y W, X~ Bdu

— —o+ — —o+
/ f{Z( } f(”’ ’”)f(a,ﬁtt)f(f;,u#,t)kJW;Xn
1J2

f(rl, 7t)f(7'2a _7t)
w (g
f(Fh 6B’ t)f(FZa ’LEB
s (g
}R?Bdp,  + A

+ /-~-/f1[f(f’1 — a8, @, 1) X — f(71 + ad, @, 1) X [Y W, Bdy

) S, 5 8 f oy 5, Oh_0(F - V — V)Y WX,

’”) F (0, 75,0 f (7 &P, Ok_0(VEz — & - V)Y W, X,

/ / ey (Wy, — W) = k03 - V = VAW, — W)l fufaY Xo R B,
(5.5)

For each j > 1, any O C IR? x IR?, one has
ON(R3xR3)

def: / f(FL, &) f(FL — a@, @, t)Y W, X Bdu

onM
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] (5 O (R &, Ok YW X,

onM,
+ [, 5, 8) f(7, 07, )k 0(F - V = Vie) YW, X,
+ [f (71, 7B, ) f (7o, B, ) k_0(V4e — & - V)Y W, X, ]} R* Bdy,

<j / (7, 8,0 f(7, — ad, @, )Y W X5 Bdy
onM

/ f(A, 7, 0) f(F — ad, o', t) o
l() / GYCR) f(T1—at7wi) _
NG ,t)f(rl —ad, W', t)YW, X R*Bdy,

+] / f1f2k+YW:XnRzBdﬂl

OonNM;
Fl) ot t (F27u_)’+7t)) — i — =+
1,0 ,t)f(re,w", )X
)/ / < fif (i ) (75 )
k+YVV7j_XnRzBd,ul

+7 / fifok_0(G -V — Vae)YW, X, R Bdy,

OnM1
. Fl) _’—a (T27 b t)) A
1 / / (3 f5, 77057 5 1)
k_6(¢-V — \/ZE)YW X, R?Bdu,
/ fifok_0(4e — G- V)YW, X,,R*Bdy,
onM;

L f(Fl’JB’t)f(F2?lI)’B7t)) T 173 ™ 'J)’B
+l(j) /M ,/l< fifs F(71, 07,8) f (7, W7, 1) X

k_0(v4 — & - V)Y W, X, R* Bdy,

iy / £, 5,0 f (71 — 06,15, )Y W, X Bdp

onM
+7 / (ke WF +k_0(G -V —Vae)W_ + k_0(V4e — & - V)W, )}
OnM]_
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fi f;,YX R?*Bdu,
/ / f(71, 0, t) f(Fy — ad, @', 1) y
f(71,9,t) f(r1 — ad, W, 1)
NG t)f(rl — ad,w,t)YW, X, R* Bdu,

)/ /{ ( f(7, vt jvlfgfﬁ, "+,t)) f(*l,W,t)f(Fz,zb‘+,t)k+YW,an

i (f("l’ ’tf)f}(”’“?_’t)) PG5, f( i, Dk_0(3 - V — VE)Y WS X,
1J/2

1 (LT DT i 59,001 0P 0 0(VE = 7 VYLK,
1J2

}R2Bdﬂ1

<i [ 600G - a3 @)Y WX B

onM
n / (kW 4 k06 V — VIOW. + k_0(Viz — & - V)W)
onNnM;
f1f2YXnRzBd/l1
1
+ —{-2hr(f)+

I(5)
N 2/.../fl[f (7 — a8, %, )X — f(71 + aG, @, ) X Y W, Bdp

2 / / ey (W, — W) — k_0( - V — VAW, — W)lfs faY X, R Baur)

L an(p)+

:j/ds / I3 (f, )5 + s

0 ON(R3x R3)

5 / .. / A = ad,3,0) X — f(7 + ad, 3, ) XY W, Bdu

4 2/ - /[k+(Wn S WF) = k0 V — VE) (WS — W]
M;

X f1f2YXnRzBd#1}- (5.6)

As discussed in Section 4, one has —h(f) = h=(f) — h*(f) < h7(f) < Ay + A3, and
thus,
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t i

t
/|h(f)|ds < 2/A2ds+2/A3ds.
0

0 0

(5.7)

However, the sum of the last two terms in (5.6) is less than % [ fodr1dv. Consequently

we obtain

as [ I i

0 On(R3xR3)

<]/ds [ apinas

0 ON(R3x R3)

+ﬁ{4 [ O/tA2d3+/A3ds} +%/ fodrydv}

0 R3xR?

<j /ds / J(f, f)dridv

0  ON(R3xR3)

b4 CZ(T,fo)+Cs(T,fo)]+% / fodrdu}.

I(7)

R3xR3
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§6. Solution of the truncated equation

Let us consider the existence of solutions to the following equations:

(6t +7- V")f = Jn(fa f)a
{ f(7, 0,1 =0) = fo(r, v), (6.1)
Jul/,

t =
) =Yy Cinlf, ).

