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First Measurement of the Neutron S Asymmetry with Ultracold Neutrons
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We report the first measurement of an angular correlation parameter in neutron S decay using polarized
ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store
for ~30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T
field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to
the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a
decay volume, situated within a 1 T field in a 2 X 27 solenoidal spectrometer. We determine a value for
the B-asymmetry parameter A, = —0.1138 = 0.0046 = 0.0021.
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Measurements of neutron 3 decay observables provide  surements of polarized neutron 8 decay: the preparation of
fundamental information on the parameters characterizing  highly polarized neutrons and the backgrounds intrinsic to
the weak interaction of the nucleon. Results from such  the neutron 8 decay sample.
measurements can be used to extract a value for the The angular distribution of emitted electrons is
CKM quark-mixing matrix element V,, and impact pre- _
dictions for the solar neutrino flux, big bang nucleosynthe- WI(E,, 0) = F(E)(1 + AP} cost), 0
sis, the spin content of the nucleon, and tests of the  where E, and B are the electron energy and velocity
Goldberger-Treiman relation [1]. High-precision results  relative to ¢, F(E,) is the allowed shape of the electron
also place constraints on various extensions to the standard ~ energy spectrum, (P) is the neutron polarization, and 6 is
model, such as supersymmetry [2] and left-right symme-  the angle between the neutron spin and the electron mo-
tries [3]. Angular correlation measurements in neutron 8  mentum. The 8 asymmetry is given by A = Ay(1 + a( +
decay have been performed with thermal and cold neutron  a_,/E, + a,E,)(1 + 8), where Ay = —2A(A + 1)/(1 +
beams [4], including all previously reported measurements ~ 3A?) [10]. The recoil order terms a,, a_;, a,; and the
of the B asymmetry [5-9]. The use of UCN for these  radiative correction & are specified in the standard model
measurements provides a different and powerful approach ~ and dominated by three coupling constants: g, and g,

to controlling key sources of systematic effects in mea- (vector and axial vector, with A = g,/g,), and g,,,
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(weak magnetism). Three additional form factors are ex-
pected to be negligible at the level of precision of this
work. Very precise estimates for g, and g,,,, are available
in the standard model, but precise theoretical predictions
for g, are not available. Other than g, limiting theoretical
uncertainties are below the 0.1% level, and stem from
hadronic loop contributions to radiative corrections [11].

UCN are defined as neutrons with energies low enough
( = 340 neV) that they undergo total external reflection
from an effective potential barrier Eg.,, at some material
surfaces [12] and can thus be stored in material bottles. We
produced UCN in a solid deuterium (SD,) source [13]
coupled to a tungsten spallation target in the 800 MeV
proton beam at the Los Alamos Neutron Science Center
(LANSCE). Protons were delivered in 28 ©C pulses, once
every 17 s, with the spallation neutrons moderated in cold
(~ 20 K) polyethylene surrounding the source. UCN were
created via downscattering of the resulting cold neutron
flux in 5 K SD,. After each proton pulse, the emerging
UCN passed through a valve located above the SD,. This
valve was then closed, loading a storage volume (20 1
vertical volume and 40 1 of guides) above the SD, with
an estimated density of 10 UCN cm ™ at the exit of the
spallation source shielding. The vertical storage volume
was coupled by about 5 m of electropolished stainless steel
guides (with two 45° bends to limit backgrounds) to a gate
valve just beyond the shielding, and then ultimately to a
switcher which allowed the guides comprising the
B-asymmetry experiment (see Fig. 1) to be connected
either to the UCN source or a *He UCN detector for
depolarization measurements, described below.

One of the primary advantages of the low UCN energy
is the ability to highly polarize a UCN population via
the interaction of the neutron magnetic dipole moment
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FIG. 1. Schematic (not to scale) of the B-asymmetry experi-
ment. Inset depicts the layout of the UCN source and transport
guides.

with a static magnetic field (@, - B), which amounts to
+60 neV T~ for neutron spins aligned (+) or antialigned
(—) with the field. The UCN were polarized via this effect,
using a longitudinal 6 T field in a prepolarizer magnet
(PPM) and a 7 T field in the primary polarizer and spin-
flipper magnet. The polarization of the subsequent popu-
lation was maintained by polarization-preserving electro-
polished Cu (Egem; = 168 neV) guides and a 100-cm long
diamondlike carbon (DLC) coated quartz section (Egerm; =
200 neV) passing through the center of a resonant “‘bird-
cage” rf cavity used for adiabatic fast passage (AFP) spin
flipping of the UCN. Overlapping fringe fields served as
the holding field between the polarizer and spectrometer
magnets.

Prior to the B-asymmetry run, a measurement of the
AFP spin-flipper efficiency was made by placing the PPM
magnet after the polarizer and spin-flipper magnet, creat-
ing a crossed polarizer analyzer with the PPM utilized as
the analyzer. The transmission through the system was
measured to be 0.40(5)%, placing a lower limit of 99.1%
on the initial UCN polarization and a lower limit of 99.6%
on the spin-flipper efficiency.

