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A Reinforcement Learning-based Scheduler for Minimizing
Casualties of a Military Drone Swarm

Heng Jin

(ABSTRACT)

In this thesis, we consider a swarm of military drones flying over an unfriendly territory,

where a drone can be shot down by an enemy with an age-based risk probability. We

study the problem of scheduling surveillance image transmissions among the drones with the

objective of minimizing the overall casualty. We present Hector, a reinforcement learning-

based scheduling algorithm. Specifically, Hector only uses the age of each detected target,

a piece of locally available information at each drone, as an input to a neural network to

make scheduling decisions. Extensive simulations show that Hector significantly reduces

casualties than a baseline round-robin algorithm. Further, Hector can offer comparable

performance to a high-performing greedy scheduler, which assumes complete knowledge of

global information.



A Reinforcement Learning-based Scheduler for Minimizing
Casualties of a Military Drone Swarm

Heng Jin

(GENERAL AUDIENCE ABSTRACT)

Drones have been successfully deployed by the military. The advancement of machine learn-

ing further empowers drones to automatically identify, recognize, and even eliminate adver-

sary targets on the battlefield. However, to minimize unnecessary casualties to civilians, it

is important to introduce additional checks and control from the control center before lethal

force is authorized. Thus, the communication between drones and the control center becomes

critical. In this thesis, we study the problem of communication between a military drone

swarm and the control center when drones are flying over unfriendly territory where drones

can be shot down by enemies. We present Hector, an algorithm based on machine learn-

ing, to minimize the overall casualty of drones by scheduling data transmission. Extensive

simulations show that Hector significantly reduces casualties than traditional algorithms.
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Chapter 1

Introduction

Drones have been successfully deployed by the military and are carrying out missions without

incurring the risks associated with human warfighters [4, 9, 21, 23, 26, 28]. The advancement

of machine learning further empowers drones to automatically identify, recognize, and even

eliminate adversary targets on the battlefield[8, 14, 16]. But drones have their limitations.

To minimize unnecessary casualties to civilians and other targets from potential machine

error, it is important to introduce additional checks and control before a lethal force is

exercised.

In this paper, we consider a swarm of N military drones flying over an unfriendly territory

with hostile enemies (see Fig. 1.1 and our video demo in [15]). When a drone flies over

the unfriendly territory, it is exposed to enemies’ fire and becomes vulnerable. The risk

probability for a drone is a complex function that depends on both the number of enemies

and the amount of time that the drone has been in each enemy’s territory, i.e., the age of

this drone at each enemy’s side.

When a drone identifies a potentially target, it will capture its image and try to convey the

image to a base station (BS) for a final determination before exercising a lethal action. All

drones share the same communication channel to transmit images, and the uplink wireless

channel is the main bottleneck and the root of information latency. Once the BS receives an

image, it makes a determination on the nature of the target and issue a final confirmation of

kill/no-kill to the respective drone via a downlink control channel. With potentially many

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A swarm of drones flying over an unfriendly territory containing either hostile
enemies or unarmed civilians.

drones attempting to transmit different target imagery to the BS in the uplink, a scheduler is

needed to coordinate the order of image transmissions. This paper investigate this scheduling

problem, with the goal of minimizing overall casualty of the drones for the mission. The

main contributions of this paper are summarized as follows:

• For a drone swarm flying over an unfriendly territory, we characterize the probability

of a drone being shot down (risk probability) by an age-based function. We formulate

a scheduling problem for transmitting surveillance images among the drones to the BS

with an objective of minimizing the overall casualty. For this problem, we develop a

greedy scheduling algorithm. For each drone, the greedy algorithm first calculates the

expected number of drones to be shot down if the drone is selected for transmission.

Then the greedy algorithm compares the expected number of casualties among all

drones and select the drone corresponding to the lowest casualty for transmission.
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• A fundamental limitation of the greedy algorithm is that it requires global information,

including those only available at enemies’ side. As a result, this greedy algorithm can

only be used as a benchmark, rather than the actual scheduler that can be deployed

in the field. To address the limitation of the greedy algorithm, we propose Hector—a

Reinforcement Learning (RL) based online scheduling algorithm that only uses infor-

mation locally available at the drones. It uses the age of each detected enemy at the

drone’s side as an input to a neural network that is trained by Proximal Policy Opti-

mization (PPO). The output of the neural network gives the probabilities for drones in

the swarm, and the drone with the highest probability will be selected for transmission.

• We conduct extensive simulation experiments to evaluate the performance of Hector.