Jo(f, f) in (6.1) can be written as:

LUJﬁaﬁﬁfﬁ—JTﬂﬁ#

4

= ZGm f: _fZLm #- (62)
1=1

Let us define

) et Z Lin(f (6.3)

Then the first equation of (6.1) becomes
D f* = TS ¥ = FLa(f)F. (64)

Taking the integration with respect to ¢ on both sides of (6.4) under the initial con-
dition f(7,d,t = 0) = fo(7, V), we have an equivalent integral equation:

V() = fo+ / T, D#(s) — ()*Lo(/)*ds. (6.5.1)

On the other hand, if we rewrite (6.4) as

th# + an(f)# - J:(f? f)#7

and take the integration with respect to t, we get the following equivalent equation

of (6.5.1):
t t
— S LE(f)d¢ fL#(f
(F =foe s [ e JH, ) ds. (6.5.2)
0
This gives us a motivation to set the iteration scheme:
t t ¢
. ~ [L¥(f7)de — [L¥(fI)de o
(PO = foe 0 [ G oyt )

0
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which is equivalent to the following:

t
(RO = fo+ [T P = (PRPLLPHEs (662)
0
It is easy to see from (6.6.1) that f7 is nonnegative if we assume that fo > 0.

Next we need to prove that {(f?)#*};en is a Cauchy sequence. Notice that for
the transport equation of free particles

(at +v- Vr")f =0
7
{ F7,5,t = 0) = fol, ), (67)
the solution is
f#(F’ 6,t) = fO(Fa 6)7 (681)
le.,
f(F) 67t) = fO(F_ t/‘_;a U) = e_Ath(Fa '[7) = U(t)fO(rz G)a (682)

where A %L 3.V and U (1) &L e=At s the strongly continuous semi-group
generated by A.

We will apply Arkeryd & Cercignani’s splitting method (see [3],[13],[4]) to our
discussion. Let us introduce some lemmas first. Without loss of generality, we set
Y = 1 in the following. If Y = constant # 1, we can adjust appropriate control
constants. We will explain more about this later on. Define

1 = # roQv. rdv.
= [[ - sup, Ir#5 705, (6.9
R3xR3
J27,3) = min(fo(, 7)) = folFDX(L2), w0 >, (6.10)
FEF,5,8) = F2(7,5). (6.11)

Without any further comment we will write || f||7+ as || f||. We will split each function
f? into two terms, the free particle term and the collision term:

(V7 8,8) = (F)*(7,6,0) + (JO)*(7,8,1) = [2(7,9) + fL(F + 15,8,0).  (6.12)
Lemma 6.1([3],[13]): If |§ — &| < n, then

TI
/ / / F(7\ + a6 + (7 — ), ) BW,dibdé| < (6, F), (6.13)

0 R3xS$%

52



with § = a®?mnT’, where (4, F') is defined by

(6, F) = sup/|F U)|dZdv, (6.14)
M(5)
M; = {Z | (&, v) C R®}, and M(6) = { M C IR® | for almost every ¥ € IR?,

measure of M }

Lemma 6.2:

/ds// // (7,5, 5) ()£ (7 + a8 + 5(5 — @), 1, o)

0 R3xR3 R3xS2
W, X} Bdr, dvdids
<IN - p(ma®2nT’, f7) (6.15)

Proof: For the left-hand side (LHS) of (6.15),

LHS < // ditdv sup |(f)* (7,7, s)|x
0<s<T"
R3xR3

/d«S/ (f)* (7 + ad + (¥ — &), @, s)W, X} Bddd
0 R3xs%

Viewing ry, v, w as fixed, the variable change

—_

¥y =11+ ad + s(v — w)

leads to the Jacobian d§f = o’ - (¥ — w)dsdo = Bdsdd. Now

LHS < // dindv sup |(f;)* (71, 7,s)|x

0<s<T"
R3xR3
[[w#@.5.50543
]RXMy-
with measure {My} < wa?2nT" and (f;)*(¥, 7, s) = f2(¢,w). Thus
LS < [[ sup [(1)#(5,5.01- 906, £2)disdi
0<s<T"
R3xR?
=121~ (6, £7),
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with § = ma?2nT". The proof is completed.

Lemma 6.3:

j « I[ [[uresox

0  R3xR3 R3xS?
(FIVE(7 + a8 + s(F — @), @, s) W, Bdi didid
< AN - p(ma®2nT’, f). (6.16)
Proof: Let 7, = 7} + ad + s(v — W), and view ¥,w,d as fixed. Then 7 =
7y — ad — s(U — W), and dry = dr;. We have

LHS = jlds // (f)E (7, — ad — s(5— @), 5, s)

0 R3xR3
X / / (f))* (7, B, )W, Bdr,didwds .
R3x33_

Take the integration with respect to 7, and then change variable in the remained

integral: § =7 —ad — s(V— W). df = a?d - (¥ — W)dsdd = Bdsdd. Thus
LHS < |21l #(8 ),

with § = ma?2nT".
Similar to Lemma 6.3, one has the following two lemmas:

Lemma 6.4:

[a][ [[urenox

0 R3xR3 R3xsi
(FV#(7 — af + (¥ — @), @, )W, Bdr,dvdwd
).

<71l - p(ra’2nT’, f7 (6.17)

Lemma 6.5:

7‘“ // //(fﬁ“)#(a,a,.s)

0  R3xR® R®xS$%
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(FVE(7) + aG + (7 — ), &, s) W, X, Bditydbdiid&
<A - (6.18)

The proofs are straightforward.
In order to prove {(f?)#};en to be a Cauchy sequence, we split (f?)# into two

parts as in (6.12), (fi)* + (f?)# for each j:
) = )+ () = 2+ (FD)*.