In order to measure the depolarization on a run-by-run
basis during the B-asymmetry measurement, the mea-
surement cycle consisted of a background run (with
proton beam on, but gate valve closed, resulting in no
UCN in the spectrometer, ~720 s in duration) followed
by the B-asymmetry measurement for some spin state
(~3600 s), and then a measurement of the depolarized
population (~240 s). The depolarization measurement
consisted of first closing the gate valve while simulta-
neously connecting the guides at the upstream side of the
experiment to the *He UCN detector using the switcher.
This cleaning phase, lasting 150 s, allowed the number of
correctly polarized UCN downstream of the 7 T polarizing
field to be measured. Next, the depolarized population
present in the experiment was unloaded and counted by
changing the state of the spin flipper. Counting during this
unloading cycle was carried out for 100 s. The depolarized
contamination at the end of each individual run was con-
sistent with zero. By combining all available runs, correct-
ing for depolarized UCN detection efficiency, and
attributing the crossed polarizer analyzer result entirely
to unpolarized UCN, we were able to place an upper limit
(1o) of 0.65% on the depolarized fraction present during
any individual run. We expect that better characterization
of our system combined with significant improvements in
background and statistics during depolarized UCN count-
ing should result in a limit below 0.2% in the future.

After transport to the spectrometer, the UCN were con-
fined to a 300-cm long, 12-cm diameter Cu decay trap tube
with end-cap foils consisting of 2.5-um thick mylar foils
coated with 300 nm of Be. Storage times of ~30 s were
achieved, limited by gaps in the guide and decay trap
geometry, resulting in a UCN density of about 0.2 cm 3.
A plastic collimator with an inner diameter of 11.7 cm,
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which also functioned as the end-cap foil mount, sup-
pressed contamination from electrons scattering from the
Cu decay trap or resulting from neutron capture on the Cu
walls. The spectrometer’s 1 T solenoidal field was oriented
along the decay trap axis and provided for 2 X 2 collec-
tion of the B decay electrons, which spiraled along the field
lines toward one of two identical electron detector pack-
ages [14]. A field-expansion region from 1 T in the decay
volume to 0.6 T in the electron detector region suppressed
electron backscattering events [15].

The two electron detector packages [15,16] each con-
sisted of a low-pressure (132 mbar) multiwire proportional
chamber (MWPC) backed by a 3.5-mm thick, 15-cm di-
ameter plastic scintillator, and were spaced 4.4 m apart.
The MWPCs permitted reconstruction (with 2 mm resolu-
tion) of the events’ transverse coordinates, ensuring ‘“‘edge
effects” associated with electron scattering from the walls
of our decay trap or collimator edges were negligible. The
MWPCs were separated from the spectrometer vacuum
and the scintillator volumes by identical 25-um thick
mylar entrance and exit windows.

The scintillator, with an energy resolution of 5.6% at
1 MeV, generated the trigger and provided for the energy
measurement. Energy calibrations were performed in situ
every 6-8 h, using a ''3Sn source of conversion electrons
which could be inserted and retracted from the spectrom-
eter’s fiducial volume. Gain variations between calibra-
tions were monitored and corrected for by comparing the
response of the scintillator and an external photomultiplier
tube (PMT) to a pulsed LED source. The response of the
external PMT to the LED was normalized to the spectrum
of gamma rays from a °*Co source in a Nal crystal coupled
to this PMT.

The linearity of the detector response was studied with a
limited selection of commerically available conversion-
electron sources (!'*Sn or ’Bi between 4 wm thick plas-
tic foils), effectively calibrating the detectors. Analysis of
the implementation of our calibration via Monte Carlo
calculations suggests a (conservative) 1.5% uncertainty in
the value for A, due to possible errors in our electron
energy reconstruction.

Background rates were reduced from roughly 40 s™! to
1 s~! by requiring a coincidence between the same-side
MWPC and scintillator. The spectrometer was surrounded
by a cosmic-ray muon veto system consisting of propor-
tional gas tubes and a plastic scintillator. Proton beam-
related backgrounds were suppressed with timing cuts. Af-
ter all cuts, the integrated background rate over the fiducial
volume up to the endpoint was about 0.2 s~ !. A significant
potential advantage of UCN over cold neutron beams for
angular correlation measurements stems from the rela-
tively small number of neutrons present in the decay
geometry and guides. Because the absolute efficiency for
detection of neutron-generated gamma-ray backgrounds
by the MWPC-scintillator coincident system is extremely
small compared to the nearly 100% electron-detection
efficiency, UCN-generated backgrounds were negligible.