Our results show that the performance of Hector is similar to the greedy algorithm

(despite that Hector only uses local information while the greedy algorithm requires

global information), and both Hector and the greedy algorithm significantly outperform

a baseline round-robin algorithm.

1.1 System Model and Problem Description

1.1.1 A Military Drone Swarm in the Battlefield

Consider a scenario where a swarm of military drones forming an array and flying in the same

direction (e.g., upward) over an unfriendly territory (see Fig. 1.1). From the drones’ side,

each drone captures images of potential targets from its view. Although the drone is able

to identify potential target and take images, we require that the drone must obtain explicit

confirmation from the central command and control center (the BS) before it exercises any

lethal action. This confirmation is especially important for two reasons. First, from humanity
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Table 1.1: Important notations.
Notation Definition
Rd Radius of drone d’s visual area
Re Radius of enemy e’s firing area
Ad(e)(t) Age of enemy d since it enters drone d’s visual area
De(d)(t) Age of drone d since it enters enemy e’s firing area

δk
Starting time for transmitting the k-th image received
by the BS

S(δk) Scheduling decision at time δk
Si(δk) i-th element of S(δk)

αe(d)(t)
Risk probability for drone d to be destroyed by enemy e
at time t

pd(t) Risk probability for drone d to be destroyed at time t

perspective, loss of civilian lives must be avoided at all possibility, even though doing so may

put the drone at a higher risk of being shot down. Second, the processing and storage

capability at a drone is very limited, and thus, sophisticated target classification is better

done at the central command and control center, which is equipped with much more powerful

processing and storage capacity.

In Fig. 1.1, we assume the central command and control BS resides in a helicopter, which

follows behind the array of drones in the upward direction. When the BS receives an image

from a drone, it will process the image to make a determination of whether the first target

in the image is a hostile enemy or civilian. If the target in the image is indeed an enemy and

should be eliminated, the BS sends its kill authorization to the drone via a control channel.

Otherwise, no action will be taken.

Given that the uplink wireless channel (from the drones to the BS) is shared, different drones

cannot transmit their images simultaneously and a scheduler is needed. Upon the completion

of an image transmission from a drone, the scheduler needs to decide which drone will be

selected for the next image transmission.

On the enemy’s side, a drone is exposed and considered to be vulnerable (to be shot down)
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when it is within the enemy’s effective firing range. Once a drone enters an enemy’s firing

range, its risk probability (of being shot down) increases with time as long as it remains

in this enemy’s firing range. Note that we model the risk (vulnerability) of a drone in a

probability sense (instead of deterministically) for a variety of reasons. For example, an

enemy may choose not to fire at the drone if it wishes to conceal its position. Another

example is that the enemy may be currently devoted to other battlefield activities before

shifting its attention to the drone in the sky.

In this battlefield scenario, it is critical to have the drones to transmit their target images to

the BS and receive kill confirmation in time to minimize their casualties. That is, we need

to a scheduler that can coordinate the transmission of images from the drones so that the

overall casualties of the drones are minimized.

1.2 System Model

1.2.1 Age of Information Definitions

For drone d, we assume its visual area is a circular and has a radius Rd. We also assume

that there is no overlap of visual areas of different drones. Denote tEd(e) and tLd(e) as the time

instances when enemy e enters and leaves the visual area of drone d, respectively, where we

use d(e) to indicate that enemy e is in the visual area of drone d. Then the “age” of enemy

e since it enters drone d’s visual area, denoted as Ad(e)(t), can be defined as:

Ad(e)(t) =


t− tEd(e), if tEd(e) ≤ t ≤ tLd(e);

−∞, otherwise.
(1.1)
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where we use −∞ to indicate that age is undefined when the enemy falls outside a drone’s

visual area.

For enemy e, we assume its firing area is also circular and has a radius Re. Denote τEe(d)

and τLe(d) as the time instances when drone d enters and leaves the firing area of enemy e,

respectively, where we use e(d) to indicate that drone d is in the firing area of enemy e. Then

the age of drone d since it enters enemy’s e’s firing area, denoted as De(d)(t), can be defined

as follows:

De(d)(t) =


t− τEe(d), if τEe(d) ≤ τ ≤ τLe(d);

−∞, otherwise.
(1.2)

Note that our definition for age (i.e., Ad(e)(t) and De(d)(t)) is the same as the Age of In-

formation (AoI) definition by Kaul et al. [17, 18], which is defined to be the elapsed time

between the present and the generation time of source’s information currently stored at the

destination. A rather complete list of research papers on AoI can be found on a website

maintained by Sun [27]. Although AoI has been considered for trajectory design of drones

in drone-aided wireless networks where drones serve as relays for information transmission

(see, e.g., in [2, 3, 5, 6, 11, 12, 13, 29, 30]), to date, we have not seen any research efforts on

employing AoI as an input parameter to design a scheduler for a military operation involving

a drone swarm.
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(a) Drone d flies over multiple enemies’
firing ranges.