(6.6.2) can be rewritten in the following form
¢

+ / (T + I (5 + (%)

0

(@) =12
—((f)* +

(SIF)La((f)* + (f1)*)}ds (6.19)

Writing each term of (6.19) in detail, we have

/ () + (FPHYFILA((F ) + () #)ds

0

= [as [[ovxs 4o+
0  R3xS$%
(FYF(FD# (R + ad + (0 — @)1, 8) + (f)#(f7H) (71 + s(0 — &), 0, )
+ (R + ( — @), @, s)(f))# (7 + ad + s(7 — 1), 3, s)| Bdwde
ds ky + k) (W, X, + 1)
Sl
< [(f)* (71, 0) - (f)# (7 + 8(F = &), @) + (L) (7, 8) - (F)* (7 + s(T — ), 5, 9)
+ (IR, 0,8) - (f)# (72 + 8(0 — @), @, s)
(FIY#(7,8,8) - (F)* (7o + s(F — &), @, 9)]
RzBdFldrzdvdwda, (6.20)
and

/ dsTH((f) + (FYE, (f* + (F)H)
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/ s / / + (fi)E (1 + 5(5 = ), 7, 9)]

0 R3xS%

x[(f,) (fHY#(7F, — ad + (¥ — "), ', 3)|W,, X BdwdG

/ds ][ 105# + g2 + 55— 7%),5%, )

0 R3xR3xS2

< [(fi)* + (f)# (7 — swt, @, 8)|ky W X, R? Bdiydwds

/ds J[[ 1+ # G+ si - )50

R3 )(R»"xS2

[(fz)# ( e) (7’2 — sw ’7"6_’ 3)]
X k_0(¢ -V — VAe)W X,, R* Bdi,dibd&

0 R3xR3xS_2'_
x [(f)* + (J*(72 — sw®, 07, 5)]
X k_0(V4e — G - VW, X, R* Bdrydida. (6.21)

Let us work out some of terms completely. The Enskog loss term is
Lin(f) = / (WX + 0] f(F1 + ad, &, t) Bdwdd,
R3xS%
and thus
L) (D5s,5,9) = [ [ WX 411G+ a5 + 5,1, Bisd
R3xS%

_ // (Wo X + nf* (71 + a6 + 5(7 — @), @, s) Bidda.

R3xS52
Multiplying the function (f?*1)# and taking the splitting of (6.12), we have

(Y (74,3, ) (Laa)* () (72, , )
= (Y, 5) / / WX+ +l(fVE (7 + a3 + $(5 — @), i, 5) Bdidd

2
R3xS+

56



= [#,55) + G *E o) [ WX+

R3x 52
X [(f)*(7 + ad + s(¥ — ©), @, 5) + (f))# (7 + ad + (T — ©), @, s)| Bdwda.

By the Lemmas 6.1 — 6.5, we get

|| / (YA (L) () ds |

T’
< /// dridv sup //[WHX:{ + 7]
0<s<T"

0 R3xR3 R3x 5%
< (7, 59) + (PP, 50)]
[(ﬂ)#(rl + ad + s(v — @), w, s) + (fg)#(F'l + ad + s(V — W), W, s)| Bdwdd
< 2L - ol6, )+ 26 12)
F L @8 £ + 177 112 (6.22)

with § = 7a*2nT. By similar treatment of the other loss terms, one has

4

|| / (P DB ()

S/

0 R3xR® R3xR®xS2
< [(f)* (7, 9) - (fi)# (72 + (7 — ®), D) + (fi)# (71, 7) - (fI)# (72 + s(F — B), 7, )
+ (FI)#(, 7,8) - (f)* (7 + s(a— ), 5, )
+ (IR, ,8) - (F)* (7 + s(T — @), 8, )]
R? Bdr, dv,dvdwdc
< A{I721 - (61, 1) + IS - (80, £2) + NFFH - T (61, £2) + 121103
with §; = 7 R2a?2nT. Therefore,

|I/(f"“)#Ln(f")#|l < 64 (60, £2)- AN+ LN ILZEN o6, £)+IF2I3- (6.23)

Here the following fact is used: (6, f2) < (&1, f?)
mR*a*2nT.

, where § = ma?2nT and &, =
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Let us turn to the Enskog gain term.

Gy (s )70, 5) = / W X2 (7, ) f(7y — ad, ),

2
R3xS+

and thus

(Gln) (f f)(717 v, S ) Gln(f) )(Fl-l'sg’{;)s)
- / W X7 f(71 + 87,7, 5) (7 — a6 + 7,7, s)

2
R3x 5%

_ / Wo X [# (i + s(5 — ), 7, 8) (71 — a8 + s(5 — @), o, s).
R3xsﬁ (6.24)

Similar arguments apply to the other gain terms.

(LOF(, (R, 8,8) = TES, (7 + 59,6, 5)
_ / W, X- fH (i + 85 — ), 5, 8) (7 — a6 + 5(5 — &), ', s)
R3x 5%
b [[] Ut sG55, - s G 55 WL,
R3xR3x5%
+ f#(rl + S(U —v )7{;—a3) ’ f#(F2 - 313—,16_,5)
X k_(F1 + 5,7 3)0(G - V — Vi)W, X,
+ fH(F + s(T — 08), 08, 5) - fH(7 — swP, WP, )}
X k_(7y + sU,7y; 3)0(Vie — & - VW, X,,
x R?Bdrdidd
Plugging in (f7)* = (f;)* + (f?)# to the above expression, we will obtain (6.21).
Next we deduce the bounds for the gain terms of (6.21). Due to (6.24), we have

(7, ), 0 3)