Misidentification of backscattering events is one of the
largest contributions to the total fractional systematic cor-
rection to the value for A, reported here (see Table I).
Electrons triggering both scintillators within a 100 ns ac-
ceptance window comprised 2.5(3)% of all events, with the
initial direction of incidence determined by the scintilla-
tors’ relative trigger times. The bias to the asymmetry from
events with transit times greater than 100 ns is small,
<1073. Another class of backscattering events, comprising
1.4(2)% of the event fraction, were those events which
triggered only one of the scintillators, but deposited energy
in both MWPCs. Comparison of the energy deposition in
the MWPCs determines the initial direction of incidence
for these events, with the efficiency for this identification
calculated in Monte Carlo to be ~80%. Finally, events
which backscattered from either the decay trap end-cap
foils or the MWPC entrance windows could not be identi-
fied in data analysis, and are termed “missed” backscat-
tering events. Corrections for these missed backscattering
events were separately performed using the GEANT4 [17]
and PENELOPE [18] simulation packages, and found to be
1.1(4)%. Previous studies of these Monte Carlo backscat-
tering calculations suggest a 30% uncertainty in the missed
backscattering correction [19].

Linear parametrizations of energy loss in the decay trap
end-cap foils and the MWPC entrance or exit windows and
interior were employed to reconstruct, on an event-by-
event basis for each event type, the 8 decay energy from
the measured energy deposition in the scintillator(s). The
resulting energy spectrum, compared to background, is
shown in Fig. 2. Disagreement between the shape of the
reconstructed energy spectrum and that expected from
simulation is <3% over the chosen analysis region of
200-600 keV. The lower limit of 200 keV was constrained
by energy loss for backscattering events triggering both
scintillators. The upper limit of 600 keV was an optimiza-
tion of the signal-to-noise ratio, seen in Fig. 2 to be 21:1
from 200-600 keV (over 0.17 s~ ! of background), and also
constrained by considerations of other systematics over the
range 600-800 keV. Note that the background-subtracted
rate above the 8 decay endpoint was consistent with zero.

Because of the angle dependence of the energy loss, the
average value of cosf deviates from 1/2 and varies as a

TABLE I. Fractional systematic corrections to Ay.
Systematic Correction Uncertainty

Polarization - 0.013
UCN-Induced Backgrounds - 0.002
Electron Detector Effects

Response/Linearity - 0.015

Gain Dirifts - 0.002
Electron Trajectories

Angle Effects —0.016 0.005

Backscattering 0.011 0.004
Total —-5X1073 0.021
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FIG. 2. Top panel: Values for A, extracted from the best fit,
varying the parameter A, plotted as a function of the recon-
structed B decay energy (i.e., after accounting for energy loss;
see text for details). The value of the radiative corrections, 0, is
below 0.1% [20] and therefore negligible for this study. Bottom
panel: Reconstructed 8 decay energy spectrum, summed over
detectors, compared with the expectation from Monte Carlo
calculations (dashed line). Solid line indicates analysis region.

function of energy. The correction to the asymmetry for
such “‘angle effects’ was calculated with the Monte Carlo
simulation to be —1.6(5)%. Effects due to differences in
loading efficiencies for the two spin states and detec-
tor efficiencies cancel in a super ratio of rates, S(E,) =

HE ) HE)S/HENr(E,)}, where r(E,)|()

measured in detector 1(2) when the spin-flipper was

was the rate

on(off). The experimental asymmetry is then A(E,) =

(1 —+/S(E,))/(1 ++/S(E,)). After correcting for back-

scattering and angle effects, A, was extracted from a
one-parameter fit. With these corrections we find Ay =
—0.1138(0.0046),(0.0021)y. Results for A, from inde-
pendent analyses utilizing PENELOPE or GEANT4 for calcu-
lation of the corrections for energy loss and backscattering
agreed to 0.26%.

In summary, we have demonstrated the first-ever mea-
surement of a neutron B decay angular correlation parame-
ter with UCN. Reduction in the gaps and increasing the
Fermi potential of the guide system, together with an
increase in the proton beam current and optimization of
the proton beam tune, should result in a substantial im-
provement in the UCN S decay rate and the statistical
uncertainty. Significant improvements in the limits placed
on the fraction of depolarized UCN should follow from
higher statistics for depolarization studies and reduced
backgrounds in our *He detectors by operating them at
higher gain and with better shielding. The systematic errors
in electron detection due to backscattering and angle ef-

fects are dominated by scattering in the decay trap and
MWPC foils, and can be reduced by at least a factor of 2
(based on Monte Carlo studies) by using 0.7 wm decay
trap foils and 6 um MWPC foils. Uncertainties due to
nonlinearity effects can be reduced by an order of magni-
tude by using a greater selection of calibration sources
(1¢Cd, 3*Ce, "4mIn, 3Sn, #Sr, and 2°7Bi) and more
extensive studies of the detector response. The improve-
ments discussed above should permit a substantial im-
provement in the precision of our result, making our
ultracold neutron experiment competitive with the existing
cold neutron beam experiments and providing useful data
on the weak interaction of the nucleon.
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