(b) Evolution of pd(t) with time t.

Figure 1.2: An example of risk probability pd(t) for drone d as it flies over multiple enemies’
firing ranges over time t.

1.2.2 Risk Probabilities

Denote αe(d)(t) as the probability for enemy e to shoot down drone d at time t. We call

αe(d)(t) as the risk probability of drone d and define it as:

αe(d)(t) =


min

{
f
(
De(d)(t)

)
, 1
}
, if τEe(d) ≤ t ≤ τLe(d);

0, otherwise,
(1.3)

where f(·) is a non-decreasing function of De(d)(t).

When drone d in within fire ranges of multiple enemies, its risk probability is a bit more

complicated. Denote pd(t) as the risk probability for drone d to be destroyed at time t. Then

we have

pd(t) = 1−
∏
e

(1− αe(d)(t)). (1.4)
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where (1 − αe(d)(t)) is the probability for enemy e not to shoot at drone d at time t and∏
e(1−αe(d)(t)) is the joint probability that all enemies in which drone d falls will not shoot

at d.

Example 1.1. Consider the following linear function f(·) in (1.3) for all drones d’s and all

enemies e’s:

f
(
De(d)(t)

)
= c ·De(d)(t), (1.5)

and assume that c = 0.001. Fig. 1.2a shows that at time t1 the drone enters the firing area

of enemy A. Fig. 1.2b shows how pd(t) evolves with time t. As time moves on, at time t2 the

drone enters the firing area of enemy B. During [t2, t3], the drone falls in the firing range

of both enemies A and B. At time t3 the drone enters the firing range of enemy C. During

time [t3, t4], the drone falls in the firing ranges of enemies A, B, and C. At time t4, the

drone leaves the firing area of enemy A; at t5 the drone leaves the firing area of enemy B.

Finally at time t6 the drone leaves the firing area of enemy C. As shown in Fig. 1.2b, pd(t)

is a complex function over time and is calculated based on (1.4). ■

In this paper, we assume that whenever a drone is shot down, the BS (helicopter) will

immediately replenish a new drone to fill its vacant position. Also, when a drone receives a

kill authorization from the BS, it will immediately eliminate the corresponding target with

a probability of 1.

1.3 Uplink Image Transmission and Target Elimination

Denote δk (k ∈ Z+) as the time of the k-th image transmission from the drones to the

BS. Then at δ−k , the scheduler at the BS needs to decide which drone will be selected for

transmitting its image at time δk. Since we have N drones lining in an array and at most one
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drone can transmit at δk, we can define an N ×1 vector, S(δk), as the scheduling decision at

time δk, where the i-th element in S(δk), denoted as Si(δk) ∈ {0, 1}, is 1 if the i-th drone is

selected (scheduled) for transmission and 0 otherwise. Since at most one drone can transmit,

we have: ∑
i

Si(δk) ≤ 1, for all k ∈ Z+. (1.6)

In this paper, we assume that a drone will send only one target in its image to the BS

for confirmation, even though it may have already identified multiple potential targets.

Denote ed(δk) as the target that drone d has identified and will request a confirmation from

the BS at time δk. Upon receiving this image for target ed(δk) from drone d, the BS will

make a determination on the nature of this target and issue kill/no-kill authorization. Such

authorization will be sent to drone d in the control channel. For a kill authorization, drone

d will eliminate the target immediately upon receiving this authorization.

1.4 Problem Statement and Technical Challenge

In our problem, we assume the swarm of military drones flies over an unfriendly territory via

a line formation and it takes a fixed amount of time to complete the flight (under a given

speed). So our goal is to find a scheduler so that the done casualties (i.e., the number of

drones that are shot down) are minimized over this period.

There are a number of significant challenges with our problem. First, as illustrated in

Example 1.1, the risk probability pd(t) for a drone d is highly complex and depends on both

the enemies present along the drone’s path as well as recent scheduling decisions. That is, if

an enemy is eliminated by the drone, then it will no longer pose any risk to the drone in the

future. Second, the scheduling algorithm that we need to design is an online algorithm, in
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the sense that it does not have any knowledge (enemy, scheduling) of the future. It is well

known that it is impossible to design a provably optimal online scheduler, so we can only

resort to good heuristics at best.