/ WX [OF (s + 5@ = 7),7,5) + (o + s(F = 7), 7, )]
R“’xS2

x [(f)#(7) — aG + (5 — &), &, s) + (fI)* (7, — a6 + s(F — &), &, 5)| Bdwda.
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Again by Lemmas 6.1 — 6.5, we get

||/ G (7, P < (8, 1) - 12N + 2608, £2) - £+ 121 (6.25)
Take the integration with respect to 7 of the second gain term, apply properties of
k, to it, and then split f7. We have the following:
G2n fJ f])(rl,v S)
= [[] P s 5,59) (R - st

Fi3xR3xS2
X ki (7 + s, 7y, &)W X, R? Bdr,dwdd
/ (FY*(7 + s(T— 71), 7%, 8) - (f)*(7 + Rad + (7 — @), T, s)
R3xS2
x WXt R?Bdwds
=[G+ 55— 590,555) + (2)#G + 5(5 = 5790,
R"xS2

 [(f)* (7 + Rad + s(¢ — w*), @+, s) + (f))# (7, + Rad + s(¥ — &), &+, 5)]
x WX+ R?Bdwdz,

which yields

II/Gzn PN < @80, £2) 21+ 20060, £7) - A2+ 12 (6.26)

Similar results are true for all other gain terms. Consequently,

|| / TEP P < oo, £0) - 10+ 20060, 19)- 121+ 1F21Y. (627)

Combining these results together, one has

L2 < NN+ 6080, f2) - RN + (61, £2) - 12
I TN+ (61, £O1)
+4{p(81, £7) - I1F2) + 20060, £) - 121+ 1A%
= £+ @ (61, £7) - O 21 + 1201 £21] + 611 £
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+ILI- [+ el et |
< NN+ 16080, £2) - T2+ 121+ 127
+ 8L TN+ N2 (6.28)

Choose w > n, and T” such that

1720l < 5338
9’)(51,fzp) < 'gff;‘gﬁ, (6-29)
©(61,8)8 < m-

Then we will have

|| £ J €N (6.30)

|| S To0’
128

Now we are ready to prove that the sequence {(f?)#};en is Cauchy. Looking
back to (6.6.2) and taking an appropriate splitting, one has

(SZ*(R, 0,t) = (S (71, 9,1)

+ /[J:(fj’fj)#(Fl76,5) - (fj+1)#(F17Jas)Ln(fj)#(FlvJat)]d's’

and
(f;7l+1)#(7?1a17’t) = (fg)#(Flvgat)
+ /[J:(fma fm)#(Fh 17) 3) - (f'm—*_l)#(i:l) 6’ S)Ln(fm)#(Fla 67 t)]dS

Thus
(fj+1)#(F 17 ) - (fm+1)#(F1: U7t)

/[ﬁ iy P B s) — (PR, ) La(f )R, 5. 0)ds

_ / L™, [R5 s) — (F7H (6, 8) La(f7 ) (7, 1)) ds.

o

(6.31)

Notice that JF(f,g) is bilinear, and L, (f) is linear. Then (f7)# — (f™)# = (fI)# —
(fm)#*. Now we come to the following equality:

(fj+l) (F 5 )—(f?+l)#(ﬁa63t)
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= /[Ji(fj,fj)# — (" ) ds + /(fj+l)#Ln(fj)# — (fEL ()
0 0

- / (5 — [, s) 4 JE(™ 9 — frY (5, 5, s)]ds
0

+/{—[(fj+l)#(F1,‘7a3)—(fm+1)#(F1,U,S)]'Ln(fj)#(f'laﬁ’,t)
(me)#("l,U s) - La(f7 = fm)*(7,7,t)}ds

- /[J:(f]vfg - fem)#(Flvgﬁs) + J:(f""fg - f?)#(F176>$)]d3
0

4 [ I# 05,9 = (2400 Ll P73, 5,0)

0
- (fm+1)#(ﬁa67 3) : Ln(fg - f:b)#(f’la’aa t)}dS (632)
Here we used the fact : fif7 — fmfm = fi(fi — f™) 4 (f7 — f™)f™. In order to get
bounds for each term in the above expression, let us check the Enskog gain term first,
Gzl#;z(fj f]) ln(fm fm)
=GLUL P =" = GLU™ = ™)
- [[1ris
R3xS?%
 [(F)#(7y + ad + s(F — @), 3, 1) — (f™)# (7 + a& + (0 — @), @, 1)]
+[()#(R,8,8) = (f™)F (7, 8, 8] - (f™)* (7 + ad + s(5 — &), @, t)
W, Xt dwde
- [t
R3x 53
x [(f)#(7 + ad + s(¥ — @), @, ) — (f™)# (7 + aG + s(T — ©), @, ¢
IS, T8) — (FE)F(FL T 0] - (f™)F (7 + ad + 5(5 — @), 0, 1)
MW, X+ dwda.
And thus, by Lemmas 6.1 — 6.5, we have

)]

H / £, 1) — GRS, s
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< / J[ [[uwren+aire s

OR3xR® R3xS%
X [(fO* (R + ad + 5(7 — @), @, s) — (f)* (71 + o + 5(7 — D), ¥, 2)]
+ID*(A, T8 — ()7, t)]
x [(f)* (71 + ad + s(T — @), @, s) + (f7)*(71 + aF + (7 — B), 5, 5)]}
W, X+ dr,dvdwddds
<& )+ 11 = £
L= S - T8 ) + 12
= (£ + 1721+ 20008, £ - 1172 = F2 -

Similar results are true for the other gain terms due to Lemmas 6.1 — 6.5. We have

|| / GE(f, f7) — GE(f™, F))ds

< IFN A+ IF2 I+ 2008, 20 I1F = 0, (6=1,2,3,4).

Therefore

Il / TP PV — T SR

0
< AN+ N2+ 2008 fO)- 12 = 1221- (6.33)
With a little bit modification, the discussion can be applied to the loss terms. Because
(f771 = 7 [y = (PR [y (P PR E = (7 (7))
[(F* = (LT + [(FI)* = (f7)#] - [(f)F + (f4)#], it follows by using Lemmas
6.1 — 6.5 that

/ Jfs = e gmitas

0 R3xS3%

< (& )+ SN NS = SR+ NS = S L, 1) + 12D,

and thus
n / PR Lin(FVE — (S * Lo (S 4]
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<[@(& L)+ LN = SR+ N = £ L8 £2) + LA,
(i=1,2,3,4).

Furthermore,

I[P LalP ) = (L)

e e e MU R I

Consequently it follows from (6.32)—(6.34), (6.29) and (6.30) that

|| f2+7 —Af;"“ll |
<AIFN+ I1F) + z'w(al,f?)]_- 172 — 2 |
+8{[(8, ) + N2 - f2 = S+ WA = £ L6, 1) + 112

1, 1. N ‘
< M=+ et = £ (6.35)

Hence {f?};en is Cauchy in the ||||7--norm. Sois {f?};ew. Denote the limit by f,,. It
follows by the contraction mapping theorem that Eq.(6.1) has a unique nonnegative
solution on [ 0, T’] with || fu|l7 < co. Egs. (4.11), (4.14 ), (4.19), and (4.38) hold in
a strict sense for f7,;5 € IN. Hence f, satisfies (4.11), (4.14),(4.19) and (4.38). The
facts discussed above imply the global well-posedness for Eq.(6.1) under the indicated
initial condition on fy. Let us note that if Y = constant # 1,and Y > 0, then we may
adjust w > n, and T’ such that (6.29) and (6.30) are satisfied with 5 multiplying the
right hand sides. All the above results are true. Now we have the following theorem.

Theorem 6.1:  Suppose fy € L} (R?x R?) with fologfo € L (R? x R®) and fo = 0
for |9] > 2n. Then there is a unique solution to the Eq.(6.1) with initial value fo for
t > 0. The solution satisfies Eqs. (4.11) , (4.14), (4.19) and (4.38).

Proof : Given any time interval [0,T]], w and 7" can be chosen in such a way that
(6.29) is satisfied. Then Eq.(6.1) has a unique solution f on [0,7"]. If f, is chosen
to be smooth enough, then the solution is smooth enough on [0,7'] x R® x R® for
the formal computations. The solution f satisfies (4.11), (4.14), (4.19) and (4.38) on
[0,7"]. The argument can next be applied to [T”,27"] with initial value f(7,¥,T") and
then successively on subintervals of length 7" covering [0, T']. The proof is completed.

63



§7. Existence theorem

In the last section, we proved the existence and uniqueness of the solution to the
trucated equation (6.1). Denote it by f, for each n. We shall now take the limit
n — oo, and show that the limjt of the truncated solution functions is the solution
to the equation (2.1), which provides the existence of solution of the equation (2.1).
Let us discuss some weak limit results first.

Lemma 7.1: (Dunford-Pettis Theorem [16]) If X = L'(Q, u) for a positive Radon
measure g on a locally compact space , then {f, }nen C X is weakly compact if and
only if
(i) | fall £ M < 00,Yn;
(i1) Ye > 0,38 > 0 such that [|f.|du < € for all B C Q with u(B) < 6;
B

(iii) Ve > 0,3 compact set K such that

[ 1l < vn
Q\K
Define |
fi= slog(1+61y). (7.1)
Then 1
5 _

Lemma 7.2: The sequences {JI (f,, fn)/(1 + 6f.)} and {fnLin(fn)/(1 + 6f,)} are
weakly compact in L'(R>® x B x (0,T)) for § > 0 and K > 0 (: = 1,2,3,4), where
Bxk={veR® | |V|<K}

Proof: Let us begin with the Enskog loss term. It is easy to see that for any set
FE CR?®x Bk x(0,T),and § >0,

/ / f "LE}%" 7 dvdt

/ / / / P70, 0 ) ful("s + 08B, 8) 5y w4 o1 B, didtdidds

1+6fn
R3x 83
/// // (71 + ad, W, t) - (0] + |@])drydidtdwds. (7.3)
R3x 52
Let Ax = {(7”,70,t,@,8) | |d] < K}\. For any measurable set B; C R® x Bk X

(0,T) x R® x 52,
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/ / Ful7s + ad, @, 1)(|5] + i) dF, dodtdddF

By

<K / / FalFy + aF, B, ¢)dF d5 dt dibda
B

+// o + ad, B, ¢)|5|dF, 5dtddde

Byn{|#|<K}
+ / / 71 + a&, 18, 1)|5] - %—'dﬁdﬁdtdwd&. (7.4)
Bin{|@|>K}

As discussed in previous sections, {f,}n,en satisfy the Egs. (4.11), (4.14), (4.19),
(4.38), and (5.8). If the right hand of (7.4) is weakly compact, then the left hand
side of (7.4) is weakly compact in L'(R?® x Bk x (0,T) x R® x 5%). Let us check
the conditions of Lemma 7.1 ( Dunford-Pettis Theorem ) for the sequence f,(r; +
ad,w,t)(|d] + |w]). (i) is obvious. If we choose K big enough, and let the measure
B; be small enough, we will have (ii) easily from (7.4). (iii) of lemma 7.1, can be
obtained by the following. Let E) = {(7,7,t,w,d) | |fi|+|7]+ |&] < K}, then

/ .. / Ful7 + ad, @, t) - (|5] + |&))dF d5dtdbd
(R¥xBg x(0,T)xR3x S3)nE}E

< // Fuls + a8, ,2) - (17 + 113]) -

(R*xBgx(0,T)xR3x5%)

|7l + |;é| 19 4 gsatazds.