1.5 Solution Roadmap

To solve our scheduling problem, in Section 2, we first develop a greedy algorithm that

assumes full knowledge of the following information at each scheduling time δk:

• f(·) and De(d)(δk) for all drone d and all enemy e.

Note that both of the above information is only available on the enemies’ side and unknown to

the drones. Therefore, the greedy algorithm is idealistic and can only serve as a benchmark.

To address the above fundamental limitation associated with the greedy algorithm, in Sec-

tion 3 we design a Reinforcement Learning (RL)-based algorithm. This algorithm eliminates

the requirement of knowledge for De(d)(δk) and f(·). Instead, it only assume knowledge of

the following information at each scheduling time δk:

• Ad(e)(δk) at all drones d for all enemies e,

which is locally available at the drones and can be readily shared with the BS.



Chapter 2

A Greedy Scheduler Assuming Global

Knowledge

2.1 Basic Idea

At each scheduling time δk, k = 1, 2, · · · , the greedy algorithm needs to select which drone

to transmit its image. Recall that if drone d is selected for image transmission, the potential

target in the image can be confirmed by the BS immediately, which will in turn notify

the drone to take lethal action against the target. Our greedy scheduler aims to achieve

the smallest casualty after each image transmission. To do this, for each drone d, we will

calculate the expected number of drones in the swarm to be shot down immediately after δk

(i.e., δ+k ) if drone d is selected for transmission at time δk. Then we will compare the expected

number of casualties among all drones at time δ+k and select the drone corresponding to the

lowest casualty should it be selected for transmission.

2.2 Algorithm Details

Denote N as the number of drones flying in an array formation in Fig. 1.1. We define a

conditional random variable x(δ+k |d) ∈ {0, 1, · · · , N} as the number of drones to be destroyed

11
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at time δ+k if (conditioned upon) drone d is scheduled for transmission at time δk. Recall that

if d is scheduled for transmission at time δk, then upon receiving a kill confirmation from

the BS at time δ+k , it will eliminates enemy target ed(δk). The the expectation of x(δ+k |d)

can be calculated as follows:

E
[
x
(
δ+k |d

)]
=

N∑
i=1

(
1 · pi(δ+k |d) + 0 · (1− pi(δ

+
k |d))

)
=

N∑
i=1

pi(δ
+
k |d), (2.1)

where pi(δ
+
k |d) is the probability for drone i to be destroyed under the condition that drone

d is scheduled for transmission, i.e.,

pi(δ
+
k |d) =


1−

∏
e ̸=ed(δk)

(1− αe(i)(δ
+
k )), if i = d;

1−
∏

e(1− αe(i)(δ
+
k )), otherwise.

(2.2)

As mentioned earlier, the greedy algorithm schedule drone d corresponding to the smallest

E
[
x
(
δ+k |d

)]
for transmission at each time δk.

2.3 Limitations

There is a serious limitation with the greedy algorithm. In (2.2), we see that for each drone

i, pi(δ+k |d) is a function of αe(j)(δ
+
k ) for all drone j’s and enemies e’s except for enemy ed(δk).

By definition (1.3), the calculation of αe(i)(δk) requires the knowledge of f(·) and De(i)(δk),

which are only available on the enemies’ side and unknown to the drones. That is, the greedy

algorithm require global knowledge (including those only available at enemies’ side) which

is impossible to obtain in practice. As a result, this greedy algorithm can only serve as a
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performance benchmark.



Chapter 3

Hector: A RL-based Scheduler with

Only Local Information

To address the problem with the greedy algorithm, we propose Hector1—a model-free RL-

based scheduling algorithm that only relies on information locally available at the drones.

Hector does not require knowledge of f(·) and De(d)(δk). Instead, it uses Ad(e)(δk) as measured

at drone d for enemies e’s as inputs to a neural network that is trained by Proximal Policy

Optimization (PPO). The output of the neural network gives the probabilities for each drone,

and the drone with the highest probability will be chosen to transmit its image.

3.1 Why Model-free RL

Before we consider machine learning-based approaches to our problem, it is important to

have a clear understanding of the mathematical nature of our problem.

First, the objective function (i.e., the casualty of drones) cannot be modeled in closed form.

This is due to the highly dynamic online nature of our system, i.e., the current scheduling

decision and casualty will affect casualty performance of the future. Specifically, whether or

not drone d is selected for transmission at time δk (current scheduling decision) will determine

whether enemy ed(δk) will be eliminated at time δ+k , which in turn will affect the probability
1Hector is the great ancient Trojan warrior.