(7.5)

Thus f,(71 +ad, @, t)(|0] + |@]) is weakly compact in L!(R® x Bg x (0,T) x R® x 52).
Therefore the sequence { f, Lg.(f.)/(1+6f,)} is weakly compact due to (7.3) and the
boundedness of the operator ffRi*xsi -Bdwdd from L'(R® x Bk x (0,T) x R* x S%)

to L?(R® x Bk x (0,T)). For the weak compactness of other loss terms, the proofs
are largely the same as the above for the Enskog loss term. Hence {f,Li.(fn)/(1 +
6fa)} (2 =1,2,3,4) is weakly compact. This, together with the gain-loss estimation
Eq.(5.8), implies the same weak L!-compactness for {J(f,, f»)/(1 + 6f.)} when
6>0.m

Lemma 7.3 (Golse Lemma [18],[15]): If f,, 9. € L} .(R?® x R® x (0,T)) satisfy
(0, + V- V7)f, = g, in the distributional sense, and if for each compact set K C
R®x R®x (0,T), the sequences { f, }nen and {g, }nen are weakly compact in L!(R3 x
R? x (0,T)) and L'(K), respectively, then the set {[gs futPdU}nen is compact in
L'(R?® x (0,T)) for all € L°(R® x R® x (0,T)).

In order to prove our main therem, we introduce sevearal lemmas first.
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Lemma 7.4 (see [16]): Let g, and h, be measurable on ¥ = R?® x R®> x (0,T). Then
() [ hugn — [hg if g — g weakly in L', sup|hn| 2 < oo, and h, —
b by n>1

h a.e.
(i) [ hugn — [hg if hn — hweaklyin L', sup|lhn|pe < 0o, and g, —
z D) n>1
g strongly in L.

Lemma 7.5: For any 1 with (1 + |7 [F + |[0]¥)"¢ € L®(R?® x R® x (0,T)) and
0<k<?2,

n—00

R3

tim [ fopdi = / fodi in LB x (0,T)), (7.6)
R3

and
Lin(f'n) - (1 + n)Lz(f) in LI(R3 X BK X (OaT)) fO‘I‘ any K > Oa (77)

i =1,2,3,4.

Proof of lemma 7.5: Since 0 < f8 < f,,, {f»} is weakly compact in L}(R® x R® x
(0,T)), and so is {f°}. Without loss of generality, we may assume that f, — f,
and f& — f% for some f, f6 € L'(R® x R® x (0,T)). Lemma 7.3 and Lemma 7.4
imply that, after passing to a subsequence if necessary, the average velocity sequence
{ s fidv} is compact for any 1 € L(R® x R® x (0,7)). We may assume that
S forpdv e S fo4dv in L*(R® x (0,T)), for some weak limit function f°.

Notice
1
0 fum 2= fu—Flog(1+61)

< fa [(1 — log(15+5f")> X{fngK}] + fo s X{fa3 K} (7.8)

To see the limit of two terms on the right hand side of (7.8) as n — oo, we have

log(1+6f, - .
[(1—%&) X{fnsx}] "2t 0 uniformly, (7.9)
and
sup sup // [ Xita> Ky AT dT Kzpo 0, (7.10)
n>1 t€[0,T) B
R3xR?
because
1 —00
u(fnZK)=//fndF1d6§7(—/ fndridv Kz, (7.11)
K R3xR3
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It follows from (7.8)—(7.11) that (This method was used by Arkeryd [1], DiPerna
and Lions [15], and more recently by Liu [28])

sup sup ||fn — f || 1 (rox xRS) = 0. (7.12)
n>1 t€[0,T] -0+

On the other hand, we can write, for any ¢ € L*(R? x R® x (0,T)),

fsdi= [ o fwait [ (- Fwass [ fea )
R3 R3 R3 R3
By the lower weak semicontinuity of the norm and (7.12), it follows that

“f — fallLl(R3xR3x(0,T)) _<_ .S';up;'] lim znf”fn - fs||L1(R3xR3) — 0. (714)
telo,

Combining these results, and taking the limits n — oo and é — 0 in (7.13), we get
(7.6). In the above proof, 1) can be replaced by any 3 satisfying

(1 + |7 + |71%)" 1% € L=(R® x R® x (0,T)), (7.15)

with 0 < k < 2. Because the operator fsi -dd" is bounded. {L:n(fr)} and {L;(fn)}

are compact in L'(R? x Bg x (0,T)). The same argument as in lemma 7.2 is true for
{Lin(fn)} and Lin(fn) — (14 n)L;(f) weakly in L'(R? X Bk % (0,T)). Consequently
Lin(fn) = (1 + 1) Li(f) in the norm of L'(R® x Bk x (0,7)). =

Lemma 7.6 ([28]):

1) /Gin(fn,fn)zbdﬁnjw /G,-(f, fpdv in measure on  Bg x (0,T);
R3 R3

(7.16)
2) /fn fn)t/)dv = (1 +n)/fL(f)¢dv in measure on Br x (0,T).
R3
(7.17)
Proof: Lemma 7.5 implies that
[stuas = [ rpas
R3 R3
in L'(R® x (0,T)) for v, — 1, a.e.in (¥,7,t) and
sup ||———= ) —|| L < 0. (7.18)
n>1 1+ |7
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Indeed
/ Futbndi = / full + |6|)‘f"+—"|;.fda+ / fupds,
R3 R3 R3

and

Lin(fn) (2 (L+n)Li(f), (:=1,2,3,4).