14
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for drone d to be destroyed at time t > δ+k (future casualty). This makes it impossible to

obtain a closed form expression for the casualty of drones (objective function).

Second, one might consider whether it is possible to calculate the casualty numerically by

enumerating all possible problem inputs (i.e., Ad(e)(δk) for all drones d’s and enemies e’s at

all time δk’s). This numerical approach is practically infeasible because the state space for

the inputs is too large.

To address the above two problems, we propose to employ the model-free RL approach to

solve our problem. Model-free RL is a machine learning technique that learns an unknown

optimal model without prior problem modeling through function approximations. It does

not require an explicit formulation for the casualty (objective function) and is suitable for

solving problems with a very large input space. An RL algorithm (a neural network) trained

properly can perform well even for input sets that are never been learned in the training

phase. In the rest of this section, we show how to design an RL-based scheduler to minimize

the casualty of drones.

3.2 Key Idea

At each time δk, given Ad(e)(δk) for all drones d’s and enemies e’s, the objective of Hector is

to select one drone for image transmission such that the casualty of drones can be minimized

by T that is the finishing time of the mission. Suppose an unknown optimal model exists

for our problem, denoted by Π, that minimizes the casualty of drones. Then, the basic idea

behind Hector is to find an approximation µ of this optimal model Π without prior problem

modeling. After the training phase, µ will have the ability to provide predictions of decisions

of Π even when the input is outside the training dataset [10].
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Figure 3.1: Structure of neural network µ.

In particular, µ is a neural network with numerous trainable parameters within its structure

that determines the mapping from the input to the output. Fig. 3.1 shows the structure of

µ. The input to µ is Ad(e)(δk) for all drones d’s and enemies e’s. The output from µ is a

vector of length N , with entry i ∈ {1, 2, · · · , N} representing the probability to select the

i-th drone for transmission at time δk. We build fully-connected layer structures for µ (i.e.,

a neural network with two hidden layers, where each layer has 256 neurons) so that a strong

universal function approximating capability can be offered.

Training of µ is the core component of Hector, which has multiple steps. The goal of training

is to optimize parameters in µ. Our training method has an actor-critic structure [20, 22].

In the next section we present the details of our training method.
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Figure 3.2: Structure of the training process for neural network µ.

3.3 Training Details

The actor-critic method is a policy gradient algorithm that consists of one actor and one

critic. The BS collects input information and makes decisions through the actor, while the

critic evaluates decisions made by the scheduler and optimize the actor accordingly. In this

paper, we use the approach Proximal Policy Optimization (PPO) [24] to train the actor and

critic, which has advantages of robustness and insensitivity to hyperparameters.

Fig. 3.2 shows the structure of this actor-critic training process, which consists of a scheduling

plane and a learning plane. The neural network µ is considered as the actor, while another

neural network ν is considered as the critic and shares the same input and structure of hidden

layers as µ. The learning plane is responsible to optimize parameters in µ when one episode

is completed. The scheduling plane is responsible to use µ to schedule one drone for image
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transmission at each time δk in one episode. During training, the two planes work together

through a series of steps to optimize µ (in terms of approximating the optimal algorithm π).

Scheduling Plane: Denote K as the number of scheduling decisions to be made within one

episode (e.g., K = 212 in our training). At time δk (k = 1, 2, · · · , K) in an episode, the

input to the actor is {Ad(e)(δk), for all drones d′s and for all enemies e′s}. The output from

the actor is {ak,d for all drones d’s}, where ak,d is the probability for the scheduler to select

drone d for transmission at time δk. Then, the scheduler choose the drone for transmission

based on the probability distribution of ak,d’s.

Learning Plane: At time δk, based on the scheduling decision S(δk) made by the actor in

the scheduling plane, the simulator calculates a reward rk (to be defined in (3.1)) which

measures the quality of S(δk). Then when the entire episode is completed, the critic takes

Ad(e)(δk) as inputs and outputs V̂k for all k = 1, 2, · · · , K. The actor is updated by Adam

optimizer [19] based on rk’s and V̂k’s along the direction defined by a loss function L
(j)
µ (see

(3.2)). Likewise, the critic is updated by Adam optimizer based on rk’s and V̂k’s along the

direction defined by a loss function L
(j)
ν (see (3.6)).

During the offline training process, each action ak’s results in a reward rk, which we define

as follows:

rk = −

(∑
d

pd(δk+1)−
∑
d

pd(δk)

)
. (3.1)

where pd(δk) is the risk probability for drone d to be shot down at time δk and is defined

in (1.4). By definition (3.1), rk is the difference between the expected casualty at time δk+1

and that at time δk, where we assume that none of drones will be shot down during the time

interval [δk, δk+1]. Note that although pd(δk+1) is considered as future information, it is not

a problem as the training process is done offline and information for all enemies e’s at any

time t ∈ [1, T ] can be generated by the simulator. Also, note that the greater the rk, the
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smaller the (
∑

d pd(δk+1)−
∑

d pd(δk)), which means smaller total risk probability at time

δk+1. Intuitively, the reward rk tends to incentivize the actor µ if it can produce an output

(ak) that reduces total risk probabilities at the next scheduling time instance. Note that

once the offline training process is completed, our algorithm Hector (the upper scheduling

plane in Fig. 3.2) will operate as an online algorithm.

The critic is a neural network that evaluates the performance of the actor. It estimates

how the action made based on Ad(e)(δk)’s at time δk affects the casualty of drones in the

future, i.e., future time interval of [δk, δK ]. The output of the critic, V̂k, attempts to estimate∑K−k
i=0 γj · rk+i where γ (0 < γ < 1) is a discount factor.

∑K−k
i=0 γi · rk+i is the cumulative

reward from time δk to time δK . For easy of reference, we define Vk =
∑K−k

i=0 γj · rk+i. Each

time when the entire episode is completed, we calculate V̂k and Vk for all k = 1, 2, · · · , K.

Each time when an episode is completed, we use Adam optimizer to update actor µ for J

times (e.g., 16 in our training). For the j-th update (j = 1, 2, · · · , J) of µ, we employ a loss

function L
(j)
µ which is defined as follows:

L(j)
µ = −E

[
min

{
q
(j)
k ·Gk, clip

(
q
(j)
k , 1− ϵ, 1 + ϵ

)
·Gk

}]
, (3.2)

where q
(j)
k is a ratio of probabilities and is defined as follows:

q
(j)
k =

a
(j−1)
k,d

ak,d
, where d = {i : Si(δk) = 1}. (3.3)

In (3.3), ak,d is the output of actor µ corresponding to drone d that is selected by µ for

transmission at time δk, and a
(j−1)
k,d is the output of actor µ corresponding to ak,d after the

(j − 1)-th update of µ by Adam optimizer.
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In (3.2), Gk is defined as:

Gk =
K−k−1∑

i=0

(λ · γ)i · (rk+i + γ · V̂k+i+1 − V̂k+i), (3.4)

where λ (0 ≤ λ ≤ 1) is a hyperparameter. Gk is used to measure the difference between

estimated cumulative rewards V̂k and observed cumulative rewards Vk and is calculated

according to Generalized Advantage Estimation (GAE) [25].

The function clip is defined as follows:

clip
(
q
(j)
k , 1− ϵ, 1 + ϵ

)
=


1− ϵ, if q(j)k < 1− ϵ;

1 + ϵ, if q(j)k > 1 + ϵ;

q
(j)
k , otherwise,

(3.5)

where ϵ > 0 is a hyperparameter.

Each time when an episode is completed, we use Adam optimizer to update µ for J times.

For the j-th update (j = 1, 2, · · · , J), we first calculate L
(j)
µ and then update µ along the

direction defined by L
(j)
µ (similar to gradient descent approach). Such an update has the

objective of maximizing Gk (hence Vk as Gk measures the difference between Vk and V̂k). The

reason why we consider the loss function L
(j)
µ instead of GK directly is because Schulman et

al. in [24] proved that optimizing L
(j)
µ can make the training process faster and more stable

than optimizing Gk.

Similarly, each time when the entire episode is completed, we use Adam optimizer to update

critic ν for J times. For the j-th update of ν (j = 1, 2, · · · , J), we employ a loss function
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Figure 3.3: The change of average rewards
∑K

k=1 rk
K

and casualties through episodes.

L
(j)
ν which is defined as follows:

L(j)
ν = E

[(
V̂

(j−1)
k − Vk

)2]
, (3.6)

where Vk is the cumulative reward and V̂
(j−1)
k is the output of critic ν corresponding to V̂k

after the (j − 1)-th update of ν by Adam optimizer. For the j-th update (j = 1, 2, · · · , J),

we first calculate L
(j)
ν and then update ν along the direction defined by L

(j)
ν . Such an update

allows V̂
(j)
k , the output of the updated ν, to better estimate Vk.

After training, at each time δk, Hector uses ages Ad(e)(δk) from all drones d’s and enemies e’s

as inputs to µ and µ gives output ak,d for all drones d’s. Then, Hector will select the drone

corresponding to the largest ak,d for transmission at time δk.
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3.4 Implementation and Evaluation

We implement Hector using TensorFlow [1] and Keras [7]. Fig. 3.3 shows the learning curves

of our proposed training (Fig. 3.2), where each episode contains K = 212 steps. From the

figure we observe that the learning process converges smoothly.