Thus we have, i =1, 2, 3, 4,

Lm(fn) (1+77) 1(f)
1+ [f (1+|w|)fn(f"1—a&',1b’,t)dzb'dcr 1+ [[ (A + |w])fa(Fy — ad, B, t)dwdG
R3x$2 R3xS2
Let
© 1/) Lln(fn)
"T T4 JT (At W)l — a5, @, 1)ddd5 ¢
R3xS2

Then 1, satisfies (7.18). Thus Lemma 7.5 leads to

f fnLln(fn)Sod{; (1+ 77) f le(f)‘PdU
R3 R3
T+ [T (1+ @) fulfs — 06,5, t)dwds 1+ JJ (1 + [w))f(71 — a7, @, t)dide
R3x5'3_ R3XS?‘_

Since
I // + |w|) fodwdd — // 1+ |w|) fdBd || 11 (g2 x (0,1))
RsxS2 R3xSQ
/f / / (1 + |w|)(fn — f)dw|dridadt - 0,
R3x(0,T)
we have
/ (1 + [w]) fuddde =5 //(1 +|w|)fdBdé  in (7, 7,2).
R3xS% R3x 8%
Therefore

R3 R3

The same method applies to ¢ = 2,3,4 for L;,. This proves (7.17).
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By making appropriate variable changes, J(f,, f,) will be reduced to the case
for f, - Lin(fn) (i=1,2,3,4), i.e., gain terms can be reduced to the case of lost terms.
For example, after making variable change (v, w) — (¢', "),

// YW, X fu(71,0, ) fu(f1 — ad, ', 1)

R3xS%

= // YW, X} f,.(71,0,t) fu(F1 + aG, 0, 1).
R3x 8%

We can treat this case the same way as we did the case of loss terms. Taking the
limit n — oo, we have (7.16). The proof is completed. m

Lemma 7.7:

A, 5,8) — fA (7, 5, 5) - e Bhep B O )

to4

> [ S GHI N5 7) - B O Oy (7.19)
S =E

el K3

K3

almost everywhere in (71, 7) € R® x R3, where

t

FAG 0.0 = [ LG5 (7.20)

1]

Proof: Let .
FA(7,5,t) = / Lon(fa)E (5, 5, 5)ds. (1.21)

0

Then (7.20) and (7.21) leads to

7

/ P2 (71,5, t) — FA(, 6,0)|ddi

R3xR3

< [Cas [[ 1Latr* - Lo Hiarias (7.22)

R3xR3

Lemma 7.5 and (7.22) imply

t
FE(R,5,0) — (1+m)F* =(141) / LA (7, 5, 5)ds,
n—oo 0
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in C([0,T], L}, ,(R® x R®)), and thus
cxp{— D (FA(t) = FA(s))} = eaxp{—(1+n) ) (FF(t) - FF(s))}

almost everywhere in (7}, 9), since exp{— Z(Eﬁ(t) — ij(s))} <.
In the previous section we have already proved that the solution sequence f,
satisfies

f#(f‘l’ﬁ’t) f#(rlav s)x e~ J In(fn)d€
= / T drdF (fun fu)¥ x e 5 Il
¢

for any 0 <s <t <T,and ae. (7,7) € R* x R3.
To prove Lemma 7.7, it is enough to show that

/ / dsdt / / / drJ*(f, f)# x e- NI LN g, gz

R3xR3
< lim inf / / dsdt / / / AT ¥ (fo, fu) ¥ x e 7 EnUn% g5 4.
e R3xR3

Define f¥ = min{f,,w} for 0 < w < oco. Since f¥ < f,, f¥ is weakly compact in
LY(R® x R® x (0,T)). Denoted by f“ the weak limit of f.
Because 0 < f, — f¥ < fu s X{.>w})» {fn} is weakly compact, and

1
pfa 2 w) = // Jfndry1dv < = // fndfidt — 0 uniformly,
fa2w R3xR?®

we get by the same argument as in the proof of (7.12) that

sup sup || fo — £ lo1@mexrsy — 0,
n>1 te[0,T] w—eo

and

lf— f¢ ||L1(R3xR3x(0T))<T Sluz;] lim inf||f. — f:HLI(RSXRS) — 0.
tefo n—00 n—00

Referring to Eqs.(4.8.1)—(4.8.4), define G¥,(fn, fn) = Gin(f2, ), (: = 1,2,3,4), e.g.:
Gin(fns fn) = / / YW, X7 fo(7,7,t) - folF1 — ad, &, t)dida.
R3x 5%
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Thus for fixed w < 00,and 0<s<t<T

i
lim [ dr / / diydvpe J- Lnli)d . qp (fu) )

mn—00 s
R3xR?
11
. — -+ —_ ¢ w
> tim [ dr [[ didipem Bt Gy 5, £
R3xR3
i
=lim [ dr / / didvp / / e~ fr Il (2 5 1) o fo (7 — ad, &, 7)dBdF
° R3xR? R3x 5%
= / dr / / di dvp / / —(n) [ LN (i i 7). f(Fy — aF, 0, T)dbds
R3xR3 R~"><S2