Chapter 4

Performance Evaluation

4.1 Evaluation Plan

In this section, we evaluate the performance of Hector. First, we use a case study to demon-

strate how the casualty achieved by Hector evolves with time, and compare it against the

performance of two benchmark algorithms: (i) our proposed greedy scheduler (requiring

global knowledge), and (ii) a simple round-robin scheduler (not requiring global knowledge).

Then, we study the performance behavior of Hector under varying system parameters.

Table 4.1: Simulation parameters for a drone swarm.

Parameters Value
Number of drones in the array N 100
Speed of a drone 10 m/s
Total length of flight path 6 km
Radius of each drone’s visual area Rd 200 m
Size of an image to be sent to the BS 625 KB
Data rate of uplink wireless channel 50 Mbps
Radius of each enemy’s firing area Re 200 m
Slope c of the function f(·) in (1.5) 0.001
Target generation probability π 0.1

23
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4.2 Simulation Setup and Parameter Setting

Table 4.1 shows the general parameters in our experiment, which follows the scenario in

Fig. 1.1. We set N = 100, i.e., 100 drones in an array. We set the space between two

adjacent drones to 400 m. We assume the speed of each drone is 10 m/s and the total length

of a drone’s flight path is 6 km. So it takes 600 seconds to complete the flight mission and

the coverage area by the 100 drones is 40km × 6km. For this coverage area, we further divide

it into 100×600 grids, with each grid corresponding to a small area of 400m × 10m. Within

each grid, we generate a target following a Bernoulli distribution with a success probability

of π (i.e., with probability of π a target exists in this grid). π is also called target generation

probability in our simulation study. If there is a target in a grid, we assume its location

following a uniform distribution inside the grid. We set π = 0.1 in the experiment unless

otherwise specified. Further, we assume the probability that the target is an enemy is 0.25

and the probability that the target is a civilian is 0.75, respectively.

As shown in Table 1.1, we set the radius of a drone’s visual area to be Rd = 200 m. We

assume images to be sent to the BS share the same size of 625K bytes. We set the uplink

data rate to 50 Mbps. Hence the time for transmitting one image from a drone to the BS is

100 ms (i.e., 625KB/50Mbps).

Since we will employ discrete event simulation in our experimental study, we need to dis-

cretize time so that we can advance the simulation following a sequence of time intervals.

We set the smallest time interval to be 100 ms, same as the time needed to transmit an

image from a drone to the BS.

On the enemy side, we assume that the function f(·) (which is used to calculate the risk

probability αe(d)(t)) follows the linear function as (1.5), with c = 0.001 in the experiment

unless otherwise specified. We set the radius of an enemy’s firing area to be Re = 200
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Figure 4.1: Evolution of casualty over time t under different scheduling algorithms.

m unless otherwise specified. At time instances of t = 1, 2, · · · , 600 s, each enemy e will

decide whether or not to shoot down a drone in its firing area with a risk probability αe(d)(t)

(defined in (1.3)).

4.3 A Case Study

We use a case study to illustrate the performance (casualties) of Hector over time and

compare it to the greedy algorithm and round-robin algorithm. Fig. 4.1 shows this result.

From the figure, we observe that by the end of the mission (T = 600 s), 181 drones are de-

stroyed under the round-robin scheduler, 6 drones are destroyed under the greedy scheduler,

and 9 drones are destroyed under Hector. In this case study, we find that both the greedy
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scheduler and Hector significantly outperform the round-robin scheduler in terms of fewer

casualties, indicating the necessity of a well-designed scheduler to address our problem. Fur-

ther, the performance of Hector is close to that of the greedy scheduler, even though Hector

only employs local information while the greedy scheduler requires global knowledge.

4.4 Varying System Parameters

4.4.1 Varying Load (Target Generation Probabilities)

Now we evaluate the performance of Hector by varying the number of targets (load) along

the flight path. This is done by varying the target generation probability π from 0 to 0.16,

with an increment of 0.01. For each π value, we simulate 100 instances and take the average

of casualty results. The results of this study are shown in Fig. 4.2.

From Fig. 4.2 we observe that when π ∈ [0.03, 0.16], the casualties achieved by Hector

are almost identical to those achieved by the greedy scheduler. The casualties achieved by

Hector and the greedy scheduler are lower than those achieved by the round-robin scheduler,

especially when π ∈ [0.04, 0.12]. An interesting observation is that when π ≤ 0.1, the

casualties of Hector and the greedy algorithm remain close to 0. But when π > 0.1, the

casualties of Hector and the greedy algorithm start to ramp up. This is because π = 0.1

implies that the expected number of targets in a grid is 0.1. Considering that 100 drones

form an array. With a flying speed of 10 m/s, a drone will cover 1 grid per second. So the

number of targets detected by the drone swarm will be 100 · 0.1 = 10 per second. Since a

drone takes a picture every 100 ms, the drone swarm is expected to detect one target every

100 ms. Since the time for transmitting one image is also 100 ms, it is expected that the

information of every target that appears in the territory will be transmitted to the BS and
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Figure 4.2: Casualty results by different scheduling algorithms for different values of π.

hence every enemy will be eliminated by the drone swarm, leading to a casualty close to 0.

When π > 0.01, the drone swarm is expected to detect more than one target every 100 ms.

That is, there is more images containing enemies than the drones can upload and take lethal

action in time. Consequently, there is an increase of risk probabilities for the drones, leading

to more casualties.

Not shown in Fig. 4.2 are the casualty performance for the three schedulers when π is larger

than 0.16. We find that the casualties of different schedulers all converge eventually when

π is larger than 0.18. This is intuitive because under such heavy “load” (target generation

probability), there are simply too many enemies exist in the territory for the drones to handle

and a better performance is not achievable through the design of a scheduler.

From Fig. 4.2 we also observe when π < 0.03, the casualties achieved by different schedulers
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Figure 4.3: Casualty results by different scheduling algorithms for different values of c.

are similar and all are close to 0, which is intuitive because under such low target generation

probabilities, there are very few enemies exist along the flight path.

4.4.2 Varying Risk Probability

We evaluate the performance of Hector by varying the risk probability αe(d)(t) in (1.3). This

is done by varying c, the slope of the function f(·) in (1.5). For each value of c, we simulate

100 topology instances and take the average of casualty results. The results of this study

are shown in Fig. 4.3.

From Fig. 4.3 we observe that when c varies from 0.0005 to 0.003, the casualties by the

round-robin, Hector, and the greedy algorithm all increase, as expected; the performance of

Hector is similar to the greedy algorithm; both Hector and the greedy algorithm perform
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Figure 4.4: Casualty results by different scheduling algorithms for different values of Re.

much better than the round-robin algorithm. Specifically, when c = 0.0005, the number

of casualties by round-robin, Hector, and the greedy algorithms are 102.86, 5.51, and 4.23,

respectively. When c is increased to 0.0030, the number of casualties by round-robin, Hector,

and the greedy algorithms become 347.58, 22.36, and 18.63, respectively.

4.4.3 Varying Enemy’s Firing Range

Finally we evaluate the performance of Hector by varying Re—the radius of each enemy e’s

firing area. For each value of Re, we simulate 100 topology instances and take the average

of casualty results. The results of this study are shown in Fig. 4.4.

From Fig. 4.4 we observe that when Re varies from 150 to 250, the casualties by the round-

robin, Hector, and the greedy algorithm all increase, as expected; the performance of Hector
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is similar to the greedy algorithm; both Hector and the greedy algorithm perform much

better than the round-robin algorithm. Specifically, when Re = 150 m, the average the

number of casualties by round-robin, Hector, and the greedy algorithms are 82.39, 0.61, and

0.71, respectively. When Re is increased to 250 m, the number of casualties by round-robin,

Hector, and the greedy algorithms become 288.66, 55.81, and 55.15, respectively.



Chapter 5

Conclusions

In this thesis, we investigate a problem of scheduling transmissions from a drone swarm

with an objective of minimizing its casualties. For this problem, we first design a greedy

scheduling algorithm. At each transmission opportunity, this greedy algorithm transmits the

drone whose transmission leads to the largest reduction in its probability of being destroyed

by enemies. From extensive simulations we observe that this greedy algorithm significantly

reduces casualties than a round-robin baseline. However, this greedy algorithm has a limita-

tion that it requires the drone swarm to have full knowledge of enemies’ information to make

scheduling decisions, which is not possible in reality. To address this limitation, then we

develop an efficient online scheduling algorithm Hector. Hector uses the age locally available

at the drones as inputs to a neural network and exploits reinforcement learning techniques

to make scheduling decisions. Extensive simulations indicate that the performance of Hector

is always close to that of the greedy algorithm, despite that the greedy algorithm requires

the knowledge of certain information that is not available in practice while Hector does not

have such a requirement.
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