Finally we have that f“ 7 f, G¥.(fs, fn) / Gi(f, f) pointwise as w " oco. Therefore

Lemma 7.7 follows by the monotone convergence theorem and Fatou’s lemma. »

Lemma 7.8:

PR, 5 1) — [H(,5,5) < / TS, £) = nfFL*(f)ldr (7.23)

Proof:  Looking back to the iteration scheme (6.6.2), we have that the solution
fn of (6.1) satisfies

)7 ,t) = fot / U (s f#(5) = () - La(fu)*(s)]ds. (7.24)

Thus the function fS defined by (7.1) satisfies

(T17v7t) - fg#(avf)’?s)

_ I (fs ) * fr Y s
_/s ;[ 1+6fn (1 +5fn) - LE(f)] dr. (7.25)
Define ; ,

As n — oo, f& — f° weakly, where f° is defined by (7.1). By Lemmas 7.2 — 7.6, we

have J‘Efg‘)}f") — J';(_{;f) weakly, and L (f) — (1 +9)L;(f). Thus h® — R®.
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Letting n — oo in (7.25) yields

PG = [ 3[R0 -0 () w) an

for 0 <s<t<T and a.e. (7},0) € R* x R>.
Referring to (7.12), we have

. . §—
If = Folloirexre < T sup, lim inf|| f. — £2] “37 0, (7.28)
te|o,

because of the lower weak semicontinuity of the norm. Thus f*#* — f# in L1(R®x R®)
uniformly in ¢ € [0,T] as § — 0+. '
Notice that h® , f as § \, 0 + . The inequalities 0 < f, — l—fg‘T < ful(l —

57 Xtn<k}] + fa - X{ga2k} lead to

sup su n— — 0. 7.29
nzg te[og‘]”f 1+67/, ||L1(R3xR3) A ( )

Referring to the lower weak semicontinuity of the norm, we have that

sup ||f — R®||paroxrey < sup lim inf||fo — k|liroxre — 0. (7.30)
tefo,T] te[o,T] n—oo §—0+

Since i{fof) < JF(f, ), k* / f and %ﬁf’ J JF(f, f), as § \, 0+, Lemma 7.8

follows by the monotone convergence theorem. m

Now we may demonstrate the following theorem.

Theorem 7.1: Let f; satisfy

//(1 FIRE 4+ T2+ logfo)fe < oo (7.31)

R3xR3

Then there exists a function f € C((0,00); L'(R® x R?)) satisfying

(0 +T-Va)f +0fL(f) = J(f, f). (7.32)

o~

Proof: Fz-#('r'"l,{)',t) = fL?(f)(Fl,z}',r)dT is absolutely continuous with respect to
0
t for almost all (7, %), and %F}# = L¥(f) a.e. in t. Lemma 7.7 and Lemma 7.8
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imply that f# is an absolutely continuous function of ¢ for almost all (7y,%), so is
fHetn L F * . Therefore

L[ Thert] > SO (s, p)F O B, (7.33)
i=F
It follows that
d
%f# > JH(f, 1) = U+ ) fPL*(f) = I(f, ¥ —nf*L*(f). (7.34)

This, together with Lemma 7.8, implies (7.32). This completes the proof of Theorem
7.1.

Beginning with a sequence of solutions {f,, } of Eq.(8.20) with 5, — 0 as ¥ — oo,
all with initial value f,, (0) = fo, we may mimic the proof of Theorem 7.1 to obtain
the main result of this work.

Theorem 7.2: Let fp satisfy (7.31). Then there exists a function f satisfy-
ing (2.1) with f € C([0,00), L}( R® x R?)).
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§8. Conclusions

We have treated the Enskog equation with attractive square-well intermolecular
potential and geometric factor Y = 1. The main result is the existence Theorem
7.2. This extends earlier work of Liu and Greenberg [28],[20] on this problem with a
(high density) cutoff geometric factor. The case Y =1 is important for two reasons.
First, it is a better model of a moderately low density gas than the cutoff model. In
the second place, Y =1 is the zeroth order term in a density expression of the full
geometric factor Y for a dense gas. Thus, this represents the first step in treating
the case of general Y.

The Enskog equation with repulsive square well potential can be treated in the
same manner as the model studied here. Indeed, the estimates for this case are some-
what simpler. Thus, the results of Therem 7.2 can be taken over mutatis mutandis
for the repulsive square-well potential.

Actually, more can be said. The Enskog equation with arbitrary finite range

piecewise constant potential consisting of N steps can be written:

o . 3N oL . oo
5{; +v-Vaf=Ci(f,f)+ // ZY[kﬁja(rl,rz;a)f(rl,ﬁ';t,t)f(rg,wji,t)
R3x sz 171

— KE (71,73 6) f (71, 5,0 f (7, &, O] (Rja)2(G - V)6, dde
(8.1)
+

=, w; as well as the Heav-

where C; is the Enskog collision term, and velocities v'F

iside function #; are determined by the kinetics of the collision process at the N
well interfaces. The results of Theorem 7.2 extend immediately to this case as well.
Thus we may consider existence to have been proved for an arbitrary step function
approximation to a true van der Waals gas.

The results herein have been stated for the configuration space with 7 contained
in all R3. There is no difficulty in carrying the same arguments through for # in
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a periodic box, with the obvious modification of (7.31), of course. The case of 7
confined to a bounded region with diffuse or specular reflection at the boundary is an

important problem which is still open.